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Abstract

We numerically study the relaxation of correlation functions in weakly perturbed in-
tegrable XXZ chain. The decay of the spin-current and the energy-current correlations
at zero magnetization are well described by single, but quite distinct, relaxation rates
governed by the square of the perturbation strength g . However, at finite magnetization
a single correlation function reveals multiple relaxation rates. The result can be un-
derstood in terms of multi-scale relaxation scenario, where various relaxation times are
linked with various quantities which are conserved in the reference integrable system.
On the other hand, the correlations of non-commuting quantities, being conserved at
particular anisotropies ∆, decay non-exponentially with characteristic time scale linear
in g .
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1 Introduction

Integrable quantum many-body systems attract a lot of attention due to their unique properties,
as well as due to development of new analytical and numerical tools to deal with them (for
a recent review see Ref. [1]). The crucial role in the behavior of such systems is played by
the presence of extensive number of local and/or quasilocal conserved quantities (CQ), which
have important consequences for the (lack of) relaxation of observables and for the transport
properties. The latter consequences are formally expressed via the Mazur bounds which relate
the long-time correlations (stiffness) of observables with their projections on the local CQ
(charges) [2, 3]. However, the microscopic models are integrable only for fine-tuned sets of
parameters, while more realistic systems might be described in terms of nearly integrable
(NI) models which contain small but non-vanishing perturbation that breaks the integrability
[4, 5]. An important question concerns the details of the integrability breaking, in particular
whether the asymptotic dynamics becomes consistent with the generic dissipative diffusive-
type transport [6–8]. So far, the properties of NI models are better understood at intermediate
time-scales, when the dynamics resembles that of integrable models, the phenomenon known
as prethermalization [9–11].

The problem of asymptotic dynamics of NI models at long time scales [12,13] appears to
be more complex. It has been argued that the time evolution can be accurately described as the
generalized Gibbs enseble [14, 15] with the time-dependent Lagrange parameters [16]. Sev-
eral analytical and numerical studies have demonstrated that breaking of integrability leads to
exponential relaxation of typical observables and that the corresponding relaxation rates scale
quadratically with the strength of the perturbation [12, 17–20]. Description of NI models
within the framework of generalized hydrodynamics (GHD) [21–25] seems also demanding,
since the generic integrability-breaking processes involve large momenta transfers [26, 27].
Nevertheless, recent results suggest that arbitrarily weak perturbation applied to a macro-
scopic integrable system restores the generic chaotic (dissipative) dynamics [28]. Still, more
detailed understanding or even theoretical analysis of the relaxation of different quantities in
NI systems is mostly lacking so far.

In this work we numerically study relaxation of several operators in a NI XXZ model, em-
ploying the microcanonical Lanczos method (MCLM) [29–31] which allows to reach long-
enough times even for NI model. In particular, we confirm that both spin-current and energy-
current decay exponentially in time with relaxation rates that scale quadratically with the
strength of perturbation. However, the energy-current relaxation rate turns out to be much
smaller than the relaxation rate for the spin current. The presence of distinct relaxation times
is consistent with the predictions of GHD [26, 27]. This result can be simply explained by
single (but different for both quantities) local/quasilocal CQ (charges) involved in the relax-
ation process [19]. Still even in this case, a more detailed analysis using the memory-function
indicates a weak contribution of other CQ from the same symmetry sector. Moreover, we can
construct a single observable that clearly reveals multiple relaxation rates or, in other words,
that its relaxation cannot be described by a single exponential function. We confirm the latter
possibility studying relaxation of current correlations in sectors with small magnetization, i.e.,
with non-zero total spin Sz

tot 6= 0. Results in this case can be explained with a projection on the
decay of several CQ with different relaxation times. Furthermore, we find that the relaxation
explicitly depends on the form and the symmetry of the perturbation.

Finally, we study the weakly perturbed XXZ model for the specific values anisotropy pa-
rameters, ∆, when the many-body spectra are macroscopically degenerate. Such degeneracy
in the integrable model allows for additional local CQ which do not commute with Sz

tot or with
other local CQ [32]. It is the case, e.g., for the anisotropy parameter ∆= 0.5 which we use in
the present work. However, the simplest example can be studied for ∆= 1, where S x

tot is con-

2

https://scipost.org
https://scipost.org/SciPostPhys.13.2.013


SciPost Phys. 13, 013 (2022)

served and but does not commute with Sz
tot. Upon introducing a perturbation, the correlation

functions of quantities which do not commute with Sz
tot show - instead of exponential decay

- an approximately Gaussian decay with the characteristic relaxation time that scales linearly
with the perturbation strength.

2 Relaxation of spin and energy currents

We consider the one-dimensional XXZ chain with L sites assuming periodic boundary condi-
tions, with a specific perturbation involving the next-nearest-neighbor interaction

H = H0 + gH ′ , H0 =
∑

i

hi , hi =
J
2

�

S+i S−i+1 + S−i S+i+1

�

+ J∆Sz
i Sz

i+1 , H ′ = J
∑

i

Sz
i Sz

i+2 , (1)

where S±,z are spin-1
2 operators. The model is integrable for g = 0 and the integrability is

broken for g 6= 0. In this section we study the relaxation of the spin current, jσ, as well as of
the energy current, jκ, obtained for the unperturbed system

jσ = i
∑

l,l ′
l[hl ′ , Sz

l ] , jκ = i
∑

l,l ′
l[hl ′ , hl] , (2)

for which we calculate the corresponding normalized current-current correlation functions

Cσ(t) =
〈 jσ(t) jσ〉
〈 jσ jσ〉

, Cκ(t) =
〈 jκ(t) jκ〉
〈 jκ jκ〉

. (3)

We focus on the result for large (infinite) temperature T = 1/β � J . Here, 〈. . . 〉= Tr(. . . )
denotes averaging either over the canonical ensemble with fixed Sz

tot (in Secs. 2-4) or grand-
canonical ensemble (in Sec. 5), and jα(t) = eiH t jαe−iH t . Note that Cσ(t) and Cκ(t) are related
via the Fourier transform to the dynamical spin conductivity, σ(ω) = β〈 jσ jσ〉C̃σ(ω), and the
thermal conductivity, κ(ω) = β2〈 jκ jκ〉C̃κ(ω), respectively.

For the numerical evaluation of the spectral functions C̃α(ω), on systems up to L = 28
sites, we use the MCLM which allows for very high frequency resolution, δω ® 10−3J , and
consequently enables evaluation of Cα(t) up to t ® tmax ∼ 103/J . Reaching large tmaxJ � 1
is crucial to follow the slow relaxation at weak perturbations, g � 1, and to resolve possible
distinct relaxation times. This is achieved within MCLM by using large number of Lanczos
steps ML ∼ 5.104. In the following, we numerically calculate canonical Cα(t), i.e., in sectors
with fixed total spin projections Sz

tot. Large but finite ML also sets the smallest reliable value
of Cα(t)¦ 2.10−3.

As a first step, we establish the range of the perturbation strength, g, which is relevant for
NI systems. On the one hand, g should be small to remain a perturbation but, on the other
hand, g should be sufficiently large so that the effective mean-free path is smaller then the
system size (L ≤ 28). The latter requirement means that the accessible system sizes impose
lower bounds on the accessible values of g. Since we are not able to directly evaluate the mean-
free path, we use the range of parameters for which the decay of the correlation functions
does not reveal any significant L dependence but also exhibits a clear quadratic dependence
on g [12, 19, 20]. Main panels in Fig. 1(a,b) show, respectively, Cσ(t) and Cκ(t) within the
sector Sz

tot = 4 for various g = 0.1− 0.4, whereas the time in the insets is rescaled by g2. For
0.15≤ g ≤ 0.3 we observe a perfect collapse of all curves, whereas the latter collapse is worse
for weaker g indicating that the effective mean-free path becomes larger than the systems size.
Therefore from now on, we set g = 0.15.

In Fig. 2(a) we directly compare the relaxation of spin and energy currents Cα(t) at zero-
magnetization, Sz

tot = 0. Here, H is invariant under the Z2 spin-flip transformation, generated
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Figure 1: Normalized correlation functions Cα(t) for (a) spin current jσ and (b)
energy current jκ, respectively, in Sz

tot = 4 sector, calculated for L = 28 and ∆= 0.5.
Insets: the same as in main panels but with the time t rescaled by the square of the
perturbation strength g2.
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Figure 2: Correlation functions Cα(t) in sectors with various Sz
tot. Dashed curves in

(a) depict exponential fits for α = jσ, jκ at s = Sz
tot = 0, while in (c,d) for s 6= 0 only

long-time fits are presented. Calculated for L = 28, ∆= 0.5, and g = 0.15.

by the parity operator, P =
∏

J (S
+
j +S−j ). Since the spin/energy current is odd/even under this

transformation, P jσP = − jσ and P jκP = jκ, in this sector both currents are mutually orthog-
onal, i.e., 〈 jσ jκ〉 = 0. Consequently, relaxation of both correlations are evidently different. At
longer times, tJ > 100, the decays do not show any clear deviations from simple exponential,
Cα(t) ∝ exp(−t/τ0

α), α = σ,κ, where the upper index in the relaxation times, τs
α, marks

the value of s = Sz
tot. Nevertheless, it is clear that the relaxation of jσ is much faster than

that of jκ, τ0
σ ' 3τ0

κ, confirming that the breaking of integrability leads to multiple distinct
relaxation times, here due to different symmetry sectors involved. The evident differences
are also at short times t. Since jσ is not CQ in the reference H0, there is an incoherent drop
to C0

σ ∼ 0.5 at tJ ∼ O(1), reflecting the nontrivial spin stiffness [3] and finite overlap with
quasilocal CQ [33, 34]. On the other hand, jκ is CQ at g = 0, so one might expect a single
exponential decay in the whole range of t. To good approximation this is indeed the case, but
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there is still some visible deviation at tJ < 100 about which we comment in more detail in
Sec. 3.

More challenging question is whether distinct relaxation rates can be observed in the dy-
namics of a single observable. This might happen when we consider Sz

tot 6= 0 sectors where
the above symmetry arguments do not apply. In Figs. 2(b-d) we show that a departure from a
simple exponential relaxation becomes increasingly visible for Sz

tot 6= 0, when also 〈 jσ jκ〉 6= 0.
Figs. 2(c,d) for Sz

tot = 4,6 confirm that for longest tJ > 500 the relaxation is asymptotically
determined by the same τs

κ for both currents, while Sz
tot = 2 case on Fig. 2(b) is marginal due

to fast decay of Cσ(t) (and the limitation Cσ(t) > 2.10−3). Nevertheless, both correlation
functions, and in particular Cσ(t), reveal a clear deviation from a single-exponential decay.

The modest dependence of τs
κ on s, as extracted from Fig. 2(a-d), is shown in Fig. 3(a).

More importantly, our analysis indicate that one can fit the decay of correlations Cα(t) for
Sz

tot > 0 by a sum of two exponential functions with distinct relaxation rates τs
κ,τs

σ. This is
shown in Fig. 3(b,c) for Cσ(t), but also for Cκ(t) in Fig. 3(d). It is indicative that the fit is
consistent with only two relaxation times for both correlations, i.e., with longer relaxation rate
τs
κ still weakly dependent on s as given in Fig. 3(a), and much faster τs

σ ∼ τ
0
σ which we can

approximate just with the s = 0 result for Cσ(t) in Fig. 2(a).
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Figure 3: (a): Relaxation time for the energy current obtained from long-time fits
marked by dashed lines in Fig. 2. (b,c): Continuous line shows spin-current Cσ(t)
for Sz

tot = 2,4, respectively, while (d) energy-current Cκ(t) for Sz
tot = 4. The results

in (b,d) are fitted by a sum of two exponential functions (dashed, green curves) with
the relaxation times τs

κ as in panel (a), and τs
σ = τ

0
σ. Calculated for L = 28,∆= 0.5,

and g = 0.15.

The above results may serve as a motivation for a simple phenomenological description.
The value of the correlation functions for t →∞ in the integrable model, g = 0, is determined
via the Mazur bound [2,3] by the projections of the studied operators on local/quasilocal CQ
[33–39] Qn, which should be chosen as mutually orthogonal 〈QnQn′〉 ∝ δn,n′ in the canonical
ensemble with fixed Sz

tot. Assuming the completeness (saturation) of the bound, this means
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for considered correlations,

Cα(t →∞) = C0
α =

1
〈 jα jα〉

∑

n

〈 jαQn〉2

〈QnQn〉
, (4)

where the term 〈 jα jα〉−1 arises from normalization in Eq. (3). Eq. (4) is invariant under the
orthogonal transformation of normalized CQ

Qn
p

〈QnQn〉
=
∑

s

�

Ô
�

ns

Qs
p

〈QsQs〉
, (5)

where Ô is arbitrary orthogonal matrix. In NI system, Qn are not any more CQ and decay
with the characteristic times∝ g2. Based on the results in Fig. 3(b-d) and previous numerical
studies in Ref. [19], we conjecture that projections on Qn are essential also for the asymptotic
dynamics in NI models,

Cα(t � J−1)'
1
〈 jα jα〉

∑

n

〈 jαQn〉2

〈QnQn〉
exp

�

−
t
τn

�

, (6)

where τn ∝ 1/g2. It should be, however, stressed that in contrast to Eq. (4) the appropriate
set of Qn in Eq. (6) is not arbitrary, but determined by the perturbation [5,17,27]. A numerical
algorithm for identifying such modes has been discussed in Ref. [19]. It amounts in finding
eigenvector of the matrix MAB = 〈A(t)B〉 calculated in the long-time regime, t � 1, for a set of
local orthogonal operators, A and B. Since the number of local operators supported on M sites
grows exponentially with M , this method is numerically demanding. Additionally, it requires
full diagonalization of the Hamiltonian hence it is applicable only to small systems. Therefore
in this work, we do not attempt to determine relevant Qn in more detail.

However, for Sz
tot = 0 one can assume that one of Qn in Eq. (6) can be well approximated

by jκ (being one of CQ in the reference system), which explains nearly perfect exponential
decay of Cκ(t) in Fig. 2(a), even though a small correction might be needed (as tested in more
detail in Sec. 3). It is well known [3] that in the integrable model (g = 0) the spin-current
stiffness, C0

σ, is nonzero for Sz
tot = 0 provided that ∆ < 1. Since 〈 jσ jκ〉 = 0 for Sz

tot = 0, Qn
that are relevant for the decay time τ0

σ have to be related to the quasilocal CQ [19,33,34,40].
On the other hand, for nonzero Sz

tot, we clearly need at least two distinct relaxation times
τs
κ,τs

σ to fit both decays, Cα(t). The necessity of multiple relaxation times is most evident for
Cσ(t) at Sz

tot = 2,4 presented on Fig. 3(b-c). Upon changing Sz
tot, one has also to modify τs

κ,
as suggested by the results in Fig. 3(a), while the dependence of τs

σ on Sz
tot is less evident, so

we can approximate τs
σ ∼ τ

0
σ. In Fig. 3(d) we show that Cκ(t) can also be well fitted by a sum

of two exponential functions, with the very same relaxation times which are used for fitting
Cσ(t) in Fig. 3(c). This indicates that the same pair of Qn is relevant for the decay of the spin
and the energy currents for Sz

tot 6= 0.

3 Memory-function analysis of the energy-current correlations

It is desirable to have more explicit way to evaluate the long-time decay of correlations, Cα(t),
for chosen perturbations H ′, and in particular a direct expression for relevant relaxation rates
1/τn. Here, it is convenient to follow the Mori formalism [41,42], where one can generally ex-
press the current-correlation relaxation functionφα(ω) in terms of the corresponding memory

6

https://scipost.org
https://scipost.org/SciPostPhys.13.2.013


SciPost Phys. 13, 013 (2022)

functions (MF), Mα(ω),

φα(ω) =
1
L

�

jα
�

�[L−ω]−1
�

� jα
�

=
χα(ω)−χ0

α

ω
=

−χ0
α

ω+Mα(ω)
,

χα(ω) =
i
L

∫ ∞

0

eiω+ t〈[ j†α(t), jα]〉dt , χ0
α = χα(0)> 0 , (7)

where (A|B) = 1/L
∫ β

0 dτ〈AB(iτ)〉. At high temperatures, β → 0, β C̃α(ω) = Imφα(ω) and
χ0
α = β〈 jα jα〉. Knowing numerical result for C̃α(ω) at finite g, one can evaluate (via Kramers-

Kronig relation) the complex φα(ω), extract directly the corresponding complex MF, Mα(ω),
and in particular the dynamical relaxation rate Γα(ω) = Im Mα(ω).

On the other hand, for a NI system one can find an explicit expression in the case where
the current is a CQ in the reference system [17,19]. This is particularly the case for the energy
current, [H0,Q3] = [H0, jκ] = 0. Then, within the lowest order in the perturbation g � 1 one
can approximate MF as

Mκ(ω) =
1
χ0
α

Nκ(ω) , Nκ(ω) = g2(F |[L−ω]−1|F) , F = [H ′, jκ] , (8)

i.e., as the correlation function of the the force F in the unperturbed - integrable system. Eq. (8)
is derived under the assumption that only a single charge Q3 = jκ is relevant for the decay, as
well as that F has no overlap with any of Qn. This can be true for the sector with Sz

tot = 0 and
can be directly tested for operator F for the particular H ′ in Eq. (1),

F = i
∑

i

�

T i+1
i−1 Sz

i

�

Sz
i+3 − Sz

i−3

�

−∆T i+1
i

�

Sz
i+2 + Sz

i−1

� �

Sz
i+3 − Sz

i+2

��

, (9)

with T l
i = (S

+
l S−i +H.c.)/2. Due to the parity symmetry at Sz

tot = 0, the aboveF appears orthog-
onal to known local/quasilocal CQ. We can then evaluate numerically Mκ(ω) as the correlation
of F in the reference H0 system. The MCLM result for Γκ(ω)/g2 at Sz

tot = 0 is presented in
Fig. 4, both as extracted directly via Eq. (7) from C̃κ(ω) for various finite g = 0.1 − 0.4, as
well as by calculating the result from Eq. (8) for the force given in Eq. (9). The overall agree-
ment of perturbation result with the numerically extracted MF Γκ(ω)/g2, (being essentially
g-independent) is very satisfactory in the whole ω regime [see the inset of Fig. 4(a)]. Still,
at low ω/J < 0.4 there appears a visible difference. Partly responsible is the (apparently)
singular contribution in perturbative Γ 0

κ = Γκ(ω→ 0), which seems to indicate a small overlap
with some CQ (possibly being a finite-size effect). Apart from that, also visible is a quantitative
mismatch at ω→ 0 which indicates that the relevant Qn in Eq. (6) is not just jκ, and conse-
quently also Eq. (8) is not a full description of relaxation. In other words, even for Sz

tot = 0
more than a single mode is needed in Eq. (6) to properly describe Cκ(t).

In Fig. 4(b) we present Γκ(ω)/g2 for fixed g = 0.15 but various Sz
tot. It is indicative that

for ω/J > 0.15 the MF is essentially independent of Sz
tot. On the other hand, the decrease of

Γ 0
κ = 1/τs

κ with Sz
tot reflects the observed increase of τs

κ in Fig. 3(a). Still, it is not straightfor-
ward to capture this in a perturbative approach, Eq. (8).

4 Dependence on the form of perturbation

In Sec. 2 we analysed a particular form of perturbation, i.e., the next nearest-neighbor inter-
action, Eq. (1), which does not break the translational symmetry or the spin parity P. This is
also essential for the phenomenological explanation, Eq. (6), in terms of decaying CQ, as well

7
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Figure 4: Energy-current memory function (relaxation-rate), Γκ(ω), (a) extracted
directly from C̃κ(ω) for Sz

tot = 0 with different perturbations g = 0.1−0.4, compared
with the perturbation result, Eqs. (8),(9), and (b) extracted for various Sz

tot from
C̃κ(ω) for fixed g = 0.15. Calculated for L = 28 and ∆= 0.5.

as for the MF analysis in Sec. 3. However, using numerical MCLM we can check also other
perturbations. Let us consider as a perturbation

H ′′ = J
∑

i

Sz
i Sz

i+1Sz
i+2 , (10)

which breaks the parity symmetry, P, of the total Hamiltonian, H = H0 + gH ′′. Fig. 5 shows
current α = σ ,κ correlation functions Cα(t) for Sz

tot = 0. We observe exponential decay with
a single relaxation time τα∝ 1/g2, which is different from two distinct relaxation times ob-
tained for the P-preserving H ′, Eq. (1), i.e., the relaxation evidently depends on the form of
perturbation. One may interpret this behavior in terms of conjecture, Eq. (6). All observables
which have non-vanishing projection on Qn with the longest relaxation time should asymptot-
ically decay with the same decay rate. In order to obtain different rate, one needs to build an
operator that is strictly orthogonal to the latter Qn. It is highly nontrivial task, since approxi-
mate Qn in Eq. (6) can be obtained numerically only for small system. For the parity-preserving
perturbations, the total Hamiltonian is even and all Qn in Eq. (6) have well defined parity be-
ing either odd or even. Then operators from one parity sectors are strictly orthogonal to Qn
from the other parity sector. Due to this orthogonality we observe different relaxation times
in odd and even sectors without any fine-tuning of the studied observables. However for odd
perturbations, the total Hamiltonian contains even and odd terms, hence both parity sectors
are mixed during the time evolution. As a consequence, Qn in Eq. (6) may not have well
defined parity.

5 Non-commuting conserved quantities and their non-exponential
relaxation

In this section, we focus on specific values of the anisotropy parameter, ∆, where the many-
body spectra exhibit additional massive degeneracies [31]. The latter originate from eigen-
states corresponding to different Sz

tot with equal energies. This property allows for the presence
of non-commuting local/quasilocal CQ [32,43–45]. As a first example we take∆= 1 in which
case H0 is the SU(2)-symmetric Heisenberg chain for which one can study the total S x

tot spin
operator

O1 =
∑

j

(S+j + S−j ) . (11)
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Figure 5: Current correlation function Cα(t) for the perturbation, Eq. (10), breaking
the parity symmetry P (odd perturbations), as compared with P-preserving pertur-
bation Eq. (1) (even perturbations). Calculated for L = 28, ∆ = 0.5, g = 0.15, and
Sz

tot = 0.

It is clear that O1 is a local operator which commutes with H0 at∆= 1, but does not commute
with other local CQ, e.g., not with the Sz

tot.
The second nontrivial case is related with the commensurate ∆ = cos(π/3) = 1/2, for

which the non-commuting local CQ have been derived (for g = 0) in Ref. [32]. Here, we
study the relaxation of

O3 =
∑

j

(−1) j(S+j−1S+j S+j+1 +H.c.) , (12)

which does not commute with Sz
tot and is not invariant under translations by odd number of

sites. It should be mentioned that analogous local operators exist for other commensurate
cases, in particular for ∆ = cos(π/2) = 0, where O2 =

∑

j(−1) j(S+j S+j+1 +H.c) is local CQ for
H0 [45].

In similarity to Eq. (3), we calculate normalized correlations functions C1(t) and C3(t) for
the operators O1 and O3, respectively. In contrast to the preceding section, now the averaging
〈. . . 〉 is carried out over grand canonical ensemble. We note that O3 is similar to the previously
studied spin-current jσ in the sense, that it does not commute with H0, but has large projection
on the corresponding quasilocal CQ [32]. In order to confirm this, in the inset in Fig. 6(c) we
show the finite-size scaling of the relevant stiffness C̃3(ω → 0+, g = 0) (with value ' 0.4
thermodynamic limit L →∞). Without imposing the translational symmetry, we studied all
local non-commuting operators

∑

i(Ai + A†
i ), where Ai are supported on up to 3 sites and do

not commute with Sz
tot. Utilizing the alhorithm from Ref. [40], we have found (for ∆ = 1/2,

g = 0 and L ≤ 14) that O3 has the largest stiffness out of all these operators (not shown).
Next, we focus on the asymptotic decay of Cα(t), α= 1,3, and their dependence on g 6= 0.

To this end, we first calculate the Fourier transform, Cα(ω), and then its cumulative spectral
function

C̃α(ω, g) =

∫ ω

−ω
dω′ Cα(ω

′) =

∑

mn θ (ω− |Em − En|)〈m|Oα|n〉2
∑

mn〈m|Oα|n〉2
, (13)

expressed in terms of eigenstates, H|n〉 = En|n〉, obtained using the exact diagonalization of
H on up to L = 16 sites. We note that C̃1(ω→ 0+, g = 0) = 1 (because O1 commutes with H0
at ∆ = 1), whereas C̃3(ω+ → 0, g = 0) ' 0.4. Since we are interested in the low-ω part of
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Figure 6: Cumulative spectral functions Rα(ω), Eq. (14), as calculated for L = 16
system. We show the results for (a) O3 with ∆ = 1/2 and (d) for O1 with ∆ = 1.
Panels (b) and (e) show respectively the same data but with rescaled frequency ω/g
(main panels) and ω/g2 (insets). Panels (c) and (f) show the results for integrable
system (g = 0) but for shifted anisotropy parameters ∆ = 0.5 + δ and ∆ = 1 + δ,
respectively. Dashed curves show fittings with the error function. Inset in (c) shows
finite-size scaling of the stiffness C3(t →∞) for ∆= 0.5 and g = 0.

Cα(ω), it is convenient to normalize the spectral function,

Rα(ω) =
C̃α(ω, g)

C̃α(ω→ 0+, g = 0)
, (14)

so that one may directly compare relaxations of both considered observables. The numeri-
cal results are shown in figures Figs. 6(a,b) and 6(d,e) for R3(ω) at ∆ = 1/2 and R1(ω) at
∆ = 1, respectively. In contrast to the spin- and energy-currents discussed in the preceding
sections, curves for various g do not collapse when one rescales the frequency by g2, as it is
shown in the insets in Fig. 6(b,e). However, a convincing collapse may be obtained for the
scaling ω/g. Moreover, the rescaled curves can be quite accurately fitted by the error func-
tion, shown as the dashed curves in Fig. 6, implying C̃α(ω) ∝ exp[−a (ω/g)2] where the
coefficient a does not depend on g. Consequently, the decay is not exponential but Gaussian,
Cα(t)∝ exp[−(t/τα)2], where the characteristic relaxation rate, 1/τα∝ g.

The Gaussian relaxation occurs in the vicinity of ∆ characterized by additional degenera-
cies [31,45], originating from that eigenstate with different Sz

tot having the same energy. The
perturbation breaks integrability but also lifts the latter degeneracy. In order to disentangle
these two mechanisms, we also study the correlation functions, C̃α(ω, g) for g = 0 but with
shifted ∆ = 1/2 + δ (for α = 3) and ∆ = 1 + δ (for α = 1). Then, the degeneracy is lifted
without destroying the integrability. The results are shown in Fig. 6(c,f) for both α = 1,3.
One observes the same behavior as for the NI system above, i.e., Cα(t) ∝ exp[−(t/τα)2],
with 1/τα∝ δ. This result explains additionally the origin of the anomalous scaling of char-
acteristic τα. The nonzero stiffnesses, C̃α(ω→ 0+, g = 0), emerges from states |m〉 and |n〉 in
Eq. (13) with different Sz

tot, but with equal energies Em = En. The latter degeneracy is lifted
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either by g 6= 0 or δ 6= 0 already in the first order perturbation theory, |Em = En| ∝ g,δ [45],
leading to the scaling ω/(g,δ), shown in Fig. 6.

6 Conclusions

We numerically analyzed the decay of normalized correlation function Cα(t) of different local
quantities in the nearly integrable XXZ model. Correlations generally reveal a fast drop at
short times tJ ∼ O(1), consistent with finite stiffnesses of studied quantities in the integrable
model H0. A weak integrability breaking g � 1 then leads to further slow - exponential-
like - decay which is characterized with a single or multiple relaxation times, all scaling with
the perturbation strength τn ∝ 1/g2. The simplest cases appear to be the energy-current jκ
and spin-current jσ correlations at zero magnetization Sz

tot = 0, where - due to symmetry -
different CQ are involved in the relaxation of both quantities, and consequently relevant τn
are quite distinct. Since jκ is by itself CQ within H0, one can go a step further and give an
explicit memory-function analysis and perturbative expression for the relaxation-rate spectral
function Γκ(ω). In this case the extracted and perturbative Γκ(ω) match quite well in the
whole ω range. Still, some deviations in Γκ(ω∼ 0) = 1/τ0

κ as well as in Cκ(t) at shorter t/g2

indicate on possible multiple relaxation times and more than one relevant Qn even in this case.
The existence of multiple relaxation times is becoming evident for Sz

tot 6= 0. The conjecture
Eq. (6) concerning the presence of multiple relaxation times τn, which are linked with (ap-
propriately rotated) various CQ of the parent integrable model, is not in conflict with previous
results [20]which report a simple exponential relaxation. In order to demonstrate at least two
relaxation times, we have carefully selected observables so that they have a large projection
on quickly decaying CQ for Sz

tot 6= 0 (Qn relevant for jσ at Sz
tot = 0), as well as much smaller

projection on slowly decaying one (Q3 = jκ). Namely, we made us of the result from Ref. [3]
that the projection 〈 jσ jκ〉 is proportional to Sz

tot thus the projection may be easily tuned via
changing the magnetization sector. Typically, the opposite holds true: one studies observables
which have largest projection on simplest CQ, which are supported only on the few sites and
the related τn are the longest relaxation times [19]. As a consequences, small and fast de-
caying projections on more complicated CQ in Eq. (6) may not be visible in the numerical
results. Such generic scenario of the multi-scale relaxation is consistent with numerical results
obtained in the present work as well as in Ref. [19]. Nevertheless, it should be considered
as conjecture that requires further studies and should be verified for other nearly integrable
systems.

Furthermore, our analysis indicates that the form, in particular the symmetry, of the per-
turbation is relevant for the decay of Cα(t). In contrast to quantities considered above at
general anisotropy ∆ and their decay, the correlations Cα(t) of particular quantities Ol , being
conserved by H0 only at commensurate ∆0 = cos(π/m), but not commuting with Sz

tot, behave
qualitatively different. Under finite perturbation, which here can be introduced either by g 6= 0
or by deviation ∆ = ∆0 + δ, we observe effectively a (non-exponential) Gaussian-like decay
of Cα(t) with different scaling of characteristic decay time, i.e. τα∝ 1/g. The origin here is
the lifting of macroscopic degeneracy of many-body states at these particular ∆0.
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ical calculation were partly carried out at the facilities of the Wroclaw Centre for Networking
and Supercomputing.

11

https://scipost.org
https://scipost.org/SciPostPhys.13.2.013


SciPost Phys. 13, 013 (2022)

References

[1] B. Bertini, F. Heidrich-Meisner, C. Karrasch, T. Prosen, R. Steinigeweg and M. Žnidarič,
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