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Abstract

Eikonal exponentiation in QFT describes the emergence of classical physics at long dis-
tances in terms of a non-trivial resummation of infinitely many diagrams. Long ago,
’t Hooft proposed a beautiful correspondence between ultra-relativistic scalar eikonal
scattering and one-to-one scattering in a background shockwave space-time, bypassing
the need to resum. In this spirit, we propose a covariant method for computing one-to-
one amplitudes in curved background space-times which gives rise what we conjecture
to be a general expression for the eikonal amplitude. We show how the one-to-one scat-
tering amplitude for scalars on any stationary space-time reduces to a boundary term
that captures the long-distance behavior of the background and has the structure of an
exponentiated eikonal amplitude. In the case of scalar scattering on Schwarzschild, we
recover the known results for gravitational scattering of massive scalars in the eikonal
regime. For Kerr, we find a remarkable exponentiation of the tree-level amplitude for
gravitational scattering between a massive scalar and a massive particle of infinite spin.
This amplitude exhibits a Kawai-Lewellen-Tye-like factorization, which we use to evalu-
ate the eikonal amplitude in momentum space, and study its analytic properties.
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1 Introduction

The eikonal approximation is a well-known and powerful tool in quantum field theory [1–
8]. For some theories, in the high-energy regime of 2→ 2 scattering with small momentum
transfer (i.e. −t � s in terms of the Mandelstam variables), the leading dominant diagrams
are ladders and crossed ladders whose rungs are exchanges of the highest available spin J in
the theory (J = 1,2 for photon or graviton interactions). For gravitationally-coupled theories,
this means that ladder diagrams with graviton exchanges dominate [9]. This infinite series
of ladder diagrams can be resummed into an eikonal amplitude of remarkable simplicity. This
eikonal amplitude is controlled by the eikonal phase, which at leading order in the eikonal
expansion is given by the inverse transverse Fourier transform of the single exchange diagram
or Born amplitude.

The simplicity of eikonal amplitudes and the circumstances under which eikonal expo-
nentiation holds have been studied in recent years in several contexts, from N = 8 supergrav-
ity [10–12] to applications in classical gravitational wave physics [13–31]. Interestingly, while
eikonal exponentiation of quantum scattering amplitudes is known to hold in some cases and
to fail for others (e.g., pure cubic scalar theory [32–34]), there are still settings where its status
is not entirely explored. An example of this is the actual evaluation of the eikonal amplitude
for 2→ 2 scattering of massive particles with arbitrarily large quantum spin [35–39], which
has been recently investigated in [40].

A beautiful explanation for eikonal exponentiation and the classicality of eikonal scatter-
ing was provided long ago by ’t Hooft [9] in the ultra-relativistic limit of graviton-mediated
scalar scattering1. He observed that in the ultra-relativistic limit, each incoming scalar sees
the other as a strong, ultraboosted source following a light-like trajectory. Such a source is de-
scribed exactly in general relativity by the shockwave solution [42,43]. The 2→ 2 scattering
process is then recast as semi-classical 1→ 1 scattering of a massless scalar in the fixed, non-
perturbative background of the shockwave. This correspondence between ultra-relativistic
eikonal and shockwave scattering has played a major role in the study of transplanckian scat-
tering in quantum gravity (e.g., [44–49]), and also holds in theories like QED (cf., [50, 51]).
However, there remains no clear correspondence between eikonal amplitudes and more gen-
eral curved backgrounds2.

1See also [17, 41] for a recent account of the relations between eikonal exponentiation and the classical limit
of scattering amplitudes.

2There is also an intriguing relationship between eikonal factorization and scattering near black hole event
horizons [52–55]. These works observe eikonal exponentiation for 2→ 2 scattering in a black hole space-time at
small distances (i.e., very close to the event horizon). This a different from our set-up, where we relate 2 → 2
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The main idea of this paper is to provide a framework for computing generic eikonal am-
plitudes in terms of scattering on curved background space-times, generalizing the original
proposal of ’t Hooft [9]. In particular, one can view the shockwave calculation as a special case
of a more general phenomenon: a correspondence between gravitationally-mediated eikonal
2→ 2 scattering on the one hand, and 1→ 1 scattering on a classical, curved space-time whose
source corresponds to one of the scattering states in the eikonal picture. This opens the door
to computing eikonal amplitudes directly from scattering in curved space-times, rather than
by resumming the ladder diagrams of the high-energy limit with small momentum transfer.

For the purposes of this paper, we assume that the 2 → 2 eikonal amplitude of interest
involves one incoming scalar (massive or massless) and is mediated by graviton exchanges;
the other particle could be any particle available in quantum field theory of mass greater than
or equal to the scalar. The key is to interpret the latter as the source for a curved space-time,
just like the ultraboosted scalar is the source for a shockwave metric. For instance, a massive
scalar would correspond to the Schwarzschild metric3, while a massive particle with infinite
quantum spin would relate to a Kerr black hole, as established in a series of remarkable recent
papers [35–38,56–64].

Following ’t Hooft, we propose that the 2 → 2 eikonal scattering amplitude between a
scalar and this other ‘source’ particle is equal to 1→ 1 scalar scattering on the curved space-
time defined by the source. We give a precise formula for this 1 → 1 scattering amplitude
on any stationary space-time in terms of a boundary integral; to avoid potential strong-field
effects (e.g., particle creation) which would spoil the existence of a S-matrix [65–69], this
boundary integral is localized at large distances from the source, so that only the linearized
gravitational field plays a role. We find that this 1→ 1 scattering amplitude, M2, always has
the structure of an eikonal amplitude:

M2 =
2πδ(p0′ − p0)

4M
Meik , (1)

where p′µ, pµ are the incoming and outgoing momenta of the scalar of mass m, M is the
Arnowitt-Deser-Misner (ADM) mass of the background with momentum Pµ and the remaining
part Meik is to be identified as an eikonal amplitude (stripped of an overall delta function).

We evaluate this 1→ 1 amplitude in the background space-times of the Schwarzschild and
Kerr black holes. In the Schwarzschild case, we recover the known results for gravitational
scattering of massive scalars in the eikonal regime, which provides a consistency check for the
proposal. In Kerr, we obtain an eikonal amplitude corresponding to the exponentiation of the
tree-level 2→ 2 amplitude between a massive scalar and a massive particle of arbitrarily large
quantum spin [35]. This result can be viewed as evidence in favor of eikonal exponentiation
with spin, as well as an alternative derivation of the tree-level amplitude.

The paper is organized as follows: Section 2 provides a brief review of eikonal scattering in
QFT and the structure of eikonal amplitudes, followed by a discussion of 1→ 1 scalar scattering
amplitudes in curved background space-times. As a warm-up, Section 3 reviews ’t Hooft’s
calculation linking 1 → 1 massless scalar scattering on a shockwave space-time to the ultra-
relativistic limit of eikonal scalar scattering. We then go on to show how to evaluate the 1→ 1
scattering amplitude for scalars in any stationary background space-time in Section 4, using a
large-distance limit of the linearized background to ensure a well-defined S-matrix. Section 5
computes the amplitude for a Schwarzschild background, including a detailed analysis of its

amplitudes in flat space to 1→ 1 amplitudes at large distances in curved backgrounds and systematically connect
the eikonal phase to the space-time curvature.

3A relation between massive scalar eikonal scattering and scattering in Schwarzschild was observed long
ago [47], but in the quantum mechanical framework of potential scattering, which is not covariant or fully rela-
tivistic.
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saddle points, poles and zeros. In Section 6, we compute the amplitude in a Kerr background,
where we find that the resulting eikonal amplitude exhibits a factorization akin to Kawai-
Lewellen-Tye factorization in string theory [70]. There is also a rich structure to the poles and
zeros of the amplitude, which is explored. Section 7 concludes, while Appendix A includes
some technical details on confluent hypergeometric functions.

We work in the mostly negative signature (+,−,−,−) and follow notation from [71]where
hats on integral measures and delta functions denote factors of 2π: d̂nω := dnω/(2π)n and
δ̂n(k) := (2π)nδn(k).

2 Eikonal amplitudes from scattering in curved space-time

For our purposes, eikonal scattering will refer to 2 → 2 scattering of gravitationally-coupled
particles in the high-energy regime with small momentum transfer (i.e., −t � s in terms of the
Mandelstam variables). The leading dominant diagrams in this limit are ladders and crossed
ladders whose rungs are exchanges of the gravitons [9]. We say that eikonal exponentiation
holds when this infinite series of ladder diagrams can be resummed into an eikonal amplitude
(cf., [3]).

This eikonal amplitude is controlled by the eikonal phase χ, which at leading order in the
eikonal expansion is given by the inverse transverse Fourier transform of the single exchange
diagram A4 (or Born amplitude). Assuming two particles with incoming momenta pµ1 , pµ2
and outgoing momenta pµ1

′, pµ2
′ then the leading order eikonal phase and associated eikonal

amplitude can be written in a covariant form as:

χ1(x⊥) := ħh
∫

d̂4q δ̂(2p1 · q) δ̂(2p2 · q)ei q·x/ħh A4(q) , (2)

iMeik(q⊥) =
4
q

(p1 · p2)2 −m2
1m2

2

ħh2

∫

d2 x⊥ e−i q⊥·x⊥/ħh
�

eiχ1(x⊥)/ħh − 1
�

, (3)

where the two-dimensional impact parameter x⊥ is orthogonal to pµ1 and pµ2 and conjugate to
the (small) momentum exchange qµ := pµ1 − p′µ1 . Given χ1, one may further perform the x⊥
integrals to obtain a closed form expression for the eikonal amplitude.

A well-studied example of eikonal exponentiation is the case of gravitationally coupled
massive scalars. For equal masses, the leading order eikonal phase is [13,47]

χ1(x⊥) = πG
(s− 2m2)2 − 2m4

p

s(s− 4m2)

∫

d̂2`
ei`·x⊥

`2 +µ2 − iε
, (4)

where G is Newton’s constant, s = (p1 + p2)2, ` is a 2-dimensional vector with units of an
inverse length and the arbitrary scale µ serves to regulate infrared (IR) divergences. The
impact parameter integral in the eikonal amplitude can be evaluated to give [47]

iMeik(q⊥) =
2π

µ2ħh2

Æ

s(s− 4m2)
Γ (1− iα(s))
Γ (iα(s))

�

4ħh2µ2

q2
⊥

�1−iα(s)

, (5)

for

α(s) := G
(s− 2m2)2 − 2m4

p

s(s− 4m2)
. (6)
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It is easy to see that this eikonal amplitude is simply the tree-level/Born amplitude with single
graviton exchange times a phase, Meik ∼ A4eiϕ, with the phase containing all dependence on
the IR regulator.

Similarly, the ultra-relativistic limit of this scattering process corresponds to the regime
where the scalar masses becomes negligible. In this case, the particles follow lightlike trajec-
tories so it is natural to work in lightfront coordinates where pµi=1,2 = (p+ i , p− i , p⊥ i), and so
forth. In this case, we have s = p+1 p−2 and the eikonal phase and amplitude simplify to

χ1(x⊥) = πG s

∫

d̂2`
ei`⊥·x⊥

`2 +µ2 − iε
, (7)

where µ is an infra-red regulator, and the amplitude reads after Fourier transform to momen-
tum space:

iMeik(q⊥) =
2π s

ħh2µ2

Γ (1− i G s)
Γ (i G s)

�

4ħh2µ2

q2
⊥

�1−i G s

, (8)

respectively. Once again, this takes the form of the single exchange Born amplitude multiplied
by a phase. This is seen by making use of the Gamma function identity Γ (1+ x) = xΓ (x)which
produces an extra factor of Gs in the numerator, giving the usual s2/t behaviour of a single
graviton exchange (since t = q2

⊥).
Over thirty years ago, ’t Hooft gave an alternative derivation of the eikonal amplitude for

ultra-relativistic, gravitationally-coupled scalars which explains both eikonal exponentiation
and the classicality of the eikonal amplitude [9]. By taking one of the ultraboosted scalars
to source a gravitational shockwave [42, 43], the 2 → 2 scattering process is recast as semi-
classical 1→ 1 scattering of a massless scalar in the shockwave space-time. By solving the wave
equation in the shockwave background, ’t Hooft was able to compute this 1 → 1 scattering
amplitude and showed that it is indeed equal (up to an overall normalization) to the ultra-
relativistic eikonal amplitude (8) for scalars.

However, the essential statement underlying ’t Hooft’s original result is potentially much
more general than this ultra-relativistic scalar example. Indeed, it is natural to propose a
generic correspondence between gravitational eikonal 2→ 2 scattering on the one hand, and
1 → 1 scattering on a classical, curved space-time whose source corresponds to one of the
scattering states in the eikonal picture. Of course, some care is required for this generalised
interpretation, since the curved space-time must be chosen in such a way that the 1 → 1
scattering process is well-defined.

Let us assume that the eikonal amplitude of interest involves one incoming scalar and
is mediated by graviton exchanges; the other incoming particle could be another scalar, or
something else (e.g., a spinning particle). Suppose this other particle has a natural inter-
pretation in terms of a curved space-time: for instance, a massless scalar would correspond
to the shockwave metric. Thus, we wish to calculate the 2-point, or 1 → 1, amplitude of
a scalar in this fixed, non-perturbative space-time. Following the ‘perturbiner’ approach to
scattering amplitudes (cf., [72–77]), this corresponds to evaluating the quadratic part of the
gravitationally-coupled scalar action on-shell.

For a complex scalar field of mass m in a curved background space-time (M , g), one must
therefore consider

S[Φ] =

∫

M
d4 x

Æ

|g|
�

gµν ∂µΦ(x)∂νΦ̄(x)−
m2

ħh2 |Φ|
2(x)

�

, (9)

where gµν is the space-time metric and |g| is the absolute value of its determinant. Here, the
metric gµν is treated as fixed and non-dynamical. In other words, we are working within the
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framework of background field theory (cf., [78–82]), where the scalar field is fully dynamical
but the metric is treated as a fixed, non-perturbative, classical background.

We can express this action as a boundary term by evaluating (9) on-shell on solutions to
the free equation of motion

�

∆g +
m2

ħh2

�

Φ(x) = 0 , (10)

where
∆gΦ(x) := |g|−1/2 ∂µ

�

|g|1/2 gµν ∂νΦ(x)
�

(11)

stands for the action of the Laplacian of the background space-time. It is straightforward to
integrate-by-parts to re-write the free action as

S[Φ] = −
∫

M
d4 x

Æ

|g| Φ̄(x)
�

∆g +
m2

ħh2

�

Φ(x) +

∫

∂M
d3 y

Æ

|h| Φ̄(y, x̄)nµ∇µΦ(y, x̄) , (12)

where we work in a local coordinate system xµ = (y i , x̄) on M for which the boundary ∂M is
given by x̄ = constant, hi j is the induced metric on this boundary and nµ a normal vector to
the boundary. Here, we intend for this ‘boundary’ ∂M to include infinite regions (i.e., regions
which would correspond to finite boundaries under conformal compactification).

Evaluated on-shell, the first term in (12) vanishes by virtue of the background-coupled free
equation of motion. Therefore, we are left with

S[Φ] =

∫

∂M
d3 y

Æ

|h| Φ̄(y, x̄)nµ∇µΦ(y, x̄) . (13)

Following the pertubiner approach, define the following object:

Φ[2](x) := ε1φin(x) + ε2φout(x) . (14)

The {εi} are complex parameters that will eventually be thought of as infinitesimal; φin(x) is a
solution to (10) in absence of gravity while φout(x)when a gravitational field is present. Spec-
ifying the asymptotic behaviour of these solutions is equivalent to applying an LSZ reduction
formula as it specifies whether φin(x) and φout(x) looks like an ‘in’ or ‘out’ state.

We can now define a 2-point tree-level scattering amplitude in a curved background as the
multi-linear piece of the classical action:

M2 :=
1

ħh2

∂ 2S
�

Φ[2]
�

∂ ε̄1∂ ε2

�

�

�

�

�

ε1=ε2=0

. (15)

On a flat background, this 2-point function is clearly vanishing, but on a curved space-time it
can be expressed as a non-vanishing boundary term

M2 =
1

ħh2

∫

∂M
d3 y

Æ

|h| φ̄in(y, x̄)nµ∇µφout(y, x̄) . (16)

The central idea of this paper is that when the source of the background space-time admits a
particle-like interpretation, M2 is equal (up to normalization factors and a energy-conserving
delta function) to the eikonal amplitude for scattering between this particle-like source and a
scalar.

Of course, there are some subtleties associated with this interpretation of formula (16).
In the first instance, to truly interpret M2 as a scattering amplitude one must assume that the
background space-time admits an S-matrix, in the sense that there are asymptotically flat in-
and out-regions and there is no particle creation between them (cf., [65–69]). However, when
the space-time is asymptotically flat but has particle creation (e.g., any Kerr-Newman black
hole) one can still treat (16) as a scattering amplitude provided the incoming and outgoing
states only probe far-field regions where particle creation can be neglected.
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3 Warm-Up: Ultrarelativistic eikonal from shockwave backgrounds

Let us first review the most well-studied version of the correspondence between eikonal and
curved-background scattering: the ultrarelativistic limit of eikonal scalar scattering, where the
scalar masses are negligible. Consider the shockwave metric [42,43]:

ds2 = 2dx− dx+ − (dx⊥)2 + 4G P−δ(x
−) log(µ |x⊥|) (dx−)2 , (17)

where µ is an arbitrary mass scale. The quantity P− can be characterized by feeding this metric
into the Einstein equations to give the stress tensor

Tµν = P−δ
−
µ δ
−
ν δ(x

−)δ2(x⊥) , (18)

which is that of a source of energy P− moving on the lightfront x− = 0 and localized at the
origin in the transverse plane. In other words, the shockwave is sourced by an ultraboosted
particle, which is exactly what we want for the ultrarelativistic limit of eikonal scalar scattering.

Now we wish to compute the 1→ 1 classical scattering amplitude for a scalar in the shock-
wave space-time. With a free incoming wave φin = e−i p·x/ħh, the outgoing, scattered, wave is
determined by solving the scalar wave equation at general lightfront time in the shockwave
metric. Since the shockwave is flat before and after the x− = 0 lightfront, this is achieved by
a patching argument on the two Minkowski regions [9,47,83–85]:

φout(x) = Θ(−x−)e−i p′·x/ħh +Θ(x−)
1

ħh2

∫

d̂2`⊥W (p′ − `) e−i`·x/ħh
�

�

`+=p′+
, (19)

where Θ(x−) is the Heaviside step function and the transverse momentum integrals are
weighted by

W (`) :=

∫

d2 y⊥ e−i`⊥·y⊥/ħh e−4i G `+ P− log(µ |y⊥|)/ħh , (20)

where the dependence on the shock profile itself enters. This choice of outgoing wave ensures
an appropriate LSZ truncation, so that no scattering occurs before the x− = 0 lightfront. Using
the Klein-Gordon inner product [86], one can verify that there is no particle creation; combined
with asymptotically flat in- and out-regions, this means that the space-time admits a semi-
classical S-matrix (cf., [9,84,87,88]).

When evaluating (16) with these choices ofφin andφout, there are in principle four distinct
boundary contributions: those at past/future infinity (x− = ±∞) and on either side of the
shockwave lightfront (x− = 0±), depicted in fig. 1. The contributions at infinity will vanish
since both asymptotic regions are diffeomorphic to Minkowski space, and the iε-prescription
is implicitly in play to ensure that the wavefunctions are asymptotically flat.

Thus, the 2-point amplitude is entirely localized on both sides of the x− = 0 lightfront:

M2 =
1

ħh2 lim
ε→0

�∫

dx+ d2 x⊥ φ̄in ∂+φout|x−=ε −
∫

dx+ d2 x⊥ φ̄in ∂+φout|x−=−ε

�

. (21)

The second term can be evaluated immediately, since there is no scattering before x− = 0:

1

ħh2 lim
ε→0

∫

dx+ d2 x⊥ φ̄in ∂+φout|x−=−ε = −i p+ δ̂
3
+,⊥(p− p′) . (22)

This accounts for the (subtraction of the) forward scattering contribution to the amplitude.
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x+ x−

x− = 0

Figure 1: Boundary regions on a shockwave-background

The first term, on the other hand, is given by:

1

ħh2 lim
ε→0

∫

dx+ d2 x⊥ φ̄in ∂+φout|x−=ε =

− i p+ δ̂(p+ − p′+)
1

ħh4 lim
ε→0

∫

d2 x⊥ d̂2`⊥W (p′ − `⊥)e−i (`−p)⊥·x⊥/ħh+i p′− ε/ħh

= −
i p+
ħh2 δ̂(p+ − p′+)W (q⊥) , (23)

where q⊥ := p⊥ − p′⊥ as usual. Putting all of this together, we find

M2 =
i p+
ħh2 δ̂(p+ − p′+)

�

W (q⊥)−ħh2δ̂2(q⊥)
�

=
i p+
ħh2 δ̂(p+ − p′+)

∫

d2 x⊥ e−i q⊥·x⊥/ħh
�

e−4i G p+ P− log(µ |x⊥|)/ħh − 1
�

,
(24)

where we used the definition of W to get the second line.
This is equal to the ultrarelativistic eikonal amplitude (8) up to overall factors:

M2 :=
δ̂(p+ − p′+)

8P−
Meik(q⊥) . (25)

Thus, we recover the original observation of ’t Hooft: the phase shift of a massless scalar
wavefunction crossing a shockwave background contains the leading eikonal resummation for
gravitational scattering of massless scalars [9].

4 Eikonal amplitude from stationary backgrounds

In the case of the shockwave, relevant for ultrarelativistic scalar eikonal scattering, the back-
ground space-time admits an S-matrix and it is possible to solve for the outgoing scattered
wave exactly. But suppose we want to compute the 1→ 1 amplitude on more general back-
grounds, which don’t admit an S-matrix or for which it is difficult to solve the wave equation
exactly, such as a black hole?

Here, we present a covariant framework to obtain an appropriate classical 1→ 1 scatter-
ing amplitude of a massive scalar on any stationary background space-time. There are two
key steps: the first is to consider the large-distance (i.e., far from the source) regime of the
linearized background to ensure a well-defined S-matrix, and then to solve the wave equation
perturbatively with a WKB ansatz and appropriate boundary conditions.
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4.1 Asymptotic states on curved space-times

For the specific case of a shockwave background, we have seen that the notion of outgoing state
is in correspondence with a solution to the wave equation on (17). For generic backgrounds, in
order to define a 1→ 1 amplitude, one has to solve the wave equation on a curved background
to define a proper outgoing state. To achieve this for the general setting of weakly curved,
stationary space-times, we focus on a linearized gravitational field assuming only the existence
of a time-like Killing vector ∂t :

ds2 = ηµν dxµ dxν + hµν(x)dxµ dxν . (26)

On this background, the wave equation becomes
�

�+
m2

ħh2

�

φ(x) = Jeff(x) , (27)

where
Jeff(x) := hµν(x)∂µ∂νφ(x) (28)

defines the self-interaction of the field as an effective source Jeff(x), in analogy with the stan-
dard method of solving (27) in presence of matter. To describe an outgoing state, we look
for solutions to (27) which can be written as a sum of an incoming free wave φin(x) and an
outgoing distorted wave with a 1/r fall-off typical of scattering processes. Following [89], we
can write these solutions in the asymptotic region as

φ(x) = φin(x) +
1

4πr

∞
∫

0

d̂ω J̃eff(ħhω,ħhωn̂)e−i tω+iωr , (29)

where the distorted outgoing wave depends on the effective source in momentum space

J̃eff(k) :=

∫

d4 x Jeff(x)e
i k·x/ħh

�

�

kµ=ħh(ω,ωn̂) , (30)

and n̂ is a 3-dimensional unit vector on the celestial sphere.
At this point, the solution to (27) is still implicit as the source in (29) is a function of the

field itself. A perturbative ansatz to evaluate (30) is provided by evaluating the effective source
on an eikonal solution for the outgoing wave

J̃eff(k) =

∫

d4 x hµν(x)∂µ∂νφeik(x)e
i k·x/ħh

�

�

kµ=ħh(ω,ωn̂) , (31)

where by definition φeik(x) is solution to equation (27), for ħh→ 0, of the form

φeik(x) = eiχ(x)/ħh , χ(x) =
∞
∑

n=0

χn(x) , χn(x)∼ Gn . (32)

One advantage in using the eikonal limit is that we can trade (27) for a simpler set of differ-
ential equations for χ(x). At leading and next-to-leading order in the gravitational coupling,
these are

∂µχ0(x)∂
µχ0(x) = m2 ,

2∂ µχ0(x)∂µχ1(x) = hµν(x)∂µχ0(x)∂νχ0(x) .
(33)

The first of these is trivially solved by χ0(x) = −p · x , corresponding to an incoming wave with
on-shell momentum pµ. To provide a concrete example, we assume that this momentum is
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directed along the z−axis such that pµ = (
Æ

p2
z +m2, 0, 0, pz). Turning to the second equation

in (33), we assume that χ1(x) is time-independent. This is always possible since the metric
admits a time-like Killing vector, by assumption. Further imposing the boundary condition
that one should have a trivial free field at z→−∞, we obtain

¨

2 pz ∂zχ1(x⊥, z) = hµν(x⊥, z) pµ pν ,

χ1(x⊥, z = −∞) = 0 ,
(34)

where x⊥ denotes generic coordinates on the orthogonal plane to z.
These boundary conditions single out a unique solution given by

χ1(x⊥, z) =
1

2pz

∫ z

−∞
dz′ hµν(x⊥, z′) pµ pν . (35)

Thus, the desired wave in the eikonal limit is

φeik(x) = e−i p·x/ħh+iχ1(x⊥,z)/ħh . (36)

Feeding this expression into (31), one reads off the effective source:

J̃eff(k) = −
2 pz

ħh2

∫

d2 x⊥ dz dt ∂zχ1(x⊥, z) ei (k−p)/ħh·x+iχ1(x⊥,z)/ħh
�

�

kµ=ħh(ω,ωn̂) . (37)

This can be further simplified by performing the t-integration, to give

J̃eff(k
0, k⊥, kz) = −

2 pz

ħh
δ̂(p0−k0)

∫

d2 x⊥ dz∂zχ1(x⊥, z)e−ik⊥·x⊥/ħh−i (kz−pz) z/ħh+iχ1(x⊥,z)/ħh , (38)

where we identify k⊥ := ħhωn̂⊥, kz := ħhωnz and k0 := ħh
p
ω2 +m2.

By further making the small angle approximation, for which |k⊥| � kz and kz ∼ pz , one
obtains a closed form for the outgoing wave with the desired boundary conditions:

φ(x) = φin(x) + i pz
e−i t
p

p2
z+m2/ħh+i pz r/ħh

2πrħh

∫

d2 x⊥ e−i q⊥·x⊥/ħh
�

eiχ1(x⊥,z=+∞)/ħh − 1
�

, (39)

where q⊥ := pzn̂⊥ This expression provides the notion of outgoing state in any linearized
stationary background: specifying a given linearized metric uniquely fixes the outgoing wave.
We can now proceed to see how these waves can be used to evaluate the 1→ 1 amplitude on
any linearized stationary background.

4.2 Exponentiation from spatial infinity

In section 2, we saw that the 1→ 1 amplitude on a generic background can be expressed as a
boundary term:

M2 =
1

ħh2

∫

∂M
d3 y

Æ

|h|(y)φ̄in(y, x̄)n · ∂ φout(y, x̄) , (40)

where x̄ denotes the variable on M which specifies the boundary, while y are coordinates on
the boundary and n a unit normal vector orthogonal to to the boundary. Now, suppose our
background is stationary and admits spherical coordinates4 (t, r,θ ,ϕ), for which the metric
is flat at spatial infinity where r → ∞. To ensure that (40) makes sense as a scattering

4The space-time need only admit these coordinates locally, in a neighborhood of spatial infinity.
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amplitude, we only consider contributions to (40) from the ‘boundary’ at spatial infinity; in
other words, we consider only scattering at sufficiently large distances from any source.

To this end, we evaluate (40) by choosing x̄ = r and taking r =∞ while keeping the
other variables (t,θ ,ϕ) fixed. Within this limit, the determinant of the induced metric is
trivial, leaving

M2 = −
1

ħh2 lim
r→∞

∫

S2×R
dθ dϕ dt r2 sin(θ ) φ̄in(t, r,θ ,ϕ)∂rφout(t, r,θ ,φ) . (41)

We now specify the incoming and outgoing states: as incoming state we choose a plane wave
with on-shell momentum pµ′ while for an outgoing state we choose a spherical wave in the
small angle approximation with on-shell momentum pµ

φout(x) =
e−i t p0/ħh+i pz r/ħh

r
fp(n̂⊥) , (42)

where fp is defined by

fp(n̂⊥) :=
i pz

2πħh

∫

d2 x⊥ e−i k⊥·x⊥/ħh
�

eiχ1(x⊥)/ħh − 1
�

, (43)

and we abbreviate χ1(x⊥) := χ1(x⊥, z = +∞).
Feeding this into (41), and neglecting subleading terms in 1/r2, the t integral can be

performed immediately to give the energy conserving delta function expected for stationary
backgrounds

M2 = −
ipz

ħh2 δ̂(p
0′ − p0) lim

r→∞
r ei pz r/ħh

∫ π

0

dθ sin(θ )e−i p′z r cos(θ )/ħh
∫ 2π

0

dφ fp(n̂⊥) . (44)

A straightforward integration shows that the remaining integral is finite by including a proper
iε-prescription at spatial infinity. In the small angle approximation

M2 = −
ipz δ̂(p0′ − p0)

ħh2

∫

d2 x⊥e−iq⊥·x⊥/ħh
�

eiχ1(x⊥)/ħh − 1
�

(45)

=
pz δ̂(p0′ − p0)

4
p

(p · P)2 −m2M2
Meik(q⊥) . (46)

This can be written in a more compact way as

M2 =
δ̂(p0′ − p0)

4M
Meik(q⊥) . (47)

Up to normalization factors, the 1→ 1 amplitude we have computed has precisely the same
structure of an eikonal amplitude (3), with χ1 playing the role of the eikonal phase. This struc-
tural equivalence holds for large-distance scattering in any stationary space-time, suggesting
that ’t Hooft’s proposal linking eikonal and curved-background scattering should hold beyond
the ultrarelativistic scalar case.

5 Schwarzschild background

Perhaps the most obvious non-trivial example of a stationary, asymptotically flat space-time is
the Schwarzschild black hole. This is a non-spinning metric sourced by a massive, time-like
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worldline, so from the perspective of eikonal scattering should correspond to a massive scalar
particle [13]. The connection between massive scalar eikonal scattering and scattering on
Schwarzschild was first explored by Kabat and Ortiz [47], who translated the Schwarzschild
problem into quantum mechanical Rutherford scattering. While it produces the correct eikonal
amplitude, this method is not covariant and obscures the fully relativistic nature of the ampli-
tude.

In this section, we use the method derived in the previous section to compute the eikonal
phase and amplitude for 1 → 1 scattering of a massive scalar on the Schwarzschild space-
time, finding the expected results for scalar eikonal scattering with arbitrary masses. We then
analyse the saddle point and poles of the eikonal amplitude, which encode the Born amplitude
and classical bound states of the system, respectively. While these have been studied previously
in the literature [9,47,90], the details will prove instructive for later calculations in Section 6.

5.1 The eikonal phase for Schwarzschild

In equation (45), we derived a closed form for the 1 → 1 scalar scattering amplitude valid
for the long-distance regime of any linearized stationary space-time. This amplitude was de-
termined by the eikonal phase χ1 of the background, which is itself given by the linearized
background metric in (35). This eikonal phase is easily rewritten in momentum space using
the spatial Fourier transform for the metric

h̃µν(q⊥, qz) :=

∫

d2 x⊥ dz e−i q⊥·x⊥/ħh−iqzz/ħh hµν(x⊥, z) . (48)

With this, the eikonal phase becomes

χ1(x⊥) =
1

2pz

∫

d̂2q⊥ e−i q⊥·x⊥/ħh h̃µν(q⊥, qz = 0) pµ pν . (49)

In a more covariant way, this can be expressed as

χ1(x⊥) = 2M

∫

d̂4q δ̂(2P · q) δ̂(2p · q) e−i q⊥·x⊥/ħh h̃µν(q) pµ pν , (50)

where Pµ = (M , 0, 0, 0) and pµ is the on-shell momenta of the probe. In this form, equation
(50) is manifestly covariant and it can be used to infer the 1→ 1 amplitude when the source
is no longer static by applying a Lorentz transformation: in this case, x⊥ and q⊥ will be on
the orthogonal plane of pµ and Pµ. Another advantage of (50) is that it makes manifest the
gauge invariance of our amplitude. This is easily checked by noticing that under a linear
diffeomorphism the eikonal phase remains unchanged

∆χ1(x⊥) = 2M

∫

d̂4q δ̂(2P · q) δ̂(2p · q) e−i q⊥·x⊥/ħh ξ̃(q) · p q · p = 0 , (51)

where ξ̃µ(q) is the Fourier transform of the vector field ξµ(x) generating the diffeomorphism.
Our proposal is that the Schwarzschild eikonal phase should correspond to the ‘standard’

eikonal phase of 2 → 2 gravitational scattering of massive scalars. If this is true, then the
eikonal phase is the inverse Fourier transform of a tree-level 2→ 2 scattering amplitude, and
we can use (50) to read off this 4-point function:

A4(q) = 2M h̃µν(q⊥) pµ pν . (52)
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Given that the eikonal phase is gauge invariant, we can choose any coordinate system for the
metric tensor. Picking for example harmonic coordinates for Schwarzschild, its linearized form
is

hµν(x) = Pµναβ
�

uα uβ
4M G

r

�

, (53)

where we have introduced the projector Pµναβ = 1
2η
µαηνβ + 1

2η
µβηνα − 1

2η
µνηαβ and

Muα = Pα. Using (48) one obtains

A4(q) =
16πG
ħh

[2(P · p)2 −m2M2]
q2

, (54)

which is indeed the leading in ħh 4-point function for a massive particle scattering at tree-
level on a static source. Equation (54) is also valid for arbitrary mass ratios and for a moving
background source. The fact that the amplitude in the probe limit constrains the analogue
arbitrary mass ratio result at leading order is a well known fact also noticed in observables
such as the scattering angle [91,92].

5.2 The eikonal amplitude on a Schwarzschild background

Having seen the properties of the eikonal phase for Schwarzschild, we can now proceed to
compute the associated 1→ 1 amplitude. To do so, we first evaluate χ1(x⊥) using equation
(53); in momentum space and in the center of mass frame, one obtains the covariant result

χ1(x⊥) = −
2G (2 (p · P)2 −m2M2)
p

(p · P)2 −m2M2
log(µ |x⊥|) , (55)

where µ is a mass scale introduced to regulate IR divergences.
At this point, the 1→ 1 amplitude for a scalar of mass m on a Schwarzschild background

of mass M takes the form

Meik(q⊥) = −
4i
p

(p · P)2 −m2M2

ħh2

�

I(q⊥)
µ2α(s)

− δ̂2(q⊥)
�

, (56)

where

I(q⊥) :=

∫

d2 x⊥ e−i q⊥·x⊥/ħh |x⊥|−2iα(s) , (57)

and α(s) reads

α(s) :=
G [(s−m2 −M2)2 − 2 m2M2]

ħh
p

s− (m+M)2
p

s− (m−M)2
=

GmM
ħh

γ(v)
v

�

1+ v2
�

, (58)

as a function of the center of mass energy Mandelstam invariant s := (p + P)2, where the
relativistic gamma factor also reads

γ(v) = (1− v2)−1/2 :=
p · P
m M

=
s2 −m2 −M2

2m M
. (59)

Neglecting the forward scattering contribution given by the delta function in (56), the non-
trivial part of the amplitude is the 2-dimensional integral I , which is known explicitly (e.g.,
[47]):

I(q⊥) = π
Γ (1− iα(s))
Γ (iα(s))

�

4ħh2

q2
⊥

�1−iα(s)

. (60)
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While this Fourier transform is not difficult, in the next section we will encounter generaliza-
tions of this sort of integrals which will require an involved analytic continuation to evaluate,
analogous to KLT factorization in string theory [70]. Thus, as a warm-up for these later calcu-
lations, we will now re-derive (60) from scratch using this factorization method.

Our starting point is (57), rewritten in terms of complex variables z and q defined by
x⊥ = (x , y)→ z = x + iy , q⊥ = (qx , qy)→ q = qx − iqy , so that

I(q⊥) =

∫

dx dye−i(zq+z̄q̄)/2ħh zα z̄α , (61)

where we adopt a shorthand
α := −iα(s) (62)

to abbreviate the s-dependence of the integrand and avoid carrying a sign and a factor of i
everywhere. Our goal is to analytically continue the integration over y to the imaginary axis
y → ỹ∝ iy , so that z, z̄ become two independent real variables u= x − ỹ and v = x + ỹ and
we can perform the

∫

du and
∫

dv integrals independently.
This cannot be done by simply rotating the y-contour by π/2, as the integrand does not

converge at both positive and negative values of ℑ(y) because of the exponential. Rather, we
need to fold the y-contour in the upper or lower half-plane. Indeed, in terms of x and y , the
original integrand reads

f (x , y) = e−i(xqx+yqy )/ħh(x + iy)α (x − iy)α , (63)

so if we assume qy > 0 (i.e., ℑ(q)< 0), we need to continue the integral with ℑ(y)> 0. Since
this integrand has cuts starting at i |x | which extend to infinity, our contour must avoid them.
The folding is then explicitly performed by considering the original integrand, integrated along
the closed contour CL of figure 2. If qy < 0, we simply close the contour in the lower-half plane.

Since the integrand is holomorphic within CL , Cauchy’s theorem relates the original inte-
gral along real y to an integral along the imaginary axis given by the contour C1 ∪ C2:

∮

CL

dy f (x , y) = 0 =⇒
L→∞

∫ ∞

−∞
dy f (x , y) =

∫

C1∪C2

dy f (x , y) . (64)

The variable x is integrated over the whole real line, so let us first look at the case x > 0. The
cut in the upper half plane is generated by the factor (x + iy)α, which has a branch point at
y = i x . Along the vertical contours, where y = i ỹ for ỹ > x , z and z̄ become z → u = x − ỹ
and z̄→ v = x+ ỹ . However, x− ỹ is negative, so (x− ỹ)α acquires a phase. On C1, y = i ỹ−ε,
thus (x − ỹ − iε)α = | ỹ − x |α e−iπα, while on C2 we have (x − ỹ + iε)α = | ỹ − x |α eiπα.

Overall, we obtain
∫

C1∪C2

dy f (x , y) = 2i sin(πα)

∫ ∞

x
i d ỹ e−i (uq+vq̄)/2ħh|u|α vα, x > 0 , (65)

where the sin(πα) comes from summing both phases e±iπα, with a sign from opposite orien-
tations. In a slight abuse of notation, we use the u, v variable as a shorthand in the integrand
while we express the measure in terms of x , ỹ .

For x < 0, nothing changes. The branch points at ±ix exchange locations, but there is
no phase associated to the superposed branches in the interval [−|x |, |x |], and therefore the
cut at −ix still comes from the factor (x + iy)α, hence the associated phase factor remains
unchanged. This is depicted in fig. 3. We thus obtain the exact same phase factor as above, so
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−i|x|

i|x|
y y

L

CL

y
i|x|

−i|x|

a) b) c)

C0

C1 C2

Figure 2: Contour deformation. a) Real contour for y (green). b) Closed contour for
which the arcs drop as L →∞ when ℑ(q) < 0. c) The vanishing of the integral on
CL gives that

∫

C0
=
∫

C1
+
∫

C2

that
∫

C1∪C2

dy f (x , y) = 2i sin(πα)

∫ ∞

−x
i d ỹ e−i (uq+vq̄)/2ħh |u|α vα , x < 0 . (66)

At this point, restoring the integral over x , we have expressed the original contour of
integration as:

∫

dx dy f (x , y) = −2 sin(πα)

�∫ ∞

0

dx

∫ ∞

x
d ỹ e−i (uq+vq̄)/2ħh |u|α vα

+

∫ 0

−∞
dx

∫ ∞

−x
d ỹ e−i (uq+vq̄)/2ħh |u|α vα

�

. (67)

This integral is almost factorized in the u and v variables; it only remains to show that the
u and v integration domains are independent. For x > 0, the integration domain is ỹ > x ,
while for x < 0 we have ỹ > −x . The union of these two domains, respectively colored in
pale yellow and pale blue in fig. 4, piece up to the full u < 0, v > 0 quadrant, which achieves
to prove the factorization.

Collecting all signs and factors, adding a 1/2 for the Jacobian dxd ỹ = 1/2dudv, and using
eq.(64), we find that

I(q⊥) = − sin(πα)

∫ 0

−∞
du

∫ ∞

0

dv e−i (uq+vq̄)/2ħh |u|α vα . (68)

−x

x

x

−x
x > 0→ x < 0

x

−x

=

Branches cancel out

Figure 3: As cuts exchange location when x becomes negative, the phase in the in-
termediate segment [−|x |, |x |] vanishes and the upper cut still comes from (x+ iy)α.
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x

y

vu

y ≥ x

y ≥ −x

Figure 4: Quadrant of integration described in (67) and below.

Each integral can now be computed separately (remember ℑ(q)< 0):

I− =

∫ 0

−∞
du e−iu q/2ħh |u|α = Γ (1+α)

�

2ħh
iq⊥

�1+α
,

I+ =

∫ ∞

0

dv e−iv q̄/2ħh vα = Γ (1+α)
�

−2ħh
iq̄⊥

�1+α
,

(69)

for ℜ(α)> −1. Overall, we obtain a KLT-like representation of the integral

I(q⊥) = − sin(πα) I− I+ . (70)

Using the Gamma reflection identity

Γ (1+ x) Γ (−x) =
−π

sin(πx)
, (71)

it follows that

I(q⊥) = π
Γ (1+α)
Γ (−α)

�

4ħh2

q2
⊥

�1+α

, (72)

which matches (60), as desired (recall that α≡ −iα(s)).

5.3 Saddle point, poles and classical bound states

With the analytic formula in hand, we can discuss some consequences of the result.

Saddle. First of all, recall that the eikonal approximation should break down for impact
parameters of order of the Schwarzschild radius of the problem, where strong curvature effects
are expected. In our case, RS = 2GNΛ, where Λ is of order

p

Max(s, m2, M2) and represents
the amount of mass available to form a black hole out of the rest masses and center of mass
kinetic energy. In the ultra relativistic regime, Λ∼

p
s. The two-dimensional Fourier transform

∫

d2 x⊥ above should thus be thought of as having a cut-off |x⊥| > RS , and the integral result
should not be sensitive to RS scale physics.

Fortunately, it is a classic result [93,94], which is immediate to verify. Firstly, for physical
values of s, the integrand does not yield a divergence when x⊥ → 0. Secondly, the integrand
is dominated by a saddle, a critical impact parameter x⊥ = b∗ [93] given by

|b∗|=
α(s)
|q⊥|

. (73)

Using the explicit expression of α(s) given above, it is immediate to see that

|b∗| '
GNΛ

2

|q⊥|
� GN

p
Λ= RS (74)
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because we work in the limit of small momentum transfer s/q2
⊥ � 1. Note that we did not

have to assume a ultra-relativistic limit where s� M2, m2.
Plugged back the integrand, the saddle yields a pure phase and an inverse Jacobian, which

can be calculated to be 1/J = α(s)/b∗ = α(s)/t. Therefore, on the saddle, the full amplitude
behaves as

Meik(q⊥)∝
Æ

(p · P)2 −m2M2 α(s)
t

eiφ , (75)

which is precisely recognised to be, using (55), the four-point amplitude of (54), dressed with
a phase. Anticipating on the following paragraph, note that this expression can not be used
read the poles of the bound-state system. As we explain now, those originate from the region
of integration x⊥→ 0, to which the saddle is insensitive.

Poles and zeroes. Here, we review the analysis of Kabat and Ortiz [47], in order to set the
stage for a similar analysis in the case of linearized Kerr in the next section. A remarkable
feature of equation (72) is the presence of poles located at positive integers iα(s) = n such
that n ∈ N, which are known to contain non-trivial information about the bound states of the
system (see a related discussion in the review [95]). Generalising [47] to the unequal-mass
case, we find that the poles are located at

spoles
n = m2 +M2 ±

√

√

√

4m2M2 −
ħh2n2

G2
+

√

√ħh4n4

G4
+

8m2M2ħh2n2

G2

Áp
2 , (76)

and correspond to the energies (squared) of the bound state system.
The location of these poles can also be read immediately off the integral expression (57),

by noticing that the integral is regular unless α(s) = −in. What cannot be read off from this
expression are the location of the zeros of the integral; these are identified in the explicit
expression in terms of Gamma functions. The zeros are located at positive integers iα(s) = −n
for n> 0 and are found to be given by

szeros
n = m2 +M2 ±

√

√

√

4m2M2 −
ħh2n2

G2
−

√

√ħh4n4

G4
+

8m2M2ħh2n2

G4

Áp
2 , (77)

which again reduce to the zeros of [47] in the equal mass case.
The poles accumulate near the threshold points s = (M ±m)2, while the zeros are located

in the complex plane at szeros
n = m2 + M2 + iℜ(szeros

n ). The bound states are those of the
gravitational hydrogen atom, in a linearized 1/r potential.

6 Kerr background

Using the formalism developed in Section 4, we now compute the 1→ 1 scattering amplitude
for a massive scalar in a linearized Kerr black hole space-time. The result is then interpreted
as the eikonal amplitude for 2 → 2 gravitational scattering of a massive scalar and a mas-
sive particle with infinite quantum spin. The tree-level/Born amplitude for this process was
determined only recently [35–37], and we show that the 1→ 1 scalar amplitude on Kerr corre-
sponds to the eikonal exponentiation of that result. Alternatively, one can view our amplitude
on Kerr as providing an alternative derivation of the tree-level formula.

We also analyze the structure of the integrals in this spinning eikonal amplitude, finding a
surprisingly rich KLT-like factorized form. The saddle points, poles, and zeros of the amplitude
are also described.
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6.1 The eikonal phase for Kerr

Although the 1 → 1 amplitude is a gauge invariant quantity, calculations are much simpler
when the linearized background metric is expressed in harmonic coordinates. In such coor-
dinates, the linearized Kerr metric admits a remarkable closed form which was first given by
Vines [96]:

gµν(x) = ηµν +Pµναβ hαβa (x) , Pµναβ = δ(µ(αδν)β) −
1
2
ηµνη

αβ , (78)

hαβa (x) :=
�

uαuβ cos(a · ∂ ) + u(αεβ)ρλµ uρ aλ ∂ µ
sin(a · ∂ )

a · ∂

��

4G M
r

�

, (79)

where uµ is the unit timelike vector for the source of Kerr, while aµ is the (mass-rescaled)
covariant spin vector,

aµ =
1

2M
εµναβ uν Sαβ ⇔ Sµν = M εµναβ uα aβ , (80)

with a · u= aµuµ = 0, where εµναβ is the (flat) 4d Levi-Civita symbol.
To evaluate the scattering amplitude for a scalar particle crossing this classical background,

we first need to compute the Fourier transform of the projected metric tensor contributing to
the eikonal phase (50). This is

h̃αβa (q⊥) =
�

uαuβ cos(i a · q⊥)− u(uεν)ρλµ uρ aλ qµ⊥
sin(ia · q⊥)

a · q⊥

��

16πG M
q2
⊥

�

, (81)

where qµ⊥ is orthogonal to uµ and to the incoming momentum pµ of the probe particle. Using
equation (2) we can perform all scalar contractions on the support on the pole kinematics
q2 = 0 where5 iεµνρσpµPνqρaσ = mMγv (q · a). As a result we obtain the following 4-point
function underlying the eikonal phase for Kerr

A4(q⊥) =
8πM2 m2 G γ2(v)

q2
⊥

�

(1+ v)2 ea⊥·q⊥ + (1− v)2 e−a⊥·q⊥
�

, (82)

where Pµ = Muµ. The quantity A4(q⊥) represents the scattering amplitude for a test body m
gravitationally interacting at tree level with a massive object M with infinite quantum spin [38,
97]. Interestingly, due to its covariant form this also represents the scattering amplitude for
spinning massive objects – and arbitrary mass ratios – first computed in this exponential form
by Guevara, Ochirov and Vines [35] and subsequently confirmed with different methods6 [36,
98]. As for the related eikonal phase, a straightforward computation gives

χ1(x⊥) = −2ħh
∑

±
α±(s) log(µ |x⊥ ∓ a⊥|) , α±(s) :=

G m M (1± v)2 γ(v)
2ħh v

, (83)

in agreement with the eikonal phase for Kerr computed in [36,59].
Note that α+(s) + α−(s) = α(s). Explicit expressions in terms of s can be unpacked from

the definition of α(s) and the gamma factor in (58) and (59):

α±(s) = ±
G
2ħh
�

s−m2 −M2
�

+
α(s)

2
. (84)

Using that α(s) is explicitly invariant under crossing symmetry s↔ u= 2m2+2M2− s (at
small t), we also discover that α+(s) and α−(s) switch under crossing:

α+(s) = α−(2m2 + 2M2 − s) . (85)

This relation is going to be useful later when we check the crossing symmetry of the Kerr
eikonal amplitude, to which we turn now.

5E.g. see eq.(44) in [36].
6See also [63] for a recent interesting account on this topic.
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6.2 The eikonal amplitude on a Kerr background

At this point, we apply our prescription (45) to the 1 → 1 amplitude on Kerr to extract a
candidate 2→ 2 eikonal scattering amplitude. Following recent interpretations of Kerr in the
context of scattering amplitudes [35–38, 56–64], the natural candidate eikonal amplitude is
for scattering between a massive scalar and a massive particle with infinite quantum spin. This
takes the form:

Meik(q⊥) = −
4i
p

(p · P)2 −m2M2

ħh2

∫

d2 x⊥ e−iq⊥·x⊥/ħh
�

|x⊥ − a⊥|
2α |x⊥ + a⊥|

2β − 1
�

, (86)

where we have omitted the mass regulator and have introduced the shorthand notation

α := −iα+(s), β := −iα−(s) . (87)

This integral therefore generalises the classic eikonal amplitude for scalars (56) to a case that
captures some spin effects. The calculation of the integral is much more involved than the
original spinless case and we devote the rest of this section to its determination by means of
a KLT-like factorization, analogous to the one presented above. We performed several checks
on the final result (presented hereafter); we checked its explicit invariance under crossing
symmetry (this is a very non-trivial check), the location of its poles, and its short q behaviour.
Together, these provide very strong evidence that our result is correct.

Now, for the non-trivial part of the amplitude we want to compute an integral of the form

A(q⊥, a⊥) =

∫

d2z e−i (qz+q̄z̄)/2ħh |z − a⊥|2α |z + a⊥|2β . (88)

After shifting z→ z− a⊥ and rescaling z→ (2a⊥)z, the calculation is reduced to the following
integral

I(q⊥) =

∫

d2z e−i (qz+q̄z̄)/ħh |z − 1|2α |z|2β , (89)

which is related to A by A(q⊥, a⊥) = |2a⊥|2+2α+2β e−i(qa+q̄ā)/2 I(2q⊥a⊥)).
Applying a similar method to the one used in section 5.2 above, we found that the integral

can be decomposed as sums of bilinears of the following three elementary integrals, whose
explicit expression in terms of confluent hypergeometric functions is provided in appendix A:

I1 =

∫ 1

0

dw e−i qw/ħh wα (1−w)β , (90)

I2 =

∫ ∞

1

dw e−i qw/ħh wα (w− 1)β , (91)

I3 =

∫ 0

−∞
dw e−i qw/ħh (−w)α (1−w)β . (92)

These three functions, I1, I2 and I3 are not all independent. One can integrate e−iqzza(1− z)b

along the real axis, which gives a vanishing answer, since the contour can be closed with a
(vanishing) arc at infinity (upper or lower half plane, depending on the sign of ℑq). If ℑq < 0,
we have the following relation:7

eiπα I3 + I1 + e−iπβ I2 = 0 . (93)

It is an instance of Kummer’s relations; see (A.2).

7In string theory, this property helps to decrease the number of basis amplitudes from (n− 2)! to (n− 3)! [99–
101], and is related to the famous Bern-Carrasco-Johansson relations [102]. Here, the number of points n is fixed
by the geometry of space-time (Kerr, Schwarzschild, shockwave) of the integrand and does not relate to the number
of particles involved in the scattering. It would be however interesting to study this point further.
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Figure 5: Contour deformation. The real contour (green) for y is folded up along
the branch cut. On each side of the branch, the integral picks up a phase, as for the
calculation in Schwarzschild background.

The final result of this section is that

I(q⊥) = −(sin(πα) Ĩ1 I3 + sin(πβ) Ĩ2 I1 + sin(π(α+β)) Ĩ2 I3) , (94)

where the tilde above the I j integrals means that they are evaluated at complex conjugate
argument q̄:

Ĩ j := I j(q̄⊥) , (95)

(the other arguments, α,β are not conjugated). This formula can also be recast in the follow-
ing form, using Kummer’s relation (93) above:

I(q⊥) = −( Ĩ1, Ĩ3) · S · (I1, I3)
T , (96)

where S is a momentum-kernel-like [103] matrix defined by

S = −
1
2i

�

1− e2iπβ −eiπα
�

−1+ e2iπβ
�

−eiπα
�

−1+ e2iπβ
�

1− e2iπ(α+β)

�

. (97)

We now turn to the details of the calculation.

Details of the calculation. Our starting point (89) can be rewritten as:

I(q⊥) =

∫

dx dy e−i (qz+q̄z̄)/ħh (z − 1)α (z)β (z̄ − 1)α (z̄)β . (98)

The basics of the calculation are the same as in sec. 5.2. Assuming ℑq < 0, the y-contour needs
to be closed in the upper-half plane, to ensure vanishing of arcs at infinity. There are branch
cuts starting at y = ±ix and y = ±i(x − 1). The contour y ∈ R is folded along a contour on
the vertical axis y = i ỹ with ỹ real. The difference between left- and right- contours, with the
sign for opposite orientations gives factors of sin(πα), sin(πβ) or sin(π(α + β)) depending
on the ordering of the branch point singularities ±x and ±(x −1). An example of the contour
folding is depicted in fig. 5, for which x > 1.

As we shall see below, there are essentially two different cases, which correspond to whether
the first cut is associated to the phase e±iπα or e±iπβ .

For definiteness, let us start with x > 1, which corresponds to the branch cut arrangement
depicted in figure 5, and 6, a). Along the folded contour on the imaginary axis, the d ỹ integral
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Figure 6: Change of branch cuts. We have adopted a different graphical depiction
of the cuts for the sake of clarity, but their position relative to the vertical axis is
irrelevant here. Only the fact that the contour passes on the left and right of those
cuts matters.

gives two contributions, with phase factors sin(πβ) for ỹ ∈ [x − 1; x] along the blue cut, and
sin(π(α+β)) along the red and blue cuts (we shall state this in equations below) for ỹ > x .

When x decreases towards x = 1/2, the upwards and downwards blue cuts cross each
other, see fig. 6, b). The phases annihilate in the interval where the cuts are on top of each
other, ỹ ∈ [x , 1 − x], and the net result is that a blue cut now extends from 1 − x > 0 to
positive infinity, as in fig. 6, b’). Therefore, this does not change the structure of the phase
factors which remain sin(πβ), sin(π(α+β)). This is similar to what is described in fig. 3.

The blue and red cut exchange position when x crosses 1/2. Thus, for x < 1/2, we have a
different phase factor, now given by sin(πα) for ỹ ∈ [x; 1− x] and sin(π(α+β)) for ỹ > 1− x .
When x eventually becomes negative, the two branch points ±ix exchange location but this
does not change the phase factors, which remain sin(πα), sin(π(α+β)), just like above and
in fig. 3; see fig. 6, d) and d’).

The conclusion of this discussion is that the integration domain in x needs to be divided
in two regions : x ≥ 1/2 (graphs a), b’) ) and x ≤ 1/2 (graphs c), d’)), and the full integral is
given by a sum of two terms

I(q⊥) = I+ + I− , (99)

defined below.

First case: x ≥ 1/2. The discussion above helped to understand the structure of the integral
we started from, restricted to x > 1/2, which is given by:

I+ = −2

∫ ∞

1/2

�

sin(πβ)

∫ x

|x−1|
f (u) g(v)dy + sin(π(α+β))

∫ ∞

x
f (u) g(v)dy

�

dx , (100)
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where f (u) and g(v) build up the single valued integrand (i.e. the integrand stripped out of
the phases associated to (−1)α, (−1)β) factors), defined by

f (u) = e−i uq/ħh |u− 1|α |u|β , (101)

g(v) = e−i vq̄/ħh |v − 1|α |v|β . (102)

Again, we slightly abuse notation here, by writing the integrand in terms of u, v = x ± ỹ and
the measure and boundary in terms of x , ỹ . The reader annoyed by this should consider that
u and v are functions of x , ỹ , u := u(x , ỹ) = x − ỹ and v := v(x , ỹ) = x + ỹ . The factor of −2
comes from the 2i from the sine function and an i for the measure dy = id ỹ .

Second case: x ≤ 1/2. The other relevant domain of the x-integration yields

I− = −2

∫ 1/2

−∞

�

sin(πα)

∫ 1−x

|x |
f (u) g(v)d ỹ + sin(π(α+β))

∫ ∞

1−x
f (u) g(v)d ỹ

�

dx . (103)

The last stage is to show that the integrals above can indeed be written as separate integrals
of u and v. We will show how this happens after collecting the pieces of integration domain
corresponding to the same phase factors.

Consider first the case of sin(πβ), which is found only in I+. The corresponding domain
of integration is x ≥ 1/2, x ≥ ỹ ≥ |x − 1|. Carefully drawing this domain, using a picture
similar to fig. 4, yields that this domain is just v ≥ 1,1 ≥ u ≥ 0. Likewise, the contribution
of the sin(πα) term in I− can be seen to be given by an integral over the following domain,
0 ≤ v ≤ 1, u ≤ 0. Finally, the term sin(π(α+ β) receives contributions from both I+ and I−,
which, once pieced together, corresponds to the domain v > 1, u < 0. Rewriting (99) using
this analysis, adding a factor of 1/2 for the Jacobian dx d ỹ = 1/2du dv and the definitions of
I1, I2, I3 above yields (94).

Direct checks. We performed two direct checks on this formula: we checked its invariance
under crossing and its small a⊥ limit. In the a → 0 limit, fig.7 shows that the Kerr eikonal
amplitude descends to the Schwarzschild eikonal amplitude, which is trivially expected by
comparing eq.(89) to eq.(57).

The most non-trivial check is that of crossing symmetry. Under s↔ u = 4m2 − s, α+ and
α− get exchanged, as was explained in (85). This shows immediately that the eikonal Kerr
amplitude (88) is crossing symmetric under s ↔ u = 4m2 − s, up to a change of sign of q⊥.
At the level of the function I(q⊥) defined in (89), we have a similar transformation, which is
given by

I(q⊥, s) = e−2iℜ(q⊥) I(−q⊥, 4− s) , (104)

where we have introduced the explicit dependence on s of the integral I(q⊥) for obvious no-
tational purposes. However, the final expression (94) is not obviously symmetrical under
α↔ β , therefore, checking this symmetry is highly non-trivial. We have verified this explic-
itly in mathematica, and we present in fig. 8, some plots representing the crossing symmetry
of our final answer (94). As a matter of fact, this property delicately relies on the precisely
chosen phases, and does not hold for other combinations.

These checks gives us strong confidence that our result is indeed correct.

6.3 Saddle point, poles and classical bound states

A few things can be said about the integral (94). Firstly, one can read off the poles of the
amplitude without having to compute the integral. Secondly, a saddle-point analysis gives an
expansion at small spin of the amplitude.
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Figure 7: Blue: absolute value of the scalar eikonal amplitude as defined in (60).
Colors: absolute value of Kerr eikonal amplitude A(q⊥, a⊥) = |2a|2+2α+2β I(q⊥a⊥),
obtained from (94) with varying a⊥ as indicated by a = ... on the figure. For a→ 0,
the Kerr eikonal amplitude descends to the Schwarzschild eikonal amplitude. At
larger q, the Kerr eikonal amplitude is the sum of two decaying oscillatory terms
which explains that the absolute values displays oscillations. The absolute values of
the scalar eikonal amplitude kills these oscillations. This plot is obtained for com-
plexified kinematics α,β real constants of order 1.

Saddle-point. The saddle-point is obtained as before by solving the equations

∂

∂ z

�

(qz + q̄z̄) +α− log(|z + a|2)) +α+ log(|z − a|2)
�

= 0 . (105)

This gives a second-order equation in z, with two solutions. One of these two solutions reduces
to the ACV saddle (73) when a→ 0 while the other one runs away to x⊥→ 0. This region of
the integral should not carry information about the physical scattering regime (cf., discussion
of scales in the beginning of sec. 5.3), so we will not investigate it here, this will be sufficient
to reproduce the small a limit, i.e., the Schwarzschild eikonal.

Because neither the details of the calculation nor the explicit expressions – which at in-
termediate and final stages are unwieldy composed expressions of long square roots coming
from solving (105) – we shall simply provide a few key results.

We can, however, Taylor expand the result in the dimensionless variable aq, which we
re-express in a real-valued notation, such that q̄a = q · a + iq ∧ a. The result of a lengthy
calculation easily yields the first few terms of this expansion, which we provide below for
illustrative purposes

A(s, t) =
�

α−
q2

�1−2iα−�

1+ (a · q)
2iα+
α−

+ (a · q)2
α+

2(1− 2α−
2 + iα−)−α−2 − iα−

3)
α−4

+ (a ∧ q)2
(1+ iα−)(α−2 −α+2)

α−4
+O(a3)

�

. (106)

We have not characterised the nature of this expansion in aq but it is tempting to hypothe-
size that it captures some sort of gravito-electric and gravito-magnetic [104] remnants of the
interactions in the linearized Kerr background.

Poles. The non-analyticities of the integral (88) are easy to read off the integral itself. Just
like in the case of the shockwave calculation above, Meik(q⊥) can blow up if and only if the
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Figure 8: Check of crossing. The plots show the real (left) and imaginary (right)
parts of essentially the function I which we evaluated in (94). For each plots, two
curves are plotted which exactly overlap, I(q, s) and e2iℜ(q) I(−q, 4− s) : the curves are
indistinguishable and this shows that the result of the lengthy KLT-like calculation
exhibits crossing symmetry of I shown in eq.(104).

argument of the functions |x⊥± a⊥| goes to zero and at the same time the exponent goes to a
negative value. If we choose +a first for definiteness, in this region, the integral simplifies to

Meik(q⊥)

�

�

�

�

x⊥→a⊥

' e−i q⊥·a⊥ |2a⊥|−2iα+(s)

∫

d2 x⊥ e−i q⊥·x⊥ |x⊥|−2iα−(s) (107)

' e−iq⊥·a⊥ |2a⊥|−2iα+(s)
Γ (1+ iα−(s))
Γ (−iα−(s))

eiφ

q2
⊥

,

up to small corrections, which indeed provides poles at negative values of α−(s). Proving that
the integral is regular in α−,α+ away from those regions goes as follows. Firstly, for large
values of x⊥, the integrand reduces to the original ’t Hooft integrand up to small corrections.
But we know that the non-analyticities in the ’t Hooft integral come from the region x⊥→ 0,
hence the portion of integration corresponding to large x⊥ yields analytic contributions of
α−,α+. Furthermore it is immediately clear that the finite domain between large x⊥ and
x⊥ → ±a⊥ does not bring any non-analyticities (we consider the integral of a continuous
function over a compact domain), which achieves to prove that the only poles are those of
(107) and the ones with α− and α+ interchanged.

The poles are then defined by iα+(s) = n and iα−(s) = n with n a positive integer. What
were zeros in the shockwave case, that is negative values of n, are less straightforward to
interpret now, because the whole integral is not given anymore by the expressions (107), which
are just local expressions. It might be that the rest of the integration domain makes the integral
non-zero overall. Therefore, we shall refer to these points as improper zeros, corresponding
iα+(s) = −n and iα−(s) = −n for n> 0.

Firstly, let us emphasize that the location of the new poles does not depend on a. While
it is clear that, when a = 0, the linear Kerr eikonal amplitude reduces to the ’t Hooft eikonal
amplitude, this does not happen by having poles which are smoothly connected to one another.
The change is more violent, and the residues of the Kerr poles vanish at a = 0, while the ’t Hooft
pole become actual poles only when a = 0, not before. Yet, our amplitude knows about the +
and − polarisations which correspond to the + and − terms in the Kerr amplitude.8 It would
be interesting to investigate this further.

8We thank Alexander Ochirov for a discussion on this point.
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Figure 9: Near the extremities, s = 4m2 and s = 0, the scalar massive eikonal poles
split up into pairs of complex conjugate poles/improper zeros, near s = 0 for α− and
near s = 4m2 for α+. On the axis ℜ(s) = 2m2 we find improper zeros for α+ on
the positive imaginary axis, and α− on the negative imaginary axis, near the loca-
tions of the Schwarzschild eikonal zeros which span the whole positive and negative
imaginary axis.

Now, let us describe briefly the location of the poles and improper zeros of the amplitude,
depicted in figure 9. Because α+ and α− exchange their locations under s ↔ 4m2 − s, we
will only describe the case of the poles and improper zeros of Firstly, the poles of iα±(s) = n
are related by crossing s ↔ 4m2 − s. They accumulate near s = 0, 4m2, but, contrary to the
case of the scalar massive eikonal, they have a small imaginary part (which decreases with
1/n). Secondly, the improper zeros of iα±(s) = −n split in two series : one series are complex
conjugate to the zeros and accumulate near s = 0,4m2, and the other series is located on the
imaginary axis ℜ(s) = 2m2, close to the standard scalar massive eikonal zeros. Since they are
related by s↔ 4m2−s, the series on the positive imaginary axis corresponding to iα+(s) = −n
is just the mirror of iα−(s) = −n on the negative imaginary axis.

Therefore we observe that the massive scalar eikonal poles on the real axis near s = 0,4m2

are ‘lifted’ to pairs of complex conjugates pole/improper zeros, while the ’t Hooft zeros at
ℜ(s) = 2m2 are also slightly lifted with just improper zeros. Since the ‘improper zeros’ are
not zeros of the amplitude, this poses no problem per se, but it would be interesting to under-
stand exactly the analytic structure here. Additionally, all of the poles are complex, suggesting
that the corresponding bound-states are unstable, a feature reminiscent of superradiance in-
stabilities9 for scalar perturbations around a Kerr space-times. A complete solution to the
gravitational bound-state problem on Kerr has been recently investigated in [105, 106]. Pre-
sumably our bound states are a sub-sector of their full solution, and would be interesting to
investigate this issue further in the future.

7 Discussion

In this paper, we proposed a covariant alternative to computing the 2→ 2 gravitational eikonal
scattering amplitude in QFT in terms of a 1 → 1 scattering amplitude in curved space-time
far from the source. This generalizes the much earlier observation of ’t Hooft, linking ultra-
relativistic eikonal scattering of scalars to 1 → 1 scattering on a shockwave space-time. We

9We are grateful to Riccardo Gonzo for enlightening conversations on this topic.
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tested our proposal in Schwarzschild and Kerr space-times, finding complete agreement with
eikonal scattering of massive scalars in the first case, and an amplitude which exponentiates
the Born amplitude for scattering of a massive scalar and a massive particle with infinite spin
in the second case.

There are several interesting open questions and future directions raised by this work; we
discuss some of them here.

Proving the proposal. We showed that the 1 → 1 scattering amplitude in any linearized
stationary space-time has the structural form of a 2→ 2 eikonal scattering amplitude. While
our results for Schwarzschild and Kerr support the proposal that this really is the eikonal am-
plitude for a 2→ 2 scattering process with small momentum transfer, we have certainly not
proved that this proposal is generally true. For instance, our computation in Kerr produced the
exponentiation of the amplitude found in [36, 37], but the exponentiation of this amplitude
has not yet been computed order-by-order in field theory, apart from the leading order term
in the eikonal exponentiation [40].

To truly prove our proposal in full generality, one would require a first-principles deriva-
tion of the non-perturbative background space-time from an infinite resummation of ladder
diagrams. At linear level, it is well known that space-times like Schwarzschild can be recov-
ered by summing Feynman diagrams between a probe and source (cf., [107–110]). It would
be interesting to relate these resummations to the eikonal resummation.

Spinning vs unspinning probe. In our calculation in the Kerr space-time, only the back-
ground is spinning. In [36], the tree-level amplitude A4 was obtained for the 2→ 2 scattering
amplitude where both particles have spins a1, a2. However, because Kerr is really the motion
of a minimal coupled infinite spin particle [36,37], in the process the spins exponentiate and
sum up in such a way that the end result depends only on the total spin a = a1+ a2 at leading
order in the gravitational coupling.10. Similar calculations, including a spinning probe particle
have been studied very recently11 [111,112].

For another spinning object with finite-size effects not captured by the Kerr metric, such
as a neutron star, spin effects do not exponentiate. One could imagine computing a 1 → 1
scattering amplitude in the space-time of a neutron star; our proposal suggests that – at least
in a stationary approximation of the star – this amplitude will exhibit eikonal exponentiation,
but the spin effects themselves may not exponentiate. It would be interesting to attempt such
a scattering amplitude calculation for a neutron star, or indeed any space-time with finite size
effects.

Higher-point amplitudes. In this paper, our focus has been on 1→ 1 amplitudes in curved
space-time and their relation to 2 → 2 scattering in the leading eikonal limit. However, one
could also compute higher-point amplitudes using the general framework of QFT in curved
space-times. This will obviously introduce further complications: we were able to avoid strong-
field effects (e.g., particle creation) that would have spoiled the existence of a S-matrix for
1→ 1 scattering by localizing the boundary term for the amplitude far from the source. Higher-
point amplitudes will not be pure boundary terms, so finding a consistent way to avoid strong
field effects will be more subtle.

Nevertheless, there are clear reasons to consider such higher-point amplitudes. For in-
stance, it is natural to propose that 1→ 2 scattering in a curved space-time with an emitted
graviton will correspond to small-angle 2 → 3 scattering with the emission of gravitational
radiation. This is precisely the context of gravitational wave emission from binary collisions.

10We thank Alexander Ochirov for a discussion on this point.
11AC thanks Justin Vines for sharing a preliminary version of [111].
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This idea of capturing ‘eikonal with emission’ from scattering on curved backgrounds has
already been studied in the context of ultra-relativistic scattering by using shockwave back-
grounds in gravity [85, 113] and QED [51]. Here, there are no ambiguities since the shock-
wave background admits an S-matrix, so there remains work to be done to extend these ideas
to generic stationary backgrounds.

Relation to string theory amplitudes and twisted intersection theory. It would not have
escaped the eye of the reader accustomed to string theory amplitudes that both the massive
scalar eikonal and the Kerr eikonal amplitude are reminiscent of string theory amplitudes. An
argument due to Verlinde and Verlinde [46] to explain the string-like structure of the old ’t
Hooft result is that the quantum gravity path integral, in the eikonal limit, should reduce to a
topological-2d sigma model in the transverse plane. String like amplitudes are then obtained
in the specific shockwave background by determining the phase shifts of the amplitude. It
would be interesting to reproduce this calculation in our case, and we leave this to future
work. Overall, we now have a possible qualitative explanation for the resemblance of this
amplitude to string-like amplitudes, which should therefore expect to hold generically.12 This
story however is a little not fully satisfactory because the eikonalisation in the small t regime
is a phenomenon more generic than gravity. One might be tempted to speculate that the
existence of KLT relations (to which we come to shortly after) might suggest that those models
have intrinsically something to do with closed strings, hence gravity, but QED is also know
to eikonalize and has the exact same structure in terms of products of Gamma functions and
2d integrals, see e.g. [114, (9)]. However, it is still interesting to wonder about the physical
nature of the single copy of the eikonal amplitudes, which would be a 1d effect of some sort.
It would be interesting to understand these points further.

Another aspect of this study is the existence of a twisted (co)homology behind those in-
tegrals (see [115]). Precisely because the shockwave and the Kerr eikonal amplitude assume
this string-like form, a formalisation of the KLT calculations can be immediately done. In this
context, the three integrals, two of which are independent are a basis of amplitudes and the
momentum-kernel-like matrix S, or rather its inverse [116], represents the intersection ma-
trix between the twisted cycles. Likewise, the Kummer relations (93), (A.2) are nothing but
the vanishing of a boundary twisted cycle. Contrary to the usual case of string theory, where
we integrate rational functions against the multivalued form ω = x s(1− x)tdx and poses no
problem of convergence, here we look at a Fourier transform and the exponential allows con-
vergence only in one half-plane. Therefore, only one vanishing relation can be written, and
not two.
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A Confluent hypergeometric functions

The integrals I1, I2 and I3 defined in (90) can be expressed in terms of the M and U conflu-
ent hypergeometric functions, which assume the following integral representations (see for
instance [117, chap. 13])

M(a, b, z) =
Γ (b)

Γ (a) Γ (b− a)

∫ 1

0

ezt ta−1 (1− t)b−a−1 dt , ℜb >ℜa > 0 ,

U(a, b, z) =
1
Γ (a)

∫ ∞

0

e−zt ta−1 (1+ t)b−a−1 dt , ℜa > 0 .

(A.1)

They obey the following relation, known as one of Kummer’s relation:

U(a, b, z) =
Γ (1− b)
Γ (a− b+ 1)

M(a, b, z) +
Γ (b− 1)
Γ (a)

z1−bM(a− b+ 1, 2− b, z) . (A.2)

We then immediately obtain

I1 =

∫ 1

0

dw e−iqw wα (1−w)β =
Γ (1+α)Γ (1+ β)
Γ (β +α+ 2)

M(1+α, 2+α+ β ,−iq) , (A.3)

I3 =

∫ 0

−∞
dw e−iqw (−w)α (1−w)β = Γ (α+ 1)U(α+ 1,α+ β + 2,−iq) . (A.4)

Using the monodromy relation (93), which is nothing but the Kummer relation written
above in (A.2), we finally get

I2 =

∫ ∞

1

dw e−iqw wα (w−1)β =
π

sin(π(α+ β))

�

Γ (1+ β)
Γ (α+ β + 2)Γ (−α)

M(1+α, 2+α+β ,−iq)−

(iq)−α−β−1

Γ (−α− β)
M(−β ,−α− β ,−iq)

�

. (A.5)

Note that Mathematica expresses I1 in terms of Hypergeometric1F1Regularized[a,b,z]
function, which is a confluent hypergeometric function denoted M(a, b, z) related to M(a, b, z)
via M(a, b, z) = Γ (b)M(a, b, z).
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