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Abstract

We realize higher-form symmetries in F-theory compactifications on non-compact el-
liptically fibered Calabi-Yau manifolds. Central to this endeavour is the topology of the
boundary of the non-compact elliptic fibration, as well as the explicit construction of
relative 2-cycles in terms of Lefschetz thimbles. We apply the analysis to a variety of
elliptic fibrations, including geometries where the discriminant of the elliptic fibration
intersects the boundary. We provide a concrete realization of the 1-form symmetry group
by constructing the associated charged line operator from the elliptic fibration. As an
application we compute the symmetry topological field theories in the case of elliptic
three-folds, which correspond to mixed anomalies in 5d and 6d theories.
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1 Introduction

Generalized Symmetries [1] in string theory compactifications have come to life in recent
years [2–22]. The motivation for studying these is at least two-fold: geometric engineering
of Quantum Field Theories (QFTs), and the swampland program, in particular the no global
symmetry conjecture (for reviews see [23–27]).

In the former, the main motivation is to study QFTs, in particular strongly-coupled theo-
ries, which have no weakly coupled Lagrangian description, using dimensional reduction of
string theory on non-compact spaces X (which ensures that gravity is decoupled). Gener-
alized symmetries are encoded in the topology of the boundary ∂ X of the compactification
space. Precisely speaking, relative homology classes give rise to defect operators charged un-
der higher-form symmetries.

On the other hand, the swampland program aims to identify general constraints that a
consistent theory of quantum gravity has to satisfy. One of the conjectures is that there are
no global symmetries in quantum gravity. This includes not only 0-form symmetries (meaning
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ordinary symmetries), but also higher-form symmetries. String theory provides a concrete
framework to put these conjectures to a test, by considering dimensional reductions, where
the space X is now compact (and thus gravity is not decoupled). To provide evidence or
even proof of such a conjecture within string theory, it is crucial to have a characterization of
symmetries within the compactification framework, and to understand the symmetry breaking
and gauging mechanisms.

A central geometric engineering tool as well as framework for string compactifications is
F-theory [28–31]. On one hand F-theory provides a geometric classification of 6d supercon-
formal field theories (SCFTs) [32,33] and a geometric construction of many minimally super-
symmetric QFTs in 4d [34,35]. On the other hand it is one of the best understood frameworks
for studying string compactifications within the swampland program [36–42]. Understanding
the imprint of higher-form symmetries for F-theory compactifications is an important question
for both of these programmes.

In M-theory compactifications, which via the M/F-duality are closely related to the F-theory
compactifiactions further reduced on a circle, the higher-form symmetries were first discussed
in [3, 4] (and subsequently applied in various contexts in [7–11, 13, 14, 16–21]). The main
gist of these papers is the identification of the charged operators under a p-form symmetry
as arising from wrapped M2- and M5-branes on non-compact cycles, modulo compact cycles.
The higher-form symmetry is then determined as the Pontryagin dual group. Many of the
applications are to generic Calabi-Yau or G2 spaces, where the higher-form symmetry can be
computed from the boundary topology, as the torsion part

h(p) = Tor

�

Hp(X ,∂ X)

Hp(X)

�

,→ Hp−1(∂ X) . (1)

In F-theory compactifications on elliptically fibered Calabi-Yau manifolds, it is useful to also
first consider the M-theory compactification, as the elliptic fibers are geometrized (as part of
the compactification space), and the singularities in the fiber can be resolved. For discriminant
components that do not intersect the boundary of the elliptic Calabi-Yau, the situation is similar
to M-theory on canonical singularities (without an elliptic fibration), and were studied in [17].
On the contrary when the discriminant intersects the boundary, i.e. when there are non-
compact components in the discriminant locus which have the interpretation of flavor branes,
the topology of the boundary becomes more intricate, reflecting possible screening effects due
to matter fields. Our main goal here is to determine the 1-form symmetries whose charged
objects, the line operators, arise from M2-branes wrapped on non-compact 2-cycles in the M-
theory compactification. More precisely we first compute the defect group [3,4,43], which is
the sum over all h(p) in (1).

We propose two approaches to studying this in the context of M/F-theory compactification
on elliptic fibrations: by direct analysis of the topology of the boundary, as well as a construc-
tion of the relative cycles, tailored specifically to elliptic fibration. Let us briefly summarize
the latter: our setup is an elliptically fibered Calabi-Yau n-fold X , with non-compact base B
(which we usually can model in terms ofCn−1 or quotients thereof), and an elliptic fiber, whose
degenerations are characterized by the discriminant ∆. We will assume throughout that the
fibration has a section, and therefore a description as a Weierstrass model. The discriminant
vanishes on a (complex) codimension 1 locus in the base B, with singular fibers above the
generic codimension 1 locus given by the Kodaira classification.

From this structure, we can determine the topology of the elliptic fiber (i.e. T2), and
its degeneration to Kodaira singular fibers (and generalizations thereof in higher codimen-
sion), and construct non-compact 2-cycles, which are circle fibrations over lines that start at
a discriminant component, and stretch to the boundary of X . See figure 1. These so-called
Lefschetz thimbles are generators of the relative homology groups h(2), where the identifica-
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∆i

B :

∂ B

γi

Ti

∆ j

Figure 1: Elliptic Calabi-Yau an n-fold X → B with discriminant ∆ containing a com-
pact and non-compact components denoted ∆i and ∆ j respectively. The Lefschetz
thimble Ti ∈ h(2) (dotted red) is fibered by a vanishing cycle of ∆i and intersects the
boundary in γi ∈ H1(∂ X). It projects to a semi-infinite path in the base (red) starting
at the discriminant and ending at the boundary of the base.

tions by compact 2-cycles is implemented as an equivalence relation among thimbles. This
approach is particularly insightful as it allows systematically to include higher codimension
fiber degenerations.

Intuitively, the thimbles (modulo screening) are identified with the generators of the group
of line operators. In codimension 1 in the base1, the singular fibers are of Kodaira type and
determine the gauge group in the compactification, and we show that the thimbles generate
the (Pontryagin dual of the) center of the gauge group. The thimbles can thus equivalently
be represented in terms of rational linear combinations of compact curves. The screening
is realized as an equivalence with respect to adding integral linear combinations of compact
curves (which, when wrapped by M2 branes, realize local operators).

In codimension 2, additional degenerations of the elliptic fiber result in some of the rational
curves in the Kodaira fiber becoming reducible. This has the interpretation of matter fields
in the dimensional reduction. These additional relations can be systematically characterized
using box graphs [44], which in turn provide relations among the thimbles. Codimension
three and higher degenerations seem to not change the structure of the thimbles – but of
course have implications in the physics of M-theory and F-theory compactifications, e.g. in
terms of superpotential couplings.

Our focus is on the 1-form symmetry in M-theory compactifications, which lift to 1-form
and “2-form" symmetries2 in the F-theory uplift. From the intersection of thimbles we also
compute contributions to the symmetry TFT [14], which in particular encodes the anomalies
for higher-form symmetries. This is applied to various 5d compactifications, that correspond to

1Here, and throughout this paper, codimension d in in the base means, a complex codimension d sublocus in
the base. This e.g. characterizes the sublocus along which d components ∆i of the discriminant ∆ of the elliptic
fibration vanish simultaneously.

2Strictly speaking to identify a 2-form symmetry in 6d, we have to have an absolute theory, i.e. choose a
polarization.
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duals to 6d SCFTs, such as the non-Higgsable clusters (NHCs) and quivers. In particular these
computations point towards the existence of topological couplings in 6d which for absolute
theories, become mixed anomalies between 1-form and 2-form symmetries.

The paper is organized as follows. In section 2 we discuss the geometric setup relevant for
F-theory, and define the defect group and the realization of the 1-form symmetry in terms of
Lefschetz thimbles. In section 3 we then focus on properties of Kodaira thimbles derived from
codimension 1 structures of the discriminant. We begin with local K3s and note that every
non-compact thimble admits a presentation as a rational collection of compact curves. This
further permits us to introduce the divisors Pontryagin dual to Kodaira thimbles, geometrically
characterizing 1-form symmetry generators, and we show how these structures persist for
general n-folds. Here extra screening relations can arise at codimension 2 loci which we study
in section 4. These relations derive from the compact curves localized in codimension 2 and
we describe how to systematically determine such effects using box graphs. In section 5 we
apply the formalism of Kodaira thimbles to the computation of topological couplings describing
mixed ’t Hooft anomalies among higher-form symmetries. In particular we compute such
couplings for all single node NHCs. Finally, in section 6 we study the full defect group for
general n-folds by analysing the structure of the non-compact cycle in higher degrees, and the
topology of the boundary. Among other examples we explicitly consider 6d conformal matter
theories, show that although there is no 1-form symmetry for such theories, they can have 3-
form symmetries, consistent with the non-simply connected flavor symmetry groups. We end
with conclusions and discussions in section 7.

2 Defect Groups for Elliptic Fibrations

The 1-form symmetry of a QFT is crucially dependent on the charge lattice of local operators
which characterize the possible screening of line operators [1]. In geometric engineering of
QFTs from string theory on a space X , these local operators in turn are characterized by the
geometry X . Recent years have seen great progress in determining higher-form symmetries,
when X is Calabi-Yau (or G2) [2–22]. In these case the boundary X is smooth and its homol-
ogy cycles and their intersections determine the higher-form symmetries and more generally
the defect group. Typical F-theory geometries fall outside of this class and generically display
non-compact singular loci. Geometries with such features are highly interesting as such non-
compact loci often signify the presence of flavor symmetries which endow theories with extra
structure and can participate in 2-group symmetries. Neither these structures nor 1-form sym-
metries have been characterized in terms of the boundary topology for such cases. The goal of
this paper is to describe 1-form symmetries of 5d/6d theories engineered by elliptically fibered
Calabi-Yau n-folds with non-compact discriminant loci. We begin by sharpening the questions
we wish to address and introducing some background.

2.1 The Defect Group of M/F-theory Compactifications

In this paper we study M/F-theory on smooth elliptically fibered Calabi-Yau n-folds π : X → B
admitting a section B→ X . The geometries considered are crepant resolutions of Weierstrass
models W → B. The Weierstrass model takes the standard form

y2 = x3 + f x + g , (2)

with f and g sections of O(4L) and O(6L) where L = −KB is the anti-canonical bundle of the
Kähler base B. The ramification locus of π : X → B is the discriminant locus ∆ = 4 f 3 + 27g2

of the Weierstrass model which is possibly reducible with irreducible components ∆i . The
generic elliptic fiber is denoted E.
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In this paper we are primarily interested in the gauge theory limit of F-theory, where gravity
is decoupled. The base B is thus taken to be a non-compact complex (n−1)-dimensional space
(oftentimes simply Cn−1). The geometric engineering of gauge theories in even dimensions is
very well documented in the literature. What is less well-understood are global issues – such as
structure of the global gauge and flavor symmetry groups, as well as relatedly the higher-form
symmetries. This is data that is intrinsically encoded in the non-compact homology classes of
the Calabi-Yau space – cycles, which upon wrapping branes, give rise to defect operators in
spacetimes [3,4,43].

Such non-compact k-dimensional homology classes are characterized by the groups

h(k) = Tor
�

Hk(X ,∂ X)
ık(Hk(X))

�

. (3)

All homology groups throughout this paper are with integer coefficients. The quotients (3)
are computed using the long exact sequence in relative homology of the pair (X ,∂ X) which
provides the maps

ı∗ : H∗(X)→ H∗(X ,∂ X) ,

∗ : H∗(∂ X)→ H∗(X) .
(4)

By exactness we have the alternate characterization of the non-compact homology classes

h(k) = ker k−1 , (5)

which describes non-compact bulk cycles (i.e. in X) as boundary cycles (in ∂ X), which trivi-
alize when lifted to the bulk. Conversely, we have a contribution to h(k) from every vanishing
cycle of the bulk which extends non-trivially to the boundary. It is the latter description which
will be central to the present paper.

The groups h(k) are closely related to the higher-form symmetries of gauge theories ob-
tained upon compactifying F-theory on X . Let us start with the discussion in M-theory on the
resolved Calabi-Yau X [3,4] and a general discussion in [7,19]. We can wrap either M2-branes
or M5-branes on non-compact cycles to construct defect operators. The p-form symmetries are
encoded in

Γ
(p)
M2 = h(3−p) , Γ

(p)
M5 = h(6−p) . (6)

Technically, the geometry specifies first of all the defect group (as introduced in 6d in [43]),
which is obtained as the sum over both M2 and M5 contributions. Then choosing a polar-
ization, i.e. a maximal subset of mutually local defect operators, determines the higher-form
symmetries. Unless stated otherwise, we will assume an electric polarization for which h(2)
characterizes the 1-form symmetry of theory.

Using the standard M/F-theory duality, these wrapped branes on non-compact (relative)
cycles, map to branes and strings in F-theory. The M2 and M5 branes wrap non-compact cycles
which have the form of a Lefschetz thimble: a compact circle fibered over a non-compact cycle
in the base B, with the circle collapsing to zero size somewhere on a sublocus (usually complex
codim 1) in the base, which is part of the discriminant locus. Applying M/F-duality to such
cycles results in the following map: wrapped M2-branes becomes (p, q)-strings stretched along
the non-compact cycles in the base, ending on a component of the discriminant. Likewise, M5-
branes wrapping one of the fiber directions and a non-compact direction in the base, become
(p, q) 5-branes.

A note as to what happens, when the M2 and M5 branes wrap the base entirely or the
fiber: The M5-branes wrapping the entire elliptic fiber result in D3-branes (with some varying
axio-dilaton) or wrapped versions thereof if the M5 wraps in addition subspaces of the base
(see [45–47]). We will not consider these further, but they can also potentially interact with
higher-symmetries.
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The goal of this paper is to determine the defect group from a purely boundary topology
analysis of X . We will construct representatives of the relative 2-cycles directly from the el-
liptic fibration. There essentially two ways to proceed: if the discriminant does not intersect
with the boundary of X , then the monodromy of the elliptic model can be easily computed.
Similar analysis was carried out in such instances in [17]. The monodromy perspective can be
generalized to the case when the boundary has non-trivial intersection with the discriminant,
though the topology of the boundary becomes exceedingly complicated.

An alternative perspective is to construct representatives of the relative 2-cycles using Lef-
schetz thimbles: these are circle-fibred, with the fiber collapsing above the discriminant loci
and admit a presentation as a rational linear combination of compact curves. The latter intro-
duces the standard intersection theoretic tool box into our analysis and we find this approach
generalizes to all higher-dimensional Calabi-Yau manifolds. We will now explain the basic idea
behind the construction of these thimbles.

2.2 Thimbles of Elliptic Fibrations

Consider a non-trivial 1-cycle γ ∈ H1(∂ X) both in the kernel of the map H1(∂ X)→ H1(X) in-
duced by inclusion ∂ X ,→ X and the map H1(∂ X)→ H1(∂ B) induced by projection ∂ X → ∂ B.
By the former there exists a relative 2-cycle σ in H2(X ,∂ X) restricting to γ on the boundary.
By the latter γ is a non-trivial fibral 1-cycle. Projection of the relative 2-cycle σ to the base
therefore gives a non-compact connected graph3 with no loops. Fibral 1-cycles can only col-
lapse at the discriminant locus and therefore end points of this graph necessarily lie on the
discriminant locus. The elliptic fibration restricted to this graph is trivial and each edge of the
graph can therefore be labelled by a class in H1(E). The sum of ingoing classes equals the sum
of out going classes at internal vertices. Such a graph can be decomposed into a collection
of semi-infinite paths labelled by a single class in H1(E). These describe cycles in H2(X ,∂ X)
whose sum returns the relative 2-cycle σ. The set of relative 2-cycles projecting to paths there-
fore generates all relative 2-cycles in H2(X ,∂ X)with one leg in the elliptic fibration. This set of
generators is however over-complete and our approach to computing H2(X ,∂ X) and more im-
portantly h(2) = H2(X ,∂ X)/H2(X) revolves around understanding such generators and their
redundancy relations.

We describe a relative 2-cycle of the above type in more detail. Let Γ denote the semi-
infinite base path intersecting the discriminant locus ∆ = ∪∆i at a single point zi = Γ ∩∆i .
Let γ be the 1-cycle obtained by restriction of the relative 2-cycle to the boundary ∂ X . This 1-
cycle fibers the relative 2-cycle over Γ \{zi}. The relative 2-cycle restricted to the fiber π−1(zi)
gives a collection of rational curves {Ck} where π : X → B is the projection in the resolved
model. We denote the relative 2-cycle fixed by this data as

T′Γ (γ, zi , {Ck}) ∈ Z2(X ,∂ X) . (7)

Here, Z2 denotes the set of 2-cycles with boundary on ∂ X. Whenever zi is a generic point
of ∆i the curves {Ck} are part of the ruling of π−1(∆i). The cycle T′Γ (γ, zi , {Ck}) therefore
admits continuous deformations to a cycle ending on any point of ∆i and all such cycles are
homologous only depending on the Kodaira type of the discriminant component ∆i . This
motivates the distinction between what we will call Kodaira thimbles (described above) and
Tate thimbles (to be introduced shortly).

3For local elliptic K3s in F-theory, associated with a collection of (p, q)-seven-branes, the physics of the compact
and relative 2-cycles can be recast in the framework of string junctions [48–50]. In this frame work such graphs
describe multi-pronged string junctions with asymptotic charge. For n-folds related relative 2-cycles were studied
in [50–53] in deformed geometries. Note further, that for a given configuration we can simply shrink all loops and
reduce the graph to a tree.
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π

γ

Γ
B

zi

Figure 2: Picture of a representative for the thimbleTi(γ) ∈ h(2). The thimble projects
to the path Γ ⊂ B terminating at zi ∈ ∆i . We depict the fiber π−1(zi) as standard in
algebraic geometry with each straight line denoting a rational curve introduced by
the resolution.

Let zi be a generic point of the discriminant component ∆i . We then call the image of any
relative 2-cycle of the form (7) under the projections

Z2(X ,∂ X)→ H2(X ,∂ X)→ H2(X ,∂ X)/H2(X) = h(2) (8)

a Kodaira thimble and denoted it by

Ti(γ) ∈ h(2) . (9)

We sketch a Kodaira thimble in figure 2. Favorably, Kodaira thimbles are independent of the
path Γ as different choices of paths lead to thimbles differing by compact cycles.

Next, let us introduce Tate thimbles as all generators of h(2) resulting from relative cycles
(7) under the projection (8) which are not Kodaira thimbles. Tate thimbles capture structures
of the elliptic fibration in higher codimension. Kodaira and Tate thimbles do not exhaust
h(2). We introduce base thimbles as generators for H2(B,∂ B)/H2(B) lifted to X via the section
σ : B→ X . These three classes cover all generators of h(2) and give the natural splitting

h(2) = h f ,(2) ⊕ hb,(2) , (10)

where h f ,(2) is generated by Kodaira thimbles Ti(γ) and Tate thimbles capturing data of the
elliptic fibration and hb,(2) is generated by base thimbles.

Having introduced various thimbles let us discuss redundancies in our description. The
map from relative 2-cycles of type (7) to thimbles in h f ,(2) is many-to-one. Trivially, two such
2-cycles map to the same class in h f ,(2) whenever they can be continuously deformed into each
other. This e.g. occurs when we can slide them along a fixed, connected component of the
discriminant. We refer to this as a sliding move, which realizes the homotopy between two
such 2-cycles. See figure 3 for a sketch.

The sliding move immediately establishes redundancy relations among Kodaira thimbles
associated with different discriminant components. Given two discriminant components
∆i ,∆ j intersecting along ∆i j = ∆i ∩∆ j we can slide Kodaira thimbles of both discriminant
components onto ∆i j where they can be compared. We develop this idea further in section
3.1.
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γ

Γ
B

zi

γ

Γ ′

z′i

∆i

Figure 3: Picture of two homologous relative 2-cycles T′Γ (γ, zi , {Ck}) and
T′Γ ′(γ, z′i , {Ck}). Sliding the thimbles vertically along the discriminant component ∆i
establishes the homotopy. As a consequence they project to the same thimble Ti(γ).

∆i ∆ j

∆k

z

z1

z2

∂ B

B

Γi Γ j

Γk

Figure 4: Picture of topological manipulations permitted on (three) thimbles in h f ,(2)
whenever these are linearly dependent. We show the projections of the deformation
to the base. The initial configuration (left) are three non-compact thimbles attaching
to three disconnected discriminant components. The final configuration (right) lifts
to a compact 2-cycle and a non-compact 2-cycle which can be further deformed into
∂ B.
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B

γi

γk

γ j

∆i∆ j

∆k

π

Σ

Figure 5: Picture of a compact 2-cycle Σ connecting to multiple components of the
ramification locus and projecting to a graph.

Another immediate consequence of the sliding move is that we can slide Kodaira thimbles
associated with non-compact discriminant components to the boundary where they trivialize
in relative homology h(2). Non-compact discriminant loci therefore imply

|h f ,(2)| ≤ 1 , (11)

as at least one 1-cycle collapses along the restriction of the discriminant to the boundary.
Screening can in addition imply relations between Tate and Kodaira thimbles, which are

pairwise topologically distinct in H2(X ,∂ X) and do not necessarily attach to the same con-
nected component of the discriminant locus. Concretely, consider such a collection of thimbles
and the associated collection of 1-cycles {γi}. Whenever a linear combination of these sum to
zero

0=
n
∑

i=1

mi γi ∈ H1(∂ X) , (12)

with integers mi ∈ Z, then we have

0=
n
∑

i=1

mi Ti(γi) ∈ h(2) , (13)

as this particular linear combination is homologous to a compact cycle and a non-compact cycle
homologous to a cycle contained in the boundary ∂ X . To show this, deform the associated
paths Γi of such thimbles so that they intersect in a single point z = ∩iΓi . Now we can separate
this junction into two points z1 6= z2 by splitting each of the paths Γi in half. The thimbles split
accordingly. The halves of the thimbles associated with path segments of Γi connecting to ∂ B
are homologous to cycles contained in ∂ X and therefore trivial in h(2). The other half of the
thimbles connect to discriminant components but are now subsets of a compact 2-cycle which
is trivial in h(2). We depict this argument in figure 4. We can therefore lift the relation (13) to

m
∑

j=1

Σ j =
n
∑

i=1

mi Ti(γi) ∈ H2(X ,∂ X) , (14)

with compact 2-cyclesΣ j ∈ H2(X). We sketch such a compact 2-cycle in figure 5. Each minimal
linearly dependent subset of the 1-cycles {γi} contributes such a compact 2-cycle.
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3 Kodaira Thimbles from Kodaira Fibers

We now explore properties of Kodaira thimbles relevant for general elliptically fibered Calabi-
Yau n-folds. These derive from codimension 1 structures of the discrimiant locus and we there-
fore begin by considering local K3s. We argue that non-compact 2-cycles, i.e. thimbles, admit
presentations as rational combinations of compact curves. This reparametrization allows us
to introduce similarly rational divisors Pontryagin dual to thimbles. Both are indispensable in
the study of anomalies of 1-form symmetries as studied in section 5.

3.1 Kodaira Thimbles of local K3s

Let X be local, elliptic K3 surface whose associated Weierstrass model W → B has a discrim-
inant locus consisting of a single point z0 ∈ B = C. The singular fiber π−1(z0) is taken from
Kodaira’s table of singular fibers and associated with a Lie algebra g of rank r. Denote by G
the simply connected Lie group with Lie algebra g. The torsional relative 2-cycles of X modulo
compact curves are

h(2)
∼= Tor H1(∂ X)∼= ZG , (15)

where ZG is the center of G. This result is straight forwardly argued from the Mayer-Vietoris
long exact sequence, see section 6.1. The generators of h(2) are the Kodaira thimbles of X2.

We now argue that Kodaira thimbles admit a presentation as a linear combination of com-
pact curves in H2(X) with coefficients inQ/Z. Consider a generator of H2(X ,∂ X) given by the
relative 2-cycle T′(γ, z0, {Ck}) which projects to a Kodaira thimble. The intersection matrix of
rational curves Cαi

generating H2(X) is the negative of the Cartan matrix of the Lie algebra g.
The intersection vector

T′(γ, z0, {Ck}) · Cαi
= wγ,i (16)

belongs to the weight lattice Λweight(R) of the representation4 R of g. Varying the collection
of rational curves {Ck} to which the relative cycle restricts to in π−1(z0) fills the complete
lattice. Via the intersection pairing both relative and compact 2-cycles define elements in the
space dual to compact 2-cycles H2(X)∗ = Hom(H2(X),Z). The latter is a subset of the former.
However, the intersection pairing is non-degenerate and therefore any linear form in H2(X)∗

arises as the dual of a linear combination of compact 2-cycles with coefficients in Q. It follows
that there exists a rational combination of compact 2-cycles with the same intersection vector
(16) as a given relative 2-cycle. We therefore have

T′(γ, z0, {Ck}) =
r
∑

i=1

β iCαi
, β i ∈Q , (17)

in H2(X)∗ where β i = β i(γ, {Ck}). Varying the collection of curves {Ck} shifts the coefficients
β i by integers. In fact, the mapping to compact representatives factors through the homology
class projection H2(X ,∂ X)→ H2(X ,∂ X)/H2(X) and we express Kodaira thimbles as

Tg(γ) =
r
∑

i=1

β iCαi
, β i ∈Q/Z , (18)

with coefficients derived from those (17) by evaluating these modulo 1. Kodaira thimbles
are labelled by the Lie algebra g of the discriminant component they attach to. The compact
presentation of thimbles allows us to introduce their self-intersection as the self-intersection
of (18) modulo 1.

4The representations R is the fundamental representation, the spinor representation, 27, 56 for
g = An−1, D2n+1, e6, e7 respectively. For D2n we find two weight vectors wγ j ,i , with j = 1, 2 which belong to the
spinor and co-spinor representation.
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3.1.1 Compact Representatives

We now compute the compact representatives (18) for Kodaira thimbles of local elliptic K3s.
Let us denote the negative Cartan matrix of the Lie algebra g by Ci j = Cαi

· Cα j
. The “Smith

normal form” decomposition determines two invertible integer matrices U , V such that

C = U SNF(C) V , SNF(C) = diag (1, . . . , 1, n1, n2) , (19)

where Zn1
× Zn2

= ZG and SNF(C) denotes the Smith normal form5 of the matrix C . The
columns of V with ni 6= 1 normalized by ni then determine the rational numbers β i mod
1. We have two thimbles only for g = D2n. We therefore drop the boundary 1-cycle γ from
notation when referring to Kodaira thimbles and add superscripts in the case with g= D2n. We
list our labelling conventions of rational curves Cαi

together with the compact representatives
of Kodaira thimbles and their self-intersections for various simply laced Lie algebras. Similar
analyses have appeared in related contexts of 5d SCFTs, i.e. M-theory on (not elliptically
fibered) Calabi-Yau three-folds in [9, 14] and in mathematical studies of Lie groups and Lie
algebras (cf. [54]). In the present context we will use this method to compute the Kodaira
thimbles, which then enter the more intricate analysis for elliptic fibrations in subsequent
sections.

Thimbles of type An. With the labelling

1 2 n− 1 n (20)

we compute

Tsu(n) =
1
n

n−1
∑

i=1

iCαi
, (21)

with self-intersection Tsu(n) ·Tsu(n) = 1/n.

Thimbles of type D2n. With the labelling

1 2 2n− 3

2n− 1

2n− 2

2n (22)

we compute

T
(c)
so(4n) =

1
2

n
∑

i=1

Cα2i−1
, T

(s)
so(4n) =

1
2

n−1
∑

i=1

Cα2i−1
+

1
2

Cα2n
. (23)

The intersections for n= 2k (n= 2k+1) are T
(i)
so(4n) ·T

( j)
so(4n) = 1/2 when i 6= j (i = j) and zero

when i = j (i 6= j). Here c, s refer to co-spinor and spinor representations.

5In principle, a Smith normal form matrix can have more than two nontrivial entries, but this does not happen
for Cartan matrices of simply-laced Dynkin diagrams.
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Thimbles of type D2n+1. With the labelling

1 2 2n− 2

2n

2n− 1

2n+ 1 (24)

we compute

Tso(4n+2) =
1
4

Cα2n+1
+

3
4

Cα2n
+

1
2

n
∑

i=1

Cα2i−1
, (25)

with self-intersection Tso(4n+2) ·Tso(4n+2) = 3/4, 1/4 when n= 2k, 2k+ 1 respectively.

Thimbles of type E6. With the labelling

1 2 3 4 5

6

(26)

we compute

Te6
=

1
3
(Cα1

+ 2Cα2
+ Cα4

+ 2Cα5
) , (27)

with self-intersection Te6
·Te6

= 2/3.

Thimbles of type E7. With the labelling

1 2 3 4 5

7

6 (28)

we compute

Te7
=

1
2
(Cα4

+ Cα6
+ Cα7

) , (29)

with self-intersection Te7
·Te7

= 1/2.

Thimbles of type E8. For E8 there is no center and thereby no Kodaira thimbles.
The intersections computed above determine a well-known pairing between defects

〈 · , · 〉 : h(2) × h(2) → Q/Z , (30)

characterizing ’t Hooft anomalies between associated higher-form symmetries [13,15,55,56].
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An

2n− 2

2n− 1

2n

D2n

D2n+1

E6

E7

c

s

Figure 6: We mark in red the edges in the Dynkin diagrams (identically labelled as
those in section 3.1.1) which correspond to points of intersection between to rational
curves at which a thimble can end. There are two thimbles for the case D2n associated
with the co-spinor, spinor representation. We labelled the edges at which these attach
to by c, s respectively.

3.1.2 Non-Compact Representatives

The relative 2-cycle T′(γ, z0, {Ck}) ∈ H2(X ,∂ X) is the sum of compact 2-cycles {Ck} and an
irreducible non-compact 2-cycle δ, which is a fibration of a 1-cycle γ over a path, where the 1-
cycle collapses at one endpoint. The cycle δ is a Lefschetz thimble and restricting it to π−1(z0)
gives a point resulting from the contraction of γ. The thimbles δ are the preferred irreducible
representatives for Kodaira thimbles and end at the intersection of two rational curves in the
resolved Kodaira fiber Cαi

, and Cα j
. However not every such intersection point is realized as

the end point of a thimble δ. We now characterize thimbles δ by describing their end points
in the resolved fiber.

The intersections of T′(γ, z0, {Ck})with the curves Cαi
produces a weight vectors of a repre-

sentation R (16). Different weight vectors are realized by distinct collections {Ck}. The weight
system of the representation R can be found for example in [57]. 2-cycles δ intersect exactly
two curves and therefore correspond to weight vectors with exactly two non-vanishing entries,
+1 and −1. Conversely, weight vectors with such entries correspond to a 2-cycle δ whenever
they correspond to edges in the Dynkin diagram. We can therefore determine all possible end
points of thimbles δ in the resolved fiber π−1(z0) by checking which weight vectors match to
edges in the Dynkin diagram. We collect our results in figure 6.

3.1.3 General Elliptic K3 Surfaces

The compact representatives in section 3.1.1 were computed in the set-up of a local K3 with a
single isolated elliptic singularity. For more general set-ups we can ask if the Kodaira thimbles
of section 3.1.1 are a sufficient basis for the non-compact 2-cycles of the geometry. We find
this not to be the case whenever the discriminant is disconnected. We quantify these effects
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zi z j

zk
∂ B

Figure 7: The figure shows three points zi , z j , zk at which the elliptic fiber degen-
erates. An oriented branch cut emanates from each of these and terminates on the
boundary. The topology of X is determined from the total monodromy picked up
along the red line.

by computing the thimbles and 1-form symmetries for general elliptic K3s.
Consider an elliptic K3 surface X2 whose associated Weierstrass model W → B = C has

multiple disconnected discriminant components

∆= {z1, . . . , zm} . (31)

We compute h(2) both using a monodromy and thimble approach. The former is straight for-
ward to apply. The latter again requires us to represent the Kodaira thimbles as elements of
H2(X)∗. However H2(X) now contains compact 2-cycle connecting to multiple discriminant
components and projecting to graphs in the base (see figure 5 for an example). These inter-
sect with the compact curves in the fibers π−1(zi) and therefore enter when expanding Kodaira
thimbles in terms of compact curves. We begin by computing h(2).

Monodromy. Let us first consider the monodromy derivation of the defect group h(2). For
each of the descriminant components we choose non-intersecting branch cuts starting at zi
and ending on ∂ B, an example is shown in figure 7. Encircling each discriminant component
we have a monodromy action Tzi

. We relabel the discriminant components by the order we
encounter their branch cuts along ∂ B in counter-clockwise orientation starting from an arbi-
trary base point on the boundary. The boundary topology is determined from the monodromy

T =
m
∏

i=1

Tzi
. (32)

The overall monodromy action for different choices of base point follow from cyclic permuta-
tion of the Tzi

, such permutations are SL(2,Z) equivalent to (32). For this reason coker (T − 1)
and therefore also the spectrum of torsional 1-cycles in ∂ X are independent of the choice of
base point. We have h(2)

∼= Tor coker (T − 1).

Thimbles. Alternatively we can derive h(2) via computation of Kodaira thimbles. Given a
collection of singular fibers as in (31) we can deform it to a collection of stacks of (p, q)-
7-branes. The defect group h(2) is independent of such deformations. We therefore restrict
our attention to two cases functioning as building blocks in more complicated geometries.
These involve m = 2,3 mutually local and non-local discriminant components respectively.
Further considerations, together with higher-dimensional cases are found in [50–53] where
the consequences of deforming the geometry into a collection of such building blocks are
studied.
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Let us begin by considering the two-component discriminant ∆= {z1, z2} with zi support-
ing an INi

singularity. The 1-cycle γ collapses at z1, z2 and traces out a two-sphere Σ over a
line connecting z1, z2 with self-intersection Σ ·Σ = −2. Let us denote the curves of the fibers
π−1(zi) by CNi

α j
and their intersection matrix by CNi

jk = CNi
α j
· CNi
αk

where j, k = 1, . . . , Ni − 1. The
intersection matrix between the N1 + N2 − 1 rational curves of the geometry is

I12 =









CN1
jk 0 w1

0 CN2
jk w̄2

wt
1 w̄t

2 −2









, (33)

where w1, w̄2 are weights of the fundamental and anti-fundamental representation of su(Ni)
respectively. These weights determined by where Σ attaches to in the resolved fiber. For all
choices of weights we have

SNF(I12) = diag (1, . . . , 1, N) , (34)

where N = N1 + N2 and therefore
h(2)
∼= ZN . (35)

To compute a Kodaira thimble we now make the Ansatz for a compact representative

Tsu(Ni) =
∑

i

βiCi , βi ∈Q , (36)

for a thimble attaching to the fiber projecting to zi and now require

Tsu(Ni) · C
Ni
αk
= wi , (37)

where wi is again a weight of the fundamental representation of su(Ni), with all other inter-
sections vanishing. Generically we find Tsu(Ni) to contain the curve Σ and not replicate the
expansions computed in 3.1.1. In particular note that naively assigning the Kodaira thimbles
of section 3.1.1 to the loci zi can only produce subgroups of ZNmax

where Nmax = lcm(N1, N2).
This simply follows as both of these thimbles would be order Ni elements, which is clearly
incorrect. We conclude that the Kodaira thimbles in section 3.1.1 are not a generating set for
the thimbles of K3s with disconnected discriminant loci.

These observations are consistent with the physics of the set-up, in M/F-Theory this geo-
metrically engineers an su(N) gauge theory in 7d/8d respectively, which is higgsed as

su(N) → su(N1)⊕ su(N2)⊕ u(1) , (38)

and further has massive bifundamental matter with N units of charge under the u(1). In M-
theory the matter follows from M2 branes wrapped on Σ while in F-theory it derives from the
open string sector between the two D7 branes. In both cases the matter breaks the center
symmetry of the associated simply connected gauge groups from ZN1

× ZN2
× U(1) to ZN

matching the geometric result (35).
Next, we consider the three-component discriminant∆= {z1, z2, z3} with zi supporting Ni

(pi , qi)-7-branes where i = 1, 2,3. The 1-cycles collapsing at zi are γi = (pi , qi) ∈ Z2 ∼= H1(E)
and are linearly dependent

n1γ1 + n2γ2 + n3γ3 = 0 , ni = pkq j − p jqk , εi jk = 1 . (39)

Whenever ni < 0 we redefine γi → −γi . There exists a single compact 2-cycle Σ constructed
by fibering the 1-cycles niγi to a common point, see figure 5. The Kodaira thimbles Tsu(Ni) are
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computed as above from the intersection matrix












C (1) 0 0 w1

0 C (2) 0 w2

0 0 C (3) w3

wt
1 wt

2 wt
3 Σ2













, (40)

where wi are some weights of the fundamental representation of su(Ni). The self-intersection
of the curve Σ is computed to

Σ ·Σ= −n2
1 − n2

2 − n2
3 − n1n2n3 . (41)

We omit presenting a general formula for the thimbles. Let us discuss the simplest configura-
tion with Ni = 1. The only compact 2-cycle of the geometry is Σ and in M-theory we find a 7d
gauge theory with gauge algebra u(1) and a particle of charge N = Σ2 obtained by wrapping
an M2-brane on Σ. The unbroken center symmetry is h(2) = ZN and all thimbles are simply
given by Σ/N .

3.2 Kodaira Thimbles for Elliptic Calabi-Yau n-folds

We now consider Kodaira thimbles of n-folds X → B with connected discriminant ∆ = ∪∆i .
We show that the assumption of connectedness is enough to preclude the effects discussed in
section 3.1.3 and establish the set of Kodaira thimbles computed for local K3s in section 3.1.1
as a generating set for the Kodaira thimbles of X .

We begin with the observation that every compact curve in H2(X) dualizes via the inter-
section pairing to an element in

H2n−2(X)
∗ = Hom(H2n−2(X),Z) . (42)

Moreover, we can similarly associate to every non-compact curve in H2(X ,∂ X) an element
in H2n−2(X)∗. The linear forms constructed from compact cycles H2(X) are a subgroup of the
former. Now consider a non-compact cycle T′gi

representing a Kodaira thimble Tgi
. We can take

this cycle to be irreducible following the discussion of section 3.1.2. Clearly this non-compact
curve only intersects the Cartan divisors D(i)α j

associated with the discriminant component ∆i .
The presentation of the Kodaira thimble Tgi

as a rational collection of compact curves can
therefore only involve compact curves intersecting the divisors D(i)α j

. When the discriminant is

connected this reduces the possible curves in the expansion of Tgi
to the curves C (i)α j

ruling the

divisors D(i)α j
. That is we have

Tgi
=
∑

j

βi jC
(i)
α j

, βi j ∈Q/Z . (43)

This in turn reduces the problem to codimension 1 and we find precisely the coefficients βi j
of section (3.1.1) where the index i labels for the discriminant component ∆i .

3.3 Pontryagin Dual of Thimbles and Center Divisors

We now introduce the notion of center divisors and divisors Pontryagin dual to Kodaira thim-
bles of n-folds X → B. The latter are not center divisors but crucially fail the integrality condi-
tion outlined below only in codimension 2. For the three-fold examples we consider later the
center divisors are found to generate the 1-form symmetry group.
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Center divisors are rational linear combination of divisors D′ which have integral intersec-
tion numbers with all compact curves of X ,

Center Divisor D′ ∈ H2n−2(X ,Q) ⇔ D′ · C ∈ Z ∀C ∈ H2(X) . (44)

The intersection numbers of center divisors with relative 2-cycles T′gi
representing Kodaira

thimbles are however only rational. The intersection between center divisors and Kodaira
thimbles Tgi

are therefore well-defined and non-trivial when taken modulo 1. Intersection
numbers between divisors H2n−2(X) and compact curves are integral to begin with and we
therefore obtain a well-defined, non-trivial pairing mod 1 between Kodaira thimbles and center
divisors in H2n−2(X ,Q/Z)

〈 · , · 〉 : H2n−2(X ,Q/Z)×H2(X ,Q/Z) → Q/Z . (45)

This pairing generalizes the one defined in (30) for local K3s to n-folds, it determines an
action of a center divisor on a Kodaira thimbles with the charge of the action given by their
intersection number.

Now we introduce the Pontryagin dual of a Kodaira thimble Tgi
as classes in H2n−2(X ,Q/Z)

which only intersects Tgi
among all Kodaira thimbles. Concretely, given the Kodaira thimble

Tgi
=
∑

j

βi jC
(i)
α j

, (46)

we define the Pontryagin dual divisor by replacing the rational curve C (i)α j
with the Cartan

divisor D(i)α j
it rules

bTgi
=
∑

j

βi j D
(i)
α j

, βi j ∈Q/Z . (47)

The pairing between Kodaira thimbles and their Pontryagin dual divisors clearly evaluates to
the self-intersections computed for Kodaira thimbles of local K3s in section 3.1.1.

The rational divisors (47) are distinguished by the property that they have vanishing in-
tersection mod 1 with the rational curves ruling any Cartan divisors. They are however not
center divisors as they can intersect matter curves in codimension-2 non-integrally. However
in all examples we will consider there exist integral combination of divisors of the type (47)
which are Pontryagin dual to the generators of h(2) and generate the set of center divisors.

3.4 Examples: Non-Higgsable-Clusters in 6d

Single node non-Higgsable clusters (NHCs) are Weierstrass models W3 → B with base
B =OP1(−n) and n= 3,4, 5,6, 7,8, 12 [58]. The base boundary is

∂ B = S3/Zn . (48)

The coefficient functions f , g and the discriminant ∆ are sections of −mKB with m = 4,6, 12
respectively and their order of vanishing along the rational curve C ∼= P1 ⊂ OP1(−n) follows
from the multiplicity k it occurs with in the divisor −mKB. This motivates the ansatz [58]

−mKB = kC + F , (49)

with integer k and effective divisor F intersecting non-negatively C ·F ≥ 0. When non-zero the
divisor F is non-compact, its a multiple of the fiber class in OP1(−n). The order of vanishing
of f , g,∆ along C was computed in [58] to be

[ f , g,∆] =

�

m(n− 2)
n

�

. (50)
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Consider the expression for [∆], here the argument of the ceiling function is integer when
n= 3,4, 6,8, 12 and fractional for n= 5,7. By (49) the latter cases therefore necessarily have
non-compact discriminant locus. For the former cases the discriminant is compactly supported
on the curve C .

Consider the NHCs with n = 3,4, 6,8, 12. In principle ramification points on the discrim-
inant locus can further ramify the monodromy cover giving rise to non-simply laced gauge
algebras. However, at these points the discriminant locus degenerates further [58] contradict-
ing (50). The gauge algebra g supported on C of this class of NHCs is therefore simply laced
and derives from (50) following Kodaira:

n 3 4 6 8 12

g su(3) so(8) e6 e7 e8

(51)

Restriction of the elliptic fibration to a fiber of the line bundle B = OP1(−n) we find the local
K3 topology discussed in section 3.1. Kodaira Thimbles attaching to different points of P1 are
homologous and clearly generate h f ,(2). The discriminant is simply connected with no distin-
guished points and therefore there exist no further monodromies introducing redundancies
among thimbles. As for the local K3 case they are therefore characerized by the centers of
the simply connected Lie group with gauge algebra g. The base thimbles generating hb,(2) are
associated with H1(S3/Zn)∼= Zn. Accounting for both fiber and base thimbles we have:

n 3 4 6 8 12

h(2) Z3 ⊕Z3 Z2 ⊕Z2 ⊕Z4 Z3 ⊕Z6 Z2 ⊕Z8 Z12

(52)

For even n and n= 3 these results are in agreement with orbifold description for NHCs [3,32].
The NHCs with n = 5, 7 have multi-component discriminant loci with non-compact compo-
nents at which codimension 2 effects enter. We therefore defer their discussion to section 5.

4 Kodaira Thimbles for Higher-Codimension Fibers

The analysis thus far focused on singular fibers above co-dimension one of the base, which
in terms of the M-/F-theory compatification controls the gauge group. The vanishing order
of the discriminant can increase in higher codimension. For codimension 2 in the base, this
corresponds to matter fields in the gauge theory, and codimension 3 and 4 to Yukawa cou-
plings (fora review of the geometric engineering dictionary in F-theory, see e.g. [31]). In the
context of M-theory on elliptic Calabi-Yau four-folds to 3d N = 2 theories, the presence of
CS-interactions could have interesting implications for the generalized symmetries [59].

We now turn to studying the topology of the elliptic fibrations with such higher-
codimension singular fibers. The most important changes compared to codimension 1 arise in
codimension 2. Field-theoretically, matter can screen 1-form symmetries, and we will see the
topological imprint of this effect in the following.

In higher codimension, which in M-/F-theory correspond to couplings in the effective the-
ory, we do not expect any changes in the 1-form symmetry, and this is confirmed by the ge-
ometry. This follows as singularities in codimension 3 and higher do not contribute additional
curves to the Mori cone K. Indeed, approaching a point of triple intersection along a matter
curve one finds the fibral curves to split - just in the codimension 2 case. However, curves
introduced by this splitting are already present along some other matter curve. Consequently
no new compact curves are produced [44] and no screening relation are added. We will thus
focus now on the codimension 2 fibers.
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4.1 Kodaira Thimbles and 1-Form Symmetry

Consider now a codimension 2 locus in the base of the elliptic fibration. This can e.g. be the
intersection of two codimension 1 discriminant loci, or a self-intersection of a single compo-
nent. Above these loci, the singular fiber degenerates further. We start by considering the
Kodaira thimbles Ti for each of the codimension 1 fibers, and then analyze, how the presence
of the codimension 2 locus changes the analysis of h(2). In particular, we will see that a specific
linear combination of the codimension 1 Kodaira thimbles will generate h(2). Equivalently, a
specific combination of the Pontryagin dual divisors bTi will generate the 1-form symmetry in
the presence of the codimension 2 fiber.

Physically, the matter that arises from M2-branes wrapping rational curves in the fibers
introduce relations among line operators, that are realized in terms of M2-branes wrapping the
Kodaira thimbles (line operators in the various gauge group factors). This provides a concrete
string-theoretic realization of the equivalence relation on the set of genuine line operators L,
which defines the Pontryagin dual group to the 1-form symmetry group:

bΓ (1) = L/∼ , (53)

where two lines L1, L2 ∈ L are in the same equivalence class whenever

L1 ∼ L2 ⇔ ∃ local operator O1,2 which is a junction between L1 and L2 . (54)

This equivalence relation in the QFT realizes the screening of the line operators: if L2 is the
trivial line, then L1 is screened.

Line operators in the geometric engineering framework are characterized in terms of non-
compact 2-cycles wrapped by M2-branes. We therefore have the identification L∼= H2(X ,∂ X)
with the equivalence between two relative cycles T′1,T′2 taking the form

T′1 ∼ T′2 ⇔ ∃ compact 2-cycles C1,2 such that T′1 = C1,2 +T′2 , (55)

where C1,2 is an integral linear combination of effective curves in K. We therefore have

bΓ (1) =
�

T′i ∈ H2(X ,∂ X) |Thimbles for compact ∆i

	

/∼

=
�

T′i ∈ H2(X ,Q) |Thimbles for compact ∆i

	

/∼ ,
(56)

where we have rewritten relative cycles T′i in terms of their compact representatives. Taking
the Pontryagin dual formulation to thimbles, we can now write the 1-form symmetry group
Γ (1) acting on the lines bΓ (1). The generators of Γ (1) are characterized by divisors Pontryagin
dual to thimbles, we have

Γ (1) =
�

D′i ∈ H2n−2(X ,Q) | Center divisors for compact ∆i

	

/∼ , (57)

with the center divisor introduced in section 3.3. Here ∼ is understood to be the Pontryagin
dual equivalence relation to the one appearing in (56), i.e.

D′i ∼ D′j ⇔ D′i · C −D′j · C = 0 (mod 1) ∀ effective curves C ∈K , (58)

which is a necessary requirement for the action of Γ (1) on bΓ (1) to be well-defined.
When computing bΓ (1) we impose the screening relations (56) in two steps. We first make

identifications with curves C1,2 ruling Cartan divisors which are associated with codimension 1
structures. This groups H2(X ,Q) into classes spanned by Kodaira thimbles Ti associated with
compact components ∆i of the discriminant. Then we impose screening by the remaining
compact curves. In other words, after determining the set of thimbles Ti (where screening
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in codimension 1 has been accounted for and which can be read off from the discriminant
coponents ∆i) we only have to consider screening effects by codimension-2 matter curves.
The Pontryagin dual statement hereof is that we can start with the set of divisors bTi and then
determine linear combinations of these which intersect all codimension-2 matter curve trivially
mod 1.

Note that this perspective will be useful also for studying 2-group symmetries from the
perspective of Wilson and flavor lines in the spirit of [11, 13, 60–63]. We will discuss this
elsewhere.

4.2 Thimbles from Resolution of Singular Fibers

The last section has shown that determining the relative Mori cone K for the elliptic fibration
is essential in order to determine the generalized symmetries. In the following we summa-
rize some very well-known results on elliptic fibrations, and put them into the context of the
construction of Kodaira thimbles and associated generalized symmetries.

We will use two approaches to compute K: the direct resolution of the elliptic fibration,
as well as the box graph approach [44]. From these, we can determine T in a number of
examples. Favorably, for all examples considered, the set of Kodaira thimbles Ti assigned
to each discriminant component indeed give a basis in which the generator T of h(2) can be
expanded as

T=
∑

i

niTi , (59)

with integers ni . In principle Tate thimbles, which can only attach to codimension 2 loci, could
enter the expansion (59). However we find the spectrum of Tate thimbles to be trivial for all
codimension 2 degenerations considered throughout this section.

The screening effects in codimension 2 are studied for a given resolution of the singular
geometry. Schematically, we find a minimal linear combination T of the Kodaira thimbles, such
that all the 2-cycles in the resolved geometry have integral charge under the corresponding
divisor bT ∈ H2n−2(X ,Q). The residual 1-form symmetry Γ (1) is generated by T. This computa-
tional procedure is exactly equivalent to (57) and (58).

Now we comment on the flop invariance of this approach. The divisor bT and the thimble T

generating h(2) are however independent of the chosen resolution, we claim that bT and T are
invariant under flops of (−1)-curves. This follows by noting that (−1)-curves at codimension 2
loci are labelled by weights of representations of the Lie algebras gi supported on∆i . Flopping
a (−1)-curve replaces it with (−1)-curve labeled by a different weight. Two such weights
now differ by a collection of roots which are identified in geometry with (−2)-curves ruling
Cartan divisors [64]. The divisors bTi were constructed to precisely intersect such (−2)-curves
integrally and therefore if a linear combination of generators bTi intersects all (−1)-curves
integrally, then the same linear combination also intersects the (−1) curves in a flopped phase
integrally. Given (59) and the Pontryagin dual relation for bT we find these to be independent
under flops.

4.2.1 SU(m)× SU(n) Quivers from Resolutions

We begin by considering some explicit resolutions. In our first example we have a discriminant
with two compact irreducible discriminant components, while in our second example one is
compact while the other is not. More general situation arise as the combination of these two
configurations. In both cases we study the interplay between the Kodaira thimbles associated
with each irreducible discriminant component at the codimension 2 locus.

We now consider two compact curves C1 = {u= 0} and C2 = {v = 0} supporting an In and
Im singularity respectively intersecting transversely at u = v = 0. In M-theory this geometry
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F1

C+2,2

C−1,3

f1

F0

F3

(−1,−1)

(−2,0)

(−2, 0)

(−2, 0) (0,−2)

(−1,−1)

Figure 8: The fiber (black) projecting to the intersection point of an I4 and I2 locus.
The pairs (−n,−m) are self intersections within u = 0 and v = 0 respectively. The
normal bundle of curves are either O(−2)⊕O(0) or O(−1)⊕O(−1). We have also
depicted the intersection points of Kodaira thimbles of the I4 locus (red) and I2 locus
(blue) with the codimension 2 fiber.

engineers a 7d gauge theory with gauge group SU(m)× SU(n), for electric polarizations, and
matter in the bifundamental (m,n) localized at the intersection point. This matter screens the
set of Zm ×Zn lines defects associated with the gauge algebra factors to a diagonal Zgcd(m,n).
We now we reproduce this statement from geometry starting with the collision of an I4 and I2
locus. We consider a local geometry and therefore restrict our attention to torsion generators
wrapping the fiber h f ,(2) as defined in (10) and do not specify contributions from the base.

I4 and I2 Collision. The local Tate model for a collision of an I4 and I2 locus is

y2 + b1 x y + b3u2v y = x3 + b2ux2 + b4u2vx + b6u4v2 . (60)

We can choose the resolution sequence

(x , y, u; u1) , (x , y, u1; u2) , (y, u1; u3) , (x , y, v; v1) , (61)

with notation as introduced in [65]. The exceptional divisors of I4 are u1, u2, u3 = 0, and the
exceptional divisor of I2 is v1 = 0.

The resolved equation is

y2u3 + b1 x y + b3u2v yu1u3 = x3u1u2
2v1 + b2ux2u1u2 + b4u2vu1 x + b6u4v2u2

1u3 . (62)

We denote the fibral curves (rational curves of the Kodaira fiber) by Fi , which are one-to-one
with the simple roots of the codimension 1 fiber. Starting with the I4 this means i = 0, · · · , 3,
where F0 is associated with the affine root. In codimension 2, where the I4 and I2 singularities
collide the the fibral P1 curves are

F0 : u= v = 0 ,

F1 : u1 = v = 0 ,

C+2,2 : u2 = v = yu3 + b1 x = 0 ,

f1 : u2 = v1 = 0 ,

C−1,3 : u2 = v = y = 0 ,

F3 : u3 = v = 0 .

(63)
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This corresponds to the splitting of the fibral curve F2 in codimension 2

F2→ C+2,2 + f1 + C−1,3 . (64)

We depict the codimension 2 fiber in figure 8. From the point of view of the I2 fiber one can
likewise obtain the splitting as (denoting by f0 and f1 the two codimension 1 fibers of the I2)

f0→ F0 + F1 + C+2,2 + F3 + C−1,3 . (65)

The Kodaira thimbles of the I4, I2 locus corresponds to the fractional cycles

Tsu(4) =
1
4
(F1 + 2F2 + 3F3) ,

Tsu(2) =
1
2

f1 ,
(66)

respectively. We depict these in figure 8. The Pontryagin dual center divisor are

bTsu(4) =
1
4
(D(u)1 + 2D(u)2 + 3D(u)3 ) ,

bTsu(2) =
1
2

D(v)1 ,
(67)

with Cartan divisors D(u)i , D(v)1 .
We now consider the screening relations imposed by C+2,2 and C−1,3. For this we compute

the charge of the M2 brane wrapping modes over curves under bTsu(4), bTsu(2). The M2 brane
wrapping mode over the curve C+2,2 has charge

C+2,2 · bTsu(4) = −
1
4

, C+2,2 · bTsu(2) =
1
2

. (68)

Similar for C−1,3, we have

C−1,3 · bTsu(4) =
1
4

, C−1,3 · bTsu(2) =
1
2

. (69)

The 1-form symmetries Z4,Z2 generated individually by bTsu(4), bTsu(2) are broken by these frac-
tional charges. Nonetheless, there is a non-trivial linear combination of thimbles and center
divisors

T= 2Tsu(4) +Tsu(2) , bT= 2bTsu(4) + bTsu(2) , (70)

such that all M2 wrapping modes have integral charge under it. Further 2bT= 2T= 0. There-
fore h f ,(2) = Z2 generated by T. Wrapping M2-branes on T generates aZ2 defect group of lines.
For a purely electric polarization the divisor bT therefore generates a Z2 1-form symmetry.

One can also take a different resolution that corresponds to a different flop phase (or a
different phase of the box graph [44, 66–68]). Nonetheless, the thimble structure and linear
combination T is unchanged.

The computation presented for the collision of an I4 and I2 fiber straightforwardly gener-
alizes to the case of Im, In. Here the thimbles are

Tsu(m) =
1
m

m−1
∑

i=1

iFi , (71)

and

Tsu(n) =
1
n

n−1
∑

i=1

iF ′i (72)
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C+C−

F0 F1

F2

F4

F3(−2, 0)

(−2,0)
(−2, 0)

(−2,0)

(−2,0)

(−1,−1)
(−1,−1)

Figure 9: Codimension 2 fiber projecting to the intersection of and I∗1 and I1 fiber.

are combined into
T=

m
gcd(m, n)

Tsu(m) +
n

gcd(m, n)
Tsu(n) , (73)

and therefore
h f ,(2) = Zgcd(m,n) , (74)

which wrapped by M2 branes generates a defect group Zgcd(m,n) of lines. For electric polariza-
tion we have bT generating the 1-form symmetry Zgcd(m,n). Hence, when m and n are coprime,
there is no residual 1-form symmetry.

4.2.2 Spin(4n+ 2) + 1V from Resolutions

Next, we consider the case of an so(4n + 2) (n ≥ 2) gauge algebra from type I∗2n−3 Kodaira
fiber. At a collision point with an I1 locus, the Kodaira fiber type is enhanced to I∗2n−2. From
the branching rule of so(4n+ 4)→ so(4n+ 2)⊕ u(1),

Ad(so(4n+ 4))→ Ad((so(4n+ 2))0 + (4n+ 2)2 + (4n+ 2)−2 + 10 , (75)

the matter representation at the codimension 2 locus is 1V . The 1-form symmetry Z4 from the
center of so(4n+ 2) is broken to a subgroup Z2 by this matter field. We reproduce this result
using the resolution geometry.

We consider the case of n= 2, that is so(10)+1V , and the cases of higher n are completely
analogous. The Tate model is

y2 + b1ux y + b3u2v y = x3 + b2ux2 + b4u3 x + b6u5 . (76)

In the CY3 case, bi are complex numbers. The resolution sequence is [65]

(x , y, u; u1) , (x , y, u1; u2) , (y, u1; u3) , (y, u2; u4) , (u1, u3; u5) , (u2, u3; u6) . (77)

The resolved equation is

yu3(yu4 + b1uxu1u2u4u5u6 + b3u2vu1u5) = u1u2(x
3u2u4u6 + b2ux2

+ b4u2u1u3u2
5u6 x + b6u5u2

1u2
3u4

5u2
6) .

(78)

The exceptional divisors are u = 0, u2 = 0, u3 = 0, u4 = 0, u5 = 0 and u6 = 0. At v = 0, the
curve u4 = 0 splits into

u4 = v = 0 : u2(b6 + b4 x + b2 x2) = 0 , (79)
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where we have set the coordinates that cannot vanish in this patch to 1. In the CY case, the
above curve splits into three parts F2 : u2 = u4 = 0 and the two irreducible components C+,
C− of b6 + b4 x + b2 x2 = 0,

F5 = F4 + C+ + C− . (80)

In fact C+ and C− are homologous. The exceptional P1 curves over the point v = 0 are
shown in figure 9.

The M2 brane wrapping mode over C+ gives rise to a weight in the vector representation
of so(10). Now let us consider the thimble of so(10):

Tso(10) =
1
4
(2F1 + 2F3 + F4 + 3F5) . (81)

The charge of C+ under Tso(10) is

C+ ·Tso(10) = −
1
2

. (82)

Hence the Z4 center symmetry is broken to the subgroup h f ,(2) = Z2.

4.3 Box Graphs

The discussion of codimension 2 singularities has shown that the essential input determining
the defect group of an F-theory compactification is the structure of fibers in codimension 2. If
the fiber in codimension 2 corresponds to a local symmetry enhancement eg, so that the matter
is obtained after Higgsing,

eg→ g⊕ gF , (83)

where g and gF are the gauge and flavor symmetry algebras of the theory, respectively, then
this codimension 2 fiber can be described using box graphs introduced in [44, 67,68] (for an
in depth analysis of cases where gi are both non-abelian see [69,70]).

The box graphs encode the information how the rational curves in the codimension 1
Kodaira singular fibers split at the codimension 2 locus. Denote as before the fibral curves by
Fi , which are in one-to-one correspondence with the simple roots of g. Then the box graph
contains the information about

Fi →
∑

a

Fi,a , (84)

where Fi,a are the codimension 2 fibral curves, as well as the intersections among these (i.e.
the codimension 2 fiber).

The box graphs together with the general expression for the thimbles in codimension 1
and two then determines the 1-form symmetry of the F-theory compactification.

4.3.1 Example: SU(n)-SU(m) Bifundamental Matter

First we consider the SU(n)-SU(m) case, i.e. the collison of two codimension 1 discriminant
loci, with Kodaira fibers In and Im, respectively. This was discussed from the resolution point
of view in section 4.2.1, and we will now revisit this from the box graphs. The simplest ex-
ample we considered was I4 − I2 collisions. The box graph is a representation graph for the
bifundamental matter (4,2) (e.g. we should think of this as SU(4) gauge group with N f = 2
4 fundamental matter). Denote by

(i, j) : λi, j = (L
4
i , L2

j ) , (85)
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the weights and the simple roots are

su(4) : α4
i = L4

i − L4
i+1 , i = 1,2, 3

su(2) : α2 = L2
1 − L2

2 .
(86)

Then a box graph is a sign assignment εi, j (usually depicted in terms of the representation
graph, and signs + as blue and − as yellow) for each weight which ensures that positive linear
combinations of εi, jλi, j from a cone, and all the simple roots are inside the cone (from a gauge
theory point of view, this means these form a consistent Coulomb branch, or geometrically, the
associated curves span the relative Mori cone). An example is shown here:

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)
(87)

The simple roots of su(4) act horizontally, the simple root of su(2) vertically, as is obvious from
the decomposition of the weights (85) A simple rule of thumb for su(n) box graphs is that +
signs flow up and to the left, - signs down and to the right. The above phase implies that the
curve associated to the root α4

2 becomes reducible in codimension 2

F2→ C+2,2 + f1 + C+1,3 , (88)

where Cεi, j is the rational curve, associated to the weight λi, j (i.e. its intersections with Cartan
divisors reproduces this weight), and the above box graph corresponds to a fiber where εCεi, j
is effective.

In turn we can also determine from the box graph the splitting from the perspective of the
codimension 1 I2 fiber6

f0→ F0 + F1 + C+2,2 + C−1,3 + F3 . (89)

Note that although this is computed within a given box graph (and thus in the geometry,
resolution), the result of this is independent of the box graph. We will prove in examples that
these results are independent from the particular Coulomb branch phase (or resolution), i.e.
flop-invariant. The box graphs determine generators of the relative Mori cone of the resolve
elliptic fibrations, e.g. in this case:

K = {C+2,2, f1, C−1,3, F1, F3} . (90)

Similarly we can determine the splitting of the fiber for Im − In collisions from an m× n
box graph. In this case the codimension 1 thimbles are

TIm
=

1
m

m−1
∑

i=1

iFi , (91)

and

TIn
=

1
n

n−1
∑

i=1

iF ′i . (92)

The thimble T that is independent (modulo compact curves), in the fiber including the codi-
mension 2 locus is then computed by requiring that

bT · C ∈ Z , for all C ∈K , (93)

6The splitting of the affine node in an elliptic fiber is a bit more subtle and was discussed in [68].
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where K is the relative Mori cone, as computed from the box graphs. For the In- Im example
this is the combination

T=
m

gcd(m, n)
TIm
+

n
gcd(m, n)

TIn
. (94)

In the above example this is
T= 2Tsu(4) +Tsu(2) , (95)

which generates a Z2.

4.3.2 Example: SU(6) +Λ36

The box graphs and associated fiber splittings in codimension 1 for SU(6)+Λ36 were discussed
in [44] – we refer the reader to this paper for the details of the box graph. Locally the model
enhances to e6, however the fibers are actually monodromy-reduced e6 fibers. E.g. one of the
box graphs is given by:

X

X
(96)

Each box is a weight Li, j,k = Li + L j + Lk i > j > k and the simple roots as before. It was
determined that the above corresponds to the splitting

F5→ C−1,2,6 + C+3,4,5 + F1 + 2F2 + F3 . (97)

The new curves C± are indicated by an X in the above box graph. The relative Mori cone is
generated by

K = {F1, F2, F3, F4, C−1,2,6} . (98)

Intersecting the thimble for su(6) as e.g. in (91) with all the curves in K. Thus the 1-form
symmetry is Z3.

4.4 Codimension 2: Matter-Free Degenerations

In this section we discuss Weierstrass models with torsional sections. These sections gen-
erate Mordell-Weil torsion groups whose associated divisors are Pontryagin dual to thimbles.
Mordell-Weil torsion in F-theory for global models has been discussed in [71–76]. More specif-
ically we consider the local models for which SU(N)/ZN with N = 2,3 is the subgroup of the
gauge group G = SU(N) acting faithfully on the representations carried by local operators.
In contrast to the examples considered previously we have non-transversely intersecting dis-
criminant components in these cases which are tuned to not introduce extra compact curves
in codimension 1 and therefore no additional screening relations arise.

4.4.1 (I2, I1) with Mordell-Weil Torsion Z2

Let us first consider the local geometry of intersecting I2 and I1 fibers, with enhancement to
type I I I in codimension 2. The Tate model engineering such a collision is

y2 + a1 x yz = x3 + a2 x2z2 + a4 xz4 , (99)

with associated Weierstrass model

y2 = x3 +
�

a4 −
1

48
(a2

1 + 4a2)
2
�

xz4 −
1

864

�

(a2
1 + 4a2)

2 − 72a4

�

(a2
1 + 4a2)z

6 . (100)
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The discriminant now takes the form

∆= −
1
16

�

(a2
1 + 4a2)

2 − 64a4

�

a2
4 , (101)

which manifestly has an I2 locus at a4 = 0, and an I1 locus at

P := (a2
1 + 4a2)

2 − 64a4 = 0 . (102)

The resolution of (99) is given by
(x , y; s) ,

(x , s; t) ,
(103)

and the resolved equation takes the form

y2s+ a1 x yzst = x3s2 t4 + a2 x2z2st2 + a4 xz4 . (104)

The exceptional divisor for the SU(2) gauge group is s = 0. At the intersection point of

P = a4 = 0 , (105)

the Kodaira I2 fiber is enhanced to type I I I [71,75]. There is no new P1 fiber in this enhance-
ment, hence there is no fundamental matter field under the su(2) gauge algebra. There is an
additional Z2 section generating a non-trivial torsional Mordell-Weil subgroup given by t = 0.

The Kodaira thimbles for I1 loci are trivial, the only Kodaira thimble of the geometry is
therefore Tsu(2) associated with the I2 locus. Further, there are no rational curves added to
the Mori cone at the codimension 2 point and therefore no additional screening relations to
consider, we have

T= Tsu(2) . (106)

So whenever the I2 locus is tuned on a compact curve we have

h f ,(2)
∼= Z2 . (107)

This is also noted directly from the I I I fiber which consists of two rational curves meeting at
one point of order two. This fiber has no 1-cycle. The 1-cycles which collapse along the I1
and I2 locus must be distinct, the fibers are mutually non-local. It is not possible to deform
Tsu(2) onto the I1 locus and subsequently slide it off to infinity, i.e. it is indeed a non-trivial
non-compact 2-cycle of the geometry.

Next note that the linking pairing on the boundary determines Tor H3(∂ X) ∼= Z2. The
compact representative of the associated non-compact four-cycle generates this Z2 torsion
group and was determined in [75] to

bT= bTsu(2) =
1
2

S , (108)

where S = {s = 0} is the resolution divisor of the model (104). This precisely agrees with our
definition of bTsu(2) given in (47).

Overall we find the geometry to engineer the gauge algebra g= su(2) and the spectrum of
non-compact cycles allows for both the global forms G = SU(2) and G = SU(2)/Z2 depending
on choice of polarization. This conclusion differs from the results of [75], where the gauge
group (by requiring it to act faithfully on the representations carried by local operators) was
uniquely determined to G = SU(2)/Z2 for global models. For local models we simply note
that the spectrum of local operators is not sufficient to determine the global form of the gauge
group, and that non-faithfully acting subgroups of the gauge group depend on a choice of
polarization.
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4.4.2 (I3, I1) with Mordell-Weil Torsion Z3

Now consider the local geometry for an I3 and I1 fiber intersect non-transversely, enhancing
to type IV in codimension 2. The Tate model engineering such a collision is

y2 + a1 x yz + a3 yz3 = x3 , (109)

with associated Weierstrass model

y2 − x3 −
1

48
a1(a

3
1 − 24a3)xz4 +

1
864
(−a6

1 + 36a3
1a3 − 216a2

3)z
6 = 0 . (110)

The discriminant is

∆=
1

16
(27a3 − a3

1)a
3
3 . (111)

The I2 locus is a3 = 0, and there is an I1 locus at

Q = a3
1 − 27a3 = 0 . (112)

The resolution of (109) is

(x , y; s) , (y, s; p) , (y, p; q) . (113)

The resolved equation is

y2sp2q3 + a1 x yzspq+ a3 yz3 = x3s2p , (114)

with exceptional divisors for the SU(3) gauge group are s = 0 and p = 0. At the intersection
point of

Q = a3 = 0 , (115)

the Kodaira I3 fiber is enhanced to type IV . There is no new P1 fiber in this enhancement,
hence there is no fundamental matter field under the SU(3) gauge group. As in the previous
section we now conclude

h f ,(2)
∼= Z3 . (116)

The center divisor Pontryagin dual to the generator T of (116) was computed in [75] to

bT= bTsu(3) =
1
3
(S + 2P) , (117)

where S = {s = 0} and P = {p = 0}. Which is consistent with (116) and again matched by
(47).

Overall we find the geometry to engineer the gauge algebra g= su(3) and the spectrum of
non-compact cycles allows for both the global forms G = SU(3) and G = SU(3)/Z3 depending
on the choice of polarization.

5 SymTFT for Elliptic Fibrations

There is a multitude of applications of the construction of thimbles. An immediate application
is the computation of the so-called symmetry TFT (SymTFT) couplings, discussed in [14]. In
M-theory these are – once an absolute theory, i.e. a polarization on the defect group, is chosen
– the anomaly theories for (mixed) ’t Hooft anomalies. The theories in question are the circle-
reductions of 6d SCFTs, and thus KK-theories in 5d. It is these couplings that we will compute
here. These couplings are of the type

SSymTFT = ci jk

∫

B(i)2 B( j)2 B(k)2 , (118)
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where B2 are various background fields for 1-form symmetries, obtained by expanding G4 in
suitable 2-forms, dual to compact divisors in the geometry or in our present language, cen-
ter divisors Pontryagin dual to thimbles (see [14] for a detailed derivation using differential
cohomology). There it was shown that the coefficient ci jk depend on the triple intersection
numbers of the center divisors in the Calabi-Yau geometry, and the evaluation of the SymTFT
in terms of intersection of center divisors generalizes the results relating CS-invariants to in-
tersections of rational linear combinations of curves in [77]. In particular we compute in the
following

ci jk = bT
(i) · bT( j) · bT(k) . (119)

These SymTFT topological couplings will uplift via M-/F-duality to topological couplings in
the SymTFT for the 6d SCFT. In many instances, these will lift to mixed couplings between
background fields of the 1-form and 2-form symmetries (assuming there is an absolute theory).
In particular, those Bi

2 that are associated with base thimbles lift to 3-form fields C i
3 and fibral

thimbles lift to 1-form symmetry backgrounds in 6d. A tensor branch derivation of these mixed
anomalies will appear in [78].

5.1 Mixed ’t Hooft Anomalies for NHCs

Now we compute the center divisors that generate h(2), the 1-form symmetry in 5d for the
NHCs (51) reduced on a circle. The associated symmetries are uplifted to 1-form and 2-form
symmetries in 6d. The resolutions of the singular elliptic CY3 were computed in [79–81].
In the following we use the notation: Fb,(N)

n which is a Hirzebruch Fn blown up at b points
and (N) labels the N th compact divisor. We glue these along curves e, h, f , x i in the notations
of [80]. We further label the thimbles by the corresponding center subgroups associated with
the discriminant component they attach to.

5.1.1 NHCs: n= 3

Consider the NHC with su(3) on a (−3) curve. The resolution geometry takes the form of

F(1)1 F(2)1

F(3)1

e e

e

e

e

e

(120)

The three compact F1 surfaces D1, D2 and D3 intersect at a common P1 curve C1 with normal
bundle NC1|X =O(−1)⊕O(−1). Let us denote the fiber curve of D1, D2 and D3 by C2, C3 and
C4 respectively. The intersection form Mi j between Di and C j are

C1 C2 C3 C4

D1 −1 −2 1 1
D2 −1 1 −2 1
D3 −1 1 1 −2

(121)

The smith decomposition of the matrix Mi j is

SMT =





1 0 0 0
0 3 0 0
0 0 3 0



 , S =





−1 −1 1
−1 0 1
0 −1 1



 . (122)
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Thus the generators (center divisors) of the two Z3 subgroups of h(2) are

bTZ3,(1) =
1
3
(D3 − D1) , bTZ3,(2) =

1
3
(D3 − D2) . (123)

One can interpret D1, D2 and D3 as Dα0
, Dα1

and Dα2
respectively. Then after the uplifting to

6d, bTZ3,(1) generates the Z3 2-form symmetry and bTZ3,(2) generates the Z3 1-form symmetry.
We compute the triple intersection numbers among DZ3,(i), which gives rise to B3

2 anomaly
polynomial in 5d [14] (mod 1).

bT3
Z3,(1) = bT

3
Z3,(2) = 0 (mod 1) ,

bT2
Z3,(1) · bTZ3,(2) = bTZ3,(1) · bT2

Z3,(2) =
2
3
(mod 1) .

(124)

Hence there is a mixed anomaly between the two Z3 1-form symmetries in 5d, which translates
into a mixed anomaly between the 1-form and 2-form symmetry in 6d.

5.1.2 NHCs: n= 4

Next consider the NHC so(8) on a (−4) curve. The resolution geometry is

F(2)0 F(3)2

F(4)2

F(5)2

F(1)2

e eee

e

e

e

e

(125)

Label the compact curves as

C1 = e|D2
, C2 = f |D2

, C3 = f |D1
, C4 = f |D3

, C5 = f |D4
, C6 = f |D5

. (126)

The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6

D1 0 1 −2 0 0 0
D2 −2 −2 1 1 1 1
D3 0 1 0 −2 0 0
D4 0 1 0 0 −2 0
D5 0 1 0 0 0 −2

(127)

As before, we can compute the Smith decomposition, and write down the following generators
for the Z2 and Z4 factors in h2 = Z2 ⊕Z2 ⊕Z4:

bTZ2,(1) =
1
2
(D5 − D1) , bTZ2,(2) =

1
2
(D5 − D3) ,

bTZ4
=

1
4
(3D1 + 2D2 + 3D3 + D4 − 3D5) .

(128)
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The triple intersection number between them are

bT3
Z2,(1) = bT

3
Z2,(2) = bT

3
Z4
= 0 (mod 1) ,

bT2
Z2,(1) · bTZ2,(2) = bTZ2,(1) · bT2

Z2,(2) = bT
2
Z2,(1) · bTZ4

= bT2
Z2,(2) · bTZ4

= 0 (mod 1) ,

bTZ2,(1) · bT2
Z4
= bTZ2,(2) · bT2

Z4
= 0 (mod 1) , bTZ2,(1) · bTZ2,(2) · bTZ4

=
1
2
(mod 1) .

(129)

This is a mixed anomaly among the three factors in h2 = Z2 ⊕Z2 ⊕Z4.

5.1.3 NHCs: n= 5

In this section we study the NHC of a single (−5)-curve on a two-dimensional base. The tensor
branch is

f4
5 , (130)

where there is an F4 gauge group with no matter. The gauge group has a trivial center, and
there is no 1-form symmetry in 6d.

The resolution geometry is

F(1)3 F(2)1 F(3)1 F(4)6 F(5)8he ee 2h e h e . (131)

The curves are

C1 = e|D1
, C2 = f |D1

, C3 = f |D2
, C4 = f |D3

, C5 = f |D4
, C6 = f |D5

. (132)

The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6

D1 1 −2 1 0 0 0
D2 −3 1 −2 1 0 0
D3 0 0 1 −2 1 0
D4 0 0 0 2 −2 1
D5 0 0 0 0 1 −2

(133)

After computing the Smith decomposition, the generator for h2 = Z5 is

bTZ5
=

1
5
(−D1 + 3D2 + 2D3 + 3D4 − D5) . (134)

One can compute
bT3
Z5
= 0 (mod 1) , (135)

hence there is no ’t Hooft anomaly for Z5 itself.

5.1.4 NHCs: n= 6

The resolution geometry for the e6 on (−6) NHC is:

F(3)0F(1)4 F(2)2

F(4)2

F(5)4

F(7)4F(6)2e e h e

e

e

h

e

eehe (136)
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Label the compact curves as

C1 = e|D3
, C2 = f |D3

, C3 = f |D1
, C4 = f |D2

, C5 = f |D4
, C6 = f |D5

, C7 = f |D6
, C8 = f |D7

.
(137)

The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6 C7 C8

D1 0 0 −2 1 0 0 0 0
D2 0 1 1 −2 0 0 0 0
D3 −2 −2 0 1 1 0 1 0
D4 0 1 0 0 −2 1 0 0
D5 0 0 0 0 1 −2 0 0
D6 0 1 0 0 0 0 −2 1
D7 0 0 0 0 0 0 1 −2

(138)

After computing the Smith decomposition, the generators for the Z3 and Z6 factors in
h2 = Z3 ⊕Z6 are

bTZ3
=

1
3
(D1 + 2D2 − 2D6 − D7) , bTZ6

=
1
6
(3D1 + 3D3 − 2D4 − D5 + 2D6 + D7) . (139)

We can compute

bT3
Z3
= bT3
Z6
= 0 (mod 1) , bT2

Z3
· bTZ6

= bTZ3
· bT2
Z6
=

2
3
(mod 1) . (140)

Thus there is a mixed anomaly between the Z3 and Z6 1-form symmetry in 5d, which uplifts
to a mixed anomaly between the Z3 1-form and Z6 2-form symmetry in 6d.

5.1.5 NHCs: n= 7

For the NHC of a single (−7)-curve on a two-dimensional base. The tensor branch is

e7
7 , (141)

where there is an e7 gauge algebra with a fundamental half-hypermultiplet 1
256. The 1-form

symmetry of E7 is completely broken by the presence of fundamental matter field, and there
is no 1-form symmetry in 6d.

The resolution geometry is

F(1)5 F(2)3 F(3)1 F(4)1 F1,(5)
3 F(6)4

F1,(7)
3 F1,(8)

7

he he e e h e h− x1 e

h

e

x1 f − x1

f − x1

f − x1
x1

x1 e− x1

h+ f

(142)

The curves are

C1 = e|D1
, C2 = f |D1

, C3 = f |D2
, C4 = f |D3

, C5 = f |D4
, C6 = f |D5

, C7 = x1|D5
,

C8 = f |D6
, C9 = f |D7

, C10 = f |D8
.

(143)
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The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D1 3 −2 1 0 0 0 0 0 0 0
D2 −5 1 −2 1 0 0 0 0 0 0
D3 0 0 1 −2 1 0 0 0 0 0
D4 0 0 0 1 −2 1 0 0 1 0
D5 0 0 0 0 1 −2 −1 1 0 0
D6 0 0 0 0 0 1 1 −2 0 1
D7 0 0 0 0 1 0 1 0 −2 0
D8 0 0 0 0 0 0 −1 1 0 −2

. (144)

After computing the Smith decomposition, the generator for h2 = Z7 is

bTZ7
=

1
7
(D1 + 2D2 + 3D3 + 4D4 + 3D5 + 2D6 + 2D7 + D8) . (145)

One can compute
bT3
Z7
= 0 (mod 1) , (146)

hence there is no ’t Hooft anomaly for Z7 itself.

5.1.6 NHCs: n= 8

The resolution geometry for e7 is:

F(4)0F(1)6 F(2)4 F(3)2

F(5)2

F(8)6F(7)4F(6)2e e h e h e

e

e

eehehe (147)

Label the compact curves as

C1 = e|D4
, C2 = f |D4

, C3 = f |D1
, C4 = f |D2

, C5 = f |D3
, C6 = f |D5

, C7 = f |D6
,

C8 = f |D7
, C9 = f |D8

.
(148)

The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6 C7 C8 C9

D1 0 0 −2 1 0 0 0 0 0
D2 0 0 1 −2 1 0 0 0 0
D3 0 1 0 1 −2 0 0 0 0
D4 −2 −2 0 0 1 1 1 0 0
D5 0 1 0 0 0 −2 0 0 0
D6 0 1 0 0 0 0 −2 1 0
D7 0 0 0 0 0 0 1 −2 1
D8 0 0 0 0 0 0 0 1 −2

(149)

After computing the Smith decomposition, the generators for the Z2 and Z8 factors in
h2 = Z2 ⊕Z8 are

bTZ2
=

1
2
(D1 + D3 + D5) , bTZ8

=
1
8
(3D1 − 2D2 + D3 + 4D4 − 2D5 + D6 − 2D7 + 3D8) . (150)

34

https://scipost.org
https://scipost.org/SciPostPhys.13.2.030


SciPost Phys. 13, 030 (2022)

We can compute

bT3
Z2
= bT3
Z8
= 0 (mod 1) , bT2

Z2
· bTZ8

=
1
2
(mod 1) , bTZ2

· bT2
Z8
= 0 (mod 1) . (151)

Thus there is a mixed anomaly between the Z2 and Z8 1-form symmetry in 5d, which uplifts
to a mixed anomaly between the Z2 1-form and Z8 2-form symmetry in 6d.

5.1.7 NHCs: n= 12

The resolution geometry for e8 is:

F(6)0F(1)10 F(2)8 F(3)6 F(4)4 F(5)2

F(7)2

F(9)4F(8)2e e h e

e

e

eehehehehe

(152)
Label the compact curves as

C1 = e|D6
, C2 = f |D6

, C3 = f |D1
, C4 = f |D2

, C5 = f |D3
, C6 = f |D4

, C7 = f |D5
,

C8 = f |D7
, C9 = f |D8

, C10 = f |D9
.

(153)

The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D1 0 0 −2 1 0 0 0 0 0 0
D2 0 0 1 −2 1 0 0 0 0 0
D3 0 0 0 1 −2 1 0 0 0 0
D4 0 0 0 0 1 −2 1 0 0 0
D5 0 1 0 0 0 1 −2 0 0 0
D6 −2 −2 0 0 0 0 1 1 1 0
D7 0 1 0 0 0 0 0 −2 0 0
D8 0 1 0 0 0 0 0 0 −2 1
D9 0 0 0 0 0 0 0 0 1 −2

(154)

The center divisor for h2 = Z12 is

bTZ12
=

1
12
(−D1 − 2D2 − 3D3 − 4D4 − 5D5 + 6D6 − 3D7 − 4D8 − 2D9) . (155)

We have
bT3
Z12
= 0 (mod 1) . (156)

The 1-form symmetry Z12 has no ’t Hooft anomaly.

5.2 Example: Spin− Sp Quiver

There is a large class of quivers in 6d, which have 1-form symmetry and defect group (see [13]
for a systematic way to compute these). A nice set of examples are 6d Spin− Sp quivers. We
consider the simplest case of an Spin(10) gauge group on a (−4)-curve:

so(10)
4 − [sp(2)] . (157)
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The resolution geometry is

F(2)0

F(1)2

F(6)2

F(3)2

F(4)4

F4,(5)
4

e e

e

e

e

e

h
e

h
e

f , f

f − x1 − x2, f − x3 − x4

(158)

Note that D5 is obtained by blowing up F4 four times, and the exceptional curves are x i
(i = 1, . . . , 4).

Label the compact curves as

C1 = e|D2
, C2 = f |D2

, C3 = f |D1
, C4 = f |D6

, C5 = f |D3
, C6 = f |D4

, C7 = x1|D5
,

C8 = x2|D5
, C9 = x3|D5

, C10 = x4|D5
.

(159)

The intersection form Mi j = Di · C j is

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D1 0 1 −2 0 0 0 0 0 0 0
D2 −2 −2 1 1 1 0 0 0 0 0
D3 0 1 0 0 −2 1 0 0 0 0
D4 0 0 0 0 1 −2 1 1 1 1
D5 0 0 0 0 1 0 −1 −1 −1 −1
D6 0 1 0 −2 0 0 0 0 0 0

(160)

The center divisors for h2 = Z2 ×Z4 are

bTZ2
=

1
2
(D1 + D6) , bTZ4

=
1
4
(D1 + 2D2 + 2D3 − D4 − D5 + D6) . (161)

We have
bT3
Z2
= bT3
Z4
= bT2
Z2
· bTZ4

= bTZ2
· bT2
Z4
= 0 (mod 1) . (162)

Hence there is no mixed ’t Hooft anomaly.
The same result applies to any Spin(2k) (k > 4) on a (−4)-curve.

6 Topology of the Elliptic Fibrations

Thimbles capture the structure of 1-cycles H1(∂ X) in the boundary of elliptically fibered
Calabi-Yau n-folds X → B which trivialize when included into the bulk. In M-theory M2 branes
wrapped on thimbles determine the spectrum of line defects and their Pontryagin dual divi-
sors generate 1-form symmetries. Higher dimensional defects and higher-form symmetries
are captured analogously by homology groups Hk(∂ X) which trivialize included into the bulk,
sweeping out non-compact cycles in one dimension higher in the process. In this section we
study the homology groups Hk(∂ X).

6.1 Local K3s

We begin by discussing local K3s which model the elliptic fibration normal to generic points
on the discriminant loci of more general n-folds. Parts of this discussion appeared in [17].
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Table 1: Kodaira’s classification of singular fibers, monodromies and torsion sub-
groups.

Fiber Monodromy T Tor H1(∂ X ,Z) ADE Fiber Monodromy T Tor H1(∂ X ,Z) ADE

In

�

1 n

0 1

�

Zn An−1
I∗n

�

−1 −n

0 −1

�

Z2 ×Z2 (n even)
Z4 (n odd)

D4+n

I I

�

1 1

−1 0

�

0 / IV ∗
�

−1 −1

1 0

�

Z3 E6

I I I

�

0 1

−1 0

�

Z2 A1 I I I∗
�

0 −1

1 0

�

Z2 E7

IV

�

0 1

−1 −1

�

Z3 A2 I I∗
�

0 −1

1 1

�

0 E8

Consider local K3s X2 → B = C whose discriminant locus consists of single point located
at the origin of B, which is the setting of section 3.1 where Kodaira thimbles were introduced.
The boundary ∂ X is smooth and inherits an elliptic fibration ∂ X → ∂ B = S1 from the bulk.
As all smooth manifolds fibered over a circle its homology groups are therefore determined by
the monodromy mappings

Tk : Hk(E)→ Hk(E) , (163)

which enter into the short exact sequence

0 → coker (Tk − 1) → Hk(∂ X) → ker (Tk−1 − 1) → 0 , (164)

derived from the Mayer-Vietoris long exact sequence. Of these mappings T1 ≡ T differs from
the identity. We collect matrix representations of T and the torsion subgroups Tor H1(∂ X)
computed from (164) in table 1. The homology groups of the boundary ∂ X compute to

H∗(∂ X) =

¨

{Z,Z2 ⊕ Tor H1(∂ X),Z2,Z} , I = In ,

{Z,Z⊕ Tor H1(∂ X),Z,Z} , I 6= In .
(165)

The case I = In is distinguished by the existence of a monodromy invariant 1-cycle. Here I is
short for the fiber types collected in table 1. The cokernel in degree one of (164) increases by
one in rank compared to other cases.

Finally we describe the two-chains bounding finite copies of the generators of Tor H1(∂ X).
Denote the basis of H1(E) for which the monodromy matrices take the form given in table
1 by (A, B). Then the bounding two-chains are constructed by fibering the generators of
coker (T − 1) over the base circle. For example, for an In singularity fibering the B-cycle over
S1 constructs a two-chain with boundary nA. This construction generalizes to n-folds as we
discuss next.

6.2 In Singularities

We now generalize the computation of Tor H∗(∂ X) to elliptic (m + 1)-folds with Weierstrass
model W → B = Cm and mutually local Ink

singularities. This set-up serves as a toy model for
more complicated bases and fibers. Here k labels the irreducible non-compact components of
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In2
In1

π(U)
π(σ)

Figure 10: Neighborhood π(U) of the cycle π(σ)withσ generating Tor H2(∂ X). The
interval π(σ) ends on the discriminant loci In1

, In2
. Let γ be the A-cycle fibering σ.

Construct a three-chain by fibering the B-cycle over a family of loops, each linking
In1

and starting at a distinct point on π(σ). Along any of these loops the monodromy
B → B + n1A acts and therefore the boundary of this three-chain computes to n1σ.
Similarly construct a three-chain with boundary n2σ. It follows that gcd(n1, n2)σ = 0
in homology.

a connected discriminant ∆. Let π : X → B be the resolved model and denote the vanishing
cycle of the geometry by γ. The base boundary is a sphere and compact cycles σ ∈ Hk(∂ X)
with 1 ≤ k ≤ 2m must therefore involve the discriminant in their construction and project
such that either

π(σ) ∈ H∗(∆∩ ∂ B) or ∂ π(σ) ∈ H∗(∂ B,∆∩ ∂ B) . (166)

In other words, either the base projections or boundaries thereof are contained in the dis-
criminant locus. Let us now specialize to three-folds m = 2. In this case the discriminant is
further characterized by a split monodromy cover [82] and consequently cycles projecting to
the discriminant locus are not acted on by monodromies along paths in ∆ and therefore they
are non-torsional. We can further characterize cycles in Hk+1(∂ X) with projections bounded
by the discriminant as constructed from a cycle in Hk(∂ B,∆∩ ∂ B) by fibering γ over it. Gen-
erators of Tor Hk(∂ X) are therefore necessarily fibered by γ and associated with relative cycles
in the base. We give an example.

Example: Transverse In1
, In2

Intersection. Consider the three-fold example of an intersecting
In1

and In2
loci in B = C2 = C1 × C2 tuned on C1 × {0} and {0} × C2 respectively. The two

discriminant components intersect transversely at the origin and intersect the boundary three-
sphere in a Hopf link ∂ B ∩∆= S1

n1
∪ S1

n2
. From the above discussion we conclude

Tor H2(∂ X3)∼= Zgcd(n1,n2) , (167)

with Tor Hk(∂ X3) ∼= 0 in all other cases. The generator of Tor H2(∂ X3) is the 2-cycle con-
structed by fibering γ over a line with one end on S1

ni
each. We argue for the order of the

torsion group by describing the three-chains in ∂ X3 bounding gcd(n1, n2) copies of the gener-
ator of (167). Denote the generator Tor H2(∂ X3) by σ and consider a small neighborhood U
of σ. The discriminant restricts to two line segments in π(U) and three-chains are constructed
following figure 10. The vanishing of torsion degree three follows from Poincaré duality and
the universal coefficient theorem which imply Tor H1(∂ X3)∼= Tor H3(∂ X3) for five-manifolds.

Alternatively, we can compute the homology groups of the boundary ∂ X3 using the Mayer-
Vietoris sequence. We decompose ∂ X3 into a neighbourhood T of the singular fibers and the
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complement thereof. We find the result

H∗(X3)∼=
�

Z,Z,Zn1+n2 ⊕Zgcd(n1,n2),Z
n1+n2 ,Z,Z

	

. (168)

The generators in degree one and four are the B-cycle and γ fibered over ∂ B = S3 respectively.
The free parts in degree two and three are introduced by the resolution. The cycle described
in figure 10 generates the torsion subgroup in degree two.

The example generalizes straight forwardly to three-folds with N -component discriminant
loci. Here each irreducible Ink

locus intersects the boundary in a knot Knk
. Overall the dis-

criminant intersects the boundary in a link L = ∪N
k=1Knk

. We have

H1(∂ B,∆∩ ∂ B)∼= ZN−1 , (169)

and the monodromy actions imply gcd(n1, n2, . . . , nN )γ = 0 in H1(∂ X◦3). Fibering γ over the
generators of H1(∂ B,∆∩ ∂ B) we find

Tor H2(∂ X3)∼= ZN−1
gcd(n1,n2,...,nN )

, (170)

with Tor Hk(∂ X3)∼= 0 in all other cases.

6.3 Boundary Topology of Conformal Matter and Single Node Geometries

The examples discussed in the previous section generalize straight forwardly to the geometries
engineering conformal matter theories. These are given by transversely intersecting singular-
ities in a C2 base with tensor branch geometries of the type [83]

�

gL

�

C
�

gR

�

, (171)

where C denotes a collection of curves supporting gauge algebras. We immediately conclude
that whenever either gL or gR are not engineered by In or Ins

n singularities, then we have

Tor H1(∂ X) = Tor H3(∂ X) = 0 , (172)

which simply follows from the resolved fibers having no 1-cycles unless the singularity type is
I s
n, Ins

n . Vanishing of torsion in degree three follows from Poincaré duality and the universal co-
efficient theorem. Any candidate 1-cycle in the boundary can be deformed to the discriminant
locus and collapsed. These vanishing cycles can however sweep out 2-cycles and for (Dn, Dn)
or (Ek, Ek) conformal matter we have for example

Tor H2(∂ X3)∼= Γ , (173)

where Γ is the center of Dn or Ek respectively. This follows from the considerations identical
to that for the collision of In and Im components. Wrapping M5 branes on the non-compact 3-
cycles intersecting the boundary in the cycles (173), we obtain 3d defect operators in 5d, which
are charged under a 3-form symmetry. This is consistent with the global form of the flavor
symmetry being the center-quotiented group [81,84], and that gauging a 0-form symmetry in
5d results in a 3-form symmetry.

As our final example consider the geometry

so(8+2n)
4 − [sp(2n)] . (174)

The base is the total space B = OP1(−4) with Lens space boundary ∂ B = S3/Z4. The non-
compact Ins

2n locus lies along a fiber of B and therefore intersects S3/Z4 in a Hopf circle S1
H .
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The singular fibers are a necklace of 2n two-spheres which contains a 1-cycle β running once
around the necklace. Traversing the Hopf circle this 1-cycle is mapped to its negative by the fact
that the fibration is non-split and we conclude that it contributes a factor of Z2 to Tor H1(∂ X3).
We have H∗(∂ B,∆∩ ∂ B) = 0 and therefore Tor H2(∂ X3) = 0. There exists a two-chain in the
base bounding 4 copies of S1

H and fibering γ over this two-chain we construct the 3-cycle α
generating Tor H3(∂ X3) = Z2. Here γ is the 1-cycle collapsing in the singular fibers. The fact
that 2α= 0 follows from the U(1) action on the Lens space generated by flow along the Hopf
fibers. Let us decompose S3/Z4 into a disjoint union of Hopf circles. Each point on α lies on
a Hopf fiber and is moved once along the Hopf fibers returning to its original position. These
Hopf circles both link the non-compact Ins

4n and the compact I∗n loci which results in the total
monodromy acting as γ→−γ and therefore α→−α, consequently 2α= 0. The Hopf fiber in
the base contributes a factor of Z4 to Tor H1(∂ X3) and the 3-cycle constructed by fibering the
singular fibers over the Hopf cycle contributes Z4 to Tor H3(∂ X3). Overall we find

Tor H1(∂ X3)∼= Z2 ⊕Z4 , Tor H2(∂ X3)∼= 0 , Tor H3(∂ X3)∼= Z2 ⊕Z4 , (175)

which is consistent with our considerations based on thimbles. Again the absence of the 3-form
symmetry is consistent with the global flavor symmetry group.

7 Discussion and Outlook

In this paper we studied the defect group of supersymmetric quantum field theories engineered
by elliptically fibered Calabi-Yau manifolds in M/F-theory. Our main focus was on theories
which admit polarizations to an absolute theory with a 1-form symmetry. Genuine lines in such
theories are characterized by non-compact relative 2-cycles of the n-fold. We argued that such
2-cycles are grouped into equivalence classes, referred to as Kodaira thimbles, by screening
effects in codimension 1, that is by screening with curves ruling Cartan divisors. Additional
screening effects enter through compact curves/local operators supported at the codimension
2 locus and these give rise to dependency relations among Kodaira thimbles which determine
the defect group of lines and the Pontryagin dual 1-form symmetry.

Crucial in quantifying these effects was the identification of Kodaira thimbles with a ra-
tional collection of compact 2-cycles with coefficients mod 1. Such representations immedi-
ately permitted us to introduce divisors Pontryagin dual to Kodaira thimbles. These divisor
in turn are key to geometrizing the 1-from symmetry generators. Their intersection numbers
determine the topological couplings for an associated SymTFT capturing the (mixed) ’t Hooft
anomalies of higher-form symmetries.

We illustrated these general insights in a large class of examples. Elliptic fibrations with
codimension 2 singular fibers, i.e. matter, result in additional screening effects, which were an-
alyzed for both transversely and non-transversely intersecting discriminant loci. The SymTFT
couplings were computed for all single node NHCs and Spin−Sp quivers.

Finally we considered the torsion subgroups of the boundary related to higher than 1-
form symmetry groups. For elliptic three-folds there are two independent subgroups, the first
characterizing 1-form symmetries and their dual 2-form symmetries and the second determin-
ing possible 0-form symmetries and dual 3-form symmetries. We computed these groups for
Spin−Sp and conformal matter theories.

The framework that was developed in this paper can be applied to elliptic fibrations in
any complex dimension. We discussed elliptically fibered two- and three-folds, but a similar
analysis will be applicable in four-folds and five-folds, realizing 4d N = 1 and 2d (0,2) the-
ories, respectively. As we stated in the main text, we do not expect further screening of the
line operators in four-folds, as the higher codimension singular fibers will correspond to su-
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perpotential couplings. For five-folds, which correspond to compactifications to 2d [85–88],
we expect some interesting effects due to the small dimensionality of the spacetime. It would
be interesting to construct the full category of lines in these 2d (0,2) theories.

Another obvious application of this framework is the study of 2-groups in 5d and 6d [11,
12, 21]. We expect the combination of results in [62, 63], where the non-trivial extension
group, that underlies the 2-group symmetry, is identified in terms of boundary topological
data. Combined with the results of this present work, this should lead to a comprehensive
understanding of 2-groups in F-theory compactifications, and should match the intersection
theoretic approach underlying the classification of 2-group symmetries in 6d SCFTs [11]. In
particular the thimbles ending on the singular boundary of the compactification space, will
have non-trivial relations that map them into flavor Wilson lines. We will report on this in
future work.
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[17] M. Cvetič, M. Dierigl, L. Lin and H. Y. Zhang, Higher-form symmetries and
their anomalies in M-/F-theory duality, Phys. Rev. D 104, 126019 (2021),
doi:10.1103/PhysRevD.104.126019.
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