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Abstract

We address a subject that could have been analyzed century ago: how does the universe
of general relativity look like when it would have been filled with solid matter? Solids
break spontaneously the translations and rotations of space itself. Only rather recently
it was realized in various context that the order parameter of the solid has a relation to
Einsteins dynamical space time which is similar to the role of a Higgs field in a Yang-
Mills gauge theory. Such a "crystal gravity" is therefore like the Higgs phase of gravity.
The usual Higgs phases are characterized by a special phenomenology. A case in point
is superconductivity exhibiting phenomena like the Type II phase, characterized by the
emergence of an Abrikosov lattice of quantized magnetic fluxes absorbing the external
magnetic field. What to expect in the gravitational setting? The theory of elasticity is
the universal effective field theory associated with the breaking of space translations
and rotations having a similar status as the phase action describing a neutral superfluid.
A geometrical formulation appeared in its long history, similar in structure to general
relativity, which greatly facilitates the marriage of both theories. With as main limita-
tion that we focus entirely on stationary circumstances — the dynamical theory is greatly
complicated by the lack of Lorentz invariance — we will present a first exploration of a
remarkably rich and often simple physics of "Higgsed gravity".
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1 Introduction and overview.

1.1 Crystal gravity: the Higgs phase of general relativity.

While working on this paper, we had the uneasy feeling that we were rediscovering a wheel.
But apparently this is not quite the case. This paper could have been written surely in the
1950’s and perhaps even in the 1920’s. It departs from the simple question: how would the
universe have looked like when all the matter and energy would occur exclusively in the form of
solid matter?

Although not widely disseminated in the physics community at large, it has been realized
for a while that such a universe comprises the Higgs phase of gravity [1]. The most obvious
example of a Higgs phase is the superconducting state. First consider the electromagnetically
neutral superfluid as realized e.g. in Helium, breaking spontaneously the internal U(1) sym-
metry. Upon "gauging" by coupling it to the electromagnetic gauge fields this turns into the
superconductor. The relativistic version is the Abelian Higgs mechanism that formed the tem-
plate for the non-Abelian generalization that underpins the Higgs mechanism of the standard
model of high energy physics. In this analogy, the way that the solid state is discussed in
physics textbooks is like the theory of superfluids but now revolving around the spontaneous
breaking of the symmetries of space-time. But the role of the gauge fields is now taken instead
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by the dynamical space-time of general relativity (GR).

This combination of solid matter with the dynamical space-time of general relativity —
"crystal gravity" — is the subject of this paper.

We are however focussed on a particular aspect of this problem that is arguably alluding
to the very essence of "Higgsed gravity" that appears to be hitherto completely overlooked. It
is in essence orthogonal to aspects that have been at the focus of attention in the gravitational
community — the way that solid matter influences the time evolution in a cosmological setting
and the way that strong gravitational fields modify matter itself.

The aspect we will focus on is a general motive associated with the Higgs phase that has
been at the focus of attention in the condensed matter tradition: the "Abrikosov vortices" also
called magnetic "fluxoids". This theme became central in the study of the phenomenology of
superconductors as they are realized in the laboratory. Given also the importance for applica-
tions a vast literature emerged, e.g. [2,3], but it appears to be not part of the standard canon
of the relativist community. To a degree this is intended to be a tutorial communicating these
wisdoms through the barrier between the disciplines. It is actually unclear whether it will
have any ramifications for e.g. "solid cosmologies", be it for reasons that are actually by itself
quite untrivial. This will be explained in Section (7). What are the magnetic fluxoids? This
revolves around type II superconductivity. The superconducting state is of course the incar-
nation of the Higgs phase that is realized in earthly laboratories. Upon applying an external
gauge curvature — a magnetic field — the Higgs field (the superconductor formed from electron
pairs) is in control. Rooted in the principles of spontaneous symmetry breaking, circulation
can only occur in the form of quantized vortices. These "merge" with the background gauge
curvature in a lattice of lines carrying a quantized magnetic flux: the Abrikosov flux lattice.
We will refer to this the gauge curvature is "topologized" in a Higgs phase. This "topologization
principle" is completely general dealing with the internal symmetries of any Yang-Mills theory.
For instance, an example of a non-Abelian generalization of the fluxoid is the 't Hooft-Polyakov
monopole of electro-weak theory.

Despite the fundamental differences between GR and Yang-Mills we will show that the
phenomenology of the gravitational Higgs phase in this sense is governed by a machinery that
is remarkably similar to the usual Yang-Mills affair. Perhaps disorientating for the relativist,
the spatial manifold is on centre stage. The issue is that crystals break exclusively the transla-
tions and rotations of space, the time axis is not involved. The role of gauge curvature — e.g.
the magnetic field of superconductivity — is now taken by the geometrical "curvature" of the
spatial manifold. We put here quotation marks because this refers not only to the Riemannian
curvature but also to the geometrical torsion of Cartan-Einstein theory.

The order parameter theory capturing the solid is the theory of elasticity [4]. Given its
ancient origin, it has disappeared to a degree from the radar of the physics community. But
as a field theory it is remarkably rich, revolving around rank 2 symmetric tensor fields. This
becomes particularly manifest focussing in on the topological excitations. The analogous of
the vortices of the superfluid span up a rich topological universe, involving dislocations, discli-
nations, grain boundaries and a lot more, a subject that is still at the focus of attention of the
soft matter community while it is at center stage in engineering oriented materials science.
The mathematical language to handle this has been available since the 1980’s [5], highlight-
ing already the relations with Cartan-Riemann geometry. It appears to be a historical accident
that nobody got the idea to "gauge" this affair with the dynamical background geometry of
Einstein theory.

This is what we will accomplish. This is very long paper for the simple reason that a lot
is going on. For reasons that are beforehand not obvious, there are reasons to be sceptical
whether this will be of serious consequence for physics. However, it is conceptually quite
entertaining and we suspect that it may bear consequence for pure mathematics, suggesting
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hitherto unrecognized relations between three dimensional geometry/topology and the art of
discrete geometry.

Before we proceed this introductory Section with an executive summary of what will hap-
pen (Sections 1.3 - 1.10), let us start with a short discussion of the established state of the art
of the understanding of gravity-sourced-by-solids and how this may relate to our findings.

1.2 Elasticity and gravity: the state of the art.

A first obvious problem is the way that solid matter behaves under the condition that the
gravitational forces are very strong. One encounters such circumstances dealing with the solid
crust of a neutron star. The study of this "relasticity" started in the 1970’s by Carter and
others [6, 7], evolving in the course of time into predictions how this solid crust can modify
the gravitational wave signals associated with neutron star mergers, see Ref. [8]. This revolves
around questions like how this crust reacts to the extreme tidal forces during the merger,
whether mountains may form and so forth. This focusses on how the solid crust matter reacts
dynamically to the usual gravitational forces. We have nothing to add in this regard: our focus
is on the conditions where the nature of gravity itself is changed by the interplay with the solid
medium. As will be discussed at length in Section (4), neutron star crusts should be bigger by
many order of magnitudes in order to enter this regime. Given the actual size of neutron stars
the approach taken in this literature is just appropriate.

Yet another school of thought has developed in the cosmology tradition, asking a question
which is at first sight the same as ours: what would happen to the dynamical evolution of the
universe when e.g. dark matter or the inflationary field would be elastic? An early contribution
is by Spargel and coworkers [1] who appear to be the first to realize that elastic matter is
Higgsing gravity. This turned in recent times into a substantial subfield by itself. The close
relations with massive gravity is acknowledged [9]. Possible ramifications for cosmological
evolution are a flourishing affair presently, both in the context of elastic dark matter (e.g. [10])
and inflation driven by solid matter [11]. Yet again, the emphasis is here on the dynamical
evolution and we do not have much in the offering in this regard except for an assortment of
caveats that may be of interest to this community to further refine their models.

In fact, the original motivation to have a closer look at these matters came from yet an-
other modern development: the study of "strongly coupled" states of matter in D space-time
dimensions using the holographic duality that maps it onto a classical gravity problem in a D+1
dimensional asymptotic Anti-de-Sitter spacecite [12]. This was triggered by the discovery of
holographic superconductivity [13, 14], followed by holographic crystallization: the sponta-
neous breaking of space translations in the boundary [15-18]. This is dual to a gravitational
bulk that is different from the matters we just discussed in the sense that it is in the regime
where GR is modified itself into the "crystal gravity" affair. A highlight of holography is the
"fluid-gravity duality" [17,19] highlighting the deep and beautiful relations between hydro in
the holographic boundary and the near black-horizon gravitational physics in the bulk. The
construction of a similar "elasticity-gravity" duality is still work in progress. However, the most
pressing ingredient in this context is in the form of the linearized theory that is the starting
point of this whole affair, that we will explain in Section 2. This is however in the mean time
independently discovered by others [20]. Although much of what we have to stay is rather
tangential to this development, holographers may find it useful to have a closer look at the
views and techniques of condensed matter physics in this context.

1.3 Solid matter: the spatial manifold is on center stage.

Let us now embark on a summary of the paper that may help the reader to keep track of the
long line of arguments. Let us first stress the limitation of our exposition: the role of time.
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It is perhaps disorientating for the relativist: dealing with solid matter the curvature of the
spatial manifold is at centre stage. This is deeply rooted in the uncomfortable fact that Lorentz
invariance is broken in a most devastating way. Spontaneous symmetry breaking is a mighty
force and when it happens it takes over the physics. In a solid the translational symmetry of
space is broken but as we will discuss in more detail in Section 2.2 it is impossible to break
time translations. At least in our approach, departing from solid matter, this is messing up the
tensor structure associated with dynamical evolution, complicating the computations greatly.
For this technical reason as discussed in Section 4.7 we will concentrate on statics as it appears
in a co-moving frame, leaving a generalization to the dynamical realms for future work. It is
actually not quite clear to us how this motive is dealt with in the various "solid cosmology"
approaches.

Eventually, at the centre of it one may well find a gravitational incarnation of a core busi-
ness of materials science and metallurgy. The non-equilibrium physics of solids is well un-
derstood to be associated with the topological excitations: dislocations, grain boundaries and
so forth. This is an affair that has been studied by mankind in essence since the start of the
bronze age, being still a very large field of research in the present era revealing much com-
plexity. Especially in so far the evolution of spatial curvature is at stake in "solid" cosmological
dynamical evolutions one has to cope with these complexities. Ironically, at the very end of
the development we will explain that for quite surprising reasons this may be less of an issue
— the "dislocation gas" response to spatial curvature discussed in Section 7.3.

1.4 Elasticity as a tensor field theory.

Given this caveat, how to understand the analogy with the Higgs physics of Yang-Mills theories?
To recognize the Higgs mechanism one needs next to the "gauge theory" (GR) an effective
theory describing the consequences of the spontaneous breaking of the symmetry by matter:
the "Josephson" or ("Stueckelberg") action descending from the neutral (ungauged) system.
As a triumph of 19-th century physics for solids such a theory is lying on the shelf in the form of
the theory of elasticity. Einstein himself was surely aware of it as testified by his metaphorical
reference to elasticity, referring to space time as a "fabric".One benefit of the story we have to
tell is that the shortcomings of this metaphor will become crystal clear.

One better be aware of a bias rooted in human intuition dealing with elasticity. This is
rooted in the fact that the solid state of matter is the only form of spontaneous symmetry
breaking being manifest to biological lifeforms. That we can sit on a chair staring at a screen
with a solid encasing that rests on a table — it is overly familiar to us. But to explain this to
a "liquid state intelligence" would require them to be trained physicists who understand the
rule book of fancy field theory, containing chapters explaining that the spontaneous breaking
of symmetry goes hand in hand with the emergence of rigidity — shear rigidity in the case of
solids being the condition making it possible to sit on a chair.

In fact, elasticity was constructed as the first fledged order parameter theory by 19-th
century mathematicans [4] on mere phenomeological grounds, long before the notion of order
parameter was realized. As such it is actually quite sophisticated — it revolves around rank 2
symmetric tensors and it is in this regard a close sibbling of GR. That there is something "gravity
like" to elasticity is obvious to engineering students having the stamina to attend a GR course.
It should be familiar for GR teachers that these students struggle less with tensor calculus than
the average physics students since they already encountered it in the elasticity course. It is
also the birth place of the idea of topological excitations, in the form of dislocations with their
Burgers vector topological charge. However, in a more recent era it got banned to mechanical
engineering departments and it is typically not longer taught in physics programs. But in
the course of time a powerful field-theoretical machinery emerged to deal with especially the
topological aspects of solid matter that was completed in the 1980’s.

6
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Given that this will be a rather unfamiliar affair for most readers we will review this "Klein-
ert style" formalism at length. On the other hand, we take it for granted that the readership is
well at home with GR.

1.5 The mathematical machinery: Kleinert’s multivalued fields.

The relationship between gravity and elasticity in the way that these theories are convention-
ally formulated is not at all that obvious. But we are here helped by another development.
From the 1950’s onward, mathematically inclined elasticians were intrigued by similarities
with GR in their exploration of the topological structure of elasticity. This was collected and
further perfected by Hagen Kleinert in the mid 1980’s casting it in a powerful field theoret-
ical machinery highlighting the strong-weak duality structures [5,21]. GR-like geometrical
structure is shimmering through all along — Kleinert himself got distracted by his "worldcrys-
tal" idea [22,23]. Resting on the similarity with gravity, he contemplated the possibility that
some special Planck scale crystal is formed that coarse-grains in GR itself. He overlooked the
opportunity to couple in GR itself.

In a recent era two of the authors were themselves involved in further extending this affair
into the realms of the weak-strong dualities associated with the description of quantum liquid
crystals [24-26], highlighting the powers of the formalism. This is the reason that we are
rather at home with this methodology that is otherwise not widely disseminated. This "GR-
like representation” of elasticity turns out to be greatly convenient in the combination with
gravity itself. At least within the limitation of this study all of the machinery we need can
be found in Kleinert’s toolbox [5], together with our quantum liquid crystal papers for some
secondary issues [25]. To keep the presentation self-contained, we will derive and explain the
required ingredients at length in this paper.

1.6 The solids on the rigid two dimensional manifolds of the soft matter com-
munity.

Another mature affair of relevance to crystal gravity is the exploration of the soft matter com-
munity of solid matter covering the curved surfaces of three dimensional rigid bodies [27,28].
With regard to elasticity the soft matter tradition is special because it did not forget the pro-
fundity of the solid state. This has its historical reasons. In fact, Kosterlitz and Thouless set out
to address thermal melting of solids in two dimensions identifying the simpler "global U(1)"
topological melting of the superfluid culminating in the famous BKT theory. Shortly thereafter
this was generalized to the Nelson-Halperin-Young-Kosterlitz-Thouless theory addressing the
topological thermal melting of triangular crystals in two space dimensions [29]. This revealed
the existence of an intermediate "hexatic" liquid crystalline phase, while our quantum liquid
crystal work [25] can be viewed as a generalization to the zero temperature quantum realms.

In the 1980’s the issue of solid matter on rigid curved 2D manifolds came into view and
has been pursued since then using experimental-, theoretical- as well as computational ap-
proaches. In part this is motivated by applications such as the way that quasi-solid protein
structures cover cell walls. But it is also of theoretical interest. The curvature has to be "ab-
sorbed" by the topological excitations (dislocations, disclinations, grain boundaries) — the cen-
tral ingredient of crystal gravity — but given the rigid curvature this turns into an intricate
frustration problem.

One limitation of this tradition is that it addresses rigid background geometry instead of
the dynamical GR geometry — for reasons that may surprise this will turn out to be relevant
also for the physical universe as will be explained in Section VII. The other limitation is that
the focus is exclusively on 2D curved manifolds characterized by the simple scalar (Gaussian)
curvature. However, dealing with the three dimensional spatial manifold of crystal gravity the
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richness of Riemannian geometry becomes manifest with its 6 curvature invariants being a
subject of considerable contemporary mathematical interest. This will be the central theme of
Sections XIII and IX.

1.7 A simple essence: the "wedge fluxoid".

As a first encounter, let us start with an elementary motive that will play a remarkably impor-
tant role in the second half of this paper. Perhaps the simplest example of a curved Riemannian
manifold is the conical singularity of gravity in 2+1D. The lecturer will fold a piece of paper
in a cone. He has drawn a circle on the flat piece of paper, to then demonstrate that the cir-
cumference of this circle shrinks from 27r to 27t(1 — a)r where a is the opening angle of the
cone, demonstrating the meaning of a geodesic in a curved background.

But this cone is made from a solid — paper — and in what regard does it fall short in ex-
plaining the Riemannian geometry? In fact, we have been exploiting the embedding in three
dimensions. To form the papercone we have to tilt it in the vertical direction which does not
exists in the 2D spatial manifold. What happens when one tries to accommodate the cone a
flat two dimensional universe, the surface of the desk? Push the tip of the cone to the desk and
the paper will crumble. This illustrates the confinement of curvature that will be a highlight
dealing with curvature (Section VI).

But now imagine that the desk is instead a dynamical space-time with a curvature that
can adapt to the presence of the cone. A conical singularity may form in this "background"
spatial geometry that can be precisely matched to the paper cone so that the latter does not
need to crumble. The most ideal way for the solid to accommodate the cone is by having a
disclination at the tip (see Fig. 7, appendix C). This imposes a topological quantization of the
opening angle in units of the discrete pointgroup symmetry of the crystal. The outcome is a
quantized "curvature fluxoid" which is on this level quite similar to a magnetic fluxoid in a type
IT superconductor. The role of the gauge curvature (magnetic field) is taken by the Riemannian
curvature while the disclination is like the quantized vortex of the superfluid.

This object is actually an example of a "wedge fluxoid", that will be a point of departure
of the systematic development starting in section VI. This will rest on a precise mathematical
fundament, leaving no doubt that this intuitive story is correct. "Intuition" refers here to the
way that our human visual system processes this affair: we literally "see" the formation of the
geometrical fluxoid. This highlights our earlier statement that crystal gravity is remarkably
easy to understand for the simple reason that biological evolution has taken care of a deep
empirical understanding by the human mind of the only state of matter breaking symmetry
spontaneously that is critical for our success as biological species.

1.8 The overview: the structure of crystal gravity and the main results.

We are done with the preliminaries and let us now explain how this paper is organized, sum-
marizing the main results.

Once again, we include an extensive discussion of elasticity anticipating that it may be
unfamiliar to many readers. This starts with a primer containing an elementary discussion of
the topological defects of crystals (Appendix C)—a must read first for those who are not familiar
with dislocations, disclinations and grain boundaries. We have done our best in the main
text to render it to be self-contained with regard to Kleinert’s rather intimidating repertoire,
emphasizing and explaining in detail those results that are needed in crystal gravity. It may
still be useful to have his book at hand — we will refer occasionally to passages in this book
where some detailed results are derived. We will assume that the reader has at least a basic
knowledge of GR, on the level of e.g. the Carroll text book [30,31].
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But the main reason for this text to be long is that there is much going on. "Stationary
crystal gravity" is a remarkably rich affair and we have much to explain even in this first explo-
ration that we do not claim to be exhaustive at all. Although it goes hand in hand with GR, the
way that the case will develop is guided by what we like to call "crystal geometry": the geomet-
rical view on the nature of solid matter. The order that the various aspects are introduced is
for this reason different from what is found in the typical GR text book. After the preliminaries
(Sections II, IIT) the reader will first meet the crystal gravity incarnation of linearized gravity
in Sections IV, V where the dynamical space-time background only contributes in the form of
the gravitational waves. In the second part (Sections VI-IX) the focus will be on curvature —
"proper" GR.

The grand symmetry principle controlling space-time is mercilessly on the foreground in
crystal geometry, in a way more evidently than in GR itself — the Poincaré group. This insists
that one has to consider translations being in semi-direct relation to rotations (and boosts).
Semi-direct means that translations and rotations are not independent. The infinitesimal trans-
lations governing the linearized theory have an independent existence. But since two finite
translations correspond with the (non-Abelian) rotations, the latter are controlling the full
non-linear theory.

In crystal geometry the infinitesimal translations are associated with shear rigidity, while
the "gauge curvature" associated with these are entirely captured by the dislocations. These are
close sibblings of the vortices associated with the global U(1) symmetry controlling superfluids.
When the latter are gauged these turn into the magnetic fluxoids absorbing the magnetic fields.
Similarly, when the geometrical background is considered to be dynamical the dislocations
"merge" actually with the geometrical torsion of Cartan-Einstein gravity! The outcome will be
that the shear rigidity described by standard elasticity together with the dislocations combines
with the gravitons and torsion in one package discussed in Sections IV-V.

It is perhaps not widely realized how easy it is to describe the non-linear extension of
crystal geometry. This revolves around the spontaneous breaking of the rotational symmetry
of space by the crystallization. There is in fact an emerging rotational "torque" rigidity but as
a consequence of the semi-direct nature of the Galilean group this is confined in the solid in
a flat background, in a surprisingly literal analogy with the confinement of colour charge in
QCD. The associated topological current is called the defect current. Dislocations "know" about
the rotations in the form of their topological charge which is the Burger’s vector taking values
set by the pointgroup symmetry of the crystal. The defect current is associated with an infinity
of dislocations, the topological expression of the non linearity. The disclinations are a special
part of the defect current that have a minimum core energy, characterized by a topological
invariant (the Franck vector) taking values precisely quantized in terms of the point group
symmetry (see Appendix C).

The issue is that these topological defect currents embody the Riemannian curvature in
crystal geometry. These merge with the geometrical curvature of Einstein theory into a new
wholeness. This package of rotations, torque rigidity, the rotational topology captured by
defects currents and the geometrical curvature of Einstein theory is the subject of the sections
VI-IX.

Having explained the principle underlying the organization of the paper let us now present
an overview of the main results.

1.8.1 The basics: elasticity and frame fixing (Section II)

The foundations of the mathematical theory are laid down in section II. Higgsing departs from
matter (the Higgs field, electrons in solids, etc.) breaking symmetry spontaneously. Combining
this with gauge fields, this matter imposes a "preferred frame" ("fixed frame", whatsoever)
having the physical ramification that the gauge curvature is expelled, the field strength has to
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vanish. The gauge fields are forced to be "pure gauge", only invariant under "passive gauge
transformation". The gauge curvature can only re-enter in the form of massive topologically
quantized fluxes: the magnetic fluxoids of the type II superconductor, as well as the Polyakov-
’t Hooft monopoles of the standard model.

This has a vivid image in crystal gravity (Section IIA). Crystal geometry departs from the
notion that the positions of atoms in a crystal span up a coordinate system. For instance, a cubic
crystal is like a Cartesian coordinate system. This can be as well described of course in terms
of arbitrary mathematical coordinate systems such as spherical- and cylindrical-, coordinate
systems. These are the "passive" diffeomorphisms in this context.

In GR the metric tensor g,,, is a gauge-variant quantity. However, in the geometrical in-
terpretation of the crystal the symmetric rank 2 strain tensors take the role of the metric and
the action depends explicitly on this metric: the theory of elasticity. The role of the phase
stiffness of the superfluid is taken by the shear rigidity encapsulated by the shear modulus u
of the solid. In close analogy with the Stueckelberg (Josephson) construction for Yang-Mills
fields, one can now lift this to deal with a dynamical geometrical background with the back-
ground metric tensor taking the role of the gauge field, the Einstein-Hilbert action that of the
Yang-Mills gauge theory and the strain tensor being the analogy of the phase gradients, see
Eq. (10).

This is the point of departure for the further developments. In the remainder of section
IT we collect textbook material. We already alluded to the "maximal" breaking of Lorentz
invariance because time cannot be involved in the breaking of translations. Next to being a
major complication in the formulation of the dynamical theory this has unusual consequences
even in stationary set ups that cannot be stressed enough in the present context. Among others,
we will find that the dynamical gravitons of the background couple exclusively with the modes
of static elasticity (Section IIB). Finally, dealing with the linearized theory the simple theory
of isotropic elasticity suffices and this is reviewed in Section IIC.

1.8.2 Vortex-boson duality: the analogy (Section III).

The key insight behind Kleinert’s machinery is in the observation that the weak-strong "vortex-
boson" duality of the U(1) Abelian-Higgs system applies equally well to elasticity, be it that one
has to generalize it to rank 2 tensor fields. In Section Il we will review this U(1) affair, as
a template for what follows. The reader who is at home may still have a look to check the
particular notations we will be using.

In short summary, employing a straightforward Legendre transformation the phase-action
of the superfluid is transformed in a dual representation where the phase field turns into a
U(1) gauge field expressing that the superfluid currents do propagate forces. These are in turn
exclusively sourced by the quantized vortices: in 241D this turns into a literal Maxwell theory
where the vortex "particles" take the role of quantized electrical charges. This is effortlessly
extended to the gauged superconducting case: the "supercurrent-" and the EM gauge fields
couple by a simple BF term, see Eq. 25. Turning this into a gauge invariant form by employing
helical projections anything that is desired is computed effortlessly by Gaussian integrations
(Sections IIIB, IIIC). This is especially convenient for the construction of the magnetic fluxoid
(Section IIID).

Precisely this machinery is in generalized form filling the engine room for crystal gravity.
The novice should be particularly aware of the special status of the "linearized sector". This
acts way beyond the usual infinitesimal amplitude limit. It is instead associated with the "self-
linearizing" Goldstone modes implied by the spontaneous symmetry breaking. Everything
non-linear is shuffled into the topological excitations. Also dealing with a non-linear theory
like gravity this motive continuous to be valid which is the key to the ease by which crystal
gravity can be charted. This "topologization" of the Higgs phase is the greatly simplifying
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circumstance, highlighting some simple insights in the intricacies of gravity itself.

1.8.3 Linearized crystal gravity (Section IV).

In this section the first steps are taken in the development of the theory. We unleash the same
weak-strong duality as in Section III to the gauged strain elasticity action of Section IIA. This
just amounts to the strain-stress duality for the matter sector that is overly well known among
elasticians but now sourced by the metric fields associated with the background (Section IVA).
The conserved stress fields are parametrized in terms of rank 2 symmetric tensor gauge fields
as introduced by Kleinert that we call "stress gravitons". These parametrize the capacity of the
actually static elastic medium to propagate the mechanical stress. These turn out to be on the
same footing as the usual gravitons in that they couple through a BF type term, in the same
guise as the "supercurrent-" and electro-magnetic photons of Section III.

The helical decomposition is particularly useful dealing with these tensor gauge fields (Sec-
tions IVB,C). The outcome is that a spin 2 sector is identified describing the simple linear mode
coupling between the "shear" gravitons and the "gravitational" gravitons: Eq. (66) (Section
IVD). All what remains to be done to address the physical consequences revolves around simple
Gaussian integrations.

As anticipated by the earlier attempts, a most natural consequence of the "frame fixing" is
the fact that the (gravitational) gravitons acquire a mass, in close analogy with the generation
of mass in the standard model (Section IVE). In the case of superconductors this translates
into the London penetration depth. We find an expression for the "gravitational penetration
depth" that is so simple that we reproduce it here,

C2

Ag = —F—, ¢Y)
V1enGu

where c is the velocity of light and G is Newton’s constant. Apparently this quantity is not
known. It can actually be deduced merely on basis of dimensional analysis. The rigidity
associated with the spontaneous symmetry breaking is uniquely captured by the shear modulus
u, and together with G and c there is just one way that these can be combined in a quantity
with the dimension of length: Eq. (1). The issue is that compared to other forces Newton’s
constant is extremely small and thereby A, is very large. Filling in the shear modulus of steel,
it follows that A is of order of a lightyear!

The implication is that solid matter of cosmological dimensions is seemingly required to
realize physical consequences of crystal gravity. Off and on it has been speculated that dark
matter could be elastic. Besides a graviton mass, this would imply that dark matter has to be
characterized by shear rigidity, which does not appear to be widely acknowledged in this cos-
mological literature. Since dark matter couples gravitationally to the visible baryonic matter
it should be that the suppression of shear strains should imprint on the distribution of stars
and galaxies. It could be of interest to search in astronomical surveys for such effects

The meaning of A is that it represents the length where the fixed frame of the crystal
starts to back react on the spacetime. At smaller distances the coupling of the solid to the
gravitational background has no consequences. This is the same wisdom that applies to a
superconducting island with a dimension smaller than the London penetration depth. The
magnetic field then behaves as in vacuum, while the superconductor behaves as a neutral
superfluid — in the present context, solids just obey standard elasticity. In fact, it is easy to show
that at scales larger than A; solids become "infinitely brittle" (Section IVF). In superconductors
the phase mode of the neutral system turns into a "longitudinal photon" characterized by a
Higgs mass. This translates in crystal gravity into a completely rigid response to external static
shear stress.
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An important motive is here the "maximal" breaking of Lorentz invariance, having as ram-
ification that these Higgsing effects are entirely restricted to the static elastic responses. The
propagating phonons are completely decoupled: these stay massless! We will address this in
detail in Section IVG. This was actually all along accounted for in the design of Weber bar class
of gravitational wave detectors. In this section the reader may also get an impression of the
technical complications one faces when one attempts to formulate a fully dynamical crystal
gravity theory.

1.8.4 Translational topology: dislocations and Cartan torsion (Section V).

What are the internal topological sources for the "stress gravitons'? Proceeding in close anal-
ogy with superfluids one finds these to be the dislocations (Section VA). As the shear modes,
their topological currents are rank 2 symmetric tensors taking values in the point groups of
the crystal (Section VB), and we show how to construct these currents in a dynamical 3+1D
setting as well (Section VC). Dislocations are well known to accelerate in the presence of an
external field of static shear stress. Since the latter couples to the gravitons, we show that
gravitational waves are actually dissipated when they propagate through a solid containing
dislocations, while a perfect crystal would be perfectly transparent for them (Sections D,E).
This may be of interest in the context of black hole mergers: nearby rocky planets (littered
with dislocations) may explode when the gravitational wavefront passes by.

As in superconductors one expects that the material topological defects (vortices) merges
with background curvature (magnetic field) in fluxoids where the latter curvature is topologi-
cally quantized. Dislocations do couple to the gravitational waves of Einstein theory but these
have an exclusive dynamical existence and are irrelevant in this context. The geometrical
curvature of GR is yet to be identified at this stage. What is then the nature of the "gauge
curvature" that can merge with the dislocation? The answer is: the geometrical torsion as in-
troduced by Cartan (Section VF). Nothing will happen to dislocations dealing with standard
Einstein gravity. Torsion has to be promoted to a dynamical property of the space-time mani-
fold as is accomplished by Einstein-Cartan gravity. This theory in turn implies that torsion may
well be absent in the background for dynamical reasons, and there does not seem to be much
of physical relevance to be discovered here. The dislocations will however much later in the
development (Section VII) make a glorious come back.

1.8.5 The topologization of curvature: torque gravitons and the defect density (Section
VI).

Einstein theory revolves around the geometrical curvature of Riemannian manifolds and there
has been no mention of it yet arriving at this point halfway this treatise. But this not an
accident. Crystal geometry is characterized by a hierarchy that it shares with GR. All we
encountered in the preceding sections are the gravitons, the infinitesimal perturbations of the
metric. Although realized among relativists, it is not emphasized in elementary textbooks that
individual gravitons have nothing to say about any form of curvature. An infinity of gravitons
is required to construct a curved manifold — GR is intrinsically non-linear.

This originates in the semidirect relation between infinitesimal Einstein translations and ro-
tations/boosts of the Poincaré group. In the "fixed frame" crystal geometry the consequences
become exquisitely transparent. A first elementary question one should ask, where are the
Goldstone bosons associated with the spontaneous breaking of the isotropy of the manifold
by the crystal? It appears to be not widely appreciated that one can identify such rotational
modes that we call "torque" modes, or "torque gravitons" on the stress side of strain-stress du-
ality. Torque is the stress associated with rotations. The key insight is that torque is confined
in a solid, having the same meaning as in confinement of colour charge in quantum chromo
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dynamics although the mechanism is of a completely different kind. The physical manifesta-
tion of it is yet again overly familiar: apply a torque to one end of a shaft in an engine and it
will be transferred to the other end in a completely rigid fashion.

In the elasticity literature a highly convenient way to identify these confined torque modes
was identified, called "double curl gauge stress fields" — in the present context we rename them
"torque gravitons". Using the same procedure of identifying the multi-valued rotational field
configurations it is then straightforward to isolate the internal topological sources: the so-
called "defect densities". These are in turn uniquely associated with the Riemannian intrinsic
curvature in the geometrical interpretation. In a flat background these are confined, in the
same guise as that quarks are confined as sources of the confined gluons. In fact, this is behind
the paper cone classroom experiment of Section 1.7: the crumbling of the paper illustrates this
confinement.

Using this machine it is straightforward to couple in a dynamical background and effort-
lessly the main result of crystal gravity is derived (Section VIA). This is encapsulated by an
elegant formula. The curvature in the background and the topologized curvature of the crys-
tal have to satisfy the simple constraint equation in three space dimensions (see Eq. 112),

1
Gop = 5 Mab- 2)

G, refers to the spatial components of the Einstein tensor enumerating the curvature in the
background. 7, refers to the spatial components of the symmetric rank two defect density ten-
sor representing the rotational topological density of the crystal. This constraint is rigorously
imposed by the confinement: a violation costs an infinite amount of energy. The remainder of
the paper deals with exploring the consequences of this simple result.

The defect density 1, is (somewhat implicitly) the main actor in the soft matter pursuit
studying the rigid 2D curved manifolds. It is conceptually simple and insightful also in relation
to GR itself. We already alluded to the fact that an infinite number of gravitons is required
to "construct" curvature. The defect density is the algebraic topology image of this affair.
Dislocations are the defects associated with the infinitesimal translations. Defect density is
literally constructed by "piling up" an infinite number of dislocations with equal Burgers vectors
(Section VIB and Appendix C).

These dislocations can however be organized in different ways, pending the dynamics
of the solid. This flexible nature of the rotational topology/curvature will be crucial for the
further developments. The most costly way to accomodate the curvature in the crystal is by
just invoking a structureless "gas" of equal Burgers vector dislocations. Next to the fact that
one has to cope with the finite density of energetically costly dislocation cores, "equal sign"
dislocations repel each other by long range strain mediated interactions. The latter can be
avoided by organizing the dislocation in planes. These are called "grain boundaries" which are
present at a high density in nearly every solid that does not form a single crystal. However,
when such a grain boundary ends somewhere in the 3D solid the line where this happens
represents an instance where the curvature is localized (see Fig. 10 in Appendix C). This is
literally what we accomplished in 2D by constructing the cone: the seam where we glued
the sheet of paper in the cone is precisely like a grain boundary and the singularity at the tip
represents the end of the seam.

Finally, one can make this seam disappear completely so that only the line (in 3D) of "tip
singularities” remains. This is the disclination, see Fig.’s (7, 9). Only in this case the rotations
and the curvature are subjected to a precise topological quantization. Opening angles etcetera
can take arbitrary values dealing with the grain boundaries and isolated dislocation but the
condition that the seam disappears implies the topological invariant called the Franck vector
governed by the point group of the crystal.
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In the remainder of this section aspects of this fundamental curvature part of crystal grav-
ity in both three (Section VIC) and two space dimensions(Section IVD) is further detailed
establishing contact with the soft matter program.

1.8.6 Curvature fluxoids and the gravitational obstruction (Section VII).

We proceed by zooming in on the consequences of the "master equation” Eq. (2). The interest
is in first instance in circumstances where the geometrical curvature is topologically quantized,
involving the disclinations. This puts the paper cone intuition of Section 1.7 on a firm mathe-
matical ground. The material cone with quantized opening angle (like the famous "five ring"
graphene disclination, Fig. 7) merges with a conical singularity in the background with the
same opening angle into a "wedge" curvature fluxoid (Section VIIA). Such a curvature fluxoid
is similar to a magnetic fluxoid in a superconductor merging the quantized circulation of the
superfluid with the gauge curvature into a quantized magnetic flux. One difference is that
the core size of the geometrical fluxoid is not set by the (gravitational) penetration depth but
instead by the lattice constant reflecting the confinement.

These 2D solutions are trivially extended to 3+1D, where the point like (in space) wedge
fluxoids are pulled in lines propagating along lattice directions. The background geometry is
literally identified with the standard cosmic strings, well known to correspond with a string of
conical singularities in the spatial plane orthogonal to the propagation direction. This is only
part of the story and in section IX we will generalize it further.

But at this instance the Lorentzian time-axis critically interferes. Conical singularities and
cosmic strings are gravitating objects. Eq. (2) only involves spatial directions affected by
the spontaneous symmetry breaking. However, one also has to satisfy the temporal Einstein
equations. These in turn insist that a gravitating mass should reside at the "tip of the cone",
in simple relation to the opening angle. Given the topology of the solid, the curvature quanta
have to be "of order one". This requires that the curvature fluxoids require a mass- (2+1D)
or string tension (3+1 D) set by the Planck scale localized in a volume corresponding with
the lattice constant of the crystal (Section VIIB)! Considering mundane crystalline matter such
Planck scale stuff required to "decorate the cores" is not available. We conclude that these
quantized curvature fluxoids cannot be formed in the physical universe.

It should still be possible to accommodate a crystal in a spatially curved background man-
ifold. At this instance, the intricacies of the "true" topological defect current that acts on the
rh.s. of Eq. (2) as discussed in Section VI come to help..The obstruction preventing the forma-
tion of the curvature fluxoids is coincident with the background curvature becoming effectively
rigid — it behaves like the soft matter rigid surfaces. Any attempt to localize the curvature will
run in the Planck scale brick wall and instead the crystal has to adapt to the slowly varying
background curvature. We will argue that in the limit of relevance — curvature radii being very
large compared to the lattice constant — there is a unique solution in the form of a dislocation
gas (Section VIIC).

1.8.7 The Platonic incarnation: the gravitational Abrikosov lattice and the polytopes
(Section VIII).

The Lorentzian time axis of the physical universe spoils the fun. A mathematical germ is
lying in wait: crystal gravity appears to relate different branches of modern mathematics in a
way that to the best of our understanding has not yet been realized. It requires some degree
of mathematical idealization. In the first place, just omit the Lorentzian signature time axis
of physics and focus in on 3D geometrical manifolds with Euclidean signature. In addition,
assert that the crystal is perfect while the curvature of the background manifold has to be
accommodated by the quantized curvature fluxoids. The situation is then analogous to type II
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superconductors where the gauge curvature can only be accommodated in magnetic fluxoids:
the outcome is a regular, typically triangular Abrikosov lattice of fluxoids.

The mathematical challenge is then as follows. Insist that the geometrical curvature flux-
oids have to form a lattice that is as regular as possible, how does such a "type II" lattice
looks like given a crystal characterized by a particular spacegroup and a background geometry
having a particular isometry and topology that has to be "absorbed" by the fluxoids?

So much is clear that this question has a direct bearing on the grand differences between
two- and three dimensional geometry. The former was already understood in the 19-th century
while the latter is still of contemporary interest. The outcome for the (tractable) 2D problem
case is entertaining. Consider the generic closed manifold S2, the ball that is easily visualized
by embedding in three dimensions (Section VIIIA). The outcome is that the lattice of wedge
fluxoids corresponds with a discrete geometry manifold that dates back to Greek antiquity:
these correspond with the surface of the regular polyhedra. For instance, departing from a
square lattice the curvature fluxoids are characterized by 7t/2 opening angles. These span up
precisely a cube in the three dimensional embedding. The edges of the cube do not represent
intrinsic curvature, and neither do the sides. The curvature is localized at the 8 corners that
coincide with the fluxoids.

What happens in 3D? To give a first taste, in section VIIIB we present a minimal example.
We depart now from a cubic crystal and ask what to expect when this is Higgsing the three
dimensional ball S3. In addition, we only employ the wedge fluxoid the cosmic string like
object of section VII. The outcome is greatly entertaining: it corresponds with the surface of a
tesseract, the generalization of a cube to 4 embedding dimensions! It is now easy to count the
number of wedge fluxoids that are required: these now correspond with the 32 edges of the
tesseract.

The tesseract is an example of a polytope, the generalizations of the polyhedra to higher
dimensions. These are part of the general subject of discrete geometry and the classification
of polytopes is a subject that is still pursued at the present day. The take home message is that
the intricate subject of 3D topology and Riemannian geometry acquires a relation with discrete
geometry in 3D by the "topologization" due to the Higgsing. Is it possible to associate the still
evolving classification of polytopes due to contemporary giants like Conway and Coxeter with
the 230 space groups in 3D, as well as the intricate mathematical art of geometry and topology
of 3D Riemannian manifolds?

1.8.8 But there is also twist in three dimensions (Section IX).

In 2D the wedge fluxoids exhaust the repertoire of topological curvature densities. But in 3D
there is more going on, beyond pulling such wedge defects in strings. These wedge fluxoids
are characterized by Franck vectors that are parallel to the propagation direction of the string,
corresponding with the diagonal components of the defect density tensor. But pending the
space group the Franck vectors can also point in other directions, relating to off-diagonal
components of the defect density and the Einstein tensor, Eq. (2).

Taking the simple cubic crystal as an example, in Section IXA we zoom in on the con-
struction of such "twist fluxoids". We are much helped by the fact that the corresponding
background geometry is known. This forms by itself a barely chartered affair which is ruled
by the non-Abelian nature of the 3D point groups. We study the holonomies associated with
the set of twist and wedge fluxoids revealing the non-Abelian nature: for instance, geodesic
transport will be dependent on the order one encounters the various fluxoid strings.

Closed homogeneous manifolds in 3D are famously captured by the Thurston classification,
insisting that different from 2D there is more going on than only spherical-, hyperbolic- and flat
manifolds. This will surely add further layers of richness to the gravitational Abrikosov lattice
question. In Section IXB we take a short look to get an idea what can happen. We consider
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Table 1: The route map of the duality landscape.
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the "Kantowski-Sachs" Thurston class, corresponding with a 3D cylinder type geometry. We
establish that this is topologized in terms of a simple bundle of wedge fluxoids. Then we revisit
the maximally symmetric S® combined with the cubic crystal lattice, with the awareness of the
existence of twist fluxoids. We argue that still a tesseract is formed but there are now a total
six different ways to absorb the curvature using strictly degenerate configurations of twist-
and wedge fluxoids. This affair is further enriched by degeneracy in the overall topology that
is rooted by the non-Abelian nature descending from the rotational symmetry, that begs for
further mathematical exploration.

1.8.9 The conclusions (Section X).

We will finish with an assessment of the significance and relevance of our findings. Those
readers who perceived the above overview as more or less comprehensible may desire to first
have a look at the conclusions before delving into the main text. We point at various oppor-
tunities for follow up work that may appeal to particular potential stake holders within the
rather diverse selection of subjects that play a role.

1.9 The route map of dualities.

As stressed in the above, the duality structures that are at the heart of our exposition are
close siblings of the Abelian-Higgs duality in 3D that may be quite familiar to part of the
readership. To help the reader with keeping track of this rich affair we constructed the table (1)
summarizing the analogies between the various cases. The first column refers to the Abelian-
Higgs template, the second column refers to the "translational" sector (Sections IV, V) and the
third column to the "rotational" part (Sections VI-IX).

1.10 A note on conventions.

Dealing with curved manifolds and/or Lorentzian signature one has to pay tribute to covariant-
and contravariant quantities, raising an lowering indices using the metric tensor. Delving
into the "crystal geometry" the focus will be most of the time on the spatial manifold with its
Euclidean signature. Moreover, given the central principle that the solid will expel the spatial
curvature (and torsion) as well, concentrating it in the topological excitations, one encounters
here invariably as flat metric with Euclidean signature. Accordingly, there is no difference
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between co- and contra variant quantities and we will follow e.g. Kleinert in this context just
ignoring the "upper" indices throughout the text.

However, there are a few occasions where the time axis enters: the gravitons in Section IV
and implicitly when dealing with the core of the curvature fluxoids in Section VII where we
will pay full tribute to the indices when the need arises.

Notice that we are in this regard just plainly sloppy in section III dealing with the vortex-
boson duality — although we use greek indices these refer to 241D Euclidean space time where
yet again there is no need to raise indices.

2 Frame fixing: Elasticity as the Higgs field of gravity.

The first part of this section is dedicated to the derivation of the "central principle" of crystal
gravity Eq. (10), demonstrating the remarkably close analogy with the usual Higgs mecha-
nism. In spirit, this is coincident with the established notion that crystals are Higgsing dy-
namical geometry. However, in much of this literature one deals in a rather casual way with
elasticity itself, it seems because of unfamiliarity (and underestimation) of this theory. Only
rather recently proper derivations appeared, in the holography inspired literature [20]. Our
presentation here is strictly equivalent, but we have done our best to expose the bare essence
of the mechanism. This may appear at first sight as rather intuitive but this is misleading. The
Higgs mechanism is taught in the rather abstract setting of the internal symmetries of Yang-
Mills theories. But crystal gravity is about the coordinate frames familiar from high school that
get "frozen" by the presence of the crystal having the implication that the geometrical curva-
ture (and torsion) are expelled. Upon getting used to the idea, it is by far the easiest way to
explain the Higgs mechanism to students, assuming that they know the basics of the general
relativity.

This we will accomplish first. In the remainder of this section we will then emphasize the
breaking of Lorentz invariance (Section 2.2). We finish with a discussion of isotropic elasticity,
including the spatial angular momentum decomposition that is of particular significance in the
gravitational context (Section 2.3).

2.1 The first law of crystal gravity.

Space-time is as a fabric — this popular metaphor implicitly involves a notion that space-time
may have something to do with a solid. Of course, every physicist realises that this metaphor
should not be taken literal. But where precisely lies the difference? In fact, in the ‘modern’
tradition of elasticity, where we take the treatise of Kleinert in the 1980s as benchmark [5],
it is formulated as a geometrical theory, in the same sense that GR is geometrical. Surely,
the nature of this “crystal geometry” is in a crucial regard very different from the Riemannian
geometry underlying gravity. Here we are focussed on the combination of the two where the
space-time is sourced by elastic matter. Then it is quite helpful to have them both formulated
in the same mathematical language.

The foundation of crystal geometry is very easy: it is just Einstein theory “in a preferred
frame” (or "prior geometry", "fixed background"). The notion of a preferred frame is blasphemy
for the relativist. The point of departure of Riemannian differential geometry is that since coor-
dinates are an auxiliary device facilitating computations, the geometry as such cannot possibly
depend on the choice of frame. Accordingly, diffeomorphism invariance (general covariance)
is the ruling symmetry principle in the effective field theory strategy employed by Einstein
to construct GR. The metric tensor g,,, in coordinate representation is frame-dependent and
should therefore not appear in the action. The lowest-order diffeomorphic invariant that quali-
fies to determine the action is the Ricci scalar R. This inspired Hilbert to rewrite the space-time
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parts of Einstein’s equations of motion in terms of the action,

Including the cosmological constant A while --- refers to higher order curvature correc-
tions such as R,,,R*” where R, is the Ricci tensor. What should an effective field theorist
write down instead when the geometry would be governed by a particular coordinate system
which is for whatever reason becoming a physical observable? Let’s call this frame X" with
metric ds? = Guydx#dx” in terms of a preferred metric tensor G,,,. The metric g,, — G,
has turned into a physical observable and to lowest order in gradient expansion the minimal
action becomes,

1
Sem f ded'x /=[G (—Eg‘wcumgM ‘. ) , @

where the tensor C containing coupling constants is constrained by the global symmetries
(rotations, boosts) associated with the preferred frame. How can such a preferred frame spring
into existence? A practitioner of the theory of elasticity may already have recognized that Eq.
(4) may have dealings with this theory. Observing it with X-ray diffraction one immediately
discerns that the crystal spans up a coordinate system. A square lattice in 2D is just like a
simple Cartesian coordinate system. But now we combine it with the dynamical geometry of
GR. The atoms localized on the points of this lattice carry mass and will back react on the
geometry. Although this back reaction is extremely small on the scale of the lattice constant
this will accumulate when the size of the crystal is growing to become consequential on the
scale of the gravitational penetration depth A5, Eq. (1). On scales large compared to A;, by
the imprinting of the crystal lattice the dynamics of space-time as otherwise governed by GR
will be altered according to the consequences of Eq. (4). This is the essence of crystal gravity.

Although it is all about the dynamics of space time captured in the geometrical language of
GR this "Higgs mechanism" that we just described is a close analogue of the Higg’s mechanism
of Yang-Mills theories. Let us remind first the reader of the way that this Higgs mechanism
works. Higgsing means that matter characterized by its order parameter forces the gauge fields
to become pure gauge expelling the gauge curvature corresponding with the physical field
strength from the vacuum. Consider for example a scalar order parameter field ¥ = |¥|e!?
minimally coupled to a U(1) gauge field A,. The physics deep in the relativistic abelian Higgs
phase where the amplitude |¥| is frozen is described by the Stueckelberg (Josephson) effective
field theory (suppressing dimensionfull constants),

Syos = f dtddx[—%lxmz(auqs —A)(@" —A“)—%FWFW]. )

In the neutral system (superfluid) this would reduce to the action describing the phase mode
or “second sound” ~ (3u¢)2, the Goldstone boson arising from breaking of the global U(1)
symmetry associated with conserved particle number. Upon gauging, the EOM following from
Eq. (5) implies the gauge invariant condition A, = J,,¢, the gauge field has to be the gradient
of a scalar function and thereby the gauge curvature F,, = d,A,—9,A,, is vanishing. The field
strength can re-enter above the Higgs mass, the energy scale where the spontaneous symmetry
breaking is loosing control, or in a static setting in the form of the quantized vortices of the
superfluid turning into quantized magnetic fluxes (fluxoids) after gauging.

A greatly simplifying circumstance of spontaneous symmetry breaking is that through the
Goldstone theorem the theory can be enumerated resting on the linearized sector. Focussing
on the large wavelength Goldstone modes the relative displacements on the microscopic scale
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become infinitesimal and these are perfectly captured in a gradient expansion: to discern the
fate of the photons one only has to consider infinitesimal phase fluctuations d¢ in Eq. (5).
The non-linearities are entirely collected in the sector of topological excitations (the fluxoids)
and these can be captured by considering the parallel transport in large loops encircling the
defects accumulating again phase differences that are infinitesimal on the microscopic scale.

Having this wisdom in mind, how to derive the gravitational analogue of the Joseph-
son/Stueckelberg action Eq. (5)? The role of the matter breaking spontaneously symmetry
should now be related to the formation of the crystal lattice forming the material "preferred
frame". The Goldstone modes are now described by the theory of elasticity. Let us first derive
its form in elementary textbook style [4,5].

Consider everyday solids formed from an array of atoms, and let us first focus on static
elasticity only involving the spatial coordinates of the atoms labeled with latin indices. The
point of departure is an equilibrium state where the atoms form a perfect periodic lattice where
atom i is localized at a position R?. It requires a finite potential energy to change these positions
and this is parametrised in terms of the displacements u;: R; = R? +u;. In the continuum limit
u; — u(x) = u?(x). Only relative displacements matter and these are captured by the strains,
corresponding to symmetric rank-2 tensors [4]:

1
Wina = E(amua + aaum) . (6)

In leading-order gradient expansion the gradient potential energy becomes,

1
Spot = f dtddx [—EwmaCmnabwnb] . (7)

The rank-4 tensor C,,,,, contains the elastic moduli (the coupling constants), with a form
imposed by invariance under space group operations as we will discuss in a moment. This is
equivalent to the theory of the phase mode of a superfluid ~ (auqb)z.

It was however already realized in the era of Euler and Lagrange (see e.g. Landau and
Lifshitz [4]) that there is a direct geometrical meaning to the theory of elasticity. One imagines
an ‘internal observer’ living in the crystal that measures distances by hopping from lattice site
to lattice site; such an observer will experience the (deformed) crystal as a geometry. For
convenience, consider a (hyper)cubic lattice and choose a Cartesian coordinate system with its
axes coincident with the cubic lattice directions. The metric of the internal observer measuring
distances in the equilibrium crystal is obviously ds? = §,,,dx,,dx,, — flat space. Deforming
the metric slightly by x” = ¥ + #i(%¥) it becomes,

(ds")? = (dx,, + du,,)?. )]
In leading order of the gradients,

(ds")? = &, d X dx, + 2W,d X d X, = Gond Xmdx,, ,
9

with w,,,, defined in Eq. (6).

This “crystal geometry” is still invariant under coordinate transformations. Every prac-
tioner of elasticity knows that it is a good idea to choose coordinates that are suitable for the
problem. Dealing with a cube Cartesian coordinates may be most convenient but for a beam
one better uses cylinder coordinates. One can look up in the elasticity textbook how to trans-
form the action Eq.(7) from one to the other coordinate system. In this regard elasticity is still
invariant under this restricted set of coordinate transformations but as in Yang Mills theory
these have the status of "passive" gauge transformations. In direct correspondence with the
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usual Higgsing of gauge theories, the matter field will however expel the now geometrical
"curvature" (it actually includes Cartan torsion) as will become clear very soon.

This is still coincident with the textbook formulation of elasticity — we have just given a
geometrical name to the strain fields. There is yet a caveat ; G,,,, is not referring to the metric
of the fundamental space-time (as in Eq. 4) in which the crystal resides — for instance, a
neutrino that is not interacting with baryons or electrons will have no clue that this metric
exists. However, eventually the atoms will back react on space-time since these are gravitating
objects. We have to find out how the crystal geometry imprints on the space-time geometry
via this backreaction .

Given that we are now dealing with a dynamical space-time the background metric should
have the a-priori freedom to change according to the GR rule book. As for the superfluid
phase, the Goldstone fields (the strains w,,) are "automatically” linearized in the flat back-
ground. It is now crucial to anticipate that the condensate will expel the spatial curvature.
Flatness of the background is enforced and this has the consequence that the strains being
infinitesimal fluctuations of the elastic medium pair merely with the linearized excitations of
the background.

These are the h;; "graviton" degrees of freedom of textbook linearized gravity, g;; = 1;;+h;;
with 7);; being the Minkowski metric. Given the geometric identification of elasticity in the
above, this implies that we have to modify the elasticity action to incorporate the fact that
background metric is dynamical,

1
Wma = Wma+§hma:
1
SpOt = Jdtddx I:_Ewmacmnabwnb] . (10)

This simple equation will be the working horse of crystal gravity.

We are now in the position to appreciate the close analogy with the usual Higgs mechanism.
The strains wg; take the role of the phase field J,¢ while the metric fluctuation h,,, is like
the gauge potential A,. At distances large compared to the London penetration depth the
unitary gauge J,¢ = O is practical, and the Stueckelberg term reduces to ~ Ai: the term
giving mass to the photons. In the same way, at distances large compared to A; one can
employ the crystal gravity version of the unitary gauge w,;, = 0: the crystal lattice is shuffled
in the geometry ~ h,,C, 2 hyy. In this flat background the Hilbert-Einstein action reduces
to Fierz-Pauli linearized gravity and one may already envisage that the outcome is that the
gravitons will acquire a mass which is indeed the case (section 4). In fact, one may now
insist on restoring the full metric h,, — §,,, to recover Eq. (4). But there is no need since
the linearized fields suffice to keep track of everything that can happen. As in the Yang-Mills
Higgs phase, anything non-linear will turn into topological excitations and the linearized fields
suffice for their identification as we will find out.

With Eq. (10) we have identified the fundamental equation governing crystal gravity and
the remainder of this paper is dedicated to study its consequences. Notice that in fact he basic
conception of frame fixing leading to a Stueckelberg-type action is the same as in the GR tradi-
tion dealing with e.g. massive gravity and the various constructions introduced in the holog-
raphy community [1,18,38-40]. The difference is that in the above we depart from the tensor
structure as is spelled out in elementary elasticity textbooks rooted in the space-group symme-
try governing real crystals (the strain tensors), instead of improvised constructions given in by
computational convenience. It seems that it has been overlooked just because of unfamiliarity
with elementary elasticity theory.
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2.2 The brutal breaking of Lorentz invariance.

All what remains to do is to find out the form of the C,,,,, tensor that is determined by the
residual symmetry after matter has broken translations and rotations — the space group of the
crystal. But we have to consider space as well as time. As we emphasized in the introduction,
the universal consequence of crystallization is a maximal breaking of Lorentz invariance.

Surely, finite density and/or finite temperature already suffices to destroy the space-time
isotropy. We will be mainly focussed on stationary circumstances where matter is in equi-
librium. Consider as an example a finite temperature fluid under such circumstances. One
can then safely Wick rotate to Euclidean signature and Lorentz invariance is broken by the
fact that imaginary time in a circle with radius ii/kz T: at long times it is inequivalent to the
non-compact space directions and this will be remembered in Lorentzian signature.

Consider now a crystal at zero temperature in Euclidean signature. Space and time seem
to be a-priori equivalent and one could now contemplate a crystal that is isotropic in Euclidean
space-time, a "world crystal" [22] that is respecting Lorentz-invariant modulo the frame fixing.
At first sight this looks reasonable — see for instance the quantum liquid crystal [24-26] that
is asserted to be "Lorentz-invariant" in this sense [23]. Among the peculiarities is that the
sound mode of the non-relativistic nematic fluid becomes massive. However, to arrive at such
a world crystal one has to break time translations. This seems unproblematic dealing with an
Euclidean time axis at zero temperature. A similar line of reasoning lead Wilczek to postulate
the existence of a time crystal characterized by a spontaneous breaking of Euclidean time
translations [32].

However, physical time is characterized by Lorentzian signature and breaking Lorentzian
time translational invariance means sacrifying unitarity. Soon after Wilczek launched his idea
it was demonstrated that such a time crystal cannot exist as equilibrium state [33]. One has
to resort to driven systems characterized by special conditions (e.g. many body localization)
to suppress quantum thermalization.

For these fundamental reasons it is therefore impossible to realize such isotropic space-time
crystals. A physical crystal viewed in Euclidean space-time is therefore maximally anisotropic,
characterized by translational symmetry breaking in space directions while the time direction
is entirely translational invariant. This is similar to the classical smectic liquid crystalline
order (solid-like in one direction, liquid in the perpendicular plane) but actually even more
anisotropic. The "classical" Euclidean signature analogue in a first quantized representation
in 2+1D is like an Abrikosov vortex lattice formed from incompressible lines forming a regular
array in the "space-like" plane perpendicular to their "time-like" propagation direction, see
e.g. [34].

In terms of the effective theory, the crucial ingredient is that worldlines cannot be com-
pressed in the time direction with the implication that the time-like displacement vanishes :
u, = 0. This means that strain fields are strictly transversal to the time direction, w,, = 0
and only w. ; — J.u; # 0. We recognize the velocity and we conclude conclusion that in the
fixed frame action in so far the time-axis is involved this amounts to a simple kinetic term, in
Lorentzian signature

1 1
Liin = =5 P(0Ua)(0 1) = —zp(atu“)z, (11)

where p is the mass density. The demise of Lorentz invariance has the effect that the "tem-
poral strain w_ ;" is no longer a symmetric tensor. This has a detrimental consequence for the
economy of the formalism. The symmetric nature of the elasticity tensors is at the heart of
the harmonious marriage with GR, as we will exploit in the remainder dealing with stationary
circumstances. We found out how to deal in principle with the dynamics, in the context of
the (non-gravitational) duality constructions [25, 26] but the formalism is cumbersome and

21


https://scipost.org
https://scipost.org/SciPostPhys.13.2.039

Scil SciPost Phys. 13, 039 (2022)

hazardous in combination with a dynamical background. This is the main reason for us to shy
away from dynamical aspects in this exposition. We will shortly touch on this again in Section
4.7.

But even in stationary circumstances this maximal breaking of Lorentz invariance has
unusual- and counterintuitive consequences that become particularly manifest in the com-
bination with gravity as will be highlighted in the later sections.

2.3 Isotropic elasticity and the shear modulus.

All what remains to be done is to determine the form of the all-spatial tensor C,,,,,; by im-
posing invariance under the space group transformations. The outcomes are tabulated (see
e.g. chapter 1 of ref. [5]). The reference point is the theory of isotropic elasticity which is the
standard in engineering books. Single crystals that show the ramifications of the full space
group on the macroscopic scale such as crystal faces are actually very rare. Solids are typically
infused with all kinds of defects with the outcome that their macroscopic elastic properties are
effective isotropic: these are governed by the SO(3) group of global spatial rotations.

Relative to the isotropic case, the discrete point group operations translate in "anisotropy
moduli". With the exception of extreme cases like the van der Waals solids (such as graphite)
the anisotropy corrections are usually small as compared to the shear- and compression moduli
of the isotropic limit. We will ignore these anisotropic moduli for no other reason than that
these are rather non-consequential in the crystal gravity, while having the effect of rendering
the theory to become more laborious and less transparent. Notice that at the moment we start
to deal with the topological excitations the space group data become crucial because these
determine the topological charges. But this is easy to restore departing from the isotropic
theory.

As in linearized gravity we take a flat background and a co-moving frame encoding for the
frame where the action can be decomposed in terms of spatial s = 0, 1,2 angular momentum
contributions. Given the breaking of Lorentz invariance this is now the only natural frame.
Introduce projectors Prsfr)m , on the space of (0, 2) tensors under SO(d) rotations where d refers
to the dimensionality of the spatial manifold [5, 25,26]. In Cartesian coordinates,

1
Pr(norgab = Eéma6nb P
1
Pr(nlrgab = 5(5mn5ab - 6mb5na)a
1 1
Pr(nzr3ab = E(gmnaab + 5mb5na) - E5ma5nb . (12)

Since local rotations cannot change the potential energy of the crystal £, does not contain
the spin-1 components and therefore the action of an isotropic solid is determined by:

Conap = AP 4 2up) (13)

mnab *

The quantities xk and u are the compression- and shear modulus, respectively, that completely
specify the static responses of the isotropic solid. Notice that the compression modulus mul-
tiplies the trace while shear is traceless. The particular way in which this will talk to the
gravitons is already shimmering through: this has to do with the spin 2 shear sector.

The potential energy density of the isotropic solid can be written explicitly in d space
dimensions in terms of Cartesian coordinates as,

1
£pot = _5 (ZM(Wma)z + A'(Wmm)z) B (14)
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in terms of the Lamé coefficient A = k. Another useful parameter is the Poisson ratio v defined
as

_2u 1+v

T d1—-(d-1)v’
This is the classical elasticity theory derived in the 19th century, describing the static responses
of the isotropic elastic medium. By adding the kinetic term Eq. (11) elasticity acquires the
status of semiclassical quantum field theory [25,26] with a quantum partition sum in Euclidean
signature (7T = it is imaginary time),

_SE,elas
Zalas = Du“e 7 |

— d
SE,elas - ded X ﬁE,elasa

K (15)

‘CE,elas = EE,kin+£E,pot)
1
Leyin = Ep(afua)z,
1
Lopor = 5 (260Wne) +A(wnm)?) , (16)

describing among others the acoustic phonons in the guise of the solid-state textbook harmonic
solid. Of crucial importance in the context of gravity, the bad breaking of Lorentz invariance
has as consequence that the transversal phonons are spin-1 (helical (2,+£1) while the longi-
tudinal phonon is spin 0 (mixture of (0,0) and (2,0)) under spatial rotations, rooted in the
temporal derivatives d,u®.

To make this explicit, let us compute the displacement-displacement propagators associ-
ated with the phonons. Fourier transform to frequency-momentum space is indicated by q with
magnitude g for spatial momenta and Matsubara frequencies w,. The equations of motions
are trivial to solve for this linear problem and it follows,

L T
(uaub>:l|: Zpabz 2+ Zpabz 2}’
ws + ¢ q ws +cxq

17)
Jo}

. . . . . L _ 2 T _ L
defining the longitudinal and transverse projectors P, = q,q5/q°, P,, = 84, — P,;,. The
longitudinal- and transverse velocities are,

K+2dd;1,u 2ul—(d—-2)v
o = —_— =\, (18)
Jol p 1—(d—1)v

o = \[Z. (19)
Jo)

We infer one longitudinal acoustic phonon with velocity ¢; and d — 1 transverse acoustic
phonons with velocities cr, the Goldstone modes associated with the spontaneous breaking
of d spatial translational symmetries.

3 Intermezzo: Abelian-Higgs duality, the mass of the photon and
the fluxoid.

As we announced in the introduction we are much helped by the circumstance that all the
mathematical machinery we need was collected and perfected by Kleinert in his 1980’s book
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[5]. Eventually this revolves around the realization that the analogy between the Abelian Higgs
problem and the much richer crystal gravity continues to hold on a much deeper level than
what we just discussed. The key is that the general structure of the weak-strong "vortex-boson"
(or "particle-vortex", "Abelian-Higgs") duality applying to the former generalizes straighfor-
wardly to the latter. The 241D version as formulated in the late 1970’s [35] is a well known
affair. We will present in this section a short tutorial of the vortex-boson duality, as a template
for the generalization to crystal gravity (for recent results in 3+1D, see ref. [36]). This is stan-
dard material and the reader who is familiar with this machinery can safely skip this section
altogether.

The summary of how it works is as follows. In a first step the Goldstone (phase) modes of
the superfluid are dualized in the conserved supercurrents that are subsequently recognized
as gauge fields that propagate forces. These are sourced by "multivalued gauge field" config-
urations that are recognized as the topological excitations of the superfluid, the vortices. One
ends up with the dual theory written in terms of the vortex degrees of freedom having a long
range interaction that at least in 241D is identical to QED. The same dualization strategy is
equally powerful when unleashed on the much richer crystal gravity. The outcome is of the
same kind, in the form of an effective theory encapsulated entirely in terms of the topological
defects, now of the crystal, interacting through "gauge" fields that morph naturally with the
fields of GR. In 3.1 the dualization procedure is explained, while in 3.2-3.5 we highlight the
various tricks employed to get an answer to specific questions that we will meet later.

3.1 The superconductor in dual representation.

The central wheel in the field-theoretical vortex—boson duality (or Abelian-Higgs duality) is
just stating that the (Abelian) superfluid in 2+1 dimensions is the Kramers—Wannier (weak—
strong) dual of the (gauged) superconductor. The superfluid may be viewed as the Coulomb
phase of the charged dual, where the superfluid vortices take the role of the charged matter.
Similarly, the superconductor (Higgs phase) may be viewed as the dual of a superfluid where
the fluxoids act as neutral bosons that upon condensation form the neutral superfluid. This
‘direction’ of the duality is the one that relates to crystal-gravity.

Let us consider the U(1) Stueckelberg action, Eq. (5) in d = 3 overall Euclidean dimen-
sions. This may be viewed as the relativistic theory in 2+1D with Euclidean signature. This
is in turn equivalent to the classical theory dealing with the static responses in three space
dimensions. It relates to crystal gravity in 34+1 dimensions in so far as static aspects of the
elastic medium are at stake.

The conventional way to proceed is to choose a unitary gauge fix, J,¢ = 0 and one reads
off immediately that the photons acquire a mass m% o< |¥|?. However, using the dualization
technology it becomes easy to enumerate all the consequences of the theory. For convenience
we will use here a short-hand notation, by suppressing all dimensionful quantities, taking also
the Higgs mass |¥|?> = 1. In addition, we suppress the integral signs and keep it implicit that
the action appears in the path integral. Any reference to “integrating out” refers to standard
Gaussian integrations in the path integral. We consider the relativistic case characterized by a
single velocity of light both for matter and the gauge field.

In order to be able to write all terms with spacelike indices and the same sign, the temporal
components need to be redefined by a factor of i, but we leave this here implicit since this
section is primarily heuristic(for details see Ref. [25]). The phase (Josehpson-, Stueckelberg)
action in Euclidean signature then becomes,

1 1
*CE,phase = E(a,ud) _A;,L)Z + ZFMVF,uv; (]5 = ¢ +2m, (20)

where the mod (27) refers to the fact that the phase field is compact. The first step is to
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dualize by Legendre transformation, which can be accomplished by introducing the auxiliary
field j, such that Eq. (20) can be rewritten as,

1. . .. 1
Lg dual = I+ i (6.0 —A,)+ ZFWFW. (21)

According to the standard Hubbard-Stratonovich Gaussian integration identity this re-
duces to Eq. (20) by integrating out j,.

The configurations of the phase field can now be decomposed in smooth and multivalued
pieces ¢ = ¢, + Puv, Where the latter is defined as the non-integrable, singular part due to
the compactness of the matter field. We will see in a moment that this relates to the vortices.

The smooth part is integrable and this implies that j,J,¢sm = —P¢yJ,J, modulo a total
derivative. Then ¢, acts as a Lagrange multiplier that can be integrated out, imposing the
conservation law

8,4, =0. (22)

This is just the continuity equation governing the conservation of the supercurrent j,. In the
absence of singular ("multivalued") configurations the action in terms of the current variables
can be written as,

1. . 1
‘CE,dual = E]u]u - UuA,u + ZFHVF,uv >
Ju = 0. (23)

Now comes the magic: the conservation law Eq. (22) can be imposed in 3 dimensions by
expressing the current in terms of a non-compact U(1) 1-form gauge field b,

jM = swlavbl (24)

and it follows that the kinetic energy of the super current j,j,, = f,,f,,, where f is the field
strength of b: f,, = 9,b, —9,b,. It is equivalent to Maxwell electromagnetism: one may
identify the phase mode of the superfluid with the single propagating photon of 241D Maxwell
theory!

But we are not done yet since the multivalued part of the phase field has still to be ad-
dressed. This is the non-integrable part: j,,0,¢my = €,,29y023,Pmv = by€urva 0,05 Pmy- This
implies,

1 1 . .
EE,dual = ZF,qupw + quvfuv + 1bu‘],l\{ - lA,ueuv)tavbA’
J,Y = EuvlavalquV- (25)

By Stokes theorem it follows that JV represent the vortex currents, being lines in 3 Euclidean
dimensions, corresponding to the wordlines of ‘vortex particles’ in the 2+1D quantum theory.
To see this explicitly, depart from the familiar statement defining the winding number N of the
vortex,

jg do(x) = § dx,0,¢(x)=2nN. (26)
C c

Convert this using Stokes’ theorem into a surface integral of the curl of the integrand over the
surface S enclosed by C,

f dS)L €Avuavau(¢)(X) = 27'EN, (27)
S
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which is satisfied when

TY(X) = €350y, (x) = 2nINE (L, x). (28)

Here 5%2) (x) is a two dimensional delta function in the plane orthogonal to A,where we use
he definition of the delta function on the defect line L parametrized by s, given by

§(L,%) = f ds 8,xL ()8 D (x — xL(5)), (29)
L

which is non-zero at the origin — if the vortex is not centered at the origin, the argument of the
delta function is shifted. This establishes JV as the (conserved) topological (vortex) current
related to the non-integrable part of the phase field ¢.

Here is the benefit of this dualization procedure: all the non-linearities associated with
the physics of the ordered state are encapsulated by the topological excitations. Departing
from the linear Goldstone sector this dualization procedure captures the topological sector
automatically by identifying multi-valued order parameter configurations. Remarkably, gauge
theory arises as the natural mathematical language. This dualization principle overrules all
the differences between simple U(1) Abelian Higgs and crystal gravity as we will see in the
remainder.

Summarizing, in this dual description the neutral superfluid is described by 241D Maxwell
theory, where the vortices take the role of ‘charges’ that interact with each other via ‘photons’
b, that represent the induced supercurrents. In superconductors these ‘current photons’ are
coupled to the physical photon gauge field A, via the BF-term ~ A¢db. This is the blueprint
of the machinery that we will use as well in crystal gravity. By integrating out either the A, or
b, fields in the presence or absence of vortex sources one can compute effortlessly anything
of physical interest happening in the superconductor.

Let us now turn to the benefits of the helical representation. This is explicitly constructed
in Appendix B: it departs from a coordinate system associated with the longitudinal- and trans-
verse directions relative to spacetime momentum. The helical representation then arises by
considering the eigenvectors in momentum space under rotations. In three dimensions, these
are in the s = 1 representation with eigenvalues h = —1,0,+1, where 0 is the longitudinal
direction. In the gauge theory, the longitudinal components A®, b© do not contribute to
their respective field strengths F,, and j, ~ f,, since these are pure gauge. In the helical
representation these components are thereby automatically vanishing, and all that remains
are the physical photons A®Y) and ‘current photons’ b1, Such a decomposition will become
particularly convenient in the context of the rank-2 tensors of elasticity.

To illustrate how this works, let us decompose our dual BF action in helical components:

1 .
Lg qual = E 3 (P2AD + p2b®2)) +ip(bCVTAD — pHDITAHY)
h=z1 (30)
+ i(b(+1)TJV(+1) + b(—l)“rJ—V(—l))'

Here p is the magnitude of the spacetime momentum p,, = (%wn, q), where c is the velocity
of light. Furthermore b™'A*! is a short-hand for §(b*1TA*! + A*17H*1) etc.

This is a highly transparent expression: Eq. (30) corresponds to a simple linear mode
coupling problem in terms of the physical, gauge-invariant fields. The operations that we will
use in crystal gravity are straightforward generalizations of this superconductivity affair.
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3.2 The Higgs mechanism.

In the helical representation of the dual superconductor, the mechanism that gives photons a
mass becomes particularly transparent. The crucial step is the dualization of the Goldstone
variable (the phase mode) into the supercurrent, and the current photons b,,. It is elementary
that the EM gauge fields A, are associated with the propagation of forces. By parametrizing
the supercurrents (associated with momentum) in terms of the ‘auxiliary’ gauge fields b,
one isolates similarly the capacity of the superfluid to propagate forces given its emergent
phase rigidity. In terms of this force representation one compares apples with apples, and the
outcome is that the superfluid and EM gauge bosons are subjected to a simple linear mode
coupling which in turn takes care of the emergence of the Higgs mass as we will now show.
Take Eq. (30) without vortex current JV, and integrate out the bu field to obtain,

1
L Higgs,iM = Z 2—62(0& +c*q* + mlz{)|A(h)|2 , Or
h=+1
1
Loiggan = D, 550" —c*q* —mA®P. 31)
h=z1 <€

In the second line we have analytically continued to real time/frequency to arrive at the stan-

dard form of the massive photon propagator. The Higgs mass in these dimensionless units is

1, but it is proportional to the superfluid density. Expressed in explicit units, my = ¢/A; with

A, the ordinary London penetration depth. This Lagrangian describes the massive photons.
Alternatively, we may integrate out the EM fields from Eq. (30) to find

1
‘CHiggs,SC = Z E(wz - C2q2 - m12-1)|b(h)|2 . (32)
h==+1

Compared to the neutral superfluid with a single, massless Goldstone mode described by a
free vector gauge field b,, now two massive degrees freedom arise that can be represented
either by the photon field A, or by the current gauge field b,. In 2+1D the EM vacuum has
one physical photon polarization, but by coupling to the superconducting condensate the lon-
gitudinal photon becomes a second propagating degree of freedom due to the Anderson-Higgs
mechanism resulting in Eq. (31). This is consistent with the standard argument employing the
unitary gauge.

But we can also represent the same degrees of freedom by the b, field. The transverse po-
larization of this field represents the original Goldstone mode, picking up a mass when coupled
to electromagnetism. In a neutral superfluid, the longitudinal part of b,, represents the static
(non-propagating) Coulomb interaction between vortex particles. In the helical representation
it becomes transparent that due to the coupling to the EM field it turns into a propagating,
massive degree of freedom. It is even possible to integrate out the longitudinal parts of A, and
b, keeping track of the transverse polarizations of both. The remaining A- and b-component
now represent the massive photon and Goldstone mode, respectively.

3.3 Interactions between vortices.

Vortices in a neutral superfluid interact with an effective Coulomb interaction. The circulating
currents associated with a vortex fall off algebraically causing a repulsion (attraction) between
vortices with the same (opposite) sense of circulation. This can be directly read off from
Eq. (25): suppress the EM fields A, and it reduces to a Maxwell action for current photons b,,
and vortex charges JX. Upon adding back the EM field, this interaction becomes screened on
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the scale of the London length, and this is easy to compute in the dual representation. After
integrating out A, we have Eq. (32) supplemented with vortex currents as sources,

1 1
Lovonensc= 2, | 5%+ ) b® P2 +ip®TV®) ) (33)
) > 2 AZ

h=+1 L
Here A; is (again) the London penetration depth inversely proportional to the Higgs mass. Let
us interpret this in a static 3D space interpretation where p,, — p is the 3D spatial momentum
and JV represents static vortex lines. Upon integrating out the b, field,

1 " 1
‘CE,vortex,SC = Z EJV(h)( Y Jv(h) . (34)
h=+1 p-+ Z

The vortex correlation function is of the Yukawa form, with the familiar result in real space,

1 _lxx|

3
1 . /
d p3 —1€1p.(x—x) — —/e Er (35)
(2m) P2+A_§ 4n|x—x/|

We see that the vortex lines interact via a e "/* /r potential; the Coulomb interaction of the
superfluid is screened on the scale of the London length in the superconductor. This result can
also be interpreted in two spatial dimensions upon taking the static limit v — 0; the vortex
"particle" static interaction acquires the form of a Bessel function that for large r approaches

exp(—r/AL)/ v/ 1/ Ay

3.4 Fluxoids in the charged superconductor.

A complementary way of viewing the vortex in the superconductor is by focussing on the
electromagnetic field A, to find out how this is sourced by a vortex J;’. This will reconstruct
the Abrikosov vortex/fluxoid: the line-like topological defect in a superconductor corresponds
with magnetic field lines combined with screening currents localized within a radius ~ A,
carrying an overall topological quantum of magnetic flux &, = h/e*, e* being the microscopic
charge quantum (2e for ordinary Cooper pairs).

We will present here a less familiar way to understand how this fluxoid forms; this view
will turn out to be quite informative dealing with the "confining" geometric curvature fluxoids
discussed in section 6. Depart from the action Eq. (25). Modulo a total derivative the BF term
can be as well written in terms of the combination of the supercurrent gauge field and the
electromagnetic field strength, A, ¢,,,,0,b — b, €,,,,9,A,. The action becomes,

1 1 .
['E,dual = ZFMVF[LV + quvf;w + lb,u (JZ - SuvlavAl) . (36)

The glueing of flux and vorticity is a static affair and therefore interpret this as the theory
in three space dimensions: ¢,,,0,A; — V x A = B is the magnetic field. Integrate out the
supercurrent gauge field b and express the outcome in terms of the magnetic field strength
and the density of vortex lines in space JV(x)) as,

1 1 1
EE,ﬂuxoid = EB ‘B— E(Jv - B)

JV—B 3
A§v2( ), (37)

noticing that V-B=0and V - JV =0, while % is a short hand for the (unscreened) vortex-
Coulomb interaction. By varying the action with respect to the vortex current JV it follows
immediately that

JV =B. (38)
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This implies that the fluxoid carries the magnetic flux quantum,

27N = f dSkJ;./ = f dS;B; = &5, (39)
s s

where @5 is the magnetic flux through S in natural units.

This is of course familiar, but Eq. (37) reveals a less familiar wisdom. What is the "force"
glueing precisely the right amount of quantized flux to the circulating current? One reads
this off Eq. (37): it is a Coulomb potential, when vortex current and magnetic field do not
compensate one runs into a Coulomb catastrophy associated with the incompatible response
of the supercurrents.

In order to determine how this flux is distributed in space vary Eq. (37) to the magnetic
field to obtain the equation of motion,

h
—A2V?By + By =JY = —N&5D(3), (40)
e

where we restored the units of (effective) electrical charge e* and # and used Eq. (28). This
is precisely the textbook equation for the fluxoid: the solution is B(r) = %Ko(r /A1), where
r is the radial coordinate and K|, is a modified Bessel function, which falls (L)ff as exp(—r/Ap)
for large r [2].

For future use it is instructive to see how this works in the helical representation. Integrate
out the bu field from Eq. (30), in the static interpretation of Eq. (33),

1 1 1 1 v ;
Lg fluxoid = Z ((P2 + —2)|A(h)|2 + 2—2|Jv(h)|2) +i— ATV ATV D @D
h=%1 AL ALp AL

The equation of motion obtained follows from varying to AMT |
(Aip* + 1)pA*! = w7 v+, (42)

In this 3D static setting the gauge fields are entirely associated with the magnetic fields
By = €xmdA,,. Substituting B*! = FpA*! and p — —iV, one recognizes that this is the
same equation as Eq. (40).

3.5 Fluxoids in 3+1 dimensions.

One better be aware that the perfect match between Maxwell theory and the vortex dual is
special to 2+1D, or equivalently the static physics in 3D space. However, in 3+1D the analogy
is severed and instead the vortex dual now involves 2-form or Kalb—Ramond gauge fields.
The reason is that the vortices are lines in 3D, turning into Nielsen—Olesen strings in 3+1D.
This is also the case for the dislocations and disclinations associated with elasticity, and this
foreshadows intricacies with the formulation of dynamical crystal gravity in 341D space-time.
Although manegable, it involves harder work to match the tensor structure of GR and the
topological currents.

The 3+1D generalization of the vortex-boson duality for superconductors is enumerated
in detail in Ref. [36]. Let us only highlight here the main differences with the 3+0D case.
Instead of the parametrization Eq. (24), in 3+1D the conservation law is in imposed by,

ju = E,uwclavbk)w (43)
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where b is now an (antisymmetric) 2-form gauge field. The supercurrent kinetic energy is
associated with the 2-form field strength jﬁ — hyep with o = G byey)), while the gauge

. . s V
field is sourced by 2-form vortex currents Li, = ib,3J_, where

JJY}L = EKA‘uva‘uav(va . (44)

In 3+1D the vortices become strings and this 2-form is just the natural way to parametrize
their worldsheets. This can be alternatively written as

IV 00 =2nN8 P (x), (45)

in analogy with Eq. (28) where the delta function now refers to an infinitesimal world sheet
element. The 2-form gauge fields acquire a BF type mode coupling with the 1-form EM fields
~ byr€xauvduA, and the remainder can be enumerated completely using similar procedures
as in 3D.

4 Linearized crystal gravity: gravitons and static shear stress.

All the pieces are now lying ready for the first stage of the evaluation of the theory of crystal
gravity. This first step deals with the fully linearized sector. As we argued in section 2.1 the crys-
tal will force in a locally flat co-moving frame, while the linearized nature of the "Goldstone"
strain fields w,,, leads naturally to the "first law" Eq. (10) expressing that these "pair" with
the infinite metric fluctuations h,,,, being coincident with the text book gravitational waves.
For the reasons explained in section 2.2 we depart from isotropic elasticity Eq. (14). We will
ignore for the time being the kinetic term Eq. (11) (see section 4.7) for the perhaps counterin-
tuitive reason that it does not play any role in the linearized theory. The alert reader may have
already anticipated that the propagating phonons involve spatial spin 1, while the coupling to
the background is in the spin 2 sector encapsulated by the static part of elasticity.

Hence, the point of departure is the part of the action associated with the rigidity of the
solid medium,

A
Sstat = f dtdsx I:_‘uwmawma - E(Wmm)z] + SEH 5
1
Wina = Whpat Ehma . (46)

It should be obvious that this is in essence nothing more than the rank 2 symmetric gener-
alization of the phase action Eq. (20) that formed the input for the dualization procedure
highlighted in Section 3.1. This is the key insight behind Kleinert’s "single curl gauge field"
machinery that we will follow closely in this section. Given that this may be quite unfami-
lar for some of our readers we will go slow. We will first highlight the dualization procedure
that has here the vivid physical interpretation of the classic (in elasticity) stress-strain dual-
ity (section 4.1). Subsequently we will step back in section 4.2 to the textbook treatment of
gravitational waves highlighting the benefits of the helical decomposition. In section 4.3 we
will introduce Kleinert’s stress gauge fields and demonstrate that shear forces are captured by
quite literal "shear gravitons". After these preliminaries we will expose in section 4.4 the grav-
itational Higgs mechanism that becomes a simple mode coupling affair in this language. We
then explore the consequences both for space time and the properties of the solid in section 4.5
deriving the graviton mass and in section 4.6 presenting the amusing gravitational hardening
effects, respectively. The discussion of the internal topological sources in this "translational
sector" will be taken up in sections 5 and 6.
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4.1 Stress-strain duality and gravity.

The development will closely follow the "Abelian Higgs" template of the previous section. The
first step as explained in Section 3.1 did amount to a Legendre transformation. The gradients
of the phase degree of freedom J,¢ are transformed in momenta which in turn represent the
supercurrent. The conserved supercurrents represent the "force fields" encoding the emergent
rigidity associated with the spontaneous breaking of the U(1) symmetry. Exploiting the local
constraint in the form of the continuity equations these could then be expressed in terms of
U(1) gauge fields. By simple manipulations we derived the dual action Eq. (25) expressing
a simple linear mode coupling to the external EM fields thought a BF-term, identifying the
vortices as the internal sources for the emergent gauge fields. The equivalents of the latter
will be the subject of the next sections and here we will expose only the linearized sector.

Technically, the elastic version is nothing more than the rank-2 tensor generalization of the
vector story of the previous section. Physically it is actually much closer to daily experience.
In our human existence we never encounter the forces propagated by supercurrents. However,
we are surrounded by elastic emergent rigidity. In strain representation elasticity represents
that it costs energy to deform a solid medium. But we know that this implies that the medium
is "pushing back" when exposed to an external force that is causing this deformation.

The same Legendre transformation turns the strain formulation into one that is exposing
the propagation of elastic forces. This is the stress-strain duality that was understood long
before superconductivity was discovered. The emergent rigidity associated with solids is the
reactive response to shear stress. As for the superfluid these can be captured in the language
of gauge fields. The amazing fact highlighted in the Kleinert treatise is that the gauge fields
associated with shear are precisely like gravitons. Accordingly, we will find a linear mode
coupling in terms of the BF coupling generalized to rank 2 symmetric tensor fields between
the "stress" and "gravitational" gravitons. This is then exploited to exploit the portfolio of the
physics of the Higgs phase in close analogy with the exposition in the previous section.

Let us first focus on the stress-strain duality. Departing from the strain action Eq. (46) let
us execute the Legendre transformation in Hubbard-Stratonovich style. The generalization to
tensor fields is straightforward. Introduce an auxiliary tensor field o,,, and the dual action
becomes,

_ . 1
SE,stat = J degx I:O-macmrlzabo-nb + 1O-ma(Wma + Ehma)] + SEH > (47)

reducing to the strain action Eq. (46) by integrating out the o, fields under the condition that
C™! is the inverse of the elastic tensor, defined explicitly below. We identify o,,, as the stress
tensor capturing the response of the medium to an imposed strain according to the equation
of motion,

ALy

Omg =1

—iCrnabWnb (48)

oW

ignoring the external stress captured by h,,,; the factor of —i is due to our conventions associ-
ated with imaginary time (as in Eq. (21).

As for the Abelian-Higgs case, we have to distinguish between the smooth (i.e. integrable)
and multivalued displacement field u, configurations given that u, takes the role of the phase
field ¢p. The topological sources associated with the non-integrable parts will be the subject of
the next section and here we focus on the smooth configurations.

Modulo a boundary term we have 0,,Wmq = Ome(Onlly + G4um)/2 = —Uy0,0 me- The
smooth displacement field u, acts as a Lagrange multiplier, and after integrating it out it im-
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poses the Bianchi identity

OmOma=0. (49)

This Bianchi identity has the physical meaning that the overall mechanical stress, including
the background ‘geometrical forces’ associated with h,,,, is conserved.

Under the condition that the total stress is conserved while topological sources are absent
the dual action becomes,

_ 1
SE stat = j drd®x |:O-macmr11abo-nb + lio-mahmajl + Sgy - (50)

This is equivalent to Eq. (23), the working horse in the linearized part of the vortex-boson
duality. The stress tensor o ,,, takes the role of the supercurrent j,, the Einstein-Hilbert action
the role of Maxwell, while with regard to the coupling between matter and background the
linearized metric fluctuation hy,, takes, remarkably, the role of the EM gauge field A,,. As for
the superconductor this amounts to a simple linear mode coupling.

Specializing to the isotropic case, the static elasticity part takes the form in terms of the
stress fields,

1 2y
Sg1s0 = J drd®x m [Uijaij - m(oii)z] : (51)

Let us now inspect the various pieces in detail.

4.2 Linearized gravity in helical projection.

As we discussed at length in section 2.1, a ramification of the ‘frame flattening’ imposed by
the crystal on the background is that the Minkowski frame is the natural choice for the in-
finitesimal metric fluctuations h,,, as they appear in Eq. (50): g,, = my, + hy,. Thisis a
convenience because this is the same set up as used in textbooks for the elementary derivation
of the gravitons [30,31]. One inserts this metric Ansatz in the Einstein-Hilbert action to obtain
the Fierz-Pauli action

4
Spp = — 64an f dtd?x n*'8,h,,8,hP7, (52)
this still contains the ten independent (in 3+1D) components of hy,,. According to the EOM’s
(linearized Einstein equations) ® = —h,/2 is the Newtonian gravitational potential while
the spatial trace part ¥ = —%5” h;; is also determined by the distribution of rest mass. The
vectors w; = hy; may be of interest in non-stationary geometries since these are sourced by the
spin-1 phonons (section 4.7) but we leave this for further study. The (linearized) degrees of
freedom that are left behind describing the dynamics of space-time itself are then associated
with the traceless part of the spatial components s;; = %(hi i— %5 ki, .5 j)- There is still gauge
redundancy: only the spatially transverse components are physical in empty space. There are
only two of these, the transverse-traceless "h‘TLZ" components. The gravitational wave action
becomes,

4
c
Sew = “Tonc J dtd?x n"”8,5i;0,5: » (53)
while the Einstein equations reduce to,
8nG
Gij = —a Tij»
Gij = —T]'uvau 3vsl~j . (54)
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Specifically, the gravitons are spin-2 relative to spatial rotations, the same spin 2 that is asso-
ciated with the shear rigidity of isotropic elasticity, Eq. (13).

Taking apart the linearized metric in the textbook style as we just described is more ar-
gumentative than necessary: especially dealing with tensor fields the helical representation
is highly convenient. Although there is some initial overhead it is so much more transparent
that it is recommended for the gravity textbook. One will find that &, ¥ are s = 0, while the
space-time dynamics resides in the s = 2 part (see underneath). Technically it revolves around
spatial rotations in momentum space as we already illustrated in the context of Abelian-Higgs
in Eq.(30); for computational details see Appendix B.

The helical deomposition works in detail as follows. Depart from three mutually orthog-
onal cartesian directions in 3D momentum space L,R, S with unit vectors é;, ég, és, where L
is parallel to spatial momentum q. The linear combinations é*! = (iéy % é5)/+v/2 of the two
transverse directions are eigenvectors of the helicity matrix

Hij = qm(Sm)ij = _iqmemij 5 (55)

with eigenvalues £1, while é° = ¢; is an eigenvector with eigenvalue 0; these eigenvectors
depend on q, obviously. S,, is the usual generator of 3-rotations around the axis m. Rank 2-
tensors are constructed by taking the tensor product of two of these eigenvectors; a basis of the
9-dimensional space is then given by Clebsch-Gordan decomposition in terms of eigentensors
ég’f) with (s, h) eigenvalues set by s =0,1,2 and h = —s,...,s, see Appendix B. A tensor field
t.nn can then be decomposed as,

fon = 8GR (56)
s,h

with (G =3 slehky

Let us first decompose the graviton action in this helical representation. In the transverse—
traceless gauge fix h,,, = 0 Vv and h,,,,, = 0. This leaves only the five s,,, components, span-
ning precisely the s = 2 subspace in the helical decomposition. The transversality condition
0,,Smn = 0 removes the s = 2,h = 0, £1 components, leaving only s>*2. These are recognized
as the familiar + and x graviton polarizations from linearized gravity [30,31]. In terms of

these physical components, the linearized gravity Lagrangian Eq. (53) becomes,

4

c 1 _
Loy = %(C—Zwi +q3)(hZD 2 4 |22y, (57)

in Euclidean momentum space (w,,q) where ¢ = ,/q2 + q}% +q2.

4.3 The stress action and the spin 2 shear gravitons.

Let us now return to the matter part of the linearized crystal-gravity action Eq. (50). Here we
follow Kleinert’s derivation closely as presented in chapter 4 of his book [5], revolving around
the introduction of stress gauge fields and the helical projections, eventually leading to the
simple result Eq. (64) that was obtained by Kleinert (his Eq. 4.113).

The inverse C_! . of the elastic tensor Cpqp, in Eq. (13) is defined by C_} -
The dual stress action Eq. (50) is therefore governed by the helical decomposition,

Ckncb = 6mn5ab-

1 1
-1 _ ) (2)
Cmnab - apmnab + ﬂpmnab . (58)

From this very definition of isotropic elasticity one already infers directly that the spatial scalar
(trace part, s = 0) is associated with standard pressure (compressibility in elasticity), having
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the same role as in fluids. The difference is in the spin-2 part, which is now governed by a
reactive response quantified by the shear modulus u. One anticipates that this shear modulus
will take the role of the superfluid density (the my from Eq. (32)) in the Higgsing of the
gravitational field.

It will turn out to be convenient to introduce the generalization of the ‘current photon‘ b,
of Abelian Higgs, Eq.(24). How to accomplish this for rank-2 stress tensors o, = 0? The
constraint J,,0,,, = 0 can be enforced by introducing rank 2 tensor gauge fields by, (‘stress
gravitons’, Eq. 4.1in [5]):

Oma = Emnkanbka . (59)

The stress gauge field is invariant under the gauge transformations

bka(x) - bka(x) + akAa(X): (60)

where A, are arbitrary smooth vector fields. The stress tensor o,,, is symmetric ("Ehrenfest
constraint") and this implies €;.,,,0 mq = 0 = ;by,—0 b,, and we have to add three constraints
compatible with Eq. (60),

aabka = 8kbaa . (61)

Note that the stress gauge field b;, is not necessarily symmetric in k « a.

Let us proceed by expressing o,,, and by, in helical representation. The symmetry of
O mq Means that the s = 1 components must vanish. Furthermore, the conservation of stress
0,10 ma = 0 removes o>*! as well as the combination (v202° +c%%)/+/3. The physical com-
ponents of the stress tensor are therefore in three space dimensions 0>*2 and the combination
0¢ = (=020 + v20°%9)/4/3. The stress action becomes in terms of the helical components,

=
4u

where v is the Poisson ratio defined in Eq. (15). The o®*2 parts encapsulate the purely
transversal shear response of the isotropic crystal. The compressional response is not exclu-
sively determined by the compression modulus x (Eq. 13): ¢ also contains the 0% shear
component. This is the meaning of the Poisson ratio: upon applying pressure to a solid, next
to a volume change it will also induce a shear deformation.

Let us now consider the helical composition of the "shear gravitons" b;,. Using the relations
in Appendix B for the curl,

1—v»
(10222 + o> 22+ ——|o°?), (62)

L =
E,elas 1+ v

022 = qh2?2, 0272 = —qp?2, o¢ = —qb"0. (63)

It is easy to check that of the nine possible components b*", three are pure gauge and three are
removed by Eq. (61). Inserting this in Eq.(64) the stress Lagrangian in terms of the physical
stress gravitons takes the form,
r _ 1 2(|b2’2|2+ b2 4+ ﬂ|bl’o|2) (64)
E,elas 4.U'q 1+ .

This affair becomes now quite transparent. Using the gauge field representation of the
stress dual we have managed to obtain the force carrying capacity associated with the emergent
shear rigidity on the same footing as the force carrying capacity of spacetime itself — it is all
about the (2,+2) helical sector. What remains to be done is to inspect the "BF" like mode
coupling between the space-time and stress gravitons, anticipating that this will be a simple
linear mode coupling affair.
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4.4 Coupling static stress with the gravitons: the gravitational Higgs mecha-
nism.

We departed from the observation that there is just a simple linear mode coupling between the
gravitons and the stress fields of the form ic™"h,,,, Eq. (50). This is of the BF kind, involving
the "field strength" of the matter (o, like f,,,) and the "gauge" field (h,,, like A,).

In the previous section we got enlightened regarding the "shear-gravitons" recognizing
the similarity with the way that the generation of Higgs mass arises in Abelian Higgs in dual
representation, by the linear BF mode coupling between the current- and EM photons in Eq.
(25). It is just the symmetric rank 2 tensor generalization of the vector story in Section 3.
The main difference is elucidated by the helical projections: instead of the coupling between
matter and EM "photons" in the spin (1, £1) sector the matter and background gravitons couple
to each other in the helicity (2, £2) channel.

It follows immediately from the above that this crystal-gravity BF term takes the very simple
form in helical representation where as usual h'(q) = h(—q),

EE,E—G = iEo-mahma
— i%q(h2,+2'i‘b2,+2 _ hZ,—Z'i‘bZ,—Z) . (65)

This is just the spin-2 generalization of the spin-1 (vector) BF coupling of Abelian-Higgs (Eq.
30) in helical representation.

It is now explicit that the shear stress takes the role of the supercurrent, expelling the
geometrical ‘curvature’ from the background, having the same role as the gauge curvature
(magnetic field) in the superconductor. We put ‘curvature’ in quotation marks since the literal
curvature of GR is truly non-linear. Eq. (65) reveals that gravitons are actually shear-like in
the language of crystal geometry and we will see that on this level it is actually geometrical
torsion that is expelled. Riemannian curvature is associated with an infinity of gravitons, going
hand-in-hand with the "rotational" topological defects of the crystal, as we will start discussing
in section (6).

Collecting all the pieces of Eq. (50) in the helical (stress) graviton representation,
Egs. (57),(64) and (65),

4 2
Lig = 2, [6 (G- il iq%sgn(a)hmbz’“]
a==£2 (66)
_ g 1-v pLOp2
4ul+vw ’
where we have restored all dimensionful quantities; q refers to the magnitude of the spatial
momentum and we have written the action in Lorentzian signature, « refers to real frequency.
This expresses that the gravitons couple exclusively to the shear stress while the compressional
stress ~ b'0 is not communicating with the gravitational background. In other regards, the
structure of this effective action is indeed similar to the Abelian-Higgs result Eq.(30). Next to
the decoupled compressional part there is only one other qualitative difference. In Abelian-
Higgs both matter and gauge fields are governed by the same momentum, c2q? — c¢2q%2—w?. As
we already emphasized repeatedly, the oddity rooted in the bad breaking of Lorentz invariance
is that the propagating gravitons couple exclusively to the static material shear stress. The
propagating modes of matter (the phonons) carry the wrong spin 1. This will have interesting
consequences as we will see soon.
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4.5 The mass of the graviton.

The linearized crystal gravity system Eq. (66) is a close cousin of the Abelian Higgs analogue
Eq. (30) and we will now retrace the repertoire of phenomena that we exhibited in the Abelian
Higgs section. The first exercise was in this context to elucidate the origin of the Higgs mass,
section 3.2. In so far the mass of the graviton is invoked it is similar.

Upon integrating out the shear graviton b>*? a simple constant mass term arises since
both the coupling and the stress propagators involve only spatial momenta. This results in the
effective theory governing the gravitons,

2
C
Lus = D, go(@ =@ —mpIhP, (67)

a==%2
mg = +/167Gu/c?. (68)

Here m is the mass (in units of frequency) of the graviton due to the crystal with shear
modulus u. The corresponding length scale is,

C C2

Ag e Jiench (69)
The ‘gravitational penetration depth’ that we announced in the introduction.

Once again, it seems that this graviton mass due to the Higgsing by crystalline matter is
not commonly known. In fact, the coupling between the elastic stress tensor and the graviton
field has long been known (ref. [37], for recent work see e.g. [38-40]). Integrating out
the stress tensor field itself already immediately yields this mass. It follows actually from
elementary dimensional analysis. The dimension-ful quantity associated with the rigidity of
the crystal is the shear modulus u with dimension of pressure kg/ms?. The backreaction on
the background space is governed by Newtons constant G having dimension m®/kgs?. The
combination 4/ uG/c? is then the dimension uniquely associated with inverse time.

Let us estimate the order of magnitude of the graviton mass. Consider a universe filled
with a sturdy solid like steel. The shear modulus is of order u ~ 10>GPa = 10'! kg/ms?.
Given the values of the natural constants, this corresponds with a gravitational penetration
depth of Agee = 3.10°m, roughly equal to 1 lightyear. In order to screen a gravitational
wave detector from gravitational waves one has to put it in the middle of a ball made out of
steel with a radius of a lightyear! The most sturdy form of elastic matter may be formed in
the crust of the neutron star, characterized by a shear modulus p ~ 10?! GPa. This implies a
screening length of order of 10”m, like the radius of the earth, while the radius of the neutron
star is only ~ 10 km. For these very good reasons the effects of solid matter on the nature of
space time has been ignored in the long history of the subject!

For any noticeable effect elastic matter should be present on cosmological scales. Off and
on, cosmologists have been playing with the idea that dark matter could behave elastically,
e.g. ref’s [1,10]. On cosmological scales dark matter is distributed homogeneously and on
sufficiently large scales it should then impose a mass on the graviton. How does this relate
to the observations? The LIGO collaboration claims a lower limit to the graviton Compton
wavelength A; = 10'® m [41], of the same order of magnitude to be expected when the
universe would be filled with a solid as strong as steel.

4.6 Gravitational hardening of solids.

By integrating out the EM fields in the relativistic Abelian-Higgs case one finds that the Gold-
stone boson (phase mode) turns into the massive longitudinal photon having an identical dis-
persion relation as the transversal ones, Eq. (32). This works in essence in the same way in this
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gravitational context, except that the mass generation only pertains to the static stress. This
has the amusing consequence that crystals become ‘infinitely brittle’ with regard to their re-
sponse to static shear stresses on scales large compared to the gravitational penetration depth
Ag-

In analogy to Abelian-Higgs, to find out the response of the matter fields integrate out the
gravitons from Eq. (66),

1 1 @?1—v
Loy = Z 0 >+ N b2 L b2, (70)
h=z2 M A6(1=22) w1+

Consider the static limit («o = 0) and we discern a propagator of the form 1/(q? + 1/ Aé).
This is the same as one would find for the currents in the static limit in a superconductor, where
it has the meaning that external forces (the magnetic field) do not set currents in motion at
length scales larger than the London penetration depth. This translates in this elastic context to
the statement that an external shear stress is screened on the length scale A; when it penetrates
the solid, due to the presence of the dynamical space-time background. Given the stress—
strain duality w,,,, = 2u0,, (Eq. (48)) this has in turn the implication that the solid becomes
undeformable when external shear stress is applied (w,,, = 0) with a strength less than the
one associated with A;! Upon applying such a small shear stress, the bulk of the crystal will
not respond at all. It is behaving like the crankshaft when a torque is applied but now with
regard to shearing. When the external shear stress exceeds the critical value set by m the
crystal will suddenly deform. This is the gravitational equivalent of the critical current of the
superconductor.

In everyday life mechanical engineers are unaware of this ‘gravitational stiffening effect’
for the obvious reason that the typical dimensions of solids are minute compared to A;. This
is analogous to dealing with small superconducting particles having a linear dimension which
is small compared to the London penetration depth. These just behave like superfluids, and
in the same vein one can ignore the ‘Higgsing by gravity’ of solid substances in our universe
because its effects become noticeable only when these acquire a linear dimension of order
of lightyears. It is however amusing to contemplate a world where G would be larger by
40 orders of magnitude or so, such that the gravitational penetration depth would become
of order of micrometers. The mechanical engineering manuals would surely have a quite
different content.

There is yet another highly peculiar effect, which appears to be unique for this gravita-
tional Higgsing of the shear rigidity. Although we consider here stress that is strictly static
in the absence of gravity, it acquires a dynamical response by the coupling to the gravitons:
the mass term in Eq. (70) is frequency dependent. This is engrained in the ‘imbalance’ be-
tween elasticity and gravity with regard to the loss of Lorentz invariance in the former where
the emergent shear rigidity is exclusively tied to space directions. The effect is that spin-2 is
only associated with static shear. On the other hand, in gravity spin-2 is associated with the
propagating gravitational waves that only exist as modes by the virtue that the deformations
of space oscillate in time. The bottom line is encapsulated by Eq. (57) exhibiting the highly
unusual phenomenon that a static force is coupling to a propagating excitation, while the cou-
pling only involves spatial gradients since these are born in the stress sector. Notice that this is
quite different from the way that the non-relativistic limit affects the Higgsing of the laboratory
electron superconductors. Here the Fermi velocity v of the electrons is much smaller than the
velocity of light, and it follows immediately that the (time like) electrical ‘penetration depth’
(Thomas-Fermi screening length) is smaller by a factor vy /c than the (space like) magnetic
(London) penetration depth.

The ‘emergent’ dynamical nature of the static stress is in principle measurable. Consider
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the transverse strain correlation functions, which can be shown to be related to the stress
correlation function via [24, 25]

1 1
(WZ,:kz W2,:|:2> — 2‘u _ 4‘u2 (0_2,:&2 O_2,:I:2)
1 1 2/1,2,%2 1.2,£2
:2,u_4,u2q (b= b57), 71)

where we used 0(>*2) = £qb(3*2)_ This correlation function vanishes for the crystal because

Wgqp O qqUp + qpu,, and this cannot have both a and b to be transversal to q. But in the
presence of gravity, we calculate from Eq. (70)

2
1 m
(W2 242y — c;2 , (72)
21 c2q? + mg, — w?

showing that this is characterized by poles associated with the graviton dispersion
w = 4/c2q%+m%, with a pole strength of mg/24/c2q2 +mZ%. This quantity can in princi-
ple be measured by e.g. inelastic neutron scattering but yet again the scale is set by 4. In the
"steel universe" detectors should be a a light year size and capable of detecting absorptions at
a frequency ~ c/1ly ~ 108 Hz.

One may however contemplate possible ramifications on the cosmological scale. Assuming
again that dark matter is elastic, there is a surprise: on large scales it will no longer deform
when exposed to shear stress! One may imagine that the evolution due to Newtonian gravity
to inhomogeneous matter distributions effective shear forces may arise acting on the dark
matter that become subjected to the "shear undeformability" on large scales. We envisage that
it could well be possible to detect the absence of such shear deformations in the dark matter
distributions. We leave it to the astronomers to explore this further in case that the need arises
to (dis)prove the assertion that dark matter is elastic.

Finally, yet another difference with the usual Higgs mechanism is that there is just more
room for structure in elasticity given its rank-2 tensor nature. A simple but striking example is
in the fact that the compressional stress is not at all affected according to Eq.(70). The response
to an isotropic, hydrostatic stress would be as usual since the isotropic pressure is a scalar that
can communicate only with gravitational scalars such as ® and ¥ .

4.7 The asymmetry of time and the role of the phonons.

The reader may be puzzled: where are the phonons, the ubiquitous excitations of the solid?
As we will show here, it is a ramification of the bad breaking of Lorentz invariance that at least
in the (quasi) stationary setting these behave as spectators when the solid is homogeneous.
This has the counterintuitive ramification that the phonons are not affected by the Higgsing.
Although the solid will no longer deform when subjected to a static shear stress on scales larger
than A, the phonons continue to behave as massless Goldstone bosons.

Having accepted the wisdom that only the symmetry of space is spontaneously broken,
while the emergent shear rigidity has to invoke two space directions (spatial spin 2, quadrupo-
lar deformation), the reason that dynamical phonons "escape" the Higgsing is obvious. As dy-
namical excitations these occur in the plane spanned by time and one space direction: these
are spatial vectors. More precisely, transversal phonons are spatial helicity (2,+1) while lon-
gitudinal phonons are combinations of (0,0) (pressure) and (2,0), and these do not couple
to the "gravitational" (2,£2) helicity modes. Let us enumerate this in more detail, using the
occasion to illustrate the complications in the formalism that arise from the loss of Lorentz
invariance. We will present the general strategy to tackle this as developed in ref.’s [24-26]
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dealing with the full weak-strong dualities relating crystals to quantum liquid crystals where
this "asymmetry motive" is crucial. For the phonons this is still easy but these difficulties greatly
complicate the formulation of the full dynamical theory — the main reason that we limit our-
selves to stationary settings in this paper.

Let us step back to the action of isotropic elasticity as discussed in section (2.2). There we
already emphasized that the time axis is different because time translations cannot be broken.
A greatly simplifying circumstance that we exploit all along dealing with stationary situations is
the symmetric nature of the spatial rank two tensors of elasticity, shared with Einstein theory.
But this is no longer the case when the time axis comes into play as we already discussed
at length in section 2.2: this we summarized by the statement that the effective theory in
Euclidean space time is lacking ‘time-like displacements” u", rendering thereby the "time-like"
strains (velocities) to be unsymmetric: J,u, + d,u, — 0, U,.

We wish to formulate the theory in stress representation. We can identify the stress dual
of the “temporal strain” from Eq. (11),

ol = —i—a (Zia) =—ipd.u?, (73)
which is obviously the linear momentum of the system, a spatial vector. The spatial stress
tensors are symmetric as the equivalent gravitational tensors and Kleinert found out how to
exploit this by the definition of the shear gravitons Eq. (59) (as well as the torque gravitons
Eq. 106) parametrizing stress in terms of symmetric rank 2 gauge fields. This rendered the
formalism in the above to be efficient and simple. But the asymmetric nature of the "temporal
stress" (momentum) disrupts this match having as consequence that the formalism becomes
quite messy.

One is forced [24-26] to introduce non-symmetrized spatial stress tensors o g as the duals
of d,u?, using upper- and lower indices to keep track of the asymmetry. Subsequently, one has
to symmetrize the spatial stresses by hand using the so-called Ehrenfest constraint,

l‘fcmao-; =0 (74)

that may be imposed using Lagrange mulitpliers. In this non-symmetric formulation the dual
elasticity action is,
1 1 _ b
EE,stress = %(0:)2 + Eo-;cmrlzabo-n > (75)

which is for the isotropic solid,

2
v aaab] , (76)

1 1
Lo = 5500 + 5| ot0t + ot ol = 2oto)

becoming identical to Eq. (58) when the Ehrenfest constraints are satisfied. The Bianchi-
identity associated with the “conservation of total stress” are as before,
a __
3,0 b= 0. (77)

Given the asymmetry of momentum one is now forced to introduce 2 form (in 34+1D) gauge
fields "with a flavor" [26]. Instead of the shear gravitons (Eq. 59), the non symmetric stress is
parametrized by,

Oy = Eumadybi (78)

in 3+1D space time, where we have to use two form gauge fields bﬁ , with a "flavor" label a.
The dislocations and disclinations that source these stress "photons" are now strings explaining
why two form gauge fields are required (see section 5.2). In addition, one has now to impose
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the Ehrenfest constraint as well as the eerie glide ("fracton") constraints on the motion of the
topological defects (Section 5.3). The outcome is a rather baroque and laborious affair that
we worked out in the context of the theory of quantum melting of a solid in quantum liquid
crystals [24-26]. This machinery may also applicable in this gravitational context but we leave
this to a future effort.

In so far the linear modes are concerned, the spatial helical decomposition suffices to un-
derstand the role of the phonons. This works well also in the asymmetric formalism: the
antisymmetric components of the spatial stress tensor that have to be projected out using the
Ehrenfest constraint are easy to identify in this representation [26]. The outcome is that the
anisotropic "space-time crystal" is characterized by six physical stress components. The three
static components are already listed in Eq. (64). This includes the spin 2 static shear contribu-
tions that couple to the gravitons Lg 5 .o = ﬁ D geio |oc2%|2, In addition, there are three extra
stresses associated with the planes spanned by the time axis and the three space directions:
the phonons. Defining the transversal phonon velocity as ¢y = 4/u/p the transversal acoustic
(TA) phonons are in terms of Matsubara frequency w,,,

22
Lom=— 3 (1+ i) o2P, 79)

’ A =5 @n
As we announced, this reveals that the propagating phonons are spin (2, +1) excitations under
spatial rotations that therefore do not couple to the quadrupolar spin 2 gravitons.

For completeness, both the longitudinal phonons and -static stresses involve compression
and shear at finite wave vectors. To address both the static and propagating longitudinal
modes it is convenient to invoke the following helical components for the longitudinal sector:
0¢ = (—0?" + v/20%%)/v/3 and 0¥ = (v/202>° + 0%9)/+/3. The trace part o®° is associated
with compressional stress (pressure) that will play its usual role in Einstein theory. In addition,
the shear rigidity enters the longitudinal sector via the scalar 2,0 component that does not
couple to gravitons either. The longitudinal sector becomes,

. 2 2
ﬁin 1 X(g:)T(1+2(1+v)% —«/Ev) (acc’)_ (80)
4ul+y O —V2v 1—v)\@
Upon diagonalization one will recognize both the static longitudinal mode o¢ of Eq. (64) as
well as the longitudinal phonon.

This is not news. The fact that gravitons do not couple to the phonons of a homogeneous
solid was already recognized by Dyson in the 1960’s [37], using in essence the same argument
as in the above. The ramification is that gravitons only couple to the lattice vibrations at
the surface of the solid: here the helical decomposition fails. Such a coupling to dynamical
modes is a necessary condition for the detection of gravitons since the latter have to dissipate
their energy which requires that these couple to dynamical excitations. This fact was fully
acknowledged in the design of the solid body "Weber bar" gravitational wave detectors [42].

5 Dislocations, shear stress, torsion and gravitons.

We are now in the position to address the way that the internal topological sources for the
stress fields as introduced in section 4 are identified. Having the realization in the back of the
mind that this addresses the translational sector we anticipate these to be the dislocations. We
will assume in the main text that the reader is well informed regarding the basic facts of the
topological excitations associated with crystalline order. From this point onward these will be
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on the main stage. We recommend the reader to have a look in the Appendix C to make sure
that he/she is aware of the elementary wisdoms pertaining to the dislocations, disclinations
and grain boundaries.

This is yet again evolving in close analogy with the Abelian-Higgs case. We identified
the vortex current JV to represent the multivalued (non-integrable) phase field configurations
(Eq.’s 25, 26). In the solid we have to focus in on the multivalued configurations of the dis-
placement fields u, instead. This amounts to a straightforward generalization of the vector
theory to rank 2 tensors (Section 5.1) with the main novelty that the topological charge of
the dislocations are now the Burgers vectors instead of the winding numbers of the vortices.
Dealing with dislocations one can no longer ignore the specific space-group symmetry of the
crystal lattice (Section 5.2) and subsequently we sketch the way to handle dynamical dis-
locations revolving around two-form gauge fields (Section 5.3). We then focus in on solid
bodies with a spatial extend that is small compared to A, deriving the relevant action involv-
ing dislocations, shear stress and the gravitons as external sources (Section 5.4), discovering
that gravitons exert forces on the dislocations mediated by the stress gravitons. This has the
ramification that contrary to a common believe gravitational waves are dissipated in the bulk
of solids when these contain a finite density of mobile dislocations, a condition fulfilled in
any malleable solid (Section 5.5). Finally, we consider what happens when the solid is large
compared to A;. In analogy with the Abrikosov vortices fluxoids are formed characterized
by a quantized geometrical flux. The geometrical quantity that is quantized is the torsion of
Cartan-Einstein theory (Section 5.6).

5.1 The dislocation currents sourcing the stress photons.

In section 4.3 where we introduced the "stress-graviton" gauge fields b,,,,, we considered on pur-
pose only the smooth displacement fields. However, as in the case of Abelian Higgs there may
be also multivalued displacement field configurations. As for the vortices the non-integrability
condition will translate via Stokes theorem into a topological invariant, the Burgers vector. To
keep matters transparent let us focus on static elasticity first as in the previous section. Later
in this section we will sketch how this generalizes to the dynamical version in 3+1D.

As we discussed in section 4.1, one finds after the Hubbard-Stratonovich transformation a
term that is schematically cdu where we assumed the displacement u to be integrable such
that cdu — —udo. These smooth displacement field configurations turn into Lagrange mul-
tipliers that impose the conservation of total stress. However, as for the phase fields one has
to allow also for the multivalued configurations (section 2.9, ref. [5]). Employing the stress
graviton’s b; j defined in Eq.(59),

O.ma(amug/IV + 3au1\n/w) = Emlkal bka(amulg\l/lv + aaumv)
= bkaJka >
Jea = ExmO0mul, (81)

the J, are symmetric rank two tensor densities that enumerate the dislocations.
These can be written as

Jia = €m0 = B, (x), (82)

where 65{2)(x) was defined in Eq. (29). In direct analogy with the vortices, Egs.(26-28) the
Burgers loop is expressed as

§ dug(x) = f dxy ug(x) =B, (83)
c c
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where B, is the component of the Burgers vector in the a direction. Using Stokes’ theorem,
convert this into a surface integral of the curl of the integrand over the surface S enclosed by
C,

J dSk sklmalamua(x) = Ba (84)
S

and we recognize that this is satisfied by Eq. (82).

In precise analogy with the vortices forming the internal sources for the supercurrent gauge
fields ( Eq. 25) this demonstrates that the dislocation densities form the exclusive internal
sources for the stress gravitons introduced in the previous section. Combining this with Eq.’s
(50,51) and the definition of the shear gravitons b; i (Eq. 59) we arrive at the result,

1 2y . .1
Lg Matter = @ [Uijaij - m(gii)z] +1ib;;J;; + lahijo-ij + Ly g - (85)
This is the analogue of the starting point of the description of the Abrikosov vortices Eq.

(25), and it will be the working horse for the remainder of this section.

5.2 Dislocation currents and the space groups.

For reasons explained in section 2.2 we have in a rather cavalier fashion dealt with the non-
isotropic nature of real solids. Dealing with the topological currents the full information of the
space group governing the spontaneous symmetry breaking becomes crucial again. Given the
questions we will ask in this section the need for this information is not obvious but this will
change later on when curvature is addressed. It is straightforward to restore this information
without even invoking the (secondary) effects of the anisotropic moduli on the stress fields.

It is obvious that in three space dimensions static dislocations are lines in the lattice. These
lines propagate along the directions in the crystal lattice which are set by the point-group
symmetries. However, the Burgers vectors are also governed by this information. Since the
dislocation corresponds with a plane of unit cells coming to and end in the crystal, the as-
sociated Burgers vector points along a lattice direction having a magnitude set by the lattice
constant in this particular orientation. Dealing with a crystal with a low symmetry there is
quite some accounting to do. For instance, consider a hexagonal crystal like graphite; this has
a six-fold discrete rotation axis Cg associated with the honeycomb lattice and both Burgers-
and propagation vectors may point in one of these six direction. In the direction perpendicular
to the plane there is only a two fold C, axis.

The dislocation current is a rank 2 tensor because it has to keep track of both the local
propagation direction and the Burgers vector. It has to be a symmetric tensor since a dislocation
line propagating in lattice direction @ and Burgers vector B is symmetry wise equivalent to one
that is propagating in the B direction with Burgers vector d.

The simplest "spherical cow" crystal lattice that is genuinely representing such space group
data in the present context is the simple cubic crystal. In this case one can rely on a simple
Cartesian frame where the indices of the current J;, refer to unit vectors pointing in the x, y, z
directions. We will use this case to illustrate matters in the remainder.

There is one characteristic that is generic: when the propagation direction is orthogonal
to the Burgers vector one is dealing with an edge dislocation, while when both directions
are parallel one encounters a screw dislocation, see Appendix C. Dislocations lines that occur
spontaneously in malleable solids form typically closed loops. It is easy to find out that edge
dislocations turn into screw dislocations and the other way around when one goes around
such a loop; see, e.g., ref. [43] for some general examples.
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5.3 Dynamical dislocation currents in a 3+1D space time.

Although we will stay away from addressing dynamical phenomena in any detail, let us present
here a short account of how the static theory in the above can be generalized to include time.
We already highlighted the complications arising from the breaking of Lorentz invariance in
section 4.7 rendering the strain- and stress tensors in space time to become asymmetric. In
terms of the asymmetric stress tensors O'Z in 341D (we are sloppy with the metric fluctuation
My,

_ . 1
Sp = f drd®x[otC L 00 +io%(8,ul, +B,uly + Ehua)], (86)
to be augmented by the Ehrenfest constraint O'Z = o}. Integrating out the smooth displace-
ment fields for every flavour separately yields g0, = 0. Implementing this in 3+1D implies
that we have to introduce two form gauge fields of the kind discussed in section 3.5

Oy = Eumadyby (87)

and the action Eq. (86) becomes schematically in terms of these two form "stress photons" as

_ . 1
Sp = J d3xd7[eup,dap b;;lcwlabevmaabgu +ib,J7, + 1§huaewmavbzl] , (88)

where

J & = € auv0, 0yl - (89)

This is the dislocation current in 3+1D. One infers that this is closely related to the "worldsheet"
vortex current in 3+1D, Eq. (44) and it can be as well written as in Eq. (45),

a _nas(
J¢(x) = B2 (x) (90)

recognizing again the Burgers vector representing the quantized topological charge. The dis-
locations are just like the vortices, forming strings in 3+1D, with the difference that the dis-
location currents are "flavored by their Burgers vectors", the upper label a. In principle the
theory Eq. (88) can be completely enumerated. One proceeds by choosing an appropriate
(Coulomb) gauge fix for the stress gauge fields, imposing the Ehrenfest constraint "afterwards"
as explained in section 4.7 to deal with the "asymmetry of time". Last but not least, disloca-
tions are subjected to an uncommon constrained kinematics: the "glide constraint", insisting
that dislocations can at zero temperature only move in the "slip plane" [44]. This can be easily
understood by insisting that no "free atoms" are present — a condition that can be rigorously
fulfilled at zero temperature. At finite temperatures away from the melting this density of
"substititutional/interstitial defects" is exponentially suppressed and typically very low. But
it is possible for the dislocation to move by "breaking and restoring bonds" without invoking
extra matter, see Fig. (6) in Appendix C.1. Only quite recently it was recognized [45] that
this is an example of the general field theoretical "fracton" notion [46]. The "interstitials" can
be viewed as dipolar bound states formed from dislocation-anti-dislocation pairs and since the
interstitials are themselves conserved the special fracton constraints follow for the motion of
single dislocations in the form of the glide constraint.

Eventually one can even construct the "stress superconductor" dual of the 3+1D crystal,
turning out to be a superconducting quantum liquid crystal. The details can be found in ref.
[26]: it is in principle straightforward but the "unsymmetric" formalism that is required to
accomodate the time axis is inherently laborious.
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5.4 Gravitons accelerate dislocations.

Let us zoom in on the problem of the static stress fields and static dislocations living in a 3+1D
space time as described by linearized gravity: Eq. (85). Conceptually this is a straightforward
affair: a field of (shear) stress exerts a force on the dislocations while gravitons couple to this
stress as well. Hence, gravitons interact with the dislocations. According to the analysis of the
linearized modes in Section 4 it is helpful to employ the helical stress-graviton representation
We found there three physical stress gravitons b>*2 and b'°. The dislocation densities can
be decomposed in the same way — predictably one finds the same components: after all these
are the unique internal sources for the stress gravitons. An explicit derivation is presented in
ref. [5] (see Eq.’s 4.113, 4.124).

The action Eq. (85) becomes in terms of the helical gravitons h, stress gravitons b and the
dislocation densities J,

2
q .1 q 1—
Lasi= D, [—mb“lz—lqisgn(a)hz’“'bz’“] L

= ul+v
4
1
Z p2at j2a 10t 10 Z - 2—q2)|h2’a|2. 91)
~ —~ 641 G
a=+2 a=+2

We recognize the result Eq. (66) from Section 4 but now augmented by the dislocation
density sources.

The result Eq. (91) is actually encoding in this helical/field theoretical language a famous,
classic result: the Peach-Koehler equation [47]. This is expressing the somewhat complicated
way that an external stress exerts a force on a dislocation line segment. In our notation this
reads,

fi = lm]o- J]mJ

f = (B-o)xI, (92)

where in the second line we have written it in the conventional form: a force f per unit length
is exerted on a dislocation line segment propagating in the T direction ("sense") with Burgers
vector B by a stress (tensor) field o.

Also the compressional stresses g;; exert a force on the dislocation line. However, these
are exclusively acting in the climb direction reflecting the principle that this is involving a
change in volume. The climb motion is however impeded in a typical crystal and therefore the
dislocation line cannot accelerate in this field of force: compressional stress will not dissipate.
In helical representation this is encoded in the longitudinal current J(9. The force exerted
by the shear stress 0;;,1 # j acts on the other hand automatically in the glide direction where
the dislocation can "freely" move (modulo practical circumstances like pinning), and these
correspond with the J>*2) currents in helical representation. Upon applying a shear force
the dislocation motions will thereby dissipate the external shear stress leading to the plastic
deformations characterizing malleable solids. For edge dislocations this is easy to see (see Fig.
6 in Appendix C.1). It works in essentially the same way for screw dislocations but this is more
of a challenge to visualize (see e.g. ref. [48]).

Let us now get back to the full problem including the gravitons. We already highlighted
in the previous section that gravitons couple exclusively to the spin 2 shear stress, and we just
established that the latter accelerate the dislocations in the glide direction. The gravitational
action is therefore entirely in this spin 2 sector,

4

ct (202 _ 202 o ip(2a)f 2a) _ 720
Laisia = Z S~ I = PGP + O Cogn(agh® 10 ), (93)

a==
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which is recognized to be a close sibling of the Abelian-Higgs system Eq.(30); this spin 2 sector
is identical to the spin 1 Abelian-Higgs problem except that the matter sector is now static as
related to the "bad" breaking of Lorentz invariance. As for the Abelian-Higgs case (section 3.2),
let us integrate out the shear gravitons b>*2) to determine the effective theory describing the
interactions between the gravitons and the dislocations,

c* w? .1
o= W _ 2 peop_ ( Jewi 1 h(Z,a)T)
DG = g E eamt Lo 54 sgn(a)

a==%2

1

X iz (J(z’“) ——q sgn(a)h(z’“))] ,
a*2g 2

(94)

being the equivalent of Eq. (37).

5.5 Gravitons heat malleable solids.

Let us first find out the consequences of Eq. (94) under the practical circumstance that the
linear dimension L characterizing the size of the solid is small compared to the gravitional
penetration depth A;. We observe that 1/(qA;) ~ L/A; is in this regime the small quantity
taking the role of coupling constant mediating the interaction between the gravitons and the
dislocations. In this regime,

c* w? o, mg Qa2 , 2L @)t 1(20) _ 1(2a)in2.0)
EDG:MZ C_z_ _C_z |h > | +A—zsgn(a)(h I i) — JlesdItples )
a==x2 G (95)
412
+ J@a)i _J(Z,a):|
A2 ’
G

showing that gravitons exert a force on the dislocations. The consequence is that gravitational
waves are actually attenuated in the bulk of malleable solids!

The way that gravitons interact with solids in this regime is a classic subject, motivated by
the design of gravitational wave detectors. This pursuit started with Weber designing his solid
bar detectors [42]. In order to detect gravitational waves, these have to dump energy into
the measuring device. For this to happen the gravitons have to excite low frequency phonons
but as Dyson pointed out first [37] gravitational waves do not interact with phonons in the
bulk of the crystal. It is unclear to us whether it was fully realized in the early days that the
unusual ways this proceeds is rooted in he breaking of Lorentz invariance — the reason that
phonons and gravitons do not interact in the bulk of crystals is that phonons are spin 1 while
gravitons are spin 2 as we showed in Section 4.7. This helical decomposition fails when the
elastic medium is no longer homogeneous. At the surface of the solid the spin 2 gravitons are
therefore mixing with the spin 1 phonons and for this reason the modes couple exclusively at
the surface, and this is the number one design principle for solid detectors.

Our stress formalism reveals that gravitons do perturb the bulk of the solid but entirely
through static stress. The key is that the static responses of an elastic solids are entirely reac-
tive: energy is not absorbed by applying static stresses to an elastic medium. However, many
solids are malleable. Upon applying a static stress on a sheet of metal in a stamping press it ac-
quires a permanent different shape instead of springing back to its original shape as expected
from the dissipation-less elastic response. The reason is that any piece of metal contains many
dislocations. Dislocations will accelerate along the glide directions in a field of static shear
stress. This absorbs energy and when the dislocation configurations have adapted to the stress
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the metal will have acquired its new plastically deformed shape. But in the stamping press the
metal has heated up.

This reveals the qualitative mechanism behind the coupling Eq. (95). As we showed in
Section 4 gravitons exhibit a linear mode coupling with the spin 2 static shear stress. This
shear stress is in turn exerting the Peach-Koehler force Eq. (92) on the edge dislocations.
When these are mobile as is the case in malleable solids these will accelerate in this field of
force. Their motion will in turn dissipate the energy of the gravitons with the effect that these
are damped.

Consider the passing of a gravitational wave train due to an astrophysical event like a black
hole merger through a piece of malleable solid characterized by a finite dislocation density.
The characteristic time scale of the GW’s will be of order of milliseconds while the time scales
associated with the response of the dislocations are microscopic, of order of nanoseconds or so.
This is in the adiabatic limit and we can therefore take the stress exerted on the dislocations
by the GW’s to be static.

The entertaining observation is that the way of the gravitational radiation interacting with
solid matter is revolving around the same principles that underly the action of a black smith
forging high quality swords. The network of dislocation lines present in the solid will react by
glide (or "slip") motions, reconfiguring in a way that relaxes the external shear stress exerted
by the gravitational wave.

The outcome is that the solid will be plastically deformed, heating up in the process. Ob-
viously, this will not play any role under the conditions found on the earth. The shear forces
exerted by GW’s are extremely feeble. Even in the most malleable solids the dislocation net-
works are eventually pinned, and the force has to exceed a critical value before these start to
move. These pinning forces are huge on the scale of the GW forces. This may however play
a role under extreme circumstances. Consider e.g. a planet with a solid iron core orbiting a
black hole binary; the gravitational wave tsunami released by the black hole merger may give
rise a catastrophic heating of the core of such a planet.

Let us finish with an observation that may be of interest to superconductivity experts.
We have already emphasized that modulo the intricacies associated with the "Peach-Koehler"
directionality of the forces there is gross similarity with the way that vortices interact via the
superflow with EM fields. Specifically, compare Eq. (94) with the static case superconducting
case, describing vortices responding to an external magnetic field: Eq. (41). What would be
the analogue in superconductivity of the physics we just discussed?

This corresponds with a situation that may be beyond the reach of experimental technique
—we are not aware that this was considered even theoretically. The first demand is that one has
to consider small superconducting grains with a linear dimension L < A;; in the gravitational
analogue we are dealing with pieces of solid that are tiny as compared to the gravitational
penetration depth A;. Under this condition the superconductor will behave like a superfluid
and the analogue of the dislocation is a superfluid vortex line. Imagine now that suddenly
the magnetic field is ramped up: this will exert a force of the superfluid vortex which is the
analogue of the GW force on the dislocation line. Why is this problem not well documented?
The reason is practical. Superconductors are formed from electrons and the ramification is
that these excel in self-annealing: different from solids where one may have to wait centuries
before the dislocationhs have annealed away the vortices formed during the phase transition
disappear from the superconductor so rapidly that it may be practically impossible to capture
them.

5.6 Dislocations and the quantization of torsion.

Let us now turn to the regime L > A,. We established already the close correspondence with
the superconducting fluxoids. As for the fluxoids, by varying to the dislocation density the
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constraint equation follows from Eq. (94),

1
JG® = Esgn(a)q h(%®) (96)

by varying to the latter one obtains the equivalent of the vortex equation,

1(,, 0> 2,a) (2,0)
> ?\G(C—z—q)—l q =% =sgn(a)J* >, (97)

which is nearly identical to Eq. (40) upon associating |q|h>® with the magnetic field. The
only difference is in the extra "propagation" term ~ w? that we already discussed at length in
Section 4. This equation suggests that in the static limit the gravitational analogue of a fluxoid
is formed from a dislocation and a "graviton flux" where the latter is quantized in units of the
Burgers vector. But now we face a problem: gravitational waves have an exclusive dynamical
existence, there has to be a time axis for them to exist. But the "gravitational fluxoid" is a static
affair.

Let us consider instead what happens in a strictly 3D space-only manifold. As a reminder
In the Abelian-Higgs case we re-expressed the BF term iAed b — —ibedA finding out that the
material gauge field is sourced by the combination of vortex current and EM field strength
~ b(JV —€dA) (Eq. (36, section 3.4). By integrating out the b field the magnetic flux is found
to merge with the vortex into the magnetic fluxoid. Let us proceed here in the same way but
now in terms of the gravitons h,,, and stress gravitons b;,, departing from Eq. (85). Focussing
on the stress-graviton coupling, we can rewrite

Gmahma = hmagmlkal bka
bka&ka >
dka = gklmalhma ’ (98)

and the action becomes in terms of these single curl gauge fields,

_ . 1,
SE = f deBX [Omacmrllabo-nb + lbka(‘]ka + Eaka)]

The gravitational background enters through the tensor &;,: one infers immediately that this
quantity has a similar status as the magnetic field in the case of the electromagnetic fluxoid,
Eqg. (36). Upon integrating out the stress gauge fields an effective Coulomb potential will be
encountered that imposes J;, = —%&ka, suggesting that the dislocation and the "curvature-
like" object associated with the gravitational background merge in a single entity carrying a
quantized geometrical flux. What is the meaning of the tensor ay, in gravity?

We encoded gravity explicitly only in linearized form, the infinitesimal h,,,. For topo-
logical purposes this suffices. The reason is the same as for the "neutral" defects, where the
(linearized) goldstone bosons suffice to identify the topological currents. The local expres-
sions for the topological currents (like J;,) are equivalent to the (Burger) loops Eq. (83,84).
One can take an arbitrary large loop where the Burgers vector accumulates from locally in-
finitesimal displacements. Surely, the core of the dislocation cannot be enumerated in terms
of the Goldstone modes but this can be addressed independently. When we turn to curvature
we will find that the literal gravitating aspects of this core structure will have far reaching
consequences, but that is not an issue here.
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The strategy is to identify the geometrical meaning of & in the linearized theory, that can
be subsequently promoted to the non-linear level. The key is that we need the generalization
of Einstein gravity, allowing for the presence of geometrical torsion. This is accomplished by
Cartan-Einstein gravity. The geometrical torsion tensor defined as $,,;; = (Tyjq—Iima)/2 Which
is vanishing in standard GR [30,31] is now allowed to be finite, see e.g. ref.’s [49,50].

The elastician is warned: the meaning of this geometrical notion of torsion as discovered by
the geometer Cartan is completely unrelated to the way it is used in the mechanical engineering
context, as in "torsion bar" [51]. This semantic affair becomes quite awkward in this crystal
gravity setting: we will see later that the mechanical engineering use of the word torsion has
dealings with geometrical curvature instead.

Inserting the linearized Christoffel connection T;, = ,,h;4,

dka = Ekmlgmla . (100)

As we argued, one may now associate @ with the fully non-linear torsion tensor that is express-
ing the asymmetry of the Christoffel connection. We can therefore substitute,

Aag = V |g|3kmlsmla (101)

for a;, in Eq. (99) to obtain the fully co-variantized dislocation action.

We have rediscovered a motive that is regarded as a highlight of crystal geometry [5]: the
dislocation densities have the geometrical meaning of torsion. The quantized crystal-geometry
torsion merges with the torsion of Einstein-Cartan gravity in a "torsion fluxoid", in the same
way that the circulating supercurrents of the vortex merge with the magnetic fields to form a
fluxoid characterized by a quantized magnetic flux.

The role of torsion in the geometry of fundamental space-time is ambiguous. It is even not
clear whether it exists at all. In this framework the Cartan equations supplement the Einstein
equations governing the torsion tensor [49]

$hi+ g8l — ksl =8nGot, (102)
where o’§ i is the spin tensor, a property of matter. This equation represents an algebraic con-
straint rather than a partial differential equation: the torsion is just determined by the spin
tensor.

Let us close our eyes for a moment for this fundamental requirement of Cartan-Einstein
theory. Assume that the background can accomodate torsion and consider a strictly 3D spatial
Euclidean geometry, lacking propagating gravitons. Under these circumstances we can use the
same strategy as in section 3.4: integrate out the matter gauge bosons from Eq. (99) and as
for the magnetic fluxoid (Eq. 37) this demonstrates a Coulomb force binding the torsion flux
to the dislocation,

1 1 1
'Ctorsionflux ~ (Jka + Eaka)ﬁ(l]ka + Eaka) . (103)
As for the fluxoid, it follows immediately that
1
‘]ka :_Eaka~ (104)

Using Stokes it follows that in direct analogy with the magnetic fluxoid the defect is carrying
a topological quantized torsion flux determined by the Burgers vector,

1
Ba = } dS;LJ;m = ——f dS;La,la . (105)
S 2 S
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This has the status of an Einstein equation that takes the form of a constraint equation: when
the background accommodates torsion the dislocation should be bound to a quantized torsion
flux to avoid a Coulomb catastrophe.

We have gathered all the pieces, being in the position to arrive at a conclusion. The first
possibility is that the geometry of space-time is the one of Einstein gravity that does not al-
low for torsion. In this case dislocations will be "pushed around" by dynamical, propagating
gravitons but static dislocations will not be screened by the space-time background. The dislo-
cations will be the usual ones, characterized by long range strain mediated interactions. The
other possibility is that fundamental geometry allows for torsion. Both the spin density of
conventional Einstein-Cartan theory (Eq. 102) as the disclinations will source the torsion; the
sources of both the dislocations (Eq. 104) and the "fundamental" spin density (Eq. 102) will
add up in a "torsion quantum".

One could contemplate to use these observations to construct a "torsion detector". We
depart from the "cosmic solid", imaging it to be a perfect single crystal with a spatial extend
>> A;. We imagine the presence of "dark spin currents" imposing a net "translational curva-
ture" (Cartan torsion) in the geometrical background. The prediction is that a "torsion type II
phase" should be realized, consisting of a lattice of dislocation lines screened by a pile up of
the spinning matter into quantized torsion fluxes.

Given the gigantic separation of scales due the smallness of Newton’s constant this is a
rather unpractical affair. Assuming that the scales are set by the dimensions of atomic physics
A¢ has to be of order of light years as we showed in section 4. The typical spatial dimension of
the networks of dislocation lines that are responsible for the malleable nature of typical solids
is of order of microns. In real solids the shear stress caused by individual dislocations lines is
averaged out on the millimeter scale. To make this work one would need a perfect crystalline
order on the scale of light years, a feat that can surely not be accomplished by known forms
of crystalline matter.

6 Geometrical curvature, torque gravitons and the topological de-
fect current.

We have arrived at the heart of crystal gravity. Einstein theory revolves around the curvature of
the space-time manifold and in the preceding chapters there was no mention of this curvature.
However, in the same way as geometrical torsion has a precise topological status in crystal
geometry, so does curvature. General relativity is famously non-linear but we only addressed
how its linear sector — gravitational waves — is affected by the solid. We found out that in
Einstein gravity only the linearized modes are affected — the gravitons of the background.
Cartan-Einstein with its torsion is required for the space-time to respond to the topological
excitations of matter in so far the translational sector is involved — the dislocations.

The topological meaning of dislocations is that they restore the translational invariance.
When these proliferate spontaneously the crystal become a liquid crystal: a substance charac-
terized by translational invariance that still breaks rotational invariance [24-26]. Dislocations
are at the same time associated with geometrical torsion, but where to identify in the theory
of elasticity the information regarding rotational symmetry breaking? Dealing with the "spin
1" phonons one encounters the same question. A solid breaks both translations and rotations,
and why is it so that the only Goldstone bosons are the phonons associated with the breaking
of translations, where are the "rotational Goldstone modes"?

The answer lies in the semi-direct relation between translations and rotations. These are
intrinsically interrelated: finite translations are the same thing as rotations. But for the trans-
lations to become finite one needs an infinity of infinitesimal translational modes. One finds
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the mirror-image of this simple principle in GR. The gravitons of Fierz-Pauli are associated
with infinitesimal translations and to build up a metric characterized by a finite curvature an
infinite number of gravitons are required.

In crystals this is controlled instead by rigidity principle. A "sector” associated with rota-
tions can be identified but it is not physically observable other than in the form of finite size
effects — the "engineering torsion" as we will explain later. This sector contains the analogues
of the phonons in the form of "rotational Goldstone bosons" but these are not observable. The
reason is the same as for the gluons of QCD being not observable: these are literally con-
fined [25, 53] although the confinement mechanism has nothing to do with QCD. The main
ramification is an obvious, everyday fact. In the gauge field language associated with force
propagation rotations are associated with the response to torque stress imposed by twisting
opposite ends of the solid. Upon applying such a torque stress to one end of a metal bar this
is in a completely rigid way propagated to the other end of the bar when the bar is sufficiently
thick: the property of e.g. a prop shaft in the drive train of a car.

As the dislocations are the internal topological currents sourcing the (shear) stress gravi-
tons, torque stress is sourced by unique "defect currents" [5]. These have again a precise
topological status, being the unique agents associated with the restoration of the rotational
symmetry breaking. This is non-standard material and we will discuss the intricacies of the
defect currents at length in the next section. For the time being these may be interpreted as
representing the disclinations, which are discussed on an elementary level in the Appendix C.

In QCD, given that the gluons are confined the sources (quarks) of the gauge fields are
confined as well. In direct analogy, free disclinations as the internal sources of torque stress
have never been observed in a solid living in a flat background since their existence takes
infinite energy. The semi-direct relation between translations and rotations is actually reflected
in the nature of the topological excitations. A disclination can be viewed as a bound state of
an infinite number of dislocations with equal Burgers vector. The elementary dislocation can
be viewed in turn as a bound disclination-antidisclination pair, like a meson in QCD; see the
Appendix C.

We will be focussed in this section on the purely static problem. We ignore completely
the time axis that will return in the next section: only the 3D (and 2D) spatial manifold are
considered.

A crucial result in the present that we borrow from the mathematical elasticity tradition
is due to Kroner [52] in the form of the "double curl gauge fields" (see also ref. [5]). This is
a powerful mathematical device that grabs this hidden, confined rotational sector departing
from the solid. The "(shear) stress gravitons" that were the working horse in the preceding
two sections are in this language the "single curl gauge fields" (Eq. 59) being the incarnation
of gravitons in crystal geometry, "pairing" with the gravitons of the dynamical background. For
lack of a better word we will call the double curl version "torque gravitons". These would be
dual to the Goldstone bosons associated with the rotational symmetry breaking were it not that
these are confined. In fact, it can be shown that when the crystal undergoes a zero temperature
quantum phase transition from a crystal to a quantum liquid crystal (by proliferation of free
dislocations [25,26]), the torque sector deconfines [53] and the rotational Goldstone bosons
are liberated. A liquid crystal responds elastically to a torque stress and the disclinations take
here the role of the dislocations in the solid.

Turning to the geometric interpretation, this rotational sector is associated with curvature
in crystal geometry [5]. Embedding this in a dynamical background the crystal curvature
"pairs" with the curvature in the background in the same way as Cartan torsion "pairs" with the
dislocations. The crystal curvature is entirely encapsulated topologically by the defect currents
which are yet again symmetric rank two tensors. One anticipates that "curvature fluxoids" will
be formed, in analogy with the magnetic fluxoids in superconductors and the torsion fluxoids
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of Section 5.6. This is indeed the case and it is governed by a stunningly simple and elegant
Einstein equation. This takes a constraint form and it insists that the Einstein tensor capturing
the curvature in the background should coincide with the defect density, Eq. (112).

We perceive this as the central result of crystal gravity. Despite its simple appearance,
its consequences both in physics and mathematics are intricate and far from completely un-
derstood. The remaining sections will be dedicated to a first exploration of this result. The
groundwork is done in this section by developing the torque graviton formalism.

6.1 The confinement of curvature and defect density.

We depart again from the symmetric structure of the elasticity tensors associated with the 3D
space manifold. We ignore for the time being the time axis that actually plays a critical role as
explained in the next section.

The crucial insight is that the rotational defects reside "one derivative deeper" in the non-
integrable sector of the displacement fields. Kroners invention [52] is to catch the "rotational
multivaluedness" by invoking a parametrization in terms of so-called double curl gauge fields.
The conservation of stress 9,,0,,, = 0 is imposed in terms of symmetric 1-form tensor gauge
fields y;; (Chapter 5 in [5])

Oma = Emnkgabcanab)(kc 5 (106)

by choosing y;. to be a symmetric tensor automatically the symmetric nature of the physical
stress tensor o, is imposed. Contrasting this with the definition of the stress gravitons of the
translational sector Eq. 59, this no longer resembles the way that local constraints and gauge
fields are related in Yang-Mills type gauge theories. The gauge transformations leaving o,
invariant are now,

Xke = Xke + akgc + acgk: (107)

where & is an arbitrary smooth vector field. This ensures that only three of the six components
of the stress gauge fields in 3D are physical. As will become explicit very soon, this is identical
to the way that the physical curvature tensors of GR are parametrized in terms of the metric.
We will call the y;’s "torque gravitons", contrasting with the single curl (shear) stress gravitons.

The stress part of the action takes yet again a Maxwell-like form but now involving a total
of four derivatives. We will save the effort of writing this explicitly - as for the single curl
gauge fields this will take a pleasingly simple form in terms of helically projected physical
torque gravitons, see underneath.

As for the dislocations of section 5, the crucial part is associated with the multi-valued
displacement fields as well as the background metric. Let us repeat the procedure Eq. (81) but

now for the double curl fields. To simplify the notation we define w™V = (1/2)(8,,uM+3,u™")

MV __ MV
O'mana - gmnkgabcanab)(kcwma
XkcMke >
— MV
Nke = gknmgcbaanabwma . (108)

As before, the second line follows from the first by partial integration. The defect density 7,
(chap. 2.12 inref. [5]) captures the topological excitations associated with the rotations. This
quantity is more intricate than the dislocation current J;, and we will have a first look in the
next subsection. It is obvious however that in 3D it is a rank two tensor which is symmetric
since it sources the y,. gauge field which is symmetric.

Consider now what happens to the coupling between the stress tensor and the metric
fluctuation when we parametrize the former in terms of the torque graviton gauge field. This
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works in exactly the same way as for Eq. (108) with the metric fluctuation h,,, taking the role
of the multi-valued strain w™Y

ma’
Gmahma = 8mnk8abc8nab)(kchma
= Xkchc;
ch = gknmgcbaanabhma' (109)

It is straightforward to check that Gy, is precisely coincident with the spatial components of the
Einstein tensor CA;W =Ryy— %Rgm evaluated in the weak field limit g, = 1, + h,,. At first
sight it may appear hazardous to draw conclusions from the linearized theory pertaining to
curvature that is by default non-linear. However, we are dealing with topological excitations
and we can mobilise the same logic as we did dealing with identification of the torsion flux
in Section 5.6. The reason that the defect density is a rank 2 tensor is the same as for the
dislocation current being rank 2: the topology insists that the defect density is a line in 3D
with a propagation director encoded in one vector, and a topological charge which is also a
spatial vector: the Franck vector of e.g. the disclination, see Appendix C. We can employ Stokes
to convert this into a large loop encircling the defect and on this loop the locally infinitesimal
perturbation of the background metric will accumulate in finite overall topological charge. We
can therefore substitute the full Einstein tensor for the linearized one Gy, — Gy, in Eq. (109).
Gathering all the pieces we find for the action,

o0 — . 1
S= f dtdBX _|g|[ - O-macmrllabo-nb _IXkc(nkc + Ech)] . (110)

Supplemented by the definitions Eq.’s (107, 109) and the Einstein-Hilbert action: this may well
be the most consequential equation of crystal gravity. It is a close sibbling of Eq. (99) demon-
strating the pairing of the dislocation density with the torsion in the background geometry,
culminating in the torsion fluxoids. But here we find that in a similar way the torque gravitons
are now sourced by the sum of the defect density and the Einstein tensor enumerating the
curvature in the spatial back ground.

There is however one big difference of principle with the torsion case. In order to find
out how the topological defect density and the background curvature relate to each other we
should integrate out the torque gravitons. Let us just count derivatives; the "torsion" Eq. (99)
has the structure ~ C~1(db)? +ib(J + %a) becoming (J + %a)%(J + %a) (Eq. 103) implying
that the dislocation and the torsion flux are bound together by a Coulomb potential, just as
the magnetic fluxoid. But now we are dealing with the torque gravitons and the action Eq.
(110) implies ~ C~1(8%x)? +iy(n + 2G). Upon integrating out y,

1 1 1
SNfdtdSX[_(nkc+EGkC)ﬁ(nkc+§ch)]' (111)

This implies that a combined matter-background curvature fluxoid should form, characterized
by a topologically quantized geometrical curvature localized on a line. This is similar as the
Abrikosov (and torsion) flux lines. The difference is in the way that the material- and gauge
fluxes bind to each other. In the magnetic- and torsion cases we found that these are bound
by a 1/r Coulomb force. However, by power counting one infers directly from Eq. (111) that
upon pulling apart the background curvature ~ G from the defect density core ~ 1) the energy
increases linearly with the separation. Precisely the same behaviour is found in QCD upon
pulling apart static quarks: this is the confinement!
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Varying to 11 Eq. (111) implies an EOM (Einstein equation) corresponding with a simple
constraint equation similar to e.g. Eq. (38),

1
Nike = —EGkC . (112)

The topological current and the background curvature are now glued together much more
tightly. When these two quantities do not compenstate each other locally, the potential energy
is increasing linearly in the spatial separation between the topological defect and the back-
ground curvature. This signals the merciless way that a solid topologizes the spatial curvature
of fundamental space-time. In the presence of the solid all the spatial curvature has to be col-
lected in curvature fluxoids, and "non-topologized" curvature cannot exist for the same reason
that free quarks cannot exist in the confining regime of QCD.

Using the helical projection we will fill in the details in the remainder of this section. But
let us have a first look at the meaning of the defect density. (see also the Appendix C.3).

6.2 Defect density: dissecting the curvature of a crystal.

The confinement works in either way. In a flat background devoid of curvature the defect den-
sity has to vanish since G, = 0. This is surely the case and since disclinations are unobservable
in solids there is not much of a literature describing the way it works in detail [63,64], in con-
trast with dislocations being behind the macroscopic behaviour of many solid substances. An
exception is the study of 2D solids covering the surface of a rigid sphere by the soft matter
community [27,28,54-58] that we will discuss in Section 7.3. A related subject is the descrip-
tion of microstructure, associated with disclinations that are locally screened by compensating
dislocation structure [59-62]. Upon restoring the gravitational time axis we will see in the
next section that complications arise that are of a similar kind being in the forefront of the
soft matter affair. This will force us to look beyond the elementary disclination wisdoms as
reviewed in Appendix C.3. Fortunately, the mathematical prerequisites are available in the
form of a rather elegant affair in differential topology: see chapter 2 in Kleinert’s book [5] for
a thorough analysis. As a first introduction, let us collect here some of the highlights.

The meaning of the defect density is that it keeps track of the line-like (disclinations),
plane-like (grain boundaries) and volume like (dislocation gas) ways of organizing infinities
of dislocations such that they describe a net curved crystal manifold (see Appendix C.3). How
does this relate to the differential geometry language, with its referral to non-integrable multi-
valued parts? Instead of focussing on the non-integrability associated with the symmetric
strain fields, let us consider the antisymmetric combinations that keep track of local rotations,

1
Wmg = 5 (amua - aaum) . (113)
The disclination density is defined as,
ekc = Sknmgcbaanabwma . (114)

One infers immediately that compared to the dislocation density Jy.. = €jnmnWmq there is one
more derivative, mirrored in the above by the need to introduce the torque gravitons. This
disclination density is enumerating the disclinations as they are recognized in the elasticity
canon: see Appendix C.2. In short summary, these are like dislocations in the regard that they
are line-like textures in 3D characterized by a vectorial topological charge called the Franck
vector. The Franck vector is quantized in units of the discrete rotations characterizing the space
group. For this reason it is a rank 2 symmetric tensor current, as the dislocation current. Both
the propagation direction and the Franck vector are determined by the discrete point group
operations associated with the space group.
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Comparing this with the defect density Eq. (109) a piece is missing. This can be expressed
in terms of a "trace free" dislocation density called "contortion",

1
Kax :_Jka+§6ka']ll: (115)

where J, is the dislocation density. It is easy to check (see Kleinert) that the defect density
can be decomposed as,

Nke = Okc - gcbaabKak B (116)

where the contortion part collects the non-disclination contributions to the defect density.
Observe that this torque graviton formulation contains the stress graviton theory of section 5:
impose that there is no multivaluedness associated with rotations and it is easy to show that
the theory reduces to the one describing single dislocations interacting via the shear gauge
fields.

In fact, the basic rule captured by the defect density is that for any dislocation config-
uration formed from a macroscopic number of dislocations characterized by Burgers vectors
pointing in the same direction ("Burger’s vector magnetization") represents crystal curvature,
actually invariably localized on a line in 3D. A liquid crystal is defined in this topological lan-
guage [24-26] as a system of free dislocations characterized by "local Burger’s neutrality": on
the microscopic scale their Burgers vector occur with the same probability pointing in precisely
opposite directions. Notice that this underpins a general classification of liquid crystal order
as descending from the space-groups of crystals [65,66].

The disclinations are a special case: these can be viewed as a stack of an infinite number of
dislocations organized in such a way that the dislocations can no longer be identified having the
ramification that the curvature is topologically quantized (see Appendix C.2). But one may as
well organize the "equal Burgers vectors" in the form of planes — the grain boundaries [74,75]
that can be stacked in a way that it absorbs curvature. These are more costly energetically than
disclinations since the number of required dislocation cores grows with area. The worst case
is the "equal Burgers vector dislocation gas" since the number of dislocation cores required to
absorb curvature grows with volume. We will take up this theme at length in Section 7.3.

Let us conclude by zooming in on the disclinations as the most intuitive topological curva-
ture agents. Once again, this is a line-like (in 3D) defect propagating along lattice directions.
Its topological charge is called the Frank vector, defined as

Q, = 4; dx™ 8,3 € cma@ma - (117)
S

Here 9§ is an arbitrary closed contour encircling the core of the topological defect, such
that the surface area S enclosed by S is pierced by the defect line. It is quantized in units
set by the pointgroup (see the Appendix C.2). The disclination density tensor Eq. (114) can
be written as,

ekc(f) = eklnal anecma(")ma(-;é) = ‘Sk(L))_é)967 (118)

with the delta function defined in Eq. (29). By using Stokes theorem and integrating the
density over the surface S these identifications can be easily checked.

An immediate consequence of the relation between the dislocations and disclinations is that
the former are no longer conserved in the presence of a finite defect density. In simple terms,
individual dislocations can be freely "added" or "peeled off" from e.g. the disclinations, while
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the orientation of the Burgers vector of the dislocation will shift upon encircling a disclination,
see e.g. ref. [69]. It is easy to demonstrate that

Oxdia = —€a1cOlc > (119)

expressing that the disclination currents act as sinks and sources of the dislocation currents.

6.3 Dissecting (crystal) curvature in three space dimensions.

We learned in Section 5 that regardless the details of the symmetry of the crystal, dislocations
occur in two gross categories: edge dislocations and screw dislocations. These could be iden-
tified already in the isotropic theory in terms of the traceless- and trace parts of the dislocation
density- and shear graviton tensors. A similar subdivision applies to disclinations that can be
categorized as being of the "wedge-" or "twist" variety. For a pedestrian introduction we refer
to the Appendix C.2; these are obtained by just cutting out a "Volterra" wedge and gluing it
together again in such a way that the cutting surface becomes invisible, imposing thereby the
quantization of the Franck vector. The Franck vector is parallel to the propagation direction
dealing with the wedge disclination, corresponding with the trace part of the disclination den-
sity. This can be in turn viewed as a bound state of an infinity of edge dislocations (see Fig.
9). However, one may also perform a cut such that the Franck vector is orthogonal to the
propagation direction: these are the twist disclinations. Departing from the "mother" equation
(110) we discovered on basis of power counting (Eq. 111) that the defect density and the
Einstein tensor are "confined" to be the same: 7;; = G;;. But how does this looks like in detail,
being aware of the way that the disclinations can be "organized" in a twist- or wedge form?
A first question is, do the independent components of the background curvature match those
of the crystal curvature expressed through the defect density? One may even depart from
the curvature degrees of freedom of the 3+1D theory including time. The Riemann tensor is
characterized by 20 independent components but given the Higgsing of gravity the 10 Weyl
components are frozen out. Only the 10 Ricci components remain. Ignoring the time related
components, the six independent spatial components of the Einstein tensor remain. These are
in turn constrained by 3 Bianchi identities V,G*” = 0, and in combination with the crystal
gravity constraint equation 1, = —%ch (Eqg. (112)) this implies that three independent grav-
itational fluxoids exist. We conclude that the match is perfect, all forms of spatial curvature
can be absorbed in the curvature fluxoids.

Let us now proceed from isotropic elasticity, to find out what we can learn by employ-
ing helical projections, resting on Chap. 5 of ref. [5]. There is a shift in the interpretation
as compared to the "translational sector" of Section 5 since we are now dissecting curvature
itself — for instance, it is no longer the case that only spin 2 has dealings with gravity. The
transversal components are still decomposed in terms of the (2, +2) polarizations, but a main

difference with the dislocations is that the longitudinal polarization of the torque gravitons is
now governed by a dreibein tensor ef', = ;_ ( (2, 0)(q) + «/_e(o O)(q)) (Eq. (5.13), ref. [5]).
In this helical representation the action Eq. (1 10) becomes in terms of physical torque stress

“gravitons” y ™) (compare with Eq.’s 5.22, 5.24, Kleinert),

4
1—v
S = (2,2)2+ (2,—2)2+_BL 2)
§:J(2ﬂ_)3[ L (102 P 1202 + 18

(Z 5@ (20 4 G(Za))_i_xL}(n + GL)):|

a==%2

(120)
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The G should represent the Einstein tensor in helical representation. This fits the expec-
tation: the 6 independent components of G constrained by the 3 Bianchi identities to a total
of three real degrees of freedom. Imposing spatial isotropy these decompose naturally in two
traceless spin 2 G>*2) parts and a longitudinal G* component containing the trace.

Upon integrating out the y stress gravitons

d3q .14 N U 1.
S = _ 2ot 4 Z AN 2 (20 4 =520
%) e (- Z e Jerniitien o)

(121)

1+ 1,74 1.
_:}(nLT+ EGLi)q_4(,nL " EGL)) ’
where we recognize the 1/q* interaction responsible for the confinement. In isotropic 3D
Riemannian the curvature can be decomposed into one longitudinal G* and two transversal
spin (2+2) sectors, getting topologized in the three sectors of curvature fluxoids. We find that
both the Riemannian curvature and the crystal curvature decompose in three dimension in
one longitudinal- and two transversal spin 2 sectors. Much of the remainder will be devoted
to a further elaboration of this fundamental outcome.

Upon transforming back from helical- to Cartesian components Eq. (121) becomes (com-
pare with Kleinert Eq. 5:30),

dq 1 1. . \'11 v 1.
S =_H;f(2n)3q_4(nkc(Q)+Ech(q)) [§(5k15cd+5kd6d)+Tv5kc5ld:|(nld(Q)+EGld(Q))-

(122)
One immediately infers that the (longitudinal) trace part (k = ¢, = d) corresponds with
the wedge disclination: the Franck vector is parallel with the propagation direction. On the
other hand, the transversal spin 2 sector refers to a crystal curvature where the Franck vector
is orthogonal to the propagation direction: these enumerate the twist sector.
The reader may wonder how this relates to the Riemannian (Ricci) curvature in 3D space.
In dimension higher than 2 curvature acquires more structure than the simple and intuitive
scalar curvature. We will take this theme up in the final sections, first focussing in on the
simpler "wedge curvature" in Section 8 to then generalize it to include the "twist topology" in
Section 9. In this last section we will offer a first glimpse on how how twist- versus wedge
disclinations relate to the curvature in the 3D background geometry, revealing a mathematical
challenge that to the best of our knowledge is completely uncharted: the non-Abelian nature
of the "curvature fluxoid" topology as rooted in the rotational symmetry.

6.4 Curvature and defect density in two space dimensions.

In physics minimal models play a crucial role: look for the simplest possible set of circum-
stances where the essence of the physics can still be recognized avoiding secondary compli-
cations. In the context of crystal gravity, this role is played by its realization in two space
dimensions. Only one curvature invariant survives: the scalar (Gaussian) curvature R(X). On
the other hand, the defect density becomes a scalar as well. The defect density turns into a
point as well while it is impossible to realize a twist defect. All what remains are the point like
wedge "disclinations" characterized by a Frank "scalar" taking quantized values (see Fig. 7).
One already infers that R and 7 count in the same way.

We ignored the 2D case when we dealt with the dislocations. The realization that these
count in the same way as the disclination may help the reader. In 2D only edge dislocations
exist (screw dislocations need a third dimension). Since wedge disclinations can be viewed as
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a bound state of edge dislocations this explains that the co-dimension of the dislocation and
disclinations have to be the same. Accordingly the dislocation density is in 2D also a scalar. This
is a far reaching simplification, being behind the work of the soft matter community inherently
limited to 2D geometry [27, 28, 54-58]. This goes hand in hand with the parametrization of
the stress fields in terms of the single curl stress photons: o, = €,,7,b,, and a transversality
condition d, b, + 9, b, = 0 ensuring the stress tensor to be symmetric. As specific for 2D b, is
no longer a proper gauge field, it turns into a scalar field flavored by the Burgers "scalar" label
a. The stress action then takes the form £ = —(,b,)?/(4u(1 + »)), being sourced by —ib,J,
where J, is the density of edge dislocations J,(X) ~ Baé(z)()'c'), cf. Eq. (82). In 2D (or 2+1D)
there are surely no gravitons and in the absence of torsion there is not much left to do.

There is surely more going on in the curvature sector. The torque gravitons, defect currents
and geometrical rank 2 tensors are all reduced to scalars. For instance, the only surviving com-
ponent of the defect density is 1;; — 133 = 1 where "3" refers to the direction perpendicular
to the 2D plane. This is of course consistent with the fact that in 2D only the Gaussian intrinsic
(= scalar) curvature exists.

In 2D Eq. (109) becomes 0 ,,shmg = x G, With G = €,,,€ 40, 0phma, corresponding precisely
with minus the Gaussian curvature in linear approximation. Stress is now parametrized as
Oma = Emn€abnOpx- Given these simplifications the action Eq. (110) reduces to the simple
form,

1 1
— 2 — (829 —iyn—i-h.. O . 12
52D—fdfd x( e v)(a x) —ixm i5hma ma) (123)

All what remains to find out is the meaning of the "BF" terms coupling the matter to the
background metric,

hmaama = _XR: (124)

where R = —¢,,,,,€40, 0 Rmq is the aforementioned linearized Gaussian curvature scalar in 2D
All what remains to be done is to integrate out the stress gravitons. The result is just the
"scalar" version of the 3D result Eq. (111) written in the precise form,

1 1
Sap = —4u(1 +7) f decx (D)~ 3RO |1 1) (n) - JRE)) . a29)
where T} is the Greens function of the biharmonic operator

(%, %) =6(—%), (126)

implying the confinement between curvature and defect current also in 2D. This is a central
result in the soft matter community effort dealing with solids covering curved surfaces (see
e.g. Eq’s (72,73) in the tutorial ref. [27]). Kleinert’s efficient and transparent stress gauge
field formalism is not quite realized in this community, but their more laborious methodology
is precisely equivalent.

The constraint equation Eq. (112) we found for three spatial dimensions simplifies to the
extreme in 2D,

1
n(¥) = SR(X). (127)

The Gaussian curvature of the 2D manifold has to be “equal” to the density of rotational topo-
logical excitations of the solid. The soft matter community is focussed on the ramifications
of this exceedingly simple formula in the case of a rigid background geometry where R(x) is
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just a given quantity. Despite the simple appearance of these equations this turns out to give
rise in the case of rigid curvature to an exceedingly complex frustration problem that can only
be addressed experimentally and by computational approaches [27,28,54-58]. We will come
back to this in Section 7.3.

7 Curvature fluxoids and the problem of time.

Having identified the principles rooted in the topology of crystals we are now facing the task
to find solutions of Eq. (122) (or Eq. 125 in 2D) to find out how the topologized geometry of
crystal gravity looks like when spatial curvature matters.

Up to this point we largely ignored the time dimension. Within the restrictions of station-
ary solutions, time did not seem to matter much: in the context of dislocations and Cartan’s
torsion we only stumbled on the odd circumstance of dynamical gravitons "pushing” static
shear stress. However, when curvature gets into play the rules change. After all, GR is in
the first place a theory dealing with gravitation, the fact that what seems to be the attractive
force between bodies with mass of Newtonian gravity is actually about extremizing the length
of a path (geodesic) in a curved geometry with Lorentzian signature pertaining to the time
dimension [30,31].

This "gravitating side" of gravity interferes with the usual "topologization logic" pertaining
to the Higgs phenomenon. In the presence of background gauge curvature (magnetic field)
the superconducting condensate forces this to be absorbed in an Abrikosov lattice of quantized
magnetic fluxoids. As we argued in section 5.6, geometric torsion in the background should
merge with the dislocations in "torsion fluxoids" characterized by a Burgers vector topological
quantum. As we learned in the previous section, the disclination has the status of matter
defect representing the topological quantum of curvature. Henceforth, one may anticipate that
geometrical curvature in the background should merge with the disclinations into "curvature
fluxoids" forming some kind of analogue of the Abrikosov lattice. In a universe with only
space-like dimensions this is what is happening. This is the subject of the next two chapters
where we will make the case that this is a quite interesting mathematical affair. In a perhaps
unfortunate way, the Lorentzian time of the physical universe spoils this fun.

A relativist will immediately recognize the obstruction. As discussed in section 7.1, the
background geometry that merges with the disclination is like the conical singularity or cosmic
string in 3D and 4D gravity, respectively. The specialty is however that the amount of curvature
(opening angle) stored at the core of the defect has to be "of order 1" since this is set by the
Franck vector. The bottomline is that in order to find a solution an energy of order of the
Planck mass has to be mobilized to stabilize the core (section 7.2). Such circumstances cannot
possibly be fulfilled dealing with mundane solids.

But "curvature topology" is a subtle affair. The background curvature "confines" with the
defect density according to Eq. (122), not exclusively with the disclination density that is
only a component of the defect density. It will turn out that the situation is closely related
to the frustration problem identified by the soft matter community with their rigid curved
surfaces [27,28,54-58]. In section 7.3 we will argue that there is a unique solution in the
parameter regime of relevance in crystal gravity. This is very simple: the curvature is absorbed
by a simple, dilute gas formed from dislocations with shared Burgers vectors. The net outcome
is that via this loophole the matter "fails to topologize" geometrical spatial curvature.

7.1 Wedge disclinations and gravitational fluxoids in the spatial manifold.

The construction of curvature fluxoids associated with wedge disclinations in two- and three
dimensional spatial manifolds is very easy. Let us first focus in on two space dimensions; this
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generalizes straightforwardly to the wedge disclinations in 3D while we will later learn that
the same difficulties plague the other 3D "twist" disclinations as well. Let us recall the Volterra
construction for the elementary disclination in 2D. Take a sheet of solid, cut out a wedge and
glue the edges together under the condition that the cutting surface does not alter the crystal
lattice. This turns into a literal Kindergarten exercise by embedding this in our 3D spatial
universe: a cone is obtained. This is the GR classroom device that we highlighted in the very
beginning, illustrating the nature of curvature: the circumference of a circle is no longer 2nr
where r is the radial coordinate with r = 0 at the tip of the coin, but instead 27t(1 — ) where
a is the opening angle.

In order to render the cutting seam to be invisible in the crystal geometry the opening
angle has to be quantized in units of the discrete rotations associated with the space group
of the crystal. A canonical example is found in a natural occurring 2D crystal: graphene
with its hexagonal honeycomb lattice formed from carbon atoms. The core of the point-like
disclination is formed by a 5-ring accompanied by a perfect hexagonal lattice everywhere else
— the anti-disclination is accordingly a 7 ring (see fig. 7). Given the six-fold rotational axis the
opening angle a = 1/6, which is in turn coincident with the Franck "scalar" (in 2D) 2 = 2w«
introduced in the previous section.

Using the definition Eq. (118) for the disclination density and the "Einstein equation" Eq.
(127) it follows for a disclination at the origin in 2D,

R(X)=n(X)=2mad(X). (128)

To avoid the infinities associated with the confinement the scalar curvature in the background
geometry R(X) is entirely concentrated at the disclination core while elsewhere R is vanishing.
We recognize directly a GR texbook solution: this is the conical singularity!

The metric is written in terms of radial coordinates with the singularity at r = 0 as,

ds?=dr? +(1—a)2nr2d¢?

and it is a textbook exercise to demonstrate that the scalar curvature acquires the form Eq.
(128).

This example illustrates vividly the simple principle governing the formation of the curva-
ture fluxoid in 2D. Consider the classroom cone; we exploited the third dimension to construct
it but when we attempt to force it into two dimensions the confinement takes over: the paper
cone crumbles when we push the tip to the table. The remedy is to cut out the same wedge
from the 2D space itself, thereby endowing space itself with a conical singularity curvature.

We can directly proceed generalizing this to a wedge disclination line in 3D. In a 3D crystal
the discrete rotations may be different pending the direction. To avoid these complications let
us consider a cubic crystal, choosing a Cartesian coordinate system along the lattice vectors.
The Franck vectors are now of magnitude |2| = 2wa where a = 1/4 (right angles) and con-
sider an elementary wedge disclination propagating along the z-direction. This corresponds
with a Volterra cut in the xy plane as in 2D with a core which is now pulled out in a line
oriented in the z-direction. The only non-zero component of the disclination density is the zz
one; it follows from Eq.’s (112, 118) that the only non-zero component of the Einstein tensor
is,

Gzz()?) = nzz()_é) = |Q|5§1)(?); (129)

where 5,9)(5(’) measures the position of the disclination line in the z direction.

This relates yet again a famous GR geometry: such an Einstein tensor is associated with
the metric [70] of a cosmic string, e.g. ref. [71]. This corresponds with 2D conical singularities
pulled out in a line in 3D, in cylindrical coordinates and Cartesian coordinates resp.,
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ds? dz2+dr* + (1 —a)rid¢?,
2 x2

dz2+(1—a#yz)dx2+(1— = )y ta s y sdxdy, (130

ds?

where a = Q/2n. Although harder to visualize, this in essence the same affair as in 2D: a
3D Volterra wedge is removed from the solid leaving behind a disclination line and to accom-
modate this in three dimensions one has to remove the same wedge from space itself. As in
2D, the space is locally flat everywhere except at the disclination core and the combination of
wedge disclination and cosmic string geometry is merely topological; the geometry is locally
flat while the curvature becomes only manifest by measurements that in one or the other way
"lasso" the defect /cosmic string. For instance, it is well known that light passing by cosmic
strings may exhibit interference fringes.

We will take up this theme again in the final sections, elaborating some mathematical
consequences. In the physical universe we meet a complication: there is also a time dimension
being responsible for an unpleasant complication.

7.2 Curvature fluxoids and the problem of the heavy core.

Once again, the relativist should have been already alerted by the arguments we just presented.
GR is about gravity and gravity means that energy affects the nature of space, according to the
Einstein equations. This problem arises at the moment that one includes a Lorentzian time
axis: conical singularities and cosmic strings are among the simplest examples where one sees
this at work.

Consider a static "curvature fluxoid" formed from a wedge disclination confined with a
cosmic string metric characterized by a Franck vector opening angle. But let us now account
for the fact that gravity requires the time axis. In fact, the conical singularities in 241D became
part of the GR canon by the seminal work of Deser, Jackiw and ’t Hooft in 1984 [72] aimed
at elucidating the nature of gravity in this dimension. In two space- and one time dimension
the Weyl tensor is vanishing by default and gravity turns in a topological theory similar to
crystal gravity in higher dimensions. ’t Hooft et al. assumed that the geometry is sourced
exclusively by point particles, discovering that every particle "binds" to a conical singularity.
The system of particles turns into an affair governed by topological interactions which is in
principle numerically tractable [73].

The derivation departs from a particle at rest at the origin. One adds the time axis - the
metric becomes ds? — —dt2 + ds? - to solve the Einstein equations. The solution [72] is
textbook material. The result is the conical singularity spatial geometry Eq. (129) but now
the opening angle is determined by the rest mass m of the particle,

ozp =4Gm. (131)

Let us directly proceed to the cosmic string in 3+1D which is equally well known. Yet again
one adds the time axis to solve subsequently the Einstein equations now sourced by a thin tube
of gravitating matter characterized by a string tension (mass per unit length) p, yielding for
the opening angle

Q4p = 8T[prluxoid . (132)

In order to exist in the physical universe the wedge curvature fluxoid should be a solution
to both the usual "time like" Einstein equations, as well as the additional crystal gravity Eq.
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(112). The opening angles given by Eq.’s (129,132) should match and this implies for the
cosmic string,

Pfluxoid = ﬂ (133)
uxot 87-CG

The trouble becomes now manifest. Cosmic strings are usually viewed [71]as a remnant topo-
logical defect associated with a GUT scale phase transition, where the core energy/mass of the
string is set by the GUT scale. Nevertheless, the opening angle is then only of order of 107°
radiants. But the Franck vector of the disclination implies an opening angle that is O(1) radi-
ants! The trouble is that one now needs a mass density stabilizing the curvature at the "tip of
the cone" that is of order a Planck mass per Planck length. Let us estimate this in explicit units.
Assert that |Q| ~ 27, restore a factor c? for an answer in terms of kg/m: Pflux ™~ c?/4G ~10%°
kilogram per meter. One has to mobilize roughly 100 earth masses concentrated in a core area
with a dimension set by the lattice constant (because of the confinement) to stabilize one me-
ter of curvature fluxoid. This signals an obvious problem with the realization of such perfect
disclination fluxoids in the physical universe. In hindsight this is not surprising. As we will
show in the next section only a handful of such disclination fluxoids are required to concen-
trate all the spatial curvature of a closed universe: it is obvious that one needs some quite
heavy gravitational weaponry to accomplish this goal.

7.3 The resolution: the splintering of the topological quantization of curvature

To set the mind, let us consider a cosmological thought experiment. Imagine a universe shortly
after the big band which is spatially closed and characterized by a homogeneous and isotropic
spatial curvature in the guise of FLRW cosmology. In this early epoch a phase transition hap-
pens where some form of matter crystallizes — proponents of dark matter as an elastic substance
may view it as the present day relict of this primordial crystallization. How would the present
day universe look like?

This is analogues to a "field cooled" type II superconductor: the magnetic field is the anal-
ogy of the curvature, and upon cooling through the phase transition a lattice of magnetic
fluxoids is formed. The literal crystal gravity analogue would be that some lattice of quan-
tized curvature fluxoids (corresponding with the disclination-cosmic string assemblies) would
spring in existence. The precise nature of such "gravitational Abrikosov lattices" is an en-
tertaining mathematical affair that we will illustrate in the final sections. However, we just
became aware that in the physical universe a Planck mass has to be mobilized to stabilize the
"macroscopic" curvature concentrated in a microscopic volume associated with the core of the
curvature fluxoid.

One can contemplate crystallization associated with the Planck scale itself where perhaps
such a feat can be accomplished. But given the bounds implied by e.g. the graviton mass
(Eq. 1) this is unrelated to the present epoch of the universe. The conclusion is that when
the "cosmic crystal" is related to "mundane" matter it is impossible for it to form topologically
quantized curvature fluxoids!

At first sight this may look similar as to type I superconductors where a Meissner phase is
formed, expelling the magnetic flux altogether. The effect would be that all spatial curvature
would be expelled when the solid forms — an alternative for inflation as resolution of the
flatness problem. But this analogy fails. First, one has to find out a mechanism explaining why
the core size (coherence length of the superconductor) becomes larger than the penetration
depth A;. But much worse, the topological current associated with the crystal curvature (the
defect density) as introduced in section 6.2 is more "flexible" than a vortex topological current.

Ironically, the net effect is that the gravitational version of this problem is actually closely
related to the work of the soft matter community addressing solids covering rigid curved sur-
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faces [27,28,54-58]. Because of the "absence of core mass" fundamental space-time becomes
effectively rigid: it is just impossible to concentrate the overall curvature in microscopic areas.
Dealing with the rigid surfaces the curvature in the background is fixed, take as example a
sphere by a constant Gaussian curvature set by the radius of the sphere. The energetically
most favourable way for the solid to accommodate this overall curvature would be to form a
lattice of a handful of dislocations. However, the curvature in the background is distributed
smoothly, and this cannot be matched with the localized curvature of the disclinations, thereby
grossly violating the constraint Eq. (127).

However, as we stressed in section 6.2, the quantity that is paired with the Einstein tensor
is the defect density and this contains the contortion piece next to the disclination density, Eq.
(115). To understand how this works it is useful to depart of the notion that a macroscopic
assembly of dislocations with Burgers vectors pointing in the same direction occurring at a
finite density suffices to represent crystal curvature. Using these as building blocks one can
now distinguish the various curvature defects on basis of the "dynamics" of this dislocation
system.

The way this works is discussed in the Appendix C.3 in a pictorial fashion. Consider first
the wedge disclination in 2D using the cone folding procedure. When the opening angle is
chosen to be the Franck scalar, away from the tip of the cone the cut-and-glue seam can be
made invisible. The crystal lattice is everywhere restored except at the core: one has only to
pay a core energy associated with this zero dimensional point.

One can however also decide to cut and glue such that the opening angle is smaller than
the Franck scalar. It is no longer possible to "hide the seam": the best solution with regard
to repairing the lattice as much as possible is now the grain boundary. This consists [74] of
a linear array of approximately equally spaced dislocations with parallel Burgers vectors, see
Fig. 10. The opening ("misfit") angle a is found to be,

a B
i (Z) = — 13
51n(2) 2h’ (134)

where B is the amplitude of the Burgers vector (a lattice constant in this example) and h
the spacing of the dislocations which will be an integer number of lattice constants. This is
energetically less favourable than the disclination since now the energy grows with the linear
dimension of the system in 2D. Instead of the core being a point, it is now a line. Similarly in
3D, the disclination is a line like defect while the grain boundary is like a domain wall. But
paying this prize one can avoid the topological quantization of the curvature flux as set by the
Franck vector — the opening angle can be anything utilizing grain boundaries.

Fact is that with the exception of single crystals everyday solids are littered with grain
boundaries, typically due to growth conditions: literal grains start to form first in the melt
that meet each other. After annealing these relax into the array’s of dislocations. These form
closed manifolds that do not represent curvature: the cone example illustrates that as for the
disclination the curvature is localized at the point in 2D (line in 3D) where the grain boundary
comes to an end. A first take home message is that a grain boundary curvature defect is surely
more costly than a disclination but in normal solids this energy difference is surmountable.

One already discerns that a similar feat can be accomplished by an "unorganized" gas of
equal Burgers vector dislocations. Why is a grain boundary preferred? Generically, equal Burg-
ers vector dislocations repell each other by the strain mediated ("stress graviton") interactions,
raising the energy. It is easy to see that for a linear array (the grain boundary) these inter-
actions are screened: there are no longer strains present away from the grain boundary (see
ref. [75] for a recent precision analysis).

The moral is that very different from the topology at work in normal gauge theories the
quantized topological defect (the vortex of a superfluid, here the disclination) can now "splin-
ter" in building blocks which costs energy while the topological charge (the Franck vector)
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diminishes in the process. The central theme in the study of the "rigid balls" of the soft matter
community is to find the best compromise between this energy cost and the requirement that
the background curvature is smoothly distributed. The crucial control parameter is the ratio
of the lattice constant a to the curvature radius L (e.g., radius of the rigid ball). A disclination
lattice is the best solution when these are comparable; a famous example is the soccer ball or
"buckyball" molecule that corresponds with a lattice of 5-ring dislocations in a hexagonal (six
ring) crystal, see the next section. The soft matter community has been focussed on the study
at intermediate a/L: complicated texture is found consisting of grain boundary fragments
("scars"), clouds of dislocations and so forth, e.g. ref.’s [54,55,57].

We are interested in the limit a/L — 0 and there appears to be again a simple, univer-
sal solution that may not have been recognized by the soft matter community. This is easy
to construct. Take an arbitrary point of the background manifold characterized by a near-
infinitesimal local curvature that is frozen because of the "lack of Planck mass", and associate
it with the end of a grain boundary. This grain boundary has a diminishing misfit angle, and
according to Eq. 134 the distance h between the dislocations is diverging, and thereby the
attractive interactions keeping the dislocation in the linear array configuration is diminishing.
With a vanishing energy cost the dislocations can now glide freely away from the grain bound-
ary — the direction perpendicular to the grain boundary corresponds with a slip plane. The
results is a structureless gas of equal Burger vector dislocations. Repeat this operations at all
other points in the manifold and the outcome is that the smooth background curvature is ab-
sorbed in a homogeneous dislocation gas that actually fully satisfies the confinement condition
Eq. (112)

This concludes the physics part of crystal gravity, in so far we got with analyzing stationary
situations. It is somewhat of an anti-climax. Getting at the heart of the GR interest — curvature
— we established that all what happens is that the solid is infused with an extremely dilute
gas of dislocations when the background manifold carries whatever form of spatial curvature.
Physically this is not profound — any piece of steel carries in comparison a rather high density of
dislocations albeit organized in a different way (grain boundaries, dislocation-antidislocation
loops). This problem of core mass is in a way quite unfortunate since a universe where genuine
curvature fluxoids can exist is a place of remarkable mathematical beauty and elegance. Let
us conclude this treatise with an attempt to entice mathematicians to have a closer look.

8 The ideal crystal gravity universes.

As we just argued, it is an unfortunate circumstance that in the physical universe the "topol-
ogization of curvature" is inhibited by the requirement that a Planck mass is necessary to
stabilize the cores of the geometric curvature fluxoids. But the question arises, how would
the analogue of the Abrikosov lattices of magnetic fluxoids as found in type II superconduc-
tors look like for geometrical curvature when these could form? Although likely irrelevant for
physics, this affair may be of interest as a mere mathematical question. As we will explain it
appears to point at surprising links between different branches of contemporary mathematics:
discrete geometry, differential geometry/topology and algebraic topology. We will get so far
that we can formulate some questions that appears to require mathematical machinery that is
not available, suggesting however that a methodology may be around the corner that delivers
answers as of intrinsic mathematical interest.

As point of departure, let us formulate the problem in the guise of Platonic perfection. The
crucial assumption is to erase time and everything else is mathematical idealization:

1. Consider 2D and 3D space only-manifolds, avoiding the complication of the core mass
associated with time. The "defect density = curvature" relation Eq. (112) defines the
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problem entirely.

2. The defect density is assumed to be coincident with the disclination density. As we ex-
plained this will impose the topological quantization in the form of curvature fluxoids
quantized in units of the Franck vector.

3. The spatial manifold is filled with a single crystal that is perfectly periodic away from
the curvature fluxoids cores. The space group of this crystal corresponds with the data
specifying the nature of this matter. This is obviously an idealization — perfect single
crystals exceeding even a weight of 1 kg are extremely rare in nature.

4. The curvature fluxoids will in analogy with the Abrikosov lattices formed by magnetic
fluxoids form the most regular, symmetric lattices compatible with the circumstances
including the condition that the fluxoids should be as far apart as possible. This is yet
again an idealization. The regularity of the Abrikosov lattice of the superconductor is
due to the fact that the density of fluxoids is such that the vortex lines are sufficiently
close together for the mutual screened repulsive interaction to be still substantial. This
is not the case for the curvature fluxoids: the range of their interactions shrinks to the
lattice constant as related to the curvature confinement while the inter-fluxoid distances
are of a "cosmological" dimension.

We will furthermore limit ourselves in the examples we discuss nearly entirely to the simple
homogeneous closed Riemannian manifolds having the topology of S, and S5 "balls" in 2- and
3 dimensions, respectively. It is surely possible to address hyperbolic ("open") manifolds, as
well as more complicated topologies and geometries but we leave this to further study. This
section is devoted to develop a first intuition on basis of wedge fluxoids. In the next section
we will generalize it a bit further by focussing in on the role of the twist dislocations in 3D.

8.1 Crystal gravity universes in two dimensions and the Platonic solids.

Let us first focus on the two dimensional case. The benefit is that the geometry is particularly
easy to visualize by employing the embedding of the 2D manifold in 3D space — it is just
about the surface of objects having the topology of a ball. We focus on the simplest of all
curved manifolds: the maximally symmetric ball S,, the simply connected compact manifold
characterized by a constant Gaussian curvature G(r) = 1/L? where L is the radius of the ball.

We can no longer afford to be cavalier with regard to the symmetry of the crystal. The space
groups have been classified, and in two dimensions there are a total of 17 "wallpaper" groups.
Let us consider first the simplest example: the square ("tetragonal") lattice, the simplest of all
lattices with wallpaper group p4m. This is characterized by a four-fold rotational symmetry
and accordingly the Franck vector of the elementary disclination is 7t/2. We may resolve this
into a core that for positive crystal curvature corresponds with a triangle in the square lattice.

How to absorb the curvature of the ball by employing such curvature fluxoids? We learned
that disclinations are constructed by cutting out Volterra wedges. This is in turn coincident with
a procedure called "nets" in the discrete geometry literature, being a method to systematically
classify polyhedra [77]. This is illustrated for the cubic case in Fig. la. Take a flat sheet
of paper and cut it as indicated: the pieces that are removed coincide with the /4 Volterra
wedges associated with the disclinations. Fold it along the dashed lines under a right corner
and glue the faces together: the outcome is that the ball has turned into a cube!

What happened with the (intrinsic) Gaussian curvature? The faces of the cube are obvi-
ously flat but the edges are characterized by one principal radius of curvature along the edge
that is infinite: the edges also represent flat space. Another way of viewing it is that at the
edges there is according to the "internal observer" of the crystal geometry no interruption of
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(a) Unfolded net of the cube, where the arrows (b) Just before the cube is finished folding. All
indicate how to fold. curvature is absorbed in the corners of the cube.

Figure 1: How the net of a cube folds into a cube.

the square lattice: the crystal geometry is flat and thereby the background geometry as well.
Henceforth, all the curvature is concentrated at the 8 vertices that obviously coincide with con-
ical singularity type fluxoids characterized by an opening angle 7t/2 footnoteThis very simple
insight was in an early stage revealed to us by Vincenzo Vitelli.

We conclude that the ball is "topologized" into a cube. It reveals a key insight. In this
elementary example we find that by unleashing the topologization rules on the Riemannian
ball having the tetragonal space group as input the curvature fluxoids form a "type II lattice"
that is coincident with the birth place of (discrete) geometry: the cube, a platonic solid!

In fact, upon zooming in to resolve the microscopic lattice it actually corresponds with a
truncated cube where the vertices are actually triangles: one of the Archimedean solids. This
makes sense; Archimedean solids [78] are defined as convex uniform polyhedra composed of
regular polygons (determined by the unit cells of the crystal ) meeting in identical vertices (the
elementary disclinations, the triangle) excluding the 5 platonic solids (including the primitive
cube).

Let us consider another example to get used to the idea. This one should have a particular
appeal to physicists. Depart from the honeycomb lattice, overly familiar given its physical
realization in the form of graphene. This is governed by the hexagonal wallpaper group P6mm
characterized by a six fold rotation axis. The elementary disclinations with positive Franck
scalar are now 5 rings, characterized by an opening angle of /3 (Fig. 7).

As we needed 8 disclinations to cover the solid angle of 47 in the case of the cube, now
12 7/3 disclinations are required. One can save the effort to construct a net because this
was accomplished long ago by an anonymous shoemaker, see Fig. (2). The outcome is an
icosahedron: this is recognized by the layman as a football, and by chemists as the 'buckyball"
molecule formed from carbon. On the macroscopic scale this appears as the convex regu-
lar icosahedron, one of the platonic solids, characterized by 20 equilateral triangle faces, 30
edges and 12 vertices. Upon zooming in to the microscopic scale one finds that the 6 rings
decorating the surface are replaced by a regular array of 12 5 rings, truncating the vertices:
the Archimedean "truncated icosahedron".

The reader may already have discerned that we are dealing with the birth place of topol-
ogy in the context of geometry: the Gauss-Bonnet theorem [79] in the incarnation of Euler’s
polyhedral formula [27,80],

F-E+V=y (135)

applying to compact manifolds characterized by the topological Euler characteristic y (“num-
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Figure 2: A "soccer ball" made from hexagons and pentagons. 12 pentagons are
needed to absorb the curvature of the sphere.

ber of handles”). F, E and V refer to the number of faces, edges and vertices of the polyhedron.
The particular tessellation is determined by the wallpaper group including the disclinatons. For
example, consider the icosehadron associated with the hexagonal crystal. The Euler charac-
teristic of the ball is y = 2 and the number of pentagons required to absorb the curvature
is easy to count, given that we tesselate the manifold by hexagons and pentagons.Write the
number of faces as the number of hexagons H and pentagons P such that F = H + P. One
edge is shared by two faces implying E = (6H + 5P)/2, while each vertex is shared by three
faces such that V = (6H + 5P)/3. It follows from Eq. (135) that P = 12.

In this context, Gauss-Bonnet implies that the number of required disclinations is a topo-
logical quantity. All that matters that the manifold has genus zero (closed manifold with no
handles). One can deform the manifold topologically. The form of the "type II lattice" will then
chance but the number of curvature fluxoids will be the same. For instance, deform the sphere
in an ellipsoid and for the tetragonal crystal the cube will turn into a rectangular prism.

Once again, departing from the idealized rules associated with Higgsing gravity we find
that Riemannian geometry — it works in the same way in 3D as we will see in a moment —
turns into the classic art of discrete geometry. This is in the form of the regular polyhedra
that fascinated the classic greeks, enriched by elementary principles of algebraic topology. As
input topological data (the Euler characteristic) and the group theoretical wallpaper data are
required and this suffices to specify the shape of the polyhedron.

The question arises whether this can be completely classified in 2D. We suspect that the
machinery to accomplish this is available in the rather intimidating mathematical literature
(for physicists) dealing with 2D tilings. The prime candidate is in the form of John Conway’s
topological "orbifold" machinery [81, 82] given its remarkable capacity to classify completely
the wallpaper groups in a flat background while it is inherently topological, departing from
the Euler characteristic of the manifold.
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8.2 The polytopes in three dimensions.

The generalization of non-Euclidean geometry to manifolds beyond two dimensions employ-
ing the powerful weaponry of differential geometry is the great accomplishment of Riemann.
There is much more structure in higher dimensions and this is reflected in the crystal gravity
topology in higher dimensions as we will illustrate in the remainder. We suspect that the latter
represents a considerable challenge even for contemporary mathematics — this may be the oc-
casion where crystal gravity is inspirational for advances at the frontiers of pure mathematics.

Different from the single scalar curvature invariant in 2D, there are a total of six invariants
in 3D. The Weyl curvature is vanishing in 3D and therefore these are all associated with the
Ricci tensor, or equivalently the Einstein tensor. We already found out that these precisely
match the six components of the disclination density. The off-diagonal components of the
latter tensor enumerate the twist disclinations which will be the subject of the next section.
Although the picture is incomplete, by only considering wedge disclinations it is particularly
easy to get a basic intuition regarding the essence of this affair.

In addition, we will only consider the maximally symmetric closed manifold S;: the ubig-
uitous three dimensional ball characterized by a constant scalar curvature as e.g. the spatially
closed universe of FLRW cosmology [30,31]. Considering only wedge disclinations one an-
ticipates a 3D extension of the wisdoms we identified in 2D. This is indeed the case and the
topologized universes are identified as the generalization of the polyhedra to three dimensions:
the polytopes.

Polytopes [83] were considered for the first time in the 19-th century by the mathematician
Schléfli. As the discrete two dimensional geometry of a polyhedron is mapped on the surface of
a three dimensional body embedded in a three dimensional space, one can as well map discrete
geometry in three dimensions on the surface of a four dimensional body in 4D space. But the
difficulty is that is much harder to use the "visual" methods of the greeks. One better relies on
abstract algebraic counting methods as started by Schéfli, turning into a mathematical tradition
that further developed the subject up to Coxeter who revitalized this field in the second half
of the 20-th century [84,85].

Let us consider an elementary example illustrating the principle. We depart from the prim-
itive cubic spacegroup associated with a cubic lattice with a single "atom" in the unit cell. As we
already noticed in this case we can rely on Cartesian coordinates to label the disclination den-
sities: B,, refers to a disclination line propagating along the z direction while the 7t/2 Volterra
wedge is removed from the xy plane. The 6, and 6,, components are clearly equivalent. As
in 2D we are seeking a maximally regular "type II" lattice of wedge curvature fluxoids absorb-
ing the curvature of the ball. We learned in the previous section that the "point" 2D wedge
fluxoids are "pulled out" in lines in 3D. One anticipates accordingly that the faces, edges and
vertices of the 2D polyhedra are "pulled out" in "cells" (3D volumes, C), faces (F) and edges
(E) in 3D. The edges are lines that can actually meet in 3D forming vertices (V). As the faces
of the polyhedra represent flat parts in the 2D geometry, these are lifted up to the 3D "cells"
that are also flat. The 3D edges are surely the curvature fluxoids carrying the 3D curvature:
we learned in the previous section that these are lines in 3D. One anticipates that these have to
propagate in the three orthogonal directions forming a cubic type II lattice themselves, given
the homogeneous curvature on S3 departing from a cubic crystal.

Polytopes are the most regular objects that can be constructed from these building blocks:
the incarnation of the Platonic solids in 4D. We are interested in the regular convex 4-polytope
and these are tabulated [86,87] and we can look up which qualify. Remarkably, only 6 exists
and one qualifies: the generalization of the cube to 4 dimensions, called the tesseract [88].

Schéfli found out that the Euler polyhedral formula Eq. (135) generalizes to the 3D sur-
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(a) The Dali cross is the 3D net of a tesseract  (b) Projection of a completed tesseract. Here, curvature
is also present in the lines where the cubes intersect.

Figure 3: How the net of a cube folds into a cube.

faces as

—C+F—E+V=yg, (136)

where the Euler characteristic of the S° ball ¥ = 0 — notice that this is the discrete geometry
version of the Poincare conjecture for the continuum that was proven only very recently. One
finds that the tesseract is characterized by a number of cells C = 8, faces F = 24 , edges
E = 32 and vertices V = 16. This makes sense. The discretized curvature is counted by the
edges. These do correspond with the vertices on the cube, that have to be pulled out in lines
that have to occur in the three orthogonal directions in 3D. The cube has 8 vertices, which
therefore have to turn into 32 edges on the 4 dimensional version of the cube.

It is entertaining to find out how to image polytopes. Asin 2D (Fig. 1a) we can also employ
in 3D the cutting and gluing "nets" procedure, paying the price that the visual system gets
increasingly strained. Instead of the squares, one departs from cubes that will form the cells of
the tesseract. Depart from a flat space arrangement of cubes having the same structure as the
2D version: the "Dali cross" constructed in Fig. 3a. Instead of glueing the edges of the squares
one has now to glue the faces of the cubes and it is easy to see that these glueing surfaces do not
carry intrinsic curvature for the same reason that the edges of the cube represent flat geometry.
But the vertices in 2D turn into the edges in 3D and these correspond with "cosmic strings"
with opening angle 7/2 in the plane perpendicular to the propagation direction: we have
identified the wedge curvature fluxoids. As we already stated, a total of 32 of such fluxoids
suffices to absorb all the curvature of the ball. As in 2D, upon zooming in to the microscopic
scale we will find out that these edges are truncated into a row of triangles: the tesseract is
actually truncated.

Last but not least, the construction shows that the fluxoids propagating in the x, y and z
directions have to cross each other at the 16 vertices. In order to absorb the curvature of the
ball in a "cubic way" it is obvious that fluxoids propagating in the three orthogonal directions
are required, but that they have to cross 16 times is a less obvious necessity.

Another informative way to image the tesseract is in the form of the Schlegel diagram [89]
. As a 2D projection, it can be employed to give an impression of the field of view (in perspec-
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tive) of a traveller traversing the tesseract universe, see ref. [90]. Such an observer would just
encounter a small number (32) of straight lines orientated in the three orthogonal directions
that he/she can be detect by the same interference signals signalling cosmic strings. Alter-
natively, flying by the string his/her orbit (geodesic) would acquire a sweep anchored in the
plane perpendicular to the propagation direction of the string (see next section). Notice that
the gripping weirdness of such tesseract movies has earned it a place in popular culture, a re-
cent highlight being the tesseract found at Gargantua’s singularity in the movie "Interstellar",
undoubtedly child of co-producer Kip Thorne’s imagination.

The tesseract is an elementary example illustrating the principle. In general one should
depart from the space group of the crystal. This adds quite some complexity since there are
230 space groups in 3D. For simple crystals where one can ignore the structure inside the unit
cell one only needs the information regarding the directions of the lattice axis: the point group
symmetries associated with the Bravais lattice. Both the propagation direction and the Franck
vector are oriented along the lattice vectors. Considering e.g. the hexagonal (Dg) crystal
structure. The "base plane" is associated with the "honeycomb" 7t/3 Franck vectors while the
vertical direction is governed by a two-fold rotation axis and the associated 7 disclinations.
One infers that this should imply a quasi-regular polytope characterized by a curvature fluxoid
lattice that will look quite different in different directions, reflecting that the curvature fluxoids
have a quite different topological charge pending the inequivalent lattice directions.

The classification of 4D polytopes is a much more recent affair in mathematics than the 3D
polyhedra. Started with Schaefli in the 19-th century their study continues until the present
day, involving famous contemporary mathematicians such as Coxeter and John Horton Con-
way. Does this available machinery suffices to exhaustively classify all maximally regular "cov-
erings" of S; in terms of wedge curvature fluxoids departing from the 230 space groups? Al-
though by itself quite a challenge, it is actually in a critical way stll oversimplified as we will
now find out.

9 Curvature in three dimensions and the twist disclinations.

The notion that the type II curvature fluxoid lattices are associated in 3D with polytopes is an
essential one. By only considering the wedge fluxoids as we did in the previous section we
could just get away with the "visual" nets and Schlegel diagrams. This is an appealing way for
the visual system to recognize how the polyhedra generalize to polytopes.

However, given the non-Abelian group of rotations in 3D the curvature fluxoids as rooted
in the rotational structure acquire non-Abelian traits in their topology. This is encapsulated by
the existence of the twist disclinations. We encountered the general distinction between edge
and screw dislocation. Departing for simplicity from a cubic lattice with its Cartesian preferred
frame, one can orientate the Burgers vector in a direction orthogonal to the propagation di-
rection or either in a parallel direction. This refers to the off-diagonal- (edge) and diagonal
(screw) components of the dislocation density tensor, respectively. The basic rules are similar
for the disclination densities: both the Franck vector and the propagation direction orientate
along the (cubic) lattice directions. When the Franck vector points in the same direction as
the propagation direction (diagonal entries disclination density) one recognizes the "cosmic
string" like wedge disclination highlighted in the previous section. But one may as well ori-
entate the Franck vector in the two lattice directions orthogonal to the propagation direction,
see Fig. (8): we call these the "twist" disclinations, indentified with the off diagonal entries of
the disclination density tensor.

Although recognized in the elasticity literature, these have had all along a rather marginal
existence given that free disclinations cannot exist in solids. These become physical in liquid
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crystals but it turns out that the nematic-type crystals that are realized in the laboratory (doing
the hard work in liquid crystal display technology) are of a special "uniaxial" kind. This is the
usual affair with rod-like molecules and this turns out to be associated with an exceptional
Abelian Dop 3D point group. One can identify such order with any 3D point group, but
this implies high rank tensor order parameter theories that are barely explored [65, 66]: the
topological sector is as of yet completely uncharted (see also ref. [91]). This general theme
of non-Abelian topology is related to the notions behind topological quantum computation
[92,93].

We do not have the ambition here to make a serious headway in this intriguing subject.
Instead, in Section 9.1 we will present an explicit construction of the twist curvature fluxoids
where we are much helped by the availability of the background metrics in the literature [94].
Subsequently, we will construct the holonomies associated with the wedge- and twist fluxoids
as an illustration of the non-Abelian topology: this shows that the geodesics describing e.g.
the trajectories of test particles are different pending in which order the various fluxoids are
encountered (Section 9.2).

The study of homogeneous geometries in 3 dimensions is an active field of mathemati-
cal research. A relatively recent highlight is the Thurston classification pertaining to closed
manifolds, demonstrating it to be a much richer affair than in 2D. This in turn has bearing on
the "polytope" fluxoid lattice question, enriched by the non-Abelian topology of the curvature
fluxoids. To give a first impression we consider in Section 9.3 the simple case of a Kantowski-
Sachs "cylinder" geometry to subsequently reconsider the ball S* of the previous section. Due
to the anisotropy in the background geometry, we find in the first case a simple linear ar-
ray of exclusively wedge fluxoids. On the maximally symmetric S®> we do find however that
the "tesseract" fluxoid lattice is actually characterized by a six fold degeneracy reflecting the
non-Abelian nature of this affair.

9.1 Constructing the twist fluxoids.

In the previous section we discussed the way that wedge disclinations merge with a cosmic
string metric into "wedge curvature fluxoids". We found out that these are the building blocks
to construct the "gravitational Abrikosov lattice" departing from a homogeneous- and isotropic
"ball" background, becoming polytopes such as the tesseract dealing with a cubic crystal.
But we learned in section 6 that there are in total six independent components of the de-
fect/disclination density in 3 space dimensions. Let us again take the cubic crystal as minimal
example so that we can use Cartesian coordinates to label the disclination density. For the
tesseract we mobilized an equal number of wedge fluxoids propagating in the x, y, z directions.
These correspond with the diagonal components of the disclination densities 0,.,, 0, ,, 0,, that
appear on the same footing in absorbing the background curvature. But there are in addition
the three off-diagonal components 6;; # 0,1 # j as independent curvature parameters.

How to construct the curvature fluxoids associated with such an "off-diagonal" curvature?
Let us first recall the meaning of the off-diagonal components of the disclination density tensor.
In the cubic crystal the disclination line propagation direction and Franck vector are both
pointing along the "cartesian" lattice directions x, y,z. Those of interest are characterized by
a Franck vector being orthogonal to the propagation direction of the disclination line (see Fig.
(8): the twist disclinations.

Recall the definition of the disclination density Eq. (118) and choose a disclination prop-
agating in the z-direction to find,

05 (%) = 5,(L, %), (137)

where the Franck vector € is either oriented in the k = x or y direction, corresponding with
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a rotation in the yz or xz plane. It is immediately clear that a generalization of the conical
singularity type background geometry of the wedge fluxoid is required that can be married
with the twist disclination.

It is a fortunate circumstance that such "twist" generalizations of the cosmic string metric
were explicitly constructed some time ago by Puntigam and Soleng ("PG") [94]. These au-
thors were aware of crystal geometry, albeit obviously not of crystal gravity, and they asked
the question of how to construct the equivalent geometry in the Riemannian manifold. PG
mobilized a rather sophisticated differential geometry machinery to get at the results: Moe-
bius type matrix representation differential geometry, soldering together Cartesian metrics to
translate the Volterra constructions for the twist sector into explicit metrics. As for the wedge
disclination one removes a wedge quantized by the Franck vector, to glue the surfaces back
again but now in a direction involving a direction parallel to the propagation direction of the
disclination line. This is a bit of a challenging operation for the visual system (again, Fig. 8)

In this way PG derived metrics that precisely satisfy what we need. Consider a defect
propagating in the z-direction and the metrics associated with the pair of twist disclinations
Eq. 137 turn out to be,

ds? = —dt?+dx*+dy?* +dz + (zdy —ydz)(xdy —ydx)

2(y2 + zz)(xdy — ydx)2 s

+(3)
(zdx — xdz)(xdy — ydx)
)

(138)
ds? =—dt?+dx?+dy? +dz? +

2
(
2
(

+ 2(x2 +22)(xdy—ydx)2,

in Cartesian coordinates, where r? = x2 + y? + 2z2. These describe a string-like geometry

propagating in the spatial z direction while as for the wedge variety these correspond with
topological curvature defects where the space away from the core is locally flat. The associated
curvature is parametrized in terms of a single parameter a having the same status as the deficit
angle in the wedge cosmic string geometry.

Computing the Einstein tensors associated with these metrics one finds,

ka =27'caﬁk5z(L,?c), (139)

where T is a unit vector. For the first- and second metric in Eq. (138) this vector is oriented
in the x— and y direction, respectively. We see that by associating |2] = 2wa we fulfil the
confinement condition G;; = 6;;: the opening angle gets quantized in units of the Franck
vector, determined by the point group symmetries. As for the wedge fluxoids these require a
Planck mass to stabilize their cores, rendering them to be irrelevant for the physical universe.

9.2 Non-Abelian topology: the holonomies of the curvature fluxoids.

Again, these metrics are locally flat everywhere except at the core where the quantized curva-
ture is localized. To illustrate the topological nature of the ensuing twist curvature fluxoids let
us focus in on the holonomies. Consider a closed loop around such a fluxoid, to observe how
a vector is parallel-transported around such a loop. Orient this loop in a plane perpendicular
to the propagation direction of the fluxoid, i.e. the xy plane for the metric Eq. (138). The
change in a vector R being parallel-transported around such a loop can be written as

R¥ =gt R, (140)
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where G, the Frank matrix, is the path ordered exponential of the integral of the Lorentz con-
nection (1", when transported around the closed loop S:

G!, =Pexp (§ (L)F“v) . (141)
s

Keeping an eye on the time direction as well with the string in the rest frame, let us first
consider outcome for the now familiar wedge dislocation with the metric Eq. (130). The
Lorentz connection becomes,

00 0 O
0 0 —1 0 a
(Dpe — -z _
rH 01 0 0 2n(x2+y2)(Xdy ydx) (142)
00 0 O

and the Franck matrix describes a rotation by the angle a in the xy plane,

1 0 0

0 cosa —sina
0 sina cosa
0 0 0

gr = (143)

— O O O

This implies that the trajectory of a particle determined by its geodesic approaching the wedge
fluxoid in the plane perpendicular to its direction will stay in this plane, although it will change
direction in encircling the fluxoid by an amount set by the deficit angle. This lies at the origin
of the lensing effects making it possible to observe cosmic strings.

Let us now see what happens in the presence of a twist fluxoid. For the first metric in
Eq. (138) the Lorentz connection takes the form

000 0
000 0 a
Ly — -+ _
™=lo 0 0 —1|2rzsyy?dE =) (144
001 0

and the Franck matrix describes now a rotation by an angle a in the y —z plane:

10 0 0
01 0 0
bo—
g v 0 0 cosa —sina (145)

0 0 sina cosa

Similarly, for the second metric in Eq. (138) one finds a rotation in the x —z plane. In other
words, where the wedge disclination causes a deficit angle around an axis parallel to the
disclination line, the twist disclinations induce a similar deficit angle around one of the axis
perpendicular to the disclination line as illustrated in Fig. 8. This implies that a particle ap-
proaching a twist fluxoid in the xy plane, will upon encircling the fluxoid be swept out of this
plane by an amount set by a. Pending whether one is dealing with an "xz" or "yz" (or an ar-
bitrary combination of the two) the trajectory will be also altered with regard to its approach
in the xy plane.

These holonomies signal the non-Abelian nature of the topology in this geometrical setting,
reflecting the non-Abelian nature of the rotation group in 3D. The outcomes are pending the
order of the different operations. Imagine a space containing two straight curvature fluxoids
lines in parallel orientation. Consider a probe particle on a geodesic trajectory approaching
these fluxoids in the plane orthogonal to the propagation direction. The first fluxoid this
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particle encounters is of the wedge kind and accordingly the particle will chance its direction,
staying however in the plane of approach. Subsequently, it encounters a twist dislocation: we
learn from its holonomy that the particle will be slung out of the plane of approach. But now
consider the same situation except that the particle first meets the twist- and then the wedge
fluxoid. One infers immediately that the trajectory of the particle leaving this "system" will be
very different compared to the first case.

9.3 Anisotropic curvature: the cases of Kantowski-Sachs and the 3D ball.

We have established that the nature of curvature fluxoids in 3D is a quite rich affair: there
are a total of six distinguishable of such fluxoids that can be in turn distinguished in terms of
their wedge- or twist character. There is a lot more going on compared to superconductors
characterized by a single form of fluxoid characterized by a scalar charge (flux quantum). The
latter is of course due to the fact that there is only one kind of spatial gauge curvature in
electrodynamics — the magnetic field. In a type II superconductor this magnetic field gets just
chopped up in an array of quantized fluxoids.

Geometry in 3D including the relations to topology is a famously interesting and challeng-
ing affair, forming a central subject of study in pure mathematics until the present day. It
was already understood in the 19-th century that in 2D three geometries are fundamental:
the sphere S2, the euclidean plane with no curvature E2 and the hyperbolic plane H2. But
how to generalize this to the much richer three dimensional case? A crucial progress is due
to Thurston who arrived at a classification of homogeneous closed 3D geometries in the late
1970’s [95], identifying 8 different classes. This played a key role via his "geometrization con-
jecture" to the famous achievement by Perelman proving the Poincare conjecture. This boils
down to the notion that regardless the initial conditions, during the evolution ("Ricci flow")
the geometry will homogenize into one of Thurston’s "model geometries" (see, e.g. [96]) with
its topological ramifications (e.g., finding closed "sphere" like manifolds).

This Thurston classification also clarifies the much older Bianchi classification of anisotropic
homogeneous 3D manifolds [97], and the "exceptional" Kantowski-Sachs case [98] which are
more familiar to physicists. These can all be identified within Thurston’s fundamental classi-
fication — in Ref’s [99,100] this is explained for physicists. A crucial additional in Thurston’s
scheme is the connection to topology: his classes are the ones that can be realized on closed
manifolds. Apparently the classification of 3D geometries on open, hyperbolic manifolds is
still an open problem. We will ignore such manifolds here all together, leaving it to a future
effort.

Once again, the question is regarding the nature of the "Abrikosov lattice" of curvature flux-
oids. The essence is that instead of having one homogeneous form of spatial gauge curvature
as in electromagnetism — the magnetic field — there are now the eight different kinds of cur-
vatures according to Thurston as if there are now eight different kinds of magnetic field. The
curvature fluxoids themselves occur in six different varieties with their tensor properties con-
trolled by the space groups of the solid, distinguishable through their wedge- or twist nature
illustrating the non-abelian nature of the topology as rooted in the 3D rotational /point group
symmetries. Is it possible to classify the possible forms of "gravitational Abrikosov lattices"? As
we argued in the previous section this may reveal hitherto unrecognized connections between
discrete geometry — the polytopes — and differential/algebraic geometry and topology.

This may be the best way to formulate the mathematical challenge. Our ambition is here
very limited: let us just consider the simplest cases to trigger the curiosity of the reader. Before
we revisit S3, the 3D ball that we already looked at the previous section let us first consider
the Kantowski-Sachs case which appears as the simplest possible option.

In the previous section we were a bit cavalier in the construction of the tesseract. We
should inspect the Einstein tensor of the background geometry to find out how to topologize
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the curvature using the fundamental topological rule: the components of the Einstein tensor
have to be in one-to-one relation with the components of the disclination density, G;; = 6;;.
Let us see how this works in Kantowski-Sachs space or Thurston type 4 [100].

The space-time version has a long history in cosmology but we are here only interested in
the 3D spatial manifold having as metric,

dI* = a*dx* + b*(d6? +5in*0d $p?) (146)

in terms of cylinder coordinates with a2, b2 positive constants. This is just a 3D cylinder, a
simply connected space with the topology R x S? where R is the straight line and S? the sphere.
We assume that the crystal has cubic symmetry and therefore we need its Einstein tensor in
Cartesian coordinates u, v =x, Y, 2,

—a’?/b®> 0 0
Gy = 0 00 |. (147)
0 00

Looking at the spatial section, this has the topology of a 3D cylinder: R x S?, where the axis of
the cylinder is in the x direction. For every x an S? is realized in the yz plane with its scalar
curvature parametrized by —a?/b%. It is immediately clear how to construct the polytope:
the intuitive procedure we used in the previous section applies immediately. For a specific x
we are just dealing with the 2D sphere turning into the cube where the corners correspond
with the 2D wedge fluxoids. These are now pulled out in the x-direction turning into a cubic
array of straight 3D wedge fluxoid lines propagating in the x-direction. It is also immediately
obvious that this absorbs the curvature embodied by the only non-zero "wedge" component of
the Einstein tensor G, .

This is of course coincident with what we would expect from the "net" procedure in the
previous section when we were only aware of the wedge fluxoids. But let us now revisit the 3D
ball. By itself there was nothing wrong with the net/Schlegel diagram construction showing
the tesseract formed entirely from wedge fluxoids. However, in this maximally symmetric
space we better be aware that there is room as well for twist fluxoids. Let us first inspect the
Einstein tensor of S3. Given a radius R it is a textbook wisdom [30] that the Einstein tensor is
proportional to the metric, in 3D hyperspherical coordinates r, 6, ¢

di? = dr? + R%sin?(r /R)(d6? + sin® 0d $2). (148)

But since the fluxoids are quantized according to the cubic symmetry of the crystal we need
the corresponding Einstein tensor again in the awkward Cartesian coordinates, u, v = x, y, 2
while R? = x2 + y2 + 22

1—y?—2? Xy Xz
G :—1 Xy 1—x2—22 vz (149)
' R2—1 22 |’
Xz ¥z 1l—x“—y

This shows that in this cubic frame there is an equal amount of "wedge- and twist sourcing” in
the background, not surprisingly since the isometry of the geometry is maximally isotropic.The
implication is that we may as well employ the twist disclinations to absorb the curvature.

It is a fundamental rule that because of the cubic symmetry of the crystal and the maximal
isotropy of S° a tesseract has to form with the 32 edges corresponding with the fluxoid lines
orientated in the x, ¥, z directions. In the previous section we assumed that the Franck vectors
would point in the same directions as their propagation direction forming wedge fluxoids
characterized by 6;; absorbing the G;; curvature in the background. But we have now the
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freedom to orientate the Franck vectors in the two directions orthogonal to their propagation
direction since we learned that the fluxoids also exist in the twist form.

Although the disclination density are symmetric, their propagation direction and the Franck
vectors are of course distinguishable given a realization of the type II "tesseract" lattice. Let
us therefore use capital symbols X,Y, Z to indicate the propagation direction and x, y,z for
the orientation of the Franck vector. The crystal symmetry imposes that the disclination lines
should always correspond with the edges of the tesseract, being equally orientated along the
X,Y,Z directions. We discovered in the previous section that the curvature can be absorbed
entirely by wedge disclinations, corresponding with Xx,Yy and Zz components of the discli-
nation currents in this "asymmetric" notation. However, let us keep a wedge disclination in the
X-direction absorbing the "x" (Franck vector) curvature but instead of employing the wedge
disclinations in the y,z directions we may as well absorb the curvature in the z direction by
using a Y twist disclination and the other way around: we can label this as a Xx, Yz, Zy Tesser-
act. We can in the same way identify Xz,Yy,Zx and Xy, Yz, Zz "wedge and twist mixtures".
Finally there are two pure twist tesseracts: Xy, Yz, Zx and Xz,Y x,Zx. The conclusion is that
the Tesseract is actually sixfold degenerate! This is clearly rooted in the non-Abelian nature of
the rotational properties of the cubic lattice together with the maximal isometry of S3.

The take home message is that the relations between the polytopes, crystal space groups
and Riemannian geometry are further enriched by these interesting intricacies emerging from
the non-Abelian rotational symmetry of the crystal point group that in turn communicate di-
rectly with the nature of the anisotropic curvature classified by Thurston for compact 3D man-
ifolds. We just scratched the surface in this first encounter with the "gravitational Abrikosov
lattices", signalling that there is a profound mathematical landscape to be explored. We hope
that this will stimulate others to have a closer look.

10 Discussion and outlook.

Arriving at the end of this first exploration of crystal gravity, the question arises: what it is good
for? Although we percieved this adventure as a splendid form of physical (and, potentially,
mathematical-) recreation on basis of what we have found out so far we are not convinced
that any of it will be of grave consequence.

The recreation aspect is perhaps most obvious in the later "mathematical" chapters dealing
with the gravitational Abrikosov lattice in two- and three dimensional spaces with Euclidean
signature. A common thread in the development has been in the ease to understand matters
intuitively, with the pattern recognition capacity of the human visual system being of great
help in directly recognizing what is going on. The ball turning into a cube by the "higgsing of
the geometry" by a square lattice crystal in two dimensions (Section VIIIA) is case in point. It
is directly obvious that the intrinsic curvature of the sphere is absorbed in the corners of the
cube. The entertaining part is that this is precisely coincident with the Higgsing of the curved
geometry where the corners have the status of "curvature fluxoids", deep inside governed by
the same principles responsible for the Abrikosov flux lattice in superconductors. Isn’t it so
that the "cube" is by the simplest way to explain to students the general workings of fluxoids
in general?

There is surely still the exercise to be completed of classifying all "gravitational Abrikosov
lattices" in 2D, departing from the isometry and topology of the background manifold and the
space group of the crystal. But this is literally an exercise: the mathematical counting device
to accomplish has been available in the 19-th century in the form of Euler’s polyhedral formula
Eq. (135).

Geometry in three Euclidean dimensions is however a different affair: it is still a frontier of
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contemporary mathematics. In a recent era there has been substantial progress in the classifi-
cation of polytopes like the tesseract while the study of 3D curved manifolds has been on the
foreground with Perelman’s proof of the Poincaré conjecture resting on Thurston’s classifica-
tion of closed manifolds. In addition one has to cope with the richness of the 3D space groups.
Last but not least, one has to deal with the non-Abelian nature of the curvature fluxoids as
we discussed in the previous section. These are just observations indicating that there is a lot
going on. However, in the 19-th century Schéfli already wrote down the 3D generalization
of Euler’s polyhedral formula, Eq. (136). This suggests that by just departing from tessella-
tions determined by the space group one can keep track of how the intricacies of Thurnston’s
fundamental geometries, the "non-Abelian" degeneracies and so forth of the "polytope type 11
lattice".

Whether any of it will ever be of grave consequence to physics is unclear to us. To stand
any chance one has to assert the presence of a solid of cosmological dimensions — the argu-
ments in section IV insisting that the gravitational penetration depth beyond which the crystal
gravity effects become manifest has to be expressed in units of light years. One can contem-
plate that dark matter is elastic, an idea that has repeatedly been forwarded in the cosmology
community. When the "tesseracts" would have a physical existence there would have been po-
tential for grand consequence. It could then have offered a surprising mechanism explaining
the cosmological flatness problem. Spatial curvature would have been expelled everywhere
except for a handful of cosmic string like curvature fluxoids. The probability for any of these
to be observable from the earth would become near infinitesimal.

But the Lorentzian time-axis interferes. As we discussed in Section VII, the gravitating core
of the fluxoids would require Planck scale energy density to be stabilized, a requirement which
cannot possibly be combined with the rather mundane scales governing any form of "cosmo-
logical solid" as implied by e.g. the bounds on the graviton mass. At first sight it appears as
a paradox: the non-linear nature of geometrical curvature and crystal curvature implies the
mutual confinement. But the same non-linearity rooted in the semi-direct relation between
translations and rotations offers a simple but boring solution. The topological current associ-
ated with crystal curvature — the defect density — reflects this non-linearity in the form of "lego
brick topology". The dislocations with their topological Burgers vector quanta play the role of
the bricks that together with a rather general building regulation ("Burgers vector polariza-
tion") may represent rotational "topology" — only the most sturdy constructions (disclinations)
re-establish topological quantization. In the solid dark matter universe we predict by lack of
alternatives the maximally structureless outcome — the dislocation gas.

On a side, there is yet another form of matter that breaks space-time symmetry that may
be looked at more closely: liquid crystals. These are substances that maintain translations
but break the rotational invariance. These can be viewed as descendants of crystals: upon
proliferating dislocations translational symmetry is restored but as long as these occur such that
the Burgers vectors are locally antiparallel the rotational symmetry breaking is maintained.
Disclinations are the natural topological defects while the "torque rigidity" is now deconfined
and these disclinations relate to the background curvature by the same "Coulomb force" rule
as for e.g. magnetic fluxoids. But also in this context one runs into the Planck scale core
problem associated with the curvature fluxoid cores. This amounts to a conundrum: typical
liquid crystals are formed from rod-like molecules and it is far from clear how to identify the
"gas of equal Burgers vectors dislocations" dealing with such microscopy.

Let us reconsider the main limitation of this study: we have been entirely focussed on
stationary geometries. The core-business of GR is of course revolving around dynamical evo-
lutions. The construction of a dynamical theory of crystal gravity is a considerable challenge.
One has to combine the relativistic rigor of the old "relasticity" constructions with the de-
mands of symmetry breaking including the demise of Lorentz invariance. Surprises cannot be
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excluded but we are not optimistic. After all, the main effects pertain to spatial curvature and
we found out that this is eventually captured by the boring dislocation gas. In other regards,
we expect that there is not much of a difference between solid matter as compared to the usual
liquids in dealing with black holes, cosmological evolutions and so forth.

What remains are a number of rather practical results that we presented in the early Sec-
tions IV and V. A first issue relates to the question whether dark matter could be an elastic
substance. We have the impression that this can be easily excluded or confirmed using avail-
able astronomical surveys. It is not clear to us whether it is fully realized by cosmologists that
the distinguishing characteristic of an elastic manifold is in its shear rigidity. Visible matter has
the capacity to exert stress on dark matter (and vice versa) through gravity. The distinguishing
characteristic of elastic dark matter should be that it will exert a restoring force in response
to a shear stress build up by visible matter through the gravitational force. As highlighted
repeatedly, shear stress is associated with quadrupoles: one therefore expects that the spin 2
components in the large scale distributions of visible matter would be suppressed. It is up to
the astronomers to further explore this venue when the need arises.

Yet another practical matter is our observation in Section VE that gravitational waves have
the capacity to be absorbed by mobile dislocations that occur in the bulk of a solid. Obviously,
this may become of relevance only in extreme conditions. For instance, the pinning energy of
dislocations in Weber style gravitational wave detectors will exceed by many orders of magni-
tude the shear stress caused by a passing gravitational wave. Yet again, this may be of interest
dealing with a rocky planet that is littered by grain boundaries being in proximity of a merging
black hole binary.

Finally, let us turn to the initial motivation for this work: can an "elasticity-gravity" holo-
graphic duality be constructed in analogy with the greatly successful fluid-gravity duality?
With the latter it is demonstrated that the Navier-Stokes equations describing the hydrody-
namical fluid in the boundary can be directly related to the gradient expansion near-horizon
gravitational dynamics in the deep interior of the holographic bulk. Can a similar procedure
be formulated, relating the elasticity governing the macroscopic properties of the boundary
crystal (having a similar status as the Navier-Stokes equations of the fluid) to the deep interior
gravitational physics in the bulk?

The point of departure is the matter of principle that the translational symmetry breaking is
"relevant towards the IR": the inhomogeneity is increasing along the holographic radial direc-
tions moving from the boundary to the deep interior: the crystal lattice is largest at the black
brane horizon. The difference with the boundary is that this bulk crystal lives in a dynamical
GR background where Newton’s constant is of "order 1": the gravitational penetration depth
A becomes microscopic. This is crystal gravity territory.

One is in first instance interested in linear response — the probe limit — and the required
machinery is found in section IV In particular, the stress-formalism with its "stress graviton"
tensor gauge fields should be particularly convenient, encoding the degrees of freedom of
the crystal in the same mathematical language as the gravitons themselves. But there is yet
another complication: the extra dimension of the holographic bulk in the form of the radial
direction.

Along the radial direction the symmetry of the crystal is frozen and the lattice constants
etcetera are the same in the deep interior as near the boundary. The amplitude of the mod-
ulation is just increasing towards the "deep infrared". Considering the overall symmetry of
this bulk, the radial direction is similar to the time axis. Translations and rotations are bro-
ken only in the space directions shared by bulk and boundary. The Lorentzian time direction
stays homogeneous but in the holographic bulk there is in addition the radial direction that
is also homogeneous. The radial direction is like an additional time axis, albeit now with an
Euclidean signature. It is of course also the key dimension associated with the Anti-de-Sitter
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curvature and the holographic dictionary. This amounts to a considerable complication even
on the probe level: one has now to accommodate next to the time axis also an "anisotropic"
Euclidean radial direction, introducing more of the kind of difficulties one encounters with
the time axis (Section IVG). It remains to be seen whether this suffices to "pull" the near hori-
zon dynamics along the radial axis to the boundary which is the central wheel in fluid-gravity
duality.

A Conventions

We employ the "mostly plus" metric signature, the Minkowski metric tensor is
Nuy = diag(—1,1,1,1). The partition function, action and Lagrangian are related as

Z = fD{fields} exp(iS/h), S = fdtd3x L. We use ordinary SI units, so that for instance
the Maxwell Lagrangian is:

1
Litasw = —4—F F®Y +J,A"

1 12
= ﬂ(E E2—B)—Vp+J,A,. (150)
0

Many calculations are carried out in imaginary time T = it. For the Matsubara frequency w,,
this leads to the analytic continuation:

—iw, > w+id, 0K 1. (151)

In the mostly-plus metric signature, most quadratic terms in the Lagrangian are negative. By
going to imaginary time, the kinetic terms are also negative. For this reason we define the
Euclidean Lagrangian as Ly = —L(t = —it). We therefore use:

Z= f D{fields}e 5/

Sg = J dt &3x (—L0) = f dr d3x Lg. (152)

B Helical coordinates.

Here we present the details of the helical coordinates that are used throughout this work. It
is a coordinate system where the basis vector are eigenvectors under 3-rotation in momentum
space. This mostly follows Kleinert’s definitions [5].

B.1 The helical basis

For concreteness, we parametrize the 3-momentum q by angles 7, { as

(qx qy qz)zq(cosn sinmn cos{ sinnsinf,’), (153)

where g = |q|.
The first step is to define a cartesian coordinate system in momentum space, with basis
vectors:
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"= (cosm sinncos¢ sinnsin C)T ,
oR — (— sinn cosmcos{ cosmsin C)T ,
¢5=(0 sin¢ —cos C)T. (154)

Here L is longitudinal (parallel to momentum) while R and S are transverse (orthogonal to
momentum and to each other). These vectors are all real é¥ = ¢¥* E =L R, S.
The generator of rotations around axis k in 3-space is

(Sk)mn = _iekmn . (155)
The helicity matrix H is now defined as
Hmn = qk(sk)mn . (156)

Linear combinations of the vectors Eq. (154) which are eigenvectors ¢ of H with eigenvalue
h=0,+1,—1 are

1 1
80 =gl el = —_ (&5 +ieh), 67l = —— (&5 —ieh). (157)

V2 V2

Note that these eigenvectors are related as

e = g1, el = g+l (158)

These vectors are orthonormal and complete

el = 5y, (159)
m

D=5, (160)
h

We can define the projectors on these helicity eigenvectors
h) _ s(h)4(h
P = e, (161)

which satisfy (PM)2 = (M and 3, PW =1.
The helicity matrix H is part of the familiar SU(2) or SO(3)-structure, with raising and
lowering matrices

H* =—v2¢tls,, H™ =+v2¢'s,. (162)

These satisfy the usual algebra

[H")H ]=2H, [H.H" ]=H", [HH ]=—H . (163)

These operators act on the basis vectors as

H*é¢tl =0, H et = /280, (164)
HYe0 = V2611, H 8% =+v2¢71, (165)
H*e ' =428, H ¢! =o0. (166)
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B.2 Helicity decomposition of vector fields.

We can express a vector field in helicity components. With the projectors (161), a natural
definition of helicity components of a vector field A,,(q) follows from

An(@= > P, =>"aMeMy,). (167)
h=0,+1,~1 h
However, for real-valued fields A(x), the Fourier components must obey A(—q) = A*(q) un-
der momentum inversion. We are going to define helicity components which also satisfy this
condition [24]. Under reversal of momentum q — —q, the angles 1 and ¢ transforms as

n—=mn—mn, on+( (168)
implying that,
cos7 — —cosn, sinn — sin7n,
cos{ — —cos{, sin{ — —sin(. (169)

This leads to the following transformation properties of the unit vectors,

e'(q) =—¢"(—q), ¢%(q) =—¢"(—q),
eR(q) =2e™(—q), et (q) =—e"M(—q),
&3(q) =—¢*5(—q), e ) =—6""(—q). (170)

We will insert a factor of i for the components L, S, 0 of vector fields, to ensure the vector field
stays real-valued:

— sl AL o R AR | :4S S
An=ie A" +e A" +ie) A
— 30 A0 | iatlatl | ia—1p—1
=ié, A" +ie AT +ie AT 171
For instance this implies,

FmAm(x) = ig,AR(q) = —qA"(q). (172)

The momentum-space and helicity components are then defined by

L __ _ :slx 0 _ _ :40%
A" =—ie Ay, A" =—ie Ay,
AR — AS*AH , A+1 — _lé:l—l*An ,
S _ _ :aSx =1 __ _ :a—1x
AS =—itS*A,, AT =i lA,. (173)

Because the factors of —i change sign under complex conjugation, while A,(q) = A% (—q) since
A, (x) is real-valued, the components on the left-hand side obey this condition as well.
For the curl of a vector field B,,, = &,k 9,Ax this implies (using J,, — iq,):

B°=0 BTl =—gA™l Bl=¢gal. (174)
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B.3 Helicity decomposition of tensor fields.

For vector fields, we have used the spin-1 operator Sy, in the defining representation Eq. (155).
Stress tensors are (0,2)-tensors, so we need a tensor representation. It is given by
Sma=Sn®1,+1,®S, or explicitly:

(Sk)mn,ab = 5mn(Sk)ab + (Sk)mn5ab . (175)
The helicity tensor is definedas H=H® 1+ 1® H:

Hmn,ab = Clk(Sk)mn,ab = é2(Sk)mn,ab . (176)

Also the raising and lowering operators are definedas Hy =H. ® 1+ 1 ® H,
The basis vectors (or rather, tensors) can be expressed by linear combinations of tensor
products of the basis vectors egf) of Eq. (157):

el = 7 chfeghigh, 177)
hy+h,=h
Here Csh;lhz are the Clebsch-Gordan coefficients with quantum numbers s = 0,1,2 and

h=—s,...,s. For spin-1 x spin-1 these give (vector indices suppressed):

e (q)=¢""e" =e"%(q), (178)

éz’l(Q): ﬁ( +1AO+e A+1) :_éz,—l*(q), (179)
1

22,0 A+14—1 2040 1A+1 £2,0%

e“(qQ)=—=(eTé " +2¢e%e" +e ) =é“"(q), (180)
V6
1

sL1(q) = A+150 _ 204+1 _al-1x

q)=—=("é&"—-¢"¢"") =—¢""(q), (181)

V2

A 1 1,1 ac1a A

el,O(q) — 5(64-16 1 —¢ 1€+1) — 61’0*(61), (182)
1

é0,0(q) — ﬁ(éOéO —é+1é_1 —é_1é+1) — é0,0*(q) . (183)

Or in short &5 = (—1)"é¢7"*, The basis tensors with negative h-value are found by changing
all +1 <= —1 on the right-hand side.
These are orthonormal and complete:

Asihi® 58ohy
errlla Cna — 551,52 5h1,h2) (184)
ma
s,h S,hk
€maCnb = OmnOab (185)
s,h
Again we can define projectors
s,h __ as,h as,hx
Pmn,ab - emaenb (186)
satisfying,
s;h psth _
Pmk,acpkn,cb mn ab555’5hh’ Z Pmn ab = 6mnOap - (187)
s,h
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2h — p2h

ma am’

We also see that s = 2,0 are symmetric tensors, while s = 1 is antisymmetric: e
0 — 0 o 1its LLE — _ L1k
e, = €., While e’ =—e_».
Under momentum reversal q — —q, the behaviour is inferred from that of the spin-1
vectors on the right-hand side, but since all spin-1 vectors are odd Eq. (170), the 2-tensors are
all even, leading to 86-M(q) = 65M*(—q) for all s, h.

A general tensor field can then be decomposed:

Apg =D Po1 A= &hah, (188)
s,h s,h

A=A (189)
nb

These components satisfy A%"(—q) = A¥"*(q).

C Topological defects of crystals, a primer.

Some of the readers may not be familiar with the basics of the topology associated with crys-
talline order. This has actually played a key role in the history of the role of topology in physics.
The dislocation was the first topological defect recognized as such by the dutch theorist Burg-
ers, identifying the Burgers vector as the topological quantum number employing his Burgers
circuit. As emphasized repeatedly, the pattern recognition capacities of the human visual sys-
tem are quite useful in helping us to comprehend these matters. There is not better way to get
quickly acquainted to these matters than by inspecting simple cartoon pictures. Much of this
elementary introduction will rest on this "method". For completeness, in the last subsection
we will present a summary of some of the main results of algebraic topology in this context

We will follow here the same organization as in the main text. First we will focus in on
the translational defects: the dislocations in their edge- and screw varieties, as well as their
unusual "fracton" kinematics (glide versus climb motions), the main actors in Section 5. In the
second subsection we will discuss the "proper" rotational defects at the centre of attention in
Sections 8, 9, the disclinations. In fact, these have been explored much less than dislocations
in this particular context since these do not occur in normal solids for the confinement reasons
discussed at length in the main text.

The third section may be of interest even to the readers who are familiar with the subject:
the defect density, playing a key role in Section 7. This revolves around the "topological image"
of the fact that finite translations are indistinguishable from rotations (the semi-direct condi-
tion). The fundamental condition for a crystal to "absorb" curvature is in the requirement that
a finite density (infinite number) of dislocations with equal Burgers vectors should be present.
In turn, there are different ways to organize such dislocations: in three space dimensions in
the form of a line of singularities (disclination), or in a plane ("open" grain boundary) or even
in the form of just a gas of dislocations. The soft-matter community exploring the rigid 2D
curved backgrounds appears to be aware but otherwise one does not find reference to this
affair in the literature.

Once again, much of it can be easily visualized by resting on a procedure pioneered by
Volterra in the 19-th century: by folding, cutting and glueing pieces of solid stuff (like paper)
where the only required abstraction is that one has to work with perfect crystal lattices.

C.1 Restoring translations: the dislocations.

This passage is illustrating the various motives that are at work in the Section 5 in the main
text.
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The subject of topology in physics was literally born in 1939 by the identification by Burgers
of the topological nature of the dislocation, resting on the work by Volterra and other mathe-
maticians. It is the topological excitation exclusively associated with translational symmetry
breaking: as e.g. free vortices are the unique agents associated with the destruction of the
superfluids, free dislocations turn a crystal actually in at least a liquid crystal if not in a true
liquid. These restore the translation invariance while extra conditions are required for the
rotational symmetry breaking, as we will discuss.

The edge dislocation is readily visualized. Insert an extra plane of atoms in a crystal that
ends somewhere. The end of this plane forms a line in the three dimensional crystal, analogous
to the vortex line. Take a plane perpendicular to this line and draw a loop of arbitrary size
around the dislocation (the Burgers circuit) and compute

§ du, =n,. (190)

As for the vortex, the displacement field has become multivalued while the associated topo-
logical invariant is now a spatial vector 7i: the Burgers vector. The translational symmetry
breaking is destroyed: in geometrical language, upon measuring distances by hopping from
atom to atom one finds that one more hop is needed "below" the dislocation (Fig. 4) as com-
pared to "above" the dislocation (the multivaluedness). In the main text, we meet this Burgers
loop in Eq.’s ( 81 -84) linking it via Stokes theorem to the local expression for the dislocation
current.

As we emphasized in the second Section, the effects of the point group (anisotropy) on
linearized elasticity are quantitative and rather inconsequential. One can safely rely on the
isotropic theory instead. But this is very different for the dislocations where the point group
symmetry is crucial. The Burgers vector takes values in the lattice vectors, in accordance
with the discrete point group rotational symmetry of the lattice. The elementary dislocations
are characterized by Burgers vectors with a length set by the lattice constants. For instance
on a square lattice this is governed by the C, rotations, and the Burgers vector takes values
b= (1,0),(0,1),(—1,0),(0,—1) while in e.g. a hexagonal crystal it will take 6 values. As
we discussed in Section 5, not only the Burger’s vectors are oriented along the axis of the
crystal, but also the direction of propagation of the dislocation line in the lattice. The static
topological source (disclination density) is therefore a symmetric rank 2 tensor in 3D that
is invariant under the point group operations, with one index referring to the propagation
direction of the dislocation line and the other to the direction of the Burgers vector.

The edge dislocation in 3D (figure 4) is characterized by a Burgers vector oriented per-
pendicular to the direction of the defect line.But it is also possible to have a Burgers vector
oriented in the same direction as the defect line: this is the screw dislocation (see Fig. 5), en-
coded in the diagonal of the dislocation density tensor. This distinction that is already manifest
departing from isotropic elasticity (see main text) is general, it also applies when one is paying
full tribute to the space group symmetries.

In Section IV C we referred to the unusual constraints for the kinematics of dislocations:
the "glide" versus "climb" motions, that were only recently recognized to be examples of the
general "fracton" principle. This was however understood early on because it is obvious from
the simple cartoons. Dealing with an atomistic solid at temperatures well below the melting
temperature the density of "loose atoms" (substitutional/interstitial defects) is exponentially
suppressed and very low. Consider now the dislocation line as the termination of an extra
plane of atoms inserted in the solid. In order to move in the direction perpendicular to the
Burgers vector one needs loose atoms in order to extend the plane but these extra atoms are
not available and this motion is impossible (see Fig. 6). This is the "climb motion" that is
impeded. On the other hand, in order to move the dislocation in the direction of the Burgers

83


https://scipost.org
https://scipost.org/SciPostPhys.13.2.039

Scil SciPost Phys. 13, 039 (2022)

Figure 4: Illustration of an edge dislocation in a crystal. An extra column of atoms
has been inserted in the lower half plane. The Burgers loop, indicated by the dotted
green line, needs one extra hop below the dislocation core to close. The resulting
Burgers vector points perpendicular to the column of inserted atoms

Figure 5: Illustration of a screw dislocation. When a Burgers loop is taken around
the dislocation line (large red arrow), an extra step is needed vertically to close the
loop. The resulting Burgers vector (small green arrow) is therefore parallel to the
dislocation line.

vector one has to just break a bond and reattach it at a nearest-neighbour site: this is the "glide
motion" that is allowed.

Resonating with the observations in the main text that the geometry is associated with
torsion, it has been long known that dislocations do not fall in the gravity field of the earth.
The reason is that they "do not occupy volume" and they do not carry gravitational mass — there
is no issue of the kind that spoiled the disclinations, that a big gravitational mass is required
to stabilize the geometrical curvature at the core.

Fig. (6) illustrates in a pictorial fashion the principle that when a static external shear stress
is applied in a directional parallel to the Burgers vector, the dislocation will accelerate in the
glide direction. Apply a force in opposite directions to the upper- and lower surface of the
"crystal" in the figure corresponding with a shear stress (this is the effect of the graviton): by
re-attaching the dislocation core in the glide direction this shear strain will relax. This is the
fundamental principle behind metal working. As it turns out, in a typical metal glued together
by the rather un-directional "metallic bond" a dislocation will accelerate in the field of shear
force with a characteristic inertial mass equal to the mass of the atoms forming the metal.
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Figure 6: Glide motion of an edge dislocation under static shear stress. The disloca-
tion will move in the direction of its Burgers vector.

Dealing however with covalent- and ionic solids the glide motion of such dislocations involves
a large activation energy with the effect that the dislocations are immobile. Accordingly, these
solids are brittle.

C.2 The rotational defects: the disclinations.

Dislocations are the topological agents associated with the restoration of translational sym-
metry. But crystals also break the isotropy of space down to a discrete point group. Other
topological agents are apparently required to restore the rotational invariance. The general
topological entity is the defect density that we will discuss in the next subsection. The discli-
nation is a particular realization fulfilling the general defect density requirement, having a
special status because it enforces a topological quantization of the rotational structure in the
form of the Franck vector topological invariant.

In fact, disclinations attracted not much attention in the history of the physics of solids for
the reason that they are never encountered in free form. As we explained at length in the main
text these are confined in a flat space, it takes an infinite energy to create them. An exception is
found in the context of two dimensional solids like graphene. This refers to the cone, alluded
to repeatedly, using the third dimension to avoid the confinement.

The Volterra process is the easy-to-visualize sequence of cutting and welding of the solid,
respecting topological requirements. Imagine again the paper cone, constructed by cutting out
a wedge and glueing the sheet of paper. But now this sheet is formed from a perfect "chicken
wire" (hexagonal) graphene lattice. Imagine taking out a wedge but in such a way that the
chemical damage is avoided as much as possible. From Fig. (7) one infers that by placing a
pentagon at the tip of the cone one can actually "cut and glue" the lattice in such a way that the
lattice is perfect everywhere else. One can instead add a wedge, terminating it with a 7-ring
at the tip: this is the anti-disclination accommodating in fact a hyperbolic curvature which is
(as usual) hard to visualize even in two dimensions.

The "Volterra" cutting- and glueing "seam" has become immaterial, but the consequence
is that the defect at the tip acquires a quantized rotational value (the pentagon). This is
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Figure 7: Wedge disclination in a graphene-like structure. At the centre of the discli-
nation a 5-ring has been inserted. The 6-fold symmetry is hereby becoming globally
ambiguous.

characterized by a deficit angle that precisely matches the missing- or extra 7t/3 deficit angle
associated with the pentagon or heptagon, respectively. This angle is the topological quantum
number characterizing the disclination, called the Franck "scalar" in 2D. It is quantized in units
of 2rt/N where N is the periodicity associate with the point group operations: for a Cg axis
N =6.

Hence, we observe that the rotational topological defects are point-like in 2D, as the dis-
locations. Obviously, we also certified that these are uniquely associated with curvature in the
crystal geometry — see the main text. But we can only visualize them easily using the third
dimension: one infers the obvious difficulty drawing it in the plane given the confining strains,
as in Fig. (7).

As for the dislocations, 2D is not quite representative for higher dimensions although it is
a useful point of departure. We learned that the Burger’s vector of the 2D edge dislocations
turns into the 3D Burgers vector while the dislocation "point" turns into a 3D line characterized
by a vector enumerating the propagation direction, combining in a rank 2 symmetric tensor
dislocation density. This works in the same way for disclinations. The Franck vector is aligned
with the rotational axis of the disclination. This axis is pointing by default in the third dimen-
sion in 2D and therefore the topological invariant is just the Franck scalar. This reflects on the
one hand the Abelian nature of point groups in 2D, as well as the fact that there is only scalar
curvature in this dimension (Section 6.4).

In 3D this turns into a Franck vector taking values set by the crystal point group symmetry.
In addition, the disclination will turn into a line propagating along lattice directions in 3D.
Hence, the topological disclination density will have the same structure as the dislocation
density: it is a rank 2 symmetric tensor that is stitched together from the vector indicating the
propagation direction ("sense") of the disclination line and the Frank vector, which will both
transform under the point group symmetries of the crystal.

The simplest way to construct a 3D disclination is to just "pull out" the 2D disclination in the
third direction: this is the analogue of the construction of the 3D edge dislocation. Take a 3D
"cake", cut out the wedge and weld it together again. Given the confinement this is impossible
to visualize; in Fig. (8) one attempts to fool the visual system by starting from a finite size
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Figure 8: An overview of the different types of Dislocations and disclinations by
Volterra construction. On the top row are the dislocations: the two types of edge
dislocations, where the Burgers vector (in green) is perpendicular to the dislocation
line (red), and the screw dislocation, where the dislocation line and Burgers vector
are parallel. On the bottom row are the disclinations: the wedge disclination, where
the Frank vector (in green) is parallel to the dislocation line (in red), and the two
twist disclinations where the Frank vector is perpendicular to the dislocation line.
After Ref. [94].

ring: the bottom left image corresponds with this "wedge disclination", characterized by a
Franck vector being parallel to the propagation direction. These are at the focus of attention
in Section 8.

As for the dislocations one can decompose the topological currents into components where
the topological vectors and propagation vectors are either aligned or orthogonal — the edge
and screw dislocation affair. We just constructed the case that Franck- and propagation vector
are parallel — the wedge disclinations — but we are left with two transversal orientations. These
are the twist disclinations highlighted in Section 9: their Volterra constructions are shown as
lower middle- and right panel in Fig. (8), actually representing quite a challenge to decode for
our visual system! As we highlight in Section 9, these are associated with curvature encoded in
the off-diagonal elements of the Einstein tensor in the preferred rotational frame of the crystal.

C.3 The "semidirect" relations, rotational topology and the defect density.

As we showed in Section 6 the topological quantity that is associated with rotations and cur-
vature is the defect density. In Section 6.2 we discuss how this can be decomposed in a discli-
nation density and "everything else" called the contortion. But what is the meaning of this
"everything else"? The defect density is a topological quantity of an unusual kind, rooted in
the semi-direct relation between translations and rotations. Given that this is not standard
material we discussed it already at length in the main text (see also Section 7) and here we
will illustrate it with the Volterra cartoons. The semidirect nature of the Poincare- as well as
the space groups have the unusual consequence that the translational- and rotational topolog-
ical defect structures are interrelated in a building block ("lego-brick") manner. Let us again
consider the 2D wedge anti-disclination obtained by inserting a wedge of material character-
ized by the "Franck" opening angle. But this may as well be viewed as a stack of lines of atoms
coming to an end, organized as indicated in Fig. (9). The disclination can be viewed as a
bound state of an infinite number of dislocations! This is just the topological expression of the
fact that an infinite number of infinitesimal translations are required for a finite rotation.
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Figure 9: A disclination can be thought of as an infinite stack of dislocations, every
next one translated in the direction of their Burgers vectors.

One observes however that the Burger’s vectors of the stack of dislocations are everywhere
pointing in the same direction — this already gives a first clue of how to "construct" rotational
topological structure from the translational defects. For instance, one can contemplate how to
construct a state of matter that breaks space rotations while translational invariance is restored
resting on this topological language. This refers to the nematic type liquid crystals. Departing
from the crystal a proliferation of dislocations is required to restore the translational invari-
ance. But how to maintain the broken rotational symmetry of the crystal in this "dislocation
condensate"? The precise answer is "Burgers neutrality": locally Burgers vectors occur in pre-
cisely anti-parallel configurations [24, 25]. Given this condition the rotational order is not
affected, and the disclinations deconfine becoming the observable (in a flat space) topological
defects of the nematic state.

But it also works the other way around. A next rule is that a dislocation can always be
viewed as a bound disclination-antidisclination pair separated by one lattice constant (the mag-
nitude of the Burger’s vector). A typical example is the dislocation as realized in graphene
consisting of a 5- and 7 ring glued together — the grain boundary that will come next is just
a stack of such dislocations, see Fig. (10). In the top row of Fig. (8) it is illustrated how the
edge- and screw dislocations can be constructed by a Volterra constructions, by taking out a
"disclination wedge" directly reinserting it after a shift by a lattice constant.

The disclination is special in the regard that by selecting the proper Franck vector the stack
of dislocations forming a line in 2D or a plane in 3D line becomes immaterial because the
lattice can be matched precisely away from the disclination core. Obviously, the requirement
for this seam to become immaterial is the origin of the topological quantization captured by the
Franck vector. But we already got a sense that this is not an absolute condition when it comes
to destroying the rotational symmetry breaking. Somehow, properly organized configurations
of dislocations with equal Burgers vectors should suffice. This is the wisdom encoded in the
formula for the defect density. But what is the meaning of "properly organized"?

Here the "grain boundary” enters. In fact, in the reality of materials science grain bound-
aries are the most prominent defect structures. Anything that is not a single crystal is usually
littered with them. The reason for this is simple. From the melt small crystallites start to form
independently, growing in size until they meet. At their boundaries their lattice directions will
typically not be aligned. Temperatures are typically still close to the melting temperature and
there is plenty of opportunity for the atoms at the grain boundaries to anneal in the optimal
local configurations capable of accommodating the misfits in lattice orientation.
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Figure 10: Two misaligned 2D graphene structures come together in a grain bound-
ary. Bound pairs of 5-rings (red) and 7-rings (blue) form the dislocations, which are
stacked together to create a "seam" between the two structures.

The outcome is typically that yet again a stack of dislocations is formed characterized by
equal Burgers vector. This is illustrated in Fig. (10). The pairs of 5-7 rings are the dislocations
with the microscopically resolved cores as we just discussed. It is seen that these are all ori-
ented in the same way, and the effect is a rotation of the lattice directions upon traversing this
grain boundary. This rotation is called the misfit angle and this is in turn set by the distance
between the dislocations in the grain boundary (see Section 7).

The origin of the special stability of such grain boundaries lies in the interactions between
the dislocations. Dislocations with equal Burgers vector repel each other through the long
range strain fields in the lattice. This is the same as for superfluid vortices with the same
sense of rotation. However, it is easy to see that when the Burgers vectors are orientated in
an orthogonal direction relative to the plane (in 3D) in which they reside as is the case for
a grain boundary these repulsive interactions disappear. One can already infer this from Fig.
(10): there are obviously no long range strains on either side of the boundary.

The simplest example is a "twinned crystal" where, say, two single crystals are grown to-
gether meeting at a single grain boundary. Obviously some kind of ambiguity with regard to
the rotational symmetry is introduced by the grain boundaries. This is the prime cause that
"polycrystalline" (or "granular") solids are described by isotropic elasticity on the macroscopic
scale — grain boundaries have averaged away the point group symmetry. But has this dealings
with the rotational defects that represent curvature in the crystal geometry?

The answer is obviously negative. A simple classroom experiments can clarify it. Take a
piece of graph paper, cut in two pieces, remove a wedge on one side and glue it back again.
One sees the misfit of the "lattice directions" and with a bit of imagination one can infer that
by moving the lines on the paper near the seam it can be "annealed" in a stack of dislocations.
But this can all be achieved without lifting the paper in the vertical direction: such a grain
boundary represents a flat, non-curved manifold in crystal geometry! One can continue such
glueing and pasting until one has a patchwork of misaligned grains and this is how granular
solids look like.

Apparently, an extra condition is required for configurations of equal Burgers vector dis-
locations to represent the defect density. This is yet again very easy to identify with cutting
and glueing. In the procedure we just described the grain boundaries form closed manifolds —
these never end anywhere inside the solid. But let us get back to the construction of the cone,
now using graph paper. To obtain the disclination one has actually to cut out precisely a /2
wedge (assuming a square "lattice’): one finds that this lattice is perfectly uninterrupted at the
gluing surface. But cut out now a smaller wedge and glue it: the glueing surface turns now in
a grain boundary!
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The simple moral is that one can accomodate any opening angle, paying the prize that a
grain boundary emerges at the tip singularity extending to infinity. In 3D this grain bound-
ary corresponds with a stack of dislocations, forming a surface. Instead of having to pay only
the core energy of the line-like (codimension 1) disclination one can sacrifice the quantiza-
tion of curvature by paying the prize associated with a "half" plane of dislocation cores, the
codimension 2 grain boundary.

This reveals the principle. In summary, implied by the semi-direct relation between trans-
lations and rotations one runs into "lego-brick topology": the translational defects are like lego
bricks that have to be stacked to build the rotational defects. A first requirement is that the
Burgers vectors have to point in the same direction. The added requirement is however that in
order for these to represent curvature the configurations should be topologically deformable
in grain boundaries that terminate in the bulk of the solid. To recover the quantization of
curvature the grain boundaries become immaterial, only the termination line (disclination) is
still identifiable. But at the "chemical" expense associated with forming of a grain boundary
seam one can accommodate any degree of curvature.

These are the simple principles that underly the discussion in Section (7). Dealing with an
effective rigid background curvature, as the hard surfaces of soft matter and the gravitating
physical space-time one can identify a homogeneous curvature in crystal geometry in the limit
that the curvature radius is infinite as compared to the lattice constant. One identifies a grain
boundary termination line to every point in space, insisting that the opening angle deficit
becomes infinitesimal. This in turn corresponds with the separation of the dislocations in
the grain boundary becoming infinite, obtaining a homogeneous gas of equal Burgers vector
dislocations being perfectly compatible with a homeogenous background curvature. Surely
the prize is that the co-dimension of this "defect" is set by the volume of the crystal.

C.4 The algebraic topology of crystals

Having relied in the above entirely on the Volterra "cut and glue" method let us finally present
a short overview of the algebraic topology that is behind this affair. By definition, a defect
is a singularity in an otherwise ordered medium, quantified by an order parameter field with
long-range order. A topological defect is topological because it is invariant under continuous
deformations of the order parameter field. The mathematical concept of continuous deforma-
tion is homeomorphism, and two configurations that differ only by a continuous deformation
are homeomorphic to each other. One can then classify configurations which are not homeo-
morphically equivalent. This leads to the classification of stable topological defects in terms of
homotopy groups. The standard reference is the review by Mermin [101] (see also Ref. [64]).
Let us focus here entirely on the dislocations and disclinations, the objects that are character-
ized in the present context by topological quantum numbers being the focus of the homotopy
groups.

Crystals are instances of ordered media with spontaneously broken symmetry: the full
global symmetry group G of the action is not respected by the medium, which is only invariant
under a subgroup H C G. The order parameter (field) is a function ¢ (x) on every point in real
space RY, taking values in order parameter space which is in one-to-one correspondence to the
coset space G/H, i.e. the equivalence classes in G where elements that differ by any element
in H are equivalent: 3h € H : g; = g,h = g; ~ g,. In general G/H is not a group itself.

We consider directed loops in order parameter space: let C be any closed loop in real space
RY, parametrized by ¢ € [0, 1] with base point x* = x(0) = x(1). We can follow the evolution
of the order parameter field ¢(x) as x traverses C. Clearly this is also a closed loop since
¢ (x(0)=¢ (x(1))=¢".

If we have such a loop f in order parameter space with base point ¢*, we can consider
continuous deformations f’ that keep the base point fixed; these deformations can be due
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to either deforming the base contour C or by change of the order parameter field ¢(x), but
for our purposes this distinction is irrelevant. Given any two loops f; and f, with the same
base point ¢*, we say they are homotopic or homotopically equivalent if f; can be continuously
deformed into f5.

In particular, some loop may be contracted onto the single point ¢* (this is the ‘constant
loop’ ¢ (x(c)) = ¢* Vc). This corresponds to a uniform order parameter, so a state without any
defects. Conversely, a defect is a singularity in the order parameter field, and a loop around
the singularity cannot be contracted to a point. Away from the singularity, the order parameter
field can still be deformed, and there are many configurations which correspond homotopically
to the same defect.

The loops form a group. Clearly, we can consecutively transverse one loop and then an-
other, and this total curve constitutes a loop itself, beginning and ending at the base point ¢ *.
This concatenation of loops is the group product. The constant loop mentioned above is the
group unit, and transversing a loop in the opposite direction is the group inverse. Since we are
only interested in homotopically inequivalent loops, we look at equivalence classes of loops,
which form a group with the same product. This group is called the fundamental group or the
first homotopy group (G /H) of the topological space G/H. In this way, the possible inequiv-
alent defects are classified by group elements of 7t;(G/H). It turns out that the fundamental
groups related to different base points ¢* are isomorphic, so in the end we can forget about
the base point [101] (but see below).

To calculate the group 71(G/H), one uses an important result from homotopy theory [101]:

The fundamental group of G/H is isomorphic to the zeroth homotopy group of the residual
symmetry group H, which are simply the disconnected components of H. In crystals, the
residual symmetry is entirely discrete, and the disconnected components of a discrete group
are just the group elements themselves. Therefore we have 7t,(G/H) ~ H (for discrete groups
H). One caveat is that Eq. (191) only holds if G is simply connected; otherwise, we must look
at the universal covering group G of G, which is a simply connected group G with a surjective
map G — G. Via the same map we can define the lift of H to H. One can show that in fact
n1(G/H) ~ 11;(G/H), so that we can extend Eq. (191) to:

n1(G/H) ~ n,(G/H) ~ny(H)~H. (192)

The fundamental group can be either Abelian or non-Abelian. If it is Abelian, defects are
unambiguously classified by group elements of 7,(G/H). However this is not the case if it is
not Abelian. Consider a single defect with topological charge a € 7;(G/H). If we introduce
another defect with charge b at some distant point, the loop around a can be continuously
deformed to a loop that encircles first b, then a, and then b in the opposite direction. But in
a non-Abelian group a # bab™!. Therefore, the topological invariant for defects with non-
Abelian fundamental groups are the conjugacy classes instead of the group elements [101].

The fundamental group m; classifies topological defects of codimension 2: points in the
2-dimensional plane, or lines in 3-dimensional space. Other homotopy groups classify topolog-
ical defect of different dimensionality: for instance 7y(G/H) labels defects of codimension 1
(domain walls), while 7t,(G/H) labels defects of codimension 3 (point defects in 3-dimensional
space). In our case, only 7t;(G/H) is non-trivial. This is the reason we have only looked at
line defects in 3-space throughout this work: they are the only interesting ones.
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C.4.1 Dislocations.

Dislocations are translational defects, so we focus only on the translational symmetry G = R¢.
In a crystal this is broken down to the translational symmetries of the Bravais lattice, isomor-
phic to H = Z4. The order parameter space is R?/Z¢, the possible positions of the origin of the
unit cell in the background space, modulo lattice translations. Since RY is simply connected,
the fundamental group following from Eq. (191) is,

m,(RY/ZY) ~ my(28) ~ 79 (193)

The inequivalent dislocations are therefore labelled by elements of the lattice itself. Unsurpris-
ingly, this is what we had already found above: the topological invariant is the Burgers vector,
which takes values in the lattice vectors. This group is Abelian.

C.4.2 Disclinations.

Disclinations are rotational defects. The rotational group is O(3), which includes reflections.
Since the residual symmetry group also contains reflections in cases of our interests, there are
no reflection topological defects. We can therefore simplify the discussion by looking only at
proper rotations G = SO(3). The proper point group of the crystal is a discrete subgroup of
SO(3). The possible subgroups are: the cyclic groups of order n, C,; the dihedral groups of
order 2n D,; the tetrahedral group T, the octahedral group T and the icosahedral group I.
However, due to restrictions posed by the broken translational symmetry, onlyn =1, 2, 3,4, 6-
fold rotations are permitted, and icosahedral point group does not occur either. Note that the
dihedral groups cover several possilities of reflection planes arising from non-commutative
rotations in SO(3).

The group SO(3) is not simply connected, and its covering group is G = SU(2). The point
group is lifted to H = P. So the complete classification of stable disclinations in crystals with
point group P is given by Eq. (192) as:

11(SO(3)/P) ~ 71(SU(2)/P) ~ my(P) ~P. (194)

However, as is well known, the lift of SO(3) to SU(2) is relevant to fermions, while ordinary
disclinations are ‘bosonic’ in this respect. Furthermore, while non-Abelian discrete subgroups
of SO(3) such as D,,n > 2 exist, defects classified by such groups do not appear as disclina-
tions. In practice, we are almost exclusively interested in rotational disclinations associated
with the C,, C3, C4 or Cg cyclic subgroups, corresponding to Frank vectors of 180°, 130°, 90°
or 60° respectively.

C.4.3 Dislocations and disclinations combined.

The point group P can be non-Abelian, but as mentioned above, these do not feature as discli-
nations in ordinary crystals. A much more profound complication arises due to the semidirect
product structure between translations and rotations in the Euclidean group E. The notation
E =R% x 0(d) means that rotations act on the translations. Let (a, R) be a group element of E
with a translation (vector) a and a rotation (matrix) R. Since E is a group, we are supposed
to be able to take the group product: two consecutively transformations constitute another
transformation. But it is easily seen that translations and rotations do not commute. Instead,
the group product is [101]:

(a;,Ry)o(ay,Ry) =(a; +Ryay,R1Ry). (195)
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This is to be compared with the group product if we would have a direct product R¢ x O(d)
and rotations and translations independent: (a; + a,,R;R,). In Eq. (195) the first translation
a, is rotated by the second rotation R;. Similarly, the inverse of (a,R) is (—R'a,R™!) instead
of (—a,R™1).

This group product carries over to the topological defects. A general topological defect in
a crystal is denoted by (B/, QX!), with B/ the Burgers vector and QX! the rotation in the plane
spanned by k and [ associated with Frank vector Q" = €,;;Q%. The product rule for these
defects is the same as Eq. (195) [101].

This has several important consequences, which have been touched upon before:

* The Burgers vector is not topologically invariant in the presence of a defect with non-zero
Q. Suppose we have a disclination—anti-disclination pair that together is rotationally
neutral. Splitting this pair, letting each part pass on opposite sides of a dislocation (B, 0),
and bringing them together again corresponds to

(0,2)0(B,0)0(0,Q7') =(0B,0) # (B,0). (196)
The Burgers vector is rotated.

* The true topological invariants are conjugacy classes. A dislocation with Burgers vector B
is equivalent to any Burgers vector nQ2B with n € Z/0 and Q2 an elementary Frank rotation
via Eq. (196). Similarly, a disclination (0, ) is in the same conjugacy class as any
(B—OB, Q) with B any allowed Burgers vector [101]. Note, however, that the rotational
part (the second entry in the pair (-, 2)), is always the same. Therefore, the rotational—
and therefore curvature—character of any disclination is topologically invariant.

* A disclination—anti-disclination pair is not topologically neutral, but has a Burgers vector
topological charge, where the Burgers vector is determined by the separation between
the pair. This a way to see that disclinations are confined in crystals on purely topological
grounds.

* In the same vein, a semi-infinite stack of dislocations with parallel Burgers vector can
also be viewed as a disclination.

* Conversely, a finite amount of Burgers vector may correspond to a finite density of discli-
nations and anti-disclinations. Notice however that in this classic classification scheme
the part of the defect density that is not topologically quantized (the disclinations) are
just ignored. There is no mention of grain boundaries and their status in this algebraic
topology setting — they are juts not part of this scheme.

C.4.4 Issues associated with broken translation symmetry.

The breaking of translation symmetry poses a problem for the standard treatment of
homotopy theory, since this rests entirely on transformations in continuous, not discrete,
space. However, we can still consider smooth deformations on the background space,
while order parameter space is discrete. In other words, we should consider the broken
translational symmetry as a property of the medium ¢ (x), and then it can be treated in
the usual manner. The question what would happen if space itself were discrete has to
our knowledge not received much attention. Under the present thesis, that space must
conform itself to the broken spatial symmetry of the medium, this question becomes
quite relevant, but we leave it for future research. Meanwhile, it is known that there are
some subtleties in the standard homotopy theory of topological defects if translational
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symmetry is broken in the medium. For instance, some defect configurations are not
independent of the base point ¢* [102,103]. On the other hand, the Frank vector
seems to be a topological invariant; as far as the curvature (not torsion) properties are
concerned, one can rely on standard homotopy theory.
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