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Abstract

Parton showers are crucial components of high-energy physics calculations. Improv-
ing their modelling of QCD is an active research area since shower approximations are
stumbling blocks for precision event generators. Naively, the interference between sub-
dominant Standard-Model interactions and QCD can be of similar size to subleading QCD
corrections. This article assesses the impact of QCD/QED interference effects in parton
showers, by developing a sophisticated shower including QED, QCD at fixed color, and
employing complete tree-level matrix element corrections for individual NC = 3 color
configurations to embed interference. The resulting simulation indicates that QCD/QED
interference effects are small for a simple test case and dwarfed by electro-weak reso-
nance effects.
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1 Introduction

General-Purpose Monte-Carlo Event Generators (MCEGs) are important tools for collider
physics, especially to exploit the potential of current and future measurements at the Large
Hadron Collider [1]. In particular, a program of indirect searches for phenomena outside the
well-established Standard Model will require comprehensive high-precision simulations. Typ-
ically, parton showers – the effect of dressing fast-moving charges with soft and/or collinear
radiation – are a non-negligible component of the physics modelling of MCEGs; and their un-
certainty budget. An improved parton shower, and thus improved error budget will allow for
more aggressive strategies for searching for new physics through indirect limit setting. Be-
cause of this, many improvements to QCD parton showers have been proposed. In particular,
higher-order showers [2–6], showers at higher logarithmic accuracy [7–11] and color-correct
QCD showers (that retain full color correlators when calculating emission rates) [12–19] are
active research areas. Beyond QCD, electroweak showers have been discussed [20–23] and
QED effects are typically included.

Once the complete gauge and matter content of the Standard Model becomes part of the
shower evolution, assessing the numerical impact of various approximations becomes com-
plicated. In particular, interference between intermediate states with different gauge bosons
(and hence gauge couplings) can have a similar or even more significant impact than correc-
tions to the strong-coupling contributions. For example, it is not apparent that the effect of
QCD/QED mixing is subdominant to subleading-color QCD corrections. We want to address
this question in this article.

To understand the reasoning, it is useful to consider the simple partonic scattering
e+e− → qq̄qq̄. For this process, both diagrams with intermediate gluons and with interme-
diate photons contribute. Two distinct ways of assigning and connecting colors are allowed
within the color flow basis, so that the squared matrix element may be sketched as
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where the flavor and momentum assignment for all diagrams is shown in the first diagram.
Due to the interference between different gluonic diagrams, the subleading color contribution
is proportional to −8

3αsαs. Ignoring electric charge factors of O(1), the contributions from the
interference between QED and QCD are ∝ 16αemαs = 16αem

αs
αsαs. Thus, for typical values

of αs and αem, subleading-color and QCD/QED interference contributions can be of similar
magnitude, and even accidental cancellations might occur.

This simple example motivates the more careful assessment of QCD/QED interference ef-
fects in this article. This is not necessarily straightforward: interference effects can be sensitive
to specific color configurations, to the extent that an approximation at the color-summed level
alone might obscure interesting effects. Thus, a QCD parton shower that can sample fixed
(Nc = 3) color structures may be required. Consequently, we present the first fixed-color par-
ton shower implementation within PYTHIA [24], corrected, to our knowledge for the first time,
by color-specific kinematic matrix element correction factors at Nc = 3. Our approach forms
a solid baseline for an interleaved QCD/QED parton shower evolution that incorporates inter-
ference effects through iterated matrix element corrections. In passing, it is worth mentioning
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that the resulting implementation should, in the future, enable event generator improvements
through matching or merging methods without resorting to the NC →∞ limit at any interme-
diate stage. Furthermore, the sophisticated implementation allows an assessment of the size
of QCD/QED interference effects relative to subleading color corrections alone. We hope that
this will either question or support efforts focussing on QCD corrections alone.

To remain as demonstrative as possible, we will use e+e− → jets as our test case, and in
particular study the relevant effects in isolation, by focussing on the modelling of e+e−→ qq̄qq̄
and e+e− → qq̄q′q̄′ events. At LEP, four-parton states have been used to study the effect of
color reconnection, with some emphasis on the effect of non-perturbative modelling on the
extraction of the W-boson line shape [25]. The effect of QCD/EW/QED interference has also
been studied at hadron colliders long ago [26,27], mostly in (di)jet production events. These
studies were limited to the hardest interaction, modelled with fixed-order perturbation theory.
Compared to these earlier works, we focus on all-order perturbative effects here.

2 Implementation

To study the effects of fixed-color parton shower evolution, QED parton shower emissions and
their interplay, we implement a combination of those features based on the DIRE parton shower
[28] plugin for PYTHIA [24]. The interference between fixed color QCD and QED evolution
enters the Monte Carlo simulation by implementing iterative matrix element corrections for
the shower based on [29] and adapted to go beyond leading color configurations.

This section provides a brief overview of the DIRE parton shower and its QED shower im-
plementation. Then, we explain in detail how we incorporate the fixed color shower evolution
based on [14] and detail the adaption of iterative matrix element corrections to allow for
their use with fixed color evolution. At the end of the section, we summarise the combined
transition probability.

2.1 DIRE and its QED shower

QCD evolution within the DIRE shower is based on the dipole picture of [30, 31], which fac-
torizes a generic real-emission matrix element Mn in soft or collinear limits as

|Mn+1|2 '−
∑

i j,k 6=i j

〈Mn|
TkTi j

T2
i j

Vi j,k|Mn〉

average over color and spin
−−−−−−−−−−−−−−−−→ |Mn|2

∑

i j,k 6=i j

1

(pi + p j)2 −m2
i j

8παsPi, j,k .
(2)

Taking the Nc → ∞ limit, and discarding spin correlations between Mn and V , leads to a
complete factorization of the leading-color dipole kernels Pi, j,k. In this limit, the sets of pairs
of radiator (i j) and recoiler (k) are determined by the color connection in the Nc →∞ limit.

The evolution variable for different color connections is chosen such that an emission of
particle j in a splitting i j, k → i, j, k will occur at the same evolution scale, independent of
whether i j or k emitted the particle j. However, the complete radiation matrix element is
partial-fractioned according to [30,31], so that the splitting kernels do rely on the identification
of i j or k branching. This parton-shower like behavior clearly identifies the collinear sectors
in which splitting kernels act, designed to simplify extensions of the shower evolution beyond
leading order.

An extension of this framework to incorporate QED transitions was sketched in [32], yet
not documented in detail. Thus, we will discuss relevant aspects here. The QED shower
in DIRE combines the massive dipole splitting kernels of [31] with the appropriate charge
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Possible (charge or color) dipole configurations for e+e− → qq̄ states Additional dipole configurations for e+e− → qq̄V states

e+

e−

q

q̄

V

Figure 1: Dipole configurations for e+e−→ qq̄ states with and without an additional
massless vector boson V (i.e. gluon or photon). Green lines indicate dipoles spanned
between initial-state particles, red lines dipoles spanned between final-state parti-
cles, and blue lines dipoles spanned between one initial and one final-state particle.
In the case of QCD, only a small subset of all possible dipoles – the red ones – is em-
ployed. Leading-color QCD parton showers would only employ the two red dipoles
in the right panel when showering e+e−→ qq̄g states, while subleading-color show-
ers would retain the red dipole spanned between q and q̄ in the left panel. QED
showers will, in general, employ the complete set of dipoles. In this sense, the set
of QED dipoles for e+e− → qq̄ states is identical to the set of QCD dipoles obtained
for qq̄→ q′q̄′ in a fixed-color shower. In the assessment of interferences below, only
the configurations from the red dipoles will be used in both the QED and QCD cases,
so that a misinterpretation of results based on different phase space coverage of the
QCD and QED showers can be avoided.

correlators for QED, e.g. given in [33]. The QED charge correlators rely on the flavor of
both the radiating particle and the recoiling partner. Each dipole splitting kernel contains a
fraction of the (eikonal) soft photon radiation pattern – with the complementary fraction being
assigned to emissions off the recoiling particle. Since eikonal radiation patterns in QED arise
between any two charges, each possible combination of charged particles should be considered
as recoiler-radiator pair, as illustrated in Figure 1. This may lead to negative charge correlators,
i.e. a-priori non-suppressed negative-valued splitting kernels. This complication is handled by
employing weighted Sudakov veto algorithm techniques [34–36].

The presence of multiple recoilers for radiation from a fixed particle is natural for soft-
photon radiation. The treatment of collinear radiation is less obvious. The factorization in
Eq. 2 dictates that in the case of QCD at fixed color, the complete collinear radiation pattern
should be assigned to each radiator-recoiler pair. The similarity of the set of dipoles between
QED and fixed-color QCD suggests a similar strategy for photon radiation – which will be
employed here. Nevertheless, it is worth remembering that Eq. 2 only aims to approximate
the matrix-element in the strict soft or collinear limits, and is ambiguous for non-vanishing
transverse momentum. We will employ a slight variation of the functional form of Pi, j,k for
QED emissions, using

Pi=q, j=γ,k =
−ηkηi j

η2
i j

�

2z(1− z)
(1− z)2 +κ2

+ (1− z)
�

=
−ηkηi j

η2
i j

�

�

2(1− z)
(1− z)2 + κ2

− (1+ z)
�

+
2κ2

(1− z)2 + κ2

�

,
(3)

with z and κ defined in [28], and where ηa = Qaθa includes the (electric) charge Qa of
particle a, and a sign θa = −1 (+1) if particle a is in the initial (final) state. The first term
in parentheses after the second equality is the kinematic part of the conventional form of
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Pi=q, j=g,k. This variation still contains appropriate singularities in the soft and collinear limits
(defined by κ→ 0), but will increase the rate of high transverse-momentum photon emissions.
The impact of the latter choice will allow assessing the modelling of the full matrix element
by the shower below. Note that the functional form of z in terms of the momenta after the
splitting depends on the choice of recoiler, which in turn depends on the phase-space mapping
used to construct the post-branching momenta. We use the mappings detailed in [28], which
distinguish between initial-initial, final-final, initial-final and final-initial cases. Interestingly,
for the process illustrated in Figure 1, the initial-final and final-initial phase-space mapping
strategies will lead to changes to one of the quark momenta, leading, overall, to a shift in the
reconstructed mass of an intermediate state.

Note that the definition and value of z in Eq. 3 will depend on the phase-space mapping
strategy – each dipole employs a different definition of “collinear" determined by transverse
momenta in the dipole rest frame. These different definitions further motivate assigning each
dipole the full collinear radiation pattern. Another conceivable variation of the QED splitting
kernel would be to employ

P i=q, j=γ,k =
−ηkηi j

η2
i j

2(1− z)
(1− z)2 +κ2

−Q2
i j fqq(recoilers)(1+ z̄) , (4)

where z̄ is independent of the recoiler, e.g. z̄ =
E j

Ei+E j
, and fqq(recoilers) is a function to ensure

that the correct collinear pattern is reproduced by the sum over all possible dipoles. Although
interesting, we will not consider this form further, but would like to assert that an inadequate
modelling of emissions will be exposed and corrected by matrix element corrections, see sec-
tion 2.3.

The choice of recoiler for γ→ f̄f splittings is less motivated, given that the splitting does
not contain soft singularities. Thus, in principle, any single particle or set of particles could
be invoked as recoiler in the generation of post-branching momenta. However, the simultane-
ous correlated emission of a soft f̄f pair does contain soft singularities. Based on this reason,
DIRE will consider any electrically charged external particle as viable recoiler. The dipole split-
ting function for γ→ f̄f is then

P i=γ, j= f ,k =Q2
f fγ f (recoilers)(z̄2 + (1− z̄)2) , (5)

where Q f is the electric charge of the fermion, z̄ =
E j

Ei+E j
, and fγ f (recoilers) = 1/[#recoilers],

as suggested in [33].

2.2 Fixed Color shower

The fixed color shower implementation we are using is based on the ideas of stochastically
sampling color configurations as described in [14]. The partons in individual events receive
fixed color indices 1, 2,3 in the fundamental representation for individual events, and the sum
over events corresponds to an MC color sum. It goes beyond leading color dipole showers by
introducing color-specific splitting kernels that incorporate the effect of different color struc-
tures and their interference according to eq. (2).

The color flow basis [37] offers a very convenient way of implementing color sampling,
since it allows to decompose a gluon propagator into a nonet and a singlet contribution

〈(Aµ)i1j1(Aν)
i2
j2
〉 ∝

nonet
︷ ︸︸ ︷

δ
i1
j2
δ

i2
j1
−

1
NC

singlet
︷ ︸︸ ︷

δi1
j1
δ

i2
j2

. (6)
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Following the notation of [38], we can then represent color-flows by basis tensors

|σ〉=
�

�

�

�

1 2 ... n
σ(1) σ(2) ... σ(n)

�

= δc1
c̄σ(1)

δ
c2
c̄σ(2)

...δcn
c̄σ(n)

, (7)

where the permutation σ denotes the flow of colors connecting the external legs 1,2, ..., n,
and the fundamental and anti-fundamental color indices ci and c̄σ(i) run from 1 to NC = 3 for
external partons carrying (anti-)color, and take the value 0 if not. This allows us to write the
color operators

Ti = τ
c
i +τ

c̄
i +τ

sc
i , where

τc
i = λiti,c ,

τc̄
i = −λ̄i t̄i,c̄ ,

τ
sc
i = −

1
NC
(λi − λ̄i)sc ,

(8)

and where λi takes the value
p

TR if parton i carries a color and 0 if it does not, and λ̄i takes
the value

p

TR if parton i carries an anti-color and 0 if not. The operators t, t̄ and s act on the
color basis as follows:

ti inserts a new color anticolor pair cn+1 into the basis. This is done such that ci is connected
to c̄n+1, and cn+1 is connected to the original anticolor partner.

t̄i inserts a new color anticolor pair cn+1 into the basis by invoking tσ−1(i), i.e., inserts a new
color anticolor pair into the color line connected to the anticolor line it is applied to.

si inserts a color singlet.

Using these operators, we replace the usual DIRE leading color splitting kernels [28]

Pi=q/q̄, j=g,k(z) = CF

�

2(1− z)
(1− z)2 +κ2

− (1+ z)
�

,

Pi=g, j=g,k(z) =
CA

2

�

2(1− z)
(1− z)2 + κ2

− 2+ z(1− z)
�

,
(9)

by color- and flow-specific kernels

P(9,c)
i=q, j=g,k(z) = Tkτ

c
i j

Pi=q, j=g,k(z)

T2
i j

, P(9̄,c̄)
i=q̄, j=g,k(z) = Tkτ

c̄
i j

Pi=q̄, j=g,k(z)

T2
i j

,

P(1,c)
i=q/q̄, j=g,k(z) = Tkτ

sc
i j

Pi=q/q̄, j=g,k(z)

T2
i j

,

P(+,c)
i=g, j=g,k(z) = Tkτ

c
i j

Pi=g, j=g,k(z)

T2
i j

, P(−,c̄)
i=g, j=g,k(z) = Tkτ

c̄
i j

Pi=g, j=g,k(z)

T2
i j

,

(10)

while the kernel

Pi=g, j=q/q̄,k(z) =
TR

2
(1− 2z(1− z)) (11)

remains unchanged except for updating the color basis to reflect the splitting of the gluons
color and anticolor index onto the resulting quark antiquark pair. Each kernel thus fixes the
inserted color c ∈ 1,2, 3 and one of the flows, while the other flow is initially summed over to
determine the branching rate, to then pick a specific flow for the further evolution as described
below.

The QED splitting kernels for q → qγ and γ → qq̄ are adapted to update the color flow
basis states of the respective states. While the former transfers the color line to the resulting
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quark, the latter creates a new color anticolor singlet dipole when splitting the photon into a
pair of quark and antiquark.

Interference is taken into account by introducing two color vectors 〈Mn(σ′, cn)| and
|Mn(σ, cn)〉, representing distinct color flows for a fixed set of color indices cn. Every step
in the evolution allows for a non-vanishing color flow pair to be chosen stochastically by eval-
uating the insertion of generators between 〈Mn(σ′, cn)| and |Mn(σ, cn)〉. The fixed state is
kept for further evolution. At leading color, the color flow in both states is identical. Beyond
leading color, all partons may be assigned as spectator, not just the leading-color connected
ones. To tame the growth in complexity, we revert to the leading color structure in the shower
and continue the shower evolution in a leading color fashion below a chosen cutoff in the
shower evolution variable tcut

FC .
The color- and flow-specific kernels in eq. 10 mean that the gluon emission probability in a

fixed color shower step can, when normalizing by the “Born color" factor
|Mn(cn)|2 =

∑

σ,σ′〈Mn(σ′, cn)|Mn(σ, cn)〉, and inserting into a pre-determined color- and
flow-structure, be written as

1
|Mn(cn)|2

∑

i j,k 6=i j

〈Mn|
−TkTi j

T2
i j

|Mn〉Pi, j,k

=
1

|Mn(cn)|2
∑

i j,k 6=i j

∑

σ,σ′,cn

〈Mn(σ
′, cn)|

−TkTi j

T2
i j

|Mn(σ, cn)〉Pi, j,k

=
1

|Mn(cn)|2
∑

i j,k 6=i j

∑

σ,σ′,cn

∑

c

〈Mn(σ
′, cn)|

−Tk(τc
i j +τ

c̄
i j +τ

sc
i j)

T2
i j

|Mn(σ, cn)〉Pi, j,k

=
1

|Mn(cn)|2

�

∑

i j∈q,k 6=i j

∑

σ,σ′,cn

∑

c

〈Mn(σ
′, cn)|P

(9,c)
i=q, j=g,k + P(1,c)

i=q, j=g,k|Mn(σ, cn)〉

+
∑

i j∈q̄,k 6=i j

∑

σ,σ′,cn

∑

c

〈Mn(σ
′, cn)|P

(9̄,c̄)
i=q̄, j=g,k + P(1,c)

i=q̄, j=g,k|Mn(σ, cn)〉

+
∑

i j∈g,k 6=i j

∑

σ,σ′,cn

∑

c

〈Mn(σ
′, cn)|P

(+,c)
i=g, j=g,k + P(−,c̄)

i=g, j=g,k|Mn(σ, cn)〉
�

.

(12)

In the first step, we decompose the state into the Monte Carlo sampled states employed in this
fixed color shower algorithm, and the last step shows the decomposition of the gluon emission
dipole term into the kernels employed in the fixed color shower, sorted by the flavour of the
emitting parton.

The generation of each kernel’s contribution, for a fixed radiator-recoiler pair, to the total
color correlator and the resulting change in (no-)emission rates,

〈Mn(σ
′, cn)|

−Tkτ
β
i j

T2
i j

|Mn(σ, cn)〉 , (13)

is implemented by using a weighted parton shower algorithm [34–36]. More specifically, the
usual leading color coefficients are used for an initial sampling, and an additional accept/reject
step is added to correct the distribution to the desired fixed color result. The weights are
calculated from the desired distribution f , the initially sampled leading color distribution h
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and a conveniently chosen auxiliary overestimate g

f = −〈Mn(σ
′, cn)|Tk ·τ

β
i j |Mn(σ, cn)〉 ,

h= 〈Mn(σ, cn)|T2
i j |Mn(σ, cn)〉 ,

g =











−h , if f /h< 0

2 f , if | f /h|> 1

h , otherwise

.

(14)

Splittings are accepted with probability f
g , and receive the accept weight g

h or the reject weight
g
h

h− f
g− f . The former weight gives the desired fixed color distribution for this splitting, and the

latter is used for rejected splittings, which are then exponentiated appropriately. The imple-
mentation of color sampling exchanges the i jk and σ,σ′ summation in eq. (12), thus fixing
the color flow on which splitting of i, j and k can act. This makes it necessary to probabilis-
tically sample a specific color flow after a splitting has occurred, such that this Monte-Carlo
sum recovers eq. (12). A specific color flow is thus sampled according to

P =
Pαβ

∑

α Pαβ
, with Pαβ = |〈M(σ′, cn)|ταk ·τ

β
i j|M(σ, cn)〉| . (15)

As defined above, τ represents the possible color insertions, both nonet and singlet, and the
absolute value ensures a non-negative term. The appropriate sign and value are then restored
by applying the following weight to accepted emissions:

gcol

hcol
=
ταk ·τ

β
i j

|ταk ·τ
β
i j|

∑

α |τ
α
k ·τ

β
i j|

∑

ατ
α
k ·τ

β
i j

. (16)

In our implementation in DIRE , we choose to register multiple copies of the kernels de-
scribed in eq. (10), each for a fixed choice of the new fundamental color index. This simplifies
the construction of parton shower histories that we need for the kinematic matrix element
corrections described in section 2.3. Note that the new splitting kernels compete in the veto
algorithm, thus fixing the color flow in the amplitude and the new fundamental color index.
However, the color flow in the conjugate amplitude is not fixed by the kernel. Instead, every
fixed color kernel still allows for the probabilistic sampling of the conjugate flow. Still, the
associated new fundamental color index must agree with that of the amplitude color flow, as
otherwise, the product would vanish. Also, suppose a nonet/singlet emission kernel is chosen.
In that case, the conjugate amplitude will only be able to contain a singlet/nonet flow if the
new color index and the emitting one agree. The pair of color flows chosen in a successful
splitting is then kept for further evolution.

It should be noted that, while this approach introduces subleading corrections in 1/NC, the
emissions are still modelled by factorized dipole radiation. As mentioned in the introduction,
if there are NC suppressed contributions due to interference effects between different dipole
emission patterns, as is the case in e+e− → qq̄qq̄ with identical flavors, these will not be re-
produced by the shower. Kinematic matrix element corrections, as described in the following,
can be used to include such effects. The same holds for the interference between states that
can have both a QCD and a QED like emission history, which is also the case for e+e−→ qq̄qq̄.

2.3 Kinematic Matrix Element correction to fixed color states

QCD and QED evolution are both implemented in the DIRE parton shower approach. However,
since separate and competing splitting kernels govern them, the interference between full
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color QCD and QED does not enter by itself. To include the interference, we employ iterated
matrix element corrections following the approach described in [29] and extend that method
to produce corrections that respect the fixed color flow choices sampled in the shower, instead
of mapping the matrix elements to color ordered states compatible with the shower’s leading
color picture. We summarize the present leading color matrix element corrections and then
detail the changes necessary to apply matrix element corrections to the fixed color parton
shower.

First, let us introduce the shorthand fn to denote a set of flavor identifiers, and define a
phase-space pointΦn = Φn(pn, cn, fn) as a fixed point in in momentum-, flavor- and color-space.
With this, we redefine the notation for color-space vectors to also incorporate momentum-
and flavor-dependence 〈Mn(σ, cn)| → 〈Mn(σ, pn, cn, fn)|= 〈Mn(σ,Φn)|, such that the latter
is indeed the full matrix element for a fixed color flow. We define the transition probability
to a fixed phase space point and fixed flow as |M(σ,Φn)|2 = 〈Mn(σ,Φn)|Mn(σ,Φn)〉. The
remaining dependence on the color flow, and requiring an identical flow in bra and ket vector
means that these transition probabilities are accurate only at the leading-color level. We will
first review leading-color matrix-element corrections before discussing fixed-color results.

Parton shower emissions are governed by splitting kernels P which can symbolically written
as P = P(Φn+1/Φn), assuming that the (n+1)-parton configuration Φn+1 can be obtained from
the n-parton configuration Φn by a parton shower branching. The fixed-order rate with which
a parton shower generates the state Φn+1 from underlying states Φn of fixed color flows is given
by

|MPS(σn+1,Φn+1)|2 =
∑

σ,Φn

8πα(µR)P(Φn+1/Φn)
Q2(Φn)

|M(σ,Φn)|2 , (17)

i.e., the rate is given by the branching probability from all underlying states from which the
desired configuration is reachable. Here, Q2 denotes the virtuality of the emitter-emission pair,
and the coupling factor can represent the strong coupling αs or the electromagnetic coupling
αem, depending on the nature of the splitting kernel. The sum over Φn only runs over states
from which the shower could have generated the desired configuration Φn+1, i.e. has to respect
the ordering condition of the shower.

Symbolically, matrix element corrections implement the correction of these parton shower
emission rates to the accurate leading-color matrix elements |M(σn+1,Φn+1)|2 by applying a
correction R:

R(σn+1,Φn+1)
∑

σ,Φn

8πα(µR)P(Φn+1/Φn)
Q2(Φn)

|M(σ,Φn)|2 ,

with R(σn+1,Φn+1) =
|M(σn+1,Φn+1)|2

∑

σ′,Φ′n

8πα(µR)P(Φn+1/Φ′n)
Q2(Φ′n)

|M(σ′,Φ′n)|2
,

(18)

where the sum over Φ′n only covers ordered phase space configurations (and color flows σ′)
produced by the shower, and µR is a reference renormalization scale. Summing over all pos-
sible emissions in the first term of eq. (18) then ensures that the total parton shower rate
reproduces the fixed order matrix element as desired. Note that the correction factor depends
on the new phase space configuration and all possible underlying configurations Φ′n, i.e., its
value is identical for every possible emission path.

For iterated ordered emissions, the same idea is applied. In contrast to a single emission,
there are then many more possible parton shower emission sequences that could lead to a given
state. In order to construct the correction factor, all possible parton shower histories leading
to the given state from any underlying initial Born configuration need to be constructed. For
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the second parton shower emission, the correction factor is constructed as follows:

R(σn+2,Φn+2) =
|M(σn+2,Φn+2)|2

∑

σ′n+1,Φ′n+1

8πα(µR)P(Φn+2/Φ
′
n+1)

Q2(Φ′n+1)
R(σ′n+1,Φ′n+1)

∑

σ′′,Φ′′n

8πα(µR)P(Φ′n+1/Φ
′′
n )

Q2(Φ′′n )
|M(σ′′,Φ′′n)|2

.
(19)

The rate for a certain state Φn+2 after two emissions is then given by

R(σn+2,Φn+2)
∑

σn+1,Φn+1

8πα(µR)P(Φn+2/Φn+1)
Q2(Φn+1)

×R(σn+1,Φn+1)
∑

σ,Φn

8πα(µR)P(Φn+1/Φn)
Q2(Φn+1/Φn)

|M(σ,Φn)|2 .
(20)

Summing over all possible emissions again ensures that the emission rate for that phase space
point corresponds to the desired (leading-color) matrix element.1

Matrix element corrections may also be used to improve the transition rate of the fixed-
color shower proposed in the last section,

PFC(Φn+1/Φn) =
1

|Mn(cn)|2
∑

σ,σ′
〈Mn(σ

′, cn)|
−TkTi j

T2
i j

|Mn(σ, cn)〉Pi, j,k , (21)

where the color structure cn is extracted from Φn, as is the set of radiators i j and the recoil-
ers k (cf. eq. (12)). Improving this transition rate with matrix element corrections allows us
to incorporate fixed-color effects introduced by the interference of different dipole emission
patterns or between amplitudes of different coupling structure – neither of which can, in gen-
eral, be produced by using a step-by-step shower approach alone. To achieve matrix-element
corrections for the fixed-color showers presented above, it is necessary to avoid matrix ele-
ments that artificially rely on color flows, and instead use matrix elements that only rely on
phase-space points (i.e. fixed points in momentum-, flavor- and color (index) space) Φn. We
thus define 〈Mn(Φn)| =

∑

σ〈Mn(σ,Φn)| and |M(Φn)|2 = 〈Mn(Φn)|Mn(Φn)〉. Replacing the
flow-specific transition probabilities into the matrix element correction factors R (see eqs. 18
and 19) leads to the color-index specific matrix element corrections, e.g.

R(Φn+1) =
|M(Φn+1)|2

∑

Φ′n

8πα(µR)PFC(Φn+1/Φ′n)
Q2(Φ′n)

|M(Φ′n)|2
, (22)

R(Φn+2) =
|M(Φn+2)|2

∑

Φ′n+1

8πα(µR)PFC(Φn+2/Φ
′
n+1)

Q2(Φ′n+1)
R(Φ′n+1)

∑

Φ′′n

8πα(µR)PFC(Φ′n+1/Φ
′′
n )

Q2(Φ′′n )
|M(Φ′′n)|2

, (23)

where PFC denotes splitting kernels of the fixed-color shower. These correction factors only
rely on the phase space points themselves, and no longer specific color flows. To construct the
required color-index specific kinematic matrix elements 〈Mn(Φn)|, we use the fact that the
partial amplitudes in the fundamental and the color-flow decomposition are closely related.
Since the fundamental color indices (with values 1, 2 or 3) are sampled in the shower, we can
pass fundamental color indices for the evaluation of the amplitude instead of passing a specific
flow. The evaluation of the amplitudes then works as follows:

1In DIRE , these matrix element corrections are implemented using a weighted shower algorithm similar to the
one mentioned in eq. (14). With appropriate choices of f , g and h, the accept and reject probabilities and weights
are constructed as above.
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• Do not include the color matrix associated with the color-ordered amplitudes, as the
color sum is performed in an MC fashion by the parton shower.

• For all-quark final states: check that the leading color flow induced by the ordering of
the partial amplitudes are compatible with the fundamental indices produced by the
shower, and only allow such amplitudes to contribute.

• For gluon amplitudes: Since there are no singlet gluons in the color-ordered amplitudes,
we need to project external gluons onto a nonet and singlet component. For gluons with
distinct fundamental indices, we take the same approach as for quarks. For gluons that
carry the same fundamental index, we need to apply the projection

P ii′
j j′ ≡ δ

i
j′δ

i′
j −

1
NC
δi

jδ
i′
j′ . (24)

In addition to the regular contribution based on compatibility of color ordering and
fundamental indices, we get contributions that consider the adjacent partons. For the
cross term between the first and the second, the fundamental indices of the gluon need
to agree, as well as the adjacent ones according to the color ordering. For the second
term squared, the fundamental indices of the gluon must be identical, as must be the
fundamental indices of adjacent partons.

We combine the fixed color correction and the kinematic matrix element correction by
applying two successive accept/reject steps. These come on top of the usual leading color veto
algorithm accept/reject step, giving three accept/reject steps in total. However, the additional
steps are only done if the previous step was accepted. In other words, the corrective fixed
color weight is only applied to accepted leading color shower emissions, and the kinematic
matrix element correction is only constructed if a parton shower emission was not rejected
in the fixed color correction. For applying the kinematic matrix element correction on top
of the fixed color shower, the construction of R furthermore needs to take into account the
color configuration sampled by the shower, leading to more complex parton shower histories
as compared to a leading color parton shower history.2 Figure 10 in appendix A schematically
shows the iteration of multiple accept/reject steps for fixed color and kinematic matrix element
corrections.

We use MADGRAPH5 to generate matrix elements, and adapt the automatically generated
C++ code3 to our needs. We limit the application of kinematic matrix element corrections to
e+e− → j j states with one additional photon or gluon or states with four quarks in the final
state. For the qq̄g state, the amplitude will be unmodified for distinct fundamental and anti-
fundamental gluons, with two such states sampled by the shower (assuming one color is fixed
by the initial process). For all-identical fundamental indices, we get a factor 1− 2/NC + 1/N2

C
with just one such configuration sampled. For a singlet gluon with identical fundamental color
and anticolor indices that are different from the qq̄ color index, there will be a factor 1/N2

C
with two such configurations sampled by the shower. Together with the factor TR = 1/2, this
gives the expected factor CF = 4/3 as required. As the correction is based on fundamental
indices, and the explicit cancellation of the chosen flow combinations in the shower needs
to be retained, the MEC factors R are constructed to include the color weights constructed
in 14, but not the additional sign-restoring weight factor in 16. The implementation of a
more generic matrix element plugin with multi-gluon states would be desirable but is beyond

2The current shower sampled fixed color weight going into f , g, and h can be neglected on the other hand,
since all probabilities and weights are constructed as ratios of these.

3We would like to thank Valentin Hirschi for extending and developing PYTHIA-tailored C++ output methods
in MADGRAPH5 .
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the scope of this study. For the study of QCD/QED interference effects in qq̄qq̄ states, only
configurations leading to this state need to be implemented.

Figure 2 shows example parton shower histories for a given state with four final-state
quarks, also including QED histories. Due to singlet gluons in the color flow basis, there are
now quark anti-quark pairs that can be clustered into both gluons and photons.

e+

Φ+2

e−

q̄

q

q′

q̄′

e+

Φ+1

e−

q′

q̄′

q

q̄

e+

Φ+1

e−

q

q̄

q′

q̄′

e+

Φ+1

e−

q

q̄

q′

q̄′

e+

Φ+1

e−

q′

q̄′

q

q̄

Figure 2: Histories for two quarks and to anti-quarks in the final state in fixed color
QCD and QED evolution, where all carry either green or anti-green fundamental
indices: Each flavour pair can either be clustered into a gluon (left two) or a photon
(right two). Only one or the other assignment would be suitable in a leading color
picture, depending on whether the colors match (photon) or don’t match (gluon).
The exact flow is only sampled after all clustering steps are done.

3 Results

This section presents results on the parton level for the e+e− → qq̄ process with one or two
further emissions. We focus on the qqq̄q̄ final state for two emissions by not allowing for a
second photon or gluon emission from three-parton states. All plots are shown for a center of
mass energy of 1 TeV.4

To check the consistency of the implemented fixed color shower evolution and the corre-
sponding fixed color matrix element corrections, we plot the matrix element correction factor
R for the states sampled by the shower against different kinematic variables. For the q→ qg
splitting, we get the distribution shown in fig. 3. The emission pattern of a first gluon is well
modelled by the shower, such that the matrix element correction (MEC) factor is close to one
for all sampled phase space points. A minimal requirement would be to see a convergence in
the collinear region, i.e., for low transverse momenta.

For the emission of one photon, we see a similar situation, see fig. 4. However, due to the
slight variation of the functional form for the QED emission as mentioned in eq. (3), the shower
gives an enhanced photon emission rate for large transverse momenta as compared to gluon
emissions. This enhancement is compensated by the application of kinematic matrix element

4The effects of a fixed color shower on this state as compared to a leading color shower correspond to CF vs
CA/2, so if the leading color shower uses CF = 4/3, no difference is expected. Thus, we will show fixed-color
results throughout.
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Figure 3: Consistency validation of parton shower and matrix element description
of qq̄g state, plotted against the shower transverse momentum, the energy fraction
of the gluon and the azimuthal angle of the gluon emission. The color indicates the
normalized sampling rate of the respective points. In this case, all phase space points
are well approximated by the parton shower, such that the MEC factor R is always
close to one.
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Figure 4: Consistency validation of parton shower and matrix element description
of qq̄γ state. The MEC factor R converges to one for low transverse momenta as
required, but differs for larger transverse momenta, compensating for an enhanced
photon emission rate by the shower.

corrections, such that the MEC factor R is below one for large transverse momenta. However,
as required for a proper collinear shower approximation, the correction still converges to one
in the collinear limit.

For the parton shower generation of two quarks and two anti-quark states, the correspond-
ing kinematic matrix element corrections are shown in fig. 5. The matrix element correction
for this state is now based on the shower rate for two successive branchings, leading to a
wider spread in the applied corrective factors. Nevertheless, the correction is still centered
around one, especially for low transverse momenta in the second splitting. Furthermore, the
correction factor shows a clear structure in the azimuthal angle. This is expected because the
shower emissions are based on averaged splitting functions, while the kinematic MEC contains
azimuthal correlations due to the intermediate vectors.

Overall, this comparison shows that the fixed-color and QED showers behave as expected,
furnishing a sensible approximation in the soft/collinear limits. However, the poorer descrip-
tion of qq̄qq̄ states indicates that the effect of MECs on observables may be appreciable.

Before looking at the effect of QCD/QED interference in matrix-element-corrected qqq̄q̄
states, we would like to examine the distinct ingredients of the simulation. All following plots
were generated using RIVET [39]. Figure 6 shows the effect of including photon emission
in the (uncorrected) parton shower evolution, as compared to just including QCD splittings.
Keeping in mind that we enhance large transverse momentum QED emissions as described
in eq. (3), we see an effect of up to five percent in the Durham jet clustering scale of one
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Figure 6: Comparison of pure QCD shower evolution and shower evolution with
photon emissions enabled. The left plot shows the Durham jet clustering scale for
the emission of one gluon or photon. The inclusion of photon emissions shifts the
spectrum towards higher scales, as expected. The right plot shows the invariant mass
of the pair of less energetic quark and anti-quark for the qqq̄q̄ state. The effect of
the QED emission alone is very small, just leading to a light depletion of very small
configurations.

additional parton, i.e., a gluon or a photon emitted from the quark anti-quark dipole in the
final state. Initial state radiation is not considered in this context. In the right plot, we see
that the invariant mass of the pair of energetically softer quark and anti-quark in qqq̄q̄ states
is only mildly affected by including photons in the parton shower evolution. In most cases,
this observable would represent the invariant mass of the quark anti-quark from the gluon or
photon splitting, making it sensitive to potential interference effects.

The effect of enabling matrix element corrections on the qq̄qq̄ state for QCD only is shown
in fig. 7. Surprisingly, we see that the shower significantly over-samples the state as compared
to the matrix element prediction. Thus, including the matrix element correction has an effect
of up to 50% on the resulting distribution. This shows that the effect of including kinematic
matrix element corrections for this specific configuration is much larger than the effect of
photon emissions and branchings in the shower, which is expected due to the smallness of the
electromagnetic coupling.

As shown in section 1, the qq̄qq̄ state is interesting for finding interference effects between
QCD and QED for the combined evolution with interference-sensitive kinematic matrix ele-
ment corrections, which would not be present in the qq̄q′q̄′ state. The interference between
same-color qq̄ pair from gluon and photon splittings is expected to vanish due to their octet
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Figure 7: Effect of kinematic matrix element corrections on the qqq̄q̄ state for QCD
evolution and correction only. The left plot shows the 4→ 3 Durham jet clustering
scale, while the right plot shows the invariant mass of the pair of energetically softer
quark and anti-quark. We see a large effect of up to 50% for very high jet masses.

Figure 8: Both plots show the invariant mass of the pair of less energetic quark
and antiquark at 1 TeV. The left plot shows e+e− → qq̄qq̄, while the right shows
e+e− → qq̄q′q̄′. QCD/QED interference effects are only expected on the left side.
However, no qualitative difference is observed between left and right, indicating that
the QCD/QED interference effect in this observable is negligible.

and singlet nature. However, a QCD/QED interference effect at leading color is expected for
same-flavour qq̄qq̄ pairs. We thus compare the qq̄qq̄ and qq̄q′q̄′ states employing the complete
machinery of mixed QED shower and QCD+QED matrix element corrections to look for pos-
sible interference signatures. Figure 8 shows the resulting distributions for MEC corrections,
including QCD and QED states. The total rate between same-flavour and different-flavour
pairs differs, but the qualitative shape compared between QCD and QCD+QED matrix ele-
ment corrections does not show a large effect. Most interestingly, when comparing the same-
flavour and different-flavour states, the ratio plots indicate that the difference between QCD
and QCD+QED corrections in each is very similar. This seems symptomatic for the large set of
observables we have investigated during this study and indicates that the QCD/QED interfer-
ence, which could have been shown in the same flavour case, appears to be negligible. In order
to further put the observed effects into context, we show the same corresponding distributions
in fig. 9, where we take into account W±, Z and H bosons in the employed matrix element
correction instead of just including QED effects. In the resonance regions, we see effects of up
to 350%, while the distributions at high momenta are also affected by a factor of up to 2.5.
This clearly shows that the modelling of electroweak effects plays a significant role beyond
subleading color, QED or QCD/QED interference effects for high collision energies.
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Figure 9: Same distributions as shown in fig. 8, but including the effect of W±, Z and
H bosons. For the considered CM energy of 1 TeV, the effects are very large, showing
resonance-like structures for both same- and different-flavour configurations, and an
overall enhanced distribution for the different-flavour case.

4 Conclusions and Outlook

Precision event generators will likely become ever more important for high-energy physics.
Quite often, precision calculations of SM backgrounds focus on sophisticated QCD corrections.
This is also true for parton showering, which has seen many QCD-focussed improvements in
recent years.

The goal of this article was to instead assess interferences between processes with different
coupling structures within the parton shower. Such a comparison will either lead to a confir-
mation of a QCD-focussed correction strategy or highlight shortcomings thereof. To perform
a consistent comparison, and given that interference effects may contribute to different color
configurations with different amount, we have developed a complex parton shower framework
that incorporates fixed-color QCD evolution, QED evolution including all possible soft-photon
enhancements, corrections to full tree-level branching rates for individual color configurations
through matrix element corrections, and finally incorporating QCD/QED interference through
iterated matrix-element corrections.

We have investigated the different effects using the first non-trivial process with sufficient
structure, e+e−→ qq̄q′q̄′. Overall, the result supports a QCD-focussed parton-shower strategy
to parton-shower improvements, given that QCD/QED interference effects are surprisingly
small. The effect of kinematic matrix element corrections was nevertheless enormous in some
cases due to probing (the square of) diagrams containing new electroweak resonances.

The developments in this article can be helpful in various aspects of parton showers in the
future. The implementation of a fixed-color shower within PYTHIA opens the door to extending
matching (and merging) methods beyond leading color, since it will make fixed-color hard-
scattering events viable starting points for shower evolution. Since the fixed-color treatment is
also intertwined with QED emissions, a consistent QED/QCD matching appears feasible. Such
developments could be aided by new insights into color flows [40].

Various phenomenological studies could help refine our understanding of (the smallness
of) QCD/QED interference effects. In particular, it would be interesting to study interference
effects in the presence of initial-state QED radiation. The kinematic structure of the latter is
quite different from the final-state radiation topologies we have focussed on in this article.
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correction to the leading color shower, and the kinematic matrix element correction
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cut-off t0 are omitted to make the flow clearer. This flow assumes that the generated
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