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Abstract

We consider a special scattering experiment with n particles in R1,n−3. The scatter-
ing equations in this set-up become the saddle-point equations of a Penner-like matrix
model, where in the large n limit, the spectral curve is directly related to the unique
Strebel differential on a Riemann sphere with three punctures. The solutions to the
scattering equations localize along different kinds of graphs, tuned by a kinematic vari-
able. We conclude with a few comments on a connection between these graphs and
scattering in the Gross-Mende limit.
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1 Introduction

Scattering equations play a key role in the fascinating works of Cachazo, He and Yuan [2–4],
which translate the tree-level scattering amplitudes of massless particles, written in terms of
combinatoric Feynman diagrams, as a sum over rational functions evaluated at the solutions of
those equations and hence reduce it to an algebraic problem. Historically these equations first
appeared in the works of Fairlie and Roberts [5–7], in addressing the questions of modifying
the Veneziano amplitude to make them tachyon free, and then in the study of high-energy
behaviour of string theory by Gross and Mende [17].

It is therefore crucially important to analyse the solutions of this system of equations,
and indeed efforts have been made [9–12] to find numerical algorithms to solve the scattering
equations for general number of particles, starting from the explicit solutions for few particles.
But a good analytical method is still missing. Some other developments include [15,16].

In this work, we will explicate some new interesting patterns in these solutions for a specific
set of kinematics, with a possible connection to the string geometry in the Gross-Mende limit.
Before giving a summary of our analysis, we mention some recent developments in a not-
so-related field of symmetric product orbifold CFTs, which, interestingly, constitute the main
technical support for our work:

Algebraic relations determining the covering maps of the symmetric product CFTs were
observed to resemble the scattering equations in [24]. Recently in [1], these covering maps
of the CFTs were shown, using Penner-like matrix models, to define the Strebel metric on the
“covering space". Interpreting the latter as the dual worldsheet, this gave an explicit demon-
stration of a mechanism for the gauge-string duality. We will adapt the technology developed
there, to apply to a scattering set-up, demonstrating further that there are transitions in the
graphs, where the complex solutions of the scattering equations localize, in suitable limits of
the kinematics.

In this note, we consider a special scattering experiment with (N +3) massless particles in
R1,d−1 where two incoming particles are highly energetic with their energy E scaling with N as
E = 1

4 Nε. The N other outgoing particles have the same energy k0 and a common Mandelstam
invariant s. The special kinematics for these outgoing particles forces the corresponding N
momenta to have been directed towards the vertices of a (N − 1)-simplex from its center in
RN−1. This fixes the space-time dimension to be d = N + 1. Importantly, the restriction to
this scattering process will allow us to translate the scattering equation in this set-up to the
saddle point equation of a Penner-like matrix model of matrix rank N with three “charges",
determined by the kinematic variable q = εk0/s, located at (−i), (+i) and∞.

We then exploit the standard matrix model technology to find the spectral geometry for
this problem; the spectral curve defines a quadratic differential φ(z)dz2 on the sphere

y2(z)dz2 = −4π2φ(z)dz2 , (1.1)

and rather astonishingly, as was first pointed out in [1], it essentially becomes the Strebel
differential on the sphere with three punctures, for q < 1 in our set up. Depending on the
range of q, the characterizing graphs of this quadratic form take different shapes as in Fig.
1.1.

Having seen how the solutions of the scattering equation localize along these graphs, we
then turn the discussion of Gross-Mende strings where we have the same scattering equation
determining the high energy, fixed angle behaviour of string amplitudes. For critical space-time
dimensions with N = 25 or 9 in our set-up, time component of the space-time trajectories of
the Gross-Mende strings become linked with the quadratic differential φ(z)dz2, in the leading
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Figure 1.1: Depending on the kinematic parameter q = εk0/s, the solutions of the
scattering equations localize along different kinds of graphs.

order in N , as

X 0(z) =
πNs
2k0

∫ z
Æ

φ(z′) dz′ , (1.2)

where {Xµ(z, z̄)} describes the trajectory. In fact the string scattering amplitude can also be
expressed as an integral along the graphs. These connections might convey the analogues of
the transitions of graphs in Fig 1.1 for the string geometry as we tune the kinematic parameter
q.

Throughout the paper, we will assume (−+ · · ·+) convention.

2 Scattering set-up

In this section, we outline the basic set-up of the scattering process and corresponding scatter-
ing equations. A somewhat similar construction was also discussed in [14] with real solutions
for the scattering equations, whereas we will mainly concentrate on the regime of complex
solutions with further specialization in the kinematic configuration of the particles.

The explicit scattering experiment in R1,d−1 involves two incoming particles A and B with
their momenta as,

kA = (E, 0, · · · , 0,−E) , kB = (E, 0, · · · , 0, E) , E > 0 , (2.3)

where E > 0 ensures that the particles are incoming, and N outgoing scattered particles in-
dexed by a with

ka = (k
0
a, k1

a, · · · , kd−2
a , 0) a = 1, 2, · · · , N , (2.4)

with k0
a < 0, since outgoing. From momentum conservation, the other particle C has the

momentum

kC = (−2E −
N
∑

a=1

k0
a,−

N
∑

a=1

k1
a, · · · ,−

N
∑

a=1

kd−2
a , 0) . (2.5)

This particle C will be incoming/outgoing depending on the sign of (−2E−
∑N

a=1 k0
a). The

on-shell condition on ka implies k0
a = −|~ka| ∀a, and similar constraint applies to kC . It’s clear

that (N + 1) particles {a} and C are confined in the hyperplane Rd−2, perpendicular to the
incoming particles A and B, as in Fig 2.2. Also the momenta of these (N + 1) particles yield
saA = saB. Writing explicitly, the Mandelstam invariants are

saA = saB = −2Ek0
a, sab = 2ka · kb, saC = 4Ek0

a −
N
∑

b=1

sab . (2.6)
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R
d−2

R
d−1

~kC

~kA

~kB

Figure 2.2: The scattering set-up: incoming particles A and B have high energies scal-
ing with N which is the number of the scattered outgoing particles. These N particles
all lie on the perpendicular plane to ~kA and ~kB, with the same energy k0

a = k0 ∀a and
the same Mandelstam invariants sab = s ∀ a, b = 1, · · · , N between them. Particle
C will be incoming or outgoing depending on the kinematic variable ε k0/s, in the
large N limit.

Three other invariants sAB, sBC and sAC won’t be important for our discussions in the following.
We can determine the angle between two outgoing particles a and b

cosθab = 1+
sab

2| ~ka|| ~kb|
. (2.7)

Hence in the physical scattering regime with real θab, sab ≤ 0. The scattering equations

N+3
∑

j(6=i)=1

si j

σi −σ j
= 0 for i = 1, · · · , (N + 3) , (2.8)

thus give (ignoring three redundant equations)

2Ek0
a

σa − i
+

2Ek0
a

σa + i
−

saC

σa −∞
=

N
∑

b(6=a)

sab

σa −σb
∀a = 1, · · · , N . (2.9)

Here we have fixed three punctures σA = −i,σB = +i and σC =∞ using the Mobius trans-
formations on the sphere. Now we further specialize to the following kinematic configuration,

1. sab = −s < 0, ∀ a, b ∈ {1, · · · , N} ,

2. k0
a = −k0 < 0 ∀ a ∈ {1, · · · , N} ,

3. E = 1
4 N ε , ε > 0 is finite .

With these, saC = −Nεk0 + Ns and the particle C is outgoing for ε > 2k0. We also note that
the energies of two incoming particles go linearly with the number of particles scattered in the
process.

As a consequence of this specialization, the scattering angle between any two of N scattered
particles is the same:

cosθab = 1−
s

2(k0)2
a, b ∈ {1, · · · , N} , (2.10)
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and the lengths of the vectors ~ka, ∀a are also the same

−|~ka|= k0
a = k0 ∀a ∈ {1, · · · , N} . (2.11)

Such a configuration of N vectors ~ka corresponds to N vertices from the center of a regular

~k1

~k2

~k4

~k3

O

R
3

Figure 2.3: Momentum vectors ~k1, · · · ,~k4 in our special configuration for N = 4 (and
hence d = 5) form four vertices of a regular tetrahedron in R3. For higher values of
N, they will similarly construct a regular (N−1)-simplex inRN−1 with the equal angle
cos−1(− 1

N−1) in between them.

(N − 1)-simplex in RN−1. We thus have the restriction on the dimensions of the space-time
R1,d−1 as

d = N + 1 . (2.12)

Also the scattering angle between any two vectors from the center to the vertex of such regular
simplex is cos−1(− 1

N−1), so that from (2.10)

2
(k0)2

s
= 1−

1
N

. (2.13)

In the large N limit, (k
0)2
s = 1

2 . This condition coming from the simplex structure will play a key
role in relating the classical Gross-Mende strings with the graphs generated by the solutions
of the scattering equation, see (6.66).

As mentioned in [14], the above set-up can also be considered as a decay process of a
very massive particle of mass M = 1

2 Nε into (N + 1) other massless particles indexed with
a (a = 1, · · · , N) and C . Our analysis in this note is insensitive to such consideration except
that the two punctures A and B on the Riemann sphere with a graph will lack any physical
interpretation in that case in our later sections.

In terms of the Mandelstam invariants, we are considering the special configuration where

saA, saB > 0 and sab < 0 , (2.14)

where {saA, saB, sab} is the set of independent variables.
In the next few sections, we will take the large N limit to show that the solutions of the

scattering equations (2.9) follow a pattern on the sphere S2 depending on the value of the
kinematic parameter εk0/s.
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3 Matrix model and Spectral geometry

In this section we will interpret the scattering equation (2.9) as the saddle-point equation of
a Penner-like matrix model. Using standard matrix model technology (see [26] for a nice
exposition of such techniques), we will then find the corresponding spectral geometry which
encodes the solutions of the scattering equations.

The matrix-model

The scattering equation (2.9) in our special kinematic configuration becomes,

q
σa − i

+
q

σa + i
=

2
N

N
∑

b(6=a)=1

1
σa −σb

∀ a = 1, · · · , N , (3.15)

with
q = εk0/s.

This notation “q" is inspired from the similarity of (3.15) with the electrostatic problem of
three charges located at −i,+i,∞, we will comment further on these soon. In this notation,
saC = −Ns(q− 1) and C is outgoing for

q > 2 (k0)2/s . (3.16)

Interestingly, (3.15) is precisely the saddle-point equation for the “Matrix-model",

Z = 1
N !

∫ N
∏

a=1

dσa

2π
∆2(σa)e

−N
∑N

a=1 W (σa)

=
1
N !

∫ N
∏

a=1

dσa

2π
eN2Se f f ({σa}) ,

(3.17)

where we have a logarithmic Penner-like potential,

W (σ) = q log (σ−σA) + q log (σ−σB) , (3.18)

and therefore,
W ′(σ) =

q
σ−σA

+
q

σ−σB
. (3.19)

∆({σa}) in the above expression is the Vandermonde determinant. The effective action is then
given by

Se f f ({σa}) = −
1
N

N
∑

a=1

W (σa) +
2

N2

N
∑

a<b

log |σa −σb| . (3.20)

We can introduce a density of eigenvalues at any N ,

ρ(σ) =
1
N

N
∑

a=1

δ(σ−σa) , (3.21)

which is expected to become a continuous function with support in a compact region of the
complex plane in the large N limit. The saddle-point equation then becomes,

1
2

W ′(σ) = P

∫

C
dσ′

ρ(σ′)
σ−σ′

. (3.22)
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We can interpret this problem as a system of N classical charged particles (or N eigenvalues
of the matrix model) on the plane moving under the Penner-like external potential (3.18) and
logarithmic Coulomb repulsion between them. Such analogies in the context of solutions of
the scattering equations have already been mentioned in [14,15].

For large value of q, the external Penner-like potential dominates and the eigenvalues tend
to localize at the minimum value σ∗ of the of the potential. But as q decreases, the Coulomb
repulsion will force them to spread over a compact support C. In section 4-5, we will further
see a transitions in the patterns of C on the plane depending on the values of q.

Spectral Geometry

Interestingly we can find explicit solutions of the scattering equations written as the saddle-
point equations in the corresponding matrix model in the large N limit. Penner-like Matrix
models have appeared several times in the past [27–29]. The entire solution to our saddle-
point equations is encoded in the spectral curve, defined below. A different method for solving
a similar problem using the loop equation has been worked out in [1]. We first define the
resolvent via

w(z) =
1
N

N
∑

a=1

1
z −σa

=

∫

C
dσ

ρ(σ)
z −σa

. (3.23)

Importantly we can read off the density of eigenvalues on C from this resolvent

ρ(λ) = −
1

2πi
[w(λ+ iε)−w(λ− iε)] . (3.24)

We note that w(z) has the following asymptotic behaviour

w(z)∼
1
z

, z→∞ . (3.25)

The saddle-point equation (3.22) becomes a Riemann-Hilbert problem of determining w(z)
from

W ′(σ) = −[w(σ+ iε) +w(σ− iε)] , σ ∈ C . (3.26)

The solution for this problem [25] yields

w0(z) =
1
2

∮

C

dw
2πi

W ′(w)
z −w

√

√

√

√

2
∏

k=1

z − ak

w− ak
. (3.27)

With our logarithmic potential, we have extra poles at w = {zi} from W ′(w) along with at
w= z in the integrand of (3.27). We note that the nature of the potential W ′(w)∼ 1

w removes
any pole at infinity coming from the integrand. Thus

w0(z) =
1
2



W ′(z)−
B
∑

i=A

q
(z −σi)

√

√

√

√

2
∏

k=1

z − ak

σi − ak



 . (3.28)

The full “quantum"-corrected spectral curve is defined in terms of resolvent w0(z) as,

y(z) =W ′(z)− 2 w0(z) . (3.29)

The spectral curve is thus simply given by,

y(z) =
B
∑

i=A

q
(z −σi)

√

√

√

√

2
∏

k=1

z − ak

σi − ak
. (3.30)
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In terms of the spectral curve (3.24) becomes

ρ(λ) =
1

4πi
[y(λ+ iε)− y(λ− iε)] . (3.31)

i.e, ρ(λ) is the discontinuity of y(z) across the branch cut(s) C in between the branch-points
a1 and a2.

The branch-points can be determined from imposing the asymptotic behaviour (3.25) of
w0(z)∼

1
z as z→∞,

B
∑

i=A

∮

C

dw
2πi

wn W ′(w)
Ç

∏2
k=1(w− ak)

= 2δn,1 . (3.32)

This gives two conditions on {a1, a2}:

fA+ fB = 0 ,

fAσA+ fBσB = 2q− 2 .
(3.33)

where,
fA =

q
p

(σA− a1)(σA− a2)
, fB =

q
p

(σB − a1)(σB − a2)
. (3.34)

We can also rephrase those two constraints in (3.33) as,

fA =
2q− 2
σA−σB

, fB =
2q− 2
σB −σA

. (3.35)

Using these, the spectral curve simplifies (3.30) to,

y(z) = (2q− 2)

p

(z − a1)(z − a2)
(z2 + 1)

. (3.36)

This is the equation of a complex curve of genus zero. Actually solving (3.33), we can deter-
mine a1 and a2

a1 = −a2 =

√

√ q2

(1− q)2
− 1 := c . (3.37)

Denoting

α=

√

√

�

�

�

q2

(1− q)2
− 1

�

�

� , (3.38)

we note that

c = α ∈ R+ for q >
1
2

,

c = iα ∈ iR+ for q <
1
2

.
(3.39)

Thus the branch points rotates by 90◦ from (α,−α) to (iα,−iα) as we tune q > 1
2 to q < 1

2
respectively. This is the key mechanism for transitions in the graphs discussed further in the
next few sections.
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4 Localization on the graphs

In the previous section we have solved the scattering equation in the large N limit in terms the
spectral curve (3.36). In this section, this spectral curve will be shown to define the Strebel
differential on the sphere with three punctures and so the solutions/eigenvalues of the matrix
model localize along the critical Strebel graphs depending on different values of q. For a brief
introduction to the basic results of Strebel differential, look at appendix A.

The spectral curve (3.36) defines a quadratic differential on the three punctured Riemann
sphere (where σa lives),

φ(z)dz2 = −
1

4π2
y2(z)dz2 = −

(1− q)2

π2

(z − a1)(z − a2)
(z − i)2(z + i)2

dz2 , (4.40)

which has three double poles at z = −i,+i and ∞ and two zeros at z = a1, a2. The pole at
z =∞ can be understood from the change of variables z = 1

η

φ(z)dz2 = −
(1− q)2

π2

(1− a1η)(1− a2η)
η2(η2 + 1)2

dη2 , (4.41)

which has an explicit double pole at η= 0.
We can read off the corresponding residues from (3.30) and (4.41) as

∮

A

Æ

φ(z)dz = q,

∮

B

Æ

φ(z)dz = q, and

∮

C

Æ

φ(z)dz = 2(1− q) , (4.42)

which are real and positive for q < 1. We will have three distinct cuts of φS(z) γ1,γ2 and γ3
connecting a1 and a2 on S2. Using (3.31)

1
4πi

∮

γi

y(z)dz =

∫

γ

dzρ(z) = lγ . (4.43)

Again

lγ =

∫

γ

Æ

φ(z) dz . (4.44)

choosing a branch of
p

φ(z) where the lengths are positive as indicated by the purple arrows
in figure 5.5.

Thus the lengths between a1 and a2 with the metric
p

φ(z) dz counts the fraction of eigen-
values localized there, hence are always real and positive. The quadratic differential (4.40)
thus defines the unique Strebel differential on the sphere with three marked points A, B and
C with residues at these points as q, q and 2(1− q) respectively. In fact, putting

(L(−i), L(i), L(∞)) = (q, q, 2− 2q) , (4.45)

in the generic form of the Strebel differential with three punctures in (A.89):

q =
1

4π2

−L2
(∞)z

2 − 2i[L2
(i) − L2

(−i)]z + 2[L2
(i) + L2

(−i)]− L2
(∞)

(z − i)2(z + i)2
dz2 ,

we can readily get back (4.40).
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(a)

(−i) (+i)
γ1

γ2 γ3

(b)

(−i) (+i)

γ1
γ2 γ3

(c)

(+i)(−i) γ1

γ2

γ3

(d)

(−i) (+i)γ1

γ2

γ3

Figure 4.4: Four kinds of Strebel graphs with three punctures depending on the dif-
ferent values of (L(−i), L(i), L∞).

Strebel graphs on CP1 with three punctures

We will take a detour on the Strebel graphs with three punctures before coming back to our
main topic of localization of eigenvalues in section 5. Depending on the values of the 3-tuple
(L(−i), L(i), L(∞)) of the residues of the Strebel differential, there can be four kinds of Strebel
graphs with three punctures [31] as shown in Fig. 4.4. We first determine different ranges of
residues where the graphs fit in. In all four cases studied below, we have chosen a branch of
p

φ(z) such that the lengths of the horizontal trajectories are positive. In the first figure (a),

lγ1
+ lγ2

= L(−i) (around −i) ,

lγ2
+ lγ3

= L(i) (around +i) ,

lγ3
+ lγ1

= L∞ (around∞) .
(4.46)

There is no inequality among L(−i), L(i) and L(∞) here. But positivity of the lengths imply

q < 1. (4.47)

In the seconnd figure (b),

lγ1
= L(−i) , lγ3

= L(i) and 2 lγ2
+ lγ1

+ lγ3
= L(∞) . (4.48)

This implies
L(∞) > L(−i) + L(i) . (4.49)

Putting the values of the residues (4.45) for our set-up, this graph corresponds to

q <
1
2

. (4.50)

In the third figure (c),

lγ1
= L(+i) , lγ1

+ 2lγ2
+ lγ3

= L(−i) and lγ3
= L(∞) . (4.51)
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i.e
L(−i) > L(i) + L(∞) .

Similarly in the last figure(d),
L(i) > L(−i) + L(∞) .

In our set-up, these two graphs correspond

q > 1 . (4.52)

We end up with two possible graphs for different domains of q: 0 < q < 1/2, 1
2 < q < 1. We

will also comment on the case q > 1 in the following.

5 Transitions between graphs

We can find a diagnosis for the above mentioned transitions of the Strebel graphs, in our
scattering kinematics. From (3.16) and (2.13), C is outgoing for

q > 1−
1
N

. (5.53)

So, in the large N limit, the particle C is always incoming in the domain 0 < q < 1 (except in
the domain (1− 1

N , 1) which is not visible in the strict limit), while it is outgoing for q > 1.

q ≷ 1 ⇔ C outgoing/incoming . (5.54)

For q < 1, the energies of the incoming particles

EA = EB = E , EC = (Nk0 − 2E) . (5.55)

Hence

EA+ EB − EC = N(ε− k0) = N
s

k0

�

q−
1
2
+

1
2N

�

(5.56)

In the large N limit, we have the following correspondence in the transition at q = 1/2,

q ≷
1
2
⇔ EA+ EB ≷ EC . (5.57)

Next we outline a detailed discussion of these phases in the following.

1
2 < q < 1 case:

Here the zeros of the Strebel differential (3.37) are at (+α) and (−α), with α ∈ R+, which
clearly fits in with the first graph (a) in Figure 4.4. Solving the equations in (4.46) for the
Strebel lengths in the graph type (a),

lγ1
= lγ3

= 1− q and lγ2
= 2q− 1 . (5.58)

Hence N solutions of the scattering equation localize in three cuts γ1, γ2 and γ3 on the sphere
with (N − Nq), (N − Nq) and (2Nq − N) in numbers respectively. Note that for q < 1

2 , lγ2

becomes negative and this graph don’t naturally extend in such domain.
As clear from the Fig. 5.5, σA, σB and σC attract N punctures along the homotopically

equivalent Jordon arcs connecting these “charges" A, B, C , making those N punctures to localize
along the critical Strebel graph of this type.
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γ2 γ3γ1

A(−i) B(+i)

C(∞)

a1

a2

Figure 5.5: In the large N limit, for 1
2 < q < 1 the N punctures localize along the

critical Strebel graph which are three cuts of the Strebel differential γ1, γ2 and γ3
between a1 and a2, drawn by orange wavy lines, with the fractions (1− q), (2q− 1)
and (1− q) respectively. This localization is due to the attractive forces of “charges"
A, B and C on those N punctures along the homotopically equivalent Jordan arcs
connecting these charges as shown by the double arrows. The choices of the branches
and directions for three contour integrations in (4.46) are shown by purple arrows.

0< q < 1
2 case:

The zeros of the differential are now rotated and positioned at (+iα) and (−iα) as required
by figure 4.4(b). Solving the equations (4.48) for the second type of graph

lγ1
= lγ3

= q , lγ2
= 1− 2q . (5.59)

Thus the solutions localize as before, along the edges of the Strebel graphs γ1, γ2 and γ3 with
Nq, Nq and N(1− 2q) in numbers respectively.

Since σC has the “charge" 2(1−q), the attractive force by C(∞) is larger compared to the
last case for 1

2 < q < 1.

q > 1 case:

In this case, the residue 2(1−q) of y(z) at the pole at z =∞ is negative and the corresponding
quadratic differential is not a Strebel differential.

It is clear from the matrix model that in this scenario, σC =∞ repels the N eigenvalues,
as its “charge" 2(1− q) becomes negative, while σA = −i and σB = i still continue to attract
them. The resulting configuration takes the shape as in Fig. 5.7, where N punctures localize
in the real axis within [−c, c]

In particular, we can calculate the density of the punctures σa, a = 1, · · · , N in the cut γ2
using eq. (3.31)

ρ (σ) =
q− 1
π

p
c2 −σ2

(σ2 + 1)
, σ ∈ [−c, c] . (5.60)

12

https://scipost.org
https://scipost.org/SciPostPhys.13.1.010


SciPost Phys. 13, 010 (2022)

A(−i) B(+i)

C(∞)

a1 a2

Figure 5.6: In the large N limit, for 0 < q < 1
2 the N punctures localize along the

edges γ1, γ2 and γ3 of the Strebel graph, with fractions q, (1−2q) and q respectively.
As before, three “charges" attract those punctures along the Jordan arcs connecting
them.

γ2

A(−i) B(+i)

C(∞)

a1

a2

Figure 5.7: For q > 1, the N punctures localize, in the large N limit, on the single cut
between a1 and a2 shown by the orange wavy line. Here C repels these N punctures,
while A, B still continue to attract them as in the previous figures.

6 Gross-Mende strings and graphs

In this section, we will argue for an explicit relation between the time-component of the classi-
cal space-time trajectory of Gross-Mende strings and the quadratic differentials (or the graphs)
obtained in the last section for critical space-time dimensions; i.e with N = 9 or 25. As men-
tioned in appendix B, in the Gross-Mende limit, p2

i ≈ 0 and thus we can directly construct our
scattering set-up of section 2 for these strings.
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Figure 6.8: Spacetime trajectory of Gross-Mende scattering with 12 strings in d=10.

Time component of the string trajectory

The classical space-time trajectory corresponding to Gross-Mende scattering with n strings
where one worldsheet insertion has been set at∞, is given by [17]

Xµ(z) = i
n−1
∑

i=1

kµi Gm(z, zi) , (6.61)

where Gm(z1, z2) is defined in appendix B. Note that (6.61) is not reparametrization invariant.
At the tree level, the explicit form becomes

Xµ(z) = i
n−1
∑

i=1

kµi log |z − zi| . (6.62)

In the neighbourhood of the worldsheet insertions, we can use the local co-ordinate z−zi ≈ e−t

with t →∞, so that the classical worldsheet near z ∼ zi becomes

Xµ(z)∼ kµi t z ∼ zi . (6.63)

i.e incoming or outgoing strings sweep out a rectilinear motion like a free particle with mo-
mentum kµi .

It is interesting to ask the interrelation between the graphs and any component of these
space-time trajectories. In fact, a priori it is not very clear from the above expression (6.62)
that such a connection is explicit, since we have momenta kµi as the coefficients of the log-
arithms instead of the Mandelstam invariants present in the effective action (3.20) which
directly corresponds to the matrix model and the graphs. But we will see, such a connec-
tion rather astonishingly comes from the full data of our kinematics. First writing the zeroth
component of Xµ(z),

−i X 0(z) = −
1
4

Nε(log |z|+ log |z − 1|) + k0
N
∑

a=1

log |z − za| . (6.64)

Now we use the special constraint (2.13) of our kinematics:

2
(k0)2

s
= 1−

1
N

, (6.65)
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which comes from the simplex-structure of the momenta of scattered particles to rewrite X 0(z),
in the leading order of N , as

−i X 0(z)
4k0

Ns
≈ −q(log |z|+ log |z − 1|)

︸ ︷︷ ︸

W (z)

+
2
N

N
∑

a=1

log |z − za|

= −
∫ z

y(z′)dz′ ,

(6.66)

where we have used the relation
∫ z

y(z′)dz′ =W (z)−
2
N

N
∑

a=1

log |z − za| , (6.67)

up to an additive constant due to unspecified lower limit of the integration. Thus

X 0(z) =
πNs
2k0

∫ z
Æ

φ(z′) dz′ . (6.68)

This explicates the direct connection between X 0(z) of the Gross-Mende strings and the graphs
obtained from the Penner-Matrix model.

Scattering amplitude

We can also relate the scattering amplitude itself with the graphs, since the electrostatic energy
in (B.93) for genus zero is simply linked to the effective action of the matrix model (3.20) Se f f ,

α′
n
∑

i< j

ki · k j log |zi j|=
α′

2
Ns

�

−q
N
∑

a=1

log |za − i| − q
N
∑

b=1

log |zb − i|+
2
N

N
∑

a<b

log |za − zb|

�

=
α′

2
sN2 Se f f ({za}) . (6.69)

Thus the scattering amplitude computes exponential of the matrix-model potential1

An ∼ exp
�α′

2
sN2 Se f f ({z∗a}

�

. (6.70)

We can re-express Se f f making a connection with the spectral curve

∂ Se f f ({zc})
∂ za

= −
1
N

y(za) , (6.71)

and thus using y(z) = 2πi
p

φ(z) ,

Se f f ({z∗a}) = −
1
N

N
∑

a=1

∫ za

y(z)dz

= −2πi

∫

graphs

dλρ(λ)

∫ zλ
Æ

φ(z) dz ,

(6.72)

up to additive constants, where {zλ} are the points on the graph. This shows the connection
of the amplitudes An with the graphs in the leading order of N .

1Here we are not considering the phase factors in (B.99), coming from the Stokes phenomenon in the string
amplitudes.
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7 Discussion

With our very special scattering experiment, we could find the complex solutions of the scat-
tering equations, to localize on the graphs, which then undergo transitions while varying the
kinematic parameter q = εk0/s. Next we alluded possible connection of these with the Gross-
Mende strings for the critical space-time dimensions. Nevertheless, there are a number of
problems to be better understood to either enrich or to apply our treatment in this note.

CHY Scattering Amplitude

The Cachazo-He-Yuan formula [2–4] for tree-level scattering amplitude of massless particles,

An =

∫
∏n

i=1 dσi

vol SL(2,C)

∏

i

δ′(ki · P(σi))In(σ, k,ε) , (7.73)

where, P : CP1→ Cd is a meromorphic map from the Riemann sphere into momentum space,

P(σ) =
n
∑

i=1

ki

σ−σi
, (7.74)

and so

An =

∫
∏n

a=1 dσa

vol SL(2,C)

∏

a

′
δ





∑

b(6=a)

sab

σa −σb



 In(σ, k,ε) . (7.75)

Thus the moduli integral over the punctured Riemann sphere localizes on the support of the
solutions of the scattering equations:

An =
∑

σ∈graph

In(σ, k,ε)
J(σ, k)

. (7.76)

It will be interesting to see how the localization of the punctures on the critical Strebel graphs
would help to evaluate the above expression (7.76).

Finite N solution from the roots of the orthogonal polynomials

In [15], Kalousios considered a special kinematics of scattering of (N + 3) particles,where

sab = −1; saA, saB < 0 ,

and it was then shown that the N solutions to the scattering equations are precisely the roots
of the Jacobi polynomial P(α,β)

N (z). We have summarized his main arguments in the following:

Jacobi polynomial P(α,β)
N (z) obeys the differential equation

(1− x2)y ′′(x) + (β −α− (α+ β + 2)x)y ′(x) + n(n+α+ β + 1)y(x) = 0 , (7.77)

and it has N roots x j for j = 1, ..., N in the interval [−1, 1]

P(α,β)
N (x) = k

n−3
∏

j=1

(x − x j) . (7.78)

It then follows that
∑

i(6= j)

1
x i − x j

= −
(α+ 1)/2
(x i − 1)

−
(β + 1)/2
(x i + 1)

, i = 1, · · · , N . (7.79)
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We can then clearly identify xa with σa and saA = −
α+1

2 , saB = −
β+1

2 for a = 1, · · · , N . One
key difference with our set up lies in the fact that the above construction of Jacobi polynomials
works only for α,β > −1 i.e saA, saB < 0.

It would be very interesting if we can find some judicious orthogonal polynomials applica-
ble in the analogue of the above restricted regime α,β ≤ −1 to explicitly find the N punctures
in our set up. We should note that the finite N partition function for Penner-like matrix model
(what we have) has been explicitly found in [29].

Non-critical strings in the Gross-Mende limit

For non-critical strings, we will have extra contributions from the Liouville sector to the scat-
tering amplitudes with external momenta {ki}

AS2
∼
∫ n
∏

i=1

d2zi

m
∏

a=1

d2wa exp [−V(zi , wa)] , (7.80)

where the “electrostatic energy" V , similar to (B.93), is given by (with α′=2)

V(zi , wa) = −
n
∑

i, j(i< j)=1

(ki · k j − βiβ j) log |zi − z j|2 +
n
∑

j=1

m
∑

a=1

αβ j log |z j −wa|2

+α2
m
∑

a,b(a<b)=1

log |wa −wb|2 . (7.81)

For definitions of α,β j , see [20]. We mention the structural similarity of the last two terms in
(7.81) with the potential of a generic Penner-like matrix model, with suitable values/scaling
of {α,β j}. It is, in fact, in the same spirit of [27], where Penner matrix models appear in the
context of Toda theories. It will be interesting to unravel any natural connection with Strebel
graphs, for the non-critical strings in the Gross-Mende limit, following our analysis in this note.
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A Strebel differential

Let Mg,n be the moduli space of the Riemann surfaces with genus g and n punctures. The
construction of Strebel differential affords us to write an explicit atlas of Mg,n. In this section,
we will outline some basic facts about Strebel differential which are relevant for this paper.
For more details, see for example [30–33], we will closely follow [32].

Meromorphic quadratic differential

A meromorphic quadratic differential q in any complex coordinate chart parameterised by z,
on a Riemann surface Σ takes the form φ(z)dz2, where φ(z) is a meromorphic function of z.
Under any holomorphic change of coordinates w= w(z),

eφ(w) = φ(z(w))
�

dz
dw

�2

. (A.82)
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We can define a locally flat metric with this quadratic differential

ds2 = |φ(z)| dzdz̄ , (A.83)

which is well defined away from the poles and zeros of q.

Horizontal and vertical trajectories

We can define two kinds of curves γ(t), t ∈ (a, b) ⊂ R on Σ classified as

• Horizontal trajectory: φ(γ(t))
�

dγ(t)
d t

�2
> 0 ∀ t ∈ (a, b) ,

• Vertical trajectory: φ(γ(t))
�

dγ(t)
d t

�2
< 0 ∀ t ∈ (a, b) .

The collection of all horizontal and vertical trajectories foliate Σ except at the poles and zeros
of the quadratic differential. In the neighbourhood of any regular point z0 onΣ, we can choose
a canonical coordinate

w(z) =

∫ z

z0

Æ

φ(z) dz , (A.84)

so that q = (dw)2. It is then easy to see that the horizontal trajectories near z0 are parallel

Figure A.9: In the neighbourhood of any regular point of Σ, the horizontal and ver-
tical trajectories form a rectangular grid like in C.

lines of the real axis
γh(t) = t + ic ,

and the vertical trajectories are those parallel to the imaginary axis

γv(t) = i t + c ,

for every c within that neighbourhood.
They behave quite differently though near the poles and zeros:

1. Near a zero of order m at 0, q = zmdz2 (up to multiplicative constants), the (m+2) half
rays

(γh)k(t) = t exp
�

2πik
m+ 2

�

, t ∈ (0,∞) , for each k = 0, · · · , m+ 1 , (A.85)

form the horizontal trajectories with one end at z = 0. Similarly the (m+ 2) half rays

(γv)k(t) = t exp
�

2πik+πi
m+ 2

�

, t ∈ (0,∞) , for each k = 0, · · · , m+ 1 , (A.86)

give the vertical trajectories.
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Figure A.10: Horizontal (solid line) and vertical (dashed) trajectories near a zero of
order one q = z (dz)2.

2. Near a double pole at 0, q = − L2

(2π)2
� dz

z

�2
, cocentric circles with centers at 0 form the

horizontal trajectories
γh(t) = r exp i t, t ∈ R, r > 0 , (A.87)

while the emergent half-rays from 0

γv(t) = t exp(iθ ) t > 0 ,θ ∈ [0,2π) , (A.88)

gives the vertical trajectories.

Figure A.11: Horizontal (solid line) and vertical (dashed) trajectories near a double

pole: q = − L2

(2π)2
� dz

z

�2
.

It is important to note that all the cocentric horizontal trajectories (A.87) have the equal cir-
cumferences L with the flat metric (A.83). Also the distance from any such trajectory to the
pole is infinite. Near a double pole of the quadratic differential, the geometry of the Riemann
surface with the Strebel metric (A.83) takes the form of a semi-infinite cylinder with horizontal
trajectories forming level curves (or cross sections of the cylinder) and the vertical trajectories
lie parallel to the axis of the cylinder.

A generic horizontal trajectory of any quadratic differential roams around the Riemann
surface without closing on itself. But for a special kind of quadratic differentials having only
double poles with real and positive residues, all horizontal trajectories are closed except for
those which connect zeros of the differential. These compact horizontal leafs foliate the surface
into maximal ring domains whose boundaries are formed by non-compact trajectories between
the zeros. Such a differential is called a Strebel differential. More concretely, the interesting
result [30] of Strebel states,

Strebel’s Theorem

For every smooth Riemann surface (Σg , p1, · · · , pn) of genus g with n marked points (punc-
tures) p1, · · · , pn such that 2g + n > 2 and given an ordered n-tuple (L1, · · · , Ln) ∈ Rn

+, there
is a unique quadratic differential q = φS(z)dz2, known as Strebel differential, such that

19

https://scipost.org
https://scipost.org/SciPostPhys.13.1.010


SciPost Phys. 13, 010 (2022)

1. q is holomorphic on Σ\{p1, · · · , pn};

2. q has double pole at any of the marked points {p1, · · · , pn};

3. The collection of all non-compact horizontal trajectories is a closed subset of Σ of mea-
sure zero;

4. Every compact horizontal trajectory is a closed loop Ai centered at pi , such that
∮

Ai

p
q = Li ,

(choosing the branch of
p

q so that the integral has a positive value with respect to the
positive orientation of Ai).

Figure A.12: Horizaontal trajectories of a Strebel differential on a Riemann sphere
with four punctures. Black dots and crosses denote the (double) poles and zeros of
the Strebel differential. The grey and colored lines describe the compact and non-
compact horizontal trajectories respectively. The colored lines form a critical Strebel
graph with six edges. This figure is taken from [1].

Let ΩS be the set of all Strebel differentials on (Σg , p1, · · · , pn). We listed some examples
in the following:

Examples

1. With (g, n) = (0, 3) and Σ= CP1,

q =
1

4π2

−L2
(∞)z

2 − 2i[L2
(i) − L2

(−i)]z + 2[L2
(i) + L2

(−i)]− L2
(∞)

(z − i)2(z + i)2
dz2 , (A.89)

where we have fixed three marked points p1, p2 and p3 at (−i),+i and∞ respectively,
using the Mobius transformation on CP1. We note that this is the unique Strebel differ-
ential, or dimΩS=0.

2. With (g, n) = (0, n) and Σ= CP1,

q = −
1

4π2

dz2
∏n

j=1(z − p j)

 

n
∑

i=1

L2
pi

∏

j(6=i)(pi − p j)

z − pi
+

n−4
∑

j=0

c jz
j

!

, (A.90)
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where ci i = 0, · · · , (n− 4) are arbitrary complex numbers, i.e dimΩS = n− 3.
The above form can be realized remembering the following facts: assuming q doesn’t
have any pole at∞, q/(dz)2 must be a rational function with n double poles and should
behave asO(1/z4) as z→∞ (since there is no pole at∞). Thus g(z) = q

dz2

∏n
i=1(z−pi)2

must be a polynomial of maximum degree (2n− 4) such that g(pi) = −L2
i . The dimen-

sion of the space of such polynomials=dimΩS = (2n− 3)− n= n− 3.

B Gross-Mende Strings

In [17, 18], Gross and Mende studied the high energy fixed angle regime of string scattering
amplitudes of arbitrary loop, primarily motivated to discover the analogs of short distance
physics like operator product expansion, renormalization group in string theory. See [34] for
recent progress on the high energy behaviour of scattering amplitudes involving highly excited
strings (in contrast to the light strings in Gross-Mende approach).

The g-loop scattering amplitude of tachyons has the following path-integral

Ag ∼
∏

i

∫

d2zi

Æ

g(zi)

∫

[dm]exp
�

−
∑

ki · k jGm(zi , z j)
�

, (B.91)

where [dm] encodes the measure in the moduli space m with all other factors corresponding to
the Beltrami differentials and holomorphic differentials for the lacplacian∇2 on the worldsheet
and Gm(zi , z j) is the standard Green function for ∇2:

∇2Gm(zi , z j) = −
2πα′
p

g
δ2(zi , z j) . (B.92)

In the high energy, fixed angle regime, the problem reduces to find the extrema of the “elec-
trostatic energy"

V(ki , zi , m) =
∑

i< j

ki · k j Gm(zi , z j) , (B.93)

of 2d Minkowski charges ki at zi on a Rieman surface Σg with moduli parameter m, where
the surface can change its shape without any energy cost. Since α′→∞, external states are
massless: k2

i ≈ 0, which are important for our analysis in section 6. Also with these massless
conditions, V in (B.93) becomes SL(2,Z) invariant of {zi} [8].

Though we only discussed bosonic string throughout this section, the high energy be-
haviour of string amplitudes are identical for superstrings as well. In particular the exponential
behaviour in (B.91) is common to any string theory.

Toy example

We can understand the basic treatment in a toy model of tree level amplitudes of four tachyons
in the closed string theory. Explicitly it has the standard expression [23]

AS2
(k1, k2, k3, k4)∼

Γ (−1+ α′s
4 ) Γ (−1+ α′ t

4 ) Γ (−1+ α′u
4 )

Γ (2− α′s
4 ) Γ (2−

α′ t
4 ) Γ (2−

α′u
4 )

, (B.94)

where s = (k1 + k2)2, t = (k1 + k3)2 u = (k1 + k4)2 and in the center of mass frame,
s = −E2, t = (E2 + 16/α′) sin2(θ/2), u = (E2 + 16/α′) cos2(θ/2) with E being the center-
of-mass energy and θ is the angle between the particle 1 and 3. Note that s+ t +u= +16/α′.
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In the large E and fixed θ limit (or equivalently large s and fixed t/s), we can use Stirling
approximation for Gamma functions to readily get

AS2
∼ exp

�

α′

2
(s log(sα′) + t log(tα′) + u log(uα′))

�

. (B.95)

We can argue the above form by a saddle-point calculation as well, because in a different
approach, the scattering amplitude comes from the worldsheet integral

AS2
∼
∫

C
d2z4 |z4|α

′u/2−4 |1− z4|α
′ t/2−4 , (B.96)

where three other insertion points on the worldsheet are fixed by the Mobius transformation
on the sphere: z1 = 0, z2 = 1, z4→∞. In the large α′ limit (which is the same as high-energy
fixed angle limit, since sin2(θ/2) = − α′ t

α′s−16) we can perform a saddle-point analysis of the
exponential

−
α′u
2

log |z4| −
α′ t
2

log |1− z4| , (B.97)

with respect to z4, to obtain the critical values

|z∗4|= −
u
s
|1− z∗4|= −

t
s

, (B.98)

so that the saddle-point value AS2
(z∗4) reduces to the same expression as (B.95).

We should mention that this simple-looking saddle-point analysis is, in fact, not correct; in
particular, there is a Stokes phenomenon2 [21] involved in (B.94), where the asymptotic limit
of (B.94) depends on the direction of approaching α′ → ∞ limit. Clearly we will have an
infinite number of poles if any of R(s),R(t),R(u) becomes less than 4/α′ in approaching the
high-energy fixed angle limit. The way to relaise this from (B.96) is to note that the integrand
is really defined on an infinite-sheeted surface ÝM0,4, which is the universal cover of the moduli
space M0,4 = {z ∈ CP1|z 6= 0, 1,∞} with saddle points from each sheet. Interestingly these
infinite number of saddle-contributions can be resummed only to yield an oscillatroy factor
[19,22]

AS2
∼

sin(πα′ t) sin(πα′u)
sin(πα′s)

exp
�

α′

2
(s log(sα′) + t log(tα′) + u log(uα′))

�

. (B.99)

In this note, we will mainly be interested in the second exponential part.

For genus zero

The worldsheet correlators for genenric vertex operator insertions are given by the following
form, which is further required to integrate over the moduli of the worldsheet (for sphere these
are simply the insertion points) [23],

� n
∏

i=1

�

eiki ·X (zi ,z̄i)
�

r

p
∏

j=1

∂ Xµ(z′j)
q
∏

k=1

∂̄ X νk(z̄′′k )

�

S2

= iCX
S2
(2π)dδd(

∑

i

ki) exp
�

α′
n
∑

i< j

ki · k j log |zi j|
�

×
� p
∏

j=1

[yµ j (z′j) + qµ j (z′j)]
q
∏

k=1

[ ỹνk(z̄′′k ) + q̃νk(z̄′′k )]

�

,

(B.100)

2I thank Sebastian Mizera for pointing this out to me.
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where

yµ(z) = 〈∂ Xµ(z)
n
∏

i=1

eiki ·X (zi)〉= −i
α′

2

n
∑

i=1

kµi
z − zi

,

ỹµ(z̄) = 〈∂̄ Xµ(z̄)
n
∏

i=1

eiki ·X (z̄i)〉= −i
α′

2

n
∑

j=1

kµi
z̄ − z̄i

,

(B.101)

and qµ = ∂ Xµ − yµ.
In α′→∞ limit, we get the saddle-point equations

n
∑

j(6=1

ki · k j

zi − z j
= 0 for i = 1, · · · , n , (B.102)

which are known as scattering equations. We also note that the Green function for g = 0 is

G(zi , z j) = −
α′

2
log |zi j|2 . (B.103)

For higher genus

We will closely follow [17] in the following discussion. The scattering amplitude at g-loop
can be approximated by a sequence of (g+1) elastic scatterings with the same center-of-mass
energies s and momentum transfer −t i , i = 1, · · · , g + 1

Ag ≈Max

�

s−g
g+1
∏

i=1

At ree(s, t i)

�

, (B.104)

where we have the factor s−g from g-body phase space with further constraints
∑g−1

i=1

p

−t i ≤
p
−t. Unlike power-law fall-off for field theory, the string amplitudes damps off

exponentially: exp[−s f (φ)], φ being the scattering angle for the 4 particle process. In the
small scattering regime, if f (φ) behaves as φp, we confront with the following extremization
problem

s−g exp[−s
g+1
∑

i=1

φ
p
i ] with

g+1
∑

i=1

φi ≤ φ = 2
Æ

−t/s . (B.105)

The maximum is achieved when all φi s are equal to φ/(g + 1), so that, in the small φ ap-
proximation

Ag ≈ A1/(g+1)
tree . (B.106)

This also implies that high energy behaviour of string scattering is dominated by hard scatter-
ing, i.e the intermediate momentum transfers are large, so that the scattering integrals have a
saddle-point, which we can, in fact, determine at each order in the perturbation theory.

Let’s digress a bit into the higher genus surfaces. A higher genus surface with ZM auto-
morphism has the form

y M =
n
∏

i=1

(z − zi)
ni , (B.107)

where ni are relatively prime to M , so that it represents a M -sheeted Riemann surface with
n branch points at ai each with order (M − 1). From Riemann-Hurwitz formula, the genus of
the surface is simply

g = 1−M +
1
2

n
∑

i=1

(M − 1) =
1
2
(M − 1)(n− 2) . (B.108)
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Now we place the charges ki , i = 1, · · · , n on the branch points which are separated by 1/M
times a period. Since any of the M sheets perceives a branch point in the same way, the electric
field produced by these charges

Eµ = 1
M

Eµ1 =
1
M

n
∑

i=1

pµi
z − zi

, (B.109)

where Eµ1 is the electric field if all those charges would be placed on a single sheet. The
electrostatic energy in this configuration becomes

VM =
1
M

V1 = −
1

2M

∑

i< j

ki · k j log |zi − z j| . (B.110)

Thus these ZM curves have the correct exponential behaviour of being M -th root of the tree dia-
gram, similar to (B.106), and they have higher symmetry like ZM , which is somewhat expected
for the high energy strings. With such arguments, [17, 18] alluded them to be the dominant
saddle-point contribution for genus g = 1

2(M − 1)(n− 2) diagram of the string scattering.
In particular, an interesting lesson from this discussion is the applicability of the scatter-

ing equations (2.9) for higher genus string amplitudes as well, as obtained from extremizing
(B.110).
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