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Abstract

In the past few years, there has been considerable activity around a set of quantum
bounds on transport coefficients (viscosity) and chaos (Lyapunov exponent), relevant at
low temperatures. The interest comes from the fact that Black-Hole models seem to sat-
urate all of them. The goal of this work is to gain physical intuition about the quantum
mechanisms that enforce these bounds on simple models. To this aim, we consider clas-
sical and quantum free dynamics on curved manifolds. These systems exhibit chaos up
to the lowest temperatures and – as we discuss – they violate the bounds in the classical
limit. First of all, we show that the quantum dimensionless viscosity and the Lyapunov
exponent only depend on the de Broglie length and a geometric length-scale, thus es-
tablishing the scale at which quantum effects become relevant. Then, we focus on the
bound on the Lyapunov exponent and identify three different ways in which quantum
effects arise in practice. We illustrate our findings on a toy model given by the surface
of constant negative curvature — a paradigmatic model of quantum chaos — glued to
a cylinder. By exact solution and numerical investigations, we show how the chaotic
behaviour is limited by the quantum effects of the curvature itself. Interestingly, we find
that at the lowest energies the bound to chaos is dominated by the longest length scales,
and it is therefore a collective effect.
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1 Introduction

Since the early days of quantum mechanics, physicists have tried to understand the different
ways in which it affects the familiar, classical, world. In the past few years, there has been
a renewed interest in the constraints posed by quantum effects on the physical properties
of macroscopic systems at low temperatures. Initially, these concerned anomalous transport
properties, like the conductivity [1], the resistivity [2] or the viscosity η in the Kovtun-Son-
Starinets bound [3]

η

S
≥
ħh

4π
, (1)

where S is the volume density of entropy. (In our units kB = 1). Even if there is no general
consensus on the bounds on transport, it was argued that they are related to the emergence of
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a Planckian time-scale τPl = ħh/T , depending only on the Planck constant ħh and on the absolute
temperature T in units of energy [4]. Recently, such Planckian time-scale has appeared in a
different bound: the one on the quantum Lyapunov exponent λ, defined as the growth rate of
some quantum out-of-time ordered correlator (OTOC) [5]. In Ref. [6], Maldacena, Shenker
and Stanford proved that the rate λ of a closely related regulated OTOC shall be bounded by1

λ≤
πT
ħh

. (2)

This result is now known as the bound to chaos. Intriguingly, models of black holes, includ-
ing the Sachdev-Ye-Kitaev (SYK) [7] model, saturate these bounds. Spurred by the Field-
Theory/Black-Hole community, these topics have now spread over different fields, ranging
from quantum Information Theory to Condensed Matter and Statistical Physics. These studies
have established that quantum Lyapunov exponents are defined only for systems of N elemen-
tary constituents (such as spins or fermionic sites) with all-to-all interactions in the large N
limit [7], or for an underlying semiclassical chaotic limit [8]. On the other hand, the bound
to chaos corresponds to a genuine quantum effect.

If one considers the bounds themselves – and not the properties of systems saturating them
– one may suppose that there is the quantum Uncertainty Principle at the bottom. From this
down-to-earth perspective, it is a question of elementary physics to understand how quantum
effects act to enforce the bounds in practice.

The goal of this work is to learn as much as possible with the simplest models we can
construct: the classical and quantum free dynamics on curved manifolds. Let us now moti-
vate this choice. To begin with, we restrict ourselves to bosonic systems in the semi-classical
limit at low-temperature T . For the bounds to be effective one needs T/ħh to be finite, which
holds in the semiclassical limit for very low temperatures corresponding to the lowest classical
energies of the system for T > 0. Secondly, we wish to restrict to systems that have non-
trivial, “interesting”, dynamics down to the lowest temperatures. For instance, in an isolated
minimum of the Hamiltonian, at low temperatures, the quantum system will only perform vi-
brations with quantum fluctuations (elementary excitations/quasi-particles) around the clas-
sical ground state. Bounds will be then satisfied, but trivially, i.e. due to the linearization
of the dynamics. On the other hand, in the presence of ground-state degeneracies, or quasi-
degeneracies at the lowest energies, the system may instead be non-harmonic (and chaotic)
even “at the bottom of the well” [9].
With this in mind, there are two natural choices for nontrivial low-temperature dynamics: free
propagation bounded by walls – billiards – or on curved manifolds. Billiards and free motion
on manifolds share a scale-invariance property: the configuration-space trajectories are given,
and, at different energies, the system just runs through them at different speeds. As we shall
see, a billiard is nothing but a “deflated” manifold [10]. For this reason, we concentrate on
the free dynamics of a particle of mass µ on a curved manifold. In particular, we focus on the
example of the pseudosphere, i.e. the surface with constant negative curvature, a paradigmatic
model of quantum chaos [11]. Far from being only of abstract theoretical interest, lattices on
hyperbolic geometry have been recently experimentally realized via superconducting coplanar
waveguide resonators [12]. This has paved the way for the study of exciting phenomena, that
can now be experimentally probed [13].
Our ultimate motivation, however, is the possible extension of our results to macroscopic sys-
tems, wherein one can define a thermodynamic limit. As we will argue, explicit examples of

1The bound to chaos is usually stated as λ′ ≤ 2πT/ħh [6]. The missing factor “2” in Eq.(2) comes from the
different definition of the exponential growth from the square commutator [cf. Eq.(26)], i.e. λ′ = 2λ. We make
this choice to simplify the comparisons with the classical Lyapunov exponent.
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macroscopic billiards or macroscopic manifolds are given by hard-sphere systems [14] or by
certain spin-liquids [15] respectively. For instance, the scaling of the classical λ predicted on
manifolds has been found numerically in a spin liquid in Ref. [15].

The results of this paper can be divided into two main parts. First of all, we discuss generic
properties of classical and quantum free systems on Riemannian manifolds which can be de-
rived by pure dimensional analysis. We show that these systems are automatically Planckian,
i.e. characterized by a time scale τPl. We illustrate how the quantities of interest for the bounds
(viscosity and Lyapunov exponent) are only functions of the ratio between the smallest length-
scale of the model and the thermal de Broglie wavelength. Remarkably, the classical limit of
these quantities reveals clear violations of the quantum inequalities (1)-(2), as illustrated pic-
torially in Fig.1. This leads us to our second main scope: we focus on the bound to chaos (2)
and we provide a thorough discussion of the different ways quantum mechanics intervenes
to enforce it. These are discussed in full detail on a simple toy model on a two-dimensional
surface that we can solve exactly and simulate numerically. One of the suggestions of our dis-
cussion is that, for a system to approach the bound for T → 0, there has to be a full hierarchy
of length scales, such that at each temperature some degrees of freedom are still classical, and
some are on the verge of being affected by quantum effects. All these effects may be extended
to high-dimensional manifolds, that are directly related to macroscopic models.

These findings open up a novel perspective on the quantum bounds, sometimes believed
to be only a subject of high-energy physics [1,3,6]. Instead, they can be understood as a non-
trivial effect of quantum uncertainty, even on simple models. Our framework calls for a more
general study of many-body systems whose ground-state classical configurations are curved
manifolds embedded in phase space.

The rest of the paper is organized as follows. Sec.2 contains a summary of the main results
of the paper. Then, we first briefly comment on the relation between billiards and collapsed
manifolds in Sec.3. In Sec.4, we introduce the classical and quantum dynamics on Rieman-
nian manifolds and perform the dimensional analysis leading to the universal dependence of
the viscosity and Lyapunov exponent. We also discuss how the semiclassical approximation
automatically displays violations of the bounds. We then focus only on the bound to chaos in
Eq.(2). In Sec.5, we explore quantum effects on simple models on two-dimensional surfaces,
that we can solve exactly and simulate numerically. In Sec.6 we discuss how the bound to
the Lyapunov exponent holds in the limit of zero temperature in presence of a hierarchy of
length scales. We discuss generalizations to macroscopic N -dimensional systems in Sec.7. We
conclude in Sec.8 with some closing remarks and perspectives for future work. This paper
aims at being pedagogical. For this reason, all the details of the calculations are reported in
the appendix.

2 Summary of the results

In this work, we study the bounds (1)-(2) analyzing the quantum dynamics of a free particle
on a curved manifold. Besides the Planck constant ħh, these systems are characterized by only
few other parameters: the mass µ, the kinetic energy density – that we take as thermal T

2 – and
the geometry of the manifold, that we describe in terms of some characteristic length-scale R
and other dimensionless parameters ~α 2. Quantum effects become dominant depending on

2For instance all the other length-scales in units of R.
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Figure 1: General picture of the quantum bounds on free manifolds. (a) The quantum
dimensionless viscosity and (b) Lyapunov exponent are only a function of R/`th. The
classical limit (blue full line) violates the bounds (1)-(2) (red dashed line) for R< `th.
At that length-scale, quantum effects enter the game implementing the bounds.

the comparison between R with the thermal de Broglie length [16]

`th =

√

√

√2πħh2

µ T
. (3)

The content of this work can be summarized as follows:

• Quantum free systems on manifolds are naturally Planckian, since they are characterized
only by the universal time-scale τPl = ħh/T .

• The quantities of interest for the bounds (viscosity and Lyapunov exponent) are universal
functions of R and the `th, as summarized in Fig.1. By dimensional analysis, we find

ηRd

ħh
= Ωη

�

R
`th

�

,
λħh
T
= Ωλ

�

R
`th

�

. (4)

The Ωη/λ(x) are dimensionless functions that only depend on the geometry of the prob-
lem. In the classical limit x = R/`th� 1, their leading behaviour is

Ωη(x)' x +O(x−2) , Ωλ(x)'
1
x
+O(x−2) , (5)

which displays clear violations of the bounds (1)-(2) when x = R/`th→ 0, as illustrated
in Fig.1. Therefore, the quantum effects shall act when `th ∼ R.

• We restrict to the bound to chaos in Eq.(2) and at this scale we identify three mechanisms
enforcing it:

(1) (trivial) finite size effects: `th is of the order of the system size, and one can not
perform any semi-classical description.

(2) In the presence of different negative curvatures, the bounds are implemented by
an effective repulsive potential, which at low energies excludes the particle from
the most curved and chaotic regions. In this framework, the bounds are saturated
at zero temperature in the presence of multiple (diverging) length-scales and are
hence a collective effect.
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(3) In the presence of only one negative curvature, there is a regime where one finds,
surprisingly, a super-exponential growth of OTOCs, which makes the Lyapunov
regime - thus the bound in Eq.(2) - ill defined.

These effects are studied in detail for a toy model with constant and negative curvature,
that we solve and study numerically.

3 Billiards are “collapsed” manifolds

Before starting our discussion, we shall make a brief remark. As was pointed out by Arnold,
a billiard may be seen – both classically and quantum mechanically – as a particular case of a
manifold [10]. Thus, an ellipsoid in the deflated limit becomes an ellipsoidal billiard, and so
on. For instance, holes of billiards are related to negative curvature regions of the associated
manifold.

It is easy to see this in general. Consider a billiard in arbitrary dimension x1, ..., xN defined
by some boundaries. Each point inside the allowed region x is characterized by the minimal
distance to the boundary M(x). We may “inflate” this into a manifold by adding an extra
coordinate z, and defining the manifold embedded in the N + 1-dimensional space by:

z2 = k2 [M(x)]2 . (6)

This has a symmetry z→−z, so that quantum mechanically, wavefunctions may be classified
according to their parity under this transformation. We recover the billiard as k → 0, the
appropriate boundary conditions are obtained by restricting to the subspace of odd functions
in z.

As an example, we may promote a system of hard spheres of coordinate ri and radius R to
a manifold as:

z2 = k2
�

min
i j
|ri − r j| − R

�2

. (7)

Therefore, studying classical or quantum dynamics on curved manifolds includes billiards as
a limit.

4 Dynamics on curved manifolds and scaling of the
quantum bounds

A Riemannian manifold is parametrized by a set of coordinates (x1, x2, . . . , xN ) and is defined
by the metric

ds2 = gik(~x) d x id xk , (8)

where the metric tensor is gik(~x) = gik(x1, x2, . . . , xN ) in N dimensions, g ik its inverse and
g ≡ det gik its determinant. It will be convenient from now onward to adimensionalize the
coordinates by dividing by some characteristic length R of the system, for example a typical
radius. The classical Hamiltonian for free motion in a manifold is

Hcl =
1

2µR2
pi g

ikpk , (9)

and the Lagrangian is thus

L =
µR2

2
gik ẋ i ẋk . (10)
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Here, we have made explicit the length scale R and now x i and gi j are dimensionless variables.
Other adimensional parameters are denoted ~α. The action and the length are respectively

Action=

∫

d t L(x , ẋ) , Length=
1
µ1/2

∫

d t
Æ

L(x , ẋ) . (11)

The extremization of both equations yields the same Euler-Lagrange equations, because L
itself is a constant of motion, so we conclude that classical trajectories are geodesics, covered
at speed

p

2L/µ=
p

2E/µ.
There also exists a well-defined “free” quantum dynamics in curved geometry,

ĤΨ = −
ħh2

2µR2
∇2Ψ = iħh

dΨ
d t

, (12)

where the Hamiltonian is given by the invariant Laplacian on curved manifolds, i.e. the
Laplace-Beltrami operator [11]

∇2 =
1
p

g
∂

∂ x i

p
g g ik ∂

∂ xk
. (13)

As a pure consequence of the rescaling in Eq.(12), the Heisenberg evolution of a generic
can be re-written as

B̂(t) = eiĤ t/ħh B̂ e−iĤ t/ħh = e−i 1
4π

�

`th
R

�2
∇2 t

τPl B̂ ei 1
4π

�

`th
R

�2
∇2 t

τPl , (14)

where we have used the definition of the thermal de Broglie length (3) and divided and multi-
plied by τPl = 1/βħh. This implies that the adimensional observables evaluated at the thermal
time tth = t/τPl are only a function of R/`th. Furthermore, the characteristic time-scale of
the problem is τPl. In what follows, we show that as a result of Eq.(14), the adimensional
transport coefficients η and Lyapunov exponent λ are only a function of R/`th and hence obey
Eq.(4).

4.1 Transport Coefficients

A nice way to introduce transport coefficients is with the Helfand-moment formalism, which
allows one to write transport coefficients as diffusion’s rates, see e.g. Refs. [17, 18]. Any
transport coefficient α can be associated to a current Jα(x , p), a fluctuating quantity of orderp

V (with V ∼ Rd the volume). The Green-Kubo formulas read [19]

αc =
1

V T

∫ ∞

0

d t 〈Jα(t)Jα(0)〉T classical , (15a)

α=
1

2V T

∫ ∞

0

d t Tr

�

[Ĵα(t), Ĵα(0)]+
e−βH

Z

�

quantum , (15b)

where 〈·〉T is the classical thermal average at temperature T and [Â, B̂]+ = ÂB̂ + B̂Â . Intro-
ducing in both cases the Helfand function Gα(t) defined by Jα(t) =

p
V T d

d t Gα(t) [17], the
coefficients α may be written as

αc = lim
t→∞

lim
V→∞

〈(Gα(t)− Gα(0))2〉T
2t

, (16a)

α= lim
t→∞

lim
V→∞

Tr
¦

(Ĝα(t)− Ĝα(0))2e−β Ĥ
©

2t
. (16b)
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We see this as diffusion of – or in the direction of – the G. The limit of infinite volume is taken
first because we do not want the G to saturate upon equilibration 3. All in all, a robust definition
of “transport” for any Riemannian manifold is to consider a multiple-connected surface and
count the diffusion around some handles of an appropriate Helfand function.

Let us consider the case of the classical viscosity η, i.e.

Gη(t) =

√

√ 1
Rd T

1
N

N
∑

i

qx
i p y

i . (17)

Adimensionalizing momenta and coordinates, one has Gη =
q

µ

Rd−2 G̃η, where G̃η is a adi-
mensional quantity of purely geometrical content: it depends on the geodesic structure of the
manifold. This means that in terms of the adimensional time t̃ = t/

p

R2µ/T , the dynamics
only depend on the parameters through a time rescaling. Substituting t̃ in Eq.(16a), we get

ηc =

p

Tµ

Rd−1
lim

t̃→∞
lim

V→∞

〈(G̃α( t̃)− G̃α(0))2〉T
2 t̃

︸ ︷︷ ︸

geomet ric

. (18)

This is a purely classical expression. Dividing both sides by ħh we promote it to semiclassical:

Rdηc

ħh
=

R
`th

lim
t̃→∞

lim
V→∞

〈(G̃α( t̃)− G̃α(0))2〉T
2 t̃

︸ ︷︷ ︸

geomet ric

, (19)

and we thus obtain the classical scaling of Eq.(5). Quantum mechanically, any transport coef-
ficient reads

α= lim
t→∞

lim
V→∞

Tr
§

(Ĝα(t)− Ĝα(0))2e
1

4π

�

`th
R

�2
∇2
ª

2t
,

(20)

where we have substituted the quantum Hamiltonian (12) Ĥ = − ħh
2

2µR2∇2 = − 1
4πβ

�

`th
R

�2
∇2

and the definition of `th (3). This expression, together with rescaling of Heisenberg observables
in Eq.(14), shows that the quantum Helfland moments evaluated at tth = t/τPl are only a
function of R/`th and other dimensionless quantities.

Consider now the quantum viscosity via Eq.(17). Using p j = −iħh∂ /∂ yi , one immediately
gets

Ĝη(t) = −i
ħh

p
Rd T

1
N

N
∑

i=1

x i
∂

∂ yi
=
ħh

p
Rd T

G̃η , (21)

and correspondingly,

Rdη

ħh
= lim

tth→∞
lim

V→∞

Tr

�

(G̃α(tth)− G̃α(0))2e
`2th
2R2∇

2
�

2tth
= Ωη

�

R
`th

, ~α
�

,
(22)

where we have defined Ωη a generic adimensional function, and ~α the other dimensionless
parameters appearing in ∇2. For large R� `th, the linear term in Ωη dominates, and ħh drops

off, so we retrieve the classical result ηc ∝
p
µT

Rd−1 in Eq.(18), see also Eq.(5). The latter vanishes
at zero temperature, hence displaying a clear violation of the bound [20]. Therefore, quantum
effects must arise at length-scales `th ∼ R, as depicted in Fig.1a.

3However, when we compute transport with the Green-Kubo formula, there is always a direction in which we
may choose periodic boundary conditions. If we keep track of the number of turns around these, we may omit the
large V limit.
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4.2 Lyapunov exponent

Let us now turn to the Lyapunov exponent. In the classical case, trajectories are geodesics that
the system runs through at velocity v =

p

N T/µ 4. On manifolds, chaos has purely geometric
origin and nearby chaotic geodesics separate exponentially with distance ` along them [10]
as

∆(`)∼∆0e`/s , (23)

where s is the average path after which errors grow by e, denominated the “geodesic separa-
tion” or “characteristic path length” [10]. The classical Lyapunov exponent λc , which measures
separation per unit time, scales with the velocity: λc =

v
s . As discussed in Ref. [9], one has

s =
p

NR and therefore

λc =

√

√T
µ

1
R
=

T
ħh
`th

R
1
p

2π
, (24)

the classical scaling of Eq.(5). Thus, the classical Lyapunov exponent should scale with the
square root of the temperature [9]. As mentioned above, this scaling with temperature has
been found numerically in a classical spin-liquid of interacting spins on the kagome lattice [15].

In quantum systems, chaotic properties can be characterised by the quantum Lyapunov
exponent, based on the square square-commutator [5]

C(t) = −Tr

�

[B̂(t), Â(0)]2
e−β Ĥ

Z

�

, (25)

where B̂(t) and Â(0) are quantum observables in the Heisenberg representation at different
times. In the case of underlying classical chaotic dynamics, the square commutator is expected
to grow exponentially in time

C(t)∼ ε2e2λt , (26)

where ε is a small parameter that enables a separation of time scales between the early time
expansion and large times saturation [6]. By studying the closely related regulated out-of-
time-ordered-correlator (OTOC)

F(t) =
1
Z

Tr
h

e−
β
4 Ĥ B̂(t)e−

β
4 Ĥ Âe−

β
4 Ĥ B̂(t)e−

β
4 Ĥ Â

i

, (27)

the authors of Ref. [6] have shown that in quantum systems the rate of growth of chaos defined
from above is bounded at low temperature by Eq.(2).

It is now well established that exponential time-dependence occurs only in presence of
well-defined classical chaos ħh → 0 [21], or when some other parameter other than ħh , such
as 1

N or 1
d (with N the number of individual constituents with all-to-all interactions and d

the spatial dimension) goes to zero [7, 22]5. In this sense, the exponential growth of the
commutator in quantum systems is an exception rather than a rule [24].

We now show that the adimensional Lyapunov, namely λħh/T , is only a function of the
ratio between the smallest geometric length-scale R and the thermal de Broglie length `th [cf.
Eq.(3)] also in the quantum case. Using the rescaling of generic observables in Eq.(14), the
four point-correlators appearing in the regulated OTOC in Eq.(27) can be re-written as

F(t) = Tr

�

�

e
1

4π

�

`th
R

�2
[ 1

4−i tth]∇2
B̂e

1
4π

�

`th
R

�2
[ 1

4+i tth]∇2
Â
�2�

, (28a)

4Classical geodesics are characterized by velocity
p

2E/µ. At equilibrium, energy is evaluated via the equipar-
tition theorem, i.e. E = N T/2, see Ref. [9].

5The same is true for the quantum Kolmogorov-Sinai entropy, see Ref. [23]
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thus one immediately concludes that

F(tth)
F(0)

= fλ

�

R
`th

, ~α, tth

�

, (29)

with fλ a generic function. The same holds for the square-commutator C(t) of Eq.(25). Hence
it follows that, whenever the square-commutator grows exponentially i.e.,

C(t)∼ e2λt = e2ħhλ/T tth , (30)

the adimensional growth rate ħhλ/T must be a function only of the ratio `th/R, i.e.

λħh
T
= Ωλ

�

R
`th

, ~α
�

. (31)

For the limit R � `th, the leading order of Ωλ is ∝ ħhp
µT

. Then ħh drops off and we recover

the classical result in Eq.(24), see also Eq.(4). The latter shows that in the classical limit
ħhλc/T ∝ `th/R∝ ħh2/

p
T violating the bound (2) at low temperatures. Therefore, quantum

effects must arise at length-scales `th ∼ R for which ħhλc/T =O(1). As we discuss in the next
section, these reconcile with the quantum bound to chaos, as depicted in Fig.1.

The Lyapunov exponent is in a sense different from the transport coefficients: the latter
are well-defined unless the coefficient itself becomes infinite because the scaling of transport
with the size is anomalous. In the case of the Lyapunov exponent, the very definition may
lose sense because there is no regime in which the growth of the instability is exponential.
Consider the Ehrenfest time at which an initial packet has spread throughout the phase-space
volume. It may be estimated as

ε2e2λTEhr ∼ L , (32)

where L is a diameter of phase-space. The existence of a Lyapunov regime requires that there
is a small parameter ε∼ ħh (or ε∼ 1/N) such that the Ehrenfest time

TEhr ∼
1

2λ
ln

L
ε

(33)

is sufficiently large. There are cases when there is no Lyapunov regime at all. This is what
is expected of spin chains with local interactions and finite spin representations [24]. As a
consequence, quantum effects act on a Lyapunov exponent, not necessarily limiting its value,
but they may also make their definition inapplicable.

5 Quantum mechanisms for the bound to chaos on a simple model

The goal of this section is to understand how quantum mechanics intervene to enforce the
bound to chaos (2) at low energies. To do this, we start by exploring the simplest models
describing a free particle moving on two-dimensional curved surfaces. In this context, it is
more appropriate to reason in terms of energy E rather than of temperature

T −→ E . (34)

At equilibrium, the average energy per degree of freedom is related to temperature by the
standard equipartition theorem. In a finite system, energy is a fluctuating quantity, and it
seems more natural, rather than the thermal length `th [cf. Eq.(3)], to consider the de Broglie
wavelength

`dB =
2πħh

p
=

2πħh
p

2µ E
, (35)
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where p is the momentum per degree of freedom.
We identify three quantum mechanisms responsible for the bounds. (1) Size: the classi-

cal description breaks down when `dB is of the order of the system’s size. This is the most
trivial scenario in which quantum fluctuations extend over all the system and do not allow
any semi-classical description. The typical example is one of the spin-S models with small
S. (2) Avoidance of curved regions. (3) Spreading of wave-packets in competition with the
curvature. In what follows, we first introduce the simple model given by a free particle on a
curved surface, constructed by joining a surface of constant negative curvature to a cylinder,
as in Fig.2. Then, we illustrate the effects (2) and (3) on such a toy model.

5.1 The free geometry

The metric reads

ds2 = gµνd xµd xν =







R2 (dτ2 + sinh2τ dφ2) for 0≤ τ < τx ,

R2 (dτ2 + sinh2τx
︸ ︷︷ ︸

const.

dφ2) for τx < τ < τx +τL , (36)

where Rτ is the radial geodesic distance and φ is the angle. For 0 ≤ Rτ < Rτx , Eq.(36)
corresponds to a representation in geodesic polar coordinates of the surface with constant
negative Gaussian curvature K = −1/R2, also known as the pseudosphere. At τ = τx , the
pseudosphere is matched with a cylinder, that has a reflecting wall at τ= τL .

5.1.1 The pseudosphere

The pseudosphere constitutes the paradigmatic model for chaotic dynamics on manifolds. The
classical and quantum properties of such metric have been discussed at length in Ref. [11], to
which we refer for all the details. Surfaces of constant negative curvature can not be globally
embedded in a three-dimensional Euclidean space [25]. Hence, a possible way to visualize
this surface is to consider an embedding in the Minkowskian space. There, the psudosphere
appears as one sheet of a two-sheeted hyperboloid, as in Fig.2. A first obvious reparametriza-
tion in terms of pseudospherical polar coordinates y1 = R sinhτ cosφ, y2 = R sinhτ sinφ
and y0 = R coshτ (satisfying the condition y2

1 + y2
2 − y2

0 = −R2) leads to the metric (36) for
0 ≤ τ < τx . The invariant volume element is dVHyp = R2 sinhτdτdφ. From the polar coor-
dinates, one can readily deduce a different parametrization: the hyperbolic plane or Poincaré
disk. Points on the Poincaré disk are obtained via a stereographic projection onto the y1, y2
plane about the point (0,0,−R). In Fig.2, the hyperbolic plane is represented pictorially by
Escher’s Circle limit IV6. A point of coordinates (Rτ,φ) in the hyperboloid is described by polar
coordinates (Rr,φ) on the disk of radius R with r = tanh τ2 . With these coordinates, the invari-
ant volume element reads dVHyp = 4R2r drdφ/(1 − r2)2. The boundary of the disc (r = 1)
corresponds to points at infinity of the hyperboloid (τ =∞). Therefore, by considering a
finite portion of pseudosphere for τ≤ τx , we limit the Poincaré disk up to r ≤ tanhτx/2≡ x .
The volume of the curved (chaotic) geometry is therefore

VolHyp =

∫

dVHyp = 4πR2 sinh2 τx

2
. (37)

5.1.2 The cylinder “lead”

At τ= τx , the hyperboloid is matched with a cylinder of radius R sinhτx and height L = RτL ,
whose metric is given by Eq.(36) for τx < τ < τx + τL . The invariant volume element

6Escher’s Circle limit I-IV series represent tesselations of the hyperbolic plane. They illustrate discrete subgroups
acting on the unit disc. See Ref. [26].

11

https://scipost.org
https://scipost.org/SciPostPhys.13.1.006


SciPost Phys. 13, 006 (2022)

y0

y1

y2

R

L

Rx
Poincaré disk
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Figure 2: Geometry of the surface with zero and constant negative curvature. The
three-dimensional plot represents a section of the hyperboloid with constant neg-
ative curvature −1/R2 (blue) and the cylinder of length L = τLR (orange) in the
Minkowski metric (see discussion in Sec.5). Points of the hyperboloid are projected
onto the (y1, y2) plane with lines originating in −R. The points lie in the interior of
the Poincaré disk of radius R. The latter is pictorially represented by Escher’s Circle
Limit IV. The presence of the cylinder starting from τx corresponds to limiting the
radius of the Poincaré disk to Rx with x < 1.

dVCil = R2 sinhτx dτdφ allows to compute the cylinder volume

VolCyl =

∫

dVCyl = 2πR2τL sinhτx . (38)

Since this surface has zero Gaussian curvature K = 0, the free motion on a cylinder is com-
pletely regular. Its role is to emphasise the effect of negative curvature to the bound to chaos,
by comparing the wavefunctions in the two regions.

Summarizing, the relevant length-scale of this geometry is the radius of the pseudosphere
R, while the dimensionless parameters are τx and τL , that represent the length of the pseu-
dosphere and the height cylinder respectively. Through these, we can tune the ratio between
the volume of the chaotic region and the total one, i.e.

VolHyp

VolHyp + VolCyl
=

tanh(τx/2)
tanh(τx/2) +τL

=
x

x +τL
. (39)

We choose large dimensionless parameters τx � 1 and τL � 1, such that the volume of the
model is always very large. As a result, we immediately overcome the first quantum mechanism
due to the limitations of the system size that we get if the circumference of the cylinder is small
with respect to the de Broglie length, as well as avoiding a small Ehrenfest time. This will allow
us to concentrate on the effect of the radius of curvature R.
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5.2 Classical dynamics of the free model

The associated classical Hamiltonian is

H0 =
1

2µR2



























p2
τ +

I2
φ

sinh2τ
for 0≤ τ < τx ,

p2
τ +

I2
φ

sinh2τx
︸ ︷︷ ︸

const.

for τx < τ < τx +τL ,
(40)

where Iφ is the angular momentum. For 0 ≤ τ < τx , the orbits correspond to geodesics
on the pseudosphere, these can be visualized on the Poincaré disk as diameters of circles
orthogonal to the boundary [11], see Fig.3. This region is chaotic, in the sense that nearby
geodesic separate exponentially fast in time with the classical Lyapunov exponent λc given by
Eq.(41). On the other hand, for τx < τ < τx + τL the system undergoes regular free motion
on the cylinder. Inside the pseudosphere, the presence of the angular momentum generates
the standard classical repulsive potential at small distances∝ I2

φ
/ sinh2τ. For small values of

Iφ the particle enters in the pseudosphere also at small τ, while for large values it explores
only its boundary and spends most of the time in the cylinder. Note that, once integrability
is broken (see below), this corresponds to an ergodic equilibrium distribution that is uniform
with respect to the metric, see Fig. 9 in the Appendix.

The classical Lyapunov exponent of the pseudosphere has the scaling of Eq.(24) and reads

λc =

√

√ 2E
µR2

, (41)

where R is the radius of the pseudosphere that here plays the role of the geodesic separation
s for one degree of freedom [cf. Eq.(23)]. Since all the chaotic contribution comes from the
curved region, the total Lyapunov exponent is given by the the fraction of time the particle
spends in the curved chaotic region times its λc in Eq.(41), as

λc
tot = λ

c
VolHyp

VolHyp + VolCyl
, (42)

where, because of ergodicity, the ratio of times is given by the ratio of volumes that can be
computed explicitly from the metric [cf. Eq.(39)].

5.3 Small perturbation and chaotic behaviour

The model given by H0 is not our end product. In fact the model at this level is integrable
due to axial rotational invariance (H0 has two constants of motion: angular momentum and
energy). What became of the chaoticity inside the hyperboloid? The answer is simple: two
neighbouring trajectories starting in the cylinder separate exponentially when they enter the
pseudosphere until they start returning towards the cylinder and they approach one another
exponentially. As such, motion on this surface is exponentially unstable and it is enough to add
some small arbitrary perturbation to break the angular momentum conservation. Therefore,
any small integrability-breaking term added to the Hamiltonian (40) shall make the model
fully chaotic with a Lyapunov exponent independent from the perturbation. We consider the
following slightly perturbed Hamiltonian

H = H0 + γV (τ,φ) with γ� 1 , (43)
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Figure 3: Chaotic dynamics of the free particle on the surface with zero and constant
curvature. Main plot: square of the classical Poisson brackets (45) averaged over 50
initial conditions distributed according to the equilibrium distribution. The dashed
black line represents the exponential growth with rate given by twice the total classi-
cal Lyapunov exponent (42). Inset: single trajectory on the Poincaré disk with initial
angular momentum I0 = 2.3. Parameters of the simulation: τx = 3.7, τL = 20,
E = 3.5, R= 1 and perturbation with p = (2, 5,7, 10) with γp = (1,2, 0.5,−2).

where H0 is given by Eq.(40) and V (τ,φ) is a perturbation, whose specific form does not
change the results. In particular, for a reasons that will be more transparent in the quantum
case, we chose V (τ,φ) as a sum over some integers p of the following potential

Vp(τ,φ) = cos(pφ)

¨
�

tanhτ/2
x

�p
for τ < τx ,

1 for τx < τ < τx +τL ,
(44)

where cos(pφ) breaks the conservation of the angular momentum. At each step we check that
the results are independent of the form of the perturbation, and are given by the chaotic parame-
ters of the hyperboloid itself. This is exemplified by the inset of Fig.3 where we show a single
trajectory on the Poincaré disk, that appears like the pure unperturbed one of a chaotic curved
billiard. We also test the equilibration, verifying that the long-time average of observables
corresponds to the equilibrium distribution, see e.g. Fig.4 in App. A. See the same Appendix
for all the details on the numerical implementation.

Secondly, we explore the classical Lyapunov exponent of the system. Since all the chaotic
contribution comes from the pseudosphere, the total Lyapunov exponent is given by Eq.(42).
To work in analogy to the quantum problem, we probe λc

tot by looking at the square of the
Poisson brackets, equivalent to the square-commutator of Eq.(25). We study

ccl(t) = 〈〈{τ(t),τ(0)}2〉〉E =
¬¬

�

dτ(t)
dpτ(0)

�2
¶¶

E
, (45)

where 〈〈·〉〉E represents the average over different initial conditions sampled according to the
equilibrium distribution at energy E. Being proportional to the derivative of the trajectory to
respect to the initial conditions, ccl(t) grows exponentially fast in time with a rate given by
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twice λc
tot , see Fig.3. We notice that, in complete analogy with the quantum case, this quantity

yields the annealed Lyapunov exponent that is in general dominated by rare events.

5.4 Quantum dynamics

In the quantum problem, the free evolution of a particle on a manifold is determined by the
Schrödinger equation where the Laplace-Beltrami operator (13) acts as the Hamiltonian

Ĥ0Ψ = −
ħh2

2µR2
∇2Ψ = EΨ . (46)

The normalization condition for the wave functions Ψ is given by 1 =
∫

dV |Ψ(τ,φ)|2 =
∫ p

g |Ψ(τ,φ)|2 dτdφ , where g = det gi j is the determinant of the metric. As a matter of
convenience, we consider the transformed Ψ(τ,φ) into Φ(τ,φ) by the following relation

Φ(τ,φ) = g1/4Ψ(τ,φ) , (47)

such that normalization condition then becomes 1 =
∫

|Φ|2 dτdφ. The Laplace-Beltrami op-
erator ∇2 (13) associated to the metric (36) reads

∇2 =























1
sinhτ

∂

∂ τ

�

sinhτ
∂

∂ τ

�

+
1

sinh2τ

∂ 2

∂ φ2
for τ < τx ,

∂ 2

∂ τ2
+

1

sinh2τx
︸ ︷︷ ︸

const.

∂ 2

∂ φ2
for τx < τ < τx +τL .

(48)

We apply the Schrödinger equation to Ψ(τ,φ) = g−1/4Φ(τ,φ) and obtain the following equa-
tion for Φ:















−
ħh2

2µR2

�

∂ 2

∂ 2τ
+

1

sinh2τ

∂ 2

∂ φ2

�

Φ+ Veff(g)Φ

−
ħh2

2µR2

�

∂ 2

∂ 2τ
+

1

sinh2τx

∂ 2

∂ φ2

�

Φ

= EΦ , (49)

where the effective potential reads

Veff(g) =
ħh2

2µR2

1
4

�

1−
1

sinhτ2

�

. (50)

Therefore, the quantum effect of curvature is to generate a repulsive potential∝ ħh2 composed
of a “centrifugal” term∝ 1

sinh2 τ
and a constant energy step, i.e.,

∆= lim
τ→∞

Veff(g) =
ħh2

2µR2
δ with δ =

1
4

. (51)

Divergences as ∼ 1
sinhτ2 ∼ τ−2 for τ → 0 are know to give an anomalous bound state in

quantum mechanics [27]. Here however, we are interested in higher energy levels.
The eigenenergies and eigenfunctions of H0 can be determined exactly via separation of

variables Ψ(τ,φ) = eimφF(τ), where m is the integer eigenvalue of the angular momentum
and F(τ) is determined by solving the radial Schrödinger in the pseudoshere and the cylinder
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Figure 4: Effect of the energy gap ∆ (51) on the exact wave-functions. Unperturbed
eigenstates (52) with energy above the gap (a) and right below it (b). In the pseu-
dosphere, we compare with the WKB predictions (dashed black) for the infinite cone
(B.10). Parameters: τx = 24 and τL = 100 and zero angular momentum mn = 0. In
order to emphasise the repulsive effect of the pseudosphere at low energies, we plot
only a portion of the X -axis up to τ= 40, while the total range is τx +τL = 124.

separately and then by imposing continuity conditions in τx . All the details are reported in
the App.C. The resulting normalized eigenstates Φn = g1/4Ψn read

Φn(τ,φ) =
eimnφ

Nn
(52)

×

¨p
sinhτ P`n

mn
(coshτ) for τ < τx ,

p

sinhτx (Cn cos[κn(τ−τx)] + Dn sin[κn(τ−τx)]) for τx < τ < τx +τL ,

where the coefficients read, ∀κn 6= 0,

Cn = P`n
m (coshτx) (53)

Dn =
1
κn

�

P`n
m+1 (coshτx) +

�

m+
1
2

�

cothτx P`n
m (coshτx)

�

.

The quantization condition is found by solving the following condition

tan(κnτL) = −
Cn

Dn
, (54)

while the adimensional eigenvalues h(0) are related to the degree `n and the momentum κn in
(52) by

`n = −
1
2
+

√

√1
4
− h(0)n , h(0)n = κ

2
n +

m2
n

sinh2τx
. (55)

This allows exploring the effect of the curvature gap ∆ on their behaviour. We plot the
wave-functions Φn [cf. Eq.(52)] in Fig.4, contrasting their behavior at high energies (a) and
for energies and right below the gap (b). To emphasise this effect, we consider the solutions
with mn = 0, that do not experience the classical repulsive potential in the pseudosphere
∝ m2/ sinh2τ. We compare it with the semi-classical WKB approximation, which holds for
states with high quantum numbers n� 1 [cf. Eq.(B.10) in the App. B]. At high energy (Fig.4a),
the system does not see the gap δ and the wave-function is completely delocalized across the
cylinder and the pseudosphere. On the other hand, right below∆ (Fig.4b), although the wave
function undergoes regular oscillations in the cylinder, the presence of the gap causes Φn to be
an evanescent wave, exponentially damped in the region with constant negative curvature.

16

https://scipost.org
https://scipost.org/SciPostPhys.13.1.006


SciPost Phys. 13, 006 (2022)

5.5 Mechanism 2) Avoidance of curved regions

We now argue how the presence of a repulsive potential ∆ (51), arising from the curvature,
enforces the bound at low energies. For this discussion, we do not need to consider the full
Hamiltonian, and just the properties of Ĥ0 will suffice. The presence of an energy gap ∆ nat-
urally affects the Lyapunov exponent (41) and the bound to chaos. We assume a semi-semi
classical approach, in which the oscillations in τ are short with respect to τx . The state is in
the semi-classical regime (large quantum numbers n � 1): the particle obeys the classical
equations of motion, yet it may have energy as low as O(ħh2). In the classical limit at high
energies, the hyperbolic region provides the chaoticity to the system, with the Lyapunov ex-
ponent proportional to λc in Eq.(41) 7. However, when the energies are comparable to ∆, the
particle slows down inside the chaotic region p∝

p
E −∆, leading to the following Lyapunov

exponent

λc =
p
µR
=

√

√

√

2

µR2
0

p
E −∆ (56)

and

ħhλc

E
=

√

√

√ 2ħh2

µR2

p
E −∆
E

=
`dB

πR

√

√h−δ
h

, (57)

where h (δ) correspond to the dimensionless energy E = ħh2h/2µR2 (gap ∆= ħh2δ/2µR2) and
we have substituted the definition of `dB from Eq.(35). For E � ∆ we retrieve the classical
dimenstionless Lyapunov exponent ∼ 1/

p
E. Then, the function has a maximum for E = 2∆

and it decreases up to vanishing for E =∆, see Fig.6a. The maximum value of ħhλE – the greatest
approach to the bound – happens at `dB(2∆) = 2

p
2πR, i.e. where quantum and geometric

lengths are comparable. We shall argue that this is a general fact.

We corroborate this semi-semi-classical picture with a numerical investigation of the per-
turbed model described by the quantum version of the Hamiltonian (43). The full Hamiltonian
is written as a Ncut × Ncut matrix in the unperturbed basis, which is in turn fixed by solving
numerically the condition (54) for Ncut � 1 number of states. The cutoff number of states
Ncut is then increased up to the convergence of the results. We refer to the App.C for all the
details on the chaotic spectral properties with the perturbation.
We study the quantum Lyapunov exponent, by looking at the microcanonical version of the
square-commutator in Eq.(25), see, e.g., Ref. [28], i.e. c(t) = −〈n0| [τ̂(t), τ̂(0)]

2 |n0〉 , where
|n0〉 in an eigenstate of the perturbed Hamiltonian Ĥ, that we study in the classical limit
n0 � 1. In Fig. 5, we show the evolution of the square commutator for different eigenstates
n0. On the left, the results at high energies hn0

� 1 display a c(t) that grows exponentially
with twice the classical total Lyapunov exponent [cf. Eq.(42)] at the corresponding energy.
Due to quantum interference, this growth holds only in a time window – the Lyapunov regime
– that ends at the Ehrenfest time TEhr ∝ log h−1

eff ∝ log n0. Indeed, the Lyapunov regime is
longer for higher energies. On the right of Fig. 5, we consider a square-commutator obtained
a |n0〉 right below the gap hn0

® δ. We check that this eigenstate |n0〉 is sufficiently chaotic (cf.
App.C), however, the c(t) does not display an exponential regime, as shown by the polynomial
growth in the inset, in agreement with our picture for the bound to chaos.

7Note that this Lyapunov exponent shall be multiplied by the ratio of times the particle spends in the chaotic
region over the total time. In the case of our toy model this is given by Eq.(39).
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= 10.1

Figure 5: (a-c) Exponential growth of the square-commutator at high energies. Sim-
ulations with different eigenstates |n0〉 = |402〉, |735〉 and |1002〉 from left to right.
(Dotted blue) numerical results converged upon increasing Ncut , here Ncut = 1630.
(Dashed green) semiclassical prediction: the square commutator grows in time ex-
ponentially with the classical rate λc

tot (42). Parameters: τL = 20, τx = 3.7 and
perturbation p = (10, 7,5, 2) with γp = (−0.8, 1.6,2,−3), such that the relative er-
ror induced by the perturbation is 〈V̂ 〉/E = 0.12, 0.12, 0.02 respectively. (d) Ab-
sence of exponential growth at low energies. Growth of the square-commutator
for the eigenstate |n0〉 = |64〉. Numerical results converged upon increasing Ncut ,
here Ncut = 800. (Inset) Log-log plot of the same data displaying a polynomial
growth. Parameters: τL = 40, τx = 4 and perturbation p = (10,7, 5,2) with
γp = (−0.5, 1,1.5,−2.5)× 10−1 and relative error 〈V̂ 〉/E = 0.2.

5.6 Mechanism 3) Spreading of the wave packet

We have seen that curvature, the cause of chaos, is also a source of repulsion for the particle
at the quantum level. However, this cannot be the whole mechanism, since we are always
free to apply a potential that favours visiting the most curved part. This situation is equivalent
to studying what happens the quantum solution of a free particle on a pseudosphere with an
hard wall at some τx . See App.D for the classical and quantum solutions of the pseudosphere
with a boundary. In this section we shall restrict to this example. This will allow us to identify
a different mechanism.

We restrict ourselves to the pseudosphere and we compute the square-commutator initial-
izing the system in a localized Gaussian wave-packet with variance σ0 =

ħh
2∆p determined by

maximizing the uncertainty principle.
Classically, the spatial separation between two geodesics (with different angular initial

conditions δφ(0)) is computed via Eq.(36) and reads
�

ds(t)
ds(0)

�2

= sinh2(τ(t)/R)
�

dφ(t)
dφ(0)

�2

∼ sinh2(τ(t)/R)∼ e2λc t for t →∞ , (58)

with τ being now a dimensional variable. In the second line, we have used that angular varia-
tions remain almost constant in time, see App. D.1. All the exponential growth comes from the
way we are computing distances, hence from the geometry, so it is very easy to analyze. In the
quantum case, the corresponding square commutator is c(t) = −〈sinh2 τ̂(t) [φ̂(t), Î(0)]2〉 . By
evaluating the expectation value over a factorized wave-packet in the angular and radial coor-
dinates we can approximate c(t)' 〈sinh2(τ̂(t)/R)〉 ∼ 〈e2τ̂(t)/R〉. A straightforward calculation
of the Gaussian integral in the expectation value leads to

c(t)∼ 〈e2τ̂(t)/R〉= exp

�

2
�

`dB

4πR
p
∆p

�2

+ 2λc t + 2
�

∆p
p

�2

λ2
c t2

�

. (59)

The interpretation of this expression is clear: The centre of the wave-packet contributes with
c(t)∼ exp (2λc t), while the front of the wave-packet dominates the Gaussian integral leading
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R/`dB

Figure 6: Pictorial representation of the adimensional Lyapunov exponent (57) as a
function of the ratio between the curvature radius and the de Broglie length `dB (35).
The classical limit (blue curve) diverges as ∼ E−1/2 for small energies E. The bound
to chaos is implemented by the quantum effects of curvature for E ∼ 2∆ (57), when
`dB ∼ R. (a) Single curvature radius R. (b) Multiple curvature length-scales Ri . The
bound holds at zero energy (temperature) in the presence of a hierarchy of diverging
lengths.

to the third term in Eq.(59). Therefore, the classical Lyapunov regime dominates up to times
λc t ≤ λc t1 = (p/∆p)2, after which a superexponential growth c(t) ∼ exp (2λ2

c t2) kicks in.
Interestingly, we notice that the same regime is well known to occur in the Loschmidt echo
dynamics, see e.g. Ref. [29] and it has been recently discussed for the square-commutator in
Ref. [30]. Hence, in order to appreciate the exponential growth of the square-commutator one
needs

λc t1 =
�

p
∆p

�2

� 1 . (60)

This condition is equivalent to the requirement of an initial wave-packet well localized in
momentum. At the same time, we also need to assure that the initial value c(0) and c(t1) are
parametrically different, that is

R
`dB
�

1
4π

. (61)

In this simple scenario, the Lyapunov regime dominates whenever the conditions (60) and
(61) are satisfied. While the former depends only on the structure of the initial wave-packet,
the latter sets a condition between the de Broglie length and the radius of curvature of the
model, exactly in the spirit of Sec. 4.2.

This quantum mechanism is paradoxical, in that it enhances separation of trajectories
rather than suppressing it, but limits the Lyapunov regime defined as the one in which sepa-
ration is simply exponential in time. This makes the definition of the Lyapunov exponent, and
thus the bound in Eq.(2), ill defined.

6 Approach of the bound to chaos at the lowest temperature: many
length scales

Up to now, we have discussed how the bound is implemented at small but finite energy, as in
Fig.6a. One lesson we have learned is that the approach to the bound reaches its closest point
at a temperature such that the de Broglie length is comparable to the length of the geometric
features responsible for the chaos. In order to approach the bound in the limit of zero energy
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Figure 7: Effect of the multiple lengths on the toy model with multiple radius of cur-
vature. Unperturbed eigenstates with n = 2 at zero angular momentum mn = 0.
(a) Energy much above the gaps h(0)n = 7.8 � δ1,δ2. (b) Energy smaller than
the first gap δ1 > h(0)n = 0.8 > δ2. (c) Energy much smaller than the lowest gap
h(0)n = 0.2� δ2. Parameters: τ1 = 15, τ2 = 35 and τL = 35, R2/R1 = 2.

(temperature), one then needs a hierarchy of length scales, since longer and longer ones will
provide chaos at lower and lower temperatures.

As an example, let us consider a surface designed by of N -constant negative curvatures
with radii Ri in regions τi < τ < τi+1, and for τn < τ < τn + τLa small cylinder of length
L = RnτL and radius Rn sinhτn. We fix for definiteness R = R1 ≤ R2 ≤ · · · ≤ Rn. The largest
instabilities are associated to regions with the smallest Ri , as

λc
i =

√

√

√

2E
µR2

i

with i = 1, . . . , n , (62)

that in turn are characterized by the largest energy gaps

∆i =
ħh2

2µ
1

4R2
i

. (63)

Hence, regions with the smallest lengths scale Ri , are the first-ones – in energy or temperature
– to be rejected by quantum effects. At zero temperature (at the lowest energies) the bound to
chaos is dominated by the longest length scales. Quantum effects smooth out the fine details
that correspond to the short length scale contributions to chaos and progressively select the
smallest Lyapunov exponents corresponding to the longest length scales, as shown pictorially
in Fig.6b.

The quantum model (at this stage without the perturbation γV ) can be solved exactly and
one can explicitly write the eigenstates of the Laplace-Beltrami as combinations of Legendre
functions. We refer to App.E for all the details. The associated quantum spectrum is charac-
terized by the gaps in Eq.(63). In Fig.7 we show as illustrative example the case with n = 2
different curvatures fixing R2 = 2R1 = 2. We plot three different wave-functions obtained
decreasing the dimensionless energies: one above the two gaps h(0)n � δ1,δ2 [panel (a)], one
for an intermediate energy δ1 > h(0)n > δ2 [panel (b)] and the last-one for h(0)n � δ2 [panel
(c)].

7 Towards macroscopic systems

As mentioned in the introduction, our future goal is to study macroscopic systems, as depicted
in Fig.8. In phase space, a system of N hard spheres is as a point moving freely inside a
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Figure 8: Examples of macroscopic systems that can be represented as free propagation on
configuration space. (a) Hard spheres as a macroscopic billiard. Its structure corresponds to
a polytope, with a continuous distribution of characteristic lengths: going from very short
(of the order of the distance between particles) to very long (corresponding to collective
rearrangements, comparable to the size of the system). (b) Spin-liquids as a macroscopic
manifold. Example of a spin system of fixed norm S with a Heisenberg interaction on the
kagome lattice with fully connected couplings connecting all hexagons (shown only once)
[15]. Classical ground states satisfy the constraint of vanishing total spin on each hexagon.

region bounded by the no-overlap condition for the spheres: it is a 3N -dimensional billiard,
whose structure is well-understood [14]. On the other hand, spin models with strong antiferro-
magnetic interaction on frustrated lattices can be characterized by highly degenerate classical
ground states satisfying the constraint of zero total spin on each plaquette. This, together with
the condition of the fixed norm of the individual spins, defines a curved manifold.

The quantum mechanisms illustrated in Section 5 can be easily generalized to N dimen-
sional manifolds, as done in App.F. In what follows, we describe in some more detail the two
possible connections of the above arguments to hard-sphere or spin-liquids.

Hard spheres at amorphous jamming point As mentioned above, a set of N hard spheres
in d dimensions may be seen as a dN -dimensional billiard. Its shape has been studied by
Brito and Wyart ( [14], see also [31]). It may be estimated by the eigenvalues (Iα) of the
correlations 〈x i x j〉 of the spheres evolving during a long-time interval. The

p

Iα will give us
an estimate of the characteristic phase-space lengths in each direction. Near jamming – the
highest density reached after a fast compression – these eigenvalues are distributed according
to a function D(I) that goes all the way up to infinity, meaning that the phase-space billiard
has sides of lengths that are widely distributed, and, in the thermodynamic limit, without
upper bound. One may thus expect that making the de Broglie length longer, all directions
that are Iα < (`dB)2 are excluded by quantum effects, while those that are Iα � (`dB)2 are
essentially classical. The Lyapunov exponent should be dominated at each temperature by

a length I ∼ (`dB(T ))2, and one may expect it to be of order
Ç

T
`dB(T )

. This situation shall
correspond to the model with many curvatures (see Section 6), each playing the dominant
role as a source of chaos at a given temperature.

Spin liquids Consider a set of spherical spins ~Si with d components and |~Si| = S at each
vertex of a Kagome lattice, see Fig.8b. The spins live on the manifold described by the spher-
ical constraints plus

∑

i∈ plaquet te
~Si = 0. A classical Hamiltonian may be written simply as

the free motion on the manifold determined by these constraints. The case d = 2 was stud-
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ied classically by Bilitewski, Bhattacharjee and Moessner in Refs. [15,32] with one (probably
unimportant) difference: the surface of the sphere is itself a phase space, rather than config-
uration space: this is because the dynamics are precessional. In this context, one may ask
whether quantum effects promote avoidance of the curved regions also in phase-space. These
regions shall correspond to defects in configuration space, as opposed to the spin waves.

8 Outlook and conclusions

In this work, we have studied the quantum bounds at low temperature in the context of a free
motion on curved manifolds. We have shown that the quantum viscosity and Lyapunov expo-
nent are a universal function of the ratio of the smallest characteristic length of the problem
and the thermal de Broglie length, the measure of the extent of the quantum fluctuations. In
a classical approximation, the bounds are violated exactly when these two lengths are of the
same order. We have focused on the quantum Lyapunov exponent and identified at least three
mechanisms (size, effective potentials and wave-packet spreading) enforcing the bound. It is
interesting to see that there are different ways quantum mechanics acts at low temperature.
Finally, we have studied a model characterized by a hierarchy of divergent length scales and
discussed how quantum effects progressively smooth out the smallest scales that contribute
the most to chaos. Accordingly, the bounds arise in the limit of zero temperature as a collective
(long-wave-length) effect.

Our findings prepare the ground for a series of extensions and challenges that would be
worth exploring.

A first and useful extension concerns the bounds in phase-space, where the ground-state
energy is a manifold in phase – rather than configuration – space. This setting naturally de-
scribes spin Hamiltonian dynamics at low energies (for instance the low energy limit of spin
liquids) where the scaling of the Lyapunov exponent λ∼

p
T has already been found numer-

ically [15].
The real challenge is to extend this approach to fermionic systems (SYK like) [7,33], where

one may be able to understand – within this simple picture – the physical peculiarities of the
models saturating the bounds.

Finally, let us mention that in the setting of Riemannian geometry, the problem of bounds
on transport (diffusion around a handle), and chaos, is amenable to the study by mathemati-
cians.
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A Details on the classical dynamics on the pseudosphere with the
cylinder

The classical dynamics is described by the Hamilton-Jacobi equations given by the Hamiltonian
(43). They read























φ̇ = 1
µR2

I2

sinh2 τ2

İ =
∑

p γp p sin(pφ) [tanh(τ/2)/x]p for τ < τx

τ̇= 1
µR2 pτ

ṗτ =
1
µR2

I2 coshτ
sinhτ3 − 1

2

∑

p γp cos(pφ) p [tanh(τ/2)]p−1

x p cosh2(τ/2)

(A.1a)



















φ̇ = 1
µR2

I2

sinh2 τ2
x

İ =
∑

p γp p sin(pφ)
τ̇= 1

µR2 pτ
ṗτ = 0

for τx < τ < τx +τL . (A.1b)

To solve them, we fix an initial energy E and sample the initial conditions according to the
equilibrium distribution of the free Hamiltonian. For the coordinates, one has

P(φ) =
1

2π
, (A.2a)

P(τ) =
1

coshτx − 1+τL sinhτx

¨

sinhτ for τ < τx

sinhτx for τx < τ < τx +τL
. (A.2b)

The momenta are extracted uniformly both in the cylinder and in the pseudosphere. In the
latter, we transform back and forward to the Poincaré disk [with coordinates (y1, y2) such

that
q

y2
1 + y2

2 = tanhτ/2] where the Hamiltonian reads H0 =
(1−y2

1−y2
2 )

2

4 (p2
1 + p2

2). Here,
we extract uniformly p1 ad p2 rescaling them, such that the total energy is H0 = E. Then,
the equations of motion (A.1) are integrated numerically with a fourth-order Runge-Kutta
algorithm, fixing the relative and absolute error to 10−12.

The integrability breaking term γV (τ,φ) is chosen such that the relative error on the en-
ergy E is below 2%, i.e. |γV (τ,φ)|/E < 0.02. We verify that the choice of V (τ,φ) does not
affect our results. In particular, we check that the long-time distribution of the observables,
e.g. the radial coordinate τ, corresponds to the equilibrium distribution (A.2). This is shown
for a typical perturbation in Fig.9, where we compare the long-time average (up to a time T f )
with the predicted equilibrium one, finding excellent agreement.

The classical square commutator (45)

ccl(t) = 〈〈{τ(t),τ(0)}2〉〉E =
¬¬

�

dτ(t)
dpτ(0)

�2
¶¶

E
(A.3)

is computed in the following way: For each initial condition with momentum pτ(0), we con-
sider a different trajectory changing only the momentum by p′τ(0) = pτ(0)+ε (with ε= 10−6).
We then compute the difference (τ(t)−τ′(t))2/ε2. The extent the infinitesimal displacement
ε fixes the saturation value of the classical square-commutator, that saturates at large times to
∼ ε−2, as shown also in Fig.3. We then average over different initial conditions at energy E,
typically ∼ 100.
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Classical

Figure 9: Comparison between the classical (A.2) and the quantum distribution of
the radial coordinate P(τ) at high energies. The boxed grey area represents a his-
togram of the classical trajectory averaged up to time T f = 1000 and over 50 initial
conditions sampled according to the equilibrium distribution. The blue and the or-
ange lines correspond to the modulus square of the quantum wave functions centred
around n0 = 500 (hn0

= 23) of 30 states. The classical energy is E = 2.2. The
parameters of the perturbations are the same as in Fig.3 and Fig.10.

B Properties of Legendre functions

In this appendix we summarize the properties – relevant for our discussions – of the associated
Legendre functions, following Refs. [34,35]. The general Legendre equation reads

(1− z2) y ′′ − 2 z y ′ +

�

ν(ν+ 1)−
µ2

1− z2

�

y = 0 , (B.1)

where µ, ν and z can be complex variables. We are interested in solutions of the equation that
correspond to real values of the variable |z|> 1. The linearly independent functions

Pνµ (z) =
�

z + 1
z − 1

�µ/2

F
�

ν+ 1,−ν; 1−µ; 1
2 −

1
2z
�

, (B.2)

Qνµ (z) = eµπi
π1/2Γ (ν+µ+ 1)

�

z2 − 1
�µ/2

2ν+1zν+µ+1
F
�

1
2ν+

1
2µ+ 1, 1

2ν+
1
2µ+

1
2 ;ν+ 3

2 ;
1
z2

�

, (B.3)

with F(a, b, c, d) the Olver’s hypergeometric function, are solutions of the differential equation
(B.1) and are called associated Legendre functions (or spherical functions) of the first and second
kind respectively of degree ν and order µ.

If ν ± µ is not an integer, Eq.(B.1) admits as solutions P±µν (z), Q±µν (z), P±µ−ν−1(z) and
Q±µ−ν−1(z). Nonetheless, two linearly independent solutions can always be found. In partic-
ular, the Legendre functions are related by several relations, like the Whipple formula8 or, for

8See Eqs.(13-14) of Chapter 3.3.1 in Ref. [35]
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instance 9,

P−ν−1
µ (x) = Pνµ (x) , (B.4a)

eiπµΓ (ν+µ+ 1)Qν−µ(z) = e−iπµΓ (ν−µ+ 1)Qνµ(z) , (B.4b)

Qνµ(z) =
eiπµ

2π sin(µπ)

�

Pνµ (z)−
Γ (ν+µ+ 1)
Γ (ν−µ+ 1)

Pν−µ(z)
�

, (B.4c)

Pνµ (z) =
e−iµπ

π cos(πµ)

�

Qνµ(z) sin[π(ν+µ)]−Q−ν−1
µ (z) sin[π(ν−µ)]

�

. (B.4d)

The Legendre functions also obey recursion relations. In particular, the derivatives can be
written recursively as [36]

(z2 − 1)
d
dz

Pνµ (z) =
p

z2 − 1Pνµ+1(z) +µz Pνµ (z) , (B.5a)

(z2 − 1)
d
dz

Qνµ(z) =
p

z2 − 1Qνµ+1(z) +µz Qνµ(z) . (B.5b)

For z→ 1+, the Legendre functions can be expanded as 10

Pνµ (z)∼
1

Γ (1−µ)

�

2
z − 1

�µ/2

, µ 6= 1,2, 3, . . . , (B.6a)

Qνµ (z)∼
eiπµ

2
Γ (µ)

�

2
z − 1

�µ/2

, Re(µ)> 0,ν+µ 6= −1,−2, . . . , (B.6b)

Qνµ=0 (z) = −
1
2

ln
� z

2
− 1/2

�

+−γ−ψ (ν+ 1) +O (z − 1) , ν 6= −1,−2,−3, . . . , (B.6c)

while for z→∞ they can be expanded as 11

Pνµ (z)∼
Γ
�

ν+ 1
2

�

π1/2Γ (ν−µ+ 1)
(2z)ν , Re(ν)> −

1
2

,µ− ν 6= 1, 2,3, . . . (B.7a)

Pνµ (z)∼
Γ
�

−ν− 1
2

�

π1/2Γ (−ν−µ)
(2z)−ν−1 , Re(ν)< −

1
2

,µ− ν 6= 1,2, 3, . . . (B.7b)

Qνµ (z)∼ π
1/2 eiµπΓ (ν+µ+ 1)

Γ
�

ν+ 3
2

�

1
(2x)ν+1

, ν 6= −
3
2

,−
5
2

,−
7
2

, . . . . (B.7c)

The integral representation reads

Pνm(z) =
2µ(z2 − 1)−µ/2
p
π Γ (1/2−µ)

∫ π

0

�

z +
p

z2 − 1 cosφ
�ν+µ

(sinφ)−2µdφ , Re(µ)< 1/2 (B.8a)

Qνµ(z) = eµπi (z
2 − 1)−µ/2Γ (ν+µ+ 1)

2ν+1Γ (ν+ 1)

∫ π

0

[z + cosφ]µ−ν−1 (sinφ)2ν+1dφ , (B.8b)

Re(ν)> −1 , Re(ν+µ+ 1)> 0 . (B.8c)

9See Eqs.(1-10) of Chapter 3.3.1 in Ref. [35]
10See Eqs.(14.8.7),(14.8.9) and (14.8.11) in Ref. [34], where they are expressed in terms of

Qµ
ν
(z)≡ e−iπµQµ

ν
(z)/Γ (ν+µ+ 1), such that Qµ

ν
(z) = Q−µ

ν
(z).

11See Eqs.(14.8.2) and (14.8.15) in Ref. [34]
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For µ= m ∈ Z and z = coshτ, the integral representations (B.8) become

Pνm(coshτ) =
Γ (ν+m+ 1)
2πΓ (ν+ 1)

∫ 2π

0

(coshτ+ sinhτ cosφ)ν eimφ dφ (B.9a)

Qνm=0(coshτ) = 2−1/2

∫ ∞

τ

dτ′
e−(ν+1/2)τ′

p
coshτ′ − coshτ

. (B.9b)

The semi-classical WKB formulae for ν � 1 of the Legendre functions are obtained by
applying the saddle-point method to integral representations. By defining ν = −1

2 + iρ, one
has for ρ→∞ with ρ� m 12

P
ν=− 1

2+iρ
m (coshτ)∼ im cos(ρ−τπ4 −mπ

2 )
p

2πρ− sinhτ
, (B.10)

Q
ν=− 1

2+iρ
m (coshτ)∼

√

√ π

2ρ sinhτ
e−i(ρτ+π/4) . (B.11)

C Details on the quantum dynamics on the pseudosphere with the
cylinder

C.1 Eigenfunctions and eigenvalues

We start by solving the standard Schrödinger equation

Ĥ0ψ(τ,ψ) = Eψ(τ,ψ) , (C.1)

with the unperturbed Hamiltonian defined in Eqs.(46),(48). We first use the separation of
variables and write the wave-function as

ψ(τ,φ) =
eimφ

p
2π

F(τ) , m= 0,±1,±2, . . . , (C.2)

where the discreteness of m comes from requiring the periodicity in φ and the function F(τ)
satisfies

�

1
sinhτ

∂

∂ τ

�

sinhτ
∂

∂ τ

�

−
m2

sinhτ2
+ h

�

FA(τ) = 0 for τ < τx ,

�

∂ 2

∂ τ2
−

m2

sinhτ2
x
+ h

�

FB(τ) = 0 for τx < τ < τx +τL , (C.3a)

where we have defined the adimensional energies

h=
2µR2

ħh2 E . (C.4)

For τ < τx , the equation corresponds to the Legendre equation in Eq.(B.1) with z = coshτ
of order m and degree ` upon identifying `(`+ 1) = −h. This equation admits as solution the
Legendre functions of first and second kind, i.e.

P`m(z) , Q`m(z) , for |z|> 1 . (C.5a)

12See Eqs.(G17),(G18) in Ref. [11].
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The Legendre functions of second kind Q`m(z) is divergent for |z| → 1, hence the solution for
0≤ τ < τx is given by

FA(τ) = P`m(coshτ) , (C.6)

where

h= −`(`+ 1) , `= −
1
2
± iρ , ρ =

√

√

h−
1
4

. (C.7)

For τx < τ < τx +τL , we identify κ2 = h− m2

sinh2 τx
. For κ2 > 0 the solution reads

FB(τ) = C cos[κ(τ−τx)] + D sin[κ(τ−τx)] , (C.8)

where the constants C and D are determined by imposing the continuity of the wave-function
and of its derivative at τ= τx . The condition is set on the normalized wave-function (47):

ΦA(τx) = ΦB(τx) −→ C = P`m(coshτx) (C.9a)

dΦA

dτ
|τ=τx

=
dΦB

dτ
|τ=τx

−→ κD
Æ

sinhτx =
1
2

coshτ
p

sinhτ
P`m +

p

sinhτ
dP`m
dz

dz
dτ

�

�

�

τ=τx

,

(C.9b)

with z = coshτ the argument of the Legendre function. The derivatives of the Legendre
functions can be written in a recursive way as in Eq.(B.5a) [36]. From these, the continuity of
the first derivative (C.9b) for z = coshτx implies

D =
1
κ

�

P`m+1 (coshτx) +
�

m+
1
2

�

cothτx P`m (coshτx)
�

.

We now find the quantization condition by imposing that the solution vanishes at the bound-
aries, i.e.

F(τx +τL) = FB(τx +τL) = 0 , (C.10)

leading to
C cos[κτL] + D sin[κτL] = 0 .

Notice that the discretization condition does not admit solution for κ2 < 0, where one should
substitute “cos, sin, tan” in the previous equations (C.8) with “cosh, sinh, tanh”.

Summarizing, the normalized eigenstates Φn = g1/4Ψn read

Φn(τ,φ) =
eimnφ

Nn
(C.11)

×

¨p
sinhτ P`n

mn
(coshτ) for τ < τx ,

p

sinhτx (Cn cos[κn(τ−τx)] + Dn sin[κn(τ−τx)]) for τx < τ < τx +τL ,

where the coefficients read, ∀κn 6= 0,

Cn = P`n
m (coshτx) , (C.12)

Dn =
1
κn

�

P`n
m+1 (coshτx) +

�

m+
1
2

�

cothτx P`n
m (coshτx)

�

.

The quantization condition is found by solving the following condition

tan(κnτL) = −
Cn

Dn
, (C.13)
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while the adimensional eigenvalues h(0) are related to the degree `n and the momentum κn in
(C.11) by

`n = −
1
2
+

√

√1
4
− h(0)n , h(0)n = κ

2
n +

m2
n

sinh2τx
. (C.14)

The classical limit ħh→ 0 is retrieved for n→∞, with 1/
p

n as a semi-classical parameter.
To be in this regime, it is enough to choose τx � 1, τL � 1 leading to a denser spectrum via
the quantization condition. This is equivalent to avoiding the trivial effect due to the small
system size [see the discussion on the mechanism (1) at the beginning of Section 5]. See the
plot of the wave-functions (C.11) in Fig.4 and the relative discussion.

C.2 Quantum dynamics

We now address the quantum dynamics. We proceed as in the classical case: we first add
the perturbation, we check how this affects the equilibration of the system and then study
the effects on the chaotic dynamics. We break the conservation of the angular momentum Î
considering the following Hamiltonian

Ĥ = Ĥ0 +
∑

p

γpVp(τ̂, φ̂) , (C.15)

where Vp(τ̂, φ̂) is the same as in Eq.(44) where now the classical variables τ and φ are substi-
tuted by the operators. The perturbed Hamiltonian is written as a matrix in the unperturbed
basis (C.11) as Hαβ = E(0)α δαβ + Vαβ , where the matrix elements of the perturbation V̂ are

Vαβ =
∑

p

γp

∫

dτdφΦ∗α(τ,φ)Vp(τ,φ)Φβ(τ,φ) . (C.16)

Notice that for each p the perturbation connects only eigenstates whose angular momen-
tum differs by p, i.e. |mα −mβ | = p. This is the reason why several terms in p are needed to
ensure that the perturbation is not block diagonal. In our numerical simulations, we find that
it is enough to consider few values of p. The umperturbed basis is fixed by solving numerically
the condition (C.13) for Ncut � 1 number of states, that we increase up to the convergence
of the results. Then, we compute numerically the matrix elements in Eq.(C.16), leading to a
Ncut ×Ncut matrix Ĥ. We diagonalize it and find the corresponding spectrum En =

ħh2

2µR2 hn and
eigenstates. The comparison between the unperturbed and perturbed solutions is shown in
Fig.10, where the different spectra h(0)n and hn are displayed in panels (a,d), while in panels
(b,e) we illustrate the expectation value of the angular momentum 〈n| Î |n〉 of each eigenstate.
This plot is equivalent to a Peres lattice [37], a standard tool for visualizing regularity or
chaoticity of the spectrum 13. Notice that the perturbation is chosen to be small, such that,
in the energy region of interest, it does not change the spectrum, yet it breaks the conserva-
tion of the angular momentum, as shown in panel (b). The Peres lattice becomes particularly
irregular for small values of 〈n| Î |n〉, signalling that chaos is induced by the geometry of the
pseudosphere.

To inspect the quality of our integrability breaking, we study the distribution of the an-
gular momenta 〈n| Î |n〉 as a function radial quantum numbers κn =

Æ

hn − 〈n| Î |n〉2/ sinh2τx
[cf. Eq.(C.14)] in Fig.10c. Since the energy is a sum of these two contributions, the two are

13Whenever a system is integrable, observables in the energy eigenbasis form a regular pattern, the so-called
Peres lattice. Conversely, for chaotic spectra, observables generally lie in an “irregular” fashion.
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(f)

Figure 10: Chaotic spectrum for high energy states. (a,b,d,e) Comparison between
the unperturbed dimensionless spectrum (blue) and the perturbed one (orange) of
the Hamiltonian (C.15). (a,d) Dimensionless spectrum. (b,e) Expectation value of
the angular momentum 〈n| Î |n〉. (c,f) Equilibrium distribution of angular momenta
vs radial quantum numbers κn. (Blue diamonds) microcanonical expectation value
of the unperturbed eigenstates (C.11), (grey dots) distribution of the overlaps for the
eigenstate |n0〉. Parameters: (a-c) High energy states: n0 = 735, window obtained
with 20 eigenstates with an energy difference of ∆h(0) = 0.04. Geometry: τL = 20,
τx = 3.7. Perturbation with p = (10,7, 5,2) with γp = (−0.8,1.6, 2,−3). (d-f)
States close to the gap: n0 = 64, window obtained with 10 eigenstates with an
energy difference of ∆h(0) = 0.04. Geometry: τL = 40, τx = 4. Perturbation with
p = (10,7, 5,2) with γp = (−0.5,1, 1.5,−2.5)× 10−1.

expected to be distributed in a smooth curve at equilibrium. We compare the result of the “mi-
crocanonical” distribution of Ĥ0 (a small energy window of width∆h(0)) with the distribution
of a single eigenstate |n0〉 of Ĥ. The latter is obtained by looking at the distribution of the
overlaps between |n0〉 and the unperturbed basis |n(0)〉, i.e. |cnn0

|2 = | 〈n(0)|n0〉|2. We find a
good agreement between the two predictions. This is a nice illustration of the eigenstate ther-
malization hypothesis (ETH) [38], that states that a single chaotic eigenstate |n0〉 “contains”
all the equilibrium distributions.

We are now in position to study the dynamics and the quantum Lyapunov exponent. We
consider the microcanonical version of the square-commutator in Eq.(25), see, e.g., Ref. [28].
We focus on the evolution of

c(t) = −〈n0| [τ̂(t), τ̂(0)]
2 |n0〉 , (C.17)

where the system is initialized in an eigenstate |n0〉 of the perturbed Hamiltonian Ĥ (C.15). In
all the examples below, c(t) is evaluated numerically by writing explicitly the matrix elements
of ταβ = δmαmβ

∫

dτΦ∗α(τ)τΦβ(τ,φ) in the umperturbed basis (C.11) and by computing ex-
actly Eq.(C.17) with vector-matrix multiplications. First of all, we study the classical limit
n0 � 1 at high energy hn0

� 1. In Fig. 5, we show the evolution of the square commutator
with different initial conditions increasing in n0. The curves show that c(t) grows exponen-
tially with twice the classical total Lyapunov exponent [cf. Eq.(42)] at the corresponding en-
ergy. Due to quantum interference, this growth holds only in a time window – the Lyapunov
regime – that ends at the Ehrenfest time TEhr ∝ logħh−1

eff ∝ log n0. Indeed, the Lyapunov
regime is longer for higher energies, as shown in Fig.5.
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We now contrast this behaviour with semiclassical states n0 � 1 that, instead, possess
energies right below the gap hn0

® δ. First of all, we verify the impact of the integrability
breaking at low energies in Fig.10. We check that the perturbation V̂ does not affect too much
the spectrum [panel (d)], yet it mixes sufficiently enough the angular momentum [panel (e)].
In Fig.10f, we find agreement between the microcanonical (unperturbed) angular momentum
distribution with the one of a single eigenstate at energies below the gap. Despite all these
properties, the microcanonical square commutator (C.17) initialized with hn0

® δ does not
display an exponential regime, in agreement with our picture for the bound to chaos. See
Fig.5b as an illustrative example, wherein the inset we show that c(t) grows only polynomially
fast in time.

D Dynamics on the pseudosphere with a boundary

In this Appendix, we study the classical and quantum dynamics of a free particle on a finite
portion of the pseudosphere, described by the metric

ds2 = R2(dτ2 + sinh2τ dφ2) . (D.1)

The surface is closed by adding a boundary in the form of an infinite wall at τ= τx . Firstly, we
look at the solution of the classical model and see how exponential divergence of trajectories
arise. Secondly, we solve the quantum problem for τx � 1 and we find that the system
behaves like a free particle in a large box with the length depending on the angular momentum.
Understanding this situation is relevant for understanding the bound to chaos. In fact, the
quantum gap ∆ [cf. Eq.(51)] – responsible for the slowing down of the particle of mechanism
(2) – disappears in the absence of the cylinder or with Dirichlet boundary conditions. The
detailed study of this problem leads to the mechanism (3), explained in Section 5.6.

D.1 Minimal classical model for the Lyapunov exponent

We study the simplest solution of the classical chaotic Hamiltonian dynamics, described by the
metric in Eq.(D.1) and the corresponding Hamiltonian

E =
1

2µR2

�

p2
τ +

I2
φ

sinh2τ

�

.

The particle is initialized in some τ0 and we fix τx � 1 to study only the initial free dynamics.
The Hamilton-Jacobi equation of motion are























φ̇ =
I2
φ

sinh2 τ2

İφ = 0

τ̇= pτ

ṗτ =
I2
φ

coshτ

sinhτ3

×
1
µR2

. (D.2)

Let us first determine the solution for the radial coordinate τ(t). From the Hamiltonian,

we re-write pτ = ±
s

2EµR2 −
I2
φ

sinh2 τ
and, using the third equation in (D.2), we need to solve

dτ
s

2EµR2 −
I2
φ

sinh2 τ

= µR2 d t . (D.3)
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We consider the solution propagating outward and, integrating both sides from t0 to t and τ0
to τ(t), we obtain

log
coshτ(t) +

Ç

sinh2τ(t)− I2
φ
/2EµR2

coshτ0 +
Ç

sinh2τ0 − I2
φ
/2EµR2

=

√

√ 2E
µR2
(t − t0) , (D.4)

where we notice that
Ç

2E
µR2 = λc is exactly the classical Lyapunov exponent [cf. Eq.(41)]. We

denote K0 the denominator of the logarithm in the previous equation, i.e.
K0 = coshτ0 +

Æ

sinh2τ0 − I2/2EµR2. Eq.(D.4) admits as solution

coshτ(t) =
1
2

K0eλc(t−t0) +
1

2K0

�

1+
I2
φ

2EµR2

�

e−λc(t−t0) . (D.5)

In the limit t � 1, the radial coordinate grows linearly in time

τ(t) = log K0 +λc(t − t0) . (D.6)

Notice that in the limit I2
φ
� 2EµR2 one has log K0 → τ0. We can now study the solution for

φ(t). The first line of Eq.(D.2) yields

dφ =
I2
φ

µR2

d t

sinh2τ(t)
=

I2
φ

µR2

d t

cosh2τ(t)− 1
. (D.7)

By substituting the solution (D.5) and integrating, one gets

φ(t) =
�

φ(0) + Iφ (arctanφ(0)− arctanφ(t))
�

mod 2π , (D.8)

with φ(t) =
Iφ + 2µER2/Iφ(K2

0 e2λc(t−t0) − 1)

2
p

2EµR2
.

In the limit t � 1 and I2
φ
� 2EµR2, the angle is constant

φ(t) = φ(0) . (D.9)

Let us now discuss how equations Eqs.(D.5),(D.8) lead to the exponential divergence of nearby
trajectories. On curved surfaces, the finite Lyapunov exponent comes from geometry: the
structure of the metric is crucial. The linear displacements of the polar coordinates δφ(t)
and δτ(t) grow at most polynomially in time at large times. Consider two nearby trajecto-
ries with an infinitesimal angular displacement δφ(0): in the limit t � 1 in Eq.(D.8) one has
δφ(t)∼ δφ(0). On the other hand, if we consider two trajectories differing only by δτ0, from
Eq.(D.6) it follows that δτ(t)∼ δτ(0)λc t.
However, distances are computed with the metric in Eq.(D.1). By choosing two trajectories
with slightly different angles, all the exponential divergence in time comes from the expo-
nential growth of sinh2τ(t). More precisely, for two initial conditions with the same radial
coordinate τ0 and two angles differing by δφ(0), the spatial separation between two geodesics
is given by

�

ds(t)
ds(0)

�2

= sinh2τ(t)
�

dφ(t)
dφ(0)

�2

=
�

sinhτ(t) {φ(t), Iφ(0)}
�2 ∼ sinh2τ(t)∼ e2λc t for t →∞ ,

where we have used the definition of the Poisson Brackets just to make the analogy with the
square-commutator clear. In the third line we have used Eq.(D.6) and that angular variations
remain almost constant in time, as discussed above. From this expression it is clear that all
the exponential growth of the separation between two geodesics at different initial conditions
comes from the way we are computing distances, hence from the metric.
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D.2 Spectrum of the pseudosphere with a boundary

We now study the Schrödinger equation

Ĥ0ψn = Enψn or ĥψn = hnψn ,

where the Hamiltonian is defined in Eq.(48) with an infinite potential at τ= τx . The regular
solution is

ψn(τ,φ) =
eimφ

Nn
P`n

m (coshτ) , (D.10)

where Nn is the normalization constant and P`n
m are the Legendre function of degree m (the

quantized angular momentum) and order `n, that is related to the adimensional energy hn by

`n = −
1
2
+ i

√

√

hn −
1
4

.

The quantization condition is set by the wall in τx . The eigenenergies are determined by
finding numerically, for each m, the zeros of the Legendre function

P`n
m (coshτx) = 0 . (D.11)
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Figure 11: dimensionless spectrum obtained solving Eq.(D.11) as a function of the
angular momentum of each eigenstate. We compare two different sizes (top) τx = 5
and (bottom) τx = 10 with approximately the same number of eigenstates. Dashed
in red the value of the gap δ = 1/4. By increasing τx the gaps between neighbouring
eigenstates diminish: notice the different energy scales in the top and the bottom
figures. Also, the ground state h0 becomes closer to δ, as emphasised in the caption
of the plots.

In Fig.11, we show the adimensional energy hn as a function of the angular momentum
ħhmn = 〈n| Î |n〉 for each eigenstate. Each branch in the plot is related to wave functions with
νn = 0, 1,2, . . . number of nodes (from bottom to top) for different angular momenta mn.
Different branches correspond to different ν and result from the quantization in the radial
direction. Conversely, on each branch, we have eigenstates with different quantized angular
momenta mn. States with fixed ν and different mn have smaller gaps than the states with fixed
mn and a different number of nodes.
To estimate the different gaps, consider the Schrödinger equation of Eqs.(49)-(50) for τ < τx ,
i.e.

�

∂ 2

∂ 2τ
+

1/4−m2

sinhτ2

�

Φ=
�

1
4
− h

�

Φ . (D.12)
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∆
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∆hν |m=0, ∼ 1/τ 2
x

∆hm|ν=1, ∼ 1/τ 3
x

∼ 1/τ 4
x

Figure 12: Exact gaps of the dimensionless spectrum obtained solving (D.11) as a
function of the size of the boundary τx . Different colours correspond to different
τx . The two different curves show the first 16 gaps obtained (top curve) for m = 0
varying ν (bottom curve) for ν = 1 varying m. The dashed lines compare with the
predictions of Eq.(D.15) and Eqs.(D.16)-(D.17) respectively.

The angular potential m2/ sinhτ2 is almost zero for m2/ sinh2τ� 1, i.e. τ� arcsinh(m)≡ τm.
In this limit, the system can be interpreted as a free particle in a wall of length τx − τm that
admits oscillatory solutions and quantised energy eigenstates as

hνm =
1
4
+

π2ν2

(τx −τm)2
ν= 1,2, . . . , (D.13)

where ν is the quantum number associated to ν− 1 nodes in the wave-function. In this ap-
proximation, the eigenstates can we written as

Φmν(τ) =
eimφ

p

π(τx −τm)
sin
�

νπτ

τx −τm

�

. (D.14)

Let us now consider states with different number of nodes and fixed m. Form Eq.(D.13),
the gaps between consecutive ν at fixed m are

∆hν
�

�

m=const.∝
2ν+ 1

(τx −τm)2
'
ν

τ2
x

for τx � 1 . (D.15)

This limit coincides with the semiclassical solution obtained in the limit of h� 1 and h� m,
see Eq.(B.10).

On the other hand, let us fix the number of nodes ν and consider the difference in energy
between two eigenstates at different m. From Eq.(D.13) we have

∆hm

�

�

ν=const.∝ ν2
�

1
(τx −τm+1)2

−
1

(τx −τm)2

�

' ν2

�

2
τ3

x
(τm+1 −τm) +

3

τ4
x
(τ2

m+1 −τ
2
m)

�

+O(τ−5
x ) .

(D.16)

By comparing Eq.(D.15) with Eq.(D.16), we see that in the limit τx � 1, the gaps between
consecutive m at fixed ν are much smaller that the ones for different ν. See also Fig.12,
where we compare these estimates with the exact spectrum obtained solving numerically the
boundary condition (D.11). Notice that, in the limit of m� 1, Eq.(D.16) becomes

∆hm

�

�

ν=const. ' 4ν2

�

1
m

1
τ3

x
+ 3 log(2m)

1

τ4
x

�

+O(τ−5
x ) for τx � 1 , m� 1 , (D.17)
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namely the term ∝ τ−4
x becomes dominant. This explains the change in the slope in the

bottom curve of Fig. 12.

E Solution of the quantum particle on the surface with n-constant
negative curvatures

Consider the following metric

ds2 =



































R2
1

�

dτ2 + sinh2τ dφ2
�

for 0≤ τ < τ1

R2
2

�

dτ2 + sinh2τ dφ2
�

for τ1 < τ < τ2

. . .

R2
i

�

dτ2 + sinh2τ dφ2
�

for τi−1 < τ < τi

. . .

R2
n

�

dτ2 + sinh2τn dφ2
�

for τn < τ≤ τn +τL

. (E.1)

It describes a two-dimensional surface with n−constant negative curvatures Ki = −1/R2
i for

τ < τn and a cylinder of radius Rn sinhτn and length RnτL for τn < τ ≤ τn + τL . We fix
R= R1 ≤ R2 ≤ · · · ≤ Rn, such that R is the smallest scale of the problem. The Laplace-Beltrami
operator

∇2 =































�

1
sinhτ

∂
∂ τ

�

sinhτ ∂
∂ τ

�

+ 1
sinh2 τ

∂ 2

∂ φ2

�

for 0< τ < τ1

. . .
�

R
Ri

�2 � 1
sinhτ

∂
∂ τ

�

sinhτ ∂
∂ τ

�

+ 1
sinh2 τ

∂ 2

∂ φ2

�

for τi−1 < τ < τi

. . .
�

R
Rn

�2 h ∂ 2

∂ τ2 +
1

sinh2 τn

∂ 2

∂ φ2

i

for τn < τ < τn +τL

(E.2)

acts as the Hamiltonian Ĥ0 = −
ħh2

2µR2
1
∇2 in the Schrödinger equation. The operator ∇2 is only

a function of the dimensionless variables τ,φ and of the parameters αi = Ri/R, hence we are
exactly in the situation of Eq.(8) in Sec.4.2. Therefore, we expect the dimensionless Lyapunov
exponent to be only a function of R/`dB and ~α [cf. Eq.(31)]. To solve the Schrödinger equation,
we start by separating variables

Ψ(τ,φ) =
eimφ

p
2π

F(τ) , m= 0,±1,±2, . . . , (E.3)

where the discreteness of m comes from requiring the periodicity in φ and the function F(τ)
shall be written as a piecewise function F(τ) = Fi(τ) for τi−1 < τ < τi with i = 1, . . . n+ 1
and τ0 = 0, τn+1 ≡ τn +τL . The functions Fi(τ) satisfy

�

1
sinhτ

∂

∂ τ

�

sinhτ
∂

∂ τ

�

−
m2

sinh2τ
+ hi

�

Fi(τ) = 0 for i = 1, . . . , n (E.4)

�

∂ 2

∂ τ2
−

m2

sinh2τn
+ hn

�

Fn+1(τ) = 0 , (E.5)

with dimensionless energies

hi =
2µR2

i

ħh2 E , hi =
�

R
Ri

�2

h1 . (E.6)
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Eq.(E.4) is the Legendre equation (B.1) for z = coshτ, hence for i = 1, . . . , n the solutions
are given by combination of Legendre functions for the first and second order. Eq.(E.5) yields
a simple oscillatory behaviour. Therefore, the k-th normalized eigenstate Φ = g1/4Ψ can be
written as

Φk(τ,φ) =
eimkφ

Nk
×



























R
p

sinhτF k
1 (τ) 0< τ < τ1 ,

. . .

Ri
p

sinhτF k
i (τ) τi−1 < τ < τi ,

. . .

Rn
p

sinhτnF k
n+1(τ) τn < τ < τn +τL ,

(E.7)

with

F k
i (τ) = ci P

`k
i

m (coshτ) + diQ
`k

i
m(coshτ) , (E.8a)

F k
n+1(τ) = cL cos[κk(τ−τn)] + dL sin[κk(τ−τn)] , (E.8b)

where we identified

`k
i (`

k
i + 1)≡ −hk

i → `k
i = −

1
2
+ i

√

√

hk
i −

1
4

, (E.9a)

κ2
k ≡ hk

n −
m2

k

sinh2τ2
n

. (E.9b)

The coefficients ci , di as well as cL , dL are determined by imposing on each τi the continuity
of the normalized wave function (E.7) and of its derivative. First of all, the Legendre function
of second kind Q`m(z) diverges for z → 1, therefore we directly set c1 = 1 and d1 = 0. Using
the recursive relation for the derivatives (B.5), a straightforward calculation yields for i ≤ n

ci =
Ri−1

Ri

ci−1

�

P`i−1
m Q`i

m+1 −Q`i
mP`i−1

m+1

�

+ di−1

�

Q`i−1
m Q`i

m+1 −Q`i
mQ`i−1

m+1

�

Q`i−1
m P`i

m −Q`i
mP`i

m+1

, (E.10a)

di =
Ri−1

Ri

ci−1

�

P`i−1
m+1P`i

m − P`i−1
m P`i

m+1

�

+ di−1

�

Q`i−1
m+1P`i

m −Q`i−1
m P`i

m+1

�

Q`i−1
m P`i

m −Q`i
mP`i

m+1

. (E.10b)

On the other hand for κ 6= 0, one finds

cL = cn P`n
m + dnQ`n

m , (E.11)

κ dL = cn P`n
m+1 + dnQ`n

m+1 +
�

m+
1
2

�

cothτn

�

cn P`n
m + dnQ`n

m

�

,

where P`i
m = P`i

m (coshτi) and Q`i
m = Q`i

m(coshτi) for all m. The quantization condition deter-
mining the k-th eigenvalue is fixed by imposing the wave-function to be zero at the end of the
cylinder for τ= τL , this leads to

tan[κkτL] = −
cL

dL
. (E.12)

Notice that the nature of the wave-function changes (from oscillatory to exponentially decay-
ing), as soon as the argument inside the square-root of Eq.(E.9a) changes sign. See Fig.7 in
the main text as an illustrative example in the case n= 2. This immediately leads to the gaps
∆i =

1
4
ħh2

2µR2
i
= ħh2

2µR2δi with δi =
1
4

R2

R2
i
[cf. Eq.(63) in the main text].
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F Two quantum mechanisms, more generally

F.1 Avoidance of curved regions

In Section 5.5, we have focused on the surface of constant negative curvature. Let us gener-
alize our findings to generic two-dimensional surfaces. The metric can be generally written in
geodesic polar coordinates as [39]

ds2 = R2
�

dτ2 + g(τ,φ) dφ2
�

, (F.1)

where R is length characterizing the surface, Rτ is the geodesic length and φ is the angle. In
this notation g = R4 g(τ,φ) is the determinant of the metric. The Gaussian curvature K can
be computed as [39]

K = −
1
R2

1
p

g
∂ 2pg
∂ τ2

. (F.2)

It is known that quantum mechanics on manifolds can give rise to potentials depending the
extrinsic curvature, see e.g. Refs. [40, 41]. Here, we will show how to derive such potentials
for the two-dimensional metric in terms of the intrinsic curvature 14. As we have discussed
at the beginning of the section within a semi-semi classical approach, the presence of such
potential implements the bound to chaos.
The Laplace-Beltrami operator (13) for the geodesic coordinates (F.1) on a surface with con-
stant curvature reads

∇2 =
1

R2pg
∂

∂ τ

�

p
g
∂

∂ τ

�

+
1
g

∂ 2

R2∂ φ2
=

1
R2

∂ 2

∂ τ2
+

1
R2 g(τ)

∂ 2

∂ φ2
+
Γτ
R2

∂

∂ τ
, (F.3)

where we have defined

Γτ ≡
1
2

g ′

g
=

1
2
∂

∂ τ
log g , (F.4)

or equivalently
p

g = e
∫ τ
Γt d t . We apply the Schrödinger equation (12) to

Ψ(τ,φ) = g−1/4Φ(τ,φ), obtaining

−
ħh2

2µR2

�

∂ 2

∂ 2τ
+

1
g(τ)

∂ 2

∂ φ2

�

Φ+ Veff(g)Φ= EΦ , (F.5)

where we have defined the effective potential, as

Veff(g)≡
ħh2

8µR2

�

Γ 2
τ + 2 Γ ′τ

�

=
ħh2

2µR2
g−1/4 ∂

2 g1/4

∂ 2τ
=
ħh2

2µ

�

−
K
4
+

1
8R2

∂ 2 log g
∂ τ2

�

, (F.6)

where K is the Gaussian curvature in Eq.(F.2). Eq.(F.6) is obtained by comparing it with the
definition (F.2). Veff(g) vanishes in the case of flat surfaces (K = 0 and g = r2), it is attractive
in the case of positive curved regions K > 0, while it is repulsive for negative curvature K < 0.
Remarkably, is the presence of negative curvature – classically the origin of chaotic behaviour
– that at the quantum level generates the repulsive potential [cf. Eq.(50)] implementing the
bound.

14Extrinsic geometry concerns properties of a surface in relation to the embedding on a three dimensional space.
Intrinsic properties of surfaces are properties that can be measured within the surface itself without any reference
to a larger space.
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F.2 Spreading of the wave-packet

Let us discuss the simplest instance in which quantum fluctuations modify the classical expo-
nential instability on the pseudosphere: We consider a Gaussian wave-packet evolving on the
classical geodesic and we study how its spreading modifies the Lyapunov regime. To highlight
the salient features, we focus here on a finite (yet big) portion of the surface with constant
negative curvature (36) for τ ≤ τx � 1. See App. D for a detailed study of the classical and
quantum dynamics of this model.
On the surface of constant negative curvature, the classical Lyapunov exponent comes from
the geometry, being distances computed via the non-trivial metric. By choosing two initial
conditions with the same radial coordinate τ0 and two angles differing by δφ(0), the spatial
separation between two geodesics is given by

�

ds(t)
ds(0)

�2

= sinh2τ(t)
�

dφ(t)
dφ(0)

�2

= (sinhτ(t) {φ(t), I(0)})2 ∼ sinh2τ(t)∼ e2λc t for t →∞ , (F.7)

where in the second line we have use the definition of the Poisson Brackets, to emphasise
analogy with the square-commutator (see below). In the third line we have simply used that
angular variations remain almost constant in time, see App. D.1.

In order to understand how geometric chaos translates into quantum mechanics, we con-
sider as square commutator as the quantum version of Eq.(F.7), i.e.

c(t) = −〈sinh2 τ̂(t) [φ̂(t), Î(0)]2〉 . (F.8)

If we evaluate the expectation value over a factorized wave-packet in the angular and radial
coordinates we can approximate the square commutator with

c(t)' 〈sinh2 τ̂(t)/R〉 ∼ 〈Φ(t)|e2τ̂/R|Φ(t)〉=
∫

dτ |Φ(τ, t)|2e2τ/R , (F.9)

where τ is now a dimensional variable and Φ(τ, t) is the time-dependent wave-function solu-
tion of the Schrödinger equation. We consider the system initialized in a Gaussian wave-packet
with variance σ0 and centered around τ0, that can be set to zero τ0 = 0 without loss of gen-
erality. The value of σ0 is determined by maximizing the uncertainty principle, i.e. σ0 =

ħh
2∆p .

The wave-packet undergoes free evolution and at time t one has [42]

|Φ(τ, t)|2 =
2

σ(t)
p

2π
e−

(τ− vt)2

2σ(t)2 , (F.10)

where v = p/µ is the velocity and σ(t) = σ0

È

1+
�

t
TN

�2
is the standard spreading of the

variance of the wave-packet with TN =
2µσ2

0
ħh usually referred as the natural time [42]. In

this case, the Ehrenfest time [cf. Eq.(33)] TEhr ∼ logVol ∼ τx can be made arbitrarely large
increasing τx . A straightforward calculation of the Gaussian integral in Eq.(F.9) leads to the
result of Eq.(59) and to the relative conditions on the extent of the wave-packet and on the
de Broglie length [cf. Eqs.(60)-(61)].

We are now in position to generalize these arguments. Here, we have shown that on a
two-dimensional manifold, the Lyapunov exponent can be defined only for p/∆p � 1 and
R/`dB �

1
4π , being p and (∆p) the momentum (spreading) of the radial coordinate. Below

these length scales, the Lyapunov exponential growth is suppressed by a constant or super-
exponential regime.
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On generic manifolds, nearby geodesics separate exponentially with the path length ` as
∆(`)∼∆0e`/s [cf. Eq.(23)]with s the geodesic separation. In N dimensions, it scales with N as
s = R

p
N , with R the characteristic length, finite in the thermodynamic limit [9]. This ensures

the proper scaling of the Lyapunov exponent λc =
pi
µR =

p
µs = O(1) in the thermodynamic

limit. Here p ∼
p

µN T is the total momentum, while pi ∼
p

µT the one of the single degree
of freedom. To study the impact of quantum fluctuations one can evaluate the average of∆(`)
over the probability of being on ` at time t, i.e.

〈∆(`)〉t =∆0

∫

d` P(`, t) e`/s , (F.11)

being P(`, t) = |Φ(`, t)|2 the modulus square of the wave-packet at time t. Notice that the ex-
ponential factor in the integrand makes Eq.(F.11) like a saddle point integral and therefore the
result will be dominated by largest values ` at time t. The initial state is chosen as a Gaussian
wave-packet factorized in all the directions {x i}i=1,...,N . The initial varianceσ0 = ħh/2∆pi max-
imizes the uncertainty principle on each direction. Then, assuming the wave-packet remains
factorized, at time t one has

P(`, t) = P({x i}, t)∼
N
∏

i=1

e−
(xi−pi t/µ)2

2σ(t)2 , (F.12)

with pi the conjugate variable to x i and σ(t)2 = σ2
0(1+

�

ħh
2µσ2

0

�2
t2) representing the spread-

ing of the uncertainty of the wave-function at time t. One can estimate `∼ x i
p

N and, by
completing the squares in the integral (F.11), one obtains

〈∆(`)〉t = exp

�

σ2
0

2R2
+λc t +

1
2

�

∆pi

pi

�2

λ2
c t2

�

, (F.13)

where we have used the definition of the temporal Lyapunov exponent λc = p/sµ. This ex-
pression has exactly the same scaling as the one of the two-dimensional surface, so that the
problem is not “cured” by the large N limit.
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