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Abstract

Floquet phases of matter have attracted great attention due to their dynamical and topo-
logical nature that are unique to nonequilibrium settings. In this work, we introduce a
generic way of taking any integer qth-root of the evolution operator U that describes Flo-
quet topological matter. We further apply our qth-rooting procedure to obtain 2nth- and
3nth-root first- and second-order non-Hermitian Floquet topological insulators (FTIs).
There, we explicitly demonstrate the presence of multiple edge and corner modes at frac-
tional quasienergies ±(0, 1, ...2n)π/2n and ±(0, 1, ..., 3n)π/3n, whose numbers are highly
controllable and capturable by the topological invariants of their parent systems. No-
tably, we observe non-Hermiticity induced fractional-quasienergy corner modes and the
coexistence of non-Hermitian skin effect with fractional-quasienergy edge states. Our
findings thus establish a framework of constructing an intriguing class of topological
matter in Floquet open systems.
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1 Introduction

Periodically driven (Floquet) systems have attracted perennial interest owing to their fasci-
nating dynamical, topological and transport properties (see Refs. [1–6] for reviews). Theo-
retical classifications of Floquet matter have been achieved for both free [7–9] and interact-
ing [10–12] systems. Experimental observations of Floquet phases have also been made in
cold atoms [13–15], photonics [16–18] and solid state materials [19–21], boosting the devel-
opments of new ideas in ultrafast electronics [4] and topological quantum computing [22–24].

Recently, square-root topological phase is discovered [25], whose topological properties
are inherited from its squared parent model through a process analogous to the transition
from Klein-Gordon [26,27] to Dirac equations [28] in relativistic quantum mechanics. In-gap
edge modes are found in tight-binding models of square-root topological insulators, supercon-
ductors and semimetals [29–41]. Moreover, general rules of constructing 2nth-root topological
phases [35–37] and their symmetry classifications [38] are proposed. Experimental evidence
of square-root topological phases are reported in photonic [30], electric [31] and acoustic [32]
systems.

In a periodically driven system, the central object for the description of topological prop-
erties is the Floquet operator, which is the evolution operator of the system over a complete
driving period T . Taking the square-root of such a propagator for the purpose of generating
its topological descendant is, however, a highly nontrivial task. This can be seen by writing

the Floquet operator as U = T e−
i
ħh

∫ T
0 H(t)d t = e−i T

ħh Heff , where T is the time-ordering operator,
H(t) = H(t + T ) is the time-periodic Hamiltonian of the system, and Heff is the Floquet effec-

tive Hamiltonian obtained by formally working out the time-ordered product in T e−
i
ħh

∫ T
0 H(t)d t .

We may now take the square-root of U naively as
p

U = e−i T
ħh

Heff
2 . However, such a trial of gen-

erating square-root Floquet topological phases tends out to be problematic and useless. First,
the exact form of Heff can be rather complicated (usually including driving-induced long-range
coupling terms), not physically obtainable, or even insufficient to describe Floquet phases with
no static counterparts such as those possessing anomalous Floquet edge modes [42–44]. Sec-
ond, there are no transparent ways to find Heff from H(t), i.e., the parameters in Heff are
usually nonlinear combinations of physical parameters in H(t), such that simply reducing the
parameters of H(t) by half could not yield Heff/2. Even obtained, the Heff and Heff/2 de-
scribe essentially the same physical system up to a global constant, and no new physics are
expected to emerge following such a halving process. Therefore, the straightforward opera-

tion,
p

U = e−i T
ħh

Heff
2 , does not generate a desired square-root of the parent system U .

To resolve this puzzle, a nontrivial route of taking the square-root for U is introduced
[45], which closely follows the original idea of Dirac by adding internal degrees of freedom
for electrons before taking the square-root of their relativistic wave equation. However, the
general applicability of this idea to the construction of Floquet models beyond taking 2nth-root
has not been revealed. Motivated by this gap of knowledge, we propose a generic procedure
to yield a variety of qth-root Floquet phases, where q is any arbitrary integer, not necessarily
in the form of 2n. This is achieved by utilizing a Zq generalization of Pauli matrices as ancillary
degrees of freedom. While our construction is applicable to any periodically driven systems,
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we focus on two timely examples of non-Hermitian Floquet matter as case studies.
The concept of topological matter has been generalized to non-Hermitian systems in recent

years (see Refs. [46–50] for reviews). In the presence of gain and loss or nonreciprocal effects,
unique topological phenomena without any counterparts in closed systems could emerge, such
as the non-Hermitian skin effect (NHSE) [51–57] and exceptional topological phases [50].
The interplay between time-periodic drivings and non-Hermitian effects could further induce
intriguing phases in out-of-equilibrium situations, like the non-Hermitian Floquet topological
insulators [58–69], superconductors [70,71], semimetals [72–75] and quasicrystals [76–78].
As reported in this paper, applying our qth-rooting procedure to such non-Hermitian Floquet
phases yields even more exotic features absent in their original counterparts, such as fractional-
quasienergy topological edge and corner modes.

This paper is structured as follows. In Sec. 2, we recap the strategy of Ref. [45], generalize
it to the construction of any qth-root Floquet system, and elaborate the application of this
general construction for the case of q = 3. In Sec. 3, we introduce two typical models of first-
and second-order non-Hermitian Floquet topological insulators, whose square- and cubic-root
descendants are studied in detail in Sec. 4 as an application of our method. In Sec. 5, we sum
up our results and discuss potential future directions.

2 Theory

We first review the approach to take the nontrivial square-root of a Floquet system. We set the
Planck constant ħh= 1 and driving period T = 1 throughout. Following Ref. [45], we write the
one-period evolution (Floquet) operator of any time-periodic system as

U = U1U2 =
�

T e−i
∫ 1/2

0 H(t+1/2)d t
��

T e−i
∫ 1/2

0 H(t)d t
�

, (1)

where H(t) is the system’s Hamiltonian. The procedure of Ref. [45] is to first enlarge Hilbert
space of H(t) by introducing a pseudospin-1/2 degree of freedom with the corresponding Pauli
matrices τx ,y,z . A two-step Hamiltonian is next defined in the enlarged Hilbert space as

H1/2(t) =

¨

πτy ⊗ I0 , t ∈ [`,`+ 1
2)

τ0+τz
2 ⊗H(t) + τ0−τz

2 ⊗H(t + 1/2) , t ∈ [`+ 1
2 ,`+ 1)

, (2)

where ` ∈ Z. τ0 is the identity in the pseudospin-1/2 subspace. I0 is the identity in the Hilbert
space of H(t). The Floquet operator of the evolution in the enlarged Hilbert space reads

U1/2 =

 

T e−i
∫ 1

1/2 H(t)d t 0

0 T e−i
∫ 1

1/2 H(t+1/2)d t

!

e−i π2 τy⊗I0 . (3)

Note that T e−i
∫ 1

1/2 H(t)d t = T e−i
∫ 1/2

0 H(t+1/2)d t = U1 and T e−i
∫ 1

1/2 H(t+1/2)d t = T e−i
∫ 1/2

0 H(t)d t = U2.
Performing the Taylor expansion and introducing τ± = (τx ± iτy)/2, we find

U1/2 = τ− ⊗ U2 −τ+ ⊗ U1 , (4)

and

U2
1/2 = eiπ

�

U1U2 0
0 U2U1

�

. (5)

Since U1U2 = U and U2U1 = U2UU−1
2 are related by a similarity transformation, they describe

the same parent Floquet system up to a half-period shift of the initial evolution time. The
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system described by U2
1/2 can thus be viewed as two equivalent copies of U up to a global

phase shift π. Therefore, U2
1/2 and U are expected to share the same topological features

concerning the stroboscopic dynamics. We could view U1/2 as a nontrivial square-root of U in
the spirit of Dirac’s taking square-root to reach his equation for electrons [28]. The dynamical
and topological properties of U can further be carried over to U1/2, which are confirmed by
explicit studies of Floquet topological superconductors and time crystals [45].

Iterating the same procedure, we can construct the 2nth-root of U , i.e., U1/2n for any
n ∈ Z+. For example, we could generate U1/4 by letting H ′1(t) =

τ0+τz
2 ⊗H(t)+ τ0−τz

2 ⊗H(t+ 1
2),

H ′2 = πτy ⊗ I0, and defining in a further enlarged Hilbert space

H1/4(t) =

¨

πτ′y ⊗ I
′
0 , t ∈ [`,`+ 1

2)
τ′0+τ

′
z

2 ⊗H ′1(t) +
τ′0−τ

′
z

2 ⊗H ′2 , t ∈ [`+ 1
2 ,`+ 1)

, (6)

where τ′y,z and τ′0 are Pauli matrices and identity matrix acting in the subspace of an extra
pseudospin-1/2. I′0 denotes the identity in the Hilbert space of H ′1,2. The resulting Floquet
operator,

U1/4 =

�

T e
−i
∫ 1

1/2

�

τ′0+τ
′
z

2 ⊗H ′1(t)+
τ′0−τ

′
z

2 ⊗H ′2

�

d t
�

e−i π2 τ
′
y⊗I

′
0 , (7)

then defines the nontrivial 4th-root of U . It is straightforward to verify that

U4
1/4 = eiπ







U1U2 0 0 0
0 U2U1 0 0
0 0 U2U1 0
0 0 0 U1U2






, (8)

whose diagonal blocks contain four equivalent copies of U up to a unitary transformation and
a global phase π.

The extension of the above approach to find any qth-root of U can be achieved by intro-
ducing higher-dimensional pseudospin degrees of freedom, i.e., the generalized q × q Pauli
matrices

[ηx]i, j = δi, j−1 +δi,qδ j,1, [ηz]i, j =ω
j−1δi, j , (9)

where ω= ei2π/q. These operators satisfy

ηxηz =ωηzηx , ηxη
†
x = ηzη

†
z = η0 , ηq

x = η
q
z = η0 , (10)

where η0 is the identity matrix acting in the pseudospin subspace. Our qth-rooting procedure
can then be executed in two steps. First, given any time-periodic Hamiltonian H(t), we divide
the Floquet operator into q time-steps, i.e.,

U =
q
∏

`=1

U` = U1 · · ·Uq , U` = T e−i
∫ 1/q

0 H
�

t+ q−`
q

�

d t . (11)

Next, we define a two-step Hamiltonian of the form

H1/q(t) =

¨
∑q−1

j=0 M (q)j η
j
x ⊗ I0 , t ∈ [`,`+ 1

2)
∑q

j=1 P
(q)
j ⊗ H̃ j(t) , t ∈ [`+ 1

2 ,`+ 1)
, (12)

where M (q)0 = M (q)†0 and M (q)j 6=0 = M (q)†q− j for hermiticity. M (q)j are further chosen such that

e−i
∑q−1

j=0 M (q)j η
j
x = ηx . I0 is the identity in the Hilbert space of H(t), P(q)j =

∑q−1
k=0ω

k( j−1)ηk
z

q , and

H̃ j(t) =
2H
�

2(t+ q− j
q )/q

�

q . It then follows that the associated Floquet operator is

[U1/q]i, j = Uiδi, j−1 + Uqδi,qδ j,1 , (13)
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Figure 1: Schematic of a cubic-root system obtained from the procedure of Eq. (12).
In the parent system, a particle (marked by black star) evolves under H3, H2, and
H1 over the course of a period. In the corresponding cubic-root system, a particle
living in a given subsystem effectively evolves under the same three Hamiltonians
only when viewed over the course of three periods.

such that Uq
1/q is block diagonal and consists of all q permutations of

∏q
`=1 U`. This shows that

the resulting system indeed represents the qth-rooted version of U .
Intuitively, the above construction can be understood as follows. First, note that Eq. (12)

is defined on a system consisting of n subsystems. Consider a particle initially living in the jth
subsystem. During the first half of the period, evolution under Eq. (12) amounts to transport-
ing the particle towards subsystem j − 1 mod q. By noting that P(q)j represents a projection
onto the jth subsystem, it then follows that Eq. (12) further evolves the particle under H j−1(t)
during the second half of the period. In the next Floquet cycle, the particle continues moving
to subsystem j − 2 mod q, followed by the half-period evolution under H j−2(t). As the pro-
cess continues, at the end of q periods, the particle returns to the subsystem j mod q, while
accumulating U j · · ·UqU1 · · ·U j−2U j−1, which is unitarily equivalent to U .

Having demonstrated the generality of our construction, we will focus on square-root and
cubic-root systems for brevity in the remainder of this paper. To this end, we will now present
an explicit application of the above construction to obtain a nontrivial cubic-root of a system
relevant to the case studies below. Specifically, such a parent system follows a three-step
periodically quenched drive, whose time-dependent Hamiltonian takes the form

H(t) =











H1 , t ∈ [`+ 2/3,`+ 1)
H2 , t ∈ [`+ 1/3,`+ 2/3)
H3 , t ∈ [`,`+ 1/3)

` ∈ Z , (14)

with the corresponding Floquet operator of

U = e−i
H1
3 e−i H2

3 e−i
H3
3 . (15)

Note that the Floquet operator associated with a system following a two-step periodically
quenched drive, whose Hamiltonian switches between h1 and h2 after every half period, can
also be cast into the form of Eq. (15) by shifting the initial evolution time from t = 0 to 3/4
and identifying H1, H3 = 3h1/4 and H2 = 3h2/2. In both cases, the cubic-root of U in Eq. (15)
can be obtained according to Eq. (12) with M (3)0 = 0 and M (3)2 = −M (3)1 = 4πi

3
p

3
, which leads to
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e−i
�

M (3)1 ηx+M (3)2 η2
x

�

= ηx . We further identify H̃ j =
2H3− j

3 with j = 0,1, 2, as well as ηx ,z in the
explicit matrix forms

ηx =





0 1 0
0 0 1
1 0 0



 , ηz =





1 0 0
0 ω 0
0 0 ω2



 . (16)

Indeed, it can be directly verified that Eq. (16) satisfies the algebra of Eq. (10). The corre-
sponding Floquet operator of the cubic-root model then reads

U1/3 =







0 e−i
H̃1
3 0

0 0 e−i H̃2
3

e−i
H̃3
3 0 0






, (17)

with

U3
1/3 =







e−i
H̃1
3 e−i H̃2

3 e−i
H̃3
3 0 0

0 e−i H̃2
3 e−i

H̃3
3 e−i

H̃1
3 0

0 0 e−i
H̃3
3 e−i

H̃1
3 e−i H̃2

3






. (18)

That is, the three diagonal blocks of U3
1/3 only differ from one another by the starting time of

evolution and describe equivalent Floquet systems in stroboscopic dynamics concerning the
spectral and topological properties. This implies that U1/3 is indeed a nontrivial cubic-root of
the parent system U in Eq. (15). The presented cubic root procedure is schematically depicted
in Fig. 1.

We now discuss how the rooted Floquet system could inherit the symmetry protected edge
states of the parent model while altering their quasienergies to rational fractions of 2π. A key
symmetry that is relevant to the topological characterization of the parent systems considered
in this work is the chiral symmetry (CS). If a general Floquet operator U possesses the CS, there
is a unitary operator Γ such that ΓUΓ † = U−1. If U has an eigenstate |ψ〉 with quasienergy E,
i.e., U |ψ〉= e−iE |ψ〉, its CS implies that ΓUΓ †(Γ |ψ〉) = e−iE(Γ |ψ〉) or U(Γ |ψ〉) = e−i(−E)(Γ |ψ〉).
Therefore, Γ |ψ〉 is an eigenstate of U with quasienergy −E. Now if there is an eigenstate |ψ〉
with E = 0 or π, the CS enforces the presence of another eigenstate Γ |ψ〉 also at E = 0 or π
(E = ±π are identified as the same quasienergy since E is defined mod 2π), yielding eigen-
state degeneracy at the center or boundary of the quasienergy Brillouin zone E ∈ [−π,π]. If
such eigenmodes appear at the edge or corner of the system, we obtain CS-protected degen-
erate edge or corner modes of U .

For the square-root system U1/2, we already see that U2
1/2 is block diagonal and its two

diagonal blocks share the same spectral and topological properties with the parent model U .
If |ψ′〉 is an eigenstate of U1/2 with quasienergy E′, i.e., U1/2|ψ′〉 = e−iE′ |ψ′〉, it is straight-
forward to see that U2

1/2|ψ
′〉 = e−iE′U1/2|ψ′〉 = e−i2E′ |ψ′〉. U1/2 and U2

1/2 thus share the same

eigenbasis. When the parent model U possesses the CS Γ , the diagonal blocks of U2
1/2 possess

the CS, such that U2
1/2 is chiral symmetric with respect to Γ ′ = τz ⊗ Γ . Degenerate topological

edge/corner modes of U2
1/2 can thus only appear at E = 0,±π = 2E′ mod 2π. This implies

that in the square-root system U1/2, we could only find topological edge/corner modes at the
quasienergies E′ = 0,±π/2,±π, which are indeed protected by the CS Γ of the parent model.
Interestingly, the degenerate eigenmodes at E = ±π/2 are present only in the U1/2 and are
thus unique to the square-root Floquet system.

While the topological protection of the edge/corner modes in U1/2 can be understood from
the presence of chiral symmetry in its corresponding parent system U , it would also be insight-
ful to discuss the protecting symmetries that arise at the level of U1/2 directly. To this end, we
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first note that Γ ′ = τz ⊗ Γ is also a chiral symmetry with respect to Ũ1/2 = e−iπ4 U1/2eiπ4 , i.e.,
U1/2 under the shift in the initial time from t = 0 to t = 1/4. Similar to its parent counterpart,
such a chiral symmetry is responsible for protecting E′ = 0,±π quasienergy edge states in
the square-root system. Next, we identify an additional symmetry Γ ′1/2 = τz ⊗ I (I being the
identity operator), which acts only within the enlarged degree of freedom and is thus referred
to as the “subchiral" symmetry [79]. Such a symmetry operates as Γ ′1/2U1/2Γ

′†
1/2 = −U1/2. Con-

sequently, if |ψ′〉 is a quasienergy E eigenstate of U1/2, then Γ ′1/2|ψ
′〉 is a quasienergy E ± π

eigenstate of U1/2. Indeed,

U1/2Γ
′
1/2|ψ

′〉= −Γ ′1/2U1/2Γ
′†
1/2Γ

′
1/2|ψ

′〉= e−i(E±π)Γ ′1/2|ψ
′〉 .

In this case, a quasienergy which satisfies E ±π = −E, i.e., E = ±π/2, is necessarily twofold
degenerate due to the product Γ ′Γ ′1/2. The associated quasienergy eigenstates could further
be chosen to be simultaneous ±1 eigenstates of Γ ′Γ ′1/2. This is automatically the case for the
quasienergy ±π/2 edge/corner states. In particular, since ±1 eigenstates of Γ ′Γ ′1/2 correspond
to states localized at two opposite edges/corners, the discreteness of Γ ′Γ ′1/2 eigenstates pins
such edge/corner states at quasienergy ±π/2 in the presence of symmetry-preserving pertur-
bations. This completes the symmetry protection analysis of quasienergy ±π/2 edge/corner
states in the square-root system.

The above argument can be easily extended to conclude that, for any qth-root version of
the system, Uq

1/q also possesses the CS with respect to Γ ′′ = ηz ⊗ Γ . A generalized “subchiral"

symmetry can further be identified as Γ ′′1/q = ηz ⊗ I, which operates as Γ ′′1/qU1/qΓ
′′†
1/q =ω

†U1/q

and thus forces the quasienergies of U1/q to form a cluster of E−2π j/q with j = 0,1, · · · , q−1.
In the case of cubic-root Floquet systems, which are explicitly studied below, both symmetries
lead to the protection of degenerate edge/corner modes at E′′ = 0,±π/3,±2π/3,±π. Fol-
lowing the same routine, we can deduce that if the parent model U possesses the CS Γ , the
existence of its edge/corner modes at the quasienergies E = 0,π guarantees the presence of
degenerate edge/corner states at the quasienergies (0,1, ...2n)π/2n and (0, 1, ..., 3n)π/3n of
the systems described by U1/2n and U1/3n , respectively. Notably, the boundary modes appear-
ing at the fractional quasienergies pπ/q with p < q and (p, q) being co-prime integers are, to
the best of our knowledge, not identified by previous studies on the symmetry classification
and bulk-boundary correspondence of Floquet systems. They are thus a unique product of
our qth-root procedure operated on Floquet operators. In Sec. 4, we will apply our theory to
explicitly construct square/cubic-root first- and second-order non-Hermitian FTIs based on the
parent models defined in the following section.

3 Parent models

In this section, we introduce two non-Hermitian Floquet topological insulator (FTI) models
that will be taking square- and cubic-roots. Detailed investigations of these parent models can
be found in Refs. [62] and [66]. All system parameters below are assumed to be properly
scaled and set in dimensionless units.

The first model of our consideration describes a non-Hermitian FTI with rich topological
phase diagrams and arbitrarily many degenerate edge modes in the presence of Floquet NHSE
[66]. Its time-dependent Hamiltonian is H(t) = H1 for t ∈ [`+ 1/2,`+ 1) and H(t) = H2 for
t ∈ [`,`+ 1/2), where t denotes time, ` ∈ Z, and

H1 =
∑

n

J2(i|n+ 1〉〈n|+H.c.)⊗σy +
∑

n

iλ(|n〉〈n+ 1|+H.c.)⊗σy , (19)
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H2 =
∑

n

[2µ|n〉〈n|+ J1(|n〉〈n+ 1|+H.c.)]⊗σx +
∑

n

iλ(i|n+ 1〉〈n|+H.c.)⊗σx . (20)

Here n ∈ Z is the unit cell index. σx ,y,z are Pauli matrices acting on the two sublattices in each
unit cell. J1,2 and iλ describe symmetric and asymmetric parts of intercell hopping amplitudes.

µ is the intracell coupling strength. The Floquet operator U = e−i 1
2 H1 e−i 1

2 H2 that governs the
evolution of the system over a driving period (e.g., from t = 0 to 1) is nonunitary once λ 6= 0.
This yields a model that could possess non-Hermitian FTI phases, which are characterized by
integer or half-integer quantized topological invariants under the periodic boundary conditions
(PBC) [66]. Under the open boundary conditions (OBC), the CS of the model Γ = IN ⊗ σz
(N is the number of unit cells and IN is an N × N identity) allows multiple edge modes to
appear in pairs at the quasienergies zero and π, whose numbers can be determined by the
OBC bulk winding numbers ν0 and νπ (see Sec. A for their definitions). These edge modes are
further found to coexist with sufficient amounts of bulk states localized around both edges of
the system due to the NHSE [66].

The second model that we will employ describes a non-Hermitian Floquet second-order
topological insulator (FSOTI), which could possess multiple quartets of corner-localized states
at real quasienergies zero and π [62]. The Hamiltonian of the model takes the form of
H(t) = H1 for t ∈ [` + 1/2,` + 1) and H(t) = H2 for t ∈ [`,` + 1/2) with ` ∈ Z. Here

H1(2) =Hx ⊗ Iy + Ix ⊗Hy1(y2) , (21)

Hx =∆
∑

m,n

(|m, n〉〈m+ 1, n| ⊗σ− +H.c.) , (22)

Hy1 =
∑

m,n

(iJ2|m, n+ 1〉〈m, n|+H.c.+ 2µ|m, n〉〈m, n|)⊗σz , (23)

Hy2 = J1

∑

m,n

(|m, n〉〈m, n+ 1|+H.c.)⊗σx . (24)

The Ix and Iy are identity matrices for the basis along x and y directions of the lattice. σx ,y,z
are Pauli matrices and σ− = (σx − iσy)/2. m, n ∈ Z are unit cell indices along the two spatial
dimensions. ∆ and J1,2 describe hopping amplitudes between nearest neighbor cells along the
x and y directions. µ characterizes the strength of an onsite potential bias. Gain and loss are
introduced to make the system non-Hermitian by setting µ = u+ iv, with u, v ∈ R and v 6= 0.
The Floquet operator of the system takes the form U = e−i 1

2H1 e−i 1
2H2 , whose spectrum under

the OBC features fourfold degenerate topological corner modes at zero and π quasienergies.
The numbers of these corner modes n0 and nπ are related to a pair of bulk topological winding
numbers ν0 and νπ of U (see Sec. B for their definitions) through a bulk-corner correspondence
relation (n0, nπ) = 4(|ν0|, |νπ|) [62]. The fourfold degeneracy of Floquet corner modes at the
quasienergies E = 0,π is protected by the CS Γ = σz ⊗ σy of the two-dimensional system
described by U under the PBC [62].

Applying the procedure of Sec. 2, we will obtain the square and cubic roots of the two
Floquet models introduced here, and unveil the intriguing topological features of the resulting
systems in the following section. As will be demonstrated, our qth-root procedure endows the
non-Hermitian Floquet phases in the above two parent models with even richer topological
properties.
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Figure 2: Floquet spectrum E and gap function Fε of U1/2 [Eq. (25)]
and U versus J1 under OBC and PBC. Other system parameters are set as
(J2,µ,λ) = (0.5π, 0.4π, 0.25) and the length of lattice is L = 400. (a) and (b) show
the values of the real part of E for the parent and square-root models described by U
and U1/2 under the OBC (PBC) in blue (grey) dots, respectively. The blue solid and
red dotted lines denote the gap functions F0 and Fπ of U in (c), and the gap functions
F0 (= Fπ) and Fπ/2 of U1/2 in (d) under the OBC. Grey solid and dotted lines denote
the same gap functions under PBC.

4 Results

In Sec. 4.1, we present square- and cubic-root non-Hermitian FTIs generated by the first model
in Sec. 3, which will be shown to possess multiple and tunable numbers of degenerate edge
modes with the quasienergies π/2, π/3 and 2π/3 that could survive under the NHSE. In
Sec. 4.2, we discuss square- and cubic-root non-Hermitian FSOTIs yielded by the second model
in Sec. 3, which hold non-Hermiticity induced quartets of topological corner modes at the π/2,
π/3 and 2π/3 quasienergies.

4.1 Square/Cubic-root non-Hermitian FTIs

We now apply the procedure in Sec. 2 to find the square- and cubic-roots of the first model in
Sec. 3. In the lattice representation, the square-root Floquet system is obtained by identifying
U1 = e−iH1/2 and U2 = e−iH2/2 in Eq. (4), where the H1 and H2 are given by Eqs. (19) and
(20), respectively. The Floquet operator U1/2 is then derived following Eq. (1), i.e.,

U1/2 =

�

0 −e−iH1/2

e−iH2/2 0

�

. (25)

To obtain the cubic-root model, we may identify H̃1 = H̃3 = 3H1/4 and H̃2 = 3H2/2 in
Eq. (17), where H1 and H2 are defined by Eqs. (19) and (20), respectively. This then leads to
the Floquet operator

U1/3 =





0 e−iH1/4 0
0 0 e−iH2/2

e−iH1/4 0 0



 . (26)

Solving the eigenvalue equations U1/2(1/3)|ψ〉 = e−iE |ψ〉 under the OBC, with E being the
quasienergy, provides us with all bulk and edge states of the square- (cubic-) root Floquet
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Figure 3: Floquet spectrum E and gap function Fε of U1/3 [Eq. (26)] and U1/4 [ob-
tained following Eqs. (25), (6) and (7)] versus J1 under both PBC and OBC. Other
system parameters and the lattice size are the same as those used in Fig. 2. (a) and (c)
show the real parts of E for the cubic- and fourth-root models described by U1/3 and
U1/4, respectively, under the OBC (blue dots) and PBC (grey dots in the background).
The blue solid and red dotted lines denote the gap functions Fπ/3 (= Fπ) and F2π/3
(= F0) of U1/3 in (b), and the gap functions Fπ/4 (= F3π/4) and Fπ/2 (= F0 = Fπ) of
U1/4 in (d) under the OBC. Corresponding gap functions under the PBC are given by
the grey solid and dotted lines in (b) and (d).

system.
As an important note, if there is a pair of degenerate edge modes with zero-quasienergy in

the parent model U = e−iH1/2e−iH2/2, their quasienergies will be shifted to π in U2
1/2 according

to Eq. (5), yielding edge modes at quasienergies E = ±π/2 in the system described by U1/2.
On the other hand, if a pair of degenerate edge modes appears at E = π in the parent model,
their quasienergies will become 0 (mod 2π) in U2

1/2, leading to edge states at E = 0,±π
in the square-root model. Following the same routine, we deduce that the edge modes at
zero (π) quasienergy in U = e−iH2/4e−iH1/2e−iH2/4 generate edge states with E = 0,±2π/3
(E = ±π/3,±π) in the system described by U1/3 after taking the cubic root. Now if we could
relate the numbers of zero and π edge modes in the parent system U to its topological invari-
ants, these invariants should also predict the numbers of zero, π/2, π/3, 2π/3 and π modes
in the square- and cubic-root systems if the symmetry that protects their quantization is not
broken during the process of taking roots.

To showcase the fractional-quasienergy edge modes in the spectrum in a more transparent
manner, we introduce the gap function Fε with respect to a quasienergy ε, which is defined as

Fε =
Æ

(ReE − ε)2 + (ImE)2 . (27)

Note that the E in Eq. (27) is the collection of all quasienergies obtained by diagonalizing the
Floquet operator of the system under consideration. It is clear that once there is an edge state
with real quasienergy ε that resides in a gap on the complex plane, we would have Fε = 0 for
that state and Fε > 0 for all other bulk states. To locate the expected edge states of U1/2 and
U1/3, we choose ε = 0,π/2,π and ε = 0,π/3,2π/3,π for them, respectively, in the following
numerical calculations.

In Fig. 2, we present the quasienergy (Floquet) spectrum and gap functions of the first
model in Sec. 3 and its square-root descendant under both the PBC and OBC. The
quasienergies and gap functions of the parent model in Figs. 2(a) and 2(c) are reproduced
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from Ref. [66]. A clear distinction between the spectrum under PBC (gray dots in the back-
ground) and OBC (blue dots) can be observed especially around the phase transition points,
implying the presence of NHSE in the system. To retrieve the bulk-edge correspondence, a
pair of open-boundary winding numbers (ν0,νπ) is introduced in Ref. [66] and reviewed in
Sec. A, which correctly counts the number of zero- and π-quasienergy edge modes n0 and nπ
in the parent model through the relation (n0, nπ) = 2(|ν0|, |νπ|). Here nE denotes the number
of edge states at the quasienergy E. According to our square-root procedure, the edge modes
at the quasienergies E = 0,±π (E = ±π/2) are generated by taking the square-root of the π
(zero) Floquet edge modes. Therefore, we arrive at the following bulk-edge correspondence
for the square-root FTIs described by U1/2, i.e.,

nπ/2 = 2|ν0| , n0 = nπ = 2|νπ| , (28)

where nπ/2 means the number of degenerate edge states at E = ±π/2. These relations are
readily confirmed by comparing the spectrum and gap functions presented in Figs. 2(b,d) and
Figs. 2(a,c). Notably, with the increase of hopping amplitude J1, we observe a series of gap
closing and topological phase transitions in the square-root model. After each transition, the
number of edge modes n0, nπ or nπ/2 is found to be increased by 2 even in the presence
of NHSE. Specifically, we find (nπ/2, n0, nπ) = (0,0, 0), (2, 0,0), (2,2, 2), (2, 4,4), (4,4, 4),
(6,4, 4), (6, 6,6) with the increase of J1 in Fig. 2(d), meanwhile the winding numbers are
(ν0,νπ) = (0, 0), (1, 0), (1,−1), (1,−2), (2,−2), (3,−2), (3,−3) according to the calculation
reported in Ref. [66]. This process could continue with the further increase of J1. We can
thus in principle obtain arbitrarily many topological edge modes at fractional quasienergies
E = ±π/2 in our square-root non-Hermitian Floquet system. This highlights the universal ad-
vantage of Floquet engineering in generating unique nonequilibrium states with strong topo-
logical signatures.

In Figs. 3(a) and 3(b), we further show the Floquet spectrum and gap function of the
cubic-root non-Hermitian FTI. In addition to edge states at the quasienergies E = 0,±π, we
also observe degenerate edge modes at fractional quasienergies E = ±π/3,±2π/3. Recall that
Eq. (26) cubes to a block diagonal matrix consisting of multiple copies of Floquet operator of
the parent model U . Therefore, the edge states at quasienergies (0,±2π/3) [(±π/3,±π)]
are indeed descendants of the zero [π] edge modes in the parent model, whose numbers are
counted by ν0 [νπ] [66]. We then obtain the bulk-edge correspondence for cubic-root non-
Hermitian FTIs as

n0 = n2π/3 = 2|ν0| , nπ/3 = nπ = 2|νπ| . (29)

With the increase of J1, the cubic-root system could also undergo a series of topological phase
transitions, with each of them being accompanied by the increase of either n0 and n2π/3 or nπ/3
and nπ by two. We can thus obtain arbitrarily many π/3 and 2π/3 degenerate edge modes
by tuning the single driving parameter J1 even in the presence of NHSE. Since it has been
demonstrated that Floquet edge states could be utilized to construct boundary discrete time
crystals (DTCs) [22,80], we expect the emergence of unique non-Hermitian Floquet boundary
DTCs through the superposition of (±π/3,±2π/3) edge modes and other edge states in the
cubic-root FTIs.

For completeness, we present the spectrum and gap function in Figs. 3(c) and 3(d) for the
fourth-root non-Hermitian FTI, which is constructed by applying the procedure in Eqs. (6) and
(7) to the first model in Sec. 3. The resulting system holds Floquet edge states at E = ±`π/4
with `= 0, ..., 4. Similar to our analysis of U1/2 and U1/3, the number of these edge modes are
related to the bulk topological invariants (ν0,νπ) of the parent Floquet system via

nπ/4 = n3π/4 = 2|ν0| , n0 = nπ/2 = nπ = 2|νπ| . (30)
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Figure 4: The real part of Floquet spectrum, fractional-quasienergy edge modes and
bulk skin modes of the qth-root non-Hermitian FTIs for q = 2,3, 4. j and n are state
and unit cell indices. System parameters are (J1, J2,µ,λ) = (π, 0.5π, 0.4π, 0.25).
The length of lattice is L = 400. (a), (b) and (c) show the Floquet spectrum
of U1/2, U1/3 and U1/4, zoomed in around E = π/2, E = (π/3,2π/3) and
E = (π/4, 2π/4,3π/4), respectively. (d) shows the degenerate edge modes of U1/2
with E = π/2. (e) and (f) show the degenerate edge modes of U1/3 with E = π/3
and 2π/3. (g), (h) and (i) show the degenerate edge modes of U1/4 with E = π/4,
2π/4 and 3π/4. (j), (k) and (l) show three pairs of typical bulk states for U1/2, U1/3
and U1/4, respectively, which are piled up around the boundaries and thus represent
non-Hermitian Floquet skin modes.
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Figure 5: Floquet spectrum E and gap function Fε of U1/2 [Eq. (31)]
and U1/3 [Eq. (32)] versus u. Other system parameters are set as
(J1, J2,∆, v) = (0.5π, 5π, 0.05π, 0.5). The lattice size is L = 2000 along each
spatial direction. (a) and (c) show the values of the real part of E for the square-
and cubic-root models described by U1/2 and U1/3, respectively. The blue solid and
red dotted lines denote the gap functions F0 (= Fπ) and Fπ/2 of U1/2 in (b), and the
gap functions Fπ/3 (= Fπ) and F2π/3 (= F0) of U1/3 in (d). u1 and u2 denote critical
values of u where the spectral gap closes and the number of corner modes changes
across the topological phase transition, which are obtained from Eq. (33).

More precisely, we find the values of (nE , nE′) for the rooted model to change in the sequence
(0,0), (2, 0), (2,2), (2,4), (4, 4), (6, 4), (6,6) for E = 0, 2π/3 (E = π/4, 3π/4) and E′ = π/3,π
(E′ = 0,π/2,π) in Fig. 3(b) (Fig. 3(d)) with the increase of J1, while the winding numbers of
the parent model change as (ν0,νπ) = (0,0), (1,0), (1,−1), (1,−2), (2,−2), (3,−2), (3,−3)
during the process [66], confirming the relations in Eqs. (29) and (30). In Fig. 4, we present
examples of degenerate edge modes at fractional quasienergies and bulk skin modes that co-
exist with these topological edge states in the systems described by U1/q for q = 2, 3,4. The
numbers of edge modes found there coincide with our theoretical predictions. All these re-
sults reveal the power of our strategy in constructing qth-root FTIs for any q ∈ Z+. In the
following subsection, we will further demonstrate the applicability of the same routine in the
construction of qth-root FSOTIs.

4.2 Square/Cubic-root non-Hermitian Floquet second order topological insula-
tors

We next generate square- and cubic-root non-Hermitian Floquet second-order topological in-
sulators (FSOTIs) by applying our theory in Sec. 2 to the second model in Sec. 3. To find the
square-root model, we identify U1 = e−iH1/2 and U2 = e−iH2/2 in Eq. (4), where the H1 and
H2 are given by Eq. (21) in Sec. 3. The resulting square-root Floquet operator reads

U1/2 =

�

0 −e−iH1/2

e−iH2/2 0

�

. (31)

Similarly, to obtain the cubic-root model, we identify H̃1 = H̃3 = 3H1/4 and
H̃2 = 3H2/2, where the H1 and H2 are given by Eq. (21). This leads to the cubic-root Floquet
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Figure 6: Gap function Fε of U1/2 [Eq. (31)] and U1/3 [Eq. (32)] versus v. Other
system parameters are (J1, J2,∆, u) = (2.5π, 3π, 0.05π, 0) and the length of lattice is
L = 2000 in each spatial dimension. The blue dotted and red solid lines denote the
gap functions F0 (= Fπ) and Fπ/2 of U1/2 in (a), and the gap functions Fπ/3 (= Fπ)
and F2π/3 (= F0) of U1/3 in (b). v1 and v2 are imaginary parts of µ = u+ iv where
the spectral gap closes and the number of corner modes change through topological
phase transitions, obtained by solving Eq. (33).

operator

U1/3 =





0 e−iH1/4 0
0 0 e−iH2/2

e−iH1/4 0 0



 . (32)

Recall that the parent Floquet system U = e−i 1
2H1 e−i 1

2H2 possesses multiple and non-
Hermiticity induced fourfold degenerate corner modes at zero and π quasienergies, which
are obtained by solving the eigenvalue equation U |ψ〉 = e−iE |ψ〉. The numbers of these cor-
ner modes are related to a pair of topological invariants introduced in Ref. [62] (see also
Sec. B). Since the process of taking the square (cubic) root of U does not break the protecting
CS of these corner modes, we expect the topological invariants of U to be able to predict the
numbers of corner modes at the (0,π/2,π) [(0,π/3, 2π/3,π)] quasienergies of U1/2 [U1/3].

The spectra of U1/2 and U1/3 are presented in Fig. 5. In Figs. 5(a) and 5(c), we observe
states at the fractional-quasienergies E = ±π/2 and E = ±π/3,±2π/3 for the square-root
and cubic-root systems respectively, whose spatial profiles are found to be localized around
the four corners of the lattice. The numbers of these corner modes can further be controlled
by changing the real part of onsite potential u, as can be seen clearly in Figs. 5(b) and 5(d). The
critical values (u1, u2) where the number of corner modes change correspond to topological
phase transition points, which are determined by the gapless condition of the parent model
[62], i.e.,

cos
�

J1

q

1− (nπ− u)2/J2
2

�

cosh v = ±1 . (33)

Moreover, since the π/2 (zero and π) modes of U1/2 are inherited from the zero (π) modes
of the parent model U , their numbers are determined by the winding numbers (ν0,νπ) of the
second model in Sec. 3 (see also Sec. B) through the bulk-corner correspondence relations

nπ/2 = 4|ν0| , n0 = nπ = 4|νπ| . (34)
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Figure 7: Gap functions and probability distributions of corner modes for U1/2 in
(a), (c)–(e) and for U1/3 in (b), (f)–(j). j and nx ,y are state and unit cell in-
dices. System parameters are (J1, J2,∆,µ) = (2.5π, 3π, 0.05π, 2i). The lattice size is
Lx = L y = 3000. (a) and (b) show the gap function Fε, which is zoomed in around
Fε = 0 for ε = π/2, π/3 and 2π/3. (c)–(e) show the twelve corner modes of U1/2 at
the quasienergy π/2 (with Fπ/2 = 0). (f), (g) show the eight corner modes of U1/3 at
the quasienergy π/3 (with Fπ/3 = 0). (h)–(j) show the twelve corner modes of U1/3
at the quasienergy 2π/3 (with F2π/3 = 0).
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Similarly, as the zero and 2π/3 (π/3 and π) corner modes of U1/3 are inherited from the zero
(π) corner modes of U , we have the following relations to determine their numbers from the
bulk invariants of the parent model, i.e.,

n0 = n2π/3 = 4|ν0| , nπ/3 = nπ = 4|νπ| . (35)

In the regions u ∈ (0, u1), (u1, u2), (u2,π), we find winding numbers (ν0,νπ) = (5, 4), (5,5),
(4, 5), and the number of corner modes (nπ/2, n0, nπ) = (20,16, 16), (20,20, 20), (16,20, 20)
[(n0, n2π/3, nπ/3, nπ) = (20, 20,16, 16), (20,20, 20,20), (16, 16,20, 20)] for U1/2 [U1/3], which
confirm the Eqs. (34) and (35).

A very intriguing feature of the square- and cubic-root FSOTIs studied here is that the non-
Hermitian effect could induce more topological corner modes than in the Hermitian limit. To
demonstrate this, we investigate the gap functions of U1/2 and U1/3 versus the gain and loss
strength v in Figs. 6(a) and 6(b). In both figures, v1 and v2 denote critical values of v where
the system undergoes topological phase transitions. Their specific values are determined by
the gapless condition of the parent model in Eq. (33). With the increase of v from 0 to 2,
we find that in the three regions v ∈ (0, v1), (v1, v2), (v2, 2), the winding numbers of the
parent model are (ν0,νπ) = (1,0), (3,0), (3,−2) [62], whereas the number of corner modes
are (nπ/2, n0, nπ) = (4, 0,0), (12, 0,0), (12, 8,8) in Fig. 6(a) for the square-root model U1/2,
and (n0, n2π/3, nπ/3, nπ) = (4, 4,0, 0), (12, 12,0, 0), (12,12, 8,8) in Fig. 6(b) for the cubic-root
system U1/3. These results are clearly consistent with the bulk-corner correspondence relations
for square- and cubic-root FSOTIs as stated in Eqs. (34) and (35).

Note in passing that the horizontal lines appearing at Fε 6= 0 in Figs. 5(b), 5(d) and Fig. 6
are related to eigenmodes formed by coupling edge states along the y-direction and bulk states
along the x-direction of the lattice. As the 1D chains along y possess a chiral symmetry, the
coupling of their degenerate edge modes with the bulk states along x can yield degenerate
states in 2D that are protected by the chiral symmetry of a 1D subsystem. We may thus regard
these edge states as weak edge states caused by weak topology. In the 2D system, their number
is sensitive to the system size along x and their quasienergies are sensitive to the choice of
system parameters. Comparatively, the numbers and quasienergies of corner modes are solely
protected by the chiral symmetry and topological invariants of the 2D system, making them
robust to the changes of system size and parameters before encountering a phase transition.

Finally, in Fig. 7, we present the gap functions and spatial profiles of Floquet corner modes
at the quasienergies π/2, π/3 and 2π/3. Their numbers are found to precisely coincide with
the bulk-corner correspondence relations in Eqs. (34) and (35). The non-Hermiticity enriched
higher-order topology in rooted Floquet systems may also assist us to engineer unique DTCs
and quantum computing schemes with the multiple quartets of corner modes at different
fractional-quasienergies that are robust to the perturbation of environment.

5 Conclusion

In summary, we proposed a systematic approach to construct the qth-root of any periodically
driven system and presented 2nth- and 3nth-root Floquet topological insulators as explicit ex-
amples. The latter are shown to exhibit degenerate edge/corner modes at fractional quasiener-
gies π

2n (0, 1, ..., 2n) and π
3n (0,1, ..., 3n), whose topological nature is inherited from their 2nth-

and 3nth-power parent systems. Square- and cubic-root non-Hermitian Floquet topological
insulators with multiple and tunable topological edge/corner states at quasienergies π/2, π/3
and 2π/3 were investigated in details. Further connections were made between the number
of these edge/corner modes and the bulk topological invariants of parent systems, yielding
the bulk-edge/corner correspondence in two classes of rooted Floquet topological insulators.
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Intriguingly, non-Hermitian effects are found to induce more corner modes with fractional-
quasienergies and generate multiple edge states coexisting with the non-Hermitian skin effect
in rooted systems. Our discoveries thus uncover a unique class of topological phases that
originates from the cooperation among driving, non-Hermiticity and the process of taking the
nontrivial roots of Floquet systems.

From the experimental perspective, the obtained systems from our qth-rooting procedure
are expected to be implementable with the same setups employed for realizing their parent
models. To this end, the additional degrees of freedom required in our qth-rooting procedure
can be principally implemented by coupling multiple copies of the parent system. In the con-
text of the non-Hermitian Floquet first and second order topological insulators explored in this
paper, their corresponding square- and cubic-root systems can thus be realized in principle via
setups like photonic quantum walks [78,81–84]. For example, the anisotropic hopping ampli-
tude and non-Hermitian lattice potential can be implemented by introducing controlled optical
losses with acousto-optical modulators in coupled optical fibre loops [78]. Moreover, the wind-
ing numbers used in characterizing their topology can in principle be experimentally probed
via measuring mean chiral displacements [59,61,85] or time-averaged spin textures [60,86],
which can also be conducted in similar photonic setups [81–84].

In future work, it would be interesting to apply our scheme to realize qth-root chiral Flo-
quet topological insulators and gapless topological phases in higher spatial dimensions. The
application of our approach to systems with many-body interactions is also expected to be fruit-
ful. In particular, it was recently shown that the interplay between interaction and periodic
driving may promote 2π/2n modes into Z2n parafermions [87]. Other families of 2π/q modes
obtained in this work thus open avenues for exploring different types of Floquet parafermions
not covered in Ref. [87]. In particular, Z3 parafermions, which are expected to arise in sys-
tems with 2π/3 modes when subjected to appropriate interactions, form a main ingredient for
constructing the powerful Fibonacci anyons [88] that enable topologically protected universal
quantum computation.
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A Topological invariants of the non-Hermitian FTI

Here we briefly recap the open-boundary winding numbers (OBWNs) introduced in Ref. [66].
They will be used to establish the bulk-edge correspondence for the first parent model in
Sec. 3 and its qth-root descendants in Sec. 4.1. We first consider the dynamics of the model
in two symmetric time frames, where the Floquet operator U = e−iH1/2e−iH2/2 is transformed
to Ua = e−iH2/4e−iH1/2e−iH2/4 and Ub = e−iH1/4e−iH2/2e−iH1/4. Next we define the Q-matrix in
the time frame α (= a, b) as Qα =

∑

j(|ψ
+
α j〉〈ψ̃

+
α j| − |ψ

−
α j〉〈ψ̃

−
α j|). The right and left Floquet

eigenvectors |ψ±α j〉 and 〈ψ̃±α j| satisfy the eigenvalue equations Uα|ψ±α j〉 = e−i(±E j)|ψ±α j〉 and
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〈ψ̃±α j|Uα = 〈ψ̃
±
α j|e

−i(±E j). An OBWN for Uα is then defined as να = TrB(ΓQα[Qα, X ])/LB. Here
Γ is the chiral symmetry (CS) operator. X is the unit cell position operator. For a system
with L lattice sites, we decompose it into a bulk region and two edge regions at the left and
right. The trace TrB is taken over the bulk region, which contains LB lattice sites. The length
of each edge region is LE = (L − LB)/2, which should be chosen properly in order to avoid
the obstruction of non-Hermitian skin effect. Finally, we define two OBWNs for a 1D non-
Hermitian FTI with CS as ν0 = (νa+νb)/2 and νπ = (νa−νb)/2. These winding numbers can
only take integer values. They are further related to the numbers of Floquet edge modes at
zero and π quasienergies n0 and nπ through the relations (n0, nπ) = 2(|ν0|, |νπ|). Following
our analysis in the main text, (ν0,νπ) could also count the numbers of fractional-quasienergy
edge modes in the qth-root descendants of the parent model U .

B Topological invariants of the non-Hermitian FSOTI

Here we summarize the definition of bulk winding numbers for the second parent model
in Sec. 3 of main text. Following Ref. [62], we first transform the Floquet operator U into
two symmetric time frames a and b by shifting the initial time of evolution from t = 0 to
t = 1/4 and t = 3/4 respectively. The Floquet operators in these time frames take the forms
Ua = e−iH2/4e−iH1/2e−iH2/4 and Ub = e−iH1/4e−iH2/2e−iH1/4. Performing Fourier transforms
from position to momentum representations, we obtain Uα =

∑

kx ,ky
|kx , ky〉Uα(kx , ky)〈kx , ky |

with α = a, b. In the tensor product form, we have Uα(kx , ky) = U0(kx) ⊗ Uα(ky), where
U0(kx) = e−iHx (kx ),

Ua(ky) = e−iHy2(ky )/4e−iHy1(ky )/2e−iHy2(ky )/4 , (36)

Ub(ky) = e−iHy1(ky )/4e−iHy2(ky )/2e−iHy1(ky )/4 . (37)

The Hx(kx), Hy1(ky) and Hy2(ky) are Fourier transforms of the Eqs. (22)–(24) in the main
text. Uα(kx , ky) has the CS in the sense that ΓUα(kx , ky)Γ = U−1

α (kx , ky) for α = a, b, where
Γ = σz ⊗ σy . In our model, U0 simply describes the evolution operator of a Su-Schrieffer-
Heeger model in its topological flat band limit, which possesses a winding number w = 1.
Taking the Taylor expansion of Uα(ky) yields Uα(ky) = cos(E)− i(dαxσx + dαzσz), for which

another winding number can be defined as wα =
∫ π

−π
dky
2π

dαx∂ky dαz−dαz∂ky dαx

d2
αx+d2

αz
for α = a, b. Put

together, we obtain a pair of winding numbers (νa,νb) = w× (wa, wb) for the Floquet opera-
tors (Ua,Ub). Their combination results in the integer topological invariants ν0 = (νa +νb)/2
and νπ = (νa −νb)/2 of the two-dimensional parent system U , which are related to the num-
bers of Floquet corner modes at zero and π quasienergies n0 and nπ through the relations
(n0, nπ) = 4(|ν0|, |νπ|) [62]. Following the analysis in the main text, (ν0,νπ) could also deter-
mine the numbers of fractional-quasienergy corner modes in the qth-root descendants of the
parent model U so long as the chiral symmetry Γ is preserved.

C Stability to disorder

In this section, we demonstrate the stability of qth-root Floquet topological phases to disorder
through numerical calculations. For the non-Hermitian FTI, we add random intracell coupling
terms H1d =

∑

n Wn|n〉〈n|⊗σy to H1 and H2d =
∑

n W ′
n|n〉〈n|⊗σx to H2 in Eqs. (19) and (20),

respectively. Here Wn, W ′
n take different values for different unit cells n and vary randomly in

the range of [−W, W ]. The form of disorder terms H1d and H2d are chosen to be general
enough and also to ensure that the chiral symmetries of the parent and the qth-root systems

18

https://scipost.org
https://scipost.org/SciPostPhys.13.2.015


SciPost Phys. 13, 015 (2022)

Figure 8: Floquet spectrum E [(a)–(c)] and gap function Fε [(d)–(f)] of U1/2
[Eq. (25)], U1/3 [Eq. (26)] and U1/4 [obtained from Eqs. (25), (6) and (7)] ver-
sus J1 with disorder and under the OBC. The size of lattice, other system parameters
and color schemes used for all panels are the same as those used for Figs. 2 and 3.
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Figure 9: The real part of Floquet spectrum and fractional-quasienergy edge modes
of the qth-root non-Hermitian FTIs for q = 2, 3,4 with disorder. The notations, length
of lattice and system parameters are the same as those used in Fig. 4.
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(b)(a)

(c) (d)

Figure 10: Gap function Fε of U1/2 [Eq. (31)] in (a), (c) and U1/3 [Eq. (32)] in (b),
(d) versus u and v with disorder. The size of lattice and other system parameters are
the same as those used in Figs. 5 and 6.

(a) (b)

(c) (d) (e)

Figure 11: Gap functions and probability distributions of corner modes for U1/2 in
(a), (c) and for U1/3 in (b), (d), (e). The notations, system parameters and size of
lattice are the same as those used in Fig. 7. (c) shows four out of the twelve π/2
corner modes. (d) shows four out of the eight π/3 corner modes. (e) shows four out
of the twelve 2π/3 corner modes.
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are preserved. In Fig. 8, we show the quasienergy spectrum and gap functions of the qth-root
non-Hermitian FTI for q = 2, 3,4 with the disorder amplitude W = 0.2 (comparable with the
minimal energy scale of the clean system). The results show that the degenerate edge modes
at different fractional quasienergies in the bulk spectrum gaps are well preserved under the
impact of disorder. In Fig. 9, we further show the E = π/2,π/3,2π/3,π/4,2π/4, 3π/4 edge
modes and their spatial profiles for q = 2,3, 4 with the same disorder amplitude W = 0.2. It
is clear that these fractional quasienergy edge modes indeed survive in the disordered system
and are well localized around the sample boundary. The results presented in Figs. 8 and 9 are
obtained for one disorder realization. We also checked a number of other disorder realizations
in the calculation and found no observable difference.

For the 2D model, we introduce disorder by adding H1d = Ix ⊗
∑

n Wn|n〉〈n| ⊗ σz and
H2d = Ix ⊗

∑

n W
′
n|n〉〈n| ⊗σx to Hy1 and Hy2 in Eqs. (23) and (24), respectively. The Wn

and W ′
n take different values for different cell indices n and vary randomly in the range of

[−W ,W]. We also choose the disorder terms in H1d and H2d to be general enough and to
make sure that the chiral symmetries of the parent and the qth-root models are retained. In
Figs. 10 and 11, we present the gap functions and the spatial profiles of fractional-quasienergy
corner modes of the qth-root non-Hermitian FSOTIs for q = 2,3 and the disorder amplitude
W = 0.2 (comparable with the minimal energy scale of the clean system). The numerical re-
sults clearly suggest that the qth-root second order topological phases and their accompanying
corner states in our system are robust to perturbations induced by symmetry-preserving disor-
der. The results presented in Figs. 10 and 11 are obtained for one disorder realization. We also
checked a number of other disorder realizations in the calculation and found no observable
difference.
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