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Abstract

Since the breakthrough of twistronics a plethora of topological phenomena in corre-
lated systems has appeared. These devices can be typically analyzed in terms of lattice
models using Green’s function techniques. In this work we introduce a general method
to obtain the boundary Green’s function of such models taking advantage of the numer-
ical Faddeev-LeVerrier algorithm to circumvent some analytical constraints of previous
works. We illustrate our formalism analyzing the edge features of a Chern insulator, the
Kitaev square lattice model for a topological superconductor and the Checkerboard lat-
tice hosting topological flat bands. The efficiency and accuracy of the method is demon-
strated by comparison to recursive Green’s function calculations.
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1 Introduction

Figure 1: Cylindrical geometry obtained by applying periodic boundary conditions
(PBC) along the direction parallel to the boundary in a 2D plane, where x⊥ denotes
a coordinate in the perpendicular direction measured in units of the lattice constant.
In this geometry there is a well defined momentum k‖ and the open boundaries at
x⊥ = ±1 (magenta lines) are obtained by adding a localized impurity line with an
amplitude ε→∞ (black line) at x⊥ = 0. The impurity line breaks the translational
symmetry in the x⊥−direction and opens two boundaries in the bulk infinite system.

In recent years, due to the appearance of twistronics [1,2] and specially since the discov-
ery of the special properties of twisted bilayer graphene at the magic angle [3, 4], there is a
renewed interest in 2D topological materials exhibiting different phases of matter (e.g. su-
perconductivity, magnetism, nematicity, etc). In these systems new phenomena arise from the
combination of strong interactions and topology.

These circumstances claim for a flexible unified theoretical framework going beyond ide-
alized minimal models to account for interactions, strongly correlated behaviour, spatial inho-
mogeneities or hybrid devices. Several techniques have been developed to describe these new
2D platforms with special emphasis in the topological properties of open boundaries, like exact
Hamiltonian diagonalization of finite systems, wave matching in finite scattering regions [5],
some analytical techniques to derive effective boundary Hamiltonians [6] or the complemen-
tary approaches provided by T -matrix and Green’s function formalisms [7–9]. Nevertheless,
methods based in exact diagonalization of microscopic Hamiltonians may require huge compu-
tational capabilities with information on several model parameters and generally, they provide
only numerical results with, in some cases, little or no insight in the underlying physics. For
these reasons theoretical mesoscopic descriptions of intermediate complexity which could give
us access not only to discrete surface modes but also to a well-defined continuum of excitations
are of great interest.

In this work we focus in the calculation of the boundary Green’s function (bGF) for such
systems, which encodes the local excitation spectrum at an open boundary. Such information
is of special interest in the case of topological phases where the boundary local density of
states (LDOS) can reveal the presence of edge states or other type of localized excitations, thus
allowing to check out the bulk-boundary correspondence and computing topological invariants
[10,11].

For this purpose we develop a method which allows to compute the bGF at a d −1 bound-
ary starting from a d dimensional infinite bulk. This method complements the approach of
Refs. [12–14] for the calculation of bGFs by introducing the Faddeev-LeVerrier algorithm
(FLA) [15–19], allowing to consider general d-dimensional systems with an arbitrary num-
ber of degrees of freedom and neighbours. This method performs the Fourier transform (FT)
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needed to compute GFs with local components in the direction perpendicular to the junction
to compute the bGF (see Fig. 1) by the analytic continuation of the momenta into the complex
plane followed by residue integration. The FLA requires a low computational cost to obtain
both the characteristic polynomial and the adjugate matrix of the secular equation [ωÎ− Ĥ]
in the same process which are, the main building blocks to solve the FT using the residue
integration.

In addition to giving access to the spectral properties at the edges, bGFs allow the calcula-
tion of transport properties in heterostructures by means of non-equilibrium Green’s function
techniques [12, 20–24]. In addition the Green’s function formalism allows to incorporate in
a natural way electron-phonon and/or electron-electron interaction effects for example by
means of diagrammatic techniques [25]. Even more, from bGFs it is possible to deduce effec-
tive Hamiltonians including all of these effects and obtain their topological properties [26–28].

In comparison with previous works, the semi-analytical approach used in Refs. [12–14]
suffers from rigidity in the definition of the GF as it required analytical expressions for the
key building blocks of the formalism, such as the characteristic polynomial. A typical symbolic
Laplace expansion to evaluate the characteristic polynomial is highly inefficient with poten-
tially enormous memory demand and computational complexity of O(N !) [29] where N is
the total Hamiltonian dimension. This constraint imposes an upper-bound limit to the Hilbert
space dimension that can be accounted by this method. In contrast, the only analytical en-
try required for the FLA is the polynomial decomposition of the Hamiltonian in the analytic
continuation variable of the momentum perpendicular to the boundary z = eik⊥L⊥ .

In the same spirit, the approach of Ref. [30] also uses the residue theorem to obtain the lo-
cal components of the GF but taking a different path to get its poles. This method computes the
poles by solving a generalized eigenvalue problem in contrast with our approach in which we
obtain the poles as the roots of the characteristic polynomial. The main advantage of Ref. [30]
approach is the possibility to work in the zero-limit for the broadening term, η, that enters as
an imaginary part of the energy and the increased robustness of the code which circumvents
the problem of obtaining the characteristic polynomial. In contrast, the residue integration of
this approach must be modified by adding extra terms depending on the existence or not of
boundary modes, and consequently, its mandatory to use a different routine to determine the
existence or not of these localized modes.

Even though our approach is less robust and requires η 6= 0, it is quite transparent, flexible
and easy to implement with a straightforward integration routine independent of the pecu-
liarities of the system. Furthermore our approach exhibits better convergence performance
compared to recursive approaches [31–34] for which precision is linked to the number of
iterations [14].

The rest of the paper is organized as follows: in Sec. 2, we describe the computation
of the Green’s function formalism taking advantage of the residue theorem introduced in
Refs. [14, 35]. We then use Dyson’s equation to open a boundary in the bulk system with
an infinity impurity perturbation. Sec. 3, we describe our method based on FLA to compute
the boundary Green’s functions with barely no analytical demands to operate. In Sec. 4, we use
some relevant model Hamiltonians for 2D topological systems as examples to compute steadily
the FLA, first in a purely analytic problem to then jump into purely computational approaches.
These models include the 2D Chern insulator [36], the 2D Kitaev topological superconduc-
tor [37] and the Checkerboard lattice hosting topological flat bands [38]. Furthermore, we
study the spectral properties at edges of such 2D models exhibiting topological features like
chiral edge states. Sec. 5 includes a study of the convergence of the spectral density of the
semi-infinite translational invariant Checkerboard lattice model comparing the recursive GF
technique with the bGF obtained via FLA.

We finally summarize the main results with some conclusions in Sec. 6. Technical details
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like the finite system diagonalization or an explicit FLA pseudocode are included in the ap-
pendices. Throughout, we use units with nn hopping amplitude t = 1 and lattice parameter
a = 1.

2 bGF method for 2D lattice models

To obtain the bGF we start from a d-dimensional bulk infinite system and introduce local
perturbations with the characteristic profile that defines the boundary. As these local pertur-
bations or impurity surface amplitude tends to infinity we are left with two (d−1)-dimensional
open surfaces [7, 8] e.g. two boundary lines in a 2D system induced by an impurity line, see
Fig. 1. The bGF is obtained using the Dyson equations associated to the local surface impurity
potential which breaks translational symmetry albeit the momenta in the direction parallel to
the impurity surface are conserved and thus well defined.

The starting GF must be explicitly dependent on the local coordinate associated to the
perpendicular direction to the boundary. In order to get these real space GFs, starting from
N×N tight-binding Hamiltonians in momentum space Ĥ(k), we have to compute the FT of the
bulk GF in the direction perpendicular to the boundary. For this purpose, we decompose the
momenta into parallel and perpendicular components k = (k‖, k⊥) relative to the boundary
direction (in higher dimensional models the parallel momentum component would be itself
a vector k‖). The bulk Hamiltonian periodicity in both directions is set by (L‖, L⊥), such that
Ĥ(k+ 2πu⊥/L⊥) = Ĥ(k), where u⊥ is the unitary vector in the perpendicular direction. As
to compute the FT we need orthogonal lattice vectors, in some cases like the triangular lattice
we have to double the primitive cell to obtain them. Using this periodicity, the Hamiltonian
can be expanded in a Fourier series, Ĥ(k) =

∑

n V̂n(k‖)eink⊥L⊥ , where n covers the number of
neighbours, and Hermiticity implies V̂−n = V̂†

n. Then, the advanced bulk GF is defined as

ĜA(k,ω) =
�

(ω− iη)Î− Ĥ(k)
�−1

, (1)

whereη is a small broadening parameter that ensures the convergence of its analytic properties
[39] (e.g. to compute the spectral densities and integrated quantities). This parameter is
specially needed in the case of recursive methods where the spectrum is approximated by a
finite set of poles. In this work we set η= 2∆ω/nω, where ∆ω is the energy window that we
are studying and nω is the number of points that we are computing within that window. The
N × N matrix structure is indicated by the hat notation.

Fourier transforming along the perpendicular direction, the GF components are given by

ĜA
j j′(k‖,ω) =

L⊥
2π

π/L⊥
∫

−π/L⊥

dk⊥ei( j− j′)k⊥L⊥ ĜA(k‖, k⊥,ω) , (2)

where j and j′ are lattice site indices in the x⊥−direction. By the identification z = eik⊥L⊥ , this
integral is converted into a complex contour integral,

ĜA
j j′(k‖,ω) =

1
2πi

∮

|z|=1

dz
z

z j− j′ ĜA(k‖, z,ω) . (3)

Further simplification can be obtained by introducing the roots zn(k‖,ω) of the character-
istic polynomial in the z−complex plane,

P(k‖, z,ω) = det
�

ωÎ− Ĥ(k‖, z)
�

=
cm

zm

2m
∏

n=1

�

z − zn(k‖,ω)
�

, (4)
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where m is the highest order of the characteristic polynomial and cm is the highest order
coefficient. In terms of these roots the contour integral in Eq. (3) can be written as a sum over
the residues of all roots inside the unit circle in the complex plane

ĜA
j j′(k‖,ω) =

∑′

|zn|<1

zq
nM̂(k‖, zn,ω)

cm
∏

l 6=n
(zn − zl)

, (5)

where q = j − j′ +m−m′ − 1 and z−m′ M̂(k‖, z,ω) is the adjugate matrix of [ωÎ− Ĥ(k‖, z)]

where all the poles at zero were taken out of M̂ as a common factor in z−m′ . Finally,
∑′

means
that if q < 0 then we include zn = 0 as a pole in the sum of residues (e.g., in the non local GF
components with j′ > j). Consequently when q < −1 higher order poles at zero appear in the
sum of residues. To simplify these situations we can take advantage of the residue theorem to
avoid these poles and compute the integral as

ĜA
j j′(k‖,ω) = −

∑

|zn|>1

zq
nM̂(k‖, zn,ω)

cm
∏

l 6=n
(zn − zl)

. (6)

To simplify the notation, we omit the superscript ‘A’ denoting advanced GFs from now
on. Given the real-space components of the bulk GF in Eq. (5), we next extend the method of
Refs. [12,21,40] to derive the bGF characterizing a semi-infinite nearest-neighbour 2D systems.
To this effect, we add an impurity potential line ε localized at the frontier region. Taking the
limit ε → ∞ the infinite system is cut into two disconnected semi-infinite subsystems with
j ≤ −1 (left side, L) and j ≥ 1 (right side, R), see Fig. 1. Using Dyson equation the local GF
components of the cut subsystem follow as [12]

Ĝ j j = Ĝ(0)j j − Ĝ(0)j0

�

Ĝ(0)00

�−1
Ĝ(0)0 j , (7)

where Ĝ(0) are the unperturbed bulk GF and Ĝ are the semi-infinite perturbed GF. Following
Eq. (7), the bGF for the left and right semi-infinite systems are respectively given by

ĜL(k‖,ω) = Ĝ1̄1̄(k‖,ω) , ĜR(k‖,ω) = Ĝ11(k‖,ω) , (8)

where the over-line in the local indices in the bGF means negative sites. In order to extend the
method to the case of interactions to an arbitrary number of neighbours we need to include
as many impurity surfaces as the number of neighbours in order to completely disconnect
two semi-infinite regions. In an equivalent fashion we could obtain a new Dyson equation
to compute the bGF of the system. Another possibility would be to define a supercell that
transforms the Hamiltonian into a nearest-neighbour one with respect to this supercell and
compute the bGF applying Eq. (8). Using this bGF we can compute the spectral properties of
open (semi-infinite or finite) systems encoded in the spectral densities and the local density of
states respectively

ρL,R(k‖,ω) =
1
π
ℑ tr

�

ĜL,R(k‖,ω)
	

, 〈ρL,R(ω)〉=
∫

dk‖
Ωk‖

ρL,R(k‖,ω) , (9)

where Ωk‖ = 2π/L‖ accounts for the limits of integration.

3 Faddeev-LeVerrier algorithm

We first summarize FLA for a generic complex matrix. Let Â be a N × N matrix with char-
acteristic polynomial P(ω) = det[ωÎ − Â] =

∑n
k=0 C̄kω

k. The trivial coefficients are C̄n = 1
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Figure 2: Complete algorithm workflow to compute the bGF using the FLA where
the main input is the polynomial decomposition of the Hamiltonian for a given set of
momenta k‖ and frequencies ω.

and C̄0 = (−1)n det Â, also simple is the term C̄n−1 = −tr{Â}. The other coefficients can be
calculated using the Faddeev-LeVerrier algorithm [15–19] as

ˆ̄Mk = Â ˆ̄Mk−1 + C̄n−k+1Î , C̄n−k = −
1
k

tr
¦

Â ˆ̄Mk

©

, (10)

where ˆ̄Mk is an auxiliary matrix such that ˆ̄M0 = 0. Remarkably the matrices ˆ̄Mk allow us to
obtain the adjugate matrix of [ωÎ− Â] as a polynomial

adj
�

ωÎ− Â
�

=
n
∑

k=0

ωk ˆ̄Mn−k , (11)

which, given that ˆ̄M0 = 0̂, the adjugate matrix M̂(ω) has N − 1 order in ω.
In our case Â ≡ Ĥ(z) is a polynomial complex matrix and it can also be expanded as a

polynomial in z as

Ĥ(z) =
2m+1
∑

i=1

Ĥiz
i−(m+1) = Ĥ1z−m + · · ·+ Ĥm+1 + · · ·+ Ĥ2m+1zm . (12)

In some simple cases where rg(Ĥ2m+1) = N we get the highest order polynomial decom-
position for the Hamiltonian and m = nnN where nn is equal to the number of neighbours in
the tight-binding model, but in general m≤ nnN .

We are interested in expressing C̄k and ˆ̄Mk as two-variable polynomials in ω and z using
two variable FLA [41–43] to compute the complex integral. Still we have C̄n = 1 and ˆ̄M1 = Î.
Then,

C̄n−1(z) = −tr
�

Ĥ(z)
	

=
2m+1
∑

i=1

C̄n−1,iz
i−(m+1) . (13)

For example, the next coefficients are

ˆ̄M2(z) = Ĥ(z) + C̄n−1Î=
2m+1
∑

i=1

ˆ̄M2,iz
i−(m+1) ,

C̄n−2(z) = −
1
2

tr
¦

Ĥ(z) ˆ̄M2(z)
©

=
4m+1
∑

i=1

C̄n−2,iz
i−(2m+1) .

(14)

6

https://scipost.org
https://scipost.org/SciPostPhys.13.1.009


SciPost Phys. 13, 009 (2022)

In this way we could get

ˆ̄Mk(z) =
2m(k−1)+1
∑

i=1

ˆ̄Mk,iz
i−(m(k−1)+1), C̄n−k(z) =

2mk+1
∑

i=i

C̄n−k,iz
i−(mk+1), (15)

and deduce an explicit decomposition of adj[ωÎ − Ĥ(k‖, z)] in z from which we can extract
the zero poles of the adjugate matrix z−m′ as in Eq. (5). In simple cases where m = nnN , it is
straightforward to see that m′ = N − 1.

In Fig. 2 we expose the general structure of the complete algorithm to compute the bGF
given, as an input, the polynomial decomposition of the Hamiltonian particularized at any
k‖. Using FLA we obtain the auxiliary matrix to compute the adjugate of the secular equation
ˆ̄M(k‖) and the coefficients of the characteristic polynomial C̄(k‖), see Appendix B. From C̄(k‖)
we can compute the characteristic polynomial P(k‖,ω) for any desired frequency and solve it
to obtain the roots zn(k‖,ω).

Both zn(k‖,ω) and ˆ̄M(k‖) are the key ingredients to compute the unperturbed GFs in real
space using Eq. (6) and taking as poles the roots that satisfy that |zn(k‖,ω)|> 1. The order of
the zero poles m and m′ are totally determined by the polynomial decomposition in z of C̄(k‖)

and ˆ̄M(k‖) respectively. Finally, we use Dyson equation to compute the bGFs of the system
from the unperturbed ones.

4 Tight-binding models

In order to illustrate our method in a transparent self-explanatory way we take the example
of common, well-known 2D topological Hamiltonians to compute the bGF explicitly. First, we
start with the fully analytical 2 × 2 Chern insulator model [36] hosting chiral edge states to
easily follow the FLA step by step. Later we consider more intricate examples where we have
to partially or totally take advantage of the computational power of the FLA. These models
include the 2D Kitaev model [37] for a topological superconductor showing Majorana edge
modes and the 2D Checkerboard model which hosts topological flat bands with chiral edge
states [38]. All these examples are relevant models for the study of topological matter in 2D
and thus we exhibit the spectral density and the LDOS for an open boundary semi-infinite
system to make explicit their topological edge properties. In Fig. 3 a) we show the Brillouin
zone (BZ) for all of these different lattice models.

4.1 Chern insulator

We first illustrate the FLA with the well-known 2 × 2 Chern insulator Hamiltonian [36] in a
square lattice described by

Ĥ(k) = (M − cos ky − cos kx)σz + sin kxσx + sin kyσy , (16)

where σµ with µ= x , y, z are the Pauli matrices and M is the mass term.
We FT along kx = k⊥ thereby we made the analytic continuation z = eikx . We can now

obtain the polynomial expansion of the Hamiltonian in z following Eq. (12) where

Ĥ1 = Ĥ†
3 = (iσx −σz)/2 , Ĥ2 = (M − cos ky)σz + sin kyσy . (17)

We then compute the trivial C̄n coefficients that define the characteristic polynomial in
frequencies (ω)

C̄2 = 1 , C̄1 = 0 , C̄0 = (M − cos ky)(z + z−1)− [M2 + 2(1−M cos ky)] , (18)

7
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Figure 3: Brillouin zone for the square lattice models and real space representation of
the Checkerboard lattice model. a) Square (white) and rectangular (grey shaded) BZ
showing the high symmetry points in each one. The over-line in the high symmetry
points denotes that they belong to the folded rectangular BZ in the ky−direction. b)
Checkerboard lattice. Red and blue dots indicate the sublattice sites. The magenta
arrow, black dashed (solid) line and yellow dashed line accounts for the nn hopping t,
the nnn hopping t ′1 (t

′
2) and the nnnn hopping t ′′ respectively. The arrow direction

shows the sign of the accumulated phase φ in the nn hopping terms. The shaded
green region in b) corresponds to the doubling of the original primitive cell which
produces the folding of the square BZ into a rectangular one as indicated in panel a).

consequently, their explicit decomposition in the z polynomial

C̄02 = C̄∗04 = (M − cos ky) , C̄03 = −[M2 + 2(1−M cos ky)] . (19)

Due to the aforementioned relation, as rg(Ĥ2m+1) < N , then m < nnN and for that we
have a reduced degree of the characteristic polynomial obeying C̄01 = C̄05 = 0. Nevertheless,
we have used the indexation of the polynomial in z as the maximum degree polynomial for
the sake of generalization of the method, similarly to the criteria taken in the pseudocode
formulation in Appendix B.

Then, the characteristic polynomial takes the form

P(ω) = (M − cos ky)(z + z−1) +ω2 −M2 − 2(1−M cos ky) , (20)

where cm = C̄04 and the non-trivial contributions to ˆ̄M matrix are defined by

ˆ̄M21 = Ĥ1 + c11Î= Ĥ1 , ˆ̄M22 = Ĥ2 + c12Î= Ĥ2 , ˆ̄M23 = Ĥ3 + c13Î= Ĥ3 . (21)

Finally, the integral by residues for the bulk GF takes the form

Ĝ j j′(ky ,ω) = −
z j− j′

−

z−

�

−(1+ z2
−) +αz− i(1− z2

−)− βz−
i(1− z2

−) + βz− (1+ z2
−)−αz−

�

2(M − cos ky)(z− − z+)
, (22)

where α = 2(M +ω − cos ky), β = i2 sin ky and we have regularized the zeros of the ad-
jugate matrix adj[ωÎ − Ĥ(k‖, z)] with the zeros of P(ω) knowing that m = m′ = 1. Fur-
thermore, we solve the trivial roots for P(ω) in Eq. (20), z± = (−b ±

p
b2 − 4)/2 where

b = [ω2 − M2 − 2(1 − M cos ky)]/(M − cos ky) defining |z−| > 1 and |z+| < 1. Once the
bulk GF in real space has been constructed we use Eq. (8) to obtain the corresponding bGFs.
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Figure 4: Open boundary characterization for the Chern Insulator model showing
chiral edge states under the effect of the mass term M → 1. a) Electronic bands
obtained by exact diagonalization of a finite size system with Nsi tes = 40 sites. The
spectrum shows 2 chiral edge states each one associated to a different boundary. b)
Spectral density for a right boundary in the semi-infinite limit obtained from the bGF
calculation. c) Integrated LDOS where straight (dot-dashed) line represents bulk
(right boundary) LDOS.

In Fig. 4 we illustrate the open boundary spectral density for the topological phase of the Chern
insulator exhibiting chiral edge states obtained using FLA. For comparison we also show the
bands obtained using exact finite size Hamiltonian diagonalization, see Appendix A. As can be
observed, while two chiral edge states are present in the finite system calculation, only one
appears in the bGF calculation as expected for a semi-infinite system.

4.2 2D Kitaev square lattice

Now we apply FLA to obtain the characteristic polynomial of the 2 × 2 Kitaev square lattice
model [37] and solve it computationally, in this way we can then obtain the bGF in a semi-
analytic manner. The model Hamiltonian is given by

Ĥ(k) = (µ− cos ky − cos kx)σz −∆(sin kx + sin ky)σy , (23)

where µ is the chemical potential and ∆ is the pairing potential.
Again, the FT along kx = k⊥ is obtained using the analytic continuation z = eikx . The

polynomial expansion of the Hamiltonian in z takes the expression

Ĥ1 = Ĥ†
3 = (−σz − i∆σy)/2 , Ĥ2 = (µ− cos ky)σz +−∆ sin kyσy . (24)

We next compute the C̄n coefficients that define the characteristic polynomial in powers of
ω and z

C̄2 = 1 , C̄1 = 0 , C̄01 = C̄∗05 = (∆
2 − 1)/4 , C̄02 = C̄∗04 = (µ− cos ky)− i∆2 sin ky ,

C̄03 =
(∆2 − 1)

2
cos2ky + 2µ cos ky − (1+∆2 +µ2) , (25)

9
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Figure 5: Open boundary characterization for the 2D Kitaev model showing Majorana
flat band edge modes in the topological phase ∆= 1 and µ= 1. a) Electronic bands
obtained by exact diagonalization of a finite size system with Nsi tes = 40 sites. The
spectrum shows flat bands at both ends of the system. b) Spectral density for a right
boundary in the semi-infinite limit obtained from the bGF calculation. c) Integrated
LDOS where straight (dot-dashed) line represents bulk (right boundary) LDOS.

where cm = C̄05 and finally the non-trivial contributions to the ˆ̄M matrix are defined as

ˆ̄M21 = Ĥ1 , ˆ̄M22 = Ĥ2 , ˆ̄M23 = Ĥ3 . (26)

We regularize the zeros of the adj[ωÎ − Ĥ(k‖, z)] with the zeros of P(ω) knowing that
m= 2 and m′ = 1. The integral by residues for the bulk GF takes the form

Ĝ j j′(ky ,ω) = −2z j− j′

4

�

−(1+ z2
4) +αz4 −∆[(1− z2

4)− βz4]
∆[(1− z2

4)− βz4] (1+ z2
4)−αz4

�

(∆2 − 1)
�

z4 − z1

� �

z4 − z2

� �

z4 − z3

� + (z4←→ z3) , (27)

where α = 2(µ+ω− cos ky), β = i2 sin ky and |z4|, |z3| > 1, thus |z2|, |z1| < 1. We omit the
explicit analytical expression of the roots of the characteristic 4th degree polynomial due to
their extension. As mentioned before, for this example it is convenient to obtain the roots com-
putationally. In Fig. 5 we show typical results for the open boundary LDOS in the topological
phase of the 2D Kitaev model showing Majorana flat band edge modes. Again, the comparison
with the finite size diagonalization shows good agreement.

4.3 Flat band Checkerboard lattice

Finally we consider the 2 × 2 Checkerboard lattice model [38] which hosts topological flat
bands and is defined by the Hamiltonian

Ĥ(k) = Ω0(k)Î+Ω1(k)σx +Ω2(k)σy +Ω3(k)σz , (28)

where

Ω0(k) =(t
′
1 + t ′2)(cos kx + cos ky) + 4t ′′ cos kx cos ky , Ω1(k) = 4t cosφ cos

kx

2
cos

ky

2
,

Ω2(k) = 4t sinφ sin
kx

2
sin

ky

2
, Ω3(k) = (t

′
1 − t ′2)(cos kx − cos ky) . (29)
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Figure 6: Open boundary characterization for the Checkerboard lattice model show-
ing topological flat band atω/t = 2 with a chiral edge mode in the topological phase
φ = −π/4, t ′1 = −t ′2 = t/(2+

p
2) and t ′′ = −t/(2+ 2

p
2). a) Electronic bands ob-

tained by exact diagonalization of a finite size system with Nsi tes = 20 sites with the
unit cell doubled. The spectrum shows 2 chiral edge states each one associated to a
different boundary. b) Spectral density for a right boundary in the semi-infinite limit
obtained from the bGF calculation. c) Integrated LDOS where straight (dot-dashed)
line represents bulk (right boundary) LDOS.

The system is thus characterized by nn hopping t, nnn hopping t ′1, t ′2 and nnnn hopping
t ′′ terms, also the nn terms accumulate a phase φ pointed out in Fig. 3 b).

This model is an exemplification of a typical obstacle to tackle with our algorithm due to the
sublattice degree of freedom. Due to that, the Hamiltonian includes lattice spacing fractions,
hence if we try to FT with the analytic continuation z = eik⊥L⊥/2 instead of having a complex
integral over the closed unit circle we arrive to an open arc integral in the complex plane, so
we cannot apply the residue theorem to solve it. This kind of problems may also appear in
Bravais lattices with non-orthogonal lattice vectors (e.g. the triangular lattice).

To circumvent this kind of obstacles we proceed to double the unit cell to obtain a new
lattice with orthogonal lattice vectors and integer powers of z = eik⊥L⊥ . The drawbacks of
doubling the unit cell are that we are now working in a folded BZ and we have doubled the
Hamiltonian degrees of freedom. Consequently the Hamiltonian in the new unit cell expressed
in the basis Ψk = (ψA1,k,ψB2,k,ψA3,k,ψB4,k)T takes the form

Ĥ(k) =
�

Â B̂
B̂† Â

�

, (30)

with

Â=

�

δ2 β−
β∗− δ1

�

, B̂ =

�

α1(1+ eiky ) eikyβ∗+
β+ α2(1+ eiky )

�

, (31)

where β± = e±i(kx±φ) + e−iφ , αµ = (t ′µ + 2t ′′ cos kx) and δµ = 2t ′µ cos kx with µ= 1,2.
In Fig. 3 b) we show the unit cell doubling in the y−direction for the Checkerboard lattice

problem leading to a folded BZ along the ky−direction. To avoid foldings in the spectral
densities we have made the analytic continuation in z = eiky with ky = k⊥, in this way we
have the explicit momenta dependence of the Hamiltonian in the unfolded BZ coordinate
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kx = k‖. The polynomial expansion of the Hamiltonian in z adopts the expression

Ĥ1 = Ĥ†
3 =







0 0 0 0
0 0 0 0
α1 0 0 0
β+ α2 0 0






, Ĥ2 =







δ2 β− α1 0
β∗− δ1 β+ α2
α1 β∗+ δ2 β−
0 α2 β∗− δ1






. (32)

Due to the cell doubling we have a characteristic off-diagonal representation of the z de-
pendent terms of the Hamiltonian which induces that rg(Ĥ2m+1) < N , then again we have a
degree reduction of the characteristic polynomial. We now could obtain analytically the C̄n co-
efficients that define the characteristic polynomial but we omitted them due to their extension.
These coefficients along with the adjugate matrix M̂(k‖, z,ω) can be obtained computationally
in a straightforward way using Eq. (14), see Appendix B.

In Fig. 6 we show results for the open boundary LDOS for the topological phase of the
Checkerboard lattice model exhibiting topological flat bands and chiral edge states. Again,
the comparison with the bands obtained by direct diagonalization gives excellent agreement,
except for the doubling of the edge states.

5 Comparison with recursive approaches

As mentioned before, the recursive GF method is a well established tool to compute bGFs.
Below we briefly describe the recursive method taking advantage of the Hamiltonian decom-
position into two perpendicular directions already introduced for FLA. We define the recursive
method to compute the bGF at a dimensionless n-site as

�

Ĝ rc
R (n)

�−1
=ωÎ− Ĥ0(k‖)−ΣR(n) ,

�

Ĝ rc
L (n)

�−1
=ωÎ− Ĥ0(k‖)−ΣL(n) , (33)

where Ĥ0(k‖) is the local contribution defined in each iteration step and the recursive expres-
sion of the self-energy takes the form

ΣR(n) = T̂LR

�

Ĝ rc
R (n− 1)

�−1
T̂ †

LR , ΣL(n) = T̂ †
LR

�

Ĝ rc
L (n− 1)

�−1
T̂LR . (34)

As can be observed, the self-energy at a given n-site couples this site with the previous one
where n goes from n= 1 to n= Ni t with Ni t is the number of recursive steps. The self-energy
at the first site ΣL/R(n = 1) can be defined to simulate the coupling to a doped continuum of
the same material for better convergence.

From the polynomial decomposition of the Hamiltonian in Eq. (12) we can define the
relevant matrices for the recursive method as

Ĥ0 =















Ĥm+1 Ĥm Ĥm−1 · · · Ĥ2

Ĥ†
m Ĥm+1 Ĥm · · · Ĥ3

Ĥ†
m−1 Ĥ†

m Ĥm+1 · · · Ĥ4
...

...
...

. . .
...

Ĥ†
2 Ĥ†

3 Ĥ†
4 · · · Ĥm+1















, T̂LR =















Ĥ†
1 Ĥ†

2 Ĥ†
3 · · · Ĥ†

m
0̂ Ĥ†

1 Ĥ†
2 · · · Ĥ†

m−1
0̂ 0̂ Ĥ†

1 · · · Ĥ†
m−2

...
...

...
. . .

...
0̂ 0̂ 0̂ · · · Ĥ†

1















.

(35)
Notice that the dimension of the recursive method goes as Nr = Nnn so for the usual nn

case satisfies Nr = N and Ĥ0 = Ĥ2, T̂LR = Ĥ†
1.

In Fig. 7 we illustrate the convergence of the continuum spectrum within the recursive GF
method for the Checkerboard model at k‖ = Γ with parameters as in Fig. 6 for several number
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Figure 7: Open right boundary spectral density at k‖ = Γ for the Checkerboard lat-
tice model with η = 0.02 and the rest of parameters are the same as in Fig. 6. Solid
lines represents the spectral density obtained by recursive GF for different number of
recursive steps Ni t = 5,10, 50. Dashed red line is obtained using FLA. Main figure:
top continuum valence bands contribution to the spectral density showing the dis-
cretization effect of the recursive method. Inset: All the contributions to the spectral
density including the flat band at ω/t = 2 and the topological chiral edge state at
ω/t ≈ 1.5

of iterations compared to bGF obtained using FLA. While the recursive approach accounts well
for discrete states, as boundary states, with few iterations, the number of recursive steps have
to be greatly increased to properly converge the continuum spectrum into the semi-infinite
limit [39]. In contrast, FLA provides an accurate description of both surface modes and con-
tinuum spectra without further computational effort. It is worth mentioning that the recursive
method for all the lattice models in this publication takes from twice to four times more com-
puting time than FLA for the same number of points in the spectral density and Ni t = 100,
for which, as shown in Fig. 7, the recursive calculation has not yet converged to a smooth
continuum spectrum.

In order to compare the computational complexity of our technique one should have in
mind that our method could be implemented in a partially analytical way, in the sense that
we can provide an analytical expression for the characteristic polynomial for each of the cases
that we study. The computational complexity is then limited to the evaluation of the roots
of this polynomial which scales roughly as O(M2 log M), where M = 2m is the degree of the
polynomial and the maximum degree possible is M = 2m= 2nnN (e.g., in a typical TB model
up to nn, M = 2N and for that its complexity goes as ∼ O(8N2 log N)). On the contrary, the
well-established recursive GF technique has O(N3

r Ni t) complexity [39,44], where Ni t typically
� 1 is the number of iterations required for convergence in a desired energy precision η and
the term N3

r is due to matrix inversions where the recursive matrix dimension Nr = Nnn grows
with the number of neighbours.

For larger matrix dimensions or higher degree polynomials that the ones analyzed in this
paper, FLA might suffer from numerical instability in the computation of the polynomial co-
efficients due to accumulated errors in the trace in Eq. (10) and from the recursive nature of
the successive polynomial coefficients [45,46]. However in Ref. [35] FLA was used to obtain
the bGF of TB Hamiltonians that cannot be solved using symbolic approaches due to matrix
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dimension (e.g., N = 12 Hilbert space dimension). So, despite the potential instability of the
method, it still can be used to efficiently solve the bGF problem of TB Hamiltonians beyond
analytical approaches, at least for moderate dimensions.

6 Conclusions and outlook

In this work we have extended the boundary Green function method developed in Refs. [14,35]
to 2D lattices with hopping elements between arbitrary distant neighbors and solved the semi-
analytical obstructions to compute the bGF for large systems, non-orthogonal lattice vectors
or Hamiltonians with terms with momentum fractions. This was made by implementing the
Faddeev-LeVerrier algorithm to compute the characteristic polynomial and the adjugate matrix,
the building blocks to compute the bGF. As an illustration of the method we have analyzed
the spectral properties of different topological 2D Hamiltonians showing the appearance of
topological states.

With FLA we can compute the bGF for any TB model with a well-known algorithm and
a simple implementation which provides the coefficients of the characteristic polynomial but
also the adjugate matrix in the same process. Furthermore, FLA can be extended to obtain the
generalized inverses of multiple-variable polynomials or particularly, two-variable polynomials
[41–43].

In Ref. [47,48] it is claimed that the classical Faddeev-LeVerrier algorithm for polynomial
matrices in one variable has O(N3N) computational complexity and it avoids any division by
a matrix entry, which it is desirable from the convergence perspective in contrast to recursive
approaches. Although the classical FLA is not the most efficient algorithm from the point of
view of complexity (e.g. Berkowitz algorithm [49] is faster), it is a rather simple and general
way to solve the inverse of a polynomial matrix problem. Despite the recursive nature of FLA,
it can be easily modified to carry out the N matrix multiplications in parallel [46,47,50,51].

As an outlook, the FLA method can be combined with interpolation approaches [48,52,53]
to improve the stability of the algorithm when computing the bGF of TB systems with a large
number of degrees of freedom and neighbours. Furthermore, this method and the recursive
methods could be combined to describe systems with regions with broken translational sym-
metry like two semi-infinite translational invariant regions coupled by a disordered region. In
addition, we foresee the application of the method to study higher order topological insula-
tors [54] which requires projection onto the intersection of two or more edge surfaces.
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A Exact Hamiltonian diagonalization

From the matrices that define the recursive method in Eq. (35) we can also describe the total
Hamiltonian for a finite system to compute an exact diagonalization and obtain the edge state
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spectrum.

ĤTOT =















Ĥ0 T̂LR 0̂ · · · 0̂
T̂ †

LR Ĥ0 T̂LR · · · 0̂
0̂ T̂ †

LR Ĥ0 · · · 0̂
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · Ĥ0















, (36)

where the main diagonal has Nsi tes block elements and total dimension Nd = Nsi tesNnn so for
the usual nn case satisfies Nd = Nsi tesN and Ĥ0 = Ĥ2, T̂LR = Ĥ†

1.

B Faddeev-LeVerrier algorithm

We include here a simple pseudocode description of the classic FLA [15–19] to obtain the
coefficients of the characteristic polynomial C̄ and the polynomial description of the adjugate
matrix ˆ̄M of the secular equation [ωÎ− Ĥ] from a constant matrix (Algorithm 1).

Algorithm 1 Classic Faddeev-LeVerrier algorithm

Input: Ĥ ∈ Cn×n where n≥ 2
Output: (C̄ , ˆ̄M)

1: C̄n = 1, ˆ̄M1 = Î, k← 2
2: C̄n−1 = −tr{Ĥ}
3: while k ≤ n do
4: ˆ̄Mk← Ĥ ˆ̄Mk−1 + C̄n−k+1Î
5: C̄n−k←−

1
k tr{Ĥ ˆ̄Mk}

6: k← k+ 1
7: end while

We also describe the modified FLA for two variable polynomials in (ω, z) where the matrix
itself Ĥ(z) is a polynomial matrix [41–43] given as an entry the polynomial decomposition in
z of the Hamiltonian as in Eq. (12) (Algorithm 2).
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Algorithm 2 Two-variable Faddeev-LeVerrier algorithm

Input: Ĥ1, Ĥ2, . . . , Ĥ2m+1 ∈ Cn×n where n≥ 2
Output: (C̄ , ˆ̄M)

1: C̄n = 1, ˆ̄M1 = Î, k← 2
2: C̄n−1,1 = −tr{Ĥ1}, C̄n−1,2 = −tr{Ĥ2}, . . . ,

C̄n−1,2m+1 = −tr{Ĥ2m+1}
3: while k ≤ n do
4: for i← 1 : 2m(k− 1) + 1 do
5: if i ≤ 2m(k− 2) + 1 then
6: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ1

ˆ̄Mk−1,i
7: end if
8: if i ≥ 2 and i ≤ 2m(k− 2) + 2 then
9: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ2

ˆ̄Mk−1,i
10: end if
11: ...
12: if i ≥ 2m+ 1 and i ≤ 2m(k− 2) + 2m+ 1 then
13: ˆ̄Mk,i ← ˆ̄Mk,i + Ĥ2m+1

ˆ̄Mk−1,i
14: end if
15: ˆ̄Mk,i ← ˆ̄Mk,i + C̄n−k+1Î
16: end for
17: for i← 1 : 2mk+ 1 do
18: if i ≤ 2m(k− 1) + 1 then
19: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ1

ˆ̄Mk,1}
20: end if
21: if i ≥ 2 and i ≤ 2m(k− 1) + 2 then
22: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ2

ˆ̄Mk,i}
23: end if
24: ...
25: if i ≥ 2m+ 1 and i ≤ 2m(k− 1) + 2m+ 1 then
26: C̄n−k,i ← C̄n−k,i −

1
k tr{Ĥ2m+1

ˆ̄Mk,i}
27: end if
28: end for
29: k← k+ 1
30: end while
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