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Abstract

We present a theory of modified reduced dynamics in the presence of counting fields.
Reduced dynamics techniques are useful for describing open quantum systems at long
emergent timescales when the memory timescales are short. However, they can be diffi-
cult to formulate for observables spanning the system and its environment, such as those
characterizing transport properties. A large variety of mixed system–environment ob-
servables, as well as their statistical properties, can be evaluated by considering counting
fields. Given a numerical method able to simulate the field-modified dynamics over the
memory timescale, we show that the long-lived full counting statistics can be efficiently
obtained from the reduced dynamics. We demonstrate the utility of the technique by
computing the long-time current in the nonequilibrium Anderson impurity model from
short-time Monte Carlo simulations.
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1 Introduction

Nonequilibrium dynamics in open quantum systems that are strongly correlated with their
environment are of great interest in a variety of fields. They have long played a central role
in mesoscopic transport [1, 2] and molecular electronics [3]. Experimental investigations of
these systems continue to elucidate the consequences of quantum coherence in nonequilib-
rium situations [4–10]. More recently, they have become relevant to understanding transport
phenomena in ultracold atomic systems [11–14]. Since such systems are typically driven away
from equilibrium, they are characterized by the way charge and energy flow through them.
A great deal of attention is therefore focused on understanding transport properties and their
fluctuations or counting statistics [15–17].

However, the theoretical treatment of interacting nonequilibrium quantum systems re-
mains a challenging endeavor where analytical results and reliable approximations are rel-
atively sparse. In regimes where no reliable approximations are known to exist, numerically
exact methods are needed. Such methods often proceed by starting from a well-defined,
tractable initial condition and propagating it to the nonequilibrium steady state. If the ex-
act wavefunction is used to represent the state of the system, this task requires a full solution
of the many-body Schrödinger equation, and the computational complexity rises exponentially
with the system’s size, such that large systems cannot be studied.

One class of problems where the computational scaling in system size can often be by-
passed are quantum impurity models. These describe systems where many body interactions
are restricted to a small physical region S. This, in turn, is coupled to a large (or infinite) envi-
ronment E whose constituents are assumed to be noninteracting in the sense that their Hamil-
tonian is quadratic. Research on numerical techniques for simulating nonequilibrium dynamics
in impurity models is a lively and active field [18]. A few examples of paradigms where signifi-
cant recent advances have been made are matrix product state representations [19–25], hierar-
chical equation of motion techniques [26–30] and quantum Monte Carlo algorithms [31–42].
Nevertheless, in many of the most successful methods it remains computationally difficult
to reliably perform propagation to long times. I.e., while systems with large baths can be
studied, the scaling in time is either exponential or polynomial, but in any case greater than
linear. Some approaches for bypassing this issue rely on reduced dynamics (RD): effective
non-Markovian equations of motion for quantities with the (Hilbert space) dimensionality of
the small interacting region S only. If the kernel representing non-Markovian effects is short-
ranged in time, evaluating it up to a cutoff time provides enough information to inexpensively
obtain dynamics at long and even infinite timescales [43–49].

RD provides access to the time dependence of all local observables, i.e. observables within
the small interacting region. A major disadvantage of RD is that observables that are of interest
in the study of transport are often nonlocal. While RD of nonlocal observables can be formu-
lated [50], their use requires the evaluation of specialized, observable-dependent nonlocal
quantities that can be challenging to calculate in practice.

An elegant theoretical alternative to the direct evaluation of nonlocal observables is to in-
troduce nonlocal counting fields into the Hamiltonian. If dynamics with respect to the modified
Hamiltonian are evaluated, it is then possible to obtain nonlocal observables, their fluctuations
and all their higher moments, which are collectively termed the full counting statistics (FCS),
from a local generating function. Calculating the FCS generating function involves the evalua-
tion of a specialized kind of auxiliary, counting-field-modified dynamics that is nonunitary not
just in the system subspace, but for the overall system + environment. Simulating such dy-
namics poses deep technical challenges within many methods, but several approaches exist in
the literature and recent advances have been made towards computing FCS [51–60]. Among
these, so far only the methods of Refs. [55–57] are able to account for FCS in models relevant
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to electronic transport. Yet, existing RD techniques are not able to account for FCS as they
generally assume unitarity of the overall dynamics.

In this Article, we develop a theory of RD in the presence of counting fields. We build on
two major formalisms used in the literature, the Nakajima–Zwanzig–Mori equation (NZME)
and its discrete-time version, known as the transfer tensor (TT) method. In Sec 2 and 3, we
derive continuous and discrete memory kernel approaches to evaluating generating functions,
respectively. In Sec 4, we then demonstrate our approach on the nonequilibrium Anderson
impurity model, a canonical representation of interacting quantum transport.

2 NZME for FCS

We will present two theoretical results: first, a derivation of RD that are continuous in time;
then, a derivation of RD that are stroboscopic in time (i.e. defined at a discrete set of times).
While we will apply only the stroboscopic formalism to the simulations below, we begin with
the continuous formalism for two reasons. First, it provides a more explicit connection to the
(more fundamental) continuous time dynamics that will be most familiar to many readers;
second, it opens the door to the application of other numerical techniques that may be better
suited to the continuous time domain.

Master equations are often employed to describe the RD of open quantum systems. Memo-
ryless or Markovian systems, such as electronic states in atoms weakly coupled to a wideband
photonic cavity, can be described by the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL)
master equation, ρ̇S

t = LS
tρ

S
t . This equation, which describes the dynamics of observables in

the “system” subspace S, is celebrated for its simplicity and desirable features, such as the com-
plete positivity of its solutions. However, many open quantum systems in condensed matter
physics and quantum chemistry involve complex, non-Markovian memory effects not included
in the GKSL description.

Corrections starting from the Markovian weak-coupling limit have been widely discussed
in the literature [61–65]. To derive such corrections, it is useful to begin from the exact ex-
pression, which can be obtained by tracing out the environment or bath subspace. This is the
Nakajima–Zwanzig–Mori equation (NZME):

ρ̇S
t = LS

tρ
S
t +

∫ t

t0

dsKS
t,sρ

S
s +J S

t,t0
. (1)

Here, Lt is a time-local Liouvillian; Kt,s is a memory kernel superoperator quantifying the
effect of the baths; and Jt,t0

is an inhomogeneous term that encodes initial correlations be-
tween the S subspace and the baths. Various approximate master equations emerge from the
NZME at specific limits: for example, when Kt,s is nonzero only for t = s and Jt,t0

vanishes
we recover the GKSL master equation.

One is often interested in observables not fully contained within the system subspace S,
such that their expectation values and higher-order fluctuations cannot be computed from ρS

t .
An example commonly considered in quantum transport is energy or particle currents on the
interface of the system with a particular bath. These can be expressed as the time derivatives
of an observable in the full Hilbert space: in this case, the total energy or occupation in the
bath, respectively. They are therefore system–bath or bath–bath observables. A convenient
and formally exact way to treat such observables, along with all their higher-order moments
and cumulants, is by introducing a counting field [15]. For any system, bath, or system–bath
observable At—that is a driven observable in the Schrödinger picture such that it commutes
with the initial density matrix, i.e., [At0

,ρSE
t0
] = 0—we can compute the mth moment by
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differentiating the generating function Zλ,t :

〈(∆A)mt 〉= lim
λ→0

∂ m

∂ (iλ)m
Zλ,t =

m
∑

k=0

�

m
k

�

〈Ãm−k
t Ak

t0
〉 (2)

=
m
∑

k=0

(−1)k
�

m
k

�

Tr
¦

Am−k
t Ut:t0

Ak
t0
ρSE

t0
U†

t:t0

©

. (3)

Here, λ is the counting field, Ãt is the Heisenberg-picture version of At , and Zλ,t = Tr[ζS
λ,t],

where ζS
λ,t is a generalised density operator for the system that can be expressed in terms of

the joint S ⊗ E dynamics as

ζS
λ,t ≡ TrE

§

e
iλAt

2 Ut:t0
e
−iλAt0

2 ρSE
t0

e
−iλAt0

2 U†
t:t0

e
iλAt

2

ª

, (4)

with Ut:s the usual (unitary) time evolution operator.
This can be expressed more concisely as ζS

λ,t = TrE{Zλ,t:t0
(ρSE

t0
)}, in terms of the

λ-dependent time-evolution superoperator

Zλ,t:s =A+λ,t ◦Ut:s ◦A+−λ,s , (5)

where A±
λ,t(X ) = eiλAt/2X e±iλAt/2 and Ut:s(X ) = Ut:sX U†

t:s. Here, ◦ denotes composition of
superoperators. Finally, note that the mth cumulant Cm

t can be computed from the logarithm
of the generating function as Cm

t = limλ→0
∂ m

∂ (iλ)m ln(Zλ,t).
We now come to our first result: the construction of an exact memory kernel equation of

motion for the operator ζλ,t with fixed λ, and hence for the generating function Zλ,t . We will
also show that this reduces to the NZME in the case where λ = 0. The principal effect of a
finite λ with respect to the normal dynamics is that the generator will no longer be a simple
commutator with the S ⊗ E Hamiltonian. The time derivative of the modified density matrix
can, instead, be written as

∂tZλ,t:s =Rλ,t(Zλ,t:s) , (6)

where

i Rλ,t(X ) =A−λ,t(Ht)X − XA−−λ,t(Ht)−
1
2

∫ λ

0

dτ
¦

A−τ,t(∂tAt)X+XA−−τ,t(∂tAt)
©

. (7)

For fixed λ, the evolution superoperator is divisible:

Zλ,t:t0
= Zλ,t:sZλ,s:t0

, for t > s > t0 . (8)

We can therefore follow the steps of the standard derivation of the NZME (see e.g. Refs. [66,
67] and Appendix A) to write

∂tζ
S
λ,t = SS

λ,tζ
S
λ,t +

∫ t

t0

dsMS
λ,t,sζ

S
λ,s +N S

λ,t,t0
, (9)

with SS
λ,t , M

S
λ,t,s, and N S

λ,t,t0
the finite λ counterparts to LS

t , K
S
t,s and J S

t,t0
in Eq. (1). These

can be expressed in terms of S ⊗ E projection superoperators P and Q = I −P , with action
P(X ) = TrE[X ⊗σE] a function of reference state σE, as

SS
λ,t X

S = TrE

�

PRλ,tP(X S)
	

,

MS
λ,t,sX

S = TrE

�

PRλ,tGλ,t,sQRλ,tP(X S)
	

,

N S
λ,t,t0

= TrE

¦

PRλ,tGλ,t,sQρSE
t0

©

,

(10)
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where

Gλ,t,s = T exp

�∫ t

s
dr QRλ,r

�

, (11)

with T a time ordering operator.
Since A±0,t = I, it follows from Eq. (7) that R0,t is the usual generator of the von Neumann

equation, i.e., R0,t(X ) = −i[Ht , X ]. Therefore, in the case that λ = 0, Eq. (9) reduces to
Eq. (1) with LS

t = SS
0,t , K

S
t,s =MS

0,t,s and J S
t,t0
= N S

0,t,t0
the quantities appearing in the usual

NZ master equation.
As is the case without a counting field, N S

λ,t,t0
goes to zero and the equation simplifies

when the initial condition factorises as ρSE
t0
= ρS

t0
⊗ ρE

t0
and the reference state is chosen as

σE = ρE
t0

. The complexity of propagating the system to long times can still be high when
there is a nontrivial memory kernel MS

λ,t,s [43–45]. There exist techniques for expanding the
propagator in Eq. (11), such that a closed form expression for the memory kernel in terms
of system quantities can be found [43]. Therefore, in practice, one can often fit the memory
kernel to data from short time numerical simulations and extrapolate to longer times under the
assumption that there is a time tm, beyond which memory effects are small [44–47,49,68–70].

However, numerical (or experimental) data is typically recorded on a discrete time lattice,
whose spacing may be longer than the shortest dynamical timescale for the system, precluding
an accurate smooth reconstruction of the memory kernel. This motivates the discrete-time
transfer tensor approach [71, 72], which we now show also generalizes to the setting of full
counting statistics.

3 Transfer tensor approach

The primary object with which we will be dealing within the TT approach is the generalized
dynamical map, defined as

Λλ,t:s(X ) = TrE

�

Zλ,t:s(X ⊗σE)
	

. (12)

For a factorising initial condition with σE = ρE
t0

, we have ζS
λ,t = Λλ,t:t0

(ρS
t0
). As before, when

λ= 0 these become the dynamical maps of the usual time evolution, and must be completely
positive and trace preserving. More generally, however, they need not take physical density
operators to physical density operators.

In the following two subsections, we will show how the approach is formulated and ap-
plied. The first of these outlines the procedure for extracting dynamical maps from short-time
values for the generalized density operator ζS

λ,t . The second shows how a family of trans-
fer tensors can be extracted from these dynamical maps, and how the former can be used to
approximate long-time data.

Constructing the dynamical maps from data

In principle, maps Λλ,t:s can be constructed from experimental or simulated data with suffi-
ciently many observations and initial conditions using standard ideas from quantum process
tomography [73,74]. Namely, we need the scalars associated with

Λλ,t:s;βα ≡ Tr
�

YβΛλ,t:s(Xα)
�

, (13)

where Xα and Yβ are input and output operators, respectively. In practice, only approximate
data points Lλ,t:s;βα ' Λλ,t:s;βα are available (from simulation or experiment). With access
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to estimates of the scalar coefficients corresponding to a basis set of operators {Xα} and {Yα}
on the input and the output spaces, respectively, we can fully determine the map. The only
requirements are that each set should linearly span the full system operator space with d2

linearly independent operators for a d-dimensional Hilbert space, and that the elements (in
product with IE) should commute with At0

.
For any set of basis matrices there exists a dual set, that we denote as {X̆α} and {Y̆α},

satisfying Tr[W̆ †
αWβ] = δαβ with W ∈ {X , Y }. Given this, the superoperator in the Liouville

form or “A-form” is written as

Λλ,t:t0
'
∑

α,β

Lλ,t:t0;βα|Y̆β〉〉〈〈X̆α| , (14)

with |W 〉〉 indicating vectorisation of the operator W . The last equation is self-consistent due
to the fact that 〈〈W̆α|Wβ〉〉= Tr[W̆ †

αWβ] = δαβ .
In an experiment, the sets {Xα} and {Yα} could represent sets of initial condition density

operators and observables, respectively. However, when using simulated data, it is convenient
to pick the self-dual basis {Xα} = {Yα} = {|µ〉〈ν|} for some orthonormal basis of vectors {|µ〉}
in the system Hilbert space. In this case, Eq. (14) reduces to

Λλ,t:t0
'

∑

µ′ν′,µν

Lλ,t:t0;µ′ν′µν |µ′〉|ν′〉〈µ|〈ν| . (15)

The data points Lλ,t:t0;µ′ν′µν approximate the µ′ν′ matrix elements 〈µ′|Λλ,t:s(|µ〉〈ν|) |ν′〉 of the
evolved generalised density operator corresponding to an input density matrix with a single
non-zero matrix element at entry µν.

As noted earlier, when λ = 0 the dynamical maps must be completely positive and trace
preserving (provided there are no initial system–environment correlations). These conditions
are sufficient to ensure that, even when applied to a subsystem of a larger composite, physical
density operators are mapped to physical density operators. Complete positivity can be most
easily expressed in terms of the so-called Choi form of the map: specifically, using the same
notation as Eq. (14), the operator

∑

α,β Lλ,t:t0;βαY̆ †
β
⊗ X̆ ∗α should be positive semi-definite.

Trace preservation, i.e., Tr[Λλ,t:s(X )] = Tr[X ] can be expressed in terms of the superoperator
matrix form of the map as 〈〈I|Λ0,t:t0

= 〈〈I|. When starting from imperfect data, enforcing
complete positivity and trace preservation numerically can greatly reduce the potential for
unphysical propagated dynamics. Beyond simple projection techniques, there exist several
more sophisticated methods for reconstructing physical dynamical maps from incomplete or
noisy data [75,76].

For finite values of λ, there are no analogous universal conditions that the dynamical maps
must satisfy. However, we note in passing that by expanding Eqs. (5) and (12) in powers of λ,
one finds that for small λ the counterpart of the trace preservation condition can be expressed
as

〈〈I|Λλ,t:t0
= 〈〈I|+ iλ

�

〈〈ÃS
t | − 〈〈Ã

S
0|
�

+O(λ2) . (16)

Here, ÃS
t = TrE[U

†
t:0At Ut:0I⊗σE] is the Heisenberg picture counting operator averaged with re-

spect to the environment state. If this operator can be estimated independently, then numerical
enforcement of Eq. (16) could be used to stabilize the construction of the dynamical maps. It
is also possible that detailed balance conditions [77] stemming from fluctuation theorems [78]
may be generally useful in this regard, though this remains speculative at present.

Propagation using transfer tensors

We now show how the short-time dynamical maps can be used to extrapolate the dynamics
to arbitrarily long times using the TT method. Following the same steps as in Ref. [67] (re-
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produced in Appendix B), one can recursively define a family of transfer tensors on a set of
discrete times {t j} through

T (1)
λ,t j :t j−1

= Λλ,t j :t j−1
and T (n)

λ,t j :t j−n
= Λλ,t j :t j−n

−
n−1
∑

k=1

T (k)
λ,t j :t j−k

Λλ,t j−k:t j−n
, (17)

such that dynamical maps between distant times can be expressed in terms of intermediate
ones as

Λλ,t j :t j−n
=

n
∑

k=1

T (k)
λ,t j :t j−k

Λλ,t j−k:t j−n
, (18)

with Λλ,t j−n:t j−n
= I. In the case that the S ⊗ E Hamiltonian Ht and the counting oper-

ator At are time-independent, the generalised dynamical maps become stationary; that is,
Λλ,t j :tk

= Λλ,t j−tk:0 ≡ Λλ, j−k. Hence, for an evenly spaced time-grid with t j − t j−1 = δt, we

have T (n)
λ,t j :t j−n

= T (n)
λ,nδt:0 ≡ Tλ,n. Eqs. (17) and (18) then become

Tλ,1 = Λλ,1 , Tλ,n = Λλ,n −
n−1
∑

k=1

Tλ,kΛλ,n−k , (19)

and

Λλ,n =
n
∑

k=1

Tλ,kΛλ,n−k ⇒ ζλ,tn
=

n
∑

k=1

Tλ,kζλ,tn−k
. (20)

This equation is exact, and reminiscent of convolution with the memory kernel; the direct
correspondence between the two is discussed in Refs. [67, 72] for the λ = 0 case. However,
for systems with a decaying memory, the generalized density operator can be approximated
by Eq. (20) with the sum truncated at some large m< n:

ζλ,tn
'

m
∑

k=1

Tλ,kζλ,tn−k
. (21)

As such, the dynamics up to time tm can be used to propagate the generalized density operator,
and hence the generating function, to longer (or potentially infinite) times.

Since we typically find the propagated dynamics to be sensitive to high frequency noise in
the original maps {Λλ,n : n< m}, we instead use a (symmetric) rolling average of the latter:

Λ̃λ,n =
1
w

n+w
∑

k=n−w

Λλ,n , w=min(N , n, m− n) , (22)

where N is a parameter that sets the maximum size of the averaging window. See Ref. [79]
for an alternative memory-cutoff scheme that may also be useful in this context.

4 Model

To demonstrate how the transfer method can be used to obtain full counting statistics in
practice, we apply it to the nonequilibrium Anderson impurity model, which is often used
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to describe electronic transport through junctions. This is defined by the Hamiltonian
H = HS +HE +HSE , where

HS =
∑

σ

εa†
σaσ + Ua†

↑a↑a
†
↓a↓ ,

HE =
∑

kσ

εka†
kσakσ ,

HSE =
∑

kσ

vka†
kσaσ + v∗k a†

σakσ .

(23)

Here, ε is a single-particle occupation energy on the system/impurity site, and U is an on-
site Hubbard interaction; the εk and vk, respectively, are occupation energies in the environ-
ment levels k and system–environment coupling terms; aσ are system fermionic annihilation
operators with spin σ ∈ {↑,↓}; and the aσk are fermionic annihilation operators in the en-
vironment. At the continuum limit, the vk are determined by the coupling strength function
Γ (ω)≡

∑

k |vk|
2δ(ω−ωk), which we set to

Γ (ω) =
Γ

�

1+ eν(ω−ΩC )
� �

1+ e−ν(ω+ΩC )
� . (24)

This describes an environment with a flat density of states having a bandwidth 2ΩC and a band
cutoff width of 1/ν. Throughout this work, ΩC = 10Γ , ν= 10/Γ , U = 5Γ and ε= −U/2. The
environment levels are equally distributed between a “left” and “right” subspace, denoted as L
and R, respectively. At the initial time the system is prepared in a factorized state ρ = ρS⊗ρE ,
with the environment part further factorizing as ρE = ρL ⊗ρR and each of the two environ-
ment subspaces initially in thermal equilibrium at a given temperature T and chemical poten-
tial µL/R. By setting µL/R = ±V/2, a bias voltage V can be applied across the system, driving
it towards a nonequilibrium steady state exhibiting a nonzero current I .

An important and well-known physical feature of the Anderson model is the emergence of
strong correlation physics at temperatures below the Kondo scale TK [80–82], which for our
choice of parameters can be estimated as ∼ 0.3Γ [81]. The behavior of the NZME memory
kernel for normal dynamics in this model was investigated in Ref. [44], showing that Kondo
physics is associated with the emergence of a long memory timescale. When this timescale is
still small enough to allow numerical evaluation up to it, it was also shown that dynamics up
to long or infinite timescales could be obtained [44,45].

Here, following Refs. [55] and (for the noninteracting case) [54], we will consider modified
dynamics in the presence of a counting field λ that generates moments of the total population
in the left subspace L. The time derivative of this population is a commonly used definition
for the electronic current I , and the one used here.

5 Results

We evaluate the generalized density operator ζλ,tn
using a numerically exact quantum Monte

Carlo technique—called inchworm Monte Carlo—that was described and validated in previous
publications [55–57]. Simulations are performed for a complete set of initial conditions so that
the transfer tensor can be fully recovered from Eqs. (15) and (17).

We begin by considering the transfer tensors themselves. In Figure 1 we present their L2

norm ‖T‖—a rough measure of the contribution of memory effects at the corresponding time
scale—for two voltages V ∈ {0,5Γ }; at two inverse temperatures respectively above and below
the Kondo regime, βΓ ∈ {0.1, 10}; and for three values of the counting field, λ ∈ {0, 0.3,0.6}.
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Γt

10−3

10−1

‖T
λ
,t
/δ
t‖

,V
=

0Γ

λ = 0.0

βΓ = 0.1
βΓ = 10.0

Γt

λ = 0.3

Γt

λ = 0.6

0 2
Γt

10−3

10−1

‖T
λ
,t
/δ
t‖

,V
=

5Γ

0 2
Γt

0 2
Γt

Figure 1: Norms of transfer tensors Tλ,n, with n= t/δt and Γδt = 0.02, as a function
of the time t. Two bias voltages are shown: V = 0 (top row) and V = 5Γ (bottom
row). Also plotted are several values of the counting fields, λ = 0.0 (left column),
λ= 0.3 (middle column), and λ= 0.6 (right column); and two inverse temperatures
βΓ = 0.1 (blue) and βΓ = 10 (orange).

At higher temperatures and voltages, we expect the dynamics to express only timescales com-
mensurate with the bare energy scales in the problem. Within the Kondo regime, on the other
hand, we expect timescales proportional to TK to emerge. Here, we only consider two tem-
peratures and do not seek to explicitly reproduce the Kondo scaling, which would also require
cleaner data. However, it is clear that longer memory timescales emerge at low temperature
in all cases. It can also be seen that this effect is somewhat more pronounced at zero voltage,
consistent with the idea that a nonequilibrium drive should suppress Kondo physics (though
see Refs. [83,84] for some qualifications to this statement).

Interestingly, Figure 1 shows that the introduction of the counting field does not strongly
affect the norm of the transfer tensor. Individual elements do vary, and we will see immediately
that the dynamics is dramatically modified by the field. Nevertheless, the weak response in
the norm suggests that the effective range of the memory kernel depends on the counting
field only weakly, at least in this regime, implying that memory cutoffs used for regular time
dynamics should be equally valid at finite λ.

When the transfer tensor decays to zero rapidly enough, approximate long-time dynamics
can be obtained from Eq. (21). In Figure 2 we show how this works in practice for both real
(top panels) and imaginary (bottom panels) parts of the counting field Z . We selected the pa-
rameters used in Figure 1 that turn out to be the most difficult for this purpose: β = 10/Γ and
V = 5Γ . The values of the counting field are the same as those used in Figure 1. Numerically
exact benchmarks from inchworm Monte Carlo are shown in black dashed lines up to time
Γ t = 8, indicated by the lightly shaded region. Reconstructed dynamics is shown in red up to
twice that timescale, and can be extended in time at negligible numerical cost.

Going from left to right, in each column of panels the cutoff time tm (dashed vertical line)
is increased. Only data in the darkly shaded regions to the left of tm is used in constructing
the transfer tensors. In the regime we considered, one can see that a cutoff time of tm = 1.2/Γ
(right panels) is sufficient for reproducing the dynamics at a reasonable level of accuracy. We
note that within our present implementation of the method, increasing the memory time does
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λ=0.6

λ=0.3

λ=0.0

λ=0.3

λ=0.6

λ=0.0

TT

MC

Figure 2: Reconstructed generating functions Zλ,t (red, solid) at memory cutoff times
Γ tm = 0.4 (left column), Γ tm = 0.8 (middle column), and Γ tm = 1.2 (right column).
The time interval up to the cutoff time, which is used to construct the transfer tensor,
is shaded in dark gray. The values of the counting fields are as in Figure 1, and
can be distinguished by respectively increasing curvature. The temperature is set to
β = 10/Γ , the voltage to V = 5Γ , and the system is initially in the unoccupied state.
A smoothing parameter N = 6 was used. As a benchmark, full inchworm Monte
Carlo simulations are also shown (black, dashed) within the light gray region.

not always improve the accuracy. This, because going to longer times typically also increases
the noise; the degree to which this occurs depends on the underlying numerical method for
evaluating the modified dynamics. The reconstructed dynamics are especially sensitive to
noise near the cutoff time, though the smoothing parameter provides some robustness. We
will demonstrate this and remark further on it below, where the effect is more obvious.

Next, we consider the dynamics of the current I(t) obtained from the first cumulant of the
generating function. We will be particularly interested in the effect of noise and smoothing on
the accuracy of the reconstruction. Therefore, in Figure 3, we show relatively noisy numerical
data from inchworm Monte Carlo in black. Two initial conditions are shown in the two panels.
Reconstructed dynamics at three different cutoff times Γ tm ∈ {0.3, 0.8,1.2} are shown as solid
blue, orange and green curves, respectively. For each cutoff time, we also show the effect
of smoothing the input data with smoothing parameter N = 6 as dashed curves in the same
colors.

For the unoccupied initial condition (top panel in Figure 3), the current rises rapidly, then
drops to a plateau at a lower value. This is easily understood when considering that our
definition of the current is the time derivative of the population in the left lead, commonly
referred to in the literature as the “left” current IL . When the dot is initially empty, it is rapidly
filled by the left lead at short times at timescales of order 1/Γ , until it reaches its steady-state
population—at the parameters used here, a half-occupied state. At that point, transport is
partially blocked, and the steady state current is eventually reached. A complementary “right”
current IR could be calculated by considering the time derivative of populations in the right
lead. The right current is suppressed at short times for this initial condition, and the “average”
current (IL + IR)/2 therefore does not feature the sudden rise and fall at short times.

On the other hand, in the magnetized initial condition, transport from the left lead into
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) Original data
N =0
N =6

Figure 3: Reconstructed time-dependent current I(t) for memory cutoff times
tm = 0.4 (blue), tm = 0.8 (orange), and tm = 1.2 (green), with (dashed) and
without (solid) averaging of initial data with maximum window radius N = 6. For
comparison, current calculated from the inchworm Monte Carlo data used in the re-
construction is shown in black. The top panel shows the current starting from the
unoccupied initial condition, while the bottom panel shows that starting from a mag-
netized initial condition. Model parameters: U = 5Γ , V = 5Γ , βΓ = 1.0, ε = 0.0,
ωc = 10.0Γ .

the impurity is suppressed at very short times for one spin by Pauli exclusion, and for the other
by the interaction. However, the initial electron on the dot rapidly empties into the right lead,
and eventually the same steady state is reached.

When the cutoff time is too short (blue curves), a systematic error in the dynamics is
observed. At long enough cutoff times (orange and green curves), the dynamics converges
to within the noise of the Monte Carlo data. However, the unsmoothed green lines at the
largest cutoff time are shifted away from the orange line by a stochastic fluctuation in both
cases. This shifting survives to long times and produces a systematic error in the current.
Smoothing largely rectifies this issue—the dashed orange and green curves are essentially
indistinguishable from each other—but may also introduce a systematic bias that degrades
accuracy. On the other hand, smoothing has negligible effect at the intermediate cutoff time
(orange curves) and a small effect at short cutoff time (blue curves).

We note that due to the high peak at short times for the unoccupied initial condition, the
scale of the top panel is higher. This makes it appear as if the effects of noise are different, but
they are actually quite similar in practice.

The results clearly demonstrate that it is possible to reproduce dynamics at intermediate
timescales with our method. However, they also show that the method is very sensitive to
both cutoff time and noise. Therefore, we expect that more robust schemes for constructing
the transfer tensor will be needed to enable high-precision dynamical applications.

Finally, we present results for the steady state current 〈I〉ss ≡ limt→∞ 〈I (t)〉 in Figure 4.
Steady state properties are often difficult to extract from methods based on time propagation,
because it can be computationally expensive to obtain accurate data sufficiently close to the
long time limit. We consider the interacting, driven case U = 5Γ and V = 5Γ , at high and low
temperatures (βΓ = 0.1, 10). Inchworm Monte Carlo calculations are performed up to time
Γ t = 8. We take the mean and standard error of the current at times Γ t > 7 as a benchmark
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〉 ss
, βΓ =0.1
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Figure 4: Reconstructed steady state current as a function of memory cutoff at inverse
temperatures βΓ = 0.1 (blue) and βΓ = 10.0 (orange). All values were computed
by averaging the propagated current at long times with a time step dt = 0.02/Γ and
averaging parameter N = 6. Model parameters: ε = −2.5Γ , ωc = 10.0Γ . Shaded
regions indicate a 68% confidence interval of the steady state current reconstructed
from long time Monte Carlo data (mean shown as dashed line).

estimate for the steady state value (shown as horizontal dashed lines, with shaded regions
indicating the standard error). Steady state currents are then extracted from the long-time
limit of the TTs corresponding to this data, but truncated at different times. The results are
plotted as a function of the inverse cutoff time (Γ tm)−1. At the low temperature, an accurate
plateau value is reached at times ∼ 1/Γ , and for the higher temperature this occurs even
sooner.

The data shown in Figure 4 indicates that by using the FCS-enabled TT method presented
here, steady state currents can be reliably obtained from inchworm Monte Carlo simulations
up to times Γ t ∼ 1 rather than Γ t ∼ 8 at the parameters considered here. Specifically, the
values obtained from the transfer tensor method with simulations up to those times agrees
up to standard error with the values obtained from long-time Monte Carlo simulations (cor-
responding to the shaded regions in the figure). Since the computational cost of the Monte
Carlo calculations scales quadratically with time, this represents a practical reduction factor
of ∼ 64.

6 Conclusions

The reduced dynamics of a system within an environment can be exactly expressed in terms
of a non-Markovian memory kernel, or on a discrete time grid as a transfer tensor. When the
memory is short-ranged, short-time simulations of the kernel or transfer tensor can be used
to obtain long-time dynamics within the system. However, environment observables or mixed
system–environment observables are not straightforward to access in this manner; treating
each such observable requires the derivation of a specialized, ad-hoc reduced dynamics that
can be difficult to implement in practice. On the other hand, many such observables—as well
as their higher-order moments—can be expressed in terms of their full counting statistics,
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which is extracted from a generating function governed by modified, nonunitary dynamics.
We presented a generalization of the transfer tensor formalism (as well as its continuous

form, the Nakajima–Zwanzig–Mori equation) to full counting statistics. Using the nonequilib-
rium Anderson impurity model with a particle number counting field as a test case, we showed
that the memory can still be short-ranged, even though the dynamics are typically character-
ized by long-lived oscillations. Finally, we showed that the dynamics and steady state of the
generating function and its low moments (in this case, the particle current) can be reproduced
from short-time numerical simulations. The reproduction is sensitive to noise in the simulation
data, and future work will be needed to make it more robust. Nevertheless, we showed that
in some cases the method can be paired with modern Monte Carlo algorithms, enabling the
evaluation of accurate steady states at a fraction of the direct computational cost. For other
simulation methods, where the barrier to long times can be exponential and stochastic noise is
less prominent, our generalized transfer tensor technique may enable calculations that would
otherwise be completely intractable.
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A Derivation of the NZM equation for generalized density opera-
tors

For any two-parameter family of (super)operators Xt:s which satisfies an equation of the form
(cf. Eq. (6))

∂tXt:s = YtXt:s , (25)

one can derive an equation of motion in terms of a memory kernel using the Nakajima-
Zwanzig-Mori projection technique, as we will now briefly show. Variations of this derivation
can be found, for example, in Refs. [66,67].

To start with, define a family of projection superoperators Pt , with action
Pt X

SE = TrE{X SE}⊗σE
t , with σE

t a unit-trace, time-dependent environment operator, and their
complement Qt = I −Pt . These obey the following identities:

PtPs =Pt , (26)

QtQs =Qs , (27)

QtPs =Ps −Pt , (28)

PtQs =0 . (29)

Using Eq. (25) and the identity I = Pt +Qt , the dynamics of the ‘relevant’ and ‘irrelevant’
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projections of the evolution superoperator Xt:s can be shown to satisfy

∂tPtXt:s =
�

PtYtPt + Ṗt

�

Xt:s +PtYtQtXt:s , (30)

and

∂tQtXt:s =
�

QtYtPt − Ṗt

�

Xt:s +QtYtQtXt:s , (31)

with Ṗt = ∂tPt satisfying PtṖs = 0, since σE
t has fixed (unit) trace.

Eq. (31) has the formal solution

QtXt:s = T← exp

�∫ t

s
dr QrYr

�

Qs +

∫ t

s
dr T← exp

�∫ t

r
dr ′Qr ′Yr ′

�

�

QrYrPr − Ṗr

�

Xr:s ,

(32)

which, when substituted into Eq. (30), gives

∂tPtXt:s =
�

PtYtPt + Ṗt

�

Xt:s +PtYt

∫ t

s
dr T← exp

�∫ t

r
dr ′Qr ′Yr ′

�

�

QrYrPr − Ṗr

�

Xr:s

+PtYt T← exp

�∫ t

s
dr QrYr

�

Qs . (33)

Acting with both sides of this equation on the initial condition ρSE
t0

and taking the partial
trace withg respect to the environment, one arrives at a memory kernel master equation for
ρS

t = TrE{Xt:t0
ρSE

t0
}:

∂tρ
S
t =TrE

�

PtYtPtρ
S
t ⊗σ

E
t

	

+ TrE

¨

PtYt

∫ t

t0

dr T← exp

�∫ t

s
dr QrYr

�

�

QsYsPs − Ṗs

�

ρS
s ⊗σ

E
s

«

+ TrE

¨

PtYt T← exp

�

∫ t

t0

dsQsYs

�

Qt0
ρSE

t0

«

, (34)

with the three terms corresponding to those in Eq. (1). For a factorising initial condition
ρSE

t0
= ρS

t0
⊗ρE

t0
, the final, inhomogeneous term vanishes for the choice σE

t0
= ρE

t0
.

Since Eq. (6) is of the form of Eq. (25), ζS
λ,t obeys Eq. (34) with Yt = Rλ,t . Choosing

σE
t = σ

E, ∀t, and hence Pt = P , Qt = Q, Ṗt = 0, one arrives at the quantities expressed in
Eqs. (9), (10), and (11).

B Transfer tensor derivation for generalized dynamical maps

Roughly following the derivation in Ref. [67], we can define two mappings

Pt l
: Λλ,t j :tk

7→ Λλ,t j :t l
Λλ,t l :tk

, t j ≥ t l ≥ tk , (35)

Qt l
: Λλ,t j :tk

7→ Λλ,t j :tk
− Pt l

Λλ,t j :tk
, t j ≥ t l ≥ tk , (36)

such that

Λλ,t j :tk
= Pt l

Λλ,t j :tk
+Qt l

Λλ,t j :tk
=
�

Pt l
+Qt l

�

Λλ,t j :tk
, (37)
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for any t j ≥ t l ≥ tk. Recursively expanding the second term of this last expression with
l = j − 1, we arrive at

Λλ,t j :tk
=
¦

Pt j−1
+Qt j−1

�

Pt j−2
+Qt j−2

�©

Λλ,t j :tk

=
¦

Pt j−1
+Qt j−1

Pt j−2
+Qt j−1

Qt j−2
Pt j−3

+ · · ·+Qt j−1
+ · · ·+Qtk+1

Ptk

©

Λλ,t j :tk

=Λλ,t j :t j−1
Λλ,t j−1:tk

+
�

Qt j−1
Λλ,t j :t j−2

�

Λλ,t j−2:tk
+ . . .

+
�

Qt j−1
+ · · ·+Qtk+1

Λλ,t j :tk

�

Λλ,tk:tk

=
j−k
∑

l=1

T (l)
λ,t j :t j−l

Λλ,t j−l :tk
, (38)

where

T (l)
λ,t j :t j−l

=Qt j−1
· · ·Qt j−l+1

Λλ,t j :t j−l
(39)

are the transfer tensors. These can themselves be recursively expanded, using Eq. (36), as

T (l)
λ,t j :t j−l

=Qt j−1
· · ·Qt j−l+2

Λλ,t j :t j−l
−Qt j−1

· · ·Qt j−l+2
Λλ,t j :t j−l+1

Λλ,t j−l+1:t j−l

=Qt j−1
· · ·Qt j−l+3

Λλ,t j :t j−l
−Qt j−1

· · ·Qt j−l+3
Λλ,t j :t j−l+2

Λλ,t j−l+2:t j−l

−Qt j−1
· · ·Qt j−l+2

Λλ,t j :t j−l+1
Λλ,t j−l+1:t j−l

=Λλ,t j :t j−l
−

l−1
∑

k=1

T (k)
λ,t j :t j−k

Λλ,t j−k:t j−l
, (40)

with

T (1)
λ,t j :t j−1

=Λλ,t j :t j−1
, (41)

which is equivalent to Eq. (17) in the main text. Correspondingly, Eq. (38) is equivalent to
Eq. (18).
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