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Abstract

We reveal an intriguing anomaly in the temperature dependence of the specific heat of a
one-dimensional Bose gas. The observed peak holds for arbitrary interaction and remem-
bers a superfluid-to-normal phase transition in higher dimensions, but phase transitions
are not allowed in one dimension. The presence of the anomaly signals a region of un-
populated states which behaves as an energy gap and is located below the hole branch
in the excitation spectrum. The anomaly temperature is found to be of the same order of
the energy of the maximum of the hole branch. We rely on the Bethe Ansatz to obtain the
specific heat exactly and provide interpretations of the analytically tractable limits. The
dynamic structure factor is computed with the Path Integral Monte Carlo method for the
first time. We notice that at temperatures similar to the anomaly threshold, the energy of
the thermal fluctuations become comparable with the maximal hole energy, leading to a
qualitative change in the structure of excitations. This excitation pattern experiences the
breakdown of the quasiparticle description for any value of the interaction strength at the
anomaly, similarly to any superfluid phase transition at the critical temperature. We pro-
vide indications for future observations and how the hole anomaly can be employed for
in-situ thermometry, identifying different collisional regimes and understanding other
anomalies in atomic, solid-state, electronic, spin-chain and ladder systems.
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1 Introduction

In a number of classical and quantum many-body systems, the specific heat as a function of
temperature shows a thermal feature, often referred to as an Anomaly and which occurs for
different reasons. A first example is provided by the onset of a thermal second-order phase tran-
sition where the specific heat shows a sharp peak located at the critical temperature [1]. This
anomaly appears in very different transitions: normal/superconductor [2], normal/superfluid
in helium [3,4] and in strongly-interacting ultracold atomic Fermi gases [5,6]. By definition,
the specific heat provides information on the variation of the internal energy in the system
due to a change of temperature. As a consequence, the temperature dependence of the spe-
cific heat and the anomaly can be then explained by a specific structure of the excitation energy
spectrum of the system. In particular, the anomaly often reveals the presence of unpopulated
states in the spectrum of very different kinds of systems. This is the case of the two-level model
with the energy gap∆ in which the specific heat experiences a peak whose value is of the order
of NkB, where N is the number of atoms, and which is located at the anomaly temperature
kB TA ≈ 0.4∆. This effect is known as Schottky Anomaly [7]. Similar phenomena can be ob-
served in solid-state and lattice systems as long as the thermal energy is comparable with the
gap and for which a small temperature increase induces a significant change in the specific
heat. At higher temperatures, the levels are instead evenly populated resulting in lower spe-
cific heat. Schottky-like anomalies emerge in systems of very different nature: Bose-Hubbard
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model [8], metals [9], crystals [10], compounds [11], quantum ferrimagnets [12] and in spin
systems [13–15] even simulating the anomaly in black holes [16]. An external magnetic field
changes ∆ and then TA, and the shape of the peak in the specific heat, as observed [17].

Another class of systems that exhibit an anomaly is restricted to one spatial dimensional-
ity. We focus here on the paradigmatic one-dimensional (1D) Bose gas with contact repulsive
interactions and which exhibits a complicated spectrum [18]. At low momenta, the linear
phononic dispersion determines the low-temperature thermodynamics. An excellent descrip-
tion for this low-energy regime is provided by the Luttinger Liquid theory which is valid for any
interaction strength [19]. As the temperature increases, higher momenta get explored and the
deviation of the spectrum from the phononic behavior becomes relevant [20,21], resulting in
a continuous structure delimited by two branches of elementary excitations. The upper Lieb I
and lower Lieb II branches are associated with the particle and hole excitations, respectively. In
particular, Lieb II branch does not have any counterpart for bosonic ensembles in higher spa-
tial dimensions. The existence of a peak in the temperature dependence of the specific heat
in a 1D Bose gas is known from the thermal Bethe-Ansatz solution [22] which provides an
exact numerical result for this integrable system although it does not give any physical expla-
nation for the anomaly. The anomaly cannot be either interpreted in terms of a thermal phase
transition which does not occur because of the 1D geometry [1]. In addition, the complicated
structure of the spectrum has not permitted so far an easy interpretation of its effects on the
corresponding behavior of thermodynamic quantities like the specific heat. We will show that
the presence of the anomaly is related to an important change in the structure of the excita-
tions which is exactly described by the dynamic structure factor (DSF). Previous studies on
the DSF of a 1D Bose gas have relied on the Bethe-Ansatz method [23] and interpreted the
excitations in terms of particles and holes [24]. In the strongly-repulsive regime, the DSF has
been obtained by using the Bose-Fermi mapping [25, 26] and by performing a perturbative
expansion on the inverse interaction strength [27]. However, most of the results were limited
at temperatures lower than the anomaly value TA and do not provide then any insight into the
peak of the specific heat.

In this work, we report the presence of a peak in the temperature-dependence of the spe-
cific heat at constant volume for any finite interaction strength of a 1D Bose gas. We solve
numerically the thermal Bethe-Ansatz equations within the Yang-Yang theory, which give an
exact result of the specific heat at all temperatures T and interaction strengths [22]. Then, we
investigate analytically different tractable regimes, with the use of several perturbative theo-
ries holding at low and high temperature, and weak and strong interactions. We demonstrate
that the peak can be interpreted in terms of a novel anomaly effect, never reported so far in
ultracold gases, and which provides a fundamental insight into the importance of the intrinsic
features of the complicated spectrum. This work contains both a qualitative physical interpre-
tation for the anomaly in terms of the presence of unpopulated states in the spectrum which
simulate an energy gap as well as a quantitative explanation based on the behavior of the DSF
in a wide range of temperatures. Most importantly, both descriptions hold for any value of
the interaction strength. We show that the new kind of anomaly shares the thermodynamic
features of the Schottky analogue as in both cases the value of the specific heat is of the order
of NkB and the anomaly temperature TA can be expressed as

kB TA (γ)∼∆ (γ) , (1)

as being proportional and of the same order of the “energy gap”∆. We have made explicit the
dependence on the interaction strength γ characterizing the new anomaly and which plays the
role of the magnetic field in the Schottky analogue. The origins of the two anomalies are re-
lated to the spectral properties and, in particular, to the presence of unpopulated states. While
in solid-state systems ∆ is provided by the energy gap between the two lowest levels in the
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spectrum, in a 1D Bose gas we interpret∆ as the energy of the maximum of the Lieb II hole-like
branch below which unpopulated states are present at zero temperature. We refer to this phe-
nomenon then as Hole Anomaly. The hole energy∆ behaves as an energy gap at the thermody-
namic level, by inducing the anomaly in the temperature-dependence of the specific heat. In
order to quantify the structure of the excitations, we calculate the DSF for a wide range of
temperatures and interaction strengths using the ab-initio Path Integral Monte Carlo numeri-
cal method. Our results show that the anomaly temperature TA determines a critical threshold
at which a significant change in the structure of the DSF occurs. While for temperature be-
low TA the description of excitations in terms of quasiparticles holds, at higher temperatures
it fails, as it occurs in any superfluid phase transition around the critical temperature, which
is indeed forbidden in 1D systems. The breakdown of the quasiparticle description is due to
the thermal broadening around TA of the peak of the DSF as a function of frequency and for a
fixed wavenumber. These results for the DSF are general as they are observed to be valid for
several values of the interaction strength.

2 Model

A 1D gas of N bosons with contact repulsive interactions is described by the Hamiltonian

H = −
ħh2

2m

N
∑

i=1

∂ 2

∂ x2
i

+ g
N
∑

i> j

δ(x i − x j) , (2)

where m is the atom mass, g = −2ħh2/(ma) > 0 is the 1D coupling constant, and a < 0
is the 1D s-wave scattering length. The dimensionless interaction strength γ = −2/(na) de-
pends on the gas parameter na, with n = N/L the linear density and L the length of the
system. There is a continuous interaction crossover which encompasses different quantum de-
generacy regimes. In the Gross-Pitaevskii (GP) regime of weak repulsion γ � 1 and of high
density n|a| � 1 the gas admits a mean-field description [28]. In the Tonks-Girardeau (TG)
regime of very strong repulsion γ� 1 and low density n|a| � 1, bosons become impenetrable
and the system wavefunction can be mapped onto that of an ideal Fermi gas (IFG), resulting
in identical thermodynamic behavior [29].

The Lieb-Liniger model describes the system at zero temperature, where the ground-state
energy E0, chemical potential µ0 = (∂ E0/∂ N)a,L and sound velocity
v =

p

n/m(∂ µ0/∂ n)a can be exactly calculated from the Bethe-Ansatz method as a function
of γ [18,28,30]. The sound velocity smoothly changes from the mean-field vGP =

p

gn/m to
the Fermi value vF = ħhπn/m in the TG regime.

3 Specific Heat

Within the canonical ensemble, the thermodynamics of a 1D Bose gas is captured by the
Helmholtz free energy A= E− TS, with E the internal energy and S = − (∂ A/∂ T )a,N ,L the en-
tropy. The chemical potential is defined as µ= (∂ A/∂ N)T,a,L and the specific heat at constant
volume (or length L, in 1D) is

C = (∂ E/∂ T )a,N ,L . (3)

Figure 1 shows with symbols the specific heat per particle as a function of the temperature
T and for characteristic values of the interaction strength γ, obtained from the thermal Bethe-
Ansatz (TBA) equations. In this figure, the temperature τ= T/TF is rescaled by the Fermi value
TF provided by the corresponding energy EF = kB TF = ħh2π2n2/(2m). The peak in the specific
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Figure 1: Specific heat at constant length per particle vs temperature in Fermi units
τ = T/TF and in the thermodynamic limit. The symbols denote numerical thermal
Bethe-Ansatz results for several interaction strengths γ. Lines correspond to the an-
alytical theories. The ideal Bose gas (IBG), Hartree-Fock (HF) and ideal Fermi gas
(IFG) descriptions are independent on the value of γ.

heat is more defined and located at higher temperature TA by approaching the fermionized
TG regime of large γ. We provide below the understanding of dominant effects in the regimes
of the specific heat which may be treated analytically and which show an excellent agreement
with TBA in Fig. 1. The following limits are particularly important for the interpretation of
Fig. 1 as a diagram in terms of γ and T of the many different regimes.

For weak interactions γ� 1, a reliable description is provided by Hartree-Fock (HF) theory,
which yields the chemical potential µHF = µIBG + 2gn [28], where µIBG is the corresponding
value of the ideal Bose gas (IBG). The thermodynamic quantities depend then on the coupling
constant g only through the contribution at zero temperature, and the specific heat, Eq. (3),
is the same as that of the IBG. The low-T expansion of the equation of state in terms of the
effective fugacity close to unity z̃ = eβ(µHF−2gn) ≈ 1 [31] gives (see Appendix B.1 for the
complete derivation)

CHF

NkB
≈

3
8
ζ (3/2)
ζ (1/2)

M (τ)
�

1−
πM (τ)D (τ)
ζ (1/2)ζ (3/2)

�

, (4)

where M =
p
πτζ (1/2), ζ (x) is the Riemann zeta function and D =

�

3M2 − 18M + 32
�

×
(M − 2)−3. Equation (4) agrees with TBA for T ® Td where Td = TF/π

2 is the quantum
degeneracy temperature. At high temperatures T � Td , the virial expansion for z̃� 1 provides
(see Appendix B.2)

CHF

NkB
=

1
2

�

1−
nλ

4
p

2
−

2
p

3− 5

16
p

2
(nλ)3 +O (nλ)5

�

, (5)

where λ=
Æ

2πħh2/ (mkB T ) is the thermal wavelength. Eq. (5) is an expansion for nλ� 1.
In the weakly-interacting regime at low temperatures T/Td �

p
γ � 1 [32], the gas

behaves as a quasicondensate and its thermodynamics can be described by the Bogoliubov
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(BG) theory in terms of a gas of non-interacting bosonic quasi-particles [28, 33]. The specific
heat per particle is (see Appendix C)

CBG

NkB
=

1

n (kB T )2

∫ +∞

−∞

dp
2πħh

ε2 (p)
eβε(p)

�

eβε(p) − 1
�2 , (6)

where β = (kB T )−1 and ε(p) =
Æ

p2v2 + [p2/(2m)]2 is the BG spectrum at zero temperature
[18, 30], which depends on γ through the sound velocity v. Within the Luttinger Liquid (LL)
theory of very low temperatures, one considers only the phononic contribution to the BG
dispersion, ε(p) ≈ v|p|, and obtains the universal result CLL/ (NkB) = πkB T/ (3nħhv) [34]
which is valid for the whole interaction crossover [19]. Our finding for the LL regime corrects
a misprint in Ref. [28]. The next-to-leading term in the low-p expansion of the BG spectrum,
ε(p) ≈ v|p|

�

1+ p2/(8m2v2)
�

, allows to calculate the first correction beyond Luttinger Liquid
[33] CBG = CLL[1− 3π2(kB T )2/(10m2v4) +O(T4)] (see Appendix C.1).

For T/Td �max
�

1,γ2
�

, one enters into the decoherent classical (DC) regime where both
phase and density fluctuations are large and the gas approaches the IBG behavior at high
temperature [32]. The specific heat per particle is (see Appendix D)

CDC

NkB
≈

1
2
−
�

1+
1

2
p

2

�

nλ
4π
−

3γ2

32π
p

2
(nλ)3 . (7)

For strong interactions γ2 ¦ max
�

π2, T/Td

�

, the thermodynamics can be understood via
the hard-core (HC) model [33, 35]. The specific heat is then obtained from that of an ideal
Fermi gas, subtracting from the system size L a “negative excluded volume” Na, where the
diameter of the HC is equal to the scattering length a < 0:
CHC(L) = CIFG(L→ L̂ ≡ L−Na). Following the Sommerfeld expansion of the IFG specific heat
[36] holding for τ� 1 and reported in Appendix E.1, we get the low-temperature expansion

CHC

NkB
=
π2

6
τ̂

�

1+
2
5
π2τ̂2 +

35
36
π4τ̂4 +O

�

τ̂6
�

�

, (8)

where τ̂ = kB T/ÊF . The effective Fermi energy ÊF = ħh2π2n̂2/(2m) depends on the rescaled
density n̂= n/(1− an) which considers the HC correction and it is valid for n|a| � 1. At high
temperature π2 < T/Td ® γ2, we apply the virial expansion to an IFG (see Appendix E.2), and
we derive the high-T behavior of the specific heat per particle:

CHC

NkB
=

1
2

�

1+
n̂λ

4
p

2
−

2
p

3− 5

16
p

2
(n̂λ)3 +O (n̂λ)4

�

+ B , (9)

where the shift B = −
�

2
p

2+ 1
�

/
�

4
p

2π (γ+ 2)
�

corresponds to the O (nλ)-term of the DC
regime, Eq. (7), calculated at the upper temperature bound of the HC approximation T = γ2Td
and with the density replaced by its rescaled value n → n̂. The shift ensures the continuous
crossover between the virial HC and the DC regimes [32]. Differently from the virial expan-
sions, Eqs. (5) and (9), where the thermal wavelength is much larger than the absolute value
of the scattering length λ� |a|, in the DC regime, Eq. (7), λ < |a|. The TG regime (γ= +∞)
which has the same thermodynamic properties of an IFG, is then recovered from the HC model
when a = 0, but it is not connected with the DC regime at high T . In fact, by approaching
the TG limit, while the validity range of temperature of the virial HC theory gets broader
T/Td < +∞ and B → 0, the DC regime disappears as its condition T/Td � γ2 is not longer
satisfied, see Fig. 1.
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4 Hole Anomaly

At a microscopic level, the underlying mechanism responsible for the appearance of the
anomaly in the specific heat is represented with a sketch in Fig. 2. It portrays the main fea-
tures of the dynamic structure factor of a 1D Bose gas for temperature smaller and close to
the anomaly threshold TA. At zero temperature, the DSF exhibits a continuous structure which
is delimited by the Lieb I and II branches [37] corresponding to the particle and hole excita-
tion dispersion, respectively, for any interaction strength γ. In the spectrum, there are then
states which are not populated and some of them are located below the lower Lieb II hole
branch. The thermal fluctuations smear the borders of the DSF by an amount of energy equal
to kB T . At low temperature T < TA, the quasiparticle picture of the excitations is valid. At small
momenta, quasiparticles are provided by phonons with linear dispersionω(k) = v|k| whereω
is the frequency and k is the wavenumber. At high temperature T > TA, it is no longer possible
to identify a single dominant excitation and the quasiparticle picture breaks down. The tem-
perature TA where this occurs can be estimated by the value of the “gap” ∆ at the inflection
point of the hole branch located at the Fermi wavenumber kF = πn, so that kB TA ∼∆, see also
Eq. (1). The quantity ∆ corresponds then to the energy of the maximum of the lower Lieb II
branch. Up to the same level of accuracy, the value of ∆ can be approximated by the typical
energy of phonons calculated at the inflection point ∆∝ vħhkF [28,38], so that we obtain

kB TA ∼ vħhkF , (10)

which has been derived from a microscopic description.
The spectrum at zero temperature can be calculated from the exact Bethe-Ansatz method

[18]. For any value of the interaction strength γ, the relevant hole excitation for the anomaly
is always located at the maximum of the Lieb II branch at kF , while its energy value∆ changes
in the interaction crossover. We report in Fig. 3 the comparison between the hole energy
∆ and the temperature TA of the peak in the specific heat, to test the validity of the pro-
posed microscopic anomaly mechanism. The hole energy ∆ has been calculated with Bethe

Figure 2: Sketch of the dynamic structure factor at a temperature below (left) and
around (right) the value of the Hole Anomaly. Upper particle-like Lieb I and lower
hole-like Lieb II branches are reported with solid curves. Dashed line denotes the
linear phononic spectrum ω(k) = v|k| where ω is the frequency, v is the sound
velocity and k is the wavenumber. The hole excitation responsible for the anomaly
is located at the Fermi wavenumber kF and its energy is equal to ∆. The dynamic
structure factor at zero temperature is reported with the blue shaded region with
vertical lines. Its thermal contribution is instead denoted with red shading.
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Figure 3: Hole energy ∆ and anomaly temperature TA in Fermi units vs interaction
strength γ. Circles denote numerical Bethe-Ansatz results for ∆. Triangles represent
TA estimated from the anomalies in the specific heat shown in Fig. 1. Dot-dashed lines
correspond to the upper-temperature bounds of the BG and Sommerfeld HC theories,
for small and large values of γ respectively. Dashed line shows the phononic energy
scale at the Fermi wavenumber kF .

Ansatz [39, 40]. We also show the energy scales at which the anomaly occurs for small and
large values of γ. Such scales correspond to the upper-temperature bounds of the validity of
the BG, Eq. (6), and Sommerfeld HC, Eq. (8), theories, the latter of which has been shifted
by the degeneracy energy kB Td . The temperature ranges of the validity of the BG and Som-
merfeld HC approaches are T/Td �

p
γ and kB T � ÊF , respectively. We finally report half of

the phononic energy calculated at the Fermi wavenumber vħhkF/2. This provides a universal
energy scale for the hole excitation ∆ ≈ vħhkF/2 for any γ [38]. Overall, a good agreement
between ∆ and TA is found (keeping in mind that their relation is through a coefficient of the
order of unity that depends on γ) even if γ is changed by more than four orders of magnitude.
This fully supports the hole scenario for the anomaly, described by Eq. (1).

This important result solves the open problem of relating the features of the microscopic
complicated excitation spectrum with the thermodynamic behavior of a 1D Bose gas. In fact,
similarly to the Schottky anomaly in the two-level model, the new hole anomaly emerges
from the presence of unpopulated states in the spectrum. The close analogy to the Schottky
anomaly is further reinforced if one associates the energy ∆ of the maximum of the hole
branch with the energy gap in the two-level system. Indeed, both phenomena share a similar
proportionality relation for the anomaly temperature kB TA ∼∆, see also Eq. (1), where TA and
∆ are of the same order in both cases. While in the Schottky anomaly all parameters appearing
in the above proportionality relation can be changed by applying an external magnetic field,
in a 1D Bose gas they all depend on the interaction strength γ controlled by the magnetic
Fano-Feshbach resonances in experiments [20]. By approaching the strongly-correlated Tonks-
Girardeau regime with very large interaction strength γ, kB TA ≈ ∆, Fig. 3. The reduction
of the discrepancy between the anomaly temperature TA and the hole energy ∆ for strong
interactions is explained with the presence of just one physical energy set by the Fermi value
EF = kB TF = ħh2π2n2/(2m) in the fermionized Tonks-Girardeau regime and which provides
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the common limit for TA and ∆ for large γ. Finally, the monotonic increasing behavior of
the “energy gap” ∆ with γ in Fig. 3 determines the anomaly peak in the specific heat getting
more defined and located at higher temperatures TA by increasing the interaction strength, see
Fig. 1.

4.1 Chemical Potential

We argue here that the anomaly is a universal property of all 1D atomic gases, even if they
are described by a different Hamiltonian from the one we have considered, Eq. (2). A thermal
feature seen as an abrupt change in the dependence with temperature might be found not only
in the specific heat but also in other interesting thermodynamic quantities like the chemical
potential, see Fig. 4. Indeed, at temperatures much larger than the interaction energy, one can
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Figure 4: Specific heat at constant length per particle (upper panel) and chemical
potential rescaled by its value at zero temperature µ0 (lower panel) vs temperature in
Fermi units τ = T/TF . The symbols denote numerical thermal Bethe-Ansatz results
for several interaction strengths γ. Solid line corresponds to the ideal Fermi gas
(IFG) finding. Vertical lines represent the hole energy ∆ and they are reported in an
increasing order of γ from low (left) to high (right) values.
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approximately consider the gas as being ideal. The chemical potential is negative and it is a
decreasing function for both ideal Bose and Fermi gases in the limit of high temperature. As it
was demonstrated by some of the authors of the present paper in Ref. [19], for a wide class of
1D systems with a gapless spectrum, the presence of the phononic excitations whose dispersion
is linear v|p| leads to a T2-increase in the chemical potential in the Luttinger Liquid regime of
low temperatures. As the chemical potential is an increasing and a decreasing function at low
and high temperatures, respectively, it must exhibit a maximum. Within the Luttinger Liquid
formalism, the Fermi energy EF = kB TF is a relevant scale for both fermionic and bosonic
gases with the same density n and atomic mass m. The characteristic anomaly temperature at
which the maximum of the chemical potential appears can be estimated by setting the thermal
T2-correction equal to the dominant contribution µ0/EF ≈ (T/TF )2, provided by the chemi-
cal potential at zero temperature and which can be expressed in terms of the sound velocity
µ0 ∝ mv2 for any value of the interaction strength. By combining the above approximate
conditions one exactly recovers Eq. (10), representing the characteristic temperature of the
anomaly in the specific heat. In fact, even if the values of the anomaly temperature TA are dif-
ferent in the chemical potential and in the specific heat, they are of the same order and both
can be then well approximated by Eq. (10) which has been obtained here from thermodynamic
considerations rather than a microscopic description.

For sake of clarity, Fig. 4 shows with symbols the specific heat per particle and the chemical
potential as a function of the temperature T and for characteristic values of the interaction
strength γ, obtained from the thermal Bethe-Ansatz equations. Solid line represents the ideal
Fermi gas result. Vertical lines denote the hole energy ∆ for different values of γ. We notice
that both the specific heat and the chemical potential exhibit an anomaly for any value of the
interaction strength γ. In addition, for both these thermodynamic quantities, the discrepancy
between the anomaly temperature TA, corresponding to the position of the thermal feature,
and the hole energy ∆ decreases by approaching the fermionized TG regime of large γ, as
depicted also in Fig. 3. The chemical potential as a function of temperature has been previously
calculated with thermal Bethe-Ansatz method in the strongly-interacting regime [26] and for
different values of the interaction strength [19,33].

5 Dynamic Structure Factor

Quantitative information on the excitation spectrum of the system is provided by the dynamic
structure factor S(k,ω) which describes the dynamic response with frequencyω of a quantum
many-body system to a weak density perturbation with wavenumber k. It is defined by the
Fourier transform of the real-time t density-density correlation function

S(k,ω) =
1
N

∫ +∞

−∞

d t
2π

eiωtTr [nTρ−k(t)ρk(0)] , (11)

whereρk (t) = eiH t/ħhρke−iH t/ħh is the time evolution, following the Hamiltonian H of Eq. (2), of
the density perturbation operator ρk =

∑N
i=1 e−ikx i . The thermal density matrix nT = e−βH/Z ,

where Z = Tr
�

e−βH
�

is the partition function, allows for the calculation of the expectation
value of any quantum observable O: 〈O〉= Tr (nT O).

We have calculated the DSF for different temperatures T and interaction strengths γ by
employing the Path Integral Monte Carlo (PIMC) technique, see Sec. 6 and Appendix G. We
consider here the results for the intermediate regime γ = 1, which cannot be handled with
perturbative theories in Fig. 1. However, the behavior of the DSF described below is the same
for different values of γ, see Appendix G.

10

https://scipost.org
https://scipost.org/SciPostPhys.13.2.035


SciPost Phys. 13, 035 (2022)

Figure 5: Dynamic structure factor for the interaction strength γ = 1. Solid line
shows the energy of the hole branch at zero temperature calculated with exact Bethe
Ansatz and its value for k = kF gives its maximum energy ∆. Path Integral Monte
Carlo numerical results are for: i) the dynamic structure factor which is represented
with the heatmap in units of the inverse of the Fermi frequency ωF = EF/ħh and for
different temperatures τ = T/TF ; ii) the single-mode frequency ωSM is denoted by
dots whose sizes are larger than the error bars. Wavenumber k is in units of the Fermi
value kF .

In Fig. 5 we provide characteristic examples of the DSF at temperatures below, around and
above the anomaly value TA. For T < TA, the DSF resembles its behavior at zero tempera-
ture [23]. At small wavenumber k, the thermal excitations stay in the Luttinger Liquid regime
and the DSF exhibits a sharp peak located at a frequencyω which satisfies the linear phononic
law ω(k) = v|k|. As k increases, the DSF structure gets broader, but it remains centered at a
ω> 0 value, while theω< 0 contributions are yet negligible. For all k values, the peak of the
DSF is then well approximated by the Feynman relation, for which the full excitation spectrum
is described in terms of a coherent single-mode (SM) quasi-particle [41]:

ħhωSM(k) = ħh2k2/ [2mS(k)] , (12)

where S(k) =
∫ +∞
−∞ dωS(k,ω) is the static structure factor. In Fig. 5, we show for comparison

the single-mode frequency ωSM obtained within the Feynman approximation based on PIMC
results for S(k). As the temperature T is increased, the zero-temperature approximation no
longer provides a reliable description for the excitations of the gas. At T ≈ TA, the DSF does
not show anymore the phononic behavior at small k, but it exhibits instead a signal around
ω = 0. At large k, there is a broad distribution centered at ωSM. For T > TA, the DSF shows
a very broad signal with the maximum centered at ω= 0 for any value of k. At temperatures
above the anomaly, the dynamics of the system is not then described by a coherent single
excitation with a finite frequency.

To quantify the DSF in the temperature crossover, in Fig. 6 we report S(k,ω) as a function
of frequency ω and temperature T and for fixed values of the wavenumber k. This crossover
is explained in terms of the interplay between quantum correlations (i.e. interaction effects)
and thermal fluctuations in the dynamics of the excitations of the system. At temperatures
below that of the anomaly T < TA, quantum correlations are more important than thermal
fluctuations which are then treated as a small perturbation. Above the anomaly threshold
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Figure 6: Path Integral Monte Carlo results of the dynamic structure factor vs fre-
quencyω for two values of the wavenumber k (left and right column) and interaction
strength γ = 1. Each row corresponds to different temperatures τ = T/TF . Vertical
line denotes the single-mode frequency ωSM. Colors represent the regimes below
(τ≤ 0.114), around (τ≈ 0.173) and above (τ≥ 0.347) the anomaly.

T > TA, the DSF is characterized by a broad incoherent component and thermal fluctuations
dominate over quantum effects. In the non-trivial intermediate regime around the anomaly
T ≈ TA, where simple analytical theories cannot be applied, our results show the coexistence
of quantum correlations and thermal fluctuations whose contributions are comparable.

As can been seen from Figs. 5-6, the frequency dependence of the DSF for fixed values
of the wavenumber k at T < TA is characterized by a sharp peak, located at frequency ωSM
which signals the excitation of a single mode making the quasiparticle description, Eq. (12),
valid for any value of k. At high temperatures T > TA, many different modes are excited
and the resulting DSF exhibits a broad structure as a function of frequency. The breakdown
of the quasiparticle picture around the anomaly temperature TA is then due to the thermal
broadening of the peak of the DSF as a function of frequency and for fixed values of the
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wavenumber.
It is worth noticing that the superfluid-to-normal phase transition in Bose systems, in two

and three spatial dimensions, shows the same trend in the DSF when crossing the critical
temperature Tc: the quasi-particle collective excitation turns to a broad thermal response for
T > Tc . Therefore the present 1D case, showing also a finite peak in the specific heat, resembles
the critical behavior of Bose systems at higher spatial dimensions. However, differently to two-
and three- dimensional geometry in which a true phase transition occurs making the change
of the behavior in DSF more evident, in 1D there is instead a temperature crossover which
makes the broadening of the peak in the DSF smoother. As a result, the anomaly temperature
TA found from the specific heat dependence, provides only an appropriate energy scale rather
than a precise value at which the DSF broadening is observed.

6 Path Integral Monte Carlo Method

The PIMC method relies on the description of an ensemble of N quantum atoms in terms of
a set of N classical polymers, each of them reproducing the quantum delocalization of one
particle [3]. In this way, the thermal average 〈O〉 of the quantum observable O is expressed as
a multidimensional integral which can be efficiently computed with a Monte Carlo algorithm.
The PIMC makes use of the convolution property of the propagator which admits an analytical
approximation only for small imaginary times. We calculate such approximation by choosing
a pair-product scheme which is based on the exact solution of the two-body problem for the
Hamiltonian in Eq. (2) [42,43]. In order to recover the Bose statistics of the indistinguishable
quantum particles, we sample stochastically the permutations among the atoms with the worm
algorithm [44]. PIMC results have been carefully checked by benchmarking the expectation
values for the energy per particle and the isothermal compressibility against the exact TBA
calculation in Appendix F.

The PIMC method is exact for the calculation of the static properties like the energy [3],
but it only allows for an indirect estimation of the dynamic properties, such as the DSF S(k,ω),
Eq. (11). In order to compute S(k,ω), one has to recover the correlation function in the imag-
inary time ε: F(k,ε) = Tr [nTρ−k(−iε)ρk(0)]/N which is related to the DSF via a Laplace
transform F(k,ε) =

∫ +∞
−∞ dωS(k,ω)

�

e−ħhωε + e−ħhω(β−ε)
�

. The inversion of the Laplace trans-
form is a mathematically ill-conditioned problem and make unfeasible a precise reconstruction
of the DSF from PIMC data of the F(k,ε), which are unavoidably affected by statistical uncer-
tainties. Yet, several numerical approaches have been presented in literature to tackle this
problem [45–51]. These methods are able to recover the main features of the DSF, like the fre-
quencies and the spectral weight of the main peaks, and have provided insightful results in the
study of several quantum many-body systems [52–56]. We reconstruct the DSF by employing
a simulated annealing procedure which minimizes the χ2-deviation between the expectation
value of F(k,ε), obtained from a guess of S(k,ω), and the PIMC data [51,57]. Details on the
annealing method can be found in Appendix H.

7 Conclusions

In this work, we provide a detailed description of the new hole anomaly in 1D Bose gases
evidenced by a thermal feature in thermodynamic quantities such as the chemical potential
and specific heat as a function of temperature. We argue that the presence of the anomaly is
due to the region of unpopulated states located below the lower hole branch in the excitation
spectrum at zero temperature and which behaves as an energy gap from the thermodynamic
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point of view. We show that the anomaly temperature TA and the energy∆ of the maximum of
the hole branch are functions of the interaction strength γ and they are proportional and of the
same order: kB TA (γ)∼∆ (γ). Another excellent energy scale for the hole anomaly is provided
by phonons at the Fermi momentum, which ensures the high control over both TA and ∆ by
finely tuning γ through the sound velocity. We provide an additional simple characterization
of the anomaly in terms of a qualitative change in the structure of the excitations, governed
by a single quasiparticle mode at low temperatures which gets suppressed by thermal fluctua-
tions at higher temperatures. The breakdown of the quasiparticle picture is due to the thermal
broadening around the anomaly temperature of the structure of the excitations as a function
of frequency. Our description for the hole anomaly is valid for any value of the interaction
strength γ and solves the open problem of relating the effects of the complicated spectrum
to the thermodynamic behavior of a 1D Bose gas. The anomaly is a reminiscence of a phase
transition, that is not allowed in 1D systems, and signals a change of quantum regime.

The exact results of the specific heat as a function of temperature and interaction strength
γ were obtained with the Bethe-Ansatz method and the main features were described ana-
lytically. Beyond the validity of different analytical limits, novel quantum regimes emerge. We
computed the dynamic structure factor with the ab-initio Path Integral Monte Carlo technique.
We carefully characterized then the behavior of the dynamic response with temperature, by
showing that quantum correlation and thermal fluctuation contributions are comparable in
the anomaly regime for any γ. The Path Integral Monte Carlo method has been applied to a
1D Bose gas with contact interactions for the first time in our work. Our calculations extend
to a wide range of temperatures compared to previous studies which were restricted only to
very low temperature.

We show that an anomaly is always present in the chemical potential of any 1D atomic
gas of both bosonic and fermionic nature. A similar proportionality relation kB TA (γ) ∼ ∆ (γ)
applies to the Schottky anomaly in the two-level model where the dependence on the inter-
action strength γ is replaced by the magnetic field and ∆ has to be interpreted as the energy
gap. The two-level model is a low-temperature approximation of any discrete spectrum which
is found in many different solid-state systems where the dependence of the Schottky anomaly
on the magnetic field has been indeed observed.

A hole-like anomaly, whose position and structure change with an external magnetic field,
has been also detected in the temperature-dependence of the specific heat in 1D spin chains
[58,59]. The continuous excitation spectrum of this system, which exhibits a twofold particle-
hole nature similar to the case of the 1D Bose gas, has been experimentally measured showing
an excellent agreement with the exact calculation based on the Bethe-Ansatz [60,61]. A similar
anomaly may be also found in 1D electronic systems with particle-hole spectrum [62].

In both 1D quantum spin chains and ladders in the presence of a changing magnetic field,
the anomaly has been theoretically and experimentally studied not only in the specific heat
but also through the minimum in the magnetization as a function of temperature [63–65].
The lack of the λ-shaped divergence in the specific heat and the analytic minimum in the
magnetization reflects the absence of a true phase transition. The temperatures of the two
thermal features, although similar, are not identical [64] as can be found by comparing the
values of TA in the specific heat and chemical potential in the 1D Bose gas, see Sec. 4.1.
The hole anomaly shows important analogies with anomalies present in these spin systems in
the limit of spinless fermions corresponding to the TG regime in our system. In fact, TA has
been estimated from the spin energy gap of the spectrum, Eq. (1), and it corresponds to the
crossover from the Luttinger Liquid to the high-temperature regime due to the competition
of the chemical potential at zero temperature and its lowest thermal contribution, see Sec.
4.1. Finally, the anomaly signals the excitation of the states at the bottom of the band in
the spectrum, similarly to the corresponding mechanism in the 1D Bose gas depicted in Fig. 2.
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Since our description of the hole anomaly is universally valid for any finite interaction strength,
it may be applied to model the behavior of anomalies in 1D spin chains and ladders even
in the regime of interacting fermions. The dynamic structure factor in spin ladders at zero
temperature has been calculated by using the density-matrix renormalization group (DMRG)
in real time [65] and an extension at finite temperature is highly desirable [66–68]. Our PIMC
results can then give a qualitative insight into the dynamical correlations around the anomaly
temperature in spin systems. Differently to the DMRG technique which can be employed only
in lattice systems, PIMC method can be applied in both discretized and continuous limits, the
latter of which is the case of the present work.

A tantalizing possibility is that the hole anomaly could be employed as a quantum simula-
tor as it provides an in-depth understanding of diverse anomalies in other more complicated
many-body systems such as atoms, solids, electrons, spin chains and ladders. The new anomaly
shares typical properties of a quantum simulator as its future observation is feasible and it can
be achieved in clean experimental atomic settings where precise control and broad tunability
of the interaction strength γ are possible. In addition, the applicability of several exact methods
to the 1D Bose gas provides fundamental insights into the problem. This concept of quantum
simulation [69] at the thermodynamic level aims at the understanding of strongly-correlated
systems, the development of innovative materials, and the emergence of new quantum tech-
nologies.

At the experimental level, the temperature-dependence of the specific heat has been ob-
served in a three-dimensional strongly-interacting Fermi gas, where the detection of the peak
allowed for a precise measurement of the critical temperature of the superfluid phase transi-
tion [5]. The chemical potential as a function of temperature and interaction strength γ has
been measured in a 1D Bose gas, resulting in an excellent agreement with thermal Bethe-
Ansatz solution [70]. The optical tube trap allowed the exploration of the chemical potential
at temperatures both below and above the anomaly, by keeping satisfied the condition for the
1D geometry [70]. The employed experimental technique in both measurements is the in-situ
absorption imaging whose signal-to-noise ratio has been recently enhanced [71]. In 1D, three-
body losses are strongly reduced [72], and the spatial uniform density can be achieved with a
flatbox potential [73]. All these premises make the observation of the novel hole anomaly in a
1D Bose gas particularly appealing for current experimental settings [70]. At fixed interaction
strength γ, the detection of the anomaly may be employed as a precise in-situ temperature
probe. The γ-dependence of the anomaly can be observed by applying Fano-Feshbach reso-
nances [20, 74]. The dynamic structure factor of a 1D Bose gas has been probed using Bragg
spectroscopy [20,21], but at temperatures smaller than the anomaly threshold.

Looking forward, in harmonically trapped 1D Bose gases, the specific heat determines the
time-dependence of the temperature in hydrodynamic breathing modes [75]. Hole anomaly
may play then a key role in the hydrodynamic-collisionless transition which has been predicted
with the evolution of breathing modes due to an increase of temperature [76]. This intriguing
idea may explain the mismatch between the predictions and the measurements of the breath-
ing mode frequencies through the crossover between the regimes of the quasicondensate and
the ideal Bose gas [77]. The HC description, which is valid close to the strongly-correlated
TG regime where the anomaly effect is enhanced, is expected to hold even in very different
systems at low density. The anomaly should be well visible then even for positive scattering
length a > 0 in: i) short-range interacting systems like the metastable super Tonks-Girardeau
gas [78,79], ii) finite-range interacting ensembles of dipolar [80,81] and Rydberg atoms [82],
1D bosonic 4He (liquid) [56] and 1D fermionic 3He (gas) [83]. Our findings can also be
extended to 1D liquids in bosonic mixtures [84,85] at finite temperature [86].
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A Main Quantities

From the Helmholtz free energy A = E − TS, where E is the internal energy and T the tem-
perature, we calculate the entropy

S = − (∂ A/∂ T )a,N ,L , (13)

and the pressure
P = − (∂ A/∂ L)T,a,N = n (µ− A/N) , (14)

where µ is the chemical potential. The Tan’s contact parameter [33] is defined in systems with
zero-range interactions

C = 4m

ħh2

�

∂ A
∂ a

�

T,N ,L
=

4nN
a2

g2 (0) , (15)

and it is proportional to the normalized pair correlation function [28] at zero relative distances
x = 0

g2 (x = x1 − x2) =
〈ψ̂+ (x2) ψ̂+ (x1) ψ̂ (x1) ψ̂ (x2)〉

n2
, (16)

where ψ̂ (x) is the field operator.
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B Hartree-Fock theory for a weakly-interacting Bose gas

In this Appendix, we provide details about the low- and the high-temperature expansions
within the Hartree-Fock approximation.

The equation of state for a 1D weakly-interacting Bose gas with density n and pressure P
can be obtained from

¨

nλ= g1/2(z̃) ,
Pλ= gn2λ+ kB T g3/2(z̃) ,

(17)

where z̃ = eβ(µHF−2gn) is the effective fugacity within the Hartree-Fock (HF) theory [28],
λ=

Æ

2πħh2/(mkB T ) is the thermal wavelength and the Bose functions are

gν (z) =
1
Γ (ν)

∫ +∞

0

d x
xν−1

z−1ex − 1
, (18)

where Γ (ν) is the Euler gamma function.

B.1 Low-temperature expansion

The Bose functions can be approximated for z̃ = e−α ≈ 1, with small and positive α [31]

gν(e
−α) = Γ (1− ν)αν−1 +

+∞
∑

i=0

(−1)i
ζ(ν− i)

i!
αi , (19)

where ζ(x) is the Riemann zeta function.
By inverting the expression for n in Eq. (17) where we employ Eq. (19), we obtain the

following approximation for the effective fugacity

z̃ ≈ e−π
� p

πτp
πτζ(1/2)−2

�2

, (20)

where τ = kB T/EF , and EF = kB TF = ħh2π2n2/ (2m) is the Fermi energy. By making use
of the definition of z̃ in Eq. (20) and by considering only the real solution, we find the low-
temperature behavior of the chemical potential:

µHF ≈ 2gn− EF

�

πτ
p
πτζ (1/2)− 2

�2

. (21)

By combining Eqs. (19) - (20) in the equation of the pressure P, given by Eq. (17), we obtain

PHF ≈ gn2 +
p
π

2
nEFζ (3/2)τ

3/2

(

1−
π3/2pτ
ζ (3/2)

�

3
p
πτζ (1/2)− 4

�

�p
πτζ (1/2)− 2

�2

)

. (22)

From Eqs. (14) and (21)-(22), we calculate the low-temperature expansion of the free energy
per particle

AHF

N
≈ gn−

p
π

2
EFζ (3/2)τ

3/2

¨

1−
3π3/2pτ

ζ (3/2)
�p
πτζ (1/2)− 2

�

«

, (23)

from which we get the corresponding entropy per particle, Eq. (13)

SHF

NkB
≈

3
4
ζ (3/2)

p
πτ

(

1−
π3/2pτ
ζ (3/2)

�

3
p
πτζ (1/2)− 8

�

�p
πτζ (1/2)− 2

�2

)

, (24)
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and the energy per particle

EHF

N
≈ gn+

p
π

4
EFζ(3/2)τ

3/2

(

1−
3π3/2pτ
ζ(3/2)

�p
πτζ(1/2)− 4

�

�p
πτζ(1/2)− 2

�2

)

. (25)

We notice that in the HF approximation, all the thermodynamic quantities depend on the in-
teractions only through their contribution at zero temperature. The Tan’s contact per particle,
Eq. (15), is then independent on temperature:

CHF

N
= 2n3γ2 , (26)

and we obtain the pair correlation function of an ideal Bose gas g2 (0)HF = 2.

B.2 High-temperature virial expansion

The Bose functions, Eq. (18), admit the series representation in terms of small effective fugacity
z̃ � 1: gν(z̃) =

∑+∞
i=1 z̃ i/iν. By inverting the expression for n in Eq. (17) and by expanding

for nλ� 1, we get

z̃ = nλ−
(nλ)2
p

2
+
p

3− 1
p

3
(nλ)3 +O[(nλ)4] . (27)

By making use of the definition of z̃ in Eq. (27) and an expansion for nλ� 1, we obtain the
virial expansion of the chemical potential:

µHF = kB T
�

ln (nλ)−
nλ
p

2
+

3
p

3− 4

4
p

3
(nλ)2 −

2
p

3− 5

6
p

2
(nλ)3 +O[(nλ)4]

�

+ 2gn . (28)

From the equation of P, Eq. (17), we derive the high-temperature behavior of the pressure:

PHF = nkB T
�

1−
nλ

2
p

2
+

3
p

3− 4

6
p

3
(nλ)2 −

5
4

�

2
p

3− 5
�

6
p

2
(nλ)3 +O[(nλ)4]

�

+ gn2 . (29)

The expansion of the free energy per particle is

AHF

N
= kB T

�

ln (nλ)− 1−
nλ

2
p

2
+

3
p

3− 4

4
p

3

(nλ)2

3
+

2
p

3− 5

6
p

2

(nλ)3

4
+O[(nλ)4]

�

+ gn , (30)

which has been previously derived at the order O[(nλ)2] [33]. The entropy and the energy
per particle are, respectively

SHF

NkB
= −

�

ln (nλ)−
3
2
−

nλ

4
p

2
−

2
p

3− 5

6
p

2

(nλ)3

8
+O[(nλ)5]

�

, (31)

EHF

N
=

1
2

kB T

�

1−
nλ

2
p

2
+

3
p

3− 4

6
p

3
(nλ)2 +

2
p

3− 5

8
p

2
(nλ)3 +O[(nλ)4]

�

+ gn . (32)

C Bogoliubov theory for a weakly-interacting Bose gas at low tem-
perature

We report here the calculation of the low-temperature expansion of the Bogoliubov theory.
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The thermodynamics of a quasicondensate can be described in terms of a gas of nonin-
teracting bosonic quasiparticles [28,33], by applying the Bogoliubov (BG) theory, whose free
energy per particle is

ABG

N
=

E0

N
+

kB T
n

∫ +∞

−∞

dp
2πħh

ln
�

1− e−βε(p)
�

, (33)

where E0 is the ground-state energy obtained within the Lieb-Liniger theory at zero tempera-
ture [30], ε(p) =

Æ

p2v2 + [p2/(2m)]2 is the T = 0 BG spectrum [18, 30] and β = (kB T )−1.
From Eq. (33), we can calculate the complete thermodynamics of the system, such as the
entropy per particle, Eq. (13)

SBG

NkB
=

1
n

∫ +∞

−∞

dp
2πħh

�

βε(p)
eβε(p) − 1

− ln
�

1− e−βε(p)
�

�

, (34)

and the energy per particle

EBG

N
=

E0

N
+

1
n

∫ +∞

−∞

dp
2πħh

ε(p)
eβε(p) − 1

. (35)

The chemical potential, the pressure and the Tan’s contact parameter have been derived in
Ref. [33].

C.1 Low-temperature expansion from non-linear Bogoliubov spectrum

The low-momentum expansion of the Bogoliubov dispersion relation
x = ε(p) = v|p|

�

1+ p2/(8m2v2)
�

> 0 can be inverted to get the real and positive solution p.
Hence, for the free energy per particle, Eq. (33), we obtain the integral:

∫ +∞

0

d x
1

v
h

1+ 3p2(x)
8(mv)2

i ln
�

1− e−
x

kB T
�

≈ −
π2

6
(kB T )

v
+
π4

120
(kB T )3

m2v5
, (36)

where the analytic result may be found expanding the integrand for |p| � mv, which is valid
at low temperatures. We get the low-T behavior of the free energy per particle, within the
Bogoliubov theory [33]:

ABG

N
=

E0

N
−
π

6
(kB T )2

ħhnv

�

1−
π2

20
(kB T )2

m2v4
+O(T4)

�

, (37)

from which we calculate the entropy and the energy per particle

SBG

NkB
=
π

3
kB T
ħhnv

�

1−
π2

10
(kB T )2

m2v4
+O

�

T4
�

�

, (38)

EBG

N
=

E0

N
+
π

6
(kB T )2

ħhnv

�

1−
3π2

20
(kB T )2

m2v4
+O

�

T4
�

�

. (39)

The Tan’s contact per particle, Eq. (15), is [33]

CBG

N
=

C0

N
+

C̄
N
(kB T )2

m2v4

�

1−
π2

4
(kB T )2

m2v4
+O

�

T4
�

�

, (40)

where the factor C̄ = πm3v2Nγ2(∂ v/∂ γ)n/(3ħh3) depends on the sound velocity v =
p

gn/m
and the value at zero temperature C0/N = n3γ2 has to be compared with that of the HF theory,
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Eq. (26). The pair correlation function approaches the unity corresponding to the value of the
coherent regime:

g2 (0)BG = 1+
π5

24
τ2

γ3/2

�

1−
π6

16
τ2

γ2
+O

�

τ4
�

�

, (41)

where τ = T/TF . Our finding, Eq. (41), agrees with the result at the mean-field level of
Ref. [32], and we derived the additional O

�

T4
�

correction.

D Decoherent Classical regime

We derive in the following the thermodynamic quantities in the decoherent classical regime.
The pair correlation function in the decoherent classical (DC) regime is close to the HF

value g2 (0)HF = 2 [32]
g2 (0)DC ≈ g2 (0)HF −

γ
p

2
nλ , (42)

from which we calculate the Tan’s contact per particle, Eq. (15)

CDC

N
≈

CHF

N

�

1−
γ

2
p

2
nλ
�

, (43)

where we have used Eq. (26). By integrating the above equation with λ < |a| and a < 0, we
find the free energy per particle

ADC

N
= kB T [ln (nλ)− 1] +

1
N

∫ λ

a
da
∂ ADC

∂ a

≈ kB T [ln (nλ)− 1]−
ħh2n2γ

m

�

1+
�

2+
1
p

2

�

1
γnλ

−
γ

4
p

2
nλ
�

, (44)

where the constant of the integration has been chosen equal to the leading classical gas value
whose prefactor is provided by the thermal energy kB T . The entropy, Eq. (13), and the energy
per particle are, respectively

SDC

NkB
≈ −

�

ln (nλ)−
3
2

�

+
�

1+
1

2
p

2

�

nλ
2π
+

γ2

16π
p

2
(nλ)3 , (45)

EDC

N
≈

1
2

kB T
�

1−
�

1+
1

2
p

2

�

nλ
π

�

−
ħh2n2γ

m

�

1−
3γ

8
p

2
nλ
�

. (46)

E Ideal Fermi gas

In this Appendix, we provide details about the derivation of the Sommerfeld and the virial
expansions of an ideal Fermi gas.

The equation of state of a 1D ideal Fermi gas (IFG) with density n and pressure P can be
found from

¨

nλ= f1/2(z) ,
Pλ= kB T f3/2(z) ,

(47)

where we have defined the fugacity z = eµ/(kB T ) and the Fermi functions

fν (z) =
1
Γ (ν)

∫ +∞

0

d x
xν−1

z−1ex + 1
, (48)

where Γ (ν) is the Euler Gamma function.
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E.1 Low-temperature Sommerfeld expansion

The Sommerfeld expansion [36] allows for the calculation of integrals of the form:
∫ +∞

0

dεH(ε) f (ε) =

∫ µ

0

dεH(ε) +
+∞
∑

i=1

ai(kB T )2i d2i−1

dε2i−1
H(ε)|ε=µ , (49)

where

f (ε) =
1

e
ε−µ
kB T + 1

(50)

is the Fermi-Dirac distribution. We consider the 1D density of states of the IFG:

H(ε) =
1

2
p

EFε
, (51)

where EF = kB TF = ħh2π2n2/ (2m) is the Fermi energy. In Eq. (49), we have introduced

ai =
�

2−
1

22(i−1)

�

ζ(2i) , (52)

where ζ (i) is the Riemann zeta function.
At very low temperature, the chemical potential of the IFG approaches the Fermi energy

and we set then µ → EF (1 + δ) with 0 ≤ δ � 1. We take into account the Sommerfeld
expansion, Eq. (49), up to the O(δ3)-order, corresponding to the integer i = 3, and we impose
the normalization condition

∫ +∞
0 dεH(ε) f (ε) = 1. We solve the resulting equation for the

real solution δ and we expand in series, finding the chemical potential

µIFG = EF

�

1+
π2

12
τ2 +

π4

36
τ4 +

7π6

144
τ6 +O(τ8)

�

, (53)

with τ= kB T/EF .
The Sommerfeld expansion, Eq. (49), enables one to get the low-temperature behavior

kB T � µ of the Fermi functions fν
�

e
µ

kB T
�

≈ 1
νΓ (ν)

�

µ
kB T

�ν
h

1+ π2

6 ν (ν− 1)
�

kB T
µ

�2i

. By using

the latter expression in Eq. (47), one recovers Eq. (53), and obtains the pressure:

PIFG =
2
3

nEF

�

1+
π2

4
τ2 +

π4

20
τ4 +

35π6

432
τ6 +O(τ8)

�

. (54)

From Eqs. (53)-(54) and (14), we calculate the low-temperature expansion of the free energy
per particle:

AIFG

N
=

EF

3

�

1−
π2

4
τ2 −

π4

60
τ4 −

7π6

432
τ6 +O(τ8)

�

, (55)

the entropy per particle, Eq. (13)

SIFG

NkB
=
π2

6
τ

�

1+
2π2

15
τ2 +

7π4

36
τ4 +O

�

τ6
�

�

, (56)

the energy per particle

EIFG

N
=

EF

3

�

1+
π2

4
τ2 +

π4

20
τ4 +

35π6

432
τ6 +O

�

τ8
�

�

, (57)

and the specific heat per particle, Eq. (3), which corresponds to Eq. (8) with zero scattering
length a = 0.
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The Tan’s contact per particle, Eq. (15), is [33]:

CIFG

N
=

4m

ħh2 PIFG , (58)

where PIFG is given by Eq. (54). The pair correlation function approaches zero in the IFG limit
γ→∞:

g2 (0)IFG =
4
3
π2

γ2

�

1+
π2

4
τ2 +

π4

20
τ4 +

35π6

432
τ6 +O(τ8)

�

, (59)

and it agrees with the finding of Ref. [32] at the order O
�

τ2
�

, but we have derived higher
thermal corrections.

E.2 High-temperature virial expansion

The Fermi functions, Eq. (48), can be approximated as fν(z) =
∑+∞

i=1 (−1)i−1z i/iν for small
fugacity z � 1. By inverting the equation for the density n, Eq. (47), and by expanding for
nλ� 1, we calculate

z(nλ) = nλ+
(nλ)2
p

2
+
p

3− 1
p

3
(nλ)3 +O[(nλ)4] , (60)

from which, employing the definition of z and an additional expansion for nλ� 1, we derive
the chemical potential:

µIFG = kB T

�

ln(nλ) +
nλ
p

2
+

3
p

3− 4

4
p

3
(nλ)2 +

2
p

3− 5

6
p

2
(nλ)3 +O[(nλ)4]

�

. (61)

By considering Eq. (60) in the equation of P, Eq. (47), we find the high-temperature behavior
of the pressure

PIFG = nkB T

�

1+
nλ

2
p

2
+

3
p

3− 4

6
p

3
(nλ)2 +

2
p

3− 5

8
p

2
(nλ)3 +O[(nλ)4]

�

, (62)

and the virial expansion of the free energy per particle:

AIFG

N
= kB T

�

ln (nλ)− 1+
nλ

2
p

2
+

3
p

3− 4

6
p

3

(nλ)2

2
+

2
p

3− 5

6
p

2

(nλ)3

4
+O[(nλ)4]

�

. (63)

The entropy per particle is:

SIFG

NkB
= −

�

ln (nλ)−
3
2
+

nλ

4
p

2
−

2
p

3− 5

6
p

2

(nλ)3

8
+O (nλ)5

�

, (64)

and the energy per particle becomes

EIFG

N
=

kB T
2

�

1+
nλ

2
p

2
+

3
p

3− 4

6
p

3
(nλ)2 +

2
p

3− 5

8
p

2
(nλ)3 +O (nλ)4

�

, (65)

from which we derive the virial expansion of the specific heat which corresponds to Eq. (9)
with a = 0. The Tan’s contact is given by Eq. (58) where the pressure is now provided by
Eq. (62). The pair correlation function, Eq. (15), is

g2 (0)IFG =
2π2

γ2

PIFG

nEF
, (66)

whose leading term recovers the result of Ref. [32].
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F Benchmark of the Path Integral Monte Carlo Results

We present here a benchmark for the expectation values of the internal energy E and the
isothermal compressibility of a 1D Bose gas at finite temperature which have been calculated
with numerical Path Integral Monte Carlo (PIMC) method. Such benchmark is based on the
comparison with exact Thermal Bethe-Ansatz (TBA) findings.

PIMC technique provides exact results for the static properties at finite temperature [3]. For
a Bose system, the expectation value of an observable O is expressed as a multidimensional
integral which is computed via Monte-Carlo sampling of the coordinates R:

〈O〉= Tr (nT O) =
1

ZN !

∑

P

∫

dR G(R,PR;β)O(R) . (67)

In Eq. (67) we have introduced the thermal density matrix nT = e−βH/Z where Z = Tr
�

e−βH
�

is the partition function, β = (kB T )−1 is the inverse temperature and H is the Hamil-
tonian, Eq. (2). In the last equality, we have considered the coordinate representation
G(R1, R2;β) = 〈R2|e−βH |R1〉 and O(R) = 〈R|O|R〉 where Ri = {x1,i , x2,i . . . , xN ,i} is a set of
the coordinates of the N atoms of the system. G(R1, R2;β) is the Green function propagator
describing the evolution in the imaginary time β from the initial R1 to the final R2 configura-
tion. The configuration PR appearing in Eq. (67) is obtained by applying a permutation P of
the particle labels to the initial configuration R and the sum over the N ! permutations allows
to take into account the quantum statistics of the identical bosonic atoms.

The key aspect of the Path Integral formalism is the convolution property of the propagator:

G(R1, R3;β1 + β2) =

∫

dR2G(R1, R2;β1)G(R2, R3;β2) , (68)

which can be easily generalized to a series of intermediate steps R2 . . . RM defining a path
with M configurations and with total time β = εM , where ε is the time step. For a finite
value of M , the path is discretized with time. In the opposite case of very large M , the path
becomes continuous and ε approaches zero, corresponding to the limit of high temperatures
T . In the latter classical limit, the propagator G admits an analytical approximation where
the quantum effects of the non-commutativity between the kinetic and interaction potential
operators in the Hamiltonian H are neglected. The thermal expectation value, Eq. (67), can
be then approximated as

〈O〉 '
1

ZN !

∑

P

∫

dR1 . . . dRM O(R1)
M
∏

i=1

G(Ri , Ri+1;ε) , (69)

where we require the boundary condition RM+1 = PR1. The quantity p(R1, . . . , RM ) =
∏M

i=1 G(Ri , Ri+1;ε) is a probability distribution as it is positive definite and its integral over the
space of configurations is equal to the unity. The PIMC approach allows for the evaluation of
the integral in Eq. (69) with a stochastic sampling of the N ×M degrees of freedom according
to p(R1, . . . , RM ). Eq. (69) becomes exact in the limit M →∞ where the imaginary time ε is
small and the analytical approximation for the propagator G is accurate, by allowing for an
exact calculation of the thermal average 〈O〉with PIMC method. For this reason, it is important
to optimize the number of the convolution terms M in Eq. (69) with a proper benchmark of
the PIMC results.

We have calculated the energy per particle E/N with E = 〈H〉 as a function of temperature
and for different values of the interaction strength γ. The comparison of such PIMC results
with the corresponding TBA ones, Fig. 7, provides the estimate of the optimal value for M .
The excellent PIMC-TBA agreement witnesses the reliability of our numerical findings.
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Figure 7: Energy per particle E/N vs temperature for different values of the interac-
tion strength γ. Symbols denote the Path Integral Monte Carlo (PIMC) results. Lines
correspond to the Thermal Bethe-Ansatz (TBA) findings. In the Inset, we report the
ratio of the PIMC vs TBA results. Energy and temperature τ = T/TF are normalized
to the corresponding Fermi values defined by EF = kB TF .
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Figure 8: Isothermal compressibility χ(0) vs temperature for different values of the
interaction strength γ. Symbols denote PIMC results. Lines correspond to the TBA
findings. In the Inset, we report the ratio of the PIMC vs TBA results. Isothermal com-
pressibility and temperature τ = T/TF are normalized to the corresponding Fermi
values EF = kB TF .
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In order to test the accuracy of the PIMC results for the imaginary-time correlation function
F(k,ε), from which we recover the dynamic structure factor, we have done a similar study for
the isothermal compressibility

χ(0) =
�

∂ n
∂ P

�

T,a,N
, (70)

where the pressure P is defined by Eq. (14). The isothermal compressibility corresponds to the
zero-wavenumber limit of the static density response function χ(k) [28], which is related to
F(k,ε):

χ(k) =

∫ β

0

dε F(k,ε) . (71)

We calculate χ(k) with PIMC procedure from Eq. (71) and we extrapolate χ(0) from the
behavior at smallest k. In Fig. 8, we compare the PIMC χ(0) results with the TBA isothermal
compressibility evaluated from Eq. (70) as a function of temperature and for different values
of the interaction strength γ.

G Dynamic Structure Factor for different interaction strengths

We report here our PIMC results for the dynamic structure factor (DSF) S(k,ω) for the inter-
action strength value γ = 10. For strong interactions, the DSF distribution gets broader in
frequency ω [23], see Figs. 9-10 which have to be compared with the corresponding ones for
γ= 1 in Figs. 5-6.

Figure 9: Dynamic structure factor for the interaction strength γ = 10. Solid line
shows the energy of Lieb II branch at zero temperature calculated with exact Bethe-
Ansatz and its value for k = kF gives its maximum energy ∆. Path Integral Monte
Carlo numerical results are for: i) the dynamic structure factor which is represented
with the heatmap in units of the inverse of the Fermi frequency ωF = EF/ħh and for
different temperatures τ = T/TF ; ii) the single-mode frequency ωSM is denoted by
dots whose sizes are larger than the error bars. Wavenumber k is in units of the Fermi
value kF .
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Figure 10: Path Integral Monte Carlo results of the dynamic structure factor vs fre-
quencyω for two values of the wavenumber k (left and right column) and interaction
strength γ= 10. Each row corresponds to different temperatures τ= T/TF . Vertical
line denotes the single-mode frequency ωSM. Colors represent the regimes below
(τ≤ 0.4), around (τ≈ 0.699) and above (τ≥ 1.062) the anomaly.

H Simulated Annealing Method

PIMC method simulates the microscopic dynamics of the many-body systems in imaginary-
time configuration space. Without access to the real-time evolution, there is no possibility
of directly getting the DSF by a Fourier transform of the correlation function or intermediate
scattering function F (k,ε), as it occurs in simulations of classical systems using Molecular Dy-
namics. Quantum Monte Carlo methods can be conveniently used to sample F (k,ε) but in
imaginary time ε, and from it to get the dynamic response through an inverse Laplace trans-
form. This inverse transform of noisy data is a mathematically ill-posed problem as any error
in the input data (statistical, rounding, etc.) is increased exponentially making it impossible
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to find a unique solution for the DSF. We have carried out the inverse Laplace transform via the
simulated annealing algorithm, which is a well-known stochastic multidimensional optimiza-
tion method widely used in physics and engineering [57]. This inversion method has been
previously applied for the calculation of the DSF in liquid 4He across the superfluid-normal
phase transition, by showing a reasonable agreement with the experimental data [51].

The dynamic structure factor S (k,ω) satisfies the detailed balance condition

S (k,−ω) = e−βħhωS (k,ω) , (72)

which relates the dynamic response of negative and positive energy transfers ħhω. The corre-
lation function F (k,ε) is the Laplace transform of the DSF S (k,ω)

F(k,ε) =

∫ +∞

−∞
dωS(k,ω)

�

e−ħhωε + e−ħhω(β−ε)
�

, (73)

where we have used Eq. (72) and β is the inverse temperature already defined in Appendix F.
From Eq. (73), it can be easily seen that the correlation function is periodic in ε: F(k,β − ε)
= F(k,ε). It is then necessary to sample F(k,ε) only up to β/2, i.e. half of the polymer
representing each quantum particle in PIMC terminology. With the PIMC simulation, we have
sampled F(k,ε) at the discrete points in which the action at temperature T is decomposed.
The initial point at ε = 0 corresponds to the zero energy-weighted sum rule m0 of the dynamic
response, which is the static structure factor S (k) at that specific value of the wavenumber k

m0 = S (k) =

∫ +∞

−∞
dωS (k,ω) . (74)

In order to carry out the inverse Laplace transform of the PIMC results of F(k,ε), we need
a reliable model for S (k,ω). We have chosen the step-wise function

Sm (k,ω) =
Ns
∑

i=1

ξiΘ (ω−ωi)Θ (ωi+1 −ω) , (75)

where Θ (x) is the Heaviside step function, and ξi and Ns are parameters of the model. Since
the system under consideration, Eq. (2), is homogeneous and translationally invariant, the
response functions depend only on the modulus |k|. By employing Eq. (75) in Eq. (73), we
have obtained the corresponding model for the correlation function

Fm (k,ε) =
Ns
∑

i=1

ξi

§

1
ε

�

e−εħhωi − e−εħhωi+1
�

+
1

β − ε
�

e−(β−ε)ħhωi − e−(β−ε)ħhωi+1
�

ª

. (76)

Thanks to Eq. (76), the ill-conditioned character of the inverse Laplace transform has been
converted into a multivariate optimization problem which tries to reproduce the PIMC data
with the proposed model, Eq. (76). To this end, we have employed the simulated annealing
method which relies on a thermodynamic equilibration procedure from high to low tempera-
ture according to a predefined template schedule [57]. The cost function which needs to be
minimized is the quadratic dispersion

χ2 (k) =
Np
∑

i=1

[F (k,εi)− Fm (k,εi)]
2 , (77)

where Np is the number of points in which the PIMC estimation of the F (k,εi) is sampled. One
may introduce the statistical errors coming from the PIMC simulations as the denominator of
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Eq. (77). However, we have checked that this affects in a negligible way the final result since
the size of the errors is rather independent of ε, see also Ref. [51].

The optimization leading to S (k,ω) has been carried out over a number Nt of independent
PIMC calculations of F (k,ε). Typically, we have worked with Nt = 20 and for each one we
have performed a number of Na = 100 of independent simulated annealing searches. The
mean average of these Na optimizations was our prediction for S (k,ω) for a given F (k,ε).
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