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Abstract

We use massive spinor helicity formalism to study scattering amplitudes in N = 2∗

super-Yang-Mills theory in four dimensions. We compute the amplitudes at an arbitrary
point in the Coulomb branch of this theory. We compute amplitudes using projection
from N = 4 theory and write three point amplitudes in a convenient form using special
kinematics. We then compute four point amplitudes by carrying out massive BCFW shift
of the amplitudes. We find some of the shifted amplitudes have a pole at z =∞. Taking
the residue at z =∞ into account ensures little group covariance of the final result.
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1 Introduction

The on-shell formulation of scattering amplitudes in quantum field theories has developed
rapidly in the last couple of decades thanks to the clever use of the spinor helicity formalism
for massless theories, see [1–11] and references therein. In particular, it has become a pow-
erful tool in studying amplitudes in N = 4 super-Yang-Mills(SYM) theories. It has also aided
(super)gravity computations using the double copy formalism [12]. This formalism has also
been extended to theories with lower supersymmetry, for some of the early works in this direc-
tion can be found in, e.g., [13] and [14]. The spinor helicity formalism is well suited to study
amplitudes in theories involving massless fields. However, for obvious reasons, it is important
to extend this formalism to theories with massive fields, and there have been several steps
taken in this direction already [15–22].

A natural extension is to do an excursion in the Coulomb branch of the N = 4 SYM theory
[23–25]. This is equivalent to studying amplitudes involving BPS states. Although BPS states
are massless states from the higher dimensional point of view, they are massive states in four
dimensions, and to accommodate them in the spinor helicity formalism one needs to double
the number of spinor helicity variables. As mentioned earlier original spinor helicity variables
are ideal for describing null momenta. The idea of doubling stems from the simple fact that
any time-like momentum can be described in terms of two null momenta. Since each null
momentum needs a pair of spinor helicity variables, we need doubling of the variables to
describe the momenta of the massive fields. A related idea has also been explored earlier
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where one utilises the fact that the long multiplets of N /2-extended supersymmetry(SUSY)
have the same number of states as the short multiplet of N -extended SUSY algebra [17,18].

TheN = 2 SYM theory is the next avenue to pursue in the increasing level of difficulty [13],
but these theories have much richer structures and many interesting ones have non-vanishing
β-function, see e.g., [26, 27]. While it would be interesting to develop a general formalism
that can encompass this kind of rich variety, it is often easier to look at the closest cousins
of the model that is well understood. The N = 2∗ theory is beautifully perched between the
reasonably well understood N = 4 theory and the wild variety of N = 2 theories. The N = 2∗

theory is therefore a natural meeting ground where one can test the generalised spinor helicity
formalism before taking a plunge into studying amplitudes in the N = 2 theory. With this
motivation back in mind, in this paper, we address the problem of setting up an appropriate
formalism for computing amplitudes in N = 2∗ theory at an arbitrary point in the Coulomb
branch. We explicitly compute three and four point amplitudes in the N = 2∗ theory. The
N = 2∗ theory is obtained by writing N = 4 SYM multiplet in terms of N = 2 vector multiplet
and N = 2 adjoint hypermultiplet. If the adjoint hypermultiplet is massless then we get N = 4
theory, but if the adjoint hypermultiplet is massive then it breaks N = 4 SUSY down to N = 2.
The resulting theory with an N = 2 vector multiplet coupled to massive adjoint hypermultiplet
is referred to as the N = 2∗ theory. This theory is in some sense a close relative of the N = 4
Coulomb branch theory, in the sense that the techniques required to study the massive theory
amplitudes are similar to those of the N = 4 theory in the Coulomb branch. However, there is
a crucial difference in the classical theory at the origin of the Coulomb branch of the N = 2∗

theory we have massless vector multiplet coupled to a massive adjoint hypermultiplet, whereas
in the Coulomb branch of the N = 4 theory we recover massless N = 4 SYM theory at the
origin.

As emphasised above, one of our main motivations for studying amplitudes in the N = 2∗

theory comes from the fact that we can use its connection with N = 4 SYM to obtain useful
lessons for amplitudes in N = 2 theories. BCFW techniques for N = 2∗ theory studied in this
paper may be helpful for understanding recursion relations of amplitudes in N = 2 theories.
We employ two different techniques to compute the amplitudes in the N = 2∗ theory. In sec-
tion 2 we begin with the characterisation of N = 2 multiplets, both massless and massive. We
describe the massive multiplets in the N -extended SUSY in terms of ‘long’ multiplets of N /2
extended SUSY. We have put the word long in quotes because we employ the same technique
for N = 2 SUSY where the N /2 extended SUSY is N = 1 SUSY, which does not possess long
multiplets. However, it does possess multiplets with respect to SU(2) little group which helps
organise the massive multiplets of N = 2 SUSY. We also obtain N = 2 massive multiplets by
projection of N = 4 multiplets, a method we use in the computation of three and four point
amplitudes.

In section 3, we embark on the computation of three point amplitudes. After discussing the
special kinematics for three point amplitudes of BPS states [7], we derive three point ampli-
tudes using the method of projection from the N = 4 theory. However, we find it convenient
to write the expressions in terms of the u-spinor variable, that arises in three point special BPS
kinematics, (see Eq.(31)) because this representation turns out to be suitable for carrying out
the BCFW shift which is done in section 5. In the N = 2∗ theory, we have only two types of
three point amplitudes, one that involves three vectors or the other that involves one vector
and two hypers. We derive both using the projection from N = 4 theory. At the end of this sec-
tion, we discuss the band structure of the scattering amplitudes. We note that, in three point
amplitudes, besides the MHV and MHV bands that appear in the massless theory, the massive
theory also has an MHV×MHV band. In section 4 we compute four point function using the
method of projection. In the N = 2∗ theory there are only 3 types of four point amplitudes
involving the massive vector as well as massive hyper, namely, a four massive vectors ampli-
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tude, four massive hypers amplitude, and the one with two massive vectors and two massive
hypers. We derive these amplitudes by taking appropriate projections.

The BCFW shift in section 5 for the N = 2∗ theory does not follow from the N = 4 theory
by projection in a straightforward way because the shifts involved in the N = 4 theory and
those required to implement BCFW in the N = 2∗ theory are different. In particular, the Grass-
mann variable η2

I which is shifted in the N = 4 theory is projected out in the N = 2∗ theory.
As a result, the BCFW shifts are different in the two cases. In general, the massive BCFW shifts
are not little group covariant. It is worth pointing out that this does not jeopardise the little
group covariance of the final amplitude. This situation, in some sense, is analogous to the light
cone gauge computations which do not maintain Lorentz covariance at every step but the final
result is Lorentz covariant. The little group non-covariance manifests itself in the form of the
integrand, as a function of the shift parameter z. One can therefore think of z parametrising
the little group non-covariance. In the N = 2∗ case, we find that the amplitude containing
gauge fields in the external legs do have a pole at z =∞, and incorporating the residue from
this pole is essential in getting the little group covariant answer for the amplitudes. We, in
fact, find that the little group non-covariance is a blessing in disguise in the sense that the z
dependence of the integrand induced by it makes the non-covariant terms conspicuous. By ac-
counting for the contribution of all the poles it is easy to see that the little group non-covariant
contributions to the amplitude cancel pairwise and the final result is little group covariant. We
turn this observation on its head to propose that the covariant amplitude can be obtained by
simply ignoring the z dependent parts of the integrand and hence ignoring the resulting pole
at z =∞. We believe this may be an efficient way of pulling out covariant expressions for
amplitudes by leveraging the little group non-covariance. We end with concluding remarks in
section 6 where we summarise our main results and speculate about the wider applicability
of our procedure. Our notation and conventions as well as other technical details of some
computations are relegated to appendices.

2 On-shell supermultiplets

In this section we will discuss the on-shell supermultiplets forN = 4 andN = 2 BPS multiplets.
The BPS condition is defined in (108) in Appendix-A where we have listed the spinor helicity
conventions relevant for this paper. Here we first recall the notation used for representation
of BPS multiplets in N = 4 super-Yang-Mills [18]. We then generalise it to construct BPS
multiplets in N = 2 theory. In the end we show that this same multiplet can be obtained by
projection of the N = 4 multiplet. We will use this method of projection in later sections.

2.1 N = 4 SYM 1/2-BPS multiplet

To set the stage for N = 2 massive on-shell supermultiplets, let us first discuss the construction
of N = 4 SYM 1/2-BPS multiplet [18]. We will utilise the supersymmetric massive spinor he-
licity formalism in four dimensions developed in [17]. The basic idea behind this construction
is to capitalise the fact that the dimension of a short multiplet in the N extended supersym-
metry is same as that of the long multiplet in the N /2 extended supersymmetry. Therefore,
to construct a 1/2-BPS representation in N -extended supersymmetry, one can use the long
massive multiplets of N /2 supersymmetry.

In the original N -extended supersymmetry, a 1/2-BPS representation has the same number
of degrees of freedom as a massless representation. Therefore, when we take the massless
limit of the 1/2-BPS representation, it is merely a rearrangement of the components of the
on-shell superfield for the massless representation. This rearrangement can be understood
from the fact when we consider supersymmetry representations with the same maximum spin
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or helicity, the Clifford vacua for the massive and for the massless theories are different. For
instance, the helicity of the Clifford vacuum for the massless hypermultiplet is h0 = +1/2
whereas the Clifford vacuum for massive hypermultiplet has spin s0 = 0. We will see that
this basis change is implemented by a half Fourier transform in the Grassmann variables that
organise the on-shell supermultiplets.

The mapping between massless multiplets and massive 1/2-BPS multiplets can be imple-
mented by using following steps.

• Represent the massive 1/2-BPS multiplet in N -extended SUSY by using the massive long
multiplet in the N /2 SUSY.

• Take the massless limit of the superfield, by replacing the Grassmann variable ηa
I (where

a is the N /2 SUSY index and I = ± is the SU(2) little group index) for massive fields by
a new set variables ηa, η̃†a using the rule ηa

−→ η
a and ηa

+→ η̃
†a.

• The massless N SUSY multiplet is then obtained by performing the half Fourier trans-
form from η̃†a to η′a.

The set (ηA = ηa,η′a), are the appropriate Grassmann variables for the massless N SUSY
superfield, and the half Fourier transform carried above achieves the necessary rearrangement
of fields to change from the Clifford vacuum with helicity s0 to Clifford vacuum with helicity
h0.

Let us now consider N = 4 1/2-BPS SYM multiplet. In [18], this was represented as a long
massive vector multiplet1 in N = 2 supersymmetry which is given as,

W = φ +ηa
Iψ

I
a −

1
2
ηa

I η
b
J (ε

I Jφ(ab) + εabW (I J)) +
1
3
ηb

I ηJ bη
Jaψ̃I

a +η
1
+η

2
+η

1
−η

2
−φ̃ . (1)

To understand how one obtains the massless SYM multiplet in the massless limit of above, let
us carry out the steps outlined earlier. By taking ηa

−→ η
a and ηa

+→ η̃
†a, we obtain,

G̃ =W ηa
−→ηa ,ηa

+→η̃†a

= φ +ηaψ−a + η̃
†aψ+a − η̃

†aηbφ(ab) − η̃†aηbεabW (+−) −
1
2
ηaηbεabW (−−) −

1
2
η̃†aη̃†bεabW (++)

+
2
3
η̃†bη̃†

bη
aψ̃+a −

2
3
ηbηbη̃

†aψ̃−a + η̃
†1η̃†2η1η2φ̃ . (2)

This representation is known as the non-chiral representation of theN = 4 SYM multiplet [28].
To see this note that the helicity of the Clifford vacuum in the above superfield is s0 = 0.
However, we know that for the massless N = 4 SYM representation theory, in the chiral
representation, the helicity of the Clifford vacuum is h0 = 1. To achieve this rearrangement of
fields, let us implement a half Fourier transform of the Grassmann variables such that η̃†a to
η′a. We get,

G =

∫ 2
∏

a=1

�

dη̃†aeη̃
†aη′a

�

G̃

= η′1η′2φ +ηaη′1η′2ψ−a +η
′1ψ+2 −η

′2ψ+1 +η
1η′1(φ(12) +W (+−))−η2η′2(φ(12) −W (+−))

+η2η′1φ(22) −η1η′2φ(11) +η
1η2η′1η′2W (−−) −W (++)

+
2
3
ηaψ̃+a −

2
3
ηbηbη

′1ψ̃−2 +
2
3
ηbηbη

′2ψ̃−1 −η
1η2φ̃ , (3)

1We will interchangeably refer to the vector multiplet as the SYM multiplet in this paper.
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where we used ε12 = −1. The above superfield has helicity h0 = 1 as expected. We can now
rewrite the above by using (ηA = ηa,η′a) to obtain,

G = g+ +ηAλA−
1
2
ηAηBSAB −

1
6
ηAηBηCλ−ABC −η

1η2η3η4 g− , (4)

where,

g+ = −W (++), g− = −W (−−) , S12 = −φ̃ , S34 = −φ ,

S13 = −W (+−) −φ(12) , S24 = φ(12) −W (+−) , S14 = −φ(11) , S23 = −φ(22) ,

λ−123 = −
4
3
ψ̃−2 , λ−234 = −ψ

−
2 , λ−134 = −ψ

−
1 , λ−124 = −

4
3
ψ̃−1 ,

λ1 =
2
3
ψ̃+1 , λ2 =

2
3
ψ̃+2 , λ3 =ψ

+
2 , λ4 = −ψ+1 . (5)

From the above, it becomes clear that the longitudinal mode of the massive W boson arises
from the scalar fields of the massless SYM multiplet. Thus (1), describes the Coulomb branch
of N = 4 SYM. Note that even though the central charge structure is different for N = 4 and
N = 2 supersymmetry, this is not relevant when considering on-shell representations. In this
spirit, we will call massive multiplets in N = 1 supersymmetry as long multiplets even though
the central charge term is absent in N = 1 supersymmetry. This nomenclature is helpful as
massive N = 1 multiplets can be used to describe 1/2-BPS N = 2 multiplets analogous to
how long N = 2 multiplet can be used to represent 1/2-BPS N = 4 SYM.

Before we proceed to construct N = 2 supermultiplets using N = 1 long multiplets, let us
ask what is the massless limit of the N = 2 SYM multiplet (1) within N = 2 supersymmetry.
To perform this massless limit, we need to take ηa

+→ η
a and ηa

−→ η̂
a, where η̂a organises the

massless limit of the long massive supermultiplet in terms of distinct massless supermultiplets.
This leads to,

W ηa
+→ηa ,ηa

−→η̂a = φ +ηaψ−a −
1
2
ηaηbεabW (−−) + η̂aψ+a − η̂

aηbφ(ab) − η̂aηbεabW (+−)

−
2
3
η̂aηbηbψ̃

−
a −

1
2
η̂aη̂aW (++) +

2
3
η̂aη̂aη

bψ̃+b −
1
2
η̂aη̂aη

1η2φ̃ . (6)

Therefore, we can write the above massless limit in terms of three massless superfields as,

W ηa
+→ηa ,ηa

−→η̂a = Φ+ η̂aΨ+a −
1
2
η̂aη̂aW++ , (7)

where the massless superfields are given as,

Φ= φ +ηaψ−a −
1
2
ηaηbεabW (−−) ,

Ψ+a =ψ
+
a −η

bφ(ab) −ηbεabW (+−) −
2
3
ηbηbψ̃

−
a ,

W++ =W (++) −
4
3
ηbψ̃+b −

1
2
ηaηaφ̃ . (8)

It is clear from the above that Φ and W(++) superfields describe an N = 2 SYM multiplet
constructed in [14], and Ψ+a describes a massless hypermultiplet. Notice that the longitudinal
mode of the W boson in the long N = 2 multiplet originates from the massless hypermultiplet.
Therefore if we use (1) to describe a massive N = 2 theory, then we are likely to obtain the
Higgs branch of N = 2 SYM. Notice that the on-shell hypermultiplet here occurs as a superfield
which is a doublet under R-symmetry with Clifford vacuum of helicity h0 = 1/2 being a doublet
of fermions. This choice is appropriate as this organises the scalars in the hypermultiplet into
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a triplet and a singlet under R-symmetry. This singlet is in fact the longitudinal mode of the W
boson in the massive theory. Therefore, the organisation of R-symmetry is consistent with the
Higgs branch. However, in this paper, we are interested in Coulomb branch amplitudes as we
are considering N = 2∗ theory where the absence of massless hypermultiplets implies there is
no Higgs branch.

2.2 N = 2 Supersymmetry 1/2-BPS multiplets

To study the amplitudes in the Coulomb branch of N = 2∗ theory, we need the 1/2-BPS on-
shell superfields for SYM as well as hypermultiplets. These representations are obtained by
using N = 1 long massive multiplets as we show below. As before, the fact that central charge
structures are different for N -extended and N /2-extended supersymmetry is not relevant for
studying the on-shell representations. In our case, the N = 1 long multiplets are those that
were introduced in [17]. Here, we will show that these reproduce the right massless limit
when they are used to describe N = 2 1/2-BPS multiplets.

2.2.1 N = 2 hypermultiplet

We can now try to construct the N = 2 1/2-BPS hypermultiplet by using the long N = 1 chiral
multiplet which is given as,

Φ= φ +ηIχ
I −

1
2
ηIη

I φ̃ . (9)

Let us first implement η−→ η and η+→ η̃†. We then get,

Φ= φ +ηχ− + η̃†χ+ + η̃†ηφ̃ . (10)

Half Fourier transform from η̃† to η′ leads to,

Φ̃=

∫

dη̃†(1+ η̃†η′)(φ +ηχ− + η̃†χ+ + η̃†ηφ̃)

= η′φ −ηη′χ− +χ+ +ηφ̃ . (11)

We can now relabel the Grassmann variables as, η1 = η, η2 = η′. We then obtain,

Φ̃= χ+ +ηAφA−η1η2χ− , (12)

where φA = (φ̃,φ). This clearly the N = 2 massless hypermultiplet.
There is one subtlety here, which is that unlike the N = 4 SYM multiplet, the N = 2 hyper-

multiplet is not self conjugate due to SU(2) representation theory. This is complemented by
the fact in the original N = 1 theory, if the fermion is Dirac then one needs an anti-superfield.
Therefore Φ̃ and its anti-superfield provide the massless N = 2 hypermultiplet. Thus N = 2
massive hypermultiplet is represented by Φ from (9) as well as an anti-chiral superfield Φ̄ with
the same structure.

2.2.2 N = 2 SYM 1/2-BPS multiplet

To construct the 1/2-BPS N = 2 SYM multiplet, consider the N = 1 massive SYM multiplet,

W I = λI +ηI H +ηJW (I J) −
1
2
ηJη

J λ̃I . (13)
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We now have a doublet of on-shell superfields under the little group. Let us first consider the
case of W+ superfield. In η, η̃† variables it reads,

W+ = λ+ +η(W (+−) +H) + η̃†W (++) −ηη̃†λ̃+ . (14)

Half Fourier transform yields,

W̃+ =

∫

dη̃†(1+ η̃†η′)(λ+ +η(W (+−) +H) + η̃†W (++) −ηη̃†λ̃+)

= η′λ+ −ηη′(W (+−) +H) +W (++) +ηλ̃+ . (15)

Finally in the ηA = (η,η′) variables,

W̃+ = g+ +ηAλA−η1η2ϕ , (16)

where λA = (λ̃+,λ+), g+ = W (++) and ϕ = (W (+−) + H). This is nothing but one of the on-
shell superfields that represent massless N = 2 SYM. Similarly, by considering the high energy
limit of W−, we can recover the full N = 2 massless SYM. We can see that the longitudinal
component for the massive W boson comes from the scalar in massless SYM. Therefore (13)
is the 1/2−BPS N = 2 SYM on-shell superfield appropriate to describe the Coulomb branch
of N = 2 (as well as N = 2∗) SYM.

2.3 Projection from N = 4 supermultiplets to N = 2 supersymmetry

We will now discuss a very useful connection between the N = 4 SYM theory and a theory with
N = 2 SYM coupled to an adjoint N = 2 hypermultiplet. For massless case, this connection
has been discussed and utilised to present amplitudes for the N = 2 theory in [29,30]. For the
massive case, the relationship at the level of multiplets was discussed in the appendix of [18].
However, it was not utilised to write the amplitudes for N = 2∗ theory. We will discuss the
massless and the massive case below at the level of multiplets, which will help us write the
amplitudes for N = 2∗ theory in future sections.

2.3.1 Massless supermultiplet projection

Let us first consider the massless case. The massless on-shell superfield for N = 4 SYM is given
as,

G = g+ +ηAλA−
1
2
ηAηBSAB −

1
6
ηAηBηCλ−ABC −η

1η2η3η4 g− . (17)

If we expand the above on-shell superfield in the Grassmann variables η3 and η4, we obtain,

GN=4 = G+N=2 +η
3ΦN=2 +η

4Φ̄N=2 −η3η4G−N=2 , (18)

where,

G+N=2 = g+ +ηaλa −η1η2S12 ,

ΦN=2 = λ3 −ηaS3a −
1
2
ηaηbλ−3ab ,

Φ̄N=2 = λ4 −ηaS4a −
1
2
ηaηbλ−4ab ,

G−N=2 = S34 +η
aλ−34a −η

1η2 g− . (19)
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These are the on-shell superfields for the N = 2 SYM and N = 2 hypermultiplet. To read
off the amplitudes in the N = 2 theory, begin with the N = 4 SYM amplitude and expand in
terms of η3 and η4 variables. If there is no η3 or η4 corresponding to a particular external leg
then that leg corresponds to the superfield G+N=2. Similarly, ΦN=2 if there is only η3, Φ̄N=2
if there is only η4 and G−N=2 if there is both η3,η4 corresponding to a particular external
leg. Conversely, if one has the N = 2 superamplitudes, one can appropriately add them with
factors of η3 and η4 to obtain the N = 4 superamplitude.

2.3.2 Massive supermultiplet projection

Since the massless projection discussed above proved useful in writing down the tree level
amplitudes for N = 2 SYM coupled to a massless N = 2 hypermultiplet, it is natural to ask
if such a connection exists between the massive 1/2-BPS multiplets. Let us now see how this
can be done.

We had represented N = 4 SYM amplitude by using the N = 2 long multiplet given as,

W = φ +ηa
Iψ

I
a −

1
2
ηa

I η
b
J (ε

I Jφ(ab) + εabW (I J)) +
1
3
ηb

I ηJ bη
Jaψ̃I

a +η
1
1η

2
1η

1
2η

2
2φ̃ . (20)

Here, a = 1, 2. We can expand the above supermultiplet in terms of the Grassmann variables
η2

I to obtain,

W = Φ+η2
I W

I −
1
2
η2

Iη
2
Jε

I J Φ̄ , (21)

where,

Φ= φ +η1
Iψ

I
1 −

1
2
η1

Iη
1
Jε

I Jφ11 ,

W I =ψI
2 −η

1Iφ12 +η
1
JW (I J) −

2
3
η1

Jη
J1ψ̃I

1 ,

Φ̄= φ22 −
2
3
η1

Kψ̃
K
2 −

1
2
η1

Kη
1
Lε

K Lφ̃ . (22)

Clearly, the above decomposition yielded long massive N = 1 chiral and anti-chiral as well
as long-massive N = 1 SYM multiplet, which represent N = 2 massive hypermultiplet and
N = 2 half-BPS SYM multiplet respectively.

Therefore, we propose that amplitude for N = 2 SYM in the Coulomb branch with a
massive hypermultiplet can be obtained in non-chiral superspace by expanding the N = 4
SYM Coulomb branch amplitude in powers of η2

I . No η2
I for a particular leg puts it in ΦN=2,

a single η2
I for a particular leg puts it in W I and two η2

I for a particular leg puts it in Φ̄N=2.

3 Three point amplitudes

In this section, we will present the three point amplitudes for N = 2∗ theory. We will first re-
view massless and massive three point special kinematics. We will then review the computation
of massless three point amplitudes for N = 2 SYM coupled to an adjoint N = 2 hypermulti-
plet. Further, we will consider the three point amplitudes of N = 4 SYM to Coulomb branch
to obtain three point amplitudes for N = 2∗ theory by projection. We will also elucidate the
equivalence between different forms of results obtained from the projection and we give the
three point amplitudes in terms of special u spinors that will prove particularly useful for BCFW
analysis in the next section.
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3.1 Three point special kinematics

Let us first review the well known massless three point special kinematics [7]. Consider three
particles with momentum p1, p2, p3 respectively. We will consider all external momenta to be
outgoing. Therefore, momentum conservation reads,

pµ1 + pµ2 + pµ3 = 0 . (23)

This leads us to,

p2
1 = (−p2 − p3)

2 = 2p2 · p3 = 0 ,

p2
2 = (−p1 − p3)

2 = 2p1 · p3 = 0 ,

p2
3 = (−p1 − p2)

2 = 2p1 · p2 = 0 . (24)

From massless spinor helicity formalism, we have,

2pi · p j = 〈i j〉[i j] . (25)

By using (24) and momentum conservation, we can see that we can have two consistent limits
for three particle special kinematics. Either,

[12] = [23] = [31] = 0 , (26)

or

〈12〉= 〈23〉= 〈31〉= 0 . (27)

This is of course made possible by considering momenta to be complex, as for real momenta
angle and square spinors are related by conjugation. When (26) is imposed, one obtains
amplitudes written only in terms of angle spinors and vice versa for (27).

For massive particles, of interest to us is the three point special kinematics involving am-
plitudes for BPS and anti-BPS multiplets. The BPS condition along with central charge con-
servation for the amplitude will lead to a condition on the masses of the external legs. If we
consider a three particle amplitude with two BPS and one anti-BPS multiplet then this condi-
tion will read m1+m3 = m2 where the second leg is taken to be anti-BPS. When this condition
is satisfied, the following relation is satisfied.

−2p1 · p2 + 2m1m2 = −p2
3 −m2

3 = 0 ,

−2p2 · p3 + 2m2m3 = −p2
1 −m2

1 = 0 ,

2p3 · p1 + 2m3m1 = p2
2 +m2

2 = 0 . (28)

From massive spinor helicity formalism, we have,

−2p1 · p2 + 2m1m2 =
1
2
([1I2J]− 〈1I2J 〉)([1I2J]− 〈1I2J 〉)

= det([1I2J]− 〈1I2J 〉) ,

−2p2 · p3 + 2m2m3 = det([2J3K]− 〈2J3K〉) ,

2p3 · p1 + 2m3m1 = det([3K1I] + 〈3K1I〉) . (29)

Therefore, from (28), one obtains,

det([i I jJ]± 〈i I jJ 〉) = 0 , (30)
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where the relative minus sign occurs when one of the legs is BPS and the other is anti-BPS.
From (30), we see that the matrix [i I jJ]± 〈i I jJ 〉 is of rank 1. Therefore we can write,

[i I jJ]± 〈i I jJ 〉= uI
i vJ

j , (31)

where i < j in cyclic ordering. Not all of these equations are independent. For instance,

([1I2J]− 〈1I2J 〉)([2J3K]− 〈2J3K〉) = uI
1vJ

2 u2J vK
3 . (32)

The left hand side can be shown to vanish by using spin sums (101) and the expression for
massive momenta in terms of massive spinors. This gives us,

v I
2∝ uI

2 . (33)

Similarly, we can see that all the v spinors are proportional to the corresponding u spinors.
This leaves a scaling freedom, which we can use to set v I

i = uI
i so that,

[i I jJ]± 〈i I jJ 〉= uI
i u

J
j , (34)

where i < j in cyclic ordering and the relative sign is as explained before. By contracting the
above with ui I and u jJ , we see that the above equations are solved by,

u1I |1I〉= u2J |2J 〉= u3K |3K〉 ≡ |u〉 ,

u1I |1I] = −u2J |2J] = u3K |3K]≡ |u] . (35)

The above equations capture the three point special BPS kinematics for massive particles.
Recall that we have,

pi = |i I〉[iI | . (36)

It will be useful to see how to decompose this to manifest three point special BPS kinematics.
For ui I , consider dual variables wiJ such that ui I w

I
i = ε

I Jui I wiJ = 1. We can insert this in the
expression for momentum to obtain,

pi = uiJ wJ
i |i

I〉[iI |

= ui I w
J
i |i

I〉[iJ |+wJ
i |i

I〉(uiJ[iI | − ui I[iJ |)

= −|u〉[iJ |wiJ +wi I |i I〉[iJ |uiJ

= −|u〉[iJ |wiJ ±wi I |i I〉[u| , (37)

where the relative sign is minus for anti-BPS leg due to the definition of |u] spinor in (35).
Further, variables ŵi I = |ui|wi I will be useful for some manipulations. The u and v variables
defined above have been considered before in the context of four and higher dimensional
three particle special kinematics in [3, 11, 18]. We will see that these u-spinors will be useful
to represent the three point amplitudes in a convenient way to simplify BCFW computations.
We will note a few relations that we will use later. From (35), we have,

pi|u〉= ±mi|u] , (38)

where the minus sign applies for anti-BPS legs. The multiplicative super-charges for three
point amplitude are,

1
p

2
Q†a = −ηa

1I |1
I〉 −ηa

2I |2
I〉 −ηa

3I |3
I〉 ,

1
p

2
Qa+2 = η

a
1I |1

I]−ηa
2I |2

I] +ηa
3I |3

I] . (39)
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From (38), we see that,

[uQa+2] = 〈uQ†a〉 . (40)

This shows that in the three particle super amplitude the delta functions in the two multiplica-
tive supercharges are not independent and one has to account for the above relation to obtain
the right supercharge conserving delta function as discussed in [18].

3.2 Three point massless amplitudes by projection

In the previous section, we discussed how the massless N = 4 SYM on-shell superfield can be
decomposed in terms of Grassmann variables η3,η4 to yield on-shell superfields for massless
N = 2 SYM and N = 2 adjoint hypermultiplet. We can perform the same expansion of the
N = 4 SYM tree level amplitude to obtain the scattering amplitude for N = 2 SYM coupled
with an adjoint hypermultiplet. We will now perform this for three point amplitudes. We want
to emphasize that all the three point amplitudes considered in this section and higher point
ones studied in later sections are color ordered. Massless fields live in the adjoint represen-
tation of the gauge group. Let us compute the 3-point amplitudes. We know that the 3-point
MHV amplitude in N = 4 SYM is given as,

AMHV
3 (GN=4, GN=4, GN=4) =

iδ(8)(Q)
〈12〉〈23〉〈31〉

, (41)

where,

δ2N (Q) =
N
∏

A=1

∑

i< j

ηA
i η

A
j 〈i j〉. (42)

We get the desired massless N = 2 amplitudes to be,

A3(G
−
N=2, G−N=2, G+N=2) =

−i〈12〉
〈23〉〈31〉

δ(4)(Q) , A3(G
−
N=2, G+N=2, G−N=2) =

−i〈31〉
〈12〉〈23〉

δ(4)(Q) ,

A3(G
+
N=2, G−N=2, G−N=2) =

−i〈23〉
〈12〉〈31〉

δ(4)(Q) , A3(G
−
N=2,Φ, Φ̄) =

i
〈23〉

δ(4)(Q) ,

A3(G
−
N=2, Φ̄,Φ) =

−i
〈23〉

δ(4)(Q) , A3(Φ, G−N=2, Φ̄) =
i
〈31〉

δ(4)(Q) ,

A3(Φ̄, G−N=2,Φ) =
−i
〈31〉

δ(4)(Q) , A3(Φ, Φ̄, G−N=2) =
i
〈12〉

δ(4)(Q) ,

A3(Φ̄,Φ, G−N=2) =
−i
〈12〉

δ(4)(Q) . (43)

Amplitudes for hypermultiplets interacting with G+N=2 come from the anti-MHV amplitude in
N = 4 SYM.

Aanti-MHV
3 (GN=4, GN=4, GN=4) =

iδ(4)([12]η3 + [23]η1 + [31]η2)
[12][23][31]

. (44)
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We get the desired massless N = 2 amplitudes to be,

A3(G
+
N=2, G+N=2, G−N=2) =

−i[12]
[23][31]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(G
+
N=2, G−N=2, G+N=2) =

−i[31]
[12][23]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(G
−
N=2, G+N=2, G+N=2) =

−i[23]
[12][31]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(G
+
N=2,Φ, Φ̄) =

i
[23]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(G
+
N=2, Φ̄,Φ) =

−i
[23]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(Φ, G+N=2, Φ̄) =
i
[31]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(Φ̄, G+N=2,Φ) =
−i
[31]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(Φ, Φ̄, G+N=2) =
i
[12]

δ(2)([12]η3 + [23]η1 + [31]η2) ,

A3(Φ̄,Φ, G+N=2) =
−i
[12]

δ(2)([12]η3 + [23]η1 + [31]η2) . (45)

Four point and higher point amplitudes can also be obtained in a similar fashion as explained in
[29,30]. We will see how an analogous projection can be used to write three and higher point
amplitudes in the Coulomb branch of N = 2∗ theory. The three point amplitudes considered
here will be obtained as high energy limits of three point amplitudes in N = 2∗ theory.

3.3 Massive three point amplitudes of N = 2∗ theory by projection from N = 4
SYM

In this section, we will discuss how to get the massive three point amplitudes for the Coulomb
branch of N = 2∗ theory from the N = 4 Coulomb branch amplitude by using projection.
It is to be noted that we are dealing with color ordered amplitudes. To illustrate this let us
consider the case where the gauge group in massless N = 4 SYM theory at the origin of the
moduli space is broken into two gauge groups, say U(N +M)→ U(N)×U(M) when we move
away from the origin due to the presence of massive fields. Massless superfields live in the
adjoint representations of either of the two gauge groups, whereas massive superfields are
bifundamentals of U(N) × U(M) - they live in the fundamental representation of one group
and anti-fundamental of the other [24]. More generally the gauge group of the massless
theory is broken to multiple sub-groups,

∏

k U(Nk) and the color ordering continues to hold.
For convenience, we suppress the color indices of the fields while writing the amplitudes.
Central charge conservation for the superamplitude dictates that in a three point amplitude
one should take at most two BPS (anti-BPS) multiplets and the other one to be anti-BPS (BPS).
The expression of massive three point N = 4 SYM amplitude where the second leg is taken to
be anti-BPS and the other two legs to be BPS is given as [18],

A3[W1,W̄2,W3] =
1

m2
3〈q|p1p3|q〉

δ(4)(Q†a)δ(2)(〈q|p3|Qa+2])

=
1

〈q|p1p3|q〉
δ(4)(Qa+2)δ

(2)(〈qQ†a〉) , (46)

where, the R-symmetry index a = {1,2}, and the central charge conservation condition trans-
lates to m1 + m3 = m2. Even though momenta corresponding to the first and the third leg
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are manifestly present in the overall factor for the above expression, using momentum con-
servation p1 + p2 + p3 = 0, we can replace these momenta with other pairs of momenta. As
we had discussed earlier, three particle special kinematics renders the supercharges along the
special u spinor directions dependent. Therefore the reference spinor |q〉 is introduced such
that 〈qu〉 6= 0. This helps us extract the component of the supercharge in the direction orthog-
onal to |u〉. It can be shown that any component amplitude is independent of the reference
spinor. Thus the reference spinor is useful to organise the component amplitudes into super-
amplitudes. The supercharges for N = 4 massive theory are,

Qa+2 = |1I]ηa
1,I − |2

I]ηa
2,I + |3

I]ηa
3,I ,

Q†a = −|1I〉ηa
1,I − |2

I〉ηa
2,I − |3

I〉ηa
3,I . (47)

We will substitute this in (46) and expand in terms of η2
I variables to obtain,

δ(4)
�

Q†a
�

= δ(2)
�

Q†
� �

〈1I2J 〉η2
1,Iη

2
2,J + 〈1

I3J 〉η2
1,Iη

2
3,J + 〈2

I3J 〉η2
2,Iη

2
3,J

+
1
2

m1ε
I Jη2

1,Iη
2
1,J +

1
2

m2ε
I Jη2

2,Iη
2
2,J +

1
2

m3ε
I Jη2

3,Iη
2
3,J

�

,

δ(4) (Qa+2) = δ(2) (Q)
�

−[1I2J]η2
1,Iη

2
2,J + [1

I3J]η2
1,Iη

2
3,J − [2

I3J]η2
2,Iη

2
3,J

−
1
2

m1ε
I Jη2

1,Iη
2
1,J −

1
2

m2ε
I Jη2

2,Iη
2
2,J −

1
2

m3ε
I Jη2

3,Iη
2
3,J

�

,

δ(2) (〈q|p3|Qa+2]) = δ (〈q|p3|Q])
�

〈q|p3|1N ]η2
1,N − 〈q|p3|2N ]η2

2,N + 〈q|p3|3N ]η2
3,N

�

,

δ(2)
�

〈qQ†a〉
�

= δ
�

〈qQ†〉
�

�

−〈q1N 〉η2
1,N − 〈q2N 〉η2

2,N − 〈q3N 〉η2
3,N

�

, (48)

where we have defined the super charges, Q†1 ≡ Q† and Q3 ≡ Q for N = 2 supersymmetry.
As discussed earlier, due to three point special BPS kinematics these supercharges are not
independent but satisfy the relation〈uQ†〉 = [uQ]. Thus, analogous to the N = 4 case, we
can write the three point supercharge conserving delta functions in two equivalent forms,
δ(2)

�

Q†
�

δ (〈q|pi|Q]) = miδ
(2) (Q)δ

�

〈qQ†〉
�

, ∀i = {1,2, 3}.
Equipped with the above decomposition of N = 4 supercharge conserving delta functions,

we can calculate different three point amplitudes in N = 2∗ by using projection. These three
point amplitudes will play the role of the seed amplitudes in the BCFW computations in the
later sections. Analogous to the massless N = 2 SYM coupled with adjoint hypermultiplet,
in the N = 2∗ theory we have two types of three point amplitudes, one with all massive
N = 2 SYM vector multiplets A3

�

W I
1,W̄ J

2 ,WK
3

�

and another is the N = 2 SYM vector multiplet
interacting with one BPS-anti-BPS pair of the N = 2 hypermultiplet, A3

�

W I
1, Φ̄2,Φ3

�

.

3.3.1 Amplitudes with one N = 2 vector multiplet and two hypermultiplets

The three point amplitude which reflects the coupling between N = 2 SYM and N = 2 hyper-
multiplet involves one massive SYM multiplet with one BPS anti-BPS pair of hypermultiplets.
To obtain this amplitude let us project out either expression of (46) with respect to the appro-
priate η2

I variables following (21),

A3

�

W I
1, Φ̄2,Φ3

�

=

�

∂

∂ η2
1,I

��

1
2
∂

∂ η2
3,J

∂

∂ η
2,J
3

�

A3[W1,W̄2,W3]

�

�

�

�

η2
i,I→0

= −
�

〈q|p3|1I] +m3〈q1I〉
〈q|p1p3|q〉

�

δ(2)(Q)δ(〈qQ†〉) . (49)

Since the above answer seems to prefer the external momentum p3 we can try to see if there
is any symmetry when it is replace with the momentum p2 for the anti-BPS multiplet. We can
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replace p3 = −(p1 + p2) and m3 = m2 −m1 to get,

A3

�

W I
1, Φ̄2,Φ3

�

= −
�

〈q|p2|1I]−m2〈q1I〉
〈q|p1p2|q〉

�

δ(2)(Q)δ(〈qQ†〉) . (50)

Thus the three point amplitude is symmetric under the replacement p3 → p2, m3 → −m2.
The minus sign (−) before the factor with mass term m2 reflects the fact that the second
hypermultiplet is anti-BPS. One of the key observations in this paper is that there is a way to
represent this amplitude which will make the BCFW computations significantly simpler.

The amplitude(49) in terms of the u-spinors can be represented as follows,

A3

�

W I
1, Φ̄2,Φ3

�

= −
�

〈uq〉〈u1I〉
m1〈q|p1p3|q〉

�

δ(2)(Q)δ(〈qQ†〉) . (51)

We have shown in Appendix-B.1 how this can be derived. In BCFW analysis, we will use this
form for the three point amplitude.

Massless limits: In the origin of the moduli space for N = 2∗ theory, a massless N = 2 SYM
multiplet is coupled to the massive adjoint hypermultiplet. We will also be concerned with the
amplitude at the origin of the moduli space. Therefore we take the high energy limit of the
above three point amplitude where the N = 2 SYM multiplet is made massless. As discussed
in the previous section, the supermultiplet W I goes to two on-shell superfields G+ and G− in
the high energy limit corresponding to the choices I = +,− for the supermultiplet. We have
the following three point amplitude with one positive helicity massless SYM multiplet and one
pair of massive hypermultiplets,

A3

�

G+1 , Φ̄2,Φ3

�

=
1
〈q1〉

δ(2) (Q)δ
�

〈qQ†〉
�

. (52)

Central charge conservation equation implies m2 = m3 = m with m1 = 0. By applying special
kinematic conditions one can verify the identity, 〈q|p2|Q] = −m〈qQ†〉, which you have used to
express delta functions. Similarly, with one negative helicity massless SYM, we obtain,

A3

�

G−1 , Φ̄2,Φ3

�

= −
1

〈q|p3|1]
δ(2)

�

Q†
�

δ (〈q|p3|Q]) . (53)

The above amplitudes will be useful to construct massive four-point amplitudes with massless
interchange which we have given in Appendix-D.

3.3.2 Amplitudes involving only N = 2 vector multiplet

We will now calculate the following three point massive SYM amplitude in the concerning
N = 2∗ theory. Starting from the first expression of the amplitude (46), and taking the pro-
jections with respect to the η2

I variables, we get,

A3

�

W I
1,W̄ J

2 ,WK
3

�

=

�

∂

∂ η2
1,I

∂

∂ η2
2,J

∂

∂ η2
3,K

�

A3[W1,W̄2,W3]

�

�

�

�

η2
i,I→0

(54)

= −
�

〈1I2J 〉〈q|p3|3K] + 〈1I3K〉〈q|p3|2J] + 〈2J3K〉〈q|p3|1I]
m3〈q|p1p3|q〉

�

δ(2)(Q)δ(〈qQ†〉) .

Similarly, if we start from the second expression of (46) and by taking similar projections we
get,

A3

�

W I
1,W̄ J

2 ,WK
3

�

= −
�

[1I2J]〈q3K〉+ [1I3K]〈q2J 〉+ [2J3K]〈q1I〉
〈q|p1p3|q〉

�

δ(2)(Q)δ(〈qQ†〉) . (55)
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Here we have used the relations between the delta functions, δ(2)
�

Q†
�

δ (〈q|p3|Q]) =
m3δ

(2) (Q)δ
�

〈qQ†〉
�

that arises from three particle special kinematics. The expressions ob-
tained above by using two different forms for the N = 4 SYM amplitude appear to be different
even though they describe the same amplitude. However, they are indeed equal and it can
be shown if we multiply and divide the second expression with [ρu], where |ρ] = p3

m3
|q〉 and

use Schouten identity we will obtain the first form. The use of |u] spinor here is to con-
vert square spinors into angle spinors after the Schouten identity has been used. i.e., we use
[ui I] = ±〈ui I〉, where the minus sign applies to the anti-BPS leg.

We can further express this amplitude in terms of the u-spinors, in the following way,

A3

�

W I
1,W̄ J

2 ,WK
3

�

= −
�

〈uq〉〈u1I〉〈2J3K〉
m1m3

+
〈uq〉〈u2J 〉〈1I3K〉

m2m3

�

δ(2)(Q)δ(〈qQ†〉)
〈q|p1p3|q〉

. (56)

In the next section, we will see how this will simplify the BCFW computation.

Massless limit: If we take the first multiplet to be massless where W+→ G+, the amplitude
(54) becomes,

A3

�

G+1 ,W̄ J
2 ,WK

3

�

= −
〈2J3K〉〈q|p3|1]
〈q|p1p3|q〉

δ(2)(Q)δ(〈qQ†〉) . (57)

Similarly, with W−→ G−, we have from (55),

A3

�

G−1 ,W̄ J
2 ,WK

3

�

= −
[2J3K]
[1|p3|q〉

δ(2)(Q)δ(〈qQ†〉) . (58)

The above amplitudes play the role of the seed amplitudes while calculating BCFW recursions
with massless exchanges in Appendix-D.

3.4 Band structure

It is well known that massless N = 4 SYM amplitude has MHV and MHV configurations,
however, in the case of massive theory, there is an additional configuration analogous to MHV×
MHV which vanishes in the high energy limit. In general, various helicity sectors of massless
amplitudes combine into single little group covariant forms and this is referred to as band
structure. Band structures of N = 4 SYM amplitudes in the Coulomb branch have been studied
in [24].

Here we show the band structures of three-point massive vector amplitude in N = 2∗ SYM
theory. Let us consider three-point amplitude with the third state being massless. Therefore
the BPS constraint implies m1 = m2 = m. The supercharges are given by

Q†1 = −|1I〉η1
1,I − |2

I〉η1
2,I + |3〉η

1
3 ,

Q2 = |1I]η1
1,I − |2

I]η1
2,I + |3]η̃

†1
3 . (59)

Using three-point kinematics we find

〈3Q†1〉= 〈3|
p1

m
|Q2] . (60)

Three-point amplitude has supercharge conserving delta functions given by

δ(2)
�

Q†1
�

δ (〈q|p1|Q2])

=
1
〈q3〉

δ
�

〈qQ†1〉
�

δ
�

〈3Q†1〉
�

δ (〈q|p1|Q2])

=
1
〈q3〉

δ
�

〈qQ†1〉
�

δ (〈q|p1|Q2])
�

〈31+〉ζ+ + 〈31−〉ζ−
�

, (61)
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where we define ζI := 1
m〈1IQ

†1〉. In the high energy limit for MHV amplitude we have the

scaling [i+ j+] ∼ O
�

m2

E

�

, whereas for MHV amplitude the scaling is 〈i− j−〉 ∼ O
�

m2

E

�

[17].
Therefore in the above equation, either of the two terms survives in the high energy limit
depending on the helicity configuration.

〈31+〉 = −〈3|
p1

m1
|1+]

= −x[31+] , ∵
p1

m
|3〉= x |3] . (62)

So the first term gives rise to MHV amplitude in the massless limit.

〈31+〉ζ+ = 〈31+〉
1
m

�

−〈1−1+〉η1+ − 〈1−2+〉η2+ +O
�

m2
��

= −
�

〈31+〉η1+ + 〈32+〉η2+ +O (m)
�

= 〈3|p1|Q2] , as m→ 0 . (63)

In the second equality we have used the Schouten identity,

〈31+〉〈1−2+〉= −
�

〈1−3〉〈1+2+〉+ 〈1+1−〉〈32+〉
�

.

The term 〈1+2+〉 ∼O
�

m2

E

�

and hence is subleading.
Similarly for the MHV case second term in Eq.(61) can be expressed as

〈31−〉ζ− = 〈31−〉
1
m

�

〈1+1−〉η1− + 〈1+2−〉η2− +O
�

m2
��

= −
�

〈31−〉η1− + 〈32−〉η2− +O (m)
�

= 〈3Q†1〉 , as m→ 0 . (64)

To be consistent with notations in the previous sections we will ignore superscript and subscript
on the super-charges when taking the massless limit. The full three-point massless amplitudes
are obtained by taking into account the prefactors multiplying the delta functions along with
appropriate limits of the band structures as discussed above.

4 Four point N = 2∗ amplitudes projected from N = 4 SYM am-
plitudes

In this section, we will calculate the tree level massive (color ordered) four-point amplitudes
of the N = 2∗ theory by using projection, similar to how we obtained three point amplitudes
in the previous section. The four-point massive N = 4 SYM amplitude with two BPS multiplet
(W) and two anti-BPS multiplet (W̄) is given by,

A4[W1,W̄2,W3, ,W̄4] =
δ(4)(Q†a)δ(4)(Qa+2)

s12s41
, (65)

where, the masses for the external legs satisfy central charge conservation relation m1+m3 =
m2+m4. The generalized Mandelstam variables are defined as si j = −(pi + p j)2− (mi ±m j)2,
and the four particle supercharges of the N = 4 theory with a = {1, 2} are given by,

Q†a = −|1I〉ηa
1,I − |2

I〉ηa
2,I − |3

I〉ηa
3,I − |4

I〉ηa
4,I ,

Qa+2 = |1I]ηa
1,I − |2

I]ηa
2,I + |3

I]ηa
3,I − |4

I]ηa
4,I . (66)
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As evident from the notation above, the legs 1 and 3 are BPS and the rest are anti-BPS. We
now decompose the above supercharges in terms of η2

I variables to get,

δ(4)(Q†a) = δ(2)(Q†)
�

〈1I2J 〉η2
1,Iη

2
2,J + 〈1

I3J 〉η2
1,Iη

2
3,J + 〈1

I4J 〉η2
1,Iη

2
4,J

+〈2I3J 〉η2
2,Iη

2
3,J + 〈2

I4J 〉η2
2,Iη

2
4,J + 〈3

I4J 〉η2
3,Iη

2
4,J

+
1
2
εI J

�

m1η
2
1,Iη

2
1,J +m2η

2
2,Iη

2
2,J +m3η

2
3,Iη

2
3,J +m4η

2
4,Iη

2
4,J

�

�

,

δ(4) (Qa+2) = δ(2) (Q)
�

−[1I2J]η2
1,Iη

2
2,J + [1

I3J]η2
1,Iη

2
3,J − [1

I4J]η2
1,Iη

2
4,J (67)

−[2I3J]η2
2,Iη

2
3,J + [2

I4J]η2
2,Iη

2
4,J − [3

I4J]η2
3,Iη

2
4,J

−
1
2
εI J

�

m1η
2
1,Iη

2
1,J +m2η

2
2,Iη

2
2,J +m3η

2
3,Iη

2
3,J +m4η

2
4,Iη

2
4,J

�

�

,

where Q† and Q are the super charges for the N = 2∗ theory as introduced in the previous
section.

a) Let us first calculate the massive 4-point amplitude in the N = 2∗ theory with two BPS
hypermultiplets (ΦN=2∗) and two anti-BPS hypermultiplets (Φ̄N=2∗) external legs, by taking
the projection from Eq.(65) as,

A4[Φ1, Φ̄2,Φ3, Φ̄4] =

�

1
2

∂

∂ η2
1,K

∂

∂ η2K
1

��

1
2
∂

∂ η2K
3

∂

∂ η2
3,N

�

A4[W1,W̄2,W3, ,W̄4]

�

�

�

�

η2
i,I→0

=
�

−〈1I3J 〉[1I3J]− 2m1m3

� δ(2)(Q†)δ(2)(Q)
s12s41

=
s13

s12s41
δ(2)(Q†)δ(2)(Q) , (68)

where we have used s13 = −(p1 + p3)2 − (m1 +m3)2 = −2p1 · p3 − 2m1m3 = −〈1I3J 〉[1I3J]− 2m1m3

which can be deduced with the help of relations given in Appendix-A.

b) Similarly, we can calculate the 4-point N = 2∗ massive SYM amplitude with two BPS and
anti-BPS combinations by projection,

A4[W I
1,W̄ J

2 ,WK
3 ,W̄ L

4 ] =

�

∂

∂ η2
1,I

∂

∂ η2
2,J

∂

∂ η2
3,K

∂

∂ η2
4,L

�

A4[W1,W̄2,W3, ,W̄4]

�

�

�

�

η2
i,I→0

= −
�

〈1I2J 〉[3K4L] + 〈1I3K〉[2J4L] + 〈1I4L〉[2J3K]

+ 〈2J3K〉[1I4L] + 〈2J4L〉[1I3K] + 〈3K4L〉[1I2J]
�

δ(2)(Q†)δ(2)(Q)
s12s41

.

(69)

c) Finally, by a similar procedure, we can calculate the 4-point amplitude with two massive
N = 2∗ SYM and two massive hypermultiplets,

A4[W I
1,W̄ J

2 ,Φ3, Φ̄4] =

�

∂

∂ η2
1,I

∂

∂ η2
2,J

��

−
1
2
εK L

∂

∂ η2
3,K

∂

∂ η2
3,L

�

A4[W1,W̄2,W3, ,W̄4]

�

�

�

�

η2
i,I→0

=

�

〈1I |p3|2J] + 〈2J |p3|1I]−m3〈1I2J 〉 −m3[1I2J]
s12s41

�

δ(2)(Q†)δ(2)(Q)
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= −
�

〈1I |p4|2J] + 〈2J |p4|1I] +m4〈1I2J 〉+m4[1I2J]
s12s41

�

δ(2)(Q†)δ(2)(Q) .

(70)

From the second last equality to the last one of the above calculation, we have shown that the
final expression is symmetry under the interchange p3 → p4 and m3 → −m4. The negative
signs indicate that the one hypermultiplet is BPS and the other is anti-BPS.

It is easy to show that the other 4-point massive N = 2∗ amplitudes with different com-
binations of multiplets (for example, three hyper with one SYM) do not exist by counting the
number of Grassmann variables.

The results obtained in the previous section and this section for three and four point ampli-
tudes using projection is one of the main results of this paper as well as convenient expressions
for three particle amplitudes in terms of u-spinors. In the next section, using these results as
an anchor, we attempt to compute the four point amplitudes in N = 2∗ amplitude by using
supersymmetric massive BCFW. Even though the seed three point amplitudes and the final four
point amplitudes are related to the N = 4 results by projection, BCFW computation for N = 2∗

are significantly different. This is because, when we carried out the projection, we factored
out the Grassmann variables η2

I from both the three point as well as four point amplitudes.
However, these variables also played a role in the BCFW analysis in N = 4 theory. Due to this
subtlety, we will see that unlike N = 4, in N = 2∗ we will encounter poles at infinity in the
BCFW analysis. We will further see some nice features which are highlighted since the answer
is known from the projection independently.

5 Four point amplitudes for N = 2∗ theory from BCFW

In this section, we will construct the four point amplitudes from three point amplitudes ob-
tained in section-3. Even though we obtained the four point amplitudes using projection in the
previous section, BCFW analysis to obtain these amplitudes with the results from projection
as anchor could give us insights on massive super BCFW in N = 2 theories. This is precisely
one of the main motivations to study N = 2∗ theory as we can utilise its intimate connection
with N = 4 SYM to obtain general insights on N = 2 theories.

5.1 Massive BCFW shifts

Massive BCFW has been discussed in [18,21,22,31]. We will review the massive super-BCFW
analysis from [18] and point out subtleties in N = 2∗ Coulomb branch BCFW as compared to
the Coulomb branch of N = 4 SYM.

The massive BCFW shifts are necessarily little group non-covariant as the SU(2) little group
structure makes it impossible to write a covariant shift for two legs. The shift can be defined
as follows. Consider a shift in i and j legs. The shift in momentum is,

p̂i = pi + zr , p̂ j = p j − zr , (71)

where pi · r = p j · r = r · r = 0. We will use Mandelstam variables appropriate for massive
scattering. i.e., skl = −(pk + pl)2− (mk ±ml)2, where the relative sign occurs if one leg is BPS
and another is anti-BPS. Under the above shift a Mandelstam variable sik where k 6= i, j will
be shifted as,

ŝik = −sik
(z − zI)

zI
, zI =

sik

2pk · r
. (72)
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To obtain r which satisfies the required properties, it is useful to write momenta pi and p j
in terms of two null momenta. This defines a special frame. The detailed properties of this
special frame are not important for this paper. In this special frame, one can solve for the null
momentum r and it breaks the little group covariance. One can further supersymmetrise the
above shift by finding shifts for the supercharges that respect the BPS condition. These shifts
in supercharges also break little group covariance. However, since the final amplitude will be
covariant, the little group non-covariance must cancel. In N = 4 SYM Coulomb branch, it
was found that the z dependence of the four point amplitude drops out before performing the
contour integral in z. Therefore, the precise forms of the shift were found to be irrelevant.

InN = 2∗ theory Coulomb branch, even though the amplitudes are related to that ofN = 4
theory by projection as discussed in previous sections, the BCFW analysis is not identical. This
happens because while applying projection we project out the η2

I Grassmann variables which
were also shifted in the case of N = 4 theory. This subtlety leads to the appearance of a pole
at infinity (z → ∞) in the BCFW analysis for four point amplitudes in N = 2∗. However,
we find that in the contour integral the integrand, obtained by gluing three-point amplitudes,
furnishes the covariant expression of the desired four-point amplitude provided we ignore the
z-dependent terms. z-dependent terms are non-covariant and there are mutual cancellations
of the little group non-covariant terms coming from all the residues including the boundary
term. This property may have validity beyond N = 2∗ theory as we show in Appendix-D.1,
where we consider scattering amplitude with massless N = 2 hypermultiplet interchange.
Even though the amplitude matches that of N = 2∗ theory, this particular channel is absent in
N = 2∗ due to the absence of massless hypermultiplets.

5.2 Amplitude with two massive hypers and two massive vector multiplets

Let us consider the four-point amplitude A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

with two massive hyper and two
massive SYM multiplet in the N = 2∗ theory. Here, we take legs 1 and 3 to be BPS and the
rest are anti-BPS, and all external states are taken to be outgoing. With these conventions,
momentum conservation reads p1 + p2 + p3 + p4 = 0, and the central charge conservation
relation is given as m1 + m3 = m2 + m4. We consider BCFW shifts in legs 3 and 4 with the
complex parameter z as,

p̂3 = p3 + zr ,

p̂4 = p4 − zr , (73)

where the null momentum r breaks little group covariance and satisfies orthogonality proper-
ties as discussed earlier. With this choice of shift only the s14-channel diagram will contribute
to the massive amplitude.

1 2̄

3̂ˆ̄4

L R

The incoming arrows indicate the outgoing anti-BPS states in order to show the central charge
flow. After contour deformation away from z = 0 , we can write,

A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

=

∮

z 6=0

dz
z

zI

z − zI

∫

d2ηP̂AL

�

W I
1, ˆ̄Φ4,ΦP̂

� −1
s14

AR

�

Φ̄−P̂ , Φ̂3,W̄ J
2

�

, (74)
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where, the massive exchange momentum P̂ = −(p1 + p̂4). The generalized Mandelstam vari-

able appeared in this diagram s14 = −
�

p1 + p4

�2 −
�

m1 −m4

�2
and the value of the simple

pole zI = −
s14

2r·p1
. The left and right three-point amplitudes can be expressed in terms of the

u-spinors as,

AL

�

W I
1, ˆ̄Φ4,ΦP̂

�

=
〈u(L)q〉〈u(L)1I〉
m2

1〈q|P̂ p1|q〉
δ(2)

�

Q̂†
L

�

δ
�

〈q|p1|Q̂L]
�

,

AR

�

Φ̄−P̂ , Φ̂3,W̄ J
2

�

= −
〈u(R)q〉〈u(R)2J 〉
m2

2〈q|P̂ p2|q〉
δ(2)

�

Q̂†
R

�

δ
�

〈q|p2|Q̂R]
�

. (75)

For the left amplitude, we take the hypermultiplet with P̂ momentum to be outgoing BPS state
with mass mP . For the right amplitude the hypermultiplet with momentum −P̂ to be outgoing
anti-BPS state with mass mP . Throughout the calculation, we have used the following analytic
continuations of the massive spinors and the Grassmann variables.

| − P I] = i|P I] , | − P I〉= i|P I〉 , u(R)−P,I = iu(R)P,I , ηI
−P = iηI

P . (76)

Clubbing the delta functions in left and right amplitudes, and performing the ηP̂ integration,
we obtain,
∫

d2ηP̂δ
(2)
�

Q̂†
L

�

δ
�

〈q|p1|Q̂L]
�

δ(2)
�

Q̂†
R

�

δ
�

〈q|p2|Q̂R]
�

= m1m2
〈u(R)q〉〈u(L)q〉

(u(R)
P̂,M

u(L)M
P̂
)
δ(2)(Q†)δ(2)(Q) .

(77)

The detailed calculations are presented in Appendix-B.2 and we finally get,

A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

=
1

s14

∮

z 6=0

dz
z

zI

z − zI

u(L)1,K〈1
K1I〉u(R)2,L〈2

L2J 〉

m1m2

�

u(R)
P̂M

u(L)M
P̂

�

�

u(R)
P̂M

u(L)M
P̂

�2δ
(2)
�

Q†
�

δ(2) (Q)

= −
∮

z 6=0

dz
z

zI

z − zI

�

〈1I |p̂4|2J] + 〈2J |p̂4|1I] +m4〈1I2J 〉+m4[1I2J]
s12s41

�

δ(2)(Q†)δ(2)(Q) (78)

= −
�

〈1I |p4|2J] + [1I |p4|2J 〉+m4[1
I2J] +m4〈1I2J 〉+ zI〈1I |r|2J] + zI[1

I |r|2J 〉+B
s12s14

�

δ(2)(Q†)δ(2)(Q) .

Here we have used,
�

u(R)
P̂M

u(L)M
P̂

�2
= −s12 which is explained in the appendix of [18], and we

know, 〈q|P̂ p1|q〉 = 〈u(L)q〉2, also, 〈q|P̂ p2|q〉 = 〈u(R)q〉2. We emphasize that in the penultimate
step of the above equation the integrand is nothing but the four-point amplitude that we
obtained using projection from N = 4 SYM amplitude, but with deformed momenta. This
is consistent with the fact that

∮

z=0 dzA(z)
z = A and one can simply read off the four-point

amplitude from the integrand by ignoring the z-dependent terms.
To evaluate the boundary term, B, we substitute z = 1

u and calculate the residue around
u= 0,

B = −
∮

u=0

du
u

zI

1− zIu

�

〈1I |r|2J] + [1I |r|2J 〉
�

= −zI

�

〈1I |r|2J] + [1I |r|2J 〉
�

. (79)
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We see that the little group non-covariant boundary term cancels precisely with the little group
non-covariant part of the residue at z = zI . The final amplitude,

A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

= −
�

〈1I |p4|2J] + [1I |p4|2J 〉+m4[1
I2J] +m4〈1I2J 〉

s12s14

�

δ(2)(Q†)δ(2)(Q) , (80)

which is in full agreement with (70) calculated by projection.

5.3 Amplitude with four massive hypermultiplets

In this section we want to compute four-point hypermultiplet amplitude A4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

in
N = 2∗ theory. Similar to the previous section, we will take legs 1 and 3 to be BPS and the
rest of them to be anti-BPS, and all external states to be outgoing. Consider BCFW shifts in
legs 1 and 3 in terms of the complex parameter z as,

p̂1 = p1 + zr ,

p̂3 = p3 − zr , (81)

the conditions on the null momentum r remain the same.

1̂

2̄ 3̂

4̄

L R

1̂ 2̄

3̂4̄

L R

Here both the s12-channel and the s14-channel will contribute with massive W-boson exchange
such that,

A4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

=

∮

z 6=0

dz
z

zI ,1

z − zI ,1

∫

d2ηP̂AL

�

Φ̄4, Φ̂1,WM
P̂

� −εMN

s14
AR

�

W̄N
−P̂

, Φ̄2, Φ̂3

�

+

∮

z 6=0

dz
z

zI ,2

z − zI ,2

∫

d2ηP̂AL

�

Φ̂1, Φ̄2,WM
P̂

� −εMN

s12
AR

�

W̄N
−P̂

, Φ̂3, Φ̄4,
�

, (82)

with the pole contributions at, zI ,1 =
s14

2r·p4
and zI ,2 =

s12
2r·p2

. Let us study factorisation in s14-
channel first. After contour deformation away from z = 0 we can write,

As14
4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

=

∮

z 6=0

dz
z

zI ,1

z − zI ,1

∫

d2ηP̂AL

�

Φ̄4, Φ̂1,WM
P̂

� −εMN

s14
AR

�

W̄N
−P̂

, Φ̄2, Φ̂3

�

, (83)

where the generalized Mandelstam variable s14 = −
�

p1 + p4

�2 −
�

m1 −m4

�2
. The left and

right amplitudes can be expressed as,

AL

�

Φ̄4, Φ̂1,WM
P̂

�

=
〈u(L)q〉〈u(L) P̂M 〉
m1mP〈q|P̂ p̂1|q〉

δ(2)
�

Q̂†
L

�

δ
�

〈q|p̂1|Q̂L]
�

,

AR

�

W̄N
−P̂

, Φ̄2, Φ̂3

�

= −
〈u(R)q〉〈u(R) P̂N 〉
m3mP〈q|P̂ p̂3|q〉

δ(2)
�

Q̂†
R

�

δ
�

〈q|p̂3|Q̂R]
�

. (84)
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Similar delta function manipulation and ηP̂ integration gives,

As14
4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

=
1

s14

∮

z 6=0

dz
z

zI ,1

z − zI ,1

〈u(R)q〉〈u(L)q〉〈u(L) P̂K〉〈u(R) P̂K〉
m2

P〈q|P̂ p̂1|q〉〈q|P̂ p̂3|q〉
〈u(R)q〉〈u(L)q〉
�

u(R)
P̂M

u(L)M
P̂

� δ(2)
�

Q†
�

δ(2) (Q)

=
1

s14
δ(2)

�

Q†
�

δ(2) (Q) . (85)

In the penultimate step we have used the spin sum (101) to write, 〈u(L) P̂K〉〈u(R) P̂K〉 =
m2

p

�

u(R)
P̂M

u(L)M
P̂

�

and, 〈q|P̂ p̂1|q〉 = 〈u(L)q〉2, also, 〈q|P̂ p̂3|q〉 = 〈u(R)q〉2 as discussed earlier. It
is to be noted that unlike the analysis of amplitudes involving vector multiplets where residue
over one channel always contains a pole in another channel, in this case, this does not occur.
Therefore we have to consider contributions from both the diagrams given above in the BCFW
analysis.

Similarly, from the s12-channel computation we get,

As12
4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

=
1

s12
δ(2)

�

Q†
�

δ(2) (Q) , (86)

and the total amplitude,

A4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

= As14
4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

+ As12
4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

= −
s13

s12s14
δ(2)

�

Q†
�

δ(2) (Q) . (87)

From the definition of generalized Mandelstam variables and applying momentum conserva-
tion, p1 + p2 + p3 + p4 = 0 and central charge conservation m1 + m3 = m2 + m4 we get,
s12 + s14 = −s13.

5.4 Amplitude with four massive vector multiplets

To calculate the four-point massive SYM amplitude A4

�

W I
1,W̄ J

2 ,WK
3 ,W̄ L

4

�

in N = 2∗ theory,
we take deformations in legs labeled by 1 and 2 in terms of the complex parameter z,

p̂µ1 = pµ1 + zrµ ,

p̂µ2 = pµ2 − zrµ , (88)

where the complex null vector rµ is orthogonal to both the momenta p1 and p2. For this BCFW
shift only the s14-channel diagram will contribute.

1̂ ˆ̄2

34̄

L R

After contour deformation away from z = 0, we can write,

A4

�

W I
1,W̄ J

2 ,WK
3 ,W̄ L

4

�

=

∮

z 6=0

dz
z

zI

z − zI

∫

d2ηP̂AL

�

W̄ L
4 ,Ŵ I

1,WM
P̂

� −1
s14

AR

�

W̄−P̂M , ˆ̄W J
2 ,WK

3

�

,

(89)
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where, the generalised Mandelstam variable is s14 = −
�

p1 + p4

�2 −
�

m1 −m4

�2
and the loca-

tion of the pole zI =
s14

2r·p4
. The left and right amplitudes can be expressed as,

AL

�

W̄ L
4 ,Ŵ I

1,WM
P̂

�

=
NL

m1〈q|p̂1p4|q〉
δ(2)

�

Q̂†
L

�

δ
�

〈q|p̂1|Q̂L]
�

,

AR

�

W̄−P̂M , ˆ̄W J
2 ,WK

3

�

=
NR

m2〈q|p̂2p3|q〉
δ(2)

�

Q̂†
R

�

δ
�

〈q|p̂2|Q̂R]
�

, (90)

where the full expressions of the numerators in terms of the u-spinors,

NL = −
〈u(L)q〉

mP

�

〈u(L)4L〉〈1̂I P̂M 〉
m4

+
〈u(L)1̂I〉〈4L P̂M 〉

m1

�

=
〈u(L)q〉

mP

�

u(L)L4 〈1̂I P̂M 〉+ u(L)I
1̂
〈4L P̂M 〉

�

,

NR = −
〈u(R)q〉

mP

�

〈u(R)2̂J 〉〈3K P̂M 〉
m2

+
〈u(R)3K〉〈2̂J P̂M 〉

m3

�

=
〈u(R)q〉

mP

�

u(R)J
2̂
〈3K P̂M 〉+ u(R)K3 〈2̂J P̂M 〉

�

.

(91)

After combining the delta functions and integrating over the ηP̂ variables we get,

A4

�

W I
1,W̄ J

2 ,WK
3 ,W̄ L

4

�

=

∮

z 6=0

dz
z

zI

z − zI

��

u(L)L4 〈1̂I P̂M 〉+ u(L)I
1̂
〈4L P̂M 〉

��

u(R)J
2̂
〈3K P̂M 〉+ u(R)K3 〈2̂J P̂M 〉

��

u(L)
P̂N

u(R)N
P̂

��

×
δ(2)

�

Q†
�

δ(2) (Q)

s12s14m2
P

. (92)

Using multiple Schouten identities, and after nice cancellations between various terms, finally,
we have,

A4

�

W I
1,W̄ J

2 ,WK
3 ,W̄ L

4

�

= −
∮

z 6=0

dz
z

zI

z − zI

�

〈1̂I 2̂J 〉[3K4L] + 〈1̂I3K〉[2̂J4L] + 〈1̂I4L〉[2̂J3K]

+ 〈2̂J3K〉[1̂I4L] + 〈2̂J4L〉[1̂I3K] + 〈3K4L〉[1̂I 2̂J]
�

δ(2)(Q†)δ(2)(Q)
s12s41

.

(93)

Here we see again that before performing the z integral, the expression inside the integral is
the shifted version of the answer we obtained from projection. This suggests that the little
group non-covariant part of the residue at z = zI cancels precisely with the little group non-
covariant contribution from the pole at infinity. Thus little group non-covariance is useful to
deduce the amplitude here before performing the explicit z integration.

6 Conclusions

Massless spinor helicity formalism has been playing a central role in the computation of on-
shell amplitudes in massless field theories. The extension of this formalism for massive field
theories is an essential and obvious step. There has been some progress in this direction
already. We have explored the application of the massive spinor helicity formalism to four
dimensional N = 2∗ theory at an arbitrary point in the Coulomb branch moduli space. We
used two different techniques to compute three and four point amplitudes in this theory. The
first method is to write the amplitude in terms of the u-spinor which is amenable to setting up
the BCFW formulation. Another method is to use the projection method to compute N = 2∗

amplitudes from N = 4 SYM amplitudes. The four point amplitudes involving four massive
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hypermultiplets (68), four massive vector multiplets (69), and two massive vector multiplets
and two massive hypermultiplets (70) are computed using the projection method. We then
proceeded with the BCFW shift for four point amplitudes. One would have naively thought
that like the amplitudes, the BCFW analysis could also follow trivially by projection. However,
that is not the case because in the N = 4 theory the usual BCFW shift involves the Grassmann
variable η2

I . However, in the projection method, this variable is projected out. As a result the
BCFW rules for N = 2∗ do not descend down in a trivial way from N = 4 theory. In fact, this
difference also shows up in the integrand, which has a pole at infinity in the case of N = 2∗.
Our BCFW shift is not little group covariant but of course, the final amplitudes are. While this
is expected, the contribution of the pole at infinity is instrumental in restoring the little group
covariance of the amplitude. We believe this feature may be generic for theories for which
BCFW shifts are not little group covariant. It appears that the non-covariant shifts generate
good tests for the covariance of the integrated amplitudes. For example, in (78), the integrand
of the contour integral already has the correct little group covariant form of the amplitude,
if we replace shifted variables with unshifted ones. We believe that this feature may extend
beyond the N = 2∗ theory and may suggest the utility of the little group non-covariant shifts.
Also, as the recursive structure of amplitudes is nontrivial due to pole at infinity, it will be
interesting to study higher point amplitudes with these massive BCFW shifts.

It would be interesting to extend this analysis to loop amplitudes. Additionally, it would be
worthwhile to derive these results from higher dimensional spinor helicity formalism [4, 11]
so that a unified structure could be uncovered in the computations of scattering amplitudes of
massless and massive fields. It would be also interesting to see if the amplitudes of N = 2∗

theory can be put in a CHY-like [9] formulation.
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A Notations and conventions

A.1 Spinor helicity variables for massive particles

We use the “mostly positive” signature for the metric ηµν = diag(−1,+1,+1,+1) in 4-space-
time dimension and the momentum bi-spinor for the massive particle for mass m is given by,

pαβ̇ = pµσµ,αβ̇ = −
∑

I

|pI]α〈pI |β̇ =
∑

I

|pI]α〈pI |β̇ , (94)

we can also write,

pα̇β = pµσ̄α̇βµ = −
∑

I

|pI〉α̇[pI |β =
∑

I

|pI〉α̇[pI |β . (95)

Here, I = {1,2} is the SU(2) little group index for the massive particle and {α, β̇} are the usual
SL(2,C) spinor indices. The SU(2) little group indices can be raised and lowered through,

εI J = −εI J =

�

0 1
−1 0

�

, (96)

as follows,
|pI]α = ε

I J |pJ]α 〈pI |β̇ = εI J 〈pJ |β̇ . (97)
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The determinant of the momentum bi-spinor gives,

det p = −pµpµ = m2 . (98)

The bi-linear product of the spinors is given as,

〈pI pJ 〉= mεI J , [pI pJ] = −mεI J . (99)

These spinors also satisfy the Weyl equation,

p|pI] = −m|pI〉 , p|pI〉= −m|pI] ,

[pI |p = m〈pI | , 〈pI |p = m[pI | ,
(100)

and spin sums,
|pI]α[p

I |β = −|pI]α[pI |β = mδβα ,

|pI〉α̇〈pI |β̇ = −|p
I〉α̇〈pI |β̇ = −mδα̇

β̇
.

(101)

Some useful identities are listed below,

2p.q = 〈pIqJ 〉[pIqJ] , 2mpmq = 〈pIqJ 〉〈pIqJ 〉= [pIqJ][p
IqJ] ,

〈qI |pp|kJ 〉= −p2〈qI kJ 〉 , [qI |pp|kJ] = −p2[qI kJ] ,
(102)

〈qI |p|kJ] = [kJ |p|qI〉 . (103)

The high energy limit of the massive spinors and the Grassmann variables give,

|p+]→ |p] , |p−]→ 0 , |p+〉 → 0 , |p−〉 → −|p〉 , η−→ η , η+→ η̂ . (104)

We have used the following analytic continuation for the massive spinors and the correspond-
ing variable,

| − P I] = i|P I] , | − P I〉= i|P I〉 , ηI
−P = iηI

P , (105)

similarly in the massless case,

| − p] = i|p] , | − p〉= i|p〉 , η−p = iηp , η†
−p = iη†

p . (106)

The generalized Mandelstam variables are defined as,

si j = −(pi + p j)
2 − (mi ±m j)

2 , (107)

where the masses are added if the states are both BPS/anti-BPS and subtracted if they are
different.

The BPS condition reads,

PiQ
†a
i = ±miQ ia+2 , (108)

for N = 4 supersymmetry and a+2→ a+1 on the right hand side for N = 2 supersymmetry.
Plus sign here holds for BPS legs whereas the minus sign holds for anti-BPS legs. The super-
charges Q†a

i and Q ia+2 are defined for each leg and throughout the paper we have considered
total supercharges. Our convention for the total supercharges follows that of [18] where,

1
p

2
Q†a = −

∑

i

ηa
iI |i

I〉 −
∑

j

ηa
jI | j

I〉+
∑

k

ηa
k|k〉 ,

1
p

2
Qa+2 =

∑

i

ηi I |i I]−
∑

j

η j I | j I] +
∑

k

η̃†a , (109)

where i runs over all the BPS legs, j runs over all the anti-BPS legs and k runs over the massless
legs and a+ 2→ a+ 1 on the left hand side for N = 2 supersymmetry
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B Useful calculations

B.1 Three point amplitudes in terms of u-spinors

In this section we illustrate how to express the massive three-point amplitudes of the N = 2∗

theory in a simpler form using the u-spinors. We can use (99) to write ,

m3 = −
1
2
εJK〈3J3K〉 . (110)

Let us start with the expression of the amplitude, A3

�

W I
1, Φ̄2,Φ3

�

, for which the numerator
can be simplified by using the Schouten identity and the u-spinors,

〈q|p3|1I] +m3〈q1I〉 = −〈q3J 〉[3J1I] +
1
2
εJK(〈q3J 〉〈3K1I〉+ 〈q3K〉〈1I3J 〉)

=
〈qu〉〈1Iu〉

m1
. (111)

Following the three particle special kinematics, we have used the identity, [3J1I]+〈3J1I〉= uJ
3uI

1
to get,

A3

�

W I
1, Φ̄2,Φ3

�

= −
�

〈uq〉〈u1I〉
m1〈q|p1p3|q〉

�

δ(2)(Q)δ(〈qQ†〉) , (112)

Now to represent the amplitude, A3

�

W I
1,W̄ J

2 ,WK
3

�

, in terms of the u-spinor, we need to do a

few manipulations. By multiplying (111) with 〈2
J 3K 〉
m3

and using the Schouten identity we can
write,

〈q|p3|1I]〈2J3K〉
m3

+
〈q|p3|3K]〈1I2J 〉

m3
=
〈uq〉〈u1I〉〈2J3K〉

m1m3
− 〈q2J 〉〈1I3K〉 . (113)

We can then express the term 〈q|p3|2J]−m3〈q2J 〉, as follows,

〈q|p3|2J]〈1I3K〉
m3

=
〈uq〉〈u2J 〉〈1I3K〉

m2m3
+ 〈q2J 〉〈1I3K〉 . (114)

Now clubbing the above terms together we have,

A3

�

W I
1,W̄ J

2 ,WK
3

�

= −
�

〈uq〉〈u1I〉〈2J3K〉
m1m3

+
〈uq〉〈u2J 〉〈1I3K〉

m2m3

�

δ(2)(Q)δ(〈qQ†〉)
〈q|p1p3|q〉

. (115)

We note that while in the original form of the three point amplitudes the BCFW manipulations
are not obvious, these representations of three point amplitudes in terms of u-spinor simplify
the manipulations significantly.

B.2 Some detailed BCFW calculations

In this section, we will explain some calculations used in section 5. For example, using the
u-spinor as shown in (37), we can write,

p̂1 =
1
|u1|
(|1̂w〉[u(L)|+ |u(L)〉[1̂w|) , (116)

p4 =
1
|u4|
(|4w〉[u(L)| − |u(L)〉[4w|) , (117)
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where |iw〉 = ŵi I |i I〉. With the above representations of the momenta corresponding to the
left amplitude and using the Schouten identity, we have,

〈q|p̂1p4|q〉 =
〈qu(L)〉〈qu(L)〉
|u1||u4|

(〈1̂w4w〉+ [1̂w4w])

= 〈u(L)q〉2 . (118)

Similarly, one can show, 〈q|p̂2p3|q〉= 〈u(R)q〉2.
Another crucial calculation in (77) of combining the delta functions involves,

δ
�

u4,K〈4K |p̂1|Q̂R]
�

=
�

α

βγ

�

δ
�

u4,K〈4K |p̂1|Q]
�

. (119)

The definitions of α and β come from the Schouten identity,

〈u(L)q〉〈u(R)|+ 〈qu(R)〉〈u(L)|+ 〈u(R)u(L)〉〈q|= 0 , (120)

such that the relation, u(R)
P̂M
= αu(R)

P̂M
+ βq holds with,

α=
u(R)3,K〈3

Kq〉

u(L)4,M 〈4M q〉
, β =

u(R)3,K〈3
K4M 〉u(L)4,M

〈q4M 〉u(L)4,M

. (121)

In a similar procedure, starting with the expression 〈q|p̂1|u(L)]〈q|P̂, and using the Schouten
identity, we can write,

〈q|
P̂

mP
= γu(L)4,M 〈4

M |
p̂1

m1
+λ〈q|

p̂1

m1
, (122)

where, the coefficient λ is not relevant for our purpose, and

γ=
〈q|p̂1p4|q〉

m1mPu(L)4,M 〈4M q〉
. (123)

With these definitions of α, β , and γ one can obtain (77).

C N = 4

BCFW recursion relations for N = 4 SYM amplitudes in chiral superspace are very well de-
veloped [7]. Here we present some BCFW analysis for four-point amplitudes in N = 4 SYM
theory in non-chiral superspace.

C.1 Massless amplitude

We choose deformations in external states 1 and 2 which are given by,

p̂1 = p1 + zr , p̂2 = p2 − zr , (124)

with the conditions that p1 · r = p2 · r = r2 = 0.
Motivated by the conservation of momenta and supercharges, we consider the following

shifts in the spinor and Grassmanian variables,

|1̂] = |1] + z|2] ,
|2̂〉 = |2〉 − z|1〉 ,
η̂a

1 = ηa
1 + zηa

2 ,

ˆ̃η† a
2 = η̃† a

2 − zη̃† a
1 , a = 1,2 . (125)
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It can be checked that under the above shifts supersymmetric charges, Q† =
∏

a=1,2

∑

i
|i〉ηa

i , and

Q=
∏

a=1,2

∑

i
|i]η̃† a

i remain invariant.

Let us consider the u-channel factorization.

1̂ 2̂

34

L R

In this case the four-point amplitude can be obtained by,

A4

�

G1, G2, G3, G4

�

=

∮

{z=0}

dz
z
A (z)

=

∮

{z=0}

dz
z

∫

d2ηP̂AL (z)
1

ŝ14
AR (z)

= −
∮

{z=0}

dz
z

zI

z − zI

∫

d2ηP̂AL (z)
1

s14
AR (z)

=

∫

d2ηP̂AL (zI)
1

s14
AR (zI) , (126)

where zI =
s14

2r·p4
. Here we have assumed there is no pole at infinity and this assumption is

justified from the large z behavior of the amplitude.
Three-point sub-amplitudes are given by,

AMHV
L

�

G4, Ĝ1, GP̂

�

=
1

〈41〉〈1P̂〉〈P̂4〉
δ(4)

�

Q̂†
L

�

δ(2)
�

〈41〉η̃†a
P̂
+ 〈1P̂〉η̃†a

4 + 〈P̂4〉η̃†a
1

�

,

Aanti-MHV
R

�

G−P̂ , Ĝ2, G3

�

=
1

[P̂2][23][3P̂]
δ(4)

�

Q̂R

�

δ(2)
�

[P̂2]ηa
3 + [23]ηa

P̂
+ [3P̂]ηa

2

�

.

(127)
First we perform the ηP̂ integration. Solutions to ηP̂ and η̃†

P̂
are available from the delta

functions. On the support of δ(2)
�

[P̂2]ηa
3 + [23]ηa

P̂
+ [3P̂]ηa

2

�

we get,

δ(4)
�

Q̂†
L

�

= δ(4)

 

∏

a=1,2

�

|4〉ηa
4 + |1〉η̂

a
1 + |P̂〉η

a
P̂

�

!

= δ(4)

 

∏

a=1,2

�

|4〉ηa
4 + |1〉η̂

a
1 − |P̂〉

1
[23]

�

[P̂2]ηa
3 + [3P̂]ηa

2

�

�

!

= δ(4)

 

∏

a=1,2

4
∑

i=1

|i〉ηa
i

!

. (128)

To go from second equality to the last one we have used momentum conservation. Similar
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manipulations holds for δ(4)
�

Q̂R

�

on the support of the other delta function,

∫

d2ηP̂d2η̃†
P̂
δ(4)

�

Q̂†
L

�

δ(2)
�

〈41〉η̃†a
P̂
+ 〈1P̂〉η̃†a

4 + 〈P̂4〉η̃†a
1

�

(129)

×δ(4)
�

Q̂R

�

δ(2)
�

[P̂2]ηa
3 + [23]ηa

P̂
+ [3P̂]ηa

2

�

= 〈41〉2[23]2δ(4)
�

Q†
�

δ(4) (Q) .

Therefore,
∫

d2ηP̂AL (zI)AR (zI) =
〈41〉[23]

〈1P̂〉〈P̂4〉[P̂2][3P̂]
δ(4)

�

Q†
�

δ(4) (Q)

=
1

s12
δ(2)

�

Q†
�

δ(2) (Q) . (130)

The four point amplitude is then,

A4

�

G1, G2, G3, G4

�

=
1

s12s14
δ(4)

�

Q†
�

δ(4) (Q) . (131)

C.2 Massive amplitude with massless exchange

Here we consider the external states to be massive W-bosons and in the intermediate chan-
nel massless vector multiplet is exchanged. We want to find out the four-point amplitude
A4

�

W1,W̄2,W3,W̄4

�

. We consider shifts in legs 1 and 2 as before.

1̂ ˆ̄2

34̄

L R

The left and right three-point amplitudes are,

AL

�

W̄4,Ŵ1, GP̂

�

=
− x̂14

m3
1〈qP̂〉2

δ(4)
�

Q̂†
L

�

δ(2)
�

〈q|p̂1|Q̂L]
�

=
− x̂14

m1〈qP̂〉2
δ(4)

�

Q̂L

�

δ(2)
�

〈qQ̂†〉
L

�

,

AR

�

G−P̂ , ˆ̄W2,W3

�

=
− x̂23

m3
2〈qP̂〉2

δ(4)
�

Q̂†
R

�

δ(2)
�

〈q|p̂2|Q̂R]
�

=
− x̂23

m3〈qP̂〉2
δ(4)

�

Q̂R

�

δ(2)
�

〈qQ̂†
R〉
�

.

(132)

Central charge conservation in the half-BPS limit implies that,

m1 = m4 , m2 = m3 . (133)

Using the above relations we can determine x factors,

p̂1

m1
|P̂〉= x̂14|P̂] ⇒ x̂14 =

m1〈qP̂〉
〈q|p̂1|P̂]

=
[ρ|p̂1|P̂〉
m1[ρ P̂]

,

p̂2

m2
|P̂〉= x̂23|P̂] ⇒ x̂23 =

m2〈qP̂〉
〈q|p̂2|P̂]

=
[ρ|p̂2|P̂〉
m2[ρ P̂]

. (134)
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Product of the two three-point amplitudes gives,
∫

d2ηP̂AL

�

W̄4,Ŵ1, GP̂

�

AR

�

G−P̂ , ˆ̄W2,W3

�

=

∫

d2ηP̂
x̂14 x̂23

m3
1m3

2〈qP̂〉4
δ(4)

�

Q̂†
L

�

δ(2)
�

〈q|p̂1|Q̂L]
�

δ(4)
�

Q̂†
R

�

δ(2)
�

〈q|p̂2|Q̂R]
�

=

∫

d2ηP̂
x̂14 x̂23

m3
1m2〈qP̂〉4

δ(4)
�

Q†
�

δ(2) (〈q|p̂1|Q])
1

m2
1〈qP̂〉2

×δ(2)
�

〈P̂|p̂1|Q̂R]
�

δ(2)
�

〈q|p̂1|Q̂R]
�

δ(2)
�

〈qQ̂†
R

�

. (135)

Now, on the support of δ(2)
�

Q†
�

we have,

〈P̂Q̂†
L〉+ 〈P̂Q̂

†
R〉 = 0

⇒
1

m1
〈P̂|p̂1|Q̂L]−

1
m2
〈P̂|p̂2|Q̂R] = 0 . (136)

Using Eq.(134) we get,

〈P̂|p̂1|Q̂R] =
m1 x̂14

m2 x̂23
〈P̂|p̂2|Q̂R] . (137)

From the above two equations we then obtain,

〈P̂|p̂1|Q] =
�

1+
x̂23

x̂14

�

〈P̂|p̂1|Q̂R] . (138)

Therefore,

AL

�

W̄4,Ŵ1, GP̂

�

AR

�

G−P̂ , ˆ̄W2,W3

�

(139)

=
− x̂14 x̂23

m3
1m2〈qP̂〉4

�

1+
x̂23

x̂14

�−2

δ(4)
�

Q†
�

δ(4) (Q)
∫

d2ηP̂δ
(2)
�

〈q|p̂1|Q̂R]
�

δ(2)
�

〈qQ̂†
R

�

.

Performing the ηP̂ integral we get,
∫

d4ηP̂δ
(2)
�

〈q|p̂1|Q̂R]
�

δ(2)
�

〈qQ̂†
R

�

=
�

〈q|p̂1 P̂|q〉
�2
= m2

1
〈qP̂〉4

x̂2
14

. (140)

Then the integration in the complex plane is given by,

A4

�

W1,W̄2,W3, W̄4

�

= −
∮

{z=0}

dz
z

zI

z − zI

1
m1m2

1
s14

x̂23

x̂14

�

1+
x̂23

x̂14

�−2

δ(4)
�

Q†
�

δ(4) (Q)

= −
∮

{z=0}

dz
z

zI

z − zI

1
m1m2

1
s14

�

x̂14

x̂23

�

1+
x̂23

x̂14

�2�−1

δ(4)
�

Q†
�

δ(4) (Q) . (141)

The expression inside the box brackets can be manipulated as follows,

x̂14

x̂23

�

1+
x̂23

x̂14

�2

=
x̂14

x̂23
+

x̂23

x̂14
+ 2

=
[ρ|p̂1|P̂〉[P̂|p̂2|q〉
m1m2[ρ P̂]〈qP̂〉

+
[ρ|p̂2|P̂〉[P̂|p̂1|q〉
m1m2[ρ P̂]〈qP̂〉

+ 2

=
−2p1 · p2

m1m2
+ 2

=
s12

m1m2
. (142)
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To go from the second equality to the third, we have used the fact that P̂ · p̂1 = 0 and P̂ · p̂2 = 0
on z = zI which implies the momenta bispinors anticommute. Then the four-point amplitude
is given by,

A4

�

W1,W̄2,W3,W̄4

�

=
1

s12s14
δ(4)

�

Q†
�

δ(4) (Q) . (143)

D Amplitudes with massless exchange

In this section we show evaluation of some four-point amplitudes with massive external states
where the intermediate propagators are massless.

D.1 2 vector and 2 hypermultiplet amplitude

We consider the four-point amplitude A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

. For simplicity we apply shifts in
the hypermultiplet legs 3 and 4, such that,

p̂3 = p3 − zr , p̂4 = p4 + zr . (144)

From the on-shell condition we have zI =
s14

2r·p1
.

1 2̄

3̂ˆ̄4

L R

The three-point sub-amplitudes can be expressed as,

AL

�

ˆ̄Φ4,W I
1,ΦP̂

�

=
[P̂1I]
〈q|p1|P̂]

δ(2)
�

Q̂L

�

δ
�

〈qQ̂†
L〉
�

=
x̂14[P̂1I]

m1〈qP̂〉
δ(2)

�

Q̂L

�

δ
�

〈qQ̂†
L〉
�

,

AR

�

Φ−P̂ ,W̄ J
2 , Φ̂3

�

=
[P̂2J]
〈q|p2|P̂]

δ(2)
�

Q̂R

�

δ
�

〈qQ̂†
R〉
�

=
x̂23[P̂2J]

m2〈qP̂〉
δ(2)

�

Q̂R

�

δ
�

〈qQ̂†
R〉
�

, (145)

where x̂14 and x̂23 are given by,

x̂14 =
[ρ|p1|P̂〉
m1[ρ P̂]

=
m1〈qP̂〉
〈q|p1|P̂]

, x̂23 =
[ρ|p2|P̂〉
m2[ρ P̂]

=
m2〈qP̂〉
〈q|p2|P̂]

. (146)

Using BCFW analysis we can write,

A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

= −
∮

{z=0}

dz
z

zI

z − zI
AL

�

ˆ̄Φ4,W I
1,ΦP̂

� 1
s14

AR

�

Φ−P̂ ,W̄ J
2 , Φ̂3

�

= −
∮

{z=0}

dz
z

zI

z − zI

x̂14 x̂23[P̂1I][P̂2J]

m1m2〈qP̂〉2
1

s14

∫

d2ηP̂δ
(2)
�

Q̂L

�

δ
�

〈qQ̂†
L〉
�

δ(2)
�

Q̂R

�

δ
�

〈qQ̂†
R〉
�

= −
∮

{z=0}

dz
z

zI

z − zI

x̂23[P̂1I][P̂2J]
m1m2

1
s14

�

1+
x̂23

x̂14

�−1

δ(2)
�

Q†
�

δ(2) (Q)
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= −
∮

{z=0}

dz
z

zI

z − zI

1
s12s14

[P̂1I][P̂2J]
�

x̂14 + x̂23

�

δ(2)
�

Q†
�

δ(2) (Q)

= −
∮

{z=0}

dz
z

zI

z − zI

1
s12s14

[P̂1I][P̂2J]
[ρ P̂]

�

[ρ|p1|P̂〉
m1

+
[ρ|p2|P̂〉

m2

�

δ(2)
�

Q†
�

δ(2) (Q)

= −
∮

{z=0}

dz
z

zI

z − zI

1
s12s14

�

〈1I |P̂|2J] + [1̂I |P̂|2J 〉
�

δ(2)
�

Q†
�

δ(2) (Q)

= −
∮

{z=0}

dz
z

zI

z − zI

1
s12s14

�

〈1I |p̂4|2J] + [1I |p̂4|2J 〉+m4[1
I2J] +m4〈1I2J 〉

�

δ(2)
�

Q†
�

δ(2) (Q)

=
�

〈1I |p4|2J] + [1I |p4|2J 〉+m4[1
I2J] +m4〈1I2J 〉+ zI〈1I |r|2J] + zI[1

I |r|2J 〉+B
�

×
δ(2)

�

Q†
�

δ(2) (Q)

s12s14
. (147)

To obtain the fourth equality from the third we have used Eq.(142). In the last equality we
have computed residue at z = zI and along with the pole at infinity. To evaluate the boundary
term, B, we substitute z = 1

u and calculate the residue around u= 0,

B = −
∮

u=0

du
u

zI

1− zIu

�

〈1I |r|2J] + [1I |r|2J 〉
�

= −zI

�

〈1I |r|2J] + [1I |r|2J 〉
�

. (148)

Therefore the required four-point amplitude is,

A4

�

W I
1,W̄ J

2 ,Φ3, Φ̄4

�

=
�

〈1I |p4|2J] + [1I |p4|2J 〉+m4[1
I2J] +m4〈1I2J 〉

�δ(2)
�

Q†
�

δ(2) (Q)

s12s14
. (149)

We note that even though the amplitude matches with the N = 2∗ amplitude, the channel we
have considered here does not exist for N = 2∗ theory since we have used massless hyper-
multiplet exchange. However, it would exist in a theory where massless hypermultiplets are
coupled to massive N = 2 SYM and hypermultiplets. Therefore the above calculation applies
for such a theory.

D.2 4-point hypermultiplet

We want to evaluate the four-point amplitude A4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

with massless spin-1 ex-
change. We consider shifts in legs 1 and 3, given by,

p̂1 = p1zr , p̂3 = p3 − zr . (150)

The amplitude is then obtained by summing over factorization channels, u= −
�

p1 + p4

�2
and

s = − (p1 + p2)
2.

1̂

2̄ 3̂

4̄

L R

1̂ 2̄

3̂4̄

L R
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BCFW analysis yields,

A4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

= −
∮

{z=0}

dz
z

zI ,1

z − zI ,1

∑

h=±

∫

d2ηP̂AL

�

Φ̄4, Φ̂1, Gh
P̂

� −1
s14

AR

�

G−h
−P̂

, Φ̄2, Φ̂3

�

−
∮

{z=0}

dz
z

zI ,2

z − zI ,2

∑

h=±

∫

d2ηP̂AL

�

Φ̂1, Φ̄2, Gh
P̂

� −1
s12

AR

�

G−h
−P̂

, Φ̂3, Φ̄4,
�

, (151)

with zI ,1 =
s14

2r·(p1+p4)
and zI ,2 =

s12
2r·(p1+p2)

are the location of simple poles when the two prop-

agators go on-shell respectively.
Let us first consider the factorization on u-channel. We have,

AL

�

Φ̄4, Φ̂1, G+
P̂

�

AR

�

G−
−P̂

, Φ̄2, Φ̂3

�

=
1

〈qP̂〉〈q|p2|P̂]
δ(2)

�

Q̂L

�

δ
�

〈qQ̂†
L〉
�

δ(2)
�

Q̂†
R

�

δ
�

〈q|p2|Q̂R]
�

=
x̂23

m2〈qP̂〉2
δ(2)

�

Q̂L

�

δ
�

〈qQ̂†
L〉
�

δ(2)
�

Q̂†
R

�

δ
�

〈q|p2|Q̂R]
�

,

AL

�

Φ̄4, Φ̂1, G−
P̂

�

AR

�

G+
−P̂

, Φ̄2, Φ̂3

�

=
1

〈q|p̂1|P̂]〈qP̂〉
δ(2)

�

Q̂†
L

�

δ
�

〈q|p̂1|Q̂L]
�

δ(2)
�

Q̂R

�

δ
�

〈qQ̂†
R

�

=
x̂14

m1〈qP̂〉2
δ(2)

�

Q̂†
L

�

δ
�

〈q|p̂1|Q̂L]
�

δ(2)
�

Q̂R

�

δ
�

〈qQ̂†
R

�

,

(152)

where,

x̂14 =
[ρ|p̂1|P̂〉
m1[ρ P̂]

=
m1〈qP̂〉
〈q|p̂1|P̂]

, x̂23 =
[ρ|p2|P̂〉
m2[ρ P̂]

=
m2〈qP̂〉
〈q|p2|P̂]

. (153)

Supersymmetric charges are expressed as,

Q̂L = |1̂I]η1̂,I − |4
I]η4,I + |P̂]η̃

†
P̂

,

Q̂†
L = −|1̂I〉η1̂,I − |4

I〉η4,I + |P̂〉ηP̂ ,

Q̂R = −|P̂]η̃†
P̂
− |2I]η2,I + |3̂I]η3̂,I ,

Q̂†
R = −|P̂〉ηP̂ − |2

I〉η2,I − |3̂I〉η3̂,I . (154)

It can be checked that,

〈P̂|p̂1|Q̂L] = m1〈P̂Q̂†
L〉 ,

〈P̂|p2|Q̂R] = −m2〈P̂Q̂†
R〉 . (155)

We also note that,

δ(2)
�

Q̂L

�

δ
�

〈qQ̂†
L〉
�

=
1

m1
δ(2)

�

Q̂†
L

�

δ
�

〈q|p̂1|Q̂L]
�

. (156)

and similarly for right delta function.
Now, using Eq.(152) and summing over both helicities in the exchange we get,
∑

h=±
AL

�

Φ̄4, Φ̂1, Gh
P̂

�

AR

�

G−h
−P̂

, Φ̄2, Φ̂3

�

=

�

x̂23 + x̂14

�

m1m2〈qP̂〉2
δ(2)

�

Q̂†
L

�

δ
�

〈q|p̂1|Q̂L]
�

δ(2)
�

Q̂†
R

�

δ
�

〈q|p2|Q̂R]
�

=

�

x̂23 + x̂14

�

m1m2〈qP̂〉2
m2

�

1+
x̂23

x̂14

�−1

δ(2)
�

Q†
�

δ(2) (Q)δ
�

〈q|p̂1|Q̂R]
�

δ
�

〈qQ̂†
R〉
�

. (157)
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Performing the ηP̂ integral we get,

∫

d2ηP̂δ
�

〈q|p̂1|Q̂R]
�

δ
�

〈qQ̂†
R

�

= 〈q|p̂1 P̂|q〉= m1
〈qP̂〉2

x̂14
. (158)

Therefore contribution from the u-channel is,

1
s14
δ(2)

�

Q†
�

δ(2) (Q) . (159)

Similar contribution comes from s-channel where s14 is replaced by s12.
Using s12 + s14 = s13, the four-point amplitude is determined to be,

A4

�

Φ1, Φ̄2,Φ3, Φ̄4

�

=
s13

s14s12
δ(2)

�

Q†
�

δ(2) (Q) . (160)

We note that since we have used the massless N = 2 SYM here in the intermediate leg, this
amplitude is appropriate for the origin of the moduli space of N = 2∗ theory.
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