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Abstract

Many applications of fusion categories, particularly in physics, require the associators or
F -symbols to be known explicitly. Finding these matrices typically involves solving vast
systems of coupled polynomial equations in large numbers of variables. In this work,
we present an algorithm that allows associator data for some category with unknown
associator to be computed from a Morita equivalent category with known data. Given a
module category over the latter, we utilize the representation theory of a module tube
category, built from the known data, to compute this unknown associator data. When
the input category is unitary, we discuss how to ensure the obtained data is also unitary.
We provide several worked examples to illustrate this algorithm. In addition, we include
several Mathematica files showing how the algorithm can be used to compute the data
for the Haagerup category H1, whose data was previously unknown.
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1 Introduction

To perform calculations within fusion categories that involve working in a specific basis, it is
necessary that the associators, also called the F -symbols, are known. In particular, they are
a crucial ingredient in the construction of physical models such as one- or two-dimensional
lattice models [1,2].

The F -symbols can be obtained by solving the pentagon equations (see, for example, [3]),
which amounts to solving a system of multivariate polynomial equations up to third order. The
number of variables, and equations they must satisfy, grows rapidly with the number of simple
objects in the category, meaning that solving this problem quickly becomes impractical. In
fact, the growth in complexity is so rapid that few associators are known for fusion categories
with more than six simple objects. The challenge of finding F -symbols becomes even more
significant for categories with multiplicities, as the number of equations and variables grows
even faster. To the best of our knowledge, only a handful of examples of F -symbols are known
where the category has multiplicity [4–7].

The problem of solving the pentagon equations is further complicated by gauge freedom
in the solution. When we refer to a solution of the pentagon equations, we are really referring
to an equivalence class of solutions related by gauge transformations. In the multiplicity free
case, a typical approach to finding a set of F -symbols begins by determining which F -symbols
are necessarily zero. In this case, gauge freedom is simply a scale, so it can be used to fix
many of the F -symbols. When there is multiplicity, the gauge freedom corresponds to basis
transformations on nontrivial vector spaces, so gauge fixing is far more intricate.

Due to the challenge in obtaining a set of F -symbols, it is valuable to make full use of any
solutions that can be obtained. In this work, we exploit the Morita equivalence class of some
fusion category C whose data are known, in order to obtain the F -symbols of other categories
in the class. In particular, one can use the fact that the category C∗M of endomorphisms of some
module category M (over C) yields another category in the Morita equivalence class. We show
how tube category techniques can be used to extract the data of this category, expanding on
the example in [8].

The advantage of this method is that we never have to solve the pentagon equations of the
complicated category. As input, we can choose the simplest category in the Morita equivalence
class (or any category in the equivalence class whose F -symbols are already known) and only
need to solve the pentagon equations for the module category. As these equations are only
of degree two, in contrast to degree three of the pentagon equations in the original category,
they are generally easier to solve. Furthermore, since the F -symbols from the input category
are already gauge fixed, the associators in the module category have less gauge freedom.

This method can be applied to any Morita equivalence class for which the data for a sin-
gle category, and a module, is known. As an illustration of the power, and use-case, of this
technique, we apply it to the Morita equivalence class of fusion categories coming from the
Haagerup subfactor [9]. This class consists of three fusion categories, H1, H2, and H3. The
categories H2 and H3 are multiplicity free and their F -symbols are known [10–13], while the
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F -symbols for H1, which has multiplicities, have not yet been computed. This demonstrates
the degree to which multiplicities increase the difficulty of solving the pentagon equation:
even though H1 has only rank 4 while H2 and H3 have rank 6, its F -symbols have not been
obtained so far.

This paper is organized as follows: In Section 2, we review fusion and module categories,
and introduce notation for the remainder of the manuscript. Additionally, we review the mod-
ule tube category. Finally, we discuss unitary structures on each type of category. In Section 3,
we introduce the algorithm that takes a fusion category and a module category, and returns
the categorical data for a Morita equivalent fusion category. We then illustrate the algorithm
for the simple example Vec(Z/2Z)y Vec in Section 4. In Section 5, we discuss the Haagerup
fusion categories. We illustrate the F -symbols we obtain for the category H1 using the algo-
rithm discussed in this work. To the best of our knowledge, this is the first time these data
have been obtained. We conclude in Section 6.

In Section 7, we briefly discuss the relationship between module functors and tube algebra
representations. We provide two additional worked examples, namely Vec(S3)y Vec in Sec-
tion 8, and Rep(S3)y Rep(S3) in Section 9. Accompanying this manuscript is a collection of
Mathematica notebooks that implement the algorithm described here, and include F -symbols
for the Haagerup category H1. The code is available at [14].

2 Preliminaries

Definition 1 (Skeletal fusion category). We sketch a definition of a skeletal fusion category
suitable for our purposes. For a more complete (rigorous) definition, we refer the mathemat-
ically inclined to [3,15], and the physically inclined to [16,17].

A skeletal fusion category C consists of the following data:

• A finite set of simple objects Irr(C) = {1, a, b, . . .}, where |Irr(C)| is known as the rank of
C.

• For each triple of simple objects, non-negative integers N c
ab called fusion coefficients,

obeying

N y
1x = N y

x1 = δx ,y , (unit)
∑

e∈Irr(C) N
e
abN d

ec =
∑

f ∈Irr(C) N
d
a f N f

bc . (associativity)

For each x ∈ Irr(C), there is a unique x̄ ∈ Irr(C) such that N1
x y = N1

y x = δy, x̄ .
(duals)

• For each triple of simple objects, a C-vector space C(a⊗ b, c), called the fusion space, of
dimension N c

ab.

• Associator isomorphisms ⊕e C(a⊗ b, e)⊗C(e⊗ c, d)∼= ⊕ f C(a⊗ f , d)⊗C(b⊗ c, f ) obey-
ing the pentagon axiom (Eq. 2.2 of [3]).

If any of the fusion coefficients is larger than one, we say C has multiplicity.
It is convenient to specify a basis for all C(a⊗ b, c), and use a graphical notation commonly

referred to as string diagrams when discussing fusion categories. A basis vector in C(a⊗ b, c)
is indicated by a trivalent vertex

α ∈ C(a⊗ b, c)↔

c

a b

α , (1)
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while more general vectors correspond to weighted sums of such vertices. Tensor products of
vectors are indicated using more complex diagrams, for example

α⊗ β ∈ C(a⊗ b, e)⊗ C(e⊗ c, d)↔

a b c

d

eα
β . (2)

With bases fixed, the associator isomorphisms are realized by a collection of invertible matrices

a b c

d

eα
β =

∑
f,µ,ν

[
F d
abc

]
(α,e,β)(µ,f,ν)

cba

d

f
µ

ν , (3)

called the F -symbols. We adopt the convention that objects in Irr(C) are labeled by Roman
letters, and basis vectors by Greek letters. Correspondingly, sums over objects run over Irr(C),
while sums over Greek indices run over a complete basis of the appropriate vector space. In
this framework, the pentagon equation constraining the F -symbols is
∑

ζ

�

F e
f cd

�

(β ,g,γ)(ρ,x ,ζ)

�

F e
abx

�

(α, f ,ζ)(σ,y,τ)
=

∑

z,λ,µ,ν

�

F g
abc

�

(α, f ,β)(λ,z,µ)

�

F e
azd

�

(µ,g,γ)(ν,y,τ)

�

F y
bcd

�

(λ,z,ν)(ρ,x ,σ)
. (4)

Changing basis on the C(a⊗ b, c) spaces leads to a gauge redundancy in the F -symbols,
meaning that F and G describe the same category, where

c

a b

α =
∑

β

�

M c
ab

�

αβ

c

a b

β , (5a)

�

Gd
abc

�

(α,e,β)(µ, f ,ν) =
∑

γ,δ,σ,τ

�

F d
abc

�

(γ,e,δ)(σ, f ,τ)

�

�

M e
ab

�−1�

αγ

�

M d
a f

�

τν

�

M f
bc

�

σµ

�

�

M d
ec

�−1�

βδ
, (5b)

where M is an invertible change-of-basis and • indicates the new trivalent basis.
Partial gauge fixing can be used to ensure that
�

F d
1bc

�

(1,b,β)(µ,d,1)
= δβ ,µ ,

�

F d
a1c

�

(1,a,β)(1,c,ν)
= δβ ,ν ,

�

F d
ab1

�

(α,d,1)(1,b,ν)
= δα,ν . (6)

For simplicity, we assume such a gauge is chosen for all following computations.

Unitary case

A particularly important class of fusion categories are called unitary. By choosing the bases
appropriately, the F -symbols of such a category can be transformed into unitary matrices. In
the unitary case, we can additionally fix the gauge to ensure that

�

F a
aāa

�

(1,1,1)(1,1,1)
=
ca

da
, (7)

where ca = ±1, and da is the Frobenius-Perron dimension of a completely defined by

da > 0 , (8a)

dadb =
∑

c

N c
abdc . (8b)
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A covector in the dual space to C(a⊗ b, c) is indicated via a ‘splitting’ vertex, with basis
defined by

α ∈ C(c, a⊗ b)↔
c

a b

α ,

c

e

a b
α

β
=

√
dadb

dc
δα,βδc,e

c

. (9)

Re-association of covectors is also given by the F -symbols

a b c

d

eα

β
=

∑
f,µ,ν

[
F d
abc

]
(α,e,β)(µ,f,ν)

cba

d

f
µ

ν , (10)

where · is the complex conjugate.

Definition 2 (C-module category). We sketch a definition of a skeletal left C-module category
suitable for our purposes. For a more complete (rigorous) definition, we refer to [3].

Given a skeletal fusion category C, with specified bases for all fusion spaces, a skeletal
C-module category M consists of the following data:

• A finite set of simple objects Irr(M) = {m, n, . . .}.

• For each pair of simple objects m, n ∈ Irr(M), and simple object a ∈ Irr(C), non-negative
integers N n

am called fusion coefficients, obeying

N n
1m = δm,n (unit)
∑

e∈Irr(C) N
e
abN n

em =
∑

p∈Irr(M) N
n
apN p

bm (associativity)

• For each pair of simple objects m, n ∈ Irr(M), and simple object a ∈ Irr(C), a C-vector
space M(a .m, n) of dimension N n

am.

• Associator isomorphisms ⊕e C(a⊗ b, e) ⊗M(e .m, n) ∼= ⊕p M(a . p, n) ⊗M(b .m, p)
obeying the module pentagon axiom (Eq. 7.2 of [3]).

If any of the fusion coefficients is larger than one, we say M has multiplicity.
Again, it is convenient to specify bases for all M(a .m, n), and extend the string diagram

notation. A basis vector in M(a .m, n) is indicated by a trivalent vertex

α ∈M(a .m, n)↔
am

n

α , (11)

while more general vectors correspond to weighted sums of such vertices. Tensor products of
vectors are indicated using more complex diagrams, for example

α⊗ β ∈ C(a⊗ b, e)⊗M(e .m, n)↔

m

n

ba

e

α

β
. (12)
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With bases fixed, the associator isomorphisms are realized by a collection of invertible matrices

m

n

ba

e

α

β
=

∑
p,µ,ν

[
Ln
abm

]
(α,e,β)(µ,p,ν)

m

n

ba

µ

ν
p , (13)

called the L-symbols.
In this framework, the mixed pentagon equation constraining the L-symbols is

∑

ζ

�

Ln
f cm

�

(β ,g,γ)(ρ,p,ζ)

�

Ln
abp

�

(α, f ,ζ)(σ,q,τ)
=

∑

z,λ,µ,ν

�

F g
abc

�

(α, f ,β)(λ,z,µ)

�

Ln
azm

�

(µ,g,γ)(ν,q,τ)

�

Lq
bcm

�

(λ,z,ν)(ρ,p,σ)
, (14)

where the F -symbol is that of the underlying fusion category C.
Changing basis on the M(a .m, n) spaces (holding the bases in C fixed) leads to a gauge

redundancy in the L-symbols, meaning that L and L̃ describe the same category, where

am

n

α =
∑

β

�

M n
am

�

αβ
am

n

β , (15a)

�

L̃n
abm

�

(α,e,β)(µ,p,ν) =
∑

δ,σ,τ

�

Ln
abm

�

(α,e,δ)(σ,p,τ)

�

M n
ap

�

τν

�

M p
bm

�

σµ

�

�

M n
em

�−1�

βδ
. (15b)

Partial gauge fixing can be used to ensure that
�

Ln
1bm

�

(1,b,β)(µ,n,1)
= δβ ,µ ,

�

Ln
a1m

�

(1,a,β)(1,m,ν)
= δβ ,ν . (16)

For simplicity, we assume such a gauge is chosen for all following computations.

Unitary case

If there is a basis in which the L-symbol is unitary as a matrix1, the module category is called
unitary.

A covector in the dual space to C(a .m, n) is indicated via a ‘splitting’ vertex, with basis
defined by

α ∈M(n, a .m)↔
am

n

α ,

m

n

a p

α

β

=
√

dadp

dn
δα,βδm,n

m

n

, (17)

where dm is the Frobenius-Perron dimension of m completely defined by

dm > 0 , (18a)

dadm =
∑

n∈Irr(M)
N n

amdn , (18b)

∑

m∈Irr(M)
d2

m =
∑

a∈Irr(C)
d2

a . (18c)

1We also require this to be compatible with the pivotal/unitary structure on C.
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Re-association of covectors is also given by the L-symbols

m

n

ba

e

α

β
=

∑
p,µ,ν

[
Ln
abm

]
(α,e,β)(µ,p,ν)

m

n

ba

µ

ν
p , (19)

where · is the complex conjugate.

For all following discussions, we assume thatM is indecomposable as a C-module category,
meaning M cannot be decomposed as a direct sum of module categories. If we do not restrict
M in this way, the result of the algorithm we present will be multifusion. We refer to [3] for
more details.

Definition 3 (Module tube category). Given a fusion category C, and a C-module category M,
the module tube category TubC(M) has as objects pairs

Ob(TubC(M)) = {(m, n) |m, n ∈ Ob(M)} . (20)

Given a pair of simple objects (m, n), (p, q), a basis for the morphism space
TubC(M)((m, n), (p, q)) is given by the set of diagrams

Λ :=



























T[mn|pq]α,x ,β :=

p

m
n

q

α

β

x

�

�

�

�

�

�

�

�

�

�

�

x ∈ Irr(C), 1≤ α≤ N p
xm, 1≤ β ≤ Nq

xn



























. (21)

Composition of morphisms is evaluated using the re-association matrices F and L from the
underlying categories

T
�

m′n′
�

�p′q′
�

α′,x ′,β ′ ◦ T[mn|pq]α,x ,β =

p = m′

m
n

q = n′

xx′

p′

q′

α

β

α′

β′

(22a)

= δp,m′δq,n′

∑

y,ζ,σ,τ

√

√

√
dx dx ′

dy

��

Lq′

x ′ xn

�−1�

(β ,q,β ′)(ζ,y,τ)

��

L̃p′

x ′ xm

�−1�

(α,p,α′)(ζ,y,σ)
T
�

mn
�

�p′q′
�

σ,y,τ, (22b)

where L̃ is the L-symbol for splitting vertices.
With this composition, the set of all morphisms forms an algebra closely related to Oc-

neanu’s tube algebra [18]. Since it will not cause confusion in the current context, we will
refer to the algebra Eq. (21) as the tube algebra. This algebra is associative due to the pen-
tagon equation Eq. (14), and unital. When the module M is irreducible, the tube algebra
is semisimple [3, 19], and therefore isomorphic to a direct sum of C-matrix algebras. This
becomes important when computing representations of this algebra in the following sections.

7
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Finally, we define a tensor product via diagrams

T[mn|pq]α,x ,β ⊗ T
�

m′n′
�

�p′q′
�

α′,x ′,β ′ := δq,p′
x

x′

p

m
n
q = p′
m′
n′

q′

, (23)

which is acted on by tube diagrams T
�

p′q′
�

�rs
�

σ,y,τ by acting on the ‘outside’ and reducing
using the string manipulation rules.

Given a fusion category C, and a finite, irreducible module category C yM, we denote
the category of C-module endofunctors from M to itself by C∗M [20–22]. This category has
a natural tensor structure, given by functor composition. In Section 7, we briefly recall this
structure, and how tube algebra representations relate to these endofunctors.

Definition 4 (Morita equivalence). Let C, D be fusion categories. We say that C and D are
Morita equivalent if there exists an irreducible C-module M such that C∗M is equivalent to D.
Notice that in this case, M is an irreducible C–D module.

Unitary case

When C and M are unitary, the tube algebra comes equipped with an induced ∗-structure,
which exchanges the inner and outer (source and target) circles in the diagram

T[mn|pq]∗α,x ,β :=

m

p
q

n

α

β

x̄ (24)

=
∑

σ,τ

dx

√

√

√
dmdn

dpdq

�

Lm
x̄ xm

�

(1,1,1)(α,p,σ)

�

Ln
x̄ xn

�

(1,1,1)(β ,q,τ)
T[pq|mn]σ, x̄ ,τ. (25)

Additionally, the algebra is equipped with a linear functional and associated inner product

ω(T[mn|pq]α,x ,β) =δx ,1dmdn , (26a)
¬

T
�

m′n′
�

�p′q′
�

α′,x ′,β ′ ,T[mn|pq]α,x ,β

¶

:=ω(T
�

m′n′
�

�p′q′
�∗
α′,x ′,β ′ ◦ T[mn|pq]α,x ,β) . (26b)

The form 〈·, ·〉 is linear in the second argument by definition. It can readily (although tediously)
be verified that 〈A, B〉= 〈B, A〉. Showing that 〈A, A〉> 0∀A 6= 0 reduces to showing that

�

La
x̄ xa

�

(1,1,1)(α,b,σ)
= 0∀σ =⇒ b /∈ x . a. (27)

This follows from bending

κx

a

b

α

x

=

a

b

α

x

x̄ = dx
∑

σ,τ

[
La
x̄xa

]
(1,1,1)(α,b,σ)

[
Lb
xx̄b

]
(1,1,1)(σ,a,τ)

a

b

τ

x

. (28)
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It is necessary to define a balanced inner product on the tensor product space [23]


T[rs|tu]σ,y,τ⊗T
�

r ′s′
�

�t ′u′
�

σ′,y ′,τ′ ,T[mn|pq]α,x ,β ⊗ T
�

m′n′
�

�p′q′
�

α′,x ′,β ′

·

:=



T[rs|tu]σ,y,τ,T[mn|pq]α,x ,β

�

¬

T
�

r ′s′
�

�t ′u′
�

σ′,y ′,τ′ ,T
�

m′n′
�

�p′q′
�

α′,x ′,β ′

¶

Æ

dqdu

.

(29)

If C is a unitary fusion category and trivalent vertices are chosen to be compatible with
the unitary structure on C, then the F -symbol is a unitary matrix. If M is a unitary C-module,
then C∗M is a unitary fusion category [24]. In this paper, we demonstrate how to compute a
basis set of trivalent vertices for C∗M compatible with its unitary structure. In particular, this
implies that the computed associator for C∗M is unitary. The procedure goes as follows:

1. TubC(M) inherits a ∗-structure and trace from the unitary structures on C and M. Com-
pute matrix units ei j in TubC(M) which satisfy e∗i j = e ji . Then TubC(M)eii is an ir-
reducible unitary representation of TubC(M), its unitary structure inherited from the
inclusion TubC(M)eii ,→ TubC(M).

2. Given unitary representations Vi , Vj , Vk of TubC(M), choose a basis of intertwiners
Vi ⊗ Vj → Vk which are isometric projections. With respect to this basis, the F -symbol of
TubC(M) is unitary.

3 Computing data for C∗M
Given a fusion category C, and an indecomposable C-module category M, the first piece of
data defining C∗M is the set of simple objects. We compute this by constructing a complete set
of irreducible representations of the tube algebra TubC(M). Specifically, since TubC(M) is
semisimple, we can compute an explicit Artin-Wedderburn isomorphism

TubC(M)∼= ⊕n
α=1 Mat(Dα) , (30)

where Mat(D) is the D×D matrix algebra over C, and
∑n
α=1 D2

α = dimTubC(M). In particular,
it is convenient to fix a matrix unit basis for Mat(Dα),

�

[eα]i j

�

�0≤ i, j < Dα, [eα]i j[eα]kl = δ j,k[eα]il
	

, (31)

and seek a solution to the set of equations

[eα]i j =
∑

P∈Λ
C (α)P P , (32)

where Λ is the basis defined in Eq. (21), and C (α)P are coefficients to be determined. Although
it is in principle computationally hard to find such an isomorphism, in practice it can be solved
(or accurately approximated) in many cases. This is discussed in [8], and example code is
provided there.

Given such an isomorphism, we can construct a vector space with basis

[vα]i := [eα]i0 , (33)

forming an irreducible representation (irrep) of TubC(M). In [8, 25, 26], these vector spaces
were called binary interface defects, since physically they correspond to excitations at the

9
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interface of two boundaries. It is convenient to extend our graphical notation to include these
vectors

[vα]i = α i , (34)

where the left label denotes the irrep label, and the right index specifies a basis vector in that
representation. Omission of the vector label indicates the full representation. Each irreducible
representation is a simple object in the category C∗M. Fusion of objects corresponds to tensoring
representations. Using this notation, the tensor product of two representations is indicated by
vertical stacking

α⊗ β := α

β
. (35)

The tensor product space comes equipped with an action of TubC(M), and so forms a (poten-
tially reducible) representation. Decomposing into irreps gives the fusion rules of the fusion
category C∗M

α

β ∼=
⊕

γ

γ , (36)

where γ runs over the irreps occurring (possibly multiple times) in the decomposition of α⊗β .
The fusion rules Nγ

αβ
can be deduced by projecting generic vectors in the tensor product

v =
∑

i, j

Ci j α i

β j
, (37)

onto the irrep γ using the identity matrix

1γ =
∑

i

�

eγ
�

ii . (38)

The fusion Nγ
αβ

is the dimension of the space spanned by such projected vectors.
Explicit trivalent vertices for the category C∗M can be computed by forming matrices for

the isomorphisms Eq. (36). Since there was a great deal of freedom in the choice of basis
[vα]i , these matrices are far from unique. We can change basis on all three of the involved
tube algebra representations. Choosing distinct bases will lead to distinct, but equivalent,
F -symbols.

We denote a map embedding the irrep γ into the representation α⊗ β by

V γ;x
αβ

:= γ
α

β x
, (39)

a matrix with dimα⊗ β rows and dimγ columns. It is convenient to reshape this matrix into
a 3-tensor, however dimα⊗β may not be a composite number due to the tensor product rule
Eq. (23) requiring matching of the middle strand label. For this reason, it is useful to fill out
with zero rows, corresponding to cases where [vα]i ⊗

�

vβ
�

j = 0. Following this process, the
matrix can be recast as a 3-tensor of size (dimα, dimβ; dimγ). If there are multiple copies of
γ ∈ α⊗ β , there will be multiple such matrices, forming a vector space. We choose a basis of
matrices, and label the vertex to identify which basis vector is being referred to. The choice
here corresponds to the gauge freedom in choosing a basis for the fusion space.

Assuming Nγ
αβ
6= 0, matrix elements for V γ

αβ
can be computed as follows:
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• Pick a generic vector v ∈ α⊗ β (Eq. (37)).

• Project onto the target irrep γ using
�

eγ
�

00.

If Nγ
αβ
= 1, call the result

�

vγ
�

0 (
�

vγ
�

0 unique up to scale).

If Nγ
αβ
> 1, repeat until Nγ

αβ
independent vectors

�

vγ,x

�

0 are obtained. If an inner
product is defined, these could be made orthonormal.

• Build the rest of the basis
�

vγ,x

�

i =
�

eγ
�

i0

�

vγ,x

�

0.

• The entries in the ith column of V γ;x
αβ

are the coefficients of
�

vγ,x

�

i in the tensor product
basis.

Given these 3-tensors, there are two ways they can be combined into intertwining maps
δ→ α⊗β⊗δ. These provide two bases for the intertwiner space, and are related by a change
of basis matrix,

α

β

γ

δ
µ

i

j
=

∑
k,ν,l

[
F δ
αβγ

]
(i,µ,j)(k,ν,l)

α

β

γ

δ
ν

k

l
. (40)

Solving this (linear) equation gives F -matrices for C∗M, which, in general, are distinct from
those of the input category C.

To summarize the algorithm:

1. Compute irreducible representations of tube algebra.

2. Compute decomposition of tensor product of all irrep pairs.

3. Form explicit matrices for isomorphism, express as 3-tensors.

4. Solve linear equations Eq. (40) to obtain (new) F -symbols.

Unitary case

When C and M are unitary, it is useful to respect the ∗-structure when solving Eq. (32). In
particular, we should solve Eq. (32) with the additional condition that

�

[eα]i j

�∗
= [eα] ji . (41)

This ensures that our resulting tube representations are unitary (although, our computed bases
are not necessarily orthonormal). Since the tube representations are unitary, we can insist that
the embedding maps Eq. (39) are isometric with respect to the equipped norms, and distinct
maps V γ;x

αβ
, V γ;y
αβ

obey

¬

V γ;x
αβ
(
�

vγ
�

i), V γ;y
αβ
(
�

vγ
�

j)
¶

= δx ,y

¬

�

vγ
�

i ,
�

vγ
�

j

¶

. (42)

As outlined in the preliminaries, it makes sense that choosing vertices in this way leads to a
unitary gauge for the resulting F -symbols, and we have numerically verified this for both of
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the Haagerup categories considered in this paper. It can be verified generally as follows

δ(w,µ,x),(y,ν,z)



[vδ]i , [vδ] j

�

=

*

α

β

γ

δ
µ

w

x i ,

α

β

γ

δ
ν

y

z j
+

(43a)

=
∑

a,ε,b,c,σ,d

�

Fδ
αβγ

�

(w,µ,x)(a,ε,b)

�

Fδαβγ
�

(y,ν,z)(c,σ,d)

*

α

β

γ

δ
ϵ

a

b

i ,

α

β

γ

δ
σ

c

d

j
+

(43b)

=
∑

a,ε,b

�

Fδ
αβγ

�

(w,µ,x)(a,ε,b)

�

Fδαβγ
�

(y,ν,z)(a,ε,b)




[vδ]i , [vδ] j

�

(43c)

=⇒
∑

a,ε,b

�

Fδ
αβγ

�

(w,µ,x)(a,ε,b)

�

Fδαβγ
�

(y,ν,z)(a,ε,b)
= δ(w,µ,x),(y,ν,z). (43d)

Alternatively, one could attempt to change the gauge after finding the F -symbols, however
this is challenging if C∗M has multiplicity.

4 A worked example: Vec(Z/2Z)∗Vec

We work through a particularly simple example to recover the F -symbols of Rep(Z/2Z) from
a module, namely Vec, over Vec(Z/2Z).

The skeletal fusion category Vec(Z/2Z) has two simple objects, {0,1}, and fusion rules
a ⊗ b := a + b mod 2. Both objects have dx = 1. All F -symbols are 1 when permitted by
fusion. In all cases, we neglect to draw the strings corresponding to the unit object 0. We
consider a module category Vec with a single simple object, denoted ∗ or a blue string, with
dimension d∗ =

p
2. All module L−symbols are 1 when permitted by fusion.

A basis for the tube algebra is given by

Λ :=

(

T0 = , T1 =

)

. (44)

Since all the F - and L-symbols are 1, the product Eq. (22) reduces to Tx ◦Ty = Tx+y mod 2, re-
covering the group algebra C[Z/2Z]. Finally, these categories are equipped with a ∗-structure,
which acts trivially on the basis Λ.

Step 1.

The tube algebra CΛ decomposes as two copies of the 1-dimensional algebra CΛ∼= C⊕C. We
will label the two irreducible representations by 1,ψ. A complete set of matrix units is given
by

[e1]00 =
T0+T1

2
=

1
2

�

+
�

, (45a)

�

eψ
�

00 =
T0−T1

2
=

1
2

�

−
�

. (45b)
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Since both representations are 1-dimensional, we neglect the matrix indices for the remainder
of this section. A basis for the representations is given by

[v1] = [e1] ,
�

vψ
�

=
�

eψ
�

, (46)

with action

[eα]
�

vβ
�

= δα,β[vα] . (47)

Both basis vectors [vx] have norm 1.

Step 2.

The tensor product basis is 4-dimensional,

[v1] ⊗ [v1] =
1
4



 + + +



 , [v1] ⊗
�

vψ
�

=
1
4



 − + −


 , (48a)

�

vψ
�

⊗ [v1] =
1
4



 + − −


 ,
�

vψ
�

⊗
�

vψ
�

=
1
4



 − − +



 . (48b)

To obtain the fusion rules for Vec(Z/2Z)∗Vec, we project the tensor product basis above onto
the irreps. This is done by left multiplication with the basis for the representations given in
Eq. (46). Graphically, left multiplication corresponds to putting the tubes given in Eq. (45a)
and Eq. (45b) on the outside of the tubes in the tensor product and reducing the diagrams
using the F - and L-symbols. For example,

eψ
�

[v1]⊗ [vψ]
�

=
1
2

�

−
�

◦
1
4

 

− + −
!

(49a)

=
1
8

 

− + − − + − +

!

(49b)

=
1
8

 

− + − − + − +

!

(49c)

= [v1]⊗ [vψ] , (49d)

which tells us that ψ is in the decomposition of the tensor product 1⊗ψ.
More generally, to compute the multiplicity of an irreducible inside some representation,

you compute the dimension of the image of multiplication by the corresponding indecompos-
able idempotent. Summing up, the fusion rules for Vec(Z/2Z)∗Vec are

1⊗ x = x = x ⊗ 1 , ψ⊗ψ= 1 , (50)

where x ∈ {1,ψ}.

Step 3.

Next, we provide explicit trivalent intertwiners. As discussed in Section 3, we ensure that
these are isometric. All basis vectors in the tensor product basis [vx]⊗

�

vy

�

have norm 2−1/4,
arising from the dimension of the module object d∗ =

p
2, and Eq. (29). Recall that these are

obtained (for a given choice of irreps to tensor) by: first choosing a generic vector in the tensor
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product, followed by projecting onto the target irrep. Since all irreps are 1-dimensional in this
case, expressing the result as in the tensor product representation completes the computation.

We obtain the isometric intertwiners with matrix representations

1
1

1
=

�

[v1]

[v1] ⊗ [v1] ω1
11

�

× 21/4 , 1
ψ

ψ
=

�

[v1]
�

vψ
�

⊗
�

vψ
�

ω1
ψψ

�

× 21/4 , (51a)

ψ
1

ψ
=

�

�

vψ
�

[v1] ⊗
�

vψ
�

ω
ψ

1ψ

�

× 21/4 , ψ
ψ

1
=

�

�

vψ
�

�

vψ
�

⊗ [v1] ω
ψ

ψ1

�

× 21/4 , (51b)

where the ωx
ab ’s are complex numbers with

�

�ωc
ab

�

�= 1.

Step 4.

Finally, to compute the F -symbols, we solve the linear equations

a

b

c

d
e

=
∑

f

[
F d
abc

]
ef

a

b

c

d
f

, (52)

where the vertices Eq. (51) are used. This gives

�

F1
111

�

11
= 1 ,

�

Fψ11ψ

�

1ψ
=
ω1

11

ω
ψ

1ψ

,
�

Fψ1ψ1

�

ψψ
= 1 ,

�

F1
1ψψ

�

ψ1
=
ω
ψ

1ψ

ω1
11

,

�

Fψ
ψ11

�

ψ1
=
ω1
ψ1

ω1
11

,
�

F1
ψ1ψ

�

ψψ
=
ω1
ψ1

ω
ψ

1ψ

,
�

F1
ψψ1

�

1ψ
=
ω1

11

ω1
ψ1

,
�

Fψ
ψψψ

�

11
=
ω
ψ

1ψ

ω1
ψ1

,
(53)

which is any true for any choice of ωx
ab, and corresponds to the fusion category Rep(Z/2Z).

In the appendices, we provide similar worked examples for (Vec(S3))
∗
Vec (Section 8) and

(Rep(S3))
∗
Rep(S3)

(Section 9), which explore some of the complications that arise in the more
general case. Additionally, we supply F -symbols for H1, a category with multiplicity, in at-
tached Mathematica files [14]. These were computed using the technique described here,
using (H3)

∗
M3,1

, where the fusion category H3, and its module M3,1 are defined in Section 5.
These examples, including those in the attached code, illustrate the possible complications
that can arise.

5 Example: Haagerup fusion categories

A far more complicated application of our algorithm is finding the F -symbols of one of the
Haagerup fusion categories. These categories originate from the Haagerup subfactor [27,28],
and they are of particular interest due to their outstanding role in the conjectured corre-
spondence between subfactors and conformal field theories initially formulated by Vaughan
Jones [29,30]. Jones’ conjecture states that for every unitary fusion category C (equivalently
every finite depth subfactor), there is a conformal field theory (realized as a completely ra-
tional conformal net A), such that Z(C) ∼= Rep(A). We refer to [31] for a more complete
exposition of the conjecture.

For subfactors with index less than four the conjecture is proven in Prop. 1.7 of [31], but the
general case remains unproven. The first example above index four is the Haagerup subfactor,
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Table 1: Fusion rules for H2 and H3 (left) and module fusion rules (middle and
right). The category H3 is rank 6, with a full subcategory, generated by {1,α,α2},
equivalent to Vec(Z/3Z). We define X = ρ +αρ +α2ρ, Y = Γ +αΓ +α2Γ +Λ, and
Z = G + 3 ·ρG. Fusion rules for the modules were obtained from [9].

⊗ 1 α α2 ρ αρ α2ρ

1 1 α α2 ρ αρ α2ρ

α α α2 1 αρ α2ρ ρ

α2 α2 1 α α2ρ ρ αρ

ρ ρ α2ρ αρ 1+ X α2 + X α+ X
αρ αρ ρ α2ρ α+ X 1+ X α2 + X
α2ρ α2ρ αρ ρ α2 + X α+ X 1+ X

H3 .M3,1 Γ αΓ α2Γ Λ

1 Γ αΓ α2Γ Λ

α αΓ α2Γ Γ Λ

α2 α2Γ Γ αΓ Λ

ρ αΓ +α2Γ +Λ Γ +αΓ +Λ Γ +α2Γ +Λ Y
αρ Γ +α2Γ +Λ αΓ +α2Γ +Λ Γ +αΓ +Λ Y
α2ρ Γ +αΓ +Λ Γ +α2Γ +Λ αΓ +α2Γ +Λ Y

H3 .M3,2 G ρG
1 G ρG
α G ρG
α2 G ρG
ρ ρG Z
αρ ρG Z
α2ρ ρG Z

for which an associated CFT is yet to be proven, although it seems very likely that such a CFT
exists [32].

The Morita equivalence class of fusion categories coming from the Haagerup subfactor
contains three categories, commonly called H1, H2, H3, and their module categories were
studied extensively in [9]. We take as the input category H3, with fusion rules given in Table 1.
The F -symbols for H3 were found in [11–13], and in an encoded form in [10]. We visualize
the F -symbols in the left part of Fig. 1 in a gauge in which they are all real. For the category
H2, F -symbols are also known [12,13], leaving those for H1 the only unknown data.

Finding the F -symbols of H1 directly by solving the pentagon equation is considerably
harder than the corresponding calculation for H3 due to the fact that H1 has multiplicities.
It therefore makes sense to use the algorithm presented above to obtain the F -symbols for
H1 via a module category over H3. We consider a rank 4 indecomposable module category
over H3, which we refer to as M3,1. We obtained the fusion rules for this module from [9],
although they could be obtained more directly, for example by a brute-force search. We provide
code for a tree-based search, inspired by a talk given by J. Slingerland [33], in the attached
Mathematica file ‘FindingModules.nb’ [14]. The fusion rules are provided in the Table 1.

Since these fusion rules are multiplicity free, it is reasonably easy to solve the module
pentagon equation Eq. (14). The solution is provided in the attached file ‘M31Data.m’ [14],
and can be verified and visualized in ‘M31Data.nb’ [14].

With this data obtained, one can apply the algorithm described above. The tube algebra
(Eq. (21)) is 555 dimensional, so we refrain from extensive discussion of the computation.
This algebra has 4 irreps, which we label 1,µ,η,ν following [9]. By forming the projectors
onto the irreps, we can easily obtain fusion rules for these irreps

(H3)
∗
M3,1

=

◦ 1 µ η ν

1 1 µ η ν

µ µ 1+ ν η+ ν η+µ+ ν
η η η+ ν 1+η+µ+ ν η+µ+ 2ν

ν ν η+µ+ ν η+µ+ 2ν 1+ 2η+µ+ 2ν

, (54)

which are the fusion rules of H1. Forming trivalent vertices, and using them to compute F -
symbols gives the associator data for the Haagerup category H1. We provide a visualization
in the right part of Fig. 1, and the numerical data in the attached file ‘H1Data.m’ [14]. In
particular, these were obtained using the unitary version of the algorithm, and so are in a
unitary gauge. Since there is multiplicity in the fusion rules, gauge freedom in these F -symbols
is more than the phase freedom in H3. In the bottom right panel of Fig. 1, this is apparent
since the values do not cluster, unlike the bottom left panel (H3). A full implementation of the
algorithm used to obtain this data can be accessed from the notebook ‘Main.nb’ [14], which
also allows this to be applied to the other examples in this manuscript.
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To complete the Morita class, we include the data for H2 in the file ‘DataH2.m’ [14]. These
data are obtained from a module category M3,2 (data in ‘M32Data.m’). Unlike M3,1, this
module has multiplicity three in its fusion rules as shown in the right panel of Table 1. Since
the module pentagon equations are quadratic, and due to the reduced gauge freedom, the
module associator can be obtained more easily than would be possible for a fusion category
with multiplicity three.

200 400 600 800 1000 1200 1400

-1.0

-0.5

0.5

1.0

200 400 600 800 1000 1200

-1.0

-0.5

0.5

1.0

Figure 1: A visualization of the F -symbol matrix elements in a unitary gauge, on the
left is H3 [11–13], and on the right is H1. In the upper plot, white= −1, black= +1.
All values are real.

6 Remarks

To summarize, we have described an algorithm to compute F -symbols for a fusion category
C∗M, given the data for a fusion category C and a module category CyM. By using a module
version of the tube category, and its representations, this algorithm automates computation of
these data.

To demonstrate the utility of our algorithm, we have applied it to obtain the F -symbols
of the Haagerup Morita equivalence class, and in particular the category H1. This category
has multiplicity in its fusion rules, which makes it extremely challenging to obtain the data by
directly solving the pentagon equations. As such, this solution is among only a handful of such
data that have been obtained for categories with multiplicity. Conversely, the module involved
in the computation of H2 has multiplicity, however the simplified pentagon makes it possible
to find the module associator directly. With this data in hand, the algorithm can be applied to
find the data for the final category in the class.

The algorithm discussed in this manuscript requires as input data for one category in the
Morita equivalence class. The problem of finding this initial data is the subject of a great
deal of research, and the current algorithm provides no solution. In the case of a previously
obtained solution, our algorithm allows for maximal use of the known data.

The only currently known ‘exotic’ fusion categories are those related to the ‘extended
Haagerup subfactor’ [34] (EH). All other examples fall into some infinite family. For this rea-
son, these are particularly interesting to study as this may aid in the classification. Previously,
a complete understanding of the Morita equivalences has provided insight into the origins of
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purportedly exceptional fusion categories [35]. Although the categories Morita equivalent to
EH are classified in [34], their data is not known. The algorithm presented here would greatly
simplify the task of calculating the data. In the case that new fusion categories are discovered,
it would also provide a way to more easily discover the Morita equivalences.

7 Tensor structure on C∗M
Let C be a fusion category and M, N be C-modules. In this appendix, we briefly review the
tensor structure on C∗M. We will concentrate on recovering tube algebra data from this functor,
but, given a tube algebra representation, the functor can be recovered similarly.

Let F : M→N be a module functor. This data specifies a vector space N (F(m), n), which
we denote

N (F(m), n)↔

m

n

. (55)

After a basis has been chosen, vectors in N (F(m), n) are indicated by

m

n

v . (56)

The tube algebra action

m2

n2

vi
m1

n1

α

β

x =
∑

j aij

m2

n2

wj (57)

on this vector space is extracted from the functor F as follows:

N (F(m1), n1)
x.−
−−→N (x . F(m1), x . n1)

postcompose with β
−−−−−−−−−−−→

N (x . F(m1), n2)
F coherence iso.
−−−−−−−−−→N (F(x .m1), n2)

precompose with F(α)
−−−−−−−−−−−−−→N (F(m2), n2) . (58)

Now consider the composition of two tensor functors F : M→ N and G : N → P . The
coherence isomorphism for

F ⊗ G := G ◦ F , (59)

is given by

x . G(F(m))
G coherence iso.
−−−−−−−−−→ G(x . F(m))

F coherence iso.
−−−−−−−−−→ G(F(x .m)) . (60)

Now assume that x . F(m) ∼= n and choose trivalent vertices γ : x . F(m) → n and
δ : n→ a . F(m) realizing this isomorphism. We can decompose the coherence isomorphism
for G ◦ F as

a . G(F(m))
G coherence iso.
−−−−−−−−−→ G(x . F(m))

G(γ)
−−→ G(n)

G(δ)
−−→ G(x . F(m))

F coherence iso.
−−−−−−−−−→ G(F(x .m)) . (61)

17

https://scipost.org
https://scipost.org/SciPostPhys.13.2.029


SciPost Phys. 13, 029 (2022)

Substituting Eq. (61) into Eq. (58) tells us that the tube action for G ◦ F can be interpreted as

α

β

→

α

β

γ
δ , (62)

followed by applying the F and G actions independently. Notice that this is like a higher
categorical version of the well known group theory trick x y = x g g−1 y .

8 Worked Example: Vec(S3)

We work through another relatively simple example to recover the F -symbols of Rep(S3) from
a module over Vec(S3). This example has a two-dimensional representation, so is slightly more
complicated than that in Section 4. Additionally, since Rep(S3) is not equivalent as a fusion
category to Vec(S3), it is perhaps more clear that the output F -symbols are distinct from the
input. Conversely, since there is a single simple object in the module category, computations
within this example remain straightforward. In particular, all boundary tubes can be stacked
to give a nonzero picture.

The group S3 is given by the presentation

S3 =



σ,τ
�

�σ3 = τ2 = (στ)2 = 1
�

. (63)

The simple objects of Vec(S3) are labeled by the group elements, with fusion given by group
multiplication. All F -symbols are 1 when permitted by fusion. In all cases, we neglect to draw
the strings corresponding to the unit object 1.

We consider a module category M with a single simple object, denoted ∗ or a blue string.
All module L−symbols are 1 when permitted by fusion.

The boundary tube algebra is 6-dimensional, with picture basis

Λ=















T1 = , Tσ = σ , Tσ2 = σ2 , Tτ = τ , Tστ = στ , Tσ2τ = σ2τ















. (64)

The multiplication on the tubes is given by group multiplication on their label Ti T j = Ti· j .
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Step 1.

The tube algebra composes into two 1-dimensional algebras and one 2-dimensional algebra:
C[S3]∼= C⊕C⊕M2(C). A complete set of matrix units is given by

[e1]00 =
T1+Tσ+Tσ2 +Tτ+Tστ+Tσ2τ

6

=
1
6



 + σ + σ2 + τ + στ + σ2τ



 , (65)

�

eψ
�

00 =
T1+Tσ+Tσ2 −Tτ−Tστ−Tσ2τ

6

=
1
6



 + σ + σ2 − τ − στ − σ2τ



 , (66)

[eπ]00 =
2T1−Tσ−Tσ2 −2Tτ+Tστ+Tσ2τ

6

=
1
6



 2 − σ − σ2 −2 τ + στ + σ2τ



 , (67)

[eπ]01 =
−Tσ+Tσ2 −Tστ+Tσ2τ

2
p

3
=

1

2
p

3



 σ− + σ2 − στ + σ2τ



 , (68)

[eπ]10 =
Tσ−Tσ2 −Tστ+Tσ2τ

2
p

3
=

1

2
p

3



 σ − σ2 − στ + σ2τ



 , (69)

[eπ]11 =
2T1−Tσ−Tσ2 +2Tτ−Tστ−Tσ2τ

6

=
1
6



 2 − σ − σ2 +2 τ − στ − σ2τ



 . (70)

A basis for the representations is given by

[v1]0 =[e1]00 ,
�

vψ
�

0 =
�

eψ
�

00 , [vπ]0 = [eπ]00 , [vπ]1 = [eπ]10 , (71)

with

[ex]i, j
�

vy

�

k =δ
y
xδ

k
j [vx]i . (72)

Using the central idempotents

11 :=[e1]00 , (73a)

1ψ :=
�

eψ
�

00 , (73b)

1π :=[eπ]00 + [eπ]11 , (73c)

we can project onto a given representation. This is useful for computing the fusion rules for
C∗M, but the full representations are required to compute the F -symbols.

The fusion category C∗M therefore has 3 simple objects, labeled 1,ψ,π.

19

https://scipost.org
https://scipost.org/SciPostPhys.13.2.029


SciPost Phys. 13, 029 (2022)

Step 2.

The composite basis is 36-dimensional, with picture basis














α

β

�

�

�

�

�

�

�

�

α,β ∈ S3















. (74)

The tensor products of the representations [vx] form a 16-dimensional subspace with basis
[vx]i ⊗

�

vy

�

j .

Step 3.

To find the required trivalent vertices, we need to decompose the composite space. This can
be achieved as follows:

• Fix x , y representations. Pick a generic vector V =
∑

i, j α
y, j
x ,i [vx]i ⊗

�

vy

�

j ,

• For each representation z, apply [ez]00, giving a new vector V (z).

• If V (z) = 0, the representation z does not occur inside the tensor product x ⊗ y .

• The vector V (z) 6= 0 will have at least one free parameter α. If it has exactly one, it can
be fixed to any value. Ultimately, this corresponds to a choice of gauge for the trivalent
vertices. If there are multiple free parameters (n of them), z occurs multiple times within
x ⊗ y . In that case, form n linearly independent vectors V (z,q) with all but one of the
free parameters set to 0, and the remaining one fixed, for example, to 1.

• We can now identify [vz]0 with V (z,q) for each q ∈ {0, . . . , n−1} since [ez]00V (z,q) = V (z,q).
Fill out the representations by applying [ez]i0, giving vectors V (z,q)

i .

• The matrix elements of the trivalent vertex

z
x

y

q
(75)

are given by the coefficients of [vx]i ⊗
�

vy

�

j in the vector V (z,q)
k , where the rows are

labeled by
¦

[vx]i ⊗
�

vy

�

j

©

i, j
, and the columns by

¦

V (z,q)
k

©

k
.

For the present example, there are no multiplicities. For clarity, we leave the free param-
eters unfixed, naming them ω. This serves to demonstrate that they correspond to the gauge
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freedom in the F -symbols. The trivalent vertices are given by the matrices

1
1

1
=

�

[v1]0
[v1]0 ⊗ [v1]0 ω1

11

�

× 61/4 ,

ψ
1

ψ
=

�

�

vψ
�

0

[v1]0 ⊗
�

vψ
�

0 ω
ψ

1ψ

�

× 61/4 ,

ψ
ψ

1
=

�

�

vψ
�

0
�

vψ
�

0 ⊗ [v1]0 ω
ψ

ψ1

�

× 61/4 ,

1
ψ

ψ
=

�

[v1]0
�

vψ
�

0 ⊗
�

vψ
�

0 ω1
ψψ

�

× 61/4 ,

π
1

π
=

�

[vπ]0 [vπ]1
[v1]0 ⊗ [vπ]0 ωπ1π 0

[v1]0 ⊗ [vπ]1 0 ωπ1π

�

× 61/4 ,

π
π

1
=

�

[vπ]0 [vπ]1
[vπ]0 ⊗ [v1]0 ωππ1 0

[vπ]1 ⊗ [v1]0 0 ωππ1

�

× 61/4 ,

π
ψ

π
=

 

[vπ]0 [vπ]1
�

vψ
�

0 ⊗ [vπ]0 0 −ωπ
ψπ

�

vψ
�

0 ⊗ [vπ]1 ωπ
ψπ

0

!

× 61/4 ,

π
π

ψ
=

 

[vπ]0 [vπ]1
[vπ]0 ⊗

�

vψ
�

0 0 −ωπ
πψ

[vπ]1 ⊗
�

vψ
�

0 ωπ
πψ

0

!

× 61/4 ,

1
π

π
=











[v1]0
[vπ]0 ⊗ [vπ]0 ω1

ππ

[vπ]0 ⊗ [vπ]1 0

[vπ]1 ⊗ [vπ]0 0

[vπ]1 ⊗ [vπ]1 ω1
ππ











×
�

3
32

�1/4

,

ψ
π

π
=













�

vψ
�

0

[vπ]0 ⊗ [vπ]0 0

[vπ]0 ⊗ [vπ]1 ω
ψ
ππ

[vπ]1 ⊗ [vπ]0 −ωψππ
[vπ]1 ⊗ [vπ]1 0













×
�

3
32

�1/4

,
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π
π

π
=











[vπ]0 [vπ]1
[vπ]0 ⊗ [vπ]0 0 ωπππ
[vπ]0 ⊗ [vπ]1 ωπππ 0

[vπ]1 ⊗ [vπ]0 ωπππ 0

[vπ]1 ⊗ [vπ]1 0 −ωπππ











×
�

3
8

�1/4

.

Step 4.

The remainder of the calculation is straightforward linear algebra, solving the linear equations

a

b

c

d
e

=
∑

f

[
F d
abc

]
ef

a

b

c

d
f

, (76)

where joined indices corresponds to (conventional) tensor contraction of the reshaped matri-
ces. For example

π

π

π

π
π

=























1 0
0 −1
0 1
1 0
0 1
1 0
−1 0
0 1























×

√

√3
8
(ωπππ)

2 , (77)

and

π

π

π

π
1

=























1 0
0 0
0 0
1 0
0 1
0 0
0 0
0 1























×

√

√3
4
ωππ1ω

1
ππ , (78a)

π

π

π

π
ψ

=























0 0
0 −1
0 1
0 0
0 0
1 0
−1 0
0 0























×

√

√3
4
ωππψω

ψ
ππ , (78b)

(78c)
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π

π

π

π
π

=























1 0
0 1
0 1
−1 0
0 −1
1 0
1 0
0 1























×

√

√3
8
(ωπππ)

2 . (79a)

From this, we read off that

�

Fππππ
�

π1
=

�

ωππ,π

�

2

p
2ωππ,1ω

1
π,π

,
�

Fππππ
�

πψ
=

�

ωππ,π

�

2

p
2ωπ

π,ψω
ψ
π,π

,
�

Fππππ
�

ππ
= 0 . (80)

The full set of F -symbols is computed similarly. Those that are not required to be zero by
fusion are
�

F1
111

�

11
= 1

�

Fψ11ψ

�

1ψ
=
ω1

11

ω
ψ

1ψ

�

Fπ11π

�

1π
=
ω1

11
ωπ1π

�

Fψ1ψ1

�

ψψ
= 1

�

F1
1ψψ

�

ψ1
=
ω
ψ

1ψ

ω1
11

�

Fπ1ψπ
�

ψπ
=
ω
ψ

1ψ

ωπ1π

�

Fπ1π1

�

ππ
= 1

�

Fπ1πψ
�

ππ
= 1

�

F1
1ππ

�

π1
=
ωπ1π
ω1

11

�

Fψ1ππ
�

πψ
=
ωπ1π

ω
ψ

1ψ

�

Fπ1ππ
�

ππ
= 1

�

Fψ
ψ11

�

ψ1
=
ω
ψ

ψ1

ω1
11

�

F1
ψ1ψ

�

ψψ
=
ω
ψ

ψ1

ω
ψ

1ψ

�

Fπ
ψ1π

�

ψπ
=
ω
ψ

ψ1

ωπ1π

�

F1
ψψ1

�

1ψ
=
ω1

11

ω
ψ

ψ1

�

Fψ
ψψψ

�

11
=
ω
ψ

1ψ

ω
ψ

ψ1
�

Fπ
ψψπ

�

1π
= −

ωπ1πω
1
ψψ

ωπ
ψπ

2

�

Fπ
ψπ1

�

ππ
= 1

�

Fπ
ψπψ

�

ππ
= 1

�

Fψ
ψππ

�

π1
=
ω
ψ
ππω

π
ψπ

ω1
ππω

ψ

ψ1
�

F1
ψππ

�

πψ
= −

ω1
ππω

π
ψπ

ω
ψ
ππω

1
ψψ

�

Fπ
ψππ

�

ππ
= −1

�

Fππ11

�

π1
=
ωππ1

ω1
11

�

Fπ
π1ψ

�

πψ
=
ωππ1

ω
ψ

1ψ
�

F1
π1π

�

ππ
=
ωππ1
ωπ1π

�

Fψπ1π

�

ππ
=
ωππ1
ωπ1π

�

Fππ1π

�

ππ
=
ωππ1
ωπ1π

�

Fπ
πψ1

�

πψ
=
ωππ1

ω
ψ

ψ1
�

Fπ
πψψ

�

π1
= −

ωπ
πψ

2

ωππ1ω
1
ψψ

�

F1
πψπ

�

ππ
= −

ωπ
πψ

ωπ
ψπ

�

Fψ
πψπ

�

ππ
= −

ωπ
πψ

ωπ
ψπ

�

Fπ
πψπ

�

ππ
=
ωπ
πψ

ωπ
ψπ

�

F1
ππ1

�

1π
=
ω1

11
ωππ1

�

Fψππ1

�

ψπ
=
ω
ψ

ψ1

ωππ1

�

Fπππ1

�

ππ
= 1

�

Fψ
ππψ

�

1π
= −

ω
ψ

1ψω
1
ππ

ω
ψ
ππω

π
πψ

�

F1
ππψ

�

ψπ
=
ω
ψ
ππω

1
ψψ

ω1
ππω

π
πψ

�

Fπ
ππψ

�

ππ
= −1

�

Fππππ
�

11
=

ωπ1π
2ωππ1

�

Fππππ
�

1ψ
= − ωπ1πω

1
ππ

2ωψππω
π
πψ

�

Fππππ
�

1π
=
ωπ1πω

1
ππp

2ωπππ
2

�

Fππππ
�

ψ1
=

ω
ψ
ππω

π
ψπ

2ωππ1ω
1
ππ

�

Fππππ
�

ψψ
= −

ωπ
ψπ

2ωπ
πψ

�

Fππππ
�

ψπ
= −

ω
ψ
ππω

π
ψπp

2ωπππ
2

�

Fππππ
�

π1
=

ωπππ
2

p
2ωππ1ω

1
ππ

�

Fππππ
�

πψ
=

ωπππ
2

p
2ωψππω

π
πψ

�

F1
πππ

�

ππ
= 1

�

Fψπππ
�

ππ
= −1

�

Fππππ
�

ππ
= 0

23

https://scipost.org
https://scipost.org/SciPostPhys.13.2.029


SciPost Phys. 13, 029 (2022)

It can readily be verified that these obey the pentagon equations, and are the F -symbols, up
to a choice of gauge, for Rep(S3) as expected.
�

F1
111

�

11
= 1

�

Fψ11ψ

�

1ψ
= 1

�

Fπ11π

�

1π
= 1

�

Fψ1ψ1

�

ψψ
= 1

�

F1
1ψψ

�

ψ1
= 1

�

Fπ1ψπ
�

ψπ
= 1

�

Fπ1π1

�

ππ
= 1

�

Fπ1πψ
�

ππ
= 1

�

F1
1ππ

�

π1
= 1

�

Fψ1ππ
�

πψ
= 1

�

Fπ1ππ
�

ππ
= 1

�

Fψ
ψ11

�

ψ1
= 1

�

F1
ψ1ψ

�

ψψ
= 1

�

Fπ
ψ1π

�

ψπ
= 1

�

F1
ψψ1

�

1ψ
= 1

�

Fψ
ψψψ

�

11
= 1

�

Fπ
ψψπ

�

1π
= 1

�

Fπ
ψπ1

�

ππ
= 1

�

Fπ
ψπψ

�

ππ
= 1

�

Fψ
ψππ

�

π1
= 1

�

F1
ψππ

�

πψ
= 1

�

Fπ
ψππ

�

ππ
= −1

�

Fππ11

�

π1
= 1

�

Fπ
π1ψ

�

πψ
= 1

�

F1
π1π

�

ππ
= 1

�

Fψπ1π

�

ππ
= 1

�

Fππ1π

�

ππ
= 1

�

Fπ
πψ1

�

πψ
= 1

�

Fπ
πψψ

�

π1
= 1

�

F1
πψπ

�

ππ
= 1

�

Fψ
πψπ

�

ππ
= 1

�

Fπ
πψπ

�

ππ
= −1

�

F1
ππ1

�

1π
= 1

�

Fψππ1

�

ψπ
= 1

�

Fπππ1

�

ππ
= 1

�

Fψ
ππψ

�

1π
= 1

�

F1
ππψ

�

ψπ
= 1

�

Fπ
ππψ

�

ππ
= −1

�

Fππππ
�

11
= 1

2

�

Fππππ
�

1ψ
= 1

2
�

Fππππ
�

1π
= 1p

2

�

Fππππ
�

ψ1
= 1

2

�

Fππππ
�

ψψ
= 1

2

�

Fππππ
�

ψπ
= − 1p

2

�

Fππππ
�

π1
= 1p

2
�

Fππππ
�

πψ
= − 1p

2

�

F1
πππ

�

ππ
= 1

�

Fψπππ
�

ππ
= −1

�

Fππππ
�

ππ
= 0

9 Worked Example: Rep(S3)

We work through another relatively simple example to recover the F -symbols of Rep(S3) from
a module over Rep(S3). This example is slightly more complicated than that in Section 8 since
the module category we choose has 3 simple objects. Because of this, and unlike the previous
two examples, not all boundary diagrams are valid.

As input, we use the F -symbols computed in Section 8. We consider Rep(S3) as a module
over itself, so the module category M also has 3 simple objects.

The boundary tube algebra is 32 + 32 + 52 = 43 dimensional, where the decomposition
foreshadows the decomposition into irreducible representations. Defining

T[ab|cd]x :=

a

b
c

d

x , (81)

the picture basis is

Λ=











































T[11|11]1, T[11|ψψ]ψ, T[11|ππ]π, T[1ψ|1ψ]1, T[1ψ|ψ1]ψ, T[1ψ|ππ]π,
T[1π|1π]1, T[1π|ψπ]ψ, T[1π|π1]π, T[1π|πψ]π, T[1π|ππ]π, T[ψ1|1ψ]ψ,
T[ψ1|ψ1]1, T[ψ1|ππ]π, T[ψψ|11]ψ, T[ψψ|ψψ]1, T[ψψ|ππ]π, T[ψπ|1π]ψ,
T[ψπ|ψπ]1, T[ψπ|π1]π, T[ψπ|πψ]π, T[ψπ|ππ]π, T[π1|1π]π, T[π1|ψπ]π,
T[π1|π1]1, T[π1|πψ]ψ, T[π1|ππ]π, T[πψ|1π]π, T[πψ|ψπ]π, T[πψ|π1]ψ,
T[πψ|πψ]1, T[πψ|ππ]π, T[ππ|11]π, T[ππ|1ψ]π, T[ππ|1π]π, T[ππ|ψ1]π,
T[ππ|ψψ]π, T[ππ|ψπ]π, T[ππ|π1]π, T[ππ|πψ]π, T[ππ|ππ]1, T[ππ|ππ]ψ,
T[ππ|ππ]π











































.

Step 1.

As already hinted at above, the tube algebra decomposes into two 3-dimensional algebras and
one 5-dimensional algebra: M3(C)⊕M3(C)⊕M5(C). A complete set of matrix units is given
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by

[e1]i j =





T[11|11]1 T[ψψ|11]ψ T[ππ|11]π/
p

2
T[11|ψψ]ψ T[ψψ|ψψ]1 T[ππ|ψψ]π/

p
2

T[11|ππ]π/
p

2 T[ψψ|ππ]π
p

2 1
4

�

T[ππ|ππ]1 + T[ππ|ππ]ψ +
p

2T[ππ|ππ]π
�





i j

, (82a)

�

eψ
�

i j
=





T[1ψ|1ψ]1 T[ψ1|1ψ]ψ T[ππ|1ψ]π/
p

2
T[1ψ|ψ1]ψ T[ψ1|ψ1]1 T[ππ|ψ1]π/

p
2

T[1ψ|ππ]π/
p

2 T[ψ1|ππ]π/
p

2 1
4

�

T[ππ|ππ]1 + T[ππ|ππ]ψ −
p

2T[ππ|ππ]π
�





i j

, (82b)

[eπ]i j =













T[1π|1π]1 T[ψπ|1π]ψ T[π1|1π]π T[πψ|1π]π T[ππ|1π]π/
4p2

T[1π|ψπ]ψ T[ψπ|ψπ]1 T[π1|ψπ]π T[πψ|ψπ]π −T[ππ|ψπ]π/
4p2

T[1π|π1]π T[ψπ|π1]π T[π1|π1]1 T[πψ|π1]ψ T[ππ|π1]π/
4p2

T[1π|πψ]π T[ψπ|πψ]π T[π1|πψ]ψ T[πψ|πψ]1 −T[ππ|πψ]π/
4p2

T[1π|ππ]π
4p2

− T[ψπ|ππ]π
4p2

T[π1|ππ]π
4p2

− T[πψ|ππ]π
4p2

1
2 (T[ππ|ππ]1 − T[ππ|ππ]ψ)













i j

. (82c)

Note that we are redundantly using the labels 1,ψ,π for the simple objects in: Rep(S3) as
both a fusion and module category, and as labels for the irreducible representations of the
tube category.

A basis for the representations is given by

[v1]i =[e1]i0 ,
�

vψ
�

i =
�

eψ
�

i0 , [vπ]i = [eπ]i0 , (83)

with

[ex]i, j
�

vy

�

k =δ
y
xδ

k
j [vx]i . (84)

These vectors have norm


[v1]i


=




�

vψ
�

i



= 1 ,


[vπ]i


=
p

2 . (85)

The fusion category C∗M therefore has 3 simple objects, labeled 1,ψ,π. Note that we are
labeling the objects in C∗M with the same labels as the input category C since, as shown below,
C∗M ≡ C as a fusion category. From this point, all labels are in C∗M.

Step 2.

The composite basis is 683 dimensional. Unlike the two previous examples, 683 6= 432, since
many of the composite pictures evaluate to 0. The tensor products of the representations vx
form a 43 dimensional subspace with basis






















































[v1]0 ⊗ [v1]0, [v1]1 ⊗ [v1]1, [v1]2 ⊗ [v1]2,
�

vψ
�

0 ⊗
�

vψ
�

1,
�

vψ
�

1 ⊗
�

vψ
�

0,
�

vψ
�

2 ⊗
�

vψ
�

2, [v1]0 ⊗
�

vψ
�

0, [v1]1 ⊗
�

vψ
�

1, [v1]2 ⊗
�

vψ
�

2,
�

vψ
�

0 ⊗ [v1]1,
�

vψ
�

1 ⊗ [v1]0,
�

vψ
�

2 ⊗ [v1]2, [v1]0 ⊗ [vπ]0, [v1]1 ⊗ [vπ]1, [v1]2 ⊗ [vπ]2,
[v1]2 ⊗ [vπ]3, [v1]2 ⊗ [vπ]4,

�

vψ
�

0 ⊗ [vπ]1,
�

vψ
�

1 ⊗ [vπ]0,
�

vψ
�

2 ⊗ [vπ]2,
�

vψ
�

2 ⊗ [vπ]3,
�

vψ
�

2 ⊗ [vπ]4, [vπ]0 ⊗ [v1]2, [vπ]1 ⊗ [v1]2, [vπ]2 ⊗ [v1]0,
[vπ]3 ⊗ [v1]1, [vπ]4 ⊗ [v1]2, [vπ]0 ⊗

�

vψ
�

2, [vπ]1 ⊗
�

vψ
�

2, [vπ]2 ⊗
�

vψ
�

0,
[vπ]3 ⊗

�

vψ
�

1, [vπ]4 ⊗
�

vψ
�

2, [vπ]0 ⊗ [vπ]2, [vπ]0 ⊗ [vπ]3, [vπ]0 ⊗ [vπ]4,
[vπ]1 ⊗ [vπ]2, [vπ]1 ⊗ [vπ]3, [vπ]1 ⊗ [vπ]4, [vπ]2 ⊗ [vπ]0, [vπ]3 ⊗ [vπ]1,
[vπ]4 ⊗ [vπ]2, [vπ]4 ⊗ [vπ]3, [vπ]4 ⊗ [vπ]4























































.

Step 3.

For the present example, there are no multiplicities. For clarity, we leave the free parame-
ters unfixed, naming them ω. This serves to demonstrate that they correspond to the gauge
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freedom in the F -symbols. The trivalent vertices are given by the matrices

1
1

1
=







[v1]0 [v1]1 [v1]2
[v1]0 ⊗ [v1]0 ω1

11 0 0

[v1]1 ⊗ [v1]1 0 ω1
11 0

[v1]2 ⊗ [v1]2 0 0
p

2ω1
11






,

ψ
1

ψ
=











�

vψ
�

0

�

vψ
�

1

�

vψ
�

2

[v1]0 ⊗
�

vψ
�

0 ω
ψ

1ψ 0 0

[v1]1 ⊗
�

vψ
�

1 0 ω
ψ

1ψ 0

[v1]2 ⊗
�

vψ
�

2 0 0
p

2ωψ1ψ











,

ψ
ψ

1
=











�

vψ
�

0

�

vψ
�

1

�

vψ
�

2
�

vψ
�

0 ⊗ [v1]1 ω
ψ

ψ1 0 0
�

vψ
�

1 ⊗ [v1]0 0 ω
ψ

ψ1 0
�

vψ
�

2 ⊗ [v1]2 0 0
p

2ωψ
ψ1











,

1
ψ

ψ
=









[v1]0 [v1]1 [v1]2
�

vψ
�

0 ⊗
�

vψ
�

1 ω1
ψψ

0 0
�

vψ
�

1 ⊗
�

vψ
�

0 0 ω1
ψψ

0
�

vψ
�

2 ⊗
�

vψ
�

2 0 0
p

2ω1
ψψ









,

π
1

π
=

















[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4
[v1]0 ⊗ [vπ]0 ωπ1π 0 0 0 0

[v1]1 ⊗ [vπ]1 0 ωπ1π 0 0 0

[v1]2 ⊗ [vπ]2 0 0
p

2ωπ1π 0 0

[v1]2 ⊗ [vπ]3 0 0 0
p

2ωπ1π 0

[v1]2 ⊗ [vπ]4 0 0 0 0
p

2ωπ1π

















,

π
π

1
=

















[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4
[vπ]0 ⊗ [v1]2

p
2ωππ1 0 0 0 0

[vπ]1 ⊗ [v1]2 0
p

2ωππ1 0 0 0

[vπ]2 ⊗ [v1]0 0 0 ωππ1 0 0

[vπ]3 ⊗ [v1]1 0 0 0 ωππ1 0

[vπ]4 ⊗ [v1]2 0 0 0 0
p

2ωππ1

















,

π
ψ

π
=





















[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4
�

vψ
�

0 ⊗ [vπ]1 ωπ
ψπ

0 0 0 0
�

vψ
�

1 ⊗ [vπ]0 0 ωπ
ψπ

0 0 0
�

vψ
�

2 ⊗ [vπ]2 0 0
p

2ωπ
ψπ

0 0
�

vψ
�

2 ⊗ [vπ]3 0 0 0
p

2ωπ
ψπ

0
�

vψ
�

2 ⊗ [vπ]4 0 0 0 0
p

2ωπ
ψπ





















,
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π
π

ψ
=





















[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4
[vπ]0 ⊗

�

vψ
�

2

p
2ωπ

πψ
0 0 0 0

[vπ]1 ⊗
�

vψ
�

2 0
p

2ωπ
πψ

0 0 0

[vπ]2 ⊗
�

vψ
�

0 0 0 0 ωπ
πψ

0

[vπ]3 ⊗
�

vψ
�

1 0 0 ωπ
πψ

0 0

[vπ]4 ⊗
�

vψ
�

2 0 0 0 0 −
p

2ωπ
πψ





















,

1
π

π
=













































[v1]0 [v1]1 [v1]2
[vπ]0 ⊗ [vπ]2 ω1

ππ/
p

2 0 0

[vπ]0 ⊗ [vπ]3 0 0 0

[vπ]0 ⊗ [vπ]4 0 0 0

[vπ]1 ⊗ [vπ]2 0 0 0

[vπ]1 ⊗ [vπ]3 0 ω1
ππ/
p

2 0

[vπ]1 ⊗ [vπ]4 0 0 0

[vπ]2 ⊗ [vπ]0 0 0 ω1
ππ/4

[vπ]3 ⊗ [vπ]1 0 0 ω1
ππ/4

[vπ]4 ⊗ [vπ]2 0 0 0

[vπ]4 ⊗ [vπ]3 0 0 0

[vπ]4 ⊗ [vπ]4 0 0 ω1
ππ/2













































,

ψ
π

π
=

















































�

vψ
�

0

�

vψ
�

1

�

vψ
�

2

[vπ]0 ⊗ [vπ]2 0 0 0

[vπ]0 ⊗ [vπ]3 ω
ψ
ππ/
p

2 0 0

[vπ]0 ⊗ [vπ]4 0 0 0

[vπ]1 ⊗ [vπ]2 0 ω
ψ
ππ/
p

2 0

[vπ]1 ⊗ [vπ]3 0 0 0

[vπ]1 ⊗ [vπ]4 0 0 0

[vπ]2 ⊗ [vπ]0 0 0 ω
ψ
ππ/4

[vπ]3 ⊗ [vπ]1 0 0 ω
ψ
ππ/4

[vπ]4 ⊗ [vπ]2 0 0 0

[vπ]4 ⊗ [vπ]3 0 0 0

[vπ]4 ⊗ [vπ]4 0 0 −ωψππ/2

















































,
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π
π

π
=













































[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4
[vπ]0 ⊗ [vπ]2 0 0 0 0 0

[vπ]0 ⊗ [vπ]3 0 0 0 0 0

[vπ]0 ⊗ [vπ]4 ωπππ 0 0 0 0

[vπ]1 ⊗ [vπ]2 0 0 0 0 0

[vπ]1 ⊗ [vπ]3 0 0 0 0 0

[vπ]1 ⊗ [vπ]4 0 −ωπππ 0 0 0

[vπ]2 ⊗ [vπ]0 0 0 0 0 ωπππ/2

[vπ]3 ⊗ [vπ]1 0 0 0 0 −ωπππ/2
[vπ]4 ⊗ [vπ]2 0 0 ωπππ 0 0

[vπ]4 ⊗ [vπ]3 0 0 0 −ωπππ 0

[vπ]4 ⊗ [vπ]4 0 0 0 0 0













































.

Note that these matrices are not isometric matrices, but are matrices for isometric operators.

Step 4.

The full set of F -symbols is computed from these. Fixing ωc
ab = 1, these are

�

F1
111

�

11
= 1

�

Fψ11ψ

�

1ψ
= 1

�

Fπ11π

�

1π
= 1

�

Fψ1ψ1

�

ψψ
= 1

�

F1
1ψψ

�

ψ1
= 1

�

Fπ1ψπ
�

ψπ
= 1

�

Fπ1π1

�

ππ
= 1

�

Fπ1πψ
�

ππ
= 1

�

F1
1ππ

�

π1
= 1

�

Fψ1ππ
�

πψ
= 1

�

Fπ1ππ
�

ππ
= 1

�

Fψ
ψ11

�

ψ1
= 1

�

F1
ψ1ψ

�

ψψ
= 1

�

Fπ
ψ1π

�

ψπ
= 1

�

F1
ψψ1

�

1ψ
= 1

�

Fψ
ψψψ

�

11
= 1

�

Fπ
ψψπ

�

1π
= 1

�

Fπ
ψπ1

�

ππ
= 1

�

Fπ
ψπψ

�

ππ
= 1

�

Fψ
ψππ

�

π1
= 1

�

F1
ψππ

�

πψ
= 1

�

Fπ
ψππ

�

ππ
= −1

�

Fππ11

�

π1
= 1

�

Fπ
π1ψ

�

πψ
= 1

�

F1
π1π

�

ππ
= 1

�

Fψπ1π

�

ππ
= 1

�

Fππ1π

�

ππ
= 1

�

Fπ
πψ1

�

πψ
= 1

�

Fπ
πψψ

�

π1
= 1

�

F1
πψπ

�

ππ
= 1

�

Fψ
πψπ

�

ππ
= 1

�

Fπ
πψπ

�

ππ
= −1

�

F1
ππ1

�

1π
= 1

�

Fψππ1

�

ψπ
= 1

�

Fπππ1

�

ππ
= 1

�

Fψ
ππψ

�

1π
= 1

�

F1
ππψ

�

ψπ
= 1

�

Fπ
ππψ

�

ππ
= −1

�

Fππππ
�

11
= 1

2

�

Fππππ
�

1ψ
= 1

2
�

Fππππ
�

1π
= 1p

2

�

Fππππ
�

ψ1
= 1

2

�

Fππππ
�

ψψ
= 1

2

�

Fππππ
�

ψπ
= − 1p

2

�

Fππππ
�

π1
= 1p

2
�

Fππππ
�

πψ
= − 1p

2

�

F1
πππ

�

ππ
= 1

�

Fψπππ
�

ππ
= −1

�

Fππππ
�

ππ
= 0

,

the F -symbols for Rep(S3) as expected.
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