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Abstract

This work theoretically explores how to emulate twisted double bilayer graphene with
ultracold atoms in multiorbital optical lattices. In particular, the quadratic band touching
of Bernal stacked bilayer graphene is emulated using a square optical lattice with p,,
Py, and d,:_,» orbitals on each site, while the effects of a twist are captured through
the application of an incommensurate potential. The quadratic band touching is stable
until the system undergoes an Anderson like delocalization transition in momentum
space, which occurs concomitantly with a strongly renormalized single particle spectrum
inducing flat bands, which is a generalization of the magic-angle condition realized in
Dirac semimetals. The band structure is described perturbatively in the quasiperiodic
potential strength, which captures miniband formation and the existence of magic-angles
that qualitatively agrees with the exact numerical results in the appropriate regime. We
identify several magic-angle conditions that can either have part or all of the quadratic
band touching point become flat. In each case, these are accompanied by a diverging
density of states and the delocalization of plane wave eigenstates. It is discussed how
these transitions and phases can be observed in ultracold atom experiments.
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1 Introduction

Emulating quantum many-body Hamiltonians using ultracold gases of atoms in an optical lat-
tice have undergone significant advances in recent years [1,2]. The ability to realize strongly
correlated Hubbard models has been achieved [3, 4] as well as the ability to program dis-
ordered or quasiperiodic potentials into the system to induce localization phenomena [5, 6].
On the other hand, recent developments in the ability to accurately twist van der Waals het-
erostructures [7-11] have opened the door for a new level of control over two-dimensional
solid-state materials. Recent theoretical work has proposed realizations of this phenomena in
ultracold atomic systems by either twisting the optical lattice [12] or its spin state [13], as well
as emulating the effects of a twist using incommensurate, quasiperiodic potentials [14-18].
Recently, experiments have successfully twisted optical lattices holding a Bose-Einstein con-
densate opening the door for experimental realizations of twistronics of ultracold atoms [19].

A fascinating aspect of twisted van der Waals heterostructures is that despite the under-
lying materials being weakly correlated, twisting induces (an almost periodic) moiré pattern
on a much larger superlattice length scale that strongly renormalizes the electronic disper-
sion inducing isolated flat bands that quench the kinetic energy and promote strong correla-
tions [20-24]. This approach has been remarkably successful as there are now experimental
discoveries of correlated insulators and superconductors in twisted bilayer graphene [7-11],
twisted double bilayer graphene [25-27], twisted tri-layer graphene [28-31], and in twisted
transition metal dichalcogenides [32,33]. Moreover, topological states have also been ob-
served with a quantized anomalous Hall effect when magic-angle graphene is aligned with the
bornon-nitide substrate [10, 34, 35].

As is now becoming clear, twisting represents a common approach to downfold and re-
construct the underlying band structure that now lives in a mini Brilloiun zone due to a much
larger approximate moiré unit cell in real space (e.g. see Fig. 1). While originally twisting was
proposed to manipulate the low-energy massless Dirac excitations in graphene it is now under-
stood that it can also have dramatic effects on higher order nodal points as well as states with
a Fermi surface [32,33,37,38]. In particular, the quadratic and cubic band touchings that oc-
cur in AB Bernal stacked bilayer [25-27] and ABC stacked trilayer graphene [39] respectively
have both been manipulated via a twist to induce correlated insulators and superconductors.
While at face value these nodal touching points appear similar, in two-dimensions however,
any touching point with an integer power that is larger then linear will have a finite density
of states at the Fermi energy and hence be metallic, which is in stark contrast to the exact
zero density of states in a Dirac semimetal. As a result, it is unclear what aspects of twisting a
Dirac semimetal, such as a magic-angle with a vanishing velocity that coincides with the de-
velopment of a finite density of states and the existence of flat isolated bands can carry over to
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twisting higher order nodal touching points. For example, in twisted double bilayer graphene,
a magic-angle condition where the quadratic band touching point becomes flat only persists
in the absence of trigonal warping terms and particle hole asymmetric perturbations [40]. In
light of the wide variety of twisted van der Waals heterostructures it is an interesting problem
to understand how to emulate other classes of twisted band structures.

In this manuscript, we build on this perspective to emulate twisting quadratic-band-
touching (QBT) bands as in double bilayer graphene (i.e. twisting two different bilayers of
AB-Bernal stacked bilayer graphene) in ultracold atoms. Our proposal utilizes multiorbital
optical lattices that have been realized in Refs. [41-43], depicted in Fig. 1. In particular, we
consider a three-orbital model on the square lattice introduced in Ref. [36] that has a QBT
in its dispersion relation. The effect of twisting is emulated via a two-dimensional quasiperi-
odic potential, which can be realized using recently developed techniques that have observed
two-dimensional localization transitions [44,45]. We show that the general notion of a magic-
angle condition, where the Dirac cone velocity vanishes in the presence of an incommensurate
tunneling or potential, naturally generalizes to the case of a quadratic band touching. Here,
the quadratic band touching affords a lot more flexibility then a Dirac point allowing for magic-
angles where only part of the quadratic band touching point becomes flat in addition to fully
flat nodal points. It is demonstrated that in the incommensurate limit each magic-angle con-
dition becomes an eigenstate phase transition, where the plane wave eigenstates Anderson
delocalize in momentum space. As a result, the system transitions into a metallic phase with
a diverging density of states. In the vicinity of the quadratic band touching point we find the
incommensurate potential drives the formation of a sequence of minibands that live on the
moiré superlattice. Last, we discuss how each phase and phase transition we have found can
be probed in experiments on ultracold Fermi gases.

The remainder of the manuscript is organized as follows: In Sec. 2 we define the model
and parameter regime we consider. We also define key observables such as the effective mass
of the QBT band and inverse participation ratio, and introduce the numerical approaches. In
Sec. 3 we investigate how the excitation spectrum is affected by the quasiperiodic potential,
first calculated by perturbation theory and next with finite-size numerics. We see how the
dispersion is renormalized, especially how the band flattens and the minibands emerge. We
study the eigenstate properties of the band flattenings in Sec. 4 and how it relates to the
Anderson-like localization transition. We discuss the experimental realization and noteworthy
outlooks in Sec. 5 and conclude in Sec. 6.

Figure 1: Multi-orbital optical lattice and moiré pattern: Schematic description
of the optical lattice from Ref. [36]. The p,, p,, and d,._,» orbitals on each site are
depicted in the middle three sites, where the different color indicates the sign of the
wavefunctions. The right figure shows a top view of two incommensurate square
lattice, demonstrating the moiré lattice that arises due to their interference pattern.
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2 Model and Approach

To emulate twisted double bilayer graphene we take a Hamiltonian that is given by
H == HO + HV 3 (1)

where H is the dispersion that must encode a quadratic band touching at an isolated point in
the Brillouin zone, and Hy, emulates the effect of a twist through an incommensurate quasiperi-
odic potential. To construct H, we consider a three-band model from Ref. [36] on the square
lattice, representative of the orbitals p,, p,, and d,2_,> at each site r of an optical lattice, see
Fig. 1. The details on the realization of the model, including the experimental parameters
for the optical lattice and pre-tight binding approximation band structures, are presented in
Appendix A. In the following we focus on the tight binding limit that is given by

Ho= > W Ho(k)¥, 2
k

where ¥ = (d(k), p,(k), p,(k)) and

—2t44(cosk, +cosk,)+ 6 2it,q sink, 2it,q sink,
Ho(k) = —2it,q sink, 2t,, cosk, —2t, cosk, 0
—2it,gsink, 0 2t,, cosk, —2t;p cosk,

()
Here, t,p is the hopping parameter between a and f8 orbitals, where t,, denotes the p, -
orbital hopping in x/y direction while t;p is the p,,,-orbital hopping in y/x direction. &
is the relative chemical potential of the d,>_ . orbital to the p orbitals, which controls the
hybridization between the d and p orbitals. To start with a clean quadratically touching single
particle spectrum with no other energy levels in the vicinity of the touching energy, in this
paper we concentrate on the strong hybridization limit (0 < & < 4t44 + 2t,, — 2t’ ). For the
detailed tight binding model constructed via an optical lattice and its weak hybridization limit,
see Ref. [36].

The three band model in Eq. (3) generally has degeneracies at the I' and the M points,
and in the strong hybridization limit only one band connects the two degeneracies in the
I'M line as shown in Fig. 2. Both degenerate points disperse quadratically, and we call
these QBT points. We choose the parameters such that the quadratic dispersion is isotropic
(tga =tpp =3t,, =6 =t,and tpq = \/(tpp —t],)(2t,, =2t/ +4tqq +6)/2), however our
discussion is not specific to this fine tuning of parameters. For the following discussion, we
focus on the QBT with the lower energy (with energy Eqpr) located at the M point as this
isolated with no other “parasitic” bands crossing at this energy.

To characterize the properties of the QBT, we expand #,(k) around the M point up to
quadratic order in q =k — (7, 7):

taa(4—qi—qy)+ 6 —2itp4q, ~2it,qq,
HP(q) = 2itpqqyx tpp(—2+2) + ) (2—q2) 0
2ityqd, 0 tpp(—2+q2) +t,,(2—¢2)

4
The eigenenergies of H(®(0) are 4t4; + & and doubly degenerate —2t,, + Zt;p’s, where the
latter is the value of the energy of the QBT, namely Eqgpr = —2t,, + 2t;p. The QBT can be
further characterized by its effective curvature, or equivalently the inverse effective mass, at
the touching point. For simplicity, we consider the effective masses along the principal axis
4 =0,9, =0 (m;f) and the diagonal axis ¢, +q, = 0,9, —q, =0 (mdi). The masses are
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— 3

Figure 2: Quadratic band touching: The band structure of the three band model
Eq. (3) in the strong hybridization limit. Two QBT points are present in the I' and
M points. We concentrate on the lower energy QBT at the M point, indicated with
a red dot, as there are no other bands at this energy (i.e. it is an isolated quadratic
band touching). We define the curvature of the quadratic bands with the effective

masses m* 4> Where the effective dispersion near QBT for the upper band is shown
as dashedp (ines.

defined from the low energy dispersion

g, =)= 19 g o gl )
d 2m Y 2my

The * indicates the electron-like(+) and hole-like(—) bands touching at the QBT point. Note
that the C, symmetry of the system ensures the m’s are well defined with p,. <> p,, p; <> —p;
in the definition. The Eqpy and the quadratic dispersion described by m: /q are shown in Fig. 2
as a red dot and dashed lines.

To construct the full Hamiltonian of interest H = H, + Hy, we include a single particle
potential:

Hy = Y WiV, ©)

where W, is the Fourier transform of ¥y.. We take V(r) to be quasiperiodic with the underlying
optical lattice

V(r) = Wlcos(Qx + ¢,) + cos(Qy + ¢,)], 7

with an incommensurate wave vector Q (i.e., Q/2m is an irrational number in the thermody-
namic limit), W is in units of ¢ throughout, and ¢, € [0, 27) is a random offset of the potential.
We focus on the behavior of the model in the space of W —Q and consider a few particular
choices of incommensurate Q. These include taking the system size to be given by the nth
Fibonacci number L = F,, and the quasiperiodic wavevector to be Q; /27 = F,_,/L such that
as L — oo we have Q; /27 — [(+/5+ 1)/2]2. We also focus on Q; /27 = F,_,/L which cor-
responds to Q; /21 — [(+/5+3)/2]72 as L — o0o. These Q,’s are a finite system approximate
for the true incommensurate Q(= lim; _,,Q;) and we emphasize that the approximation is
controlled, i.e. |Q; — Q] strictly decreases to O as L increases, when Q;’s are defined as above
with the Fibonacci numbers.
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To determine the properties of the model we use exact diagonalization and Lanczos to
determine the eigenenergies E; and eigenstates |E;). From these we determine the inverse
participation ratio (IPR) in the basis |a) (in particular we focus on @ = r and k) that is given

by

T (E)= Y Wa(B)*, ®)

where ¢ ,(E) = (a|E). If the wavefunction at energy E is delocalized in the basis a then its IPR
will go like Z,(E) ~ 1/L? whereas if it is localized it will approach an L independent constant,
i.e. Z,(E) ~ const. On the other hand, if the wavefunction is critical then it will develop
multifractal scaling that is characterized by Z,(E) ~ L") where 7(2) is the so-called second
fractal dimension [46].

We study the effective band structure of the model in a mini Brillouin zone (mBZ) by
twisting the boundary conditions by an amount 6 = (6,, 6, ), which shifts the momentum
k — k+ 0 /L. By treating the entire L x L system as a supercell, twisting allows us to access the
Bloch momentum that live in a mBZ of size 27t/L x 27t/L. Thus, by determining the energy
spectrum as a function of the twist {E;(0)} we obtain an effective dispersion in the mBZ. Our
QBT of interest, at the M point in the original Brillouin zone, is at the I' (M) point of the mBZ
for an even (odd) L.

Note that there is no particle-hole symmetry in the bare model H, [Eq. (3)], and partic-
ularly at the QBT energy of interest. Therefore, the E,pr will not be stable as we include
the potential term Hy [Eq. (6)] and effectively tracking the QBT states and its energy as we
tune the quasiperiodic potential is important. To achieve this, we compare the wavefunction
overlap between the known QBT state at W, |Eqgr(W)), and states in the vicinity of Eqpy at
W+ 6W, |E;(W + 6W)). For the QBT state at W + 6W, the overlap with |Eqzr(W)) will be
significantly larger than the other states (Please refer to the Appendix B for details). The QBT
energy depends on the random phases ¢,’s and is computed separately for each sample of
random phases.

We also compute the density of states (DOS),

p(E)= 526(15—1:1), ©)

using the kernel polynomial method (KPM) [47] by expanding p(E) in a Chebyshev expansion
up to an order N.. We average over 100 samples with different ¢,’s in the data shown in the
main text. The low energy density of states in two dimensions in the vicinity of an isolated
band crossing takes the form

p(E) ~ |EPPF*, (10)

where 2 is the dynamical exponent that relates energy to length via E ~ L™%. For a QBT, g = 2
results in a finite density of states at the QBT energy. In order to probe the low energy scaling
of the DOS we will utilize the scaling with the KPM expansion order N [15]. As a result of the
finite expansion order of the KPM and the Jackson Kernel used here, the Dirac-delta functions
in Eq. (9) are broadened to (approximately) Gaussians with a finite width 6E = D /N where
D is the bandwidth. Thus, we can use the scaling with N to determine the value of z as Eq. (10)
implies p(Eqgpr) ~ Né_z/z.

3 Renormalized Excitation Spectrum
To determine the phase diagram of the model as we tune the strength and moiré wavelength

of the quasiperiodicity we start by computing the renormalized low energy excitation spec-
trum. The phases and transitions we identify are then corroborated as bona fide quantum
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phase transitions through studying the nature of the wavefunctions in Sec. 4. We first study
the nature of the low energy excitation spectrum in the vicinity of the QBT and how it is renor-
malized by the quasiperiodic potential. In order to assess these effects we use a combination
of diagrammatic perturbation theory and numerical computations of the energy as a function
of twisted boundary conditions.

3.1 Perturbation Theory

In this section, we use perturbation theory to analytically study the weak coupling regime
(W < 1). Here, we use the full (k) in Eq. (3) and include the quasiperiodic potential H,,
as a perturbation using diagrammatic perturbation theory [14]. After formally performing
the perturbative calculation, we expand our results near the QBT point up to second order in
q = k—(m, m), and thus the resulting theory is only valid near the QBT point. This is sufficient
to extract estimates of the stability of the QBT, the QBT energy, and the renormalized dispersion
(i.e. effective mass) near the QBT point. For these purposes it is important that the QBT is
isolated in the band structure and no other parasitic bands cross the Fermi energy at the QBT
energy.

To focus on the energy of the QBT, we add a chemical potential u = 2t,, — Zt;p to the
unperturbed Hamiltonian to shift the QBT to zero energy for convenience. This does not
affect the perturbation theory itself, however, it allows us to expand also in the energy and get
closed form solutions, e.g., Eq. (14) below. The chemical potential u is a new parameter of
the theory and renormalizes independently, although its bare value is related to other hopping
parameters. Therefore, we use #H,(k) + uls,3 as our final unperturbed Hamiltonian. We
evaluate the single-particle self energy at second order, which yields the renormalized effective
Hamiltonian up to second order in q,

AP (q) =
fag(4—qi—q2)+ 6+ —2if)4q, —2if,qq,
2iEpdqx tpp(_2+q)2()+ t;p(Z—q}z,)‘f‘ﬂ B &qxfly 5
2itpqqy aq.q,y Epp(—2+a) +1,,(2—q) + 1

(11

where the tilde indicates the variables are renormalized relative to Eq. (4). Details of the cal-
culation and the lengthy expressions for the renormalized parameters are given in Appendix C
as their specific form are not of direct relevance to the discussion. From the perturbation the-
ory and numerics we are able to identify magic-angles and construct the phase diagram shown
in Fig. 3.

There are a few takeaways from Eq. (11). First, in the vicinity of the QBT, the perturbation
theory preserves the structure of the Hamiltonian and only renormalizes the effective parame-
ters. One exception is the & term, which is generated in the perturbative process, i.e., it can be
viewed as being renormalized from a bare value of a = 0. Therefore, the dispersion remains
quadratic in general, except for the special points with so-called “magic angle condition” which
we elaborate later.

Second, the touching of the two quadratic bands is stable. QBT appears as a double de-
generacy at q = 0, which is a feature remaining in Eq. (11). The QBT energy can be read from
the diagonal Hamiltonian H?)(0) as

2 ~ ~ ~
ED L (W,Q) =—2,, + 20 +fi. (12)

As mentioned earlier, the lack of particle-hole symmetry in the system implies that Eqpy will
change as the quasiperiodic potential is applied as shown in Eq. (12) and Fig. 4.


https://scipost.org
https://scipost.org/SciPostPhys.13.2.033

Scil SciPost Phys. 13, 033 (2022)

Figure 3: Phase Diagram: The perturbation theory predictions on diverging mass
(solid lines) are plotted on top of the numerical calculation of the corresponding
quantity that is a product of all effective masses at the QBT point (] | mlf/ 4) com-
puted from a L = 55 system size. The color scale yellow (blue) corresponds to large
(small) [ mlf /d and the yellow region emerging from the origin matches very well
with the perturbation results. The light blue regions correspond to QBT phases where
as the yellow regions identify each magic-angle condition with a flat dispersion in part
(or all) of the QBT. The precise location of each magic-angle will weakly shift with
increasing L but the yellow in the phase diagram is a good representative for the loca-
tion of each magic-angle transition. The dark blue region (connected to W — ©0) is
the QBT broken phase where gap opens at the nodal touching point. The two values
of Q’s we concentrate on the following discussion are also indicated as dashed lines.

We can calculate the change in effective masses (see Sec. 2 and Fig. 2 for definitions) after
including the perturbation:
8t
+ _ |9z pd
mp (W’ Q) - 2tpp -

4tdd + prp _2t;p +6

1
m (W,Q) = —,
p
2t1/3p
my(W,Q) = S S—
d J ~ ~ ~ )
top — t;p —a
-1
=2
— 8tpd ~ ~/ ~
m,(W,Q) = —(tpp—tpp+a) . (13)

4tqq + 28, — 28 +6

Interestingly, the perturbative expressions show that it is possible for the renormalized masses
to diverge, signalling the generation of flat bands. This is thus the natural extension of the
concept of the “magic-angle condition” suitably generalized for Dirac semimetals [14] to the
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Figure 4: Renormalization of the quadratic band touching: Comparison of the
perturbation theory (dashed lines) and numerical calculations for L = F;, = 144 and
Q1 /21 = F15/L = 55/144 system across the magic-angle transition. (a) The shift of
the QBT energy as W increases. Note that the QBT energy is not fixed due to lack of
particle-hole symmetry. The QBT splits in the numerical calculation near W ~ 0.65,
and the energy difference is in the order of 10~3, which is not visible in this scale.
(b,c) The effective curvature of the upper (blue) QBT band and lower (yellow) QBT
band in the direction of (b) principal axis and (c) the diagonal direction. As shown
in (b), the diverging effective mass m; around W, ~ 0.573 identifies the magic-angle
condition where part of the QBT has become flat.

QBT case. This is also consistent with the notion of a magic-angle in twisted double bilayer
graphene in the absence of trigonal warping and particle hole asymmetric perturbations [40].
Thus, in the following whenever at least one of the effective masses diverges we refer to this as
a magic-angle condition, which will also be accompanied by a significantly enhanced density
of states at the QBT energy. In the limit of an incommensurate potential we show in Sec. 4 that
each magic-angle coincides with a delocalization of eigenstates in momentum space and are
thus in fact eigenstate phase transitions. We also find in the perturbation theory [Eq. (13)],
and later confirm from the numerical calculations, that the four masses do not diverge simul-
taneously. In our parameter regime, m; diverges first which is immediately followed by the
divergence of m. The masses along the diagonal, mf;, do not diverge before the second order
perturbation theory breaks down.

The renormalized parameters have a complicated form that is not particularly illuminating
and therefore finding a closed form for the magic angle condition (m™! = 0) is formidable.
However, for m; which has a relatively simple form, we can find the magic angle condition
after expanding up to linear order in energy:

: 4 2 2 2 @2 -1/2
2t}’) sin? Q — t,q cosQ .\ 23, sin Q—th(tl’)tdQ+ tatyy sin® Q)

W,(Q) =2 - — (14)
2t 2tpqt,(taqtyg = Ly Sin” Q)
The tp,g, t;Q, and t,, are defined as follows:
tpg = tp— tzla cosQ—u/2,
/ — 4/
te=t,— 6 cosQ+u/2,
tgg = tg(1+cosQ)+ (6 +u)/2. (15)

We plot the function of W,(Q) in Eq. (14) for which [m;(W, Q)]™! = 0 together with the numer-
ically evaluated perturbative result for the previous magic angle condition [m;(W, QI '=0
in Fig. 3, as the two solid curves (that are indistinguishable at this scale at small W). Com-
paring the perturbative results with the exact numerical calculations of the model for a finite
system size, which are described in more detail in the following section, we find that the sec-
ond order perturbation theory predicts the magic angle condition rather accurately for small
Q’s where the diverging effective mass occurs at a relatively small value of W.

9
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For larger values of Q, second order perturbation is not enough and higher order correc-

tions should be included to predict the correct phenomenology. To go beyond second order
in the analytic perturbation theory is complicated, primarily due to the complex structure of
the bare theory [Eq. (3)]. However, we can proceed to higher orders in perturbation theory
numerically, by writing a tight-binding model in momentum space as in Ref. [22] (See Ap-
pendix D for details of this calculation). Using this numerical perturbation theory, we calculate
the dispersions up to 6th-order, showing the results in Fig. 4.
Fig. 4(a) shows the energy of the QBT point Eqzr (note that Eq. (12) is its expression in second
order perturbation theory). The second, fourth, and sixth order perturbation theory results are
compared with the numerically exact result for L = F1, = 144 and Q; /2n = F,y/L = 55/144.
One observes that the second order perturbation theory agrees well with the numerics for
W < 1, and for large W’s the perturbation theory progressively approaches the numerical
result as we get to higher-orders.

The masses m; /q are also calculated and compared with the same numerical simulations
in Fig. 4(b,c). We see that the agreement with the numerics becomes significantly better as we
include higher order corrections, and the 6th order result shows good agreement. Note that
the relatively slow convergence to the numerical value in Fig. 4(b,c) are because we chose
a large Q(= 2n[(+/5 + 1)/2]2) where important features occur for large values of W. For
smaller Q’s lower order is sufficient, as it is evident from the comparison between numerics
and second order perturbation theory in Fig. 3.

3.2 Numerical results

We now turn to numerically computing the low energy excitation spectrum that we compare to
the perturbative results of the previous section. Going beyond the low energy renormalization
near the QBT we also determine the nature of the formation of minibands and the nature of
the density of states.

3.2.1 Renormalized dispersion

Now, we directly compute the single particle Hamiltonian H = H, + Hy [Eq. (3),(6)] on a
finite system. As mentioned in Sec. 2, we choose system sizes to be Fibonacci numbers to
systematically approximate the irrational wavevectors. Calculating the energy eigenvalues
with a twisted boundary condition (i.e., Y(r + L) = e®ua)(r), where (i = %,¥) is equivalent
to considering the whole L x L system as a supercell, and thus we can calculate the energy
dispersion in the folded-Brillouin zone labeled by twists 6, and 6,. Starting from a system
without a quasiperiodic potential, we increase the potential in small increments (AW = 0.001)
and obtain the eigenstates via Lanczos. Then, we track the QBT state by searching for the
maximum overlap with the known QBT state in the previous W. This procedure is elaborated
in Appendix B.

With the dispersion and knowing the QBT state, we can numerically obtain the quanti-
ties calculated by perturbation theory. The comparison between the QBT energy and effective
masses from the two methods are already presented in Figs. 3, 4 which showed good agree-
ment.

In Fig. 3, to determine if any of the masses have diverged the numerical data shown is the
product of the four effective masses (l_[azp,d,b::t mZ) for a L = F;5 = 55 system size. Since the
four masses diverge at different points, we use this measure to indicate any band flattening
in the two bands and two directions that help us identify each magic-angle transition. A line
of magic-angle conditions (i.e. diverging effective mass) emerges from the origin, following
the perturbation theory prediction. There is also a second line of band flattening occurring at
a larger W which is depicted as a dashed line. The mass divergence mentioned above occurs

10
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very sharply while the mass changes its sign, and the system reenters the QBT phase after the
divergence.

Another feature in Fig. 3 is the phase at large quasiperiodic potential, approximately
W Z 0.65, displayed as dark blue. In this regime, the quasiperiodic potential is strong enough
that gaps open up at the QBT. The system loses all its quadratic touching character and we
call this a QBT broken phase. This gap opening can be explicitly seen from the calculation of
Eqpr. The numerical data in Fig. 4(a) is actually split at large W, however the gap is small
and the effect is not visible in this scale.

Considering the QBT broken phase, there are commensurate artifacts from the finite size
in this figure. For finite size systems with periodic (and twisted) boundary conditions and
Q/21 = m/L, special non-coprime ratios (of m and L) can simply gap out the QBT. For exam-
ple, the QBT broken state remains largely extended when Q/27 = 1/2 because for this Q the
potential is V(r) = W[cos(mx + ¢,) + cos(my + ¢,)], which simply quadruples the unitcell
(a factor of 2 from each directions) and nothing else. For these commensurate Q’s there is
no delocaization in momentum space (as Z; is then bounded from below due to Bloch’s the-
orem [14]). Similar, but less prominent situations are observed in Q/2m = 1/3, 1/4,--- as
well. This is an artifact of the finite system we are simulating, and thus this feature will not
be present in the thermodynamic, incommensurate Q limit.

3.2.2 Minibands and the density of states

To assess the renormalized spectrum from across a broader energy range we compute the
density of states p(E). We expect the DOS will be enhanced when the effective mass diverges,
and can also directly observe the gap formation from the DOS. Fig. 5(a) shows how p(E)
evolves as the quasiperiodic potential increases for Q; /2m = Fg/L and L = F;5, = 144. From
the upper panel, we observe a very small gap near W = 0.14 (the arrow near E = —0.12) that
quickly vanishes, and for larger W a clear gap is opened for W = 0.22. This creates a miniband
with an enlarged unit cell (downfolded Brillioun zone) at low energy indicated by the dashed
arrows. As we increase W further in the lower panel, a second gap is opened inside the first
miniband for W = 0.49 (arrow near E = —0.06) that becomes prominent for both positive
and negative energies around W = 0.52 creating a second miniband with an even smaller
mini Brillouin zone.

We can understand the origin of the gaps and minibands by investigating the number of
states within the miniband. If the mBZ has an area of A, the number of states in the mini-
band near the QBT should be %4‘%. The 2/3 factor reflects that only two bands (which are
quadratically touching at the QBT) out of the three orbitals contributes to the miniband and
the later factor is the ratio of the mBZ to the full Brillouin zone. Considering the two mini-
bands found in the W = 0.52 data, let us label the band roughly within —0.05 < E < 0.05
as the 1st miniband (denoted MB;), and that within —0.11 < E < 0.10 as the 2nd miniband
(denoted MB,). By integrating the DOS in the first miniband [ f MB, p(E)dE] we find that the

Ay, = Q?. Similarly, for the second miniband we find Ay, = 2Q?. Thus, the quasiperiodic
potential has “carved out” a mBZ whose size can be understood by examining scattering on
the Fermi surface at a finite energy away from the QBT.

Let us consider a schematic Fermi surface as in Fig. 5(b). The circles represent the Fermi
surfaces (larger circle has a larger Fermi energy) and the arrows are the quasiperiodic wavevec-
tors Q% and QY. The red dots are all connected through a second order hopping process of
either Qx or Qy. All the parallel points in the inner dashed square are connected likewise.
Through this second order process in the quasiperiodic potential scattering, gap forms at the
inner dashed square, carving out a mBZ out of the full BZ. This mBZ precisely has the area of
Q? and is the first mBZ seen in Fig. 5(a). The blue dots, and the parallel points in the outer
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Figure 5: Miniband formation and renormalized dispersion: (a) DOS for different
W values with Q; /2n = F,_4/L, L = F;5 = 144. The boundary of the first (solid)
and second (dashed) minibands are shown in arrows. (b) The schematic figure of the
Fermi surface and points connected via the quasiperiodic potential through second
(red dots) and fourth (blue dots) order processes. The arrows are of length Q. (c,d)
The DOS for W = 0.22,0.52 are plotted side-by-side with the corresponding band
structure, calculated for a L = 21 system.

dashed square, are similarly connected through a fourth order process of scattering in Q. The
second mBZ in Fig. 5(a) is this outer square, which has the area 2Q2.

From this counting of states procedure, we can find where the miniband develops even
before a clear gap opens up. In Fig. 5(a), we have indicated those points as solid (the first
miniband from 2nd order process) and dashed arrows (the second miniband from the 4th order
process). To sum up the information from the DOS and the counting of states, the gap opens at
the negative energy first near W = 0.14 but quickly closes due to the density of states from the
second miniband. A large gap separating the second miniband emerges shortly and persists,
and the first miniband re-emerges as we increase the quasiperiodic potential to W = 0.49
and becomes very prominent around W = 0.52. In Fig. 5(c)(d), we plot the DOS computed
with KPM and the band structure for a commensurate approximate wavevector Q via twisted
boundary conditions side-by-side to see how the first and second miniband emerges. The band
structure was calculated for a system with I = 21 to clearly see the dispersions, which both
show the QBT flattening (as expected based on the previous perturbation theory) in addition
to the gap openings.

Another important piece of information we can get from the DOS is the dynamical ex-
ponent, see Eq. (10). The dynamical exponent for the QBT is z = 2 and this is expected to
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Figure 6: Diverging density of states and flat bands at the magic-angle: (a) The
p(Eggr) as a function of W for a number of different N,’s. The system size is L = 144
and the wavevector is Q; /2m = Fg/L. The inset shows the peak value scales as a
power law in N,. (b) The dispersion of the same system for different W. This shows
the system in QBT phase, enters a point (W = 0.17) where the band partially flattens,
and re-enters the QBT phase.

increase near each magic-angle due to flat bands, resulting in an enhanced DOS per Eq. (10),
e.g. any z > 2 will lead to a diverging low energy density of states. This enhancement can be
best captured in its N (KPM expansion order) scaling, where p(Eqpr) ~ Né_z/ *. In Fig. 6(a)
we plot the p(Eqgr) as a function of W for various N values. We can clearly see that the
p(Egpr) is initially independent of N, and becomes enhanced and strongly N, dependent
near the magic-angle transition near W ~ 0.17. As we increase the quasiperiodic potential
further, the N dependence disappears (at sufficiently large N.) indicating that the system
re-enters into a QBT phase.
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In the inset we plot the maximum value of p(Eqpr) for each N in a log-log plot at the
first magic-angle condition for this Q. The linear fit shows that p(Eqpr) ~ (N¢)%'”? for this
critical point, giving z ~ 2.44 and hence a diverging low energy density of states at the magic-
angle. This is consistent with the prediction from the perturbation theory and the numerical
effective mass calculation. If the quadratic term vanishes identically the next dominant term
will be cubic and the exponent will increase to z = 3. However, we expect that for the first
transition (or the first two very close transitions) only the mlf diverges while the mj; remains
finite (see Fig. 4(b)(c), noting that the figures are at a different values of Q but the qualitative
behavior remains). Therefore the dynamical exponent should not increase to 3, but to some
value between 2 (QBT) and 3 (cubic touching) which is precisely what we see from the N,
scaling.

The position of the peak is not at the same W value for the different N.’s, however this
is because there are actually two transitions happening as predicted from the perturbation
theory. The two transitions corresponds to the diverging m; and m;, respectively which also
corresponds to the two lines in Fig. 3. Because the two transitions are very close in W, they
cannot be resolved in Fig. 6(a) until N is sufficiently large (e.g. N = 217y,

We also calculated the band structure near the transition to explicitly verify this behavior.
Fig. 6(b) shows the dispersion for a L = 144 system with quasiperiodic potential having values
before, near, and after the transition. The QBT at the I" point shows clear quadratic dispersion
for W = 0.10 (before transition). At W = 0.17, the system is close to the transition, and we can
observe that the band is very flat along the I'—X line (where mlf are defined) while it remains
quadratic in the ' — M line (corresponding to mdi). And after the transition (W = 0.25) we
see the quadratic dispersion restored in all directions and the band structure is very similar to
that before the transition, hence we clearly identify a reentrant QBT phase.

4 Eigenstate transitions

So far we have studied the effect of the quasiperiodic potential on the spectrum of the model,
and have shown how the band flattens and gaps open up to form minibands. Now we turn
our focus to the nature of the eigenstates, and investigate any qualitative change on the wave-
functions from the quasiperiodic potential. In particular, the phase diagram in Fig. 3 provides
a clear picture on the phases and phase boundaries, however, a precise analysis requires con-
necting each phase to the properties of the underlying wavefunctions. It is now shown that
the fundamental changes in the nature of the QBT point we have found are accompanied by
transitions in the eigenstates in the incommensurate limit.

Guided by similar studies of Dirac semimetals [14, 15,48] in incommensurate potentials
we examine the IPR in real and momentum space. The stability of the QBT to quasiperiodicity
implies a stable plane wave eigenstate at the QBT energy that is localized in momentum space,
i.e., Zy(Eqpr) ~ const. (see Eq. (8) for the defintion of the IPR). The transition out of this phase
is then signalled by a delocalization of eigenstates in momentum space and Zy(Eqgr) ~ 1/ L2,

Fig. 7 is the plot of 7y (Eqg7), for a number of system sizes on two representative Q values,
Q;/2n =F,_4/F,and Q; /21 = F,_,/F,, respectively. One common feature of the two Q’s are
that Zy(Eqpr) is independent of L for small W signifying that the plane wave eigenstates at the
QBT energy survive the quasiperiodic potential, hence this clearly demonstrates a stable QBT
phase. However, Z(Eqpr) becomes strongly L dependent for large values of W. However,
the L dependence does not reach the scaling for a fully delocalized state and instead we find
Tx(Eqpr) ~ 1/L* with 0 < x < 2 signifying multifractal wavefunctions [14,18,46] and is thus
not completely delocalized until W ~ 0.9. This can also be explicitly seen from the real space
IPR (shown in the insets) which would have become independent of L in the localized phase.
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Figure 7: Momentum space delocalization: The scaling of IPR in momentum space
(and real space shown in the insets) with the system size L for wave vectors (a)
Q;/2m = F,_4/L, (b) Q;/2n = F,_,/L. Sharp suppression of IPR is observed in
(a), which coincides with the band flattening and magic-angle condition. Apart from
these small regions, the IPR is independent of the system size prior to the main tran-
sition, indicating the QBT state is localized in the momentum basis. In contrast, the
IPR decrease as the L becomes larger, and the QBT state is delocalized in momentum
space for large W. The insets are the real space IPR for the same parameters. The
fact that the real space IPR does not reach the L-independent state infers that the
system does not reach true localized phase in real space.
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Figure 8: Wave-functions: The momentum space probability distribution, |¥(k)|?,
plotted as the system goes through the magic-angle delocalization transition in mo-
mentum space. The system size L = 89 = F;; and the wavevector Q; /2n = F,/Fq;
is used. The main peak at the M-point (center of the plot) and several satellite peaks
are seen prior to the transition [(a)]; the peaks in (a) become strongly hybridized
with states in the vicinity and starts to delocalize in momentum space [(b)]; the
system further delocalizes and nears the fully delocalized state [(c)] in momentum
space. Note the drastic difference in the y-scale.

Therefore, while strong W will eventually localize the system [14,15,48-50], we do not focus
on that regime here, which occurs for W > 1.

Let us take a closer look at the cut through the phase diagram with the rational approximate
Q. /2m = F,_4/L with L = F, [Fig. 7(a)]. First, we find two distinct transitions in the momen-
tum space IPR, near W ~ 0.18 and W =~ 0.43, where 7y (Eqpr) develops strong L dependence
signifying the delocalization of the plane wave eigenstates in momentum space. Importantly,
when we compare this to the changes in the spectrum (as shown in Fig. 3 and 4) we find
that these transitions coincide with a diverging effective mass. Our results suggest that these
are small metallic phases with delocalized wavefunctions, and the width of each phase grows
with increasing Q. Thus, we have demonstrated that the magic-angle transitions in the QBT
spectrum are in fact eigenstate phase transitions in the incommensurate limit. Upon passing
through these delocalized phases, the model reenters a QBT phase, consistent with what we
have found in the previous section: the system restores the quadratic dispersion shortly after
band flattening, and thus the IPR in momentum space also becomes L-independent, reflecting
the re-entrance to the QBT phase and stable plane wave eigenstates. We stress that all of these
findings are consistent with phase diagram shown in Fig. 3.

Near W =~ 0.6 with Q; /2% = F,_4/L, Ii(Eqpr) develops significant L dependence and
does not reenter the QBT phase. This is qualitatively different from the previous two IPR
transitions that where accompanied by reentering the QBT phase. The earlier transitions are
a result of only part of the QBT point becoming flat but some of the masses remain finite,
in addition to Fig. 4 we show this clearly in the band structure in Fig. 6(b). However, for
the transition at larger W = 0.6, the dispersion flattens in all directions and each of the four
effective masses diverge. As a result, this moiré transition results in a complete destabilization
of the QBT phase. We expect the same transition can in principle occur in twisted multilayer
systems as well, however the value of W in those systems (which is tunable via pressure [9]) is
usually much smaller than W,. However, we do expect this transition can be directly observed
in the present context of an ultracold atom emulator, making these systems very rich due to
the ability to turn off the interactions completely using a Feshbach resonance [51,52].

At first glance, the L-dependence signifying the delocalization of the momentum space IPR
near W ~ 0.6 with Q; /2 = F,,_4/L in Fig. 7 (a) is counterintuitive as it is non-monotonic
in system size. However, this trend can be straightforwardly understood by considering the
sequence of system sizes (equal to Fibonacci numbers) that we have considered for this Q;.
In particular, we see that the L = F;; = 55 system decrease first, and L = F;; = 89 and
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L = Fy = 34 follows. For each L, the transitions occurring at different potential strength for
different system size naturally follows from approximating Q as Q;. Although Q; is an ap-
proximation successively approaching Q, the sign of Q; —Q alternates. For the L = Fq, F1, Fq;
considered in Fig. 7(a), we see the sequence of Qp < Q < Qp,, < Qp,. This is exactly the
sequence we observe the suppression of IPR, and we can expect that in the thermodynamic
and incommensurate limit, the transition will occur between the L = 55 and L = 89 transi-
tions. Note that while the transition is very sharp in the small W regime, the previous two
transitions also follows the same sequence. In the perturbative sense, the first transition is of
the lowest order and thus the deviation is not large but it becomes slightly more spread out in
the second transition. The final transition is of the highest order among the three and shows
the most prominent deviation. !

Turning to the cut with incommensurate wavevector Q; /2w = F,_,/F, [Fig. 7(b)], the
system shows similar behavior to that of Q;/2n = F,_4/F,, but for this parameter there is
only a single magic-angle transition where all the effective masses diverge and there is no re-
entrant phase at this larger value of Q. This data also clearly shows the multifractal scaling of
the momentum sapce IPR when the wavefunctions delocalize in momentum space as we have
Iy (Eqpr) ~1/L* with 0 < x <2 until W 2 0.9

To look directly at the qualitative aspects of the delocalization transition in momentum
we show the momentum space probability density of the wavefunction, |¥(k)|?, in Fig. 8. For
small W, |¥(k)|? has a single prominent peak at the M-point (center of the figure) that signifies
the stable QBT point and the satellite peaks are a perturbative effect that are connected to
the M point by “hops in momentum space” due to the Qx, Q¥ vectors. In Fig. 8(a), we see
that W is large enough that the first satellite peaks became larger than the center peak at
the M point, and the second and third satellite peaks are also visible. However, when the
system approaches the momentum space delocalization transition in Fig. 8(b), the peaks start
to strongly hybridize with nearby momentum states and eventually delocalize in momentum
space in a non-trivial manner, consistent with the scaling we observe in Zy(Eqpy) ~ 1/L* with
0 < x < 2. After further increasing the potential, the wavefunction is completely delocalized
in momentum space, as seen in Fig. 8(c), which is also where we find Zy(Eqpr) ~ 1/ L2. Note
the difference in the y-scale in the three figures. From the momentum space wavefunctions,
we were able to qualitatively observe the momentum space delocalization transition which
was suggested from the IPR analysis.

5 Discussion

The various phases we have found in this manuscript, we expect, can be observed using
existing experimental techniques for ultra cold atoms. The presence of magic-angles with
re-entrant phases can be observed through wave-packets slowing down and speeding back
up [14]. In addition, the miniband formation and flat bands can be observed in any spec-
troscopic signature that can be probed using band mapping techniques [53] or two photon
Raman spectroscopy [54] to measure the dispersion as well as momentum-resolved radiofre-
quency spectroscopy to measure the spectral function [55]. In addition, the fundamental
change in the eigenstates is expected to naturally appear in time of flight imaging and Bragg
spectroscopy [19]. The presence of a harmonic trap is expected to introduce an additional
length scale into the problem that will round out the magic-angle transitions into cross overs.
These effects can be circumvented though via the use of box traps [56]. One important in-

!We note that F,_, = 21 is not a co-prime with L = 144, and thus Q; /2n = F,_,/F, for this system is merely
a nine copies of a L = 48 system. Therefore its result reflects a smaller system than the L = 89 one, and thus not
included Fig. 7(a).
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gredient of this realization is the high chemical potential (need to realize a stable filling of 3
atoms per site to fill the bands up to the QBT) for the optical lattice realization described near
Eq. (A.1). While we expect this to be experimentally challenging, e.g. due to loss, we do not
expect this to be detrimental to the proposal and hope it motivates further developments in
this area.

As noted previously, the model under investigation has no particle hole symmetry (even on
average) and thus the location of the QBT energy moves with increasing W, as shown explicitly
in Fig. 4 (a). This has an effect that the Epgr changes with the quasiperiodic potential and
complicates the numerical calculation. However, in cold atom experiments, this is not that
much of an obstacle. The important quantity is the fraction of filling below the QBT point. Up
to the first transition we observe that there are no bands crossing the Eypy energy, and thus the
filling fraction is fixed to 1/3. After the first transition, the fraction changes, as there are many
bands moving up and down across the Eqzy value. Even in this case, the filling fraction can be
easily computed from the DOS calculation and the experiments can also probe the appropriate
QBT physics by starting from the respective filling.

It will be interesting to explore the role of short interactions (which can be tuned via a Fes-
hbach resonance [51,52]) on the formation of symmetry broken states in the present setting.
The formation of flat bands at each magic-angle condition with the large enhancement of the
density of states are expected to greatly increase the value of the effective onsite interaction.
As a result, we expect that in the vicinity of each magic-angle condition, interaction effects
will dominate and drive the formation of correlated many body states. If such a symmetry
broken phase gaps out the quadratic band touching we expect that this will realize topological
quantum anomalous Hall phases [57,58].

6 Conclusion

In this work we have generalized the notion of magic-angles in Dirac semimetals to the case
of quadratic band touching to emulate the physics of twisted double bilayer graphene. Our
work has uncovered a series of magic-angle transitions where either part or the entire nodal
point becomes flat with a dramatically renormalized band structure that lives on an effective
moiré superlattice. These magic-angle transitions coincide with a wavefunction delocalization
transition in the incommensurate limit, demonstrating this physics is universal. It will be very
interesting to explore this connection to even higher order touching points, such as cubit or
quartic, where our work suggests that magic-angle effect should survive in each case (though
it may manifest itself in a slightly different fashion).
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Figure 9: (a) The band structure obtained from the optical lattice potential
[Eq. (A.1)], and plane wave basis of the Bloch wavefunction [36] for V; = 1.6Ep,
Vo = 1.2Eg. The three band tight-binding model in the main text corresponds to
the three colored band. The chemical potential required for to reach the QBT at 3
atoms per site is depicted as a dashed line. The contour plot shows the value of the
inverse effective mass (b) (2m;)_1 and (c) (2m;)_1 along the I' — X line as a func-
tion of V;,V, (corresponding bands are indicated in (a)). We indicate the proposed
parameters V; = 1.6Eg, V, = 1.2Ej as a red dot, and the dashed line is the V, = V; /2
line.

A Experimental realization

The tight-binding model we describe in Sec. 2 can be realized in experiment with a Fermi gas
composed of either °Li or *°K. As proposed in Ref. [36], an optical lattice that can give rise to
the multiorbital structure emerges from the potential,

V(x,y)=—Vj[cos(kx)+ cos(ky)]
+ Vy[cos(kx + ky) + cos(kx —ky)]. (A.1)

The values of V; and V, determine the structure of the optical lattice and the strength of the
hopping parameters t, which are given by the overlap of the orbitals. Here, we need V, > V; /2
to have potential minima at the bond centers [36].

In addition to requiring V, > V;/2 the parameters we suggest to realize a QBT are
Vi1 = 1.6Eg, V, = 1.2E, with a filling of 3 per site for obtaining the QBT point at I', and
Eg = h2k?/4m is the recoil energy. (Note that the Alkali elements we have proposed are spin-
ful) Fig. 9(a) shows the band structure of the optical lattice with the proposed parameters
Vi = 1.6Eg, V, = 1.2E;. The colored second to fourth bands consist the three orbitals in the
tight-binding model (Eq. (3)).

The reason we suggest filling of 3 per site rather than 2 (which corresponds to the low-
energy QBT in the tight-binding model) is clear from this band structure, that is the touching
point at M is not a QBT. The second band in the M —T line is dispersing upwards in energy, and
this feature remains within a reasonable range of V’s (0 < V;,V, < 10Eg). This is in contrast
with the high-energy QBT at the I' point, where the dashed line indicates chemical potential
to realize the QBT. Within the tight-binding model we chose the low-energy QBT without loss
of generality, but this is not the case in optical-lattice realization.

Another feature to have in mind in choosing the parameters is the initial effective mass of
the QBT. As one observes in Fig. 9(a), the mlf along the I' — X line is much larger than mdi.
Since the experimental signature of band flattening will be most clear when we start from a
QBT with reasonably small effective mass, we find the values of V;, V, which gives small m:.

Fig. 9(b,c) shows (Zm;)_1 as a function of V; and V,, and can see V; = 1.6Eg, V, = 1.2E,
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Figure 10: The Feynman diagram to calculate the second order self-energy
[Eq. (C.3)]. The solid lines are the bare Fermion propergators, and the dashed lines
are the quasiperiodic potential.

is a reasonable suggestion for the parameters. Note that the mjit’s are in general smaller in

the parameter regime where mj is small, and therefore are less important in choosing the
parameters.

For the quasiperiodic potential, at most, two pairs of additional lasers for each direction
are needed. The W will be determined by the laser intensity, and Q by its wavelength. Qual-
itatively, the W and Q parameters are analagous to the interlayer tunneling strength and the
twist angle of the twisted bilayer systems, respectively [14].

B Calculation of QBT states for W > 0

The two QBT points from the bare Hamiltonian [Eq. (3)] are at I' and M points. Eq. (3) is
diagonal at those momentum and can easily verify the QBT energies are £2(¢,, — t;p).

Now let us consider a finite system of L X L and concentrate on the M point with QBT energy
—2(t,, — t;p), which is lower of the two within our parameters of interest. Since we exactly
know the QBT energy for W = 0, we can use Lanczos to calculate the QBT state |Eqzr(W = 0)).
Let us assume we know |Eqgr(Wy)) for some W,. We can again use Lanczos to calculate
n eigenstates |E;(W, + 6W)) whose energy is closest to Eqpr(Wy). The |Eqpr(Wy + 6W))
will be the state with maximum overlap (Eqgr(Wy)|E;(Wy + 6W)), for sufficiently large n
and small 6W. We can obtain the QBT state for an arbitrary W by induction, starting from
|Equr (W = 0)).

If |[Eqgr(Wy)) and |Eqpr(W, + 6W)) are adiabatically connected, perturbation the-
ory would suggest (Eqpr(Wo)|E;(Wy + 6W)) ~ 1 — O(6W) for small 6W. How-
ever, note that since the QBT point is doubly degenerate the numerically obtained two
states may not be adiabatically connected. In the extreem case of equal superposition
(Eqer (Wo)|E;(Wp + 6W)) ~ 1/4/2 — O(6W). During the process of finding the |[Eqr(W))
we check whether the overlap is greater than a certain value (for instance, 0.6) to assure the
validity of the calculation.

C Analytical perturbation theory

In this appendix, we provide the details of the perturbation theory performed to calculate the
effect of the quasiperiodic potential [Eq. (6)] in the vicinity of the QBT. We define the bare
(non-interacting) Greens function of the fermions as:

1

Go(w,k) = m ,

(C.1)
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where H, is Eq. (3). The dressed (interacting) Greens function is written as:

1

G((O,k) = Q)——7-[(k)’

(C.2)
where H is now the full Hamiltonian, including the potential term (Eq. (6)). We use the
Dyson’s equation G(w, k)™ = w — Hy(k) — Z(w, k) where T is the self-energy, and expand
around the M-point where the QBT of interest is located (see Fig. 2). Up to second order
perturbation theory, the self-energy can be expanded as:

=@ (w,k) = (K)Z >, . (C.3)
’ 2 w—Ho(k£QM) '

+.0=%§

The Feynman diagram corresponding to this process is shown in Fig. 10.
Calculating the diagram and also expanding the momentum up to second order in q where
k = (7, ) + q, the self-energy is:

Mg 0 0
2@(w,k)=w| 0 713 0 |+
0 0 n3
—19(4—q2 —q2) + 17 +4no —2in,q, —2in,q,
20114y n4(q —2)—1s5(2—g2) +1 Nedxdy ,
2imq, N6dxdy n4(q5 —2)—ns(2—¢2) +1n

(C4)

where n = (214 + 215 + 1n3). The 71’s can be derived from Eq. (C.3), however the exact
expressions are very complicated. To show a relatively simple expression, 1ng can be written
as:

w?2 ((Zt;p +u—2t,,c0sQ)* + 4t§d sin® Q)
Ng =— 35 (CS)
((thd(l +c0sQ) + 6 +u)(2t), + p—2ty, cosQ) — 4t§d sin? Q)

The renormalized parameters in Eq. (4) are expressed in terms of 7’s.

. tagga—"Mo
tdd—l_—ns,
~ _tpp+n4
for = 1—mn3 "’
/

7 :tpp_n5
PP 1-mn3 °
P tpd+n1

d — 5
? V(1 —ng)(1—n3)

-~ O0+n 1 1
5=—7+(u+n2)( — )
1—mg 1—mg 1-—m3

ﬁ:M"‘nz
1—mn3’

=16 (C.6)
1—mn;
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D Numerical perturbation theory

In our theory, the perturbation Hy [Eq. (6)] consists of two terms with definite momentum
Q% and QY. Therefore, for a specific q = (qy,q, ), one can numerically calculate higher order
results of perturbation theory by solving the momentum space tight-binding model.

To illustrate this method, let us take the example of the second-order perturbation. If at
most second order processes are allowed, the momentum that can be connected with q through
Hy are q+Qx and q = Q¥, and the matrix elements between those momentum are identically
(W /2)15,5. Therefore the second-order perturbation theory can be described by the following
5 x 5 block Hamiltonian:

HP(q) w w w w
W HP(q+Qx) 0 0 0
He=| W 0 HP)(q—QK) 0 0 ,  (D.D
4% 0 0 HP(q+Q¥) 0
W 0 0 0 HP(q—Q¥)

where W = (W /2)13,5. The eigenstates of this Hamiltonian, which are smoothly connected to
the unperturbed eigenstates in W — 0 limit are the exact states from second-order perturbation
theory.

Generalizing this method to 2n-th order perturbation theory is straightforward. There will
be 2n? + 2n terms that are connected via 2n-th order process of Hy and the Hamiltonian Hq
will be a (2n?+2n+ 1) x (2n? +2n + 1) block matrix. Identifying the momentum (placing the
unperturbed Hamiltonian at the diagonal) and placing the V at proper off-diagonal positions
give H4 and diagonalizing it results in the 2n-th order perturbation theory.
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