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Abstract

Characterization of non-Markovian open quantum dynamics is both of theoretical and
practical relevance. In a seminal work [Phys. Rev. Lett. 120, 040405 (2018)], a nec-
essary and sufficient quantum Markov condition is proposed, with a clear operational
interpretation and correspondence with the classical limit. Here we propose two non-
Markovianity measures for general open quantum dynamics, which are fully reconciled
with the Markovian limit and can be efficiently calculated based on the multi-time quan-
tum measurements of the system. A heuristic algorithm for reconstructing the under-
lying open quantum dynamics is proposed, whose complexity is directly related to the
proposed non-Markovianity measures. The non-Markovianity measures and the recon-
struction algorithm are demonstrated with numerical examples, together with a careful
reexamination of the non-Markovianity in quantum dephasing dynamics.
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1 Introduction

A non-Markovianity measure for a (classical or quantum) dynamical process quantifies the
causal dependence of the current observation on the history events. For classical stochastic
processes, non-Markovianity has been well understood with the help of the ε-machine, which
is an important instance of hidden Markov models that constructs a minimal set of causal states
together with a causal transition tensor to reproduce the observed dynamical process [1, 2].
In the quantum case, a large number of (non-)Markovianity criteria have been proposed from
various aspects [3–13] (see [14, 15] for reviews), but none with a clear operational interpre-
tation or a clear correspondence with the classical limit. The issue is resolved in a seminal
work [16] which proposes a sufficient and necessary criterion for a quantum process to be
Markovian, together with a quantitive measure of the non-Markovianity, under the recently
proposed process tensor framework [17,18].

This operational Markov criterion can be understood as follows. We consider a multi-time
quantum measurement on a quantum system: one first performs a time-ordered sequence of
quantum operations on the system, where each quantum operation contains a measurement
(which disentangles the system and the rest of the world) followed by a preparation of a new
quantum state, and then one performs a tomography of the final state of the system. The
quantum dynamics of the system is characterized to be Markovian if and only if the final state
only depends on the last preparation. The central idea of this criterion is that to judge whether
the underlying quantum dynamics is Markovian or not, one should look at its response against
(multiple) interventions (quantum operations). Such a Markov criterion is also sufficiently
general in that it makes no assumptions on the details of the quantum dynamics of the system.

Since the majority, if not all, of the quantum dynamics is non-Markovian, an at least equally
important task is to have a quantitive non-Markovianity measure. Ref. [16] provides a concep-
tually the most general non-Markovianity measure for open quantum dynamics based on their
proposed Markov criterion: the distance between the quantum process and the Markovian
quantum process closest to it. However, explicit calculations based on it could be extremely
difficult even for very simple cases. In a previous work [19], we define the memory complexity
which characterizes the minimal size of the unknown environment such that the system plus
environment undergoes unitary dynamics as a whole and that the reduced dynamics of the sys-
tem is identical to the observed dynamics (the open quantum evolution (OQE) model [20]),
which is directly inspired from the ε-machine. The memory complexity can be efficiently
calculated for bounded environment, however, it is not fully reconciled with the operational
Markov criterion: it vanishes if and only if the system itself undergoes unitary dynamics, but
could increase unboundedly over time even if the system undergoes Markovian quantum dy-
namics described by a general quantum map. This is because in the latter case one may still
need an exponentially large environment to ensure that the system plus environment under-
goes global unitary dynamics. Ideally, the (non-)Markovianity of a quantum process should
only rely on the observed dynamics but not on the mechanisms behind it. There could exist
circumstances (for example with classical noises) for which there are more efficient “quantum
hidden Markov models” compared to the OQE model to generate the same observed quantum
dynamics. In such cases, the memory complexity may not be a good non-Markovianity mea-
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sure since it specifically means the complexity of reproducing the observed quantum dynamics
purely quantum mechanically.

In this work, we propose two non-Markovianity measures for general open quantum dy-
namics which are fully compatible with the operational Markov criterion, together with a
heuristic algorithm to reconstruct the (unknown) open quantum dynamics whose complex-
ity is closely related to the proposed non-Markovianity measures. They can be seen as com-
plementary of the memory complexity to better incorporate those situations where the OQE
model may not be the most efficient. Technically, the proposed non-Markovianity measures
are based on a more general assumption compared to the OQE model, that is, the system plus
environment undergoes Markovian quantum dynamics (MQE) described by an (unknown)
quantum map E . Here we note that the OQE model is the most general description of arbi-
trary quantum dynamics (but it may not be the most efficient). Therefore the MQE modeling
of the system-environment (SE) dynamics is not a necessity from fundamental physics, but
is for practical convenience (efficiency). Particularly, for dissipative quantum dynamics, the
OQE model would generally require an exponentially large environment, while the equivalent
MQE model may only involve a few degrees of freedom (DOFs). Therefore the complexity of
the experimental reconstruction of the open quantum dynamics (reconstructing the quantum
hidden Markov model) could be drastically reduced if the MQE model is used instead of the
OQE model. One could also think of an engineered situation where one can directly control
and measure the environment (for example an engineered environment made of controllable
qubits), in which case the SE dynamics is naturally described by a quantum map.

In the following we will first introduce the generalized process tensor framework based
on the MQE model of the SE dynamics in Sec. 2. In particular we will show that the three
important physical requirements for the process tensor: linearity, complete positivity (CP) and
containment [18], are still satisfied in the generalized case. We then present the two non-
Markovianity measures and discuss their physical significances in Sec. 3, complemented with
a heuristic machine learning algorithm to reconstruct the unknown open quantum dynamics
(the hidden MQE model). The reconstruction algorithm and the proposed non-Markovianity
measures are demonstrated with numerical examples, together with a careful reexamination
of the non-Markovianity in quantum dephasing dynamics in Sec.4. We conclusion in Sec.5.

2 Process tensor framework for MQE

The original definition of the process tensor framework is based on the OQE description of the
SE dynamics [18]. Here we briefly review the main ideas of the process tensor framework and
show that the process tensor framework can be straightforwardly generalized to the case that
the SE dynamics is described by the MQE model, with all of its important physical properties
still satisfied.

Traditionally, the study of open quantum dynamics often follows a top down approach, that
is, one starts from a microscopic model which describes the unitary evolution of the system
coupled to an environment, and then obtains the reduced dynamics of the system by tracing
out the environment [21], or that one directly starts from some phenomenological quantum
master equations which focus on the system dynamics only [20, 22]. In either description,
the open quantum dynamics of the system is known in priori, at least in principle. With the
rapid progresses of quantum computing and quantum simulation technologies [23–27], the
top down approach alone is no longer satisfying, since the noises on those quantum devices
could be extremely difficult to know before hand. In the mean time, there is an increasing need
for a quantitive description of the noises on near-term quantum devices, such as to characterize
the overall fidelities of noisy quantum experiments, or for error correction and error mitiga-
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tion [28–31]. Therefore an efficient way to characterize the (non-Markovian) open quantum
dynamics based only on the experimentally accessible quantities, instead of resorting to the
top down approach, is highly desirable.

Experimentally, one is often able to intervene the system dynamics by performing a quan-
tum operation to prepare some initial state for the system at a time t = 0 (denoted as ρS

0),
and then record the response by performing a tomography of the system state at a later time
t = ∆, a standard procedure known as quantum process tomography [32, 33]. If the quan-
tum dynamics of the system is unitary or more generally Markovian, then it could be fully
characterized by the reconstructed quantum map between the system states at time 0 and ∆,
denoted as ES

∆:0 [34,35]. However, for non-Markovian quantum dynamics, this is not enough
since in general ES

k∆:0 6= (ES
∆:0)

k (Even worse, in the non-Markovian case even if this equation
holds, ES

∆:0 alone is still insufficient to fully characterize the underlying quantum dynamics
as will be shown later). In such case additional information is required to fully characterize
the open quantum dynamics of the system. Fortunately, the quantum map does not describe
all the probes one could possibly perform on the system either. For example, one could in-
tervene the system dynamics by performing two quantum operations at two times t0 and t1,
and then measure the output state at time t2 (a three-time quantum measurement). In fact,
all such three-time quantum measurements constitute a two-step process tensor. Generally, a
k-step process tensor is defined as a multilinear map from k quantum operations, denoted as
Λk−1:0 = {Λ0,Λ1, . . . ,Λk−1} at k different times {t0, t1, . . . , tk−1}, to the output quantum state
ρk at time tk, which is

ρk =trE

�

Ek:k−1Λk−1Ek−1:k−2 . . .Λ1E1:0Λ0ρ
SE
0

�

. (1)

Here ρSE
0 is the SE initial state. Each Λ j is itself a CP quantum map of size d2 × d2 (d is the

Hilbert space size of the system), and can generally be implemented as a quantum measure-
ment M j followed by a preparation Pj , each of size d × d [36]. E j: j−1 denotes the SE evolu-
tionary operator from time step j − 1 to j which is a complete positive and trace preserving
(CPTP) quantum map. The operation of E (subscripts for time steps are omitted for briefness
if they are not necessary) on an input SE state ρSE can generally be written in the Sudarshan-
Kraus-Choi form: E(ρSE) =

∑

s Asρ
SEA†

s , with the normalization condition
∑

s A†
sAs = I (I is

the identity matrix) [34,37,38]. Explicitly, we denote

E(ρSE) =
∑

s,i,α,i′,α′
As,o,β ,i,αρ

SE
i,α,i′,α′A

∗
s,o′,β ′,i′,α′

=
∑

i,i′,α,α′
ρSE

i,α,i′,α′W
i,i′,o,o′

α,α′,β ,β ′ , (2)

where i, i′, o′, o′ are the system indices and α,α′,β ,β ′ are the environment indices. In Eq.(2)
we have also used

W i,i′,o,o′

α,α′,β ,β ′ =
∑

s

As,o,β ,i,αA∗s,o′,β ′,i′,α′ , (3)

as the matrix representation of E . The normalization condition can be simply read as
∑

o,β

W i,i′,o,o
α,α′,β ,β = δi,i′δα,α′ . (4)

Eq.(1) implicitly defines the k-step process tensor Υk:0: ρk = Υk:0(Λk−1:0) (explicit matrix rep-
resentations are used for E j: j−1 and Λ j throughout the text), which is shown in Fig. 1(a,b). In
case E j: j−1 is unitary, Eq.(1) naturally reduces to the original definition in Ref. [18]. The pro-
cess tensor Υk:0 is a natural extension of the quantum map defined at two times (preparation
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Figure 1: (a) Demonstration of a 3-step process tensor. E is the system-environment
evolutionary operator and ρSE

0 is the SE initial state. i j , o j denote the input and out-
put indices at the j-th time step (o0 corresponds to the initial state of the system). Λ j
denotes the j-th quantum operation which could be inserted after the j-th time step
to intervene the system dynamics. (b) The Matrix Product Operator representation
of the process tensor. (c) The quantum circuit implementation of the process tensor
as a many-body quantum state, where Ψ is the maximally entangled state. In panels
(b,c) ρE

j means the effective environment state after time step j defined in Eq.(16).
The environment is traced out in all the panels in the end.

at t0 and measurement at t1) to multiple times. In fact it describes the most general observa-
tions one could possibly make on the system. Compared to the classical case, we can see that
it plays the role of the conditional probability P(xk|xk−1, . . . , x0), which fully characterizes a
classical stochastic process.

The process tensor is naturally a matrix product operator (MPO) as shown in Fig. 1(b),
which can be written as:

Υ
o′0,i′0,o′1,...,i′k−1,o′k
o0,i0,o1,...,ik−1,ok

=
∑

αk−1:0,α′k−1:0,αk

W
o0,o′0
α0,α′0

W
i0,i′0,o1,o′1
α0,α′0,α1,α′1

× · · · ×W
ik−1,i′k−1,ok ,o′k
αk−1,α′k−1,αk ,αk

, (5)

with i j , i′j , o j , o′j the “physical indices” and α j ,α
′
j the “auxiliary indices” (environmental in-

dices). We have also used αk−1:0 to denote the set of indices {α0,α1, . . . ,αk−1} (and similarly

for α′k−1:0). W
o0,o′0
α0,α′0

is the SE initial state (ρSE
0 )

o0,o′0
α0,α′0

. Moreover, Υk:0 is a Matrix Product Den-

sity Operator (MPDO) [39, 40], which is a special form of MPO that guarantees positivity by
construction, since each site tensor W is positive by Eq.(3).

Interestingly, it is pointed out that Υk:0 can be implemented using a quantum circuit as
shown in Fig. 1(c) [18], where Ψ = 1

d

∑d
m,n=1 |m〉o〈n|o ⊗ |m〉i〈n|i is the maximally entangled

state (the subscripts indicate that they correspond to the input or output indices). This can be

5

https://scipost.org
https://scipost.org/SciPostPhys.13.2.028


SciPost Phys. 13, 028 (2022)

seen by looking at the effects of each pair of the SE interaction in Fig. 1(c):

E(Ψ ⊗ |α〉〈α′|) =1
d

d
∑

m,n=1

|m〉i〈n|i ⊗ E(|m〉o〈n|o ⊗ |α〉〈α′|)

=
1
d

∑

m,n,m′,n′,β ,β ′
W m,n,m′,n′

α,α′,β ,β ′ |m〉i〈n|i ⊗ |m
′〉o〈n′|o ⊗ |β〉〈β ′| , (6)

where the last line is exactly the matrix representation of E in Eq.(3), up to a normalization
constant 1/d. As a result the output quantum state of the quantum circuit in Fig. 1(c) generates
Υk:0 up to an overall normalization constant (1/d)k after tracing out the environment index
in the end. Using this quantum circuit, the process tensor defined at multiple times is mapped
into a multi-qubit quantum state. Therefore instead of doing a multi-time quantum process
tomography, one could perform a multi-qubit quantum state tomography to obtain the process
tensor.

In case E is a unitary operation, the output of the quantum circuit in Fig. 1(c) is a se-
quentially generated multi-qubit state for which a polynomial tomography algorithm against
k exists for bounded environment [19]. Unfortunately, for general E , no efficient tomography
algorithm with guaranteed convergence exists to our knowledge, even if the environment is
bounded. This is because that the existing deterministic and efficient tomography algorithms
based on Matrix Product States (MPSs) only work if the underlying mixed quantum states are
pure or fairly pure [41–43], namely they can be written as the sum of a few pure states [44]
(thus with entropy S ∝ O(1)), while an MPDO can easily represent a mixed quantum state
whose entropy grows as a volume law (S ∝ O(k)). Nevertheless, for bounded environment
the unknown Υk:0 can be efficiently parameterized using only a polynomial number of param-
eters as in Eq.(5), and in practice one can use a variational MPO [45,46] or MPDO [47] ansatz
in combination with a machine learning algorithm to efficiently reconstruct the process tensor
in those forms.

Now we show that the three important properties of the process tensor: linearity, complete
positivity and containment, are still satisfied for general E . The linearity condition is trivially
satisfied, since Eq.(1) is linear against each of the input Λ j . The CP condition is equivalent to
require that Υk:0 in Eq.(5) is positive. To see this, one can define the tensor

Ask:0,ok:0,ik−1:0,αk
=
∑

αk−1:0

As0,o0,α0
As1,o1,α1,i0,α0

× . . . Ask ,ok ,αk ,ik−1,αk−1
, (7)

with ρSE
0 =

∑

s0
As0,o0,α0

A∗s0,o0,α0
, then the operation of Υk:0 on Λk−1:0 can be rewritten as

(ρk)ok ,o′k
= Υk:0(Λk−1:0) =
∑

sk:0,αk ,ok:0,ik−1:0,o′k:0,i′k−1:0

Ask:0,ok:0,ik−1:0,αk
Λo0,o′0,i0,i′0

× · · · ×Λok−1,o′k−1,ik−1,i′k−1
A∗sk:0,o′k:0,i′k−1:0,αk

, (8)

which is indeed in the standard Sudarshan-Kraus-Choi form. The containment condition en-
sures that any measurement outcome within k time steps is independent of the quantum op-
erations made after k, defined as

trok
(Υk:0) = δik−1,i′k−1

⊗ Υk−1:0 , (9)

which can be easily proven by substituting Eq.(5) into Eq.(9) and using the normalization
condition in Eq.(4).
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3 Non-Markovianity measures

In Ref. [16], the non-Markovianity of a k-step quantum process is defined as the distance (any
CP-contractive quasi-distance) between the actual process tensor Υk:0 and the Markovian pro-
cess tensor, denoted as ΥMarkov

k:0 , closest to it. This non-Markovianity measure, although concep-
tually the most general one, is impractical for actual evaluation, because: 1) identification of
the closest Markovian process tensor to a given process tensor may not be straightforward and
2) even if the closest Markovian process tensor is identified, computing the distance between
it and the given process tensor may still be very hard and not scalable.

Ideally, a non-Markovianity measure should meet the following requirements: 1) It should
be uniquely defined, that is, it should only depend on the physically measurable quantities (the
process tensor), instead of the hidden OQE or MQE model; 2) It should be intuitive and trivially
predicts the Markovian limit; 3) It should be easily calculable, and describes the complexity of
reconstructing the underlying open quantum dynamics.

Here we propose two non-Markovianity measures, based on the MPO and MPDO represen-
tations of the process tensor respectively. The reason that we consider these two representa-
tions is because they both are commonly used for representing positive operators and there is
no decisive advantage of one over another. For example, MPO could be more efficient in terms
of the number of parameters required to represent a quantum operator. In fact if a (positive)
quantum operator can be efficiently represented as an MPDO, then it can also be efficiently
represented as an MPO, while the reverse is not true in general [48]. Additionally, an MPDO
can easily be converted into an MPO and the reverse is also not true. However, an MPO rep-
resentation of the process tensor does not guarantee positivity, therefore inaccuracy during
the process tensor tomography would likely result in an unphysical process tensor if an MPO
ansatz is used. This also represents a complication compared to the MPS representation of
pure states, in the latter case there is a standard canonical form of MPS (the mixed-canonical
form) to be used for variational optimization [49]. The first non-Markovianity measure we
propose, which corresponds to the MPO representation, is based on the operator space en-
tanglement entropy (OSEE) [50]. And the second non-Markovianity measure is based on the
entanglement entropy of an effective environment state inspired from the memory complexity
in the unitary case [19]. In the next we will elaborate on both non-Markovianity measures.

3.1 OSEE as non-Markovianity measure

A quantum operator in MPO form can be treated similarly as an MPS by vectorizing it into a
pure state, which means the mapping

|Υ 〉o0,p0,i0,q0,o1,p1,...,ik−1,qk−1,ok ,pk
↔ Υ

p0,q0,p1,...,qk−1,pk
o0,i0,o1,...,ik−1,ok

. (10)

The OSEE at time step j, denoted as So
j , is defined as the bipartition entanglement entropy of

|Υ 〉 by splitting it into two subsystems, one contains all the indices before (and include) j and
the other contains the rest. The non-Markovianity measure based on the OSEE of the process
tensor is defined as

N osee
j =

1
2

So
j =

1
2

S
�

trik−1: j ,qk−1: j ,ok: j+1,pk: j+1
(|Υ 〉〈Υ |)

�

, (11)

where S(ρ) = ρ log2(ρ) is the entanglement entropy of ρ (The more general quantum Renyi
entropy log2(tr(ρ

α))/(1−α) can also be used). The factor 1/2 is added such that N osee
j reduces

to the memory complexity when E is unitary. N osee
j is uniquely defined since the bipartition

entanglement entropy of |Υ 〉 is uniquely defined, and it can certainly be efficiently calculated
given the MPO form of Υ as a standard practice for MPO [49]. Moreover, it straightforwardly

7

https://scipost.org
https://scipost.org/SciPostPhys.13.2.028


SciPost Phys. 13, 028 (2022)

predicts the Markovian limit, namely the underlying quantum process is Markovian if and only
if N osee

j = So
j = 0 for all j considered. The is because So

j = 0 means that Υ is separable, which
is exactly the necessary and sufficient condition for the Markovian limit [16].

There is a boundary effect when using N osee as the non-Markovianity measure, which is
shown as follows. For a k-step quantum process with a separable SE initial state, N osee

j is

defined for 1 ≤ j < k which satisfies N osee
j ≤ log2(d

2 j) and N osee
k− j ≤ log2(d

2 j) (Starting from
the boundaries, the bond dimension, namely the size of the auxiliary index of |Υ 〉 can not grow
faster than d2 j since it is an MPS with open boundary condition and with physical dimension
d2). The first inequality is due to the ignorance of the initial state (so that the best we can do is
to start from some unitary SE initial state as will be shown in the reconstruction algorithm for
the open quantum dynamics). While the second inequality is purely an unphysical boundary
effect due to a finite value of k. For example, N osee

j may decrease when j approaches k, and if
one considers a k+1-step process instead one could get a very different value for those N osee

j
with j close to k. The boundary effect can be eliminated by considering a large k and focusing
on those N osee

j with j far away from the right boundary k.

3.2 Entanglement entropy of an effective environment state as
non-Markovianity measure

The memory complexity of a quantum process at a time step j, denoted as C j , is defined as the
entanglement entropy of an effective environment state ρE

j (the state shown in Fig. 1(c) in
case E is unitary), which contains all the history information (with time steps not greater than
j) such that the outcome of any future quantum operations after j only depends on ρE

j [19].
ρE

j thus acts like a memory state, which is closely related to the causal states of the ε-machine,
as well as the memory state of the q-simulator and the infinite MPS descriptions for classical
stochastic processes [51–54]. C j is also the bipartition entanglement entropy between the j-
step process tensor Υ j:0 and the environment state ρE

j (These two subsystems form a pure state
as a whole in the OQE model, thus the bipartition entanglement entropy is well defined [19]).
Formally, the second non-Markovianity measure is defined in the same way as the memory
complexity, namely

N ee
j = S(ρE

j ) , (12)

where the effective environment state ρE
j for a general non-unitary E is constructed in the

following.
We first consider the expectation value of a sequence of quantum operations with j quan-

tum operations followed by a quantum measurement in the end, denoted as
{Λ0, . . . ,Λ j−1, M j}= {M0, P0, . . . , M j−1, Pj−1, M j}, which can be computed as

tr(M0 ⊗ P0 ⊗M1 ⊗ · · · ⊗ Pj−1 ⊗M jΥ j:0) =
∑

i j−1:0,i′j−1:0,o j:0,o′j:0,α j−1:0,α′j−1:0,α j

�

W
o0,o′0
α0,α′0

M
o0,o′0
0

�

×
�

P
i0,i′0
0 W

i0,i′0,o1,o′1
α0,α′0,α1,α′1

M
o1,o′1
1

�

× · · · ×
�

P
i j−1,i′j−1

j−1 W
i j−1,i′j−1,o j ,o

′
j

α j−1,α′j−1,α j ,α j
M

o j ,o
′
j

j

�

, (13)

where the site tensors of Υ with time steps larger than j are not required due to the contain-
ment condition. Then we define the expectation value of a “local” quantum measurement M j
as the average over all the past quantum operations {M0, P0, . . . , M j−1, Pj−1} except for M j ,
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which is denoted as tr(M jΥ j:0) and can be computed by

tr(M jΥ j:0) =
∑

i j−1:0,o j−1:0,o j ,o
′
j ,α j−1:0,α′j−1:0,α j

W o0,o0

α0,α′0
W i0,i0,o1,o1

α0,α′0,α1,α′1
× . . .

×W
i j−2,i j−2,o j−1,o j−1

α j−2,α′j−2,α j−1,α′j−1

�

W
i j−1,i j−1,o j ,o

′
j

α j−1,α′j−1,α j ,α j
M

o j ,o
′
j

j

�

. (14)

To this end, we note that the “local” expectation tr(M jΥ j:0) we have defined above is very
distinct from the case that one does nothing in time steps from 0 to j − 1 and only performs a
measurement M j at the j-th time step. Mathematically, the latter means a very different way
for tensor contraction:

tr
�

M jE j: j−1E j−1: j−2 . . .E1:0ρ
SE
0

�

=
∑

o j:0,o′j:0,α j−1:0,α′j−1:0,α j

W
o0,o′0
α0,α′0

W
o0,o′0,o′1,o′1
α0,α′0,α1,α′1

× . . .

×W
o j−2,o′j−2,o j−1,o′j−1

α j−2,α′j−2,α j−1,α′j−1

�

W
o j−1,o′j−1,o j ,o

′
j

α j−1,α′j−1,α j ,α j
M

o j ,o
′
j

j

�

. (15)

Physically, the former means that we do make preparations and measurements at all the past
time steps and then average over them, while the latter means that we only make a quantum
measurement at time step j.

From Eq.(14) we can see that if we define the effective environment state ρE
j−1 after time

step j − 1 as

(ρE
j−1)α j−1,α′j−1

=
∑

i j−2:0,o j−1:0,α j−2:0,α′j−2:0

W o0,o0

α0,α′0
×W i0,i0,o1,o1

α0,α′0,α1,α′1
. . . W

i j−2,i j−2,o j−1,o j−1

α j−2,α′j−2,α j−1,α′j−1
, (16)

then tr(M jΥ j:0) can be simply computed as

tr(M jΥ j:0) = tr
�

M jE j: j−1(I
S ⊗ρE

j−1)
�

, (17)

with IS the identity matrix of the system. Therefore to compute the local expectation value of
M j , or more generally any observables beyond (include) time step j, all one needs is the ρE

j−1

from the past. ρE
j can also be recursively computed as

ρE
j = trS

�

E j: j−1(I
S ⊗ρE

j−1)
�

, (18)

with ρE
0 = trS(ρSE

0 ). The ρE
j defined in this way plays a similar role to the distribution of the

causal states in the ε-machine [55], thus we define Eq.(12) as the second non-Markovianity
measure. In case E is unitary, ρE

j reduces to the original definition in Ref. [19].
Compared to N osee, N ee is more physically motivated, and is free of the boundary effect.

It is also easy to be calculated given the “correct” MPDO form of Υ and it is straightforward to
see that the quantum process is Markovian if and only if N ee

j = 0. However, the MPDO form
of Υ (reconstructed from experiment) is not uniquely defined, and if one obtains an MPO
form of Υ or even the exact Υ from the experiment, there is no unique way to decompose it
into an MPDO [56]. Moreover, a general MPDO does not have to satisfy the normalization
condition for each of its site tensor, which means that to evaluate Eq.(14) one needs both
the site tensors from the past and future! Eqs.(4,5) actually define some “canonical form” of
MPDO (a generic MPDO does not require Eq.(4) to be satisfied). This canonical form could
be ensured in practice by a carefully designed MPDO ansatz which also satisfies Eq.(4) by
construction. The canonical form of MPDO is not unique either. To see this, we look at the
transformation of ρE

j under a basis change for the environment, denoted as Λ (Λ does not
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have to be unitary), which maps the original environment with size D to a new environment
E′ with size D′ (D′ ≥ D). Under this basis change, we have

ρSE′ = ΛρSE , (19)

E ′ = ΛEΛ−1 , (20)

where Λ−1 is understood as the Moore–Penrose pseudo-inverse in case D < D′. Substituting
Eqs.(19, 20) into Eq.(16), we get ρE′

j in the new basis

ρE′
j = Λρ

E
j . (21)

The basis transformation has no observable effects since the environment will be traced out in
the end (again using Eq.(4)), however it does affect N ee since ρE′

j would generally be different

from ρE
j .

To resolve this issue with N ee, we consider the realistic situation where one wants to
reconstruct the open quantum dynamics by assuming a hidden MQE model and reconstructing
this model. A priori one has no knowledge of the SE initial state and the best one can do is
to assume a simplest choice of it: a pure state with zero entropy (more details will be shown
later in the tomography algorithm). Such a choice would select a particular environment basis
with a small N ee in practice. Whether such a choice gives theoretically the smallest N ee out
of all the possible cases related by Eq.(21) is left to further investigation.

3.3 A heuristic algorithm for reconstructing the open quantum dynamics

The process tensor describes all the measurable quantities and fully characterizes the open
quantum dynamics. However it would be impractical to reconstruct the process tensor for
arbitrarily large k experimentally. Therefore similar to the classical case [2], one would like to
reconstruct a hidden Markov model (similar to the ε-machine) based on a limited number of
observations to characterize the underlying quantum process. In this sense, the ultimate goal
of process tensor tomography would be to reconstruct the hidden OQE or MQE model, instead
of obtaining the process tensor itself. This is also the reason why different assumptions of the
model for the SE dynamics may significantly affect the complexity of reconstructing the open
quantum dynamics.

The non-Markovianity measures N osee and N ee are directly related to the complexity of
reconstructing the hidden MQE model, in terms of the least number of unknown parameters
needs to be fixed by the reconstruction algorithm. Here we present a variational algorithm for
reconstructing the hidden MQE model, under the assumptions that 1) E is time-independent;
2) the environment size is bounded by some integer D; 3) the size of the internal auxiliary
index s j , dim(s j), is bounded by an integer R (R is naturally bounded by d2D2).

Under these assumptions we can parameterize each site tensor W using a single parametric
tensor Ās,o,β ,i,α which contains d2D2R variational parameters. To predict a k-step process ten-
sor denoted by Ῡk:0, one still needs to fix the initial state, for which we simply assume that the
SE initial state is a pure state: ρ̄SE

0 = |ψ
SE〉〈ψSE |. We note that this assumption does not loss

any generality since if the initial state is mixed, one could purify it using external DOFs and
enlarge E accordingly by tensor product with the identity matrix on those external DOFs [19].
The specific choice of SE initial state does not affect N osee since N osee can be computed purely
based on Υ . However, as shown in Eq.(21), it does affect N ee but likely in a good direction
that one could make use of this property to select a simple environment state with smaller
(if not the smallest) N ee, while generating the equivalent open quantum dynamics. Now any
Ῡk:0 can be predicted by substituting ρ̄SE

0 and Ās,o,β ,i,α into Eq.(5). Given an experimentally
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Figure 2: The two non-Markovianity measures, N osee
j and N ee

j as a function of
the time step j calculated for a dissipative two-spin XX chain with k = 51 (thus
1 ≤ j ≤ 50). The green dashed lines (for N osee) and the cyan solid lines (for N ee)
from top down (also from darker to lighter) correspond to Γ = 0, 1,5 with n = 0 in
(a) and to Γ = 5,10, 20 with n= 0.5 in (b). Here we have used ∆= 0.3.

reconstructed k-step process tensor Υk:0, we can thus optimize ρ̄SE
0 and Ās,o,β ,i,α by minimizing

the following loss function (one could of course use other loss functions)

loss(ρ̄SE
0 , Ā) = |Ῡk:0 − Υk:0|2 , (22)

where | · | denotes the the square of the Euclidean norm. Once we have obtained the optimal
ρ̄SE

0 and Ā, both N osee
j and N ee

j can be efficiently computed for any j. Here we have not
explicitly enforced Eq.(4) for Ā, but we should be able to get a descent Ā that satisfies this
condition if we do not loss too much precision during the optimization. In practice, one may
also gradually enlarge k in Eq.(22) until that the loss value does not fluctuate significantly
when increasing k, so as to obtain a descent ρ̄SE

0 and Ā with a minimal experimental effort.
One could also use a gradient-based optimization algorithm to accelerate the convergence by
evaluating the gradient of Eq.(22) with automatic differentiation [57].

4 Examples

In the following we will show two examples with numerical simulations. In the first example
we consider a dissipative two-spin XX chain, with which we demonstrate the behaviors of the
two proposed non-Markovianity measures. In the second example we reexamine the quantum
dephasing dynamics of a single spin to discuss the subtlety against whether it is Markovian or
not.

Here we stress that although for bounded environment the complexities of evaluating the
two non-Markovianity measures N osee and N ee (based on the MPO and MPDO representations
of the process tensor respectively), as well as the heuristic algorithm introduced in Sec. 3.3 to
reconstruct the hidden MQE, are all polynomial in the number of time steps k, they will grow
exponentially with the system size for a many-body system. As such we will limit ourself to a
single qubit system in our numerical examples.
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4.1 A dissipative two-spin XX chain

To demonstrate the behaviors of the two proposed non-Markovianity measures, we consider
the example of a two-spin XX chain with dissipative driving on the second spin. We treat
the first spin as the system and the second as the environment. The overall SE dynamics is
described by the Lindblad master equation [58,59]

dρSE

d t
= L(ρSE) = −i[HX X ,ρSE] +D(ρSE) , (23)

with the Hamiltonian HX X = J(σS
xσ

E
x +σ

S
yσ

E
y) (we set J = 1 as the unit), and the dissipator

D(ρSE) =Γ (1− n)
�

2σE
−ρ

SEσE
+ − {σ

E
+σ

E
−,ρSE}

�

+ Γn
�

2σE
+ρ

SEσE
− − {σ

E
−σ

E
+,ρSE}

�

, (24)

which drives the environment spin towards a local steady state ρE
st = (1− n)|0〉〈0|+ n|1〉〈1|

with a rate 2Γ . The SE initial state is assumed to be ρSE
0 = ρ

S
0⊗ρ

E
st . The discrete-time quantum

map for the system plus environment is E = exp(L∆) with ∆ the time step size.
To show the behaviors of the two proposed non-Markovianity measures, we reconstruct

the hidden MQE using the algorithm in Sec. 3.3, with Υk:0 computed analytically, and then
based on the reconstructed Ῡ we can compute N osee and N ee. Other than demonstrating the
reconstruction algorithm, the reason why we do not directly compute N osee and N ee based
on the exact Υk:0 is that N ee is dependent on the choice of the environment initial state, and
it is more reasonable to choose a simple (pure) state for it during reconstruction due to the
ignorance of the environment and also to select the simplest possible environment as discussed
in Sec. 3.3. For the reconstruction, we have used D = 2 and R = d2D2 = 16. The BFGS
algorithm is used as the optimization solver, and during the optimization we have gradually
increased k from 2 to a maximum value of 6.

We study the dependencies of N osee and N ee (computed with Ῡ ) on Γ for n = 0,0.5
respectively, with the results shown in Fig. 2. The case n = 0 is shown in Fig. 2(a), where
the dissipator drives the environment towards the pure state |0〉〈0|. Interestingly, as shown
in Ref. [19], without dissipation the unitary dynamics will drive the environment towards the
maximally mixed state I E/2, therefore there will be a competition between the unitary and
dissipative dynamics. We can clearly see from Fig. 2(a) that for Γ = 0, the unitary dynamics
wins and N osee

j ≈ N ee
j ≈ 1 (noticing the boundary effect for N osee

j ), and that for Γ = 5, the
dissipative dynamics wins and we have both measures close to 0. In Fig. 2(b) we show the case
n = 0.5, for which both the unitary and dissipative dynamics drive the environment towards
I E/2. In this case the loss function in Eq.(22) fails to converge to descent precision with small
Γ s (ideally the loss should be 0 but the actual loss obtained after a large number (10000) of
iterations still fails to converge to 0). Therefore we only show results for Γ = 5,10, 20. For
large Γ , the scales of the system and environment dynamics are well separated and one expects
in this case that the adiabatic elimination is a good approximation, namely ρSE ≈ ρS⊗ρE , and
an effective Lindblad equation for the system dynamics alone can be derived. Therefore the
quantum dynamics of the system should be close to Markovian for large Γ , which is indeed the
observed case (both non-Markovianity measures are small). Interestingly, even if the actual
environment state is maximally mixed in the latter case, with a small value of N ee it means that
one could identify an effective environment state with much smaller entanglement entropy but
generates the equivalent open quantum dynamics.

4.2 Reexamining the quantum dephasing dynamics

In case the open quantum dynamics of a quantum system can be described by the Lindblad
master equation, it is usually characterized as Markovian or directly used as the definition of
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Markovianity [5, 6]. However, it is argued that this may not be true [16, 60, 61], with the
quantum dephasing dynamics of a single spin as an outstanding counter-example. Here we
will carefully reexamine this discrepancy with intuition in the following.

The quantum dephasing dynamics of a single spin can be described by the following Lind-
blad master equation

dρS

d t
= Ldp(ρS) = γ

�

σS
zρ

SσS
z −ρ

S
�

, (25)

where γ is the dephasing rate. Under Eq.(25) the diagonal terms of ρS will not change while
the off-diagonal terms decay exponentially with rate γ.

The argument that the quantum dephasing dynamics of a single spin is non-Markovian uses
the Shadow-Pocket model [62] as the OQE model for the SE dynamics, for which the reduced
dynamics of the system (the spin) can be exactly described by Eq.(25). The Hamiltonian of this
OQE model is H = (g/2)σS

z ⊗x (we set g = 1 as the unit), where x is the positional operator of
a continuous environment. The SE initial state is set to be a separable state: ρSE

0 = ρ
S
0⊗|ψ〉〈ψ|

with |ψ〉 =
p

γ/π/(x + iγ). This model will be referred to as the unitary quantum dephasing
model (UQDM) afterwards. The fact that the open quantum dynamics of the spin is non-
Markovian can be seen as follows: one prepares an initial state ρS

0 for the system at time t0
and performs a σS

x operation on the system at time t1, then the dynamics (for the off-diagonal
terms) after t1 will simply be the reverse of that before t1. More generally, if we intervene the
quantum dynamics of the system by applying a quantum operation Λ j immediately after time
j∆ for 0≤ j < k, then the equality (we denote ES = exp(Ldp∆))

ρS
k∆ = ESΛk−1ESΛk−2 . . .ESΛ0ρ

S
0 , (26)

does not hold in general. In fact, defining U = exp(−ig∆x/2), one can use Eq.(18) to directly
compute the evolution of the effective environment state as

ρE
j =

1
2

�

UρE
j−1U† + U†ρE

j−1U
�

, (27)

with ρE
0 = |ψ〉〈ψ|. As a mixture of two different states, we can see that ρE

j will generally
be a mixed state for j > 0, therefore the memory complexity C j > 0. And since N osee

j , N ee
j

converges with C j for the unitary case, we conclude that the underlying open quantum dy-
namics is non-Markovian. The memory complexity in this case (thus also N osee and N ee)
can be efficiently computed numerically, which is shown in Fig. 3. We can clearly see that
the non-Markovianity increases with γ, and that it grows much slower than the volume law
(C j ∝ log( j) is approximately observed from the numerical results).

However, on the other hand, the quantum dephasing dynamics described in Eq.(25) does
not have to be generated by the Shadow-Pocket model. It can also be generated, for example,
using random unitary operations [63, 64]. Concretely, it can be straightforwardly generated
with a quantum Hamiltonian H = (g/2)σS

z where g subjects to classical noises with appro-
priately chosen noise shapes (Lorentzian). Such a random unitary quantum dephasing model
(RUQDM) is also physical and have been implemented in experiment as a way to generate
the quantum dephasing channel [65]. In this case, the dynamics of the system will not be re-
versed by any quantum operations in between, or more generally the equality in Eq.(26) would
hold. Therefore the dephasing dynamics generate by the RUQDM should be characterized as
Markovian which agrees with the intuition.

The lesson one could learn from this simple example is that even if two open quantum
dynamics look perfectly the same when looking at the two-time measurements (quantum map
between two times), they could be very different if multi-time quantum measurements are
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Figure 3: Memory complexity C j for the quantum dephasing dynamics of a single
spin as a function of the time step j, under the open quantum evolution model for the
system-environment dynamics. We have used ∆ = 0.1, and the continuous environ-
ment is discretized into 5000 equidistant points within the interval [−100γ, 100γ].

considered. Generally, when using the OQE modeling of the open quantum dynamics to study
the multi-time correlations, which also involves an infinite number of DOFs, one should not
first take the infinite limit and then compute those correlations using Eq.(1), but should di-
rectly substitute the OQE into Eq.(1) instead (and then proper infinite limit may be taken).
Nevertheless, the process tensor framework gives a way to distinguish those open quantum
dynamics which look the same under a quantum map description. In the dephasing case as
an example, one could distinguish whether the observed (multi-time) quantum dynamics re-
sults from the UQDM or the RUQDM by examining the process tensor (may be obtained from
experimental tomography) as follows: one could either compute the memory complexities C j
and identify the observed dynamics as from the UQDM if C j ≈ O(k) and from the RUQDM if
C j ≈ O(log(k)), or one could compute N osee

j or N ee
j and identify the observed dynamics as

from the UQDM if N osee
j ,N ee

j > 0 and from the RUQDM if N osee
j ,N ee

j = 0. In this case, of
course, the latter approach could be much more efficient in practice, which also promotes the
necessity of this work to define non-Markovianity measures based on the MQE modeling of
the SE dynamics.

Additionally, if the observed quantum dynamics indeed follows a Markovian quantum mas-
ter equation for the system only, then one would have to use an exponentially growing envi-
ronment to describe it under the OQE model for the SE dynamics, since in general the en-
tanglement entropy of Υk:0 grows linearly with k (Υ is the tensor product of the local ESs).
This fact again shows the necessity of the MQE modeling in complementary to the usual OQE
modeling.

It would also be insightful to compare the non-Markovianity measures defined in this work
with other existing non-Markovianity measures in literatures, for example, the one proposed in
Ref. [4]. In particular, the non-Markovianity measure defined in Ref. [4] vanishes for any divis-
ible quantum dynamics, therefore it is 0 for both UQDM and RUQDM since these two models
both satisfy Eq.(25) and their dynamics are divisible. In comparison, our non-Markovianity
measures are 0 for RUQDM and nonzero for UQDM (Fig. 3).
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5 Conclusion

In summary, we have proposed two non-Markovianity measures for general open quantum
dynamics, inspired by the Matrix Product Operator and the Matrix Product Density Operator
representations of the process tensor respectively. They are fully compatible with the opera-
tional Markov criterion proposed in Ref. [16] in the Markovian limit. They can be efficiently
calculated given the process tensor in MPO or MPDO form, and are directly related to the
complexity of reconstructing the underlying open quantum dynamics. A heuristic algorithm
to reconstruct the open quantum dynamics is proposed which reconstructs a hidden MQE
model from the observed open quantum dynamics of the system. The non-Markovianity mea-
sures as well as the reconstruction algorithm are demonstrated in numerical examples, and the
(non-)Markovianity of the quantum dephasing dynamics is carefully reexamined. This work
could be very helpful to model and characterize the non-Markovian noises in near-term noisy
quantum devices [66,67].
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