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Abstract

The transport properties of an extended system driven by active reservoirs is an issue of
paramount importance, which remains virtually unexplored. Here we address this issue,
for the first time, in the context of energy transport between two active reservoirs con-
nected by a chain of harmonic oscillators. The couplings to the active reservoirs, which
exert correlated stochastic forces on the boundary oscillators, lead to fascinating behav-
ior of the energy current and kinetic temperature profile even for this linear system. We
analytically show that the stationary active current (i) changes non-monotonically as
the activity of the reservoirs are changed, leading to a negative differential conductivity
(NDC), and (ii) exhibits an unexpected direction reversal at some finite value of the ac-
tivity drive. The origin of this NDC is traced back to the Lorentzian frequency spectrum
of the active reservoirs. We provide another physical insight to the NDC using nonequi-
librium linear response formalism for the example of a dichotomous active force. We
also show that despite an apparent similarity of the kinetic temperature profile to the
thermally driven scenario, no effective thermal picture can be consistently built in gen-
eral. However, such a picture emerges in the small activity limit, where many of the
well-known results are recovered.
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1 Introduction

Understanding energy transport properties of driven systems is a central issue of nonequilib-
rium statistical physics. Theoretical attempts in this regard often rely on the study of simple,
yet analytically tractable model systems [1, 2]. A paradigmatic example is a chain of har-
monic oscillators connected to thermal reservoirs of different temperatures at the two ends,
first studied by Rieder, Lieb, and Lebowitz (RLL) in a seminal work [3]. They showed that this
system reaches a nonequilibrium stationary state carrying a thermal current, which survives
in the thermodynamic limit. Several generalizations of this simple model have been stud-
ied by introducing disorder, anharmonic interactions, pinning potentials and activity in the
bulk [4–11]. In almost all of these studies, however, the reservoirs attached to the system are
taken to be equilibrium ones — the random and dissipative forces exerted by each reservoir
on the boundary oscillators satisfy the Fluctuation-Dissipation theorem (FDT) [12].

Nonequilibrium reservoirs, on the other hand, do not respect any such FDT, giving rise to a
wide range of new possibilities [13–17]. For example, energy transport in systems connected
to nonequilibrium reservoirs show non-monotonic kinetic temperature profile, negative differ-
ential thermal conductivity and non-reciprocal heat transport [18–21]. Active reservoirs refer
to a special class of nonequilibrium reservoirs, consisting of self-propelled particles like bac-
teria or Janus beads, which are inherently out of equilibrium by consuming energy from the
environment at an individual level [22–24]. Recent studies, both theoretical and experimental,
show that individual probe particles immersed in such active reservoirs exhibit many unusual
features including emergence of negative friction, modification of equipartition theorem and
anomalous relaxation dynamics [26–35]. A natural question is how the transport properties
of an extended system are affected when connected to active reservoirs at the boundaries. To
the best of our knowledge, this has not been studied so far.

In this article, we ask this question in a simple setting similar to RLL model—an ordered
chain of harmonic oscillators connected to two active reservoirs at the two ends. The active
reservoirs exert stochastic forces on the boundary oscillators, which do not satisfy FDT. As a
simple model, we consider that this stochastic force has an exponentially decaying autocorre-
lation, which is a common feature of active dynamics, the autocorrelation time-scale being a
measure of the activity of the reservoirs. In the long-time limit the system reaches a nonequi-
librium stationary state (NESS) carrying an energy current which we compute exactly. We find
that this current shows two remarkable features, namely, an unexpected direction reversal and
a negative differential conductivity (NDC) whose origin lies in the Lorentzian frequency spec-
tra of the active reservoirs. The emergence of the NDC and current reversal in a linear system
without any kinetic constraints sets it apart from the few similar phenomena observed previ-
ously [18, 36–40]. For a specific model of a dichotomous active force, we illustrate that the
NDC can also be viewed as a result of a positive correlation of the current and the number of
directional flips of the force. We also show that the kinetic temperature profile retains strong
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Figure 1: Schematic representation of a chain of oscillators connected to two
nonequilibrium reservoirs which exert active forces f1,N (t) on the boundary oscil-
lators.

signatures of activity despite attaining a uniform value in the bulk. In the limit of small activ-
ity, the reservoirs behave somewhat similar to thermal ones and the well-known properties of
RLL-model are recovered.

2 Model

We consider a one-dimensional chain with N particles, each with mass m, connected by har-
monic springs of stiffness k, attached to two different active reservoirs at the boundaries [see
Fig. 1]. The coupling to the active reservoir is modeled by including a stochastic force on the
boundary particle, in addition to the usual dissipative and white-noise forces coming from an
equilibrium thermal reservoir. The equations of motion for x l , the displacement of the l-th
particle from its equilibrium position, read,

mẍ1 = −k(2x1 − x2)− γ ẋ1 + ξ1(t) + f1(t) , (1a)

mẍ l = −k(2x l − x l−1 − x l+1), ∀ l ∈ [2, N − 1] , (1b)

mẍN = −k(2xN − xN−1)− γ ẋN + ξN (t) + fN (t) , (1c)

where we have used fixed boundary conditions x0 = 0 = xN+1. We assume that the thermal
components of the reservoirs are at temperatures T1 and TN , so that the white noises ξ1,N (t)
acting on the boundary particles are related to the dissipation γ through FDT,

〈ξl(t)ξ j(t
′)〉= 2γT jδl, jδ(t − t ′) where j, l = 1, N . (2)

The FDT is violated by the presence of the active forces f1,N (t) which are assumed to be inde-
pendent stationary colored noises. Most commonly, such active noises have an exponentially
decaying correlation, 〈 f j(t) fl(t ′)〉= δ jl a2

j exp(−|t − t ′|/τ j), where a j denotes the strength of
the noise and the correlation-time τ j is a measure of the activity. As a specific example, we
consider the dichotomous noise

f j(t) = a jσ j(t) , (3)

where σ j alternates between ±1 at a constant rate α j , giving rise to an exponential correlation
with τ j = 1/(2α j). However, our main results remain quite robust for general active driving,
since exponential correlations generically appear in active processes including run-and-tumble
motion, active Brownian motion and direction reversing active Brownian motion [42–44].

3 Results

We first present a brief summary of our main results. The primary observables of interest here
are the energy current and the kinetic temperature profile, both of which we compute exactly.
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The energy current flowing through the system is most conveniently expressed as [2],

J ≡ 〈J(t)〉=



ẋ1[−γ ẋ1 + ξ1(t) + f1(t)]
�

, (4)

where the average is taken in the NESS. Because of the linear nature of the equations of
motion the stationary current naturally separates into two components, an active one induced
by the activity driving and a thermal one proportional to the temperature difference of the two
reservoirs (same as in the usual RLL setup [3], which is quoted in Eq. (15)). We show that the
active current in the thermodynamic limit is given by,

Jact =
m

2γ2
(a2

1 E1 − a2
N EN ) , with (5)

E j =
τ2

j k
2
hÇ

1+ 4γ2

mk − 1
i

+ γ2

�

1−
r

1+
4kτ2

j
m

�

2τ j(τ2
j k

2 − γ2)
. (6)

There are a number of striking features of this active current which distinguishes it from the
usual thermal current. First, Jact exhibits a non-monotonic behavior as the activity of either of
the reservoirs is changed, giving rise to a negative differential conductivity [see Fig. 2]. More
surprisingly, the current reverses its direction as the activity of one of the reservoirs, say τ1, is
changed at a non-trivial value τ∗1 6= τN [see the phase diagram in Fig. 4].

We also show that the stationary kinetic temperature profile T̂l = m〈 ẋ2
l 〉 attains a constant

value in the bulk 1� l � N with an exponentially decaying boundary layer. Surprisingly, we
find that, the bulk temperature can be expressed in a form similar to the famous RLL result [3],

T̂bulk =
1
2
(T1 + TN ) , with T j =

a2
j τ j

γ
Ç

1+ 4τ2
j k/m

. (7)

This would suggest the possibility of interpreting T1,N as ‘effective temperatures’ associated
to the two active reservoirs. However, we show that such an interpretation is not acceptable
and the active reservoirs remain essentially different from thermal ones.

In the limit of small activityτ1,τN �
p

m/k, however, an effective thermal picture emerges.
In this case, we show that, the active forces behave somewhat similar to white noises and the
energy current and bulk kinetic temperature are consistent with the system being connected
to thermal reservoirs with effective temepartures T eff

j = T j + a2
jτ j/γ. However, the signatures

of activity still remain in some atypical features, like the presence of a non-trivial boundary
layer even when T eff

1 = T eff
N .

We start by rewriting Eqs. (1) as,

MẌ (t) = −ΦX (t)− Γ Ẋ (t) +Ξ(t) + F(t) , (8)

where X (t) = {x l(t); l = 1, . . . , N} is a vector and M is an N -dimensional diagonal matrix with
Ml j = mδl, j . Moreover, Γ and Φ are N -dimensional matrices given by

Γl j = γ(δl,1δ j,1 +δl,Nδ j,N ),Φl j = k
�

2δl, j −δl, j−1 −δl, j+1

�

.

Finally, Ξ j = ξ1(t)δ j1 + ξN (t)δ jN and F j = f1(t)δ j1 + fN (t)δ jN are vectors.
We are interested in the solution of Eq. (8) in the stationary state, which is most conve-

niently obtained by taking a Fourier transform with respect to time, X̃ (ω) =
∫∞
−∞ d t eiωt X (t).

This leads to,

X̃ (ω) = G(ω)
�

Ξ̃(ω) + F̃(ω)
�

, (9)
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Figure 2: Activity induced current Jact vs τ1 for different values of τN and
γ = 1 = m = a1 = aN and k = 2; symbols indicate the data obtained from nu-
merical simulations with N = 64 oscillators and the solid black lines indicate the
analytical prediction Eq. (6). The red crosses mark the non-trivial current reversal
points and τm indicates the value of the activity for Jact is maximum.

where Ξ̃(ω) and F̃(ω) are the Fourier transforms of Ξ(t) and F(t) respectively and

G(ω) = [−Mω2 +Φ− iω(ΓL + ΓR)]
−1

=









−mω2 + 2k− iωγ −k 0 · · ·
−k −mω2 + 2k −k · · ·
...

...
. . . · · ·

0 · · · −k −mω2 + 2k− iωγ









−1

. (10)

Inverting the transform, we get from Eq. (9),

X (t) =
1

2π

∫ ∞

−∞
dω e−iωt G(ω)

�

Ξ̃+ F̃
�

. (11)

To compute the steady state energy current J defined in Eq. (4), we need the autocorrela-
tion of the stochastic forces ξ j(t) and f j(t) in the Fourier-space,

〈ξ̃ j(ω)ξ̃l(ω
′)〉 = 4πγT jδ jlδ(ω+ω

′) , (12a)

〈 f̃ j(ω) f̃l(ω
′)〉 = 2πδ jlδ(ω+ω

′) g̃(τ j ,ω) . (12b)

Here g̃(τ j ,ω) =
2a2

j τ j

1+ω2τ2
j

denotes the spectral density of the active force from the jth reservoir,

which clearly is a Lorentzian with corner frequency τ−1
j .

3.1 Stationary energy current

The independence of the thermal and active noises along with the linear nature of the couplings
lead to the current in Eq. (4) to separate into two components J = Jth + Jact; see Appendix. A
for details. The thermal current, generated due to the temperature gradient,

Jth = γ2(T1 − TN )

∫ ∞

0

dω
π
ω2|G1N (ω)|2 , (13)
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(a) (b)

Figure 3: (a) Plot of the phonon transmission coeffcientω2|G1N (ω)|2 in the N →∞
limit [see Eq. (A.29)] and the reservoir spectrum g̃(τ,ω) [see Eq. (A.11)] for
τ = 0.5 as functions of ω. (b) Plot of the single reservoir transmission coefficient
ω2|G1N (ω)|2 g̃(τ,ω) vsω for different values of τ. Here we have taken m= 1, k = 2
and γ= 1.

remains the same as in the case of equilibrium reservoirs and can be computed explicitly [3,6].
The active nature of the reservoirs gives rise to the additional current,

Jact = γ

∫ ∞

0

dω
π
ω2|G1N (ω)|2

�

g̃(τ1,ω)− g̃(τN ,ω)
�

, (14)

where g̃(τ j ,ω) contains information about the reservoir activity. Equation (14) is a Landauer-
like formula, where the Lorentzian reservoir spectra g̃(τ j ,ω) couples to the phonon transmis-
sion coefficient ω2|G1N (ω)|2.

To compute the currents explicitly we need G1N (ω), which is obtained by exploiting the
tridiagonal structure of G−1(ω) [5, 6, 10, 45]. We are particularly interested in the ther-
modynamic limit N → ∞, where G1N (ω) vanishes exponentially outside the phonon band
|ω| > ωc = 2

p

k/m [5]. In that limit, we show that, the contribution from the j-th reservoir
( j = 1, N) is given by [see Appendix. A for details],

γ

∫ ∞

0

dω
π
ω2|G1N (ω)|2 g̃(τ j ,ω) =

∫ π

0

dq
π

mka2
jτ j sin2 q

[mk+ 2γ2(1− cos q)][m+ 2kτ2
j (1− cos q)]

, (15)

where ω and q are related by mω2 = 2k(1− cos q). Computing the q-integral and combining
the contributions from both the reservoirs, we get the active current flowing through the system
in the thermodynamic limit which is quoted in Eq. (6).

Figure 2 shows a plot of the predicted Jact as a function of the left reservoir activity τ1 for
a set of different values of τN . This shows an excellent match with the current measured from
numerical simulations with a chain of oscillators driven by the dichotomous noise given in
Eq. (3). The figure illustrates some remarkable features of the active current which we discuss
below.

3.1.1 Negative differential conductivity

The active current shows a non-monotonic behavior—as τ1 is increased, Jact initially increases
until reaching a maximum value after which it starts to decrease. It is clear from Eq. (6) that
this non-monotonic behavior is inherent to the individual contributions from both the reser-
voirs — if τN is increased, keeping τ1 fixed, a similar behavior is seen where the current
first decreases and then starts to increase. The existence of this non-monotonic behavior be-
comes qualitatively clear by looking at the frequency spectrum of the reservoir g̃(τ,ω). From
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Eq. (12b), it is clear that g̃(τ,ω) is a Lorentzian, peaked around ω= 0 with width ∼ τ−1. On
the other hand, the phonon transmission coefficient ω2|G1N (ω)|2 is peaked around the char-
acteristic frequency ωc = 2

p

k/m, with a minimum at ω = 0 [see Fig. 3(a)]. Consequently,
the overlap of the system transmission coefficient and the reservoir spectra changes non-
monotonically as τ is changed, reaching a maximum at some intermediate value of
τ−1 ∈ [0,ωc] [see Fig. 3(b)]. This, in turn, gives rise to the non-monotonic behavior of Jact,
which shows a maximum (minimum) as τ1 (τN ) is varied. In fact, it can be easily seen from
Eq. (6) that for large k, the current is maximum at a value of τ1 = τm∝ω−1

c .

The non-monotonic behavior implies that the differential conductivity χ j =
dJact
dτ j

, which is
nothing but the linear response of the current to a small change in the activity of the j-th reser-
voir, becomes negative in some parameter regimes. Noneqilibrium response theory provides a
way to express this coefficient in terms of correlations of some physical observables [46, 47].
For the simple dynamics (3), using a trajectory based approach, we find [see Appendix C],

χ j = lim
t→∞

−
1
τ j
[〈n j(t)J(t)〉 − 〈n j(t)〉〈J(t)〉] , (16)

where n j(t) denotes the total number of flips of σ j during a time interval [0, t], J(t) is the
instantaneous current and the average is computed in the unperturbed system. The above
equation implies that when the number of flips n j(t) is positively correlated with the current
an NDC emerges.

3.1.2 Current reversal

There is another, more striking, behavior induced by the presence of the active driving, namely,
reversal of the direction of the current. We see from Fig. 2, that for any given τ1, Jact reverses
its direction twice—once (trivially) at τ1 = τN and again at another value τ1 = τ∗1 which
depends non-trivially on τN . For a fixed τN , Jact begins with a negative value (energy flowing
from right to left reservoir) for τ1 = 0, which becomes positive (energy flowing from left
to right reservoir) with increase in τ1. However, on increasing τ1 further, the current again
reverses its direction and becomes negative. Mathematically, this additional reversal can be
understood from the observation that for a fixed value of τN , E1 → 0 for both τ1 → 0 and
τ1→∞ [see Eq. (6)], and consequently Jact has the same negative value at these two limits.
Now, since Jact must reverse sign at τ1 = τN , an additional reversal is required to reach the
limiting negative values. A similar scenario is observed when τN is changed keeping τ1 fixed,
as expected from the symmetry of the system.

This behavior is illustrated in Fig. 4; panel (a) shows a three-dimensional plot of Jact on
the (τ1,τN ) plane, while Fig. 4(b) shows the two-dimensional projection of (a) indicating the
regions Jact > 0 and Jact < 0. For any given τN , the current reverses its direction at τ1 = τN
and another non-trivial point τ1 = τ∗1(τN ). The latter is given by the non-trivial solution of
a2

1E1(τ1) = a2
NEN (τN ). Similarly, for any given τ1, the current reversal occurs at τN = τ1

and τ∗N (τ1) [indicated by the solid red curve in 4(b)]. Interestingly, the intersection of the
curves τ1 = τN and τ1 = τ∗1(τN ) denoted by τ1 = τN = τ̄ is a saddle point, as can be seen
from Fig. 4(a). The current does not change direction when one passes through the saddle
point—for τN = τ̄, the current remains negative for all values of τ1 6= τN , while for τ1 = τ̄,
the current remains positive for all values of τN 6= τ1.

NDC and current reversal have been observed in certain nonequilibrium systems with non-
linearity, presence of obstacles or kinetic constraints [18,36–40]. Surprisingly, the dynamical
active driving here gives rise to both features even in a linear chain.
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Figure 4: (a) Three dimensional plot of Jact on the (τ1,τN ) plane: the meshed orange
surface denotes Jact given by Eq. (5) in the main text, while the un-meshed, semi-
transparent blue surface corresponds to Jact = 0. The curves formed by intersection
of these two surfaces give the locus of the zeros of the active current, the intersection
of these two curves are denoted by τ1 = τN = τ̄, which clearly is a saddle point of
Jact. Jact > 0 in the region above the blue surface, while Jact < 0 in the region below
the blue surface. (b) Two dimensional projection of (a) showing phase diagram of
Jact in the (τ1,τN ) plane—: The light blue (green) shade indicates the region where
the active current is negative (positive). The continuous red curve shows τ∗N as a
function of τ1 whereas the dashed curve indicates the line τN = τ1.

3.2 Kinetic temperature

The average kinetic energy of the oscillators provides a way to define a local ‘temperature’ for
driven oscillator chains [1,3]. For purely thermal drive, this kinetic temperature is uniform in
the bulk of the system and is given simply by (T1 + TN )/2 in the N →∞ limit. Here we are
interested in the effect of the active drive on the kinetic temperature T̂l = m〈 ẋ2

l (t)〉 and thus
consider T1 = TN = 0. In this case, using Eq. (11), we get,

T̂l = m

∫

dω
2π
ω2
�

|Gl1(ω)|2 g̃(τ1,ω) + |GlN (ω)|2 g̃(τN ,ω)
�

. (17)

The matrix elements can again be computed exploiting the tridiagonal structure of G−1(ω).
Performing a similar calculation as before [see Appendix. B for details], we find that, in the
thermodynamic limit N →∞, the steady state temperature profile is flat in the bulk, accompa-
nied by exponentially decaying boundary layers. The bulk temperature T̂bulk can be obtained
explicitly and is quoted in Eq. (7). The predicted value of bulk temperatures for a fixed τ1
and different values of τN are plotted in Fig. 5(a) along with numerical simulations performed
with the active force given in Eq. (3); the excellent agreement validates our prediction. In-
terestingly, boundary kinks in the T̂l profile, which are generically present for coupling with
thermal reservoirs [49], are absent here.

The form of Eq. (7) raises a possibility of associating an effective temperature T j to the j-th
active reservoir. At first glance, this identification also appears to be consistent with a ‘zeroth
law’ — when τ1 = τN , i.e., T1 = TN , the bulk of the system is at the same ‘temperature’ as
the reservoirs. However, such an interpretation is not acceptable for several reasons. First,
note that the kinetic temperatures of the boundary sites T̂1,N remain different from T̂bulk giv-
ing rise to a boundary layer even when τ1 = τN [see Fig. 5(a)] which is absent for ordinary
equilibrium reservoirs. Moreover, the stationary active current (6) is very different than the
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Figure 5: (a) The kinectic temperature profile T̂l for τ1 = 1 and different values
of τN measured from simulations with a chain of N = 64 oscillators driven by
the active noises (3). The dashed black lines show the predicted bulk temperature
(7). (b) Comparison of Jact (solid lines) with the expected current for ‘effective’
temperature gradient T1 − TN (dashed lines) for two different values of τN . Here
m= 1, k = 1, γ= 1 and a1 = aN = 1.

energy current which would have been generated if the system were connected to thermal
reservoirs of temperatures T1 and TN at the two ends. This is illustrated in Fig. 5(b) which
shows neither current reversal nor any NDC in the ‘effective’ thermal scenario. However, the ef-
fective temperature picture becomes viable in the limit of small activity, which we discuss next.

Passive limit- It is well known that active systems show an effective passive behavior in the
limit of vanishing correlation time [42–44]. Similarly, in our case, when τ j → 0, the active
force f j(t) resembles a white noise with effective correlation 〈 f j(t) f j(t ′)〉 → a2

jτ jδ(t − t ′).
In this limit, the active forces in Langevin Eqs. (1) can be thought of representing thermal
reservoirs with effective temperatures a2

j τ j/γ and satisfying FDT. The well known results
of the RLL model are expected to be recovered in this ‘thermal’ limit. Indeed we see from
Eq. (7) that when the active time-scales are much smaller than the coupling time-scale, i.e.,
τ1,τN �

p

m/k, the kinetic temperature associated with the reservoirs T eff
j ' a2

jτ j/γ are
consistent with the thermal picture. Moreover, in this limit, it can be easily seen from Eq. (6)
that,

Jact =
k(T eff

1 − T eff
N )

2γ

�

1+
mk
2γ2
−

mk
2γ2

√

√

1+
4γ2

mk

�

+O(τ2
j ) , (18)

which is the same as the well-known form of the thermal current [3, 5] to leading order in
τ1, τN . This can also be seen from Fig. 5(b) where Jact converges to the effective thermal
current for τ1,τN �

p

m/k.

4 Conclusions

In summary, we have analytically studied the transport properties of a harmonic chain coupled
to two active reservoirs which exert exponentially correlated stochastic forces on the boundary
oscillators. We find that this active drive leads to a NESS carrying an energy current, which
exhibits intriguing features like NDC and current reversal. For a simple model of dichotomous
active force, we show that the negative differential conductivity results from a positive corre-
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lation of the energy current and number of flips of the active force. The kinetic temperature
profile, which, similar to the thermally driven scenario, remains uniform in the bulk of the
system, also carries strong signatures of activity and an effective temperature picture cannot
be consistently built.

Our work is the first to study the effect of active reservoirs on transport properties of
extended systems. The results presented here are quite robust as the exponential correlation
is a generic feature of active dynamics. However, signatures of specific dynamics are expected
to be seen in the fluctuations of the current. It would be interesting to see if our results can be
qualitatively verified in experiments with active reservoirs, say a collection of active Brownian
particles [32], connected by passive polymers. Some other interesting questions are: What
are the effects of disorder, anharmonicity and pinning in the presence of active driving? How
do our results change, if the nonequilibrium reservoir is modeled by a chain of active particles
in the spirit of [11,50,51]?
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A Stationary state Current

In this section, we sketch the main steps of the computation of the current starting from Eq. (4)
in the main text. For the sake of completeness we first rewrite the Langevin equations Eqs. (1),

MẌ (t) = −ΦX (t)− Γ Ẋ (t) +Ξ(t) + F(t) , (A.1)

where, X (t) = {x l(t); l = 1, . . . , N} is a vector, M is an N -dimensional diagonal matrix with
Ml j = mδl, j; Φ and Γ are N -dimensional matrices given by

Φ jl = k
�

2δ j,l −δ j,l−1 −δ j,l+1

�

,
Γ = ΓL + ΓR , with (ΓL) jl = γδ j,1δl,1 , (ΓR) jl = γδ j,Nδl,N . (A.2)

Moreover, the vectors Ξ(t) and F(t) represent the thermal and active forces exerted by the
reservoirs on the boundary oscillators,

Ξ(t) = ΞL(t) +ΞR(t) with (ΞL) j(t) = ξ1(t)δ j1 and (ΞR) j(t) = ξN (t)δ jN , (A.3a)

F(t) = FL(t) + FR(t) with (FL) j(t) = f1(t)δ j1 and (FR) j(t) = fN (t)δ jN . (A.3b)

Here, ξ1,N (t) are delta correlated white-noises, while the active noises f1,N (t) have an expo-
nentially decaying auto-correlation,

〈ξ j(t)ξl(t
′)〉 = δ jl 2γT jδ(t − t ′), and 〈 f j(t) fl(t

′)〉= δ jl a2
j e−|t−t ′|/τ j . (A.4)

Note that, even though Eq. (A.1) formally appears to be a limiting case of [11] with vanishing
bulk activity, the two scenarios differ by their physical nature as well as emergent phenomena,
as we will see below.
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The stationary energy current flowing through the system can be expressed as J = 〈J(t)〉
where

J(t) = ẋ1[−γ ẋ1 + ξ1(t) + f1(t)] (A.5)

denotes the instantaneous work done by, the left reservoir on the left boundary oscillator and
the statistical averaging is done over the stationary state. It is convenient to recast this energy
current using the above matrix notation and separate it into two terms,

J = J1 + J2 , with J1 = −Tr
�

〈Ẋ (t)Ẋ T (t)ΓL〉
�

and J2 = Tr
�

〈(ΞL + FL)Ẋ
T (t)〉

�

, (A.6)

where Ẋ T denotes the transpose of the vector Ẋ . In the following we compute J1 and J2
separately using the solution of Eq. (A.1),

X (t) =

∫ ∞

−∞

dω
2π

e−iωt G(ω)[Ξ(ω) + F(ω)] , (A.7)

where G(ω) = [−Mω2 +Φ− iω(ΓL + ΓR)]−1 [see Eq. (10)]. Let us first consider,

J1 =

∫ ∞

−∞

dω
2π

∫ ∞

−∞

dω′

2π
ωω′ e−i(ω+ω′)t Tr

�

〈X̃ (ω)X̃ T (ω′)〉ΓL
�

(A.8)

=

∫ ∞

−∞

dω
2π

∫ ∞

−∞

dω′

2π
ωω′ e−i(ω+ω′)t Tr

�

G(ω)



[Ξ(ω) + F(ω)][Ξ(ω′) + F(ω′)]
�

G(ω′)ΓL
�

,

where we have used the fact that GT (ω′) = G(ω′) as G is a symmetric matrix. The noise
correlations appearing in the above equation can be evaluated in a straightforward manner
using Eqs. (A.3)-(A.4). Since the noises from the two reservoirs are independent, it is natural
to separate the corresponding contributions and write,


�

Ξ(ω) + F(ω)
��

Ξ(ω′) + F(ω′)
��

= 2πδ(ω+ω′)
�

SL(ω) + SR(ω)
�

, (A.9)

where the matrix elements of SL,R(ω) are given by,
�

SL(ω)
�

jl = [2γT1 + g̃(τ1,ω)]δ j,1δl,1 , and (SR) jl = [2γTN + g̃(τN ,ω)]δ j,Nδl,N .(A.10)

Here g̃(τ j ,ω) denotes the Fourier transform of the active force auto-correlation

g̃(τ j ,ω) = a2
j

∫ ∞

−∞
ds eiωse−|s|/τ j =

2a2
j τ j

(1+ω2τ2
j )

. (A.11)

Using Eqs. (A.9) and (A.10) in Eq. (A.8), we get,

J1 = −
∫ ∞

−∞

dω
2π
ω2Tr

�

G(ω)
�

SL(ω) + SR(ω)
�

G∗(ω)ΓL
�

, (A.12)

where G∗(ω) = G(−ω) denotes the complex conjugate of G(ω). Proceeding similarly for J2,
we have from Eq. (A.6) and Eq. (A.9),

J2 = i

∫ ∞

−∞

dω
2π
ωTr[G∗(ω)SL(ω)] . (A.13)

Combining Eqs. (A.12) and (A.13) and rearranging the terms, we have,

J =

∫ ∞

−∞

dω
2π
ωTr

��

iG∗(ω)−ωG∗(ω)ΓLG(ω)
�

SL(ω)
�

−
∫ ∞

−∞

dω
2π
ω2Tr

�

G∗(ω)ΓLSR(ω)
�

.

(A.14)
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Now, remembering the definition of G(ω) = [−Mω2 + Φ − iω(ΓL + ΓR)]−1, it can be easily
shown that,

G∗(ω)ΓLG(ω) =
G(ω)− G∗(ω)

2iω
− G∗(ω)ΓRG(ω) . (A.15)

Using the above relation the first term of Eq. (A.14) can be further simplified,
∫ ∞

−∞

dω
2π
ωTr

��

iG∗(ω)−ωG∗(ω)ΓLG(ω)
�

SL(ω)
�

=
i
2

∫ ∞

−∞

dω
2π
ωTr

��

G(ω) + G∗(ω)
�

SL(ω)
�

+

∫ ∞

−∞

dω
2π
ω2 Tr

�

G∗(ω)ΓRG(ω)SL(ω)
�

.

(A.16)

The first integral on the second line vanishes as ω(G(ω)+G∗(ω))SL(ω) is an odd function of
ω, and we finally have, from Eqs. (A.14) and (A.16),

J =

∫ ∞

−∞

dω
2π
ω2 Tr

�

G(ω) ΓR G∗(ω)SL(ω)− G(ω)SR(ω)G
∗(ω) ΓL

�

. (A.17)

From the expressions of SL(ω) and SR(ω) given in Eq. (A.10) it is immediately clear that J
separates into two parts — J = Jth + Jact, where,

Jth = γ2(T1 − TN )

∫ ∞

−∞

dω
2π
ω2|G1N (ω)|2 , and (A.18a)

Jact = J1
act − JN

act , with J j
act = γ

∫ ∞

−∞

dω
2π

ω2|G1N (ω)|2 g̃(τ j ,ω) . (A.18b)

The thermal current Jth is well known in the literature [2,3] and is given by,

Jth =
k(T1 − TN )

2γ

�

1+
mk
2γ2
−

mk
2γ2

√

√

1+
4γ2

mk

�

. (A.19)

In the following we compute the active current Jact exactly. To this end, we first need the
explicit form for the matrix element G1N (ω). This has been calculated in the context of thermal
transport [2], we revisit the calculation here for the sake of completeness.

By definition, G(ω) is the inverse of a tri-diagonal matrix (see Eq. (10)) and the elements
Gi j(ω) can be computed explicitly exploiting this tridiagonal structure of G−1(ω) [45]. In
particular, we will need the following elements,

Gl1(ω) = (−k)l−1θN−l

θN
, and (A.20a)

GlN (ω) = (−k)N−l θl−1

θN
, (A.20b)

where θl satisfies the recursion relation,

θl = (−mω2 + 2k)θl−1 − k2 θl−2 for l = 2,3, . . . , N − 1 , (A.21a)

and θN = (−mω2 + 2k− iωγ)θN−1 − k2 θN−2 . (A.21b)

Using the boundary conditions θ0 = 1 and θ1 = (−mω2+2k−iωγ) [45], the recursion relation
(A.21a) can be solved in a straightforward manner. It is convenient to express the solution as,

θl =
(−k)l−1

sin(q)
[k sin ((l + 1)q)− iωγ sin(lq)] for l = 2, 3, . . . , N − 1 , (A.22)
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where q and ω are related by,

cos q =

�

1−
mω2

2k

�

⇒ ω=ωc sin
q
2

, (A.23)

where ωc = 2
p

k/m. Using Eq. (A.22) in Eq. (A.21b) we then have,

θN =
(−k)N

sin q

�

a(q) sin(Nq) + b(q) cos(Nq)
�

, (A.24)

where,

a(q) = −
2i γω

k
+ cos q

�

1−
γ2ω2

k2

�

, and b(q) = sin q

�

1+
γ2ω2

k2

�

. (A.25)

Now we can proceed to compute the active current. Using Eq. (A.24) and Eq. (A.20b) for l = 1
in Eq. (A.18b), we get,

J1
act =

γ

πk2

∫ ∞

0

dωω2 sin2 q

|a(q) sin(Nq) + b(q) cos(Nq)|2
g̃(τ1,ω) . (A.26)

At this point, it is important to note that, for ω > ωc , q becomes complex. Thus, for large N ,
in the region ω > ωc , the integrand vanishes exponentially as exp(−2Nq̄), where q̄ is real.
Thus, to compute the current for thermodynamically large systems, we can limit the range
of integration in Eq. (A.26) to be 0 ≤ ω ≤ ωc or equivalently, 0 ≤ q ≤ π. Moreover, the
functions sin(Nq) and cos(Nq) are highly oscillatory for large N and in the N →∞ limit, we
can average over x = Nq and write [10],

J1
act =

γ

πk2

∫ ωc

0

dωω2 sin2 q g̃(τ1,ω)

∫ 2π

0

d x
2π

1

|a(q) sin x + b(q) cos x |2
. (A.27)

The x-integral has a simple form and can be evaluated exactly (see Sec. 2.558 in [52]),

∫ 2π

0

d x
2π

1

(c1 sin x + d cos x)2 + c2
2 sin2 x

= −
1

dc2
, (A.28)

where we have denoted c1 = Re[a(q)], c2 = Im[a(q)] and d = b(q) for notational simplicity.
Substituting Eq. (A.28) in Eq. (A.27), we get,

J1
act =

k
2π

∫ ωc

0

dω
ω sin q

k2 + γ2ω2
g̃(τ1,ω) =

k
2

∫ π

0

dq
π

�

�

�

dω
dq

�

�

�

ω sin q
k2 + γ2ω2

g̃(τ1,ω) . (A.29)

Thereafter, using the Jacobian | dωdq |=
k sin q
mω , we arrive at,

J1
act =

∫ π

0

dq
π

mkτ1a2
1 sin2 q

[mk+ 2γ2(1− cos q)][m+ 2kτ2
1(1− cos q)]

, (A.30)

where we have also expressed g̃(τ1,ω) as a function of q. This integral can be evaluated
exactly and leads to,

J1
act =

m
2γ2

a2
1E1 with E1 =

τ2
1k2

hÇ

1+ 4γ2

mk − 1
i

+ γ2

�

1−
r

1+
4kτ2

1
m

�

2τ1(τ2
1k2 − γ2)

. (A.31)
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One can similarly obtain JN
act =

m
2γ2 a2

NEN , where,

EN =
τ2

N k2
hÇ

1+ 4γ2

mk − 1
i

+ γ2

�

1−
r

1+
4kτ2

N
m

�

2τN (τ2
N k2 − γ2)

. (A.32)

The total active current is obtained by combining Eq. (A.32) and (A.31), which is quoted in
Eq. (5).

B Kinetic temperature profile

The kinetic temperature of the l th oscillator as defined in the main text is given by,

T̂l = m〈 ẋ2
l (t)〉 . (B.1)

Since we are primarily interested in the effect of the active driving, we put T1 = TN = 0. Then,
from Eq. (A.7), we get,

T̂l = m

∫ ∞

−∞

dω
2π
ω2
�

|Gl1(ω)|2 g̃(τ1,ω) + |GlN (ω)|2 g̃(τN ,ω)
�

. (B.2)

From Eqs. (A.20) we have,

|Gl1(ω)|2 =
k2N−4

sin2 q|θN |2

�

�

�k sin(N − l + 1)q− iωγ sin(N − l)q
�

�

�

2
, (B.3a)

|GlN (ω)|2 =
k2N−4

2sin2 q|θN |2

�

�

�k sin(lq)− iωγ sin(l − 1)q
�

�

�

2
. (B.3b)

We are particularly interested in the behavior of the kinetic temperature in the bulk in the
thermodynamic limit N →∞. For this purpose we evaluate T̂l for l = N/2+ ` where `� N .
Let us first consider the contribution from the left reservoir, i.e., the first term in Eq. (B.2).
Once again, the integrand vanishes exponentially for ω>ωc in the large N limit, and we can
write,

I1 ≡
∫ ∞

−∞

dω
2π
ω2|Gl1(ω)|2 g̃(τ1,ω)

=
1
k4

∫ π

0

dq
2π

�

�

�

�

dω
dq

�

�

�

�

ω2 k2 (1− cos(N − 2`+ 2)q) +ω2γ2 (1− cos(N − 2`)q)
|a(q) sin(Nq) + b(q) cos(Nq)|2

g̃(τ1,ω) .

(B.4)
As before, in the N →∞ limit, we can average over the fast oscillations in x = Nq. For this
purpose, let us note,

∫ 2π

0

d x
2π

sin x

(c1 sin x + d cos x)2 + c2
2 sin2 x

=

∫ 2π

0

d x
2π

cos x

(c1 sin x + d cos x)2 + c2
2 sin2 x

= 0 . (B.5)

Using these identities and Eq. (A.28), Eq. (B.4) reduces to,

I1 =
1

2γk

∫ π

0

dq
2π

�

�

�

dω
dq

�

�

�

ω

sin q
g̃(τ1,ω) =

1
4πγm

∫ π

0

dq g̃(τ1,ω(q)) . (B.6)
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(a) (b)

Figure 6: Boundary layer properties of the kinetic temperature profile: (a) shows
T̂l profile near the left boundary. The main plot compares the contributions from
Eq. (B.13), (B.18) and (B.21) (in solid black lines) with numerical simulations (in
colored symbols). The inset plot shows the exponential decay of T̂l from T̂bulk at the
left boundary for a system of N = 64 oscillators with m= 1, k = 1, γ= 1 and τ1 = 1.
(b) shows the absence (presence) of the boundary kinks when τ1,N is much larger
(smaller) than ωc = 2

p

k/m. Here N = 32 with m= 1, k = 0.5, γ= 1 and τ1 = 1.

The q-integral can be evaluated exactly, and yields,

I1 =
1

2γm

a2
1τ1

q

1+ 4τ2
1k/m

. (B.7)

The integral involving GlN can also be performed following the same procedure and results in,

I2 ≡
∫ ∞

−∞

dω
2π
ω2|GlN (ω)|2 g̃(τN ,ω) =

1
2γm

a2
NτN

q

1+ 4τ2
N k/m

. (B.8)

Combining these results, we see that the kinetic temperature remains uniform in the bulk and
is given by,

T̂bulk =
1

2γ

 

a2
1τ1

q

1+ 4τ2
1k/m

+
a2

NτN
q

1+ 4τ2
N k/m

!

. (B.9)

This is the result presented in Eq. (6).
For a finite chain the kinetic temperature deviates from T̂bulk near the boundaries giving

rise to exponentially decaying boundary layers; see Fig. 6(a). To obtain the behavior of the
boundary layers, we need to evaluate Eq. (B.2) in the limits l � N and l ∼ N .

B.1 T̂l near left boundary

Let us first concentrate near the left boundary, where l = 1,2, 3 . . .� N . For convenience, we
rewrite Eq. (B.2) as,

T̂l = m[L1(l,τ1) + LN (l,τN )] , (B.10)
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where L1(l,τ1) and LN (l,τN ) denote the contributions from the left and right reservoirs re-
spectively,

L1(l,τ) =

∫ ∞

−∞

dω
2π
ω2|Gl1(ω)|2 g̃(τ,ω) , (B.11a)

LN (l,τ) =

∫ ∞

−∞

dω
2π
ω2|GlN (ω)|2 g̃(τ,ω) . (B.11b)

We first evaluate the contribution from the right reservoir LN (l,τ). In this case, once
again, the contribution coming from |ω| > ωc vanishes exponentially for large N and in the
thermodynamic limit Eq. (B.11b) reduces to,

LN (l,τ) =
1
k4

∫ ωc

0

dω
π
ω2 k2 sin2(lq) +ω2γ2 sin2(l − 1)q
|a(q) sin(Nq) + b(q) cos(Nq)|2

g̃(τ,ω) . (B.12)

Averaging over the fast oscillations in the N →∞ limit and using Eq. (A.28), we get,

LN (l,τ) =
1

2γm

∫ π

0

dq
π

k2 sin2(lq) +ω2γ2 sin2(l − 1)q
(k2 + γ2ω2)

g̃(τ,ω) . (B.13)

Though this integral does not yield any closed form expression, it can be evaluated numerically
for arbitrary l and τ.

Next, we consider the contribution from the left reservoir L1(l,τ). It turns out that L1(l,τ)
(Eq. (B.11a)) has non-vanishing contribution from both |ω| < ωc and |ω| > ωc . Thus, it is
convenient to rewrite Eq. (B.11a) as,

L1(l,τ) = Lb
1(l,τ) + Lo

1(l,τ) , (B.14)

where Lb
1(l,τ) and Lo

1(l,τ) denote the contributions from |ω|<ωc and |ω|>ωc respectively.
For |ω| > ωc , Eq. (A.23) implies that q = π − iq̄, where q̄ is real. We first evaluate the
contribution from this region,

Lo
1(τ) =

∫ ∞

ωc

dω
π
ω2|Gl1(ω)|2 g̃(τ,ω)

=
1
k4

∫ ∞

ωc

dω
π
ω2 |ik sinh(N − l + 1)q̄−ωγ sinh(N − l)q̄|2

|ia(q̄) sinh(Nq)− b(q̄) cosh(Nq̄)|2
g̃(τ,ω), (B.15)

where we have used the identities,

sin(nq) = (−1)n+1 i sinh(nq̄) , and cos(nq) = (−1)n cosh(nq̄) , n= 0,1, 2, . . . . (B.16)

In the N →∞ limit, Eq. (B.15) reduces to

Lo
1(τ) =

1
k4

∫ ∞

ωc

dω
π
ω2e−2lq̄ k2e2q̄ +ω2γ2

|ia(q̄)− b(q̄)|2
g̃(τ,ω) . (B.17)

The integral over ω ∈ [ωc ,∞] can be converted to an integral over q̄ ∈ [0,∞] using the
relation ω=ωc cosh(q̄/2) [see Eq. (A.23)], to get,

Lo
1(τ) =

ω3
c

2

∫ ∞

0

dq̄
π

e−2lq̄ sinh(q̄/2) cosh2(q̄/2)

k2 + γ2ω2
c cosh2(q̄/2)e−2q̄

g̃
�

τ,ωc cosh
q̄
2

�

. (B.18)
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This, again, can be evaluated numerically for arbitrary l. For |ω| < ωc , q is real and the
contribution to Eq. (B.11a) is given by,

Lb
1(τ) =

∫ ωc

0

dω
π
ω2|Gl1(ω)|2 g̃(τ,ω)

=
1
k4

∫ ωc

0

dω
π
ω2 k2 sin2(N − l + 1)q+ω2γ2 sin2(N − l)q

|a(q) sin(Nq) + b(q) sin(Nq)|2
g̃(τ,ω) . (B.19)

For l � N and N →∞ limit, averaging over the fast oscillations x = Nq involves integrals of
the form,

Q(v) =

∫ 2π

0

d x
2π

sin2(x − v)
(c1 sin x + d cos x)2 + c2

2 sin2 x

=

�

c2
1 + c2

2 − d2
�

cos(2v)−
�

c2
1 + (c2 − d)2 + 2c1d sin(2v)

�

2dc2

�

c2
1 + (c2 − d)2

� , (B.20)

where v > 0 is arbitrary and c1 = Re[a(q)], c2 = Im[a(q)] and d = b(q) as before. Using the
above result in Eq. (B.19) with appropriate values of v,

Lb
1(τ) =

1
k4

∫ ωc

0

dω
π
ω2
�

k2 Q((l − 1)q) +ω2γ2 Q(lq)
�

g̃(τ,ω)

=
ω3

c

2k4

∫ π

0

dq̄
π

sin2 q
2

cos
q
2

�

k2 Q((l − 1)q) +ω2
c sin2 q

2
γ2 Q(lq)

�

g̃
�

τ,ωc sin
q
2

�

.

(B.21)

Adding the contributions given by Eq. (B.13), (B.18) and (B.21), we can evaluate the kinetic
temperature profile near the left boundary, which is shown in Fig. 6.

B.2 T̂l near right boundary

The behavior near the right boundary can be obtained in a similar manner. For this purpose,
it is convenient to define, ` = N − l + 1, such that ` = 1,2, 3, . . . � N corresponds to the
oscillators near the right boundary. Next, we note that, from Eqs. (B.3a) and (B.3b),

|Gl1(ω)|2 = |GN−l+1,N (ω)|2 , (B.22)

|GlN (ω)|2 = |GN−l+1,1(ω)|2 . (B.23)

Then the T̂l profile near the right boundary (l ∼ N) is given by,

T̂N−`+1 = m

∫ ∞

−∞

dω
2π
ω2
�

|GN−`+1,1(ω)|2 g̃(τ1,ω) + |GN−`+1,N (ω)|2 g̃(τN ,ω)
�

= m

∫ ∞

−∞

dω
2π
ω2
�

|G`,N (ω)|2 g̃(τ1,ω) + |G`,1(ω)|2 g̃(τN ,ω)
�

= m
�

LN (`,τ1) + L1(`,τN )
�

, (B.24)

where L1(`,τ) and LN (`,τ) are obtained from Eqs. (B.13), (B.18) and (B.21).
Interestingly, boundary kinks, which are absent in the active regime appear in the passive

limit, similar to the thermal scenario. This is shown in Fig. 6(b) where kinks are visible near
the right boundary as the activity of the corresponding reservoirs is small, whereas no kinks
are visible near the left reservoir, which remains in the strongly active regime.

17

https://scipost.org
https://scipost.org/SciPostPhys.13.2.041


SciPost Phys. 13, 041 (2022)

C Linear response: Differential conductivity

In this section we derive an expression for the differential conductivity for the energy cur-
rent using nonequilibrium response theory. The nonequilibrium linear response relations are
most conveniently derived using a trajectory based approach and differ from the equilibrium
response by the presence of an additional ‘frenetic’ contribution, which is symmetric under
time-reversal [47].

To derive linear response relations for the activity driven chain using the trajectory based
approach, a specific dynamics of the active force is required. Here we take the specific example
of dichotomous active forces which reverse their directions with rates α1 and αN at the two
reservoirs [see Eq. (3)]. In this case, it is most natural to consider a perturbation α j → α j+dα j
and express the differential conductivity as,

χ j ≡
dJact

dτ j
= −2α2

j
dJact

dα j
, (C.1)

where we have used the fact that τ j = 1/(2α j) in this scenario. Let
ω = {x i(s),σ1(s),σN (s); 0 ≤ s ≤ t} denote a trajectory of the system during the interval
[0, t] and Pα1,αN

(ω) denote the corresponding probability. Of course, the trajectory probabil-
ity depends on the various system parameters, but since we are interested in the response to
a change in the flip rate, it suffices to consider the α j dependence. Hence, we can write,

Pα1,αN
(ω) = e−(α1+αN )tα

n1
1 α

nN
N U(ω) , (C.2)

where n1 and nN denote the number of flips of the active force at the left and right boundaries
during time [0, t] and U(ω) contains the x j-dependent components. The weight of the same
trajectory ω changes upon adding the perturbation i.e., say, changing α1 → α1 + dα1. Note
that this change does not affect U(ω). The linear response of the expectation value of any
observable 〈O〉 to this change can be expressed as a connected correlation in the unperturbed
state [47],

d〈O〉
dα1

= −〈A(ω); O(ω)〉 , (C.3)

where A(ω) = − d
dα1

log Pα1,αN
(ω) is the excess action associated to the trajectory ω due to

the perturbation.
Then, from Eq. (C.2), we have, for the active current Jact = 〈J(t)〉,

dJact

dα1
=

1
α1
[〈n1J(t)〉 − 〈n1〉〈J(t)〉]] . (C.4)

The response to a change in the right reservoir is also given by a similar expression. The
stationary response is obtained by taking the t → ∞ limit which is quoted in Eq. (15), in
terms of the activity parameter τ j = 1/(2α j). Figure 7 compares the exact analytical response
dJact
dα1

obtained from Eqs. (A.31)-(A.32) using α1 = 1/(2τ1)with the prediction (C.4), measured
from numerical simulations, which shows an excellent match. As observed from the figure,
that the susceptibility becomes negative beyond a certain α1, which depends on k (and also
other parameters of the system).

We close this discussion with a final remark. The dynamics of the active noise f j = a jσ j
is symmetric under time-reversal if f j is considered as a force and hence, the nonequilibirum
linear response obtained in Eq. (C.4) is purely frenetic. Frenetic contribution to the linear
response is known to result in negative differential response in various contexts [36]. The
activity driven harmonic chain provides another example where the same mechanism works,
although the absence of any equilibrium limit and the nature of the perturbation here means
that there is no traditional regime where one recovers a Kubo-like formula.
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Figure 7: Plot of dJact
dα1

versus α1 for the dichotomous active noise for two different
values of k: the solid lines show the exact expression obtained from Eq. (A.31) while
the symbols show the predicted correlation [see Eq. (C.4)]measured from numerical
simulations.

References

[1] S. Lepri, Thermal transport in low dimensions. From statistical physics to nanoscale heat
transfer, Springer, Cham, Switzerland, ISBN 9783319292595 (2016), doi:10.1007/978-
3-319-29261-8.

[2] A. Dhar, Heat transport in low-dimensional systems, Adv. Phys. 57, 457 (2008),
doi:10.1080/00018730802538522.

[3] Z. Rieder, J. L. Lebowitz and E. Lieb, Properties of a harmonic crystal in a station-
ary nonequilibrium state, in Statistical mechanics, Springer, Berlin, Heidelberg, ISBN
9783642060922 (1967), doi:10.1007/978-3-662-10018-9_21.

[4] H. Nakazawa, On the lattice thermal conduction, Prog. Theor. Phys. Suppl. 45, 231
(1970), doi:10.1143/PTPS.45.231.

[5] D. Roy and A. Dhar, Heat transport in ordered harmonic lattices, J. Stat. Phys. 131, 535
(2008), doi:10.1007/s10955-008-9487-1.

[6] A. Dhar, Heat conduction in the disordered harmonic chain revisited, Phys. Rev. Lett. 86,
5882 (2001), doi:10.1103/PhysRevLett.86.5882.

[7] S. Lepri, R. Livi and A. Politi, Studies of thermal conductivity in Fermi-Pasta-Ulam-like
lattices, Chaos 15, 015118 (2005), doi:10.1063/1.1854281.

[8] T. Mai, A. Dhar and O. Narayan, Equilibration and universal heat con-
duction in Fermi-Pasta-Ulam chains, Phys. Rev. Lett. 98, 184301 (2007),
doi:10.1103/PhysRevLett.98.184301.

[9] A. Kundu, S. Sabhapandit and A. Dhar, Large deviations of heat flow in harmonic chains,
J. Stat. Mech. P03007 (2011), doi:10.1088/1742-5468/2011/03/P03007.

[10] V. Kannan, A. Dhar and J. L. Lebowitz, Nonequilibrium stationary state of
a harmonic crystal with alternating masses, Phys. Rev. E 85, 041118 (2012),
doi:10.1103/PhysRevE.85.041118.

19

https://scipost.org
https://scipost.org/SciPostPhys.13.2.041
https://doi.org/10.1007/978-3-319-29261-8
https://doi.org/10.1007/978-3-319-29261-8
https://doi.org/10.1080/00018730802538522
https://doi.org/10.1007/978-3-662-10018-9_21
https://doi.org/10.1143/PTPS.45.231
https://doi.org/10.1007/s10955-008-9487-1
https://doi.org/10.1103/PhysRevLett.86.5882
https://doi.org/10.1063/1.1854281
https://doi.org/10.1103/PhysRevLett.98.184301
https://doi.org/10.1088/1742-5468/2011/03/P03007
https://doi.org/10.1103/PhysRevE.85.041118


SciPost Phys. 13, 041 (2022)

[11] D. Gupta and D. A. Sivak, Heat fluctuations in a harmonic chain of active particles, Phys.
Rev. E 104, 024605 (2021), doi:10.1103/PhysRevE.104.024605.

[12] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966),
doi:10.1088/0034-4885/29/1/306.

[13] C. Maes and S. R. Thomas, From Langevin to generalized Langevin equa-
tions for the nonequilibrium Rouse model, Phys. Rev. E 87, 022145 (2013),
doi:10.1103/PhysRevE.87.022145.

[14] C. Maes, On the second fluctuation-dissipation theorem for nonequilibrium baths, J. Stat.
Phys. 154, 705 (2014), doi:10.1007/s10955-013-0904-8.

[15] C. Maes and S. Steffenoni, Friction and noise for a probe in a nonequilibrium fluid, Phys.
Rev. E 91, 022128 (2015), doi:10.1103/PhysRevE.91.022128.

[16] H. Vandebroek and C. Vanderzande, On the generalized Langevin equation for a Rouse
bead in a nonequilibrium bath, J. Stat. Phys. 167, 14 (2017), doi:10.1007/s10955-017-
1734-x.

[17] D. Gupta and S. Sabhapandit, Stochastic efficiency of an isothermal work-to-work converter
engine, Phys. Rev. E 96, 042130 (2017), doi:10.1103/PhysRevE.96.042130.

[18] A. Iacobucci, F. Legoll, S. Olla and G. Stoltz, Negative thermal conductivity
of chains of rotors with mechanical forcing, Phys. Rev. E 84, 061108 (2011),
doi:10.1103/PhysRevE.84.061108.

[19] M. C. Zheng, F. M. Ellis, T. Kottos, R. Fleischmann, T. Geisel and T. Prosen,
Heat transport in active harmonic chains, Phys. Rev. E 84, 021119 (2011),
doi:10.1103/PhysRevE.84.021119.

[20] D. Bagchi, Thermally driven classical Heisenberg model in 1D with a local time varying
field, J. Stat. Mech. P12005 (2013), doi:10.1088/1742-5468/2013/12/P12005.

[21] K. Kanazawa, T. Sagawa and H. Hayakawa, Heat conduction induced
by non-Gaussian athermal fluctuations, Phys. Rev. E 87, 052124 (2013),
doi:10.1103/PhysRevE.87.052124.

[22] X.-L. Wu and A. Libchaber, Particle diffusion in a quasi-two-dimensional bacterial bath,
Phys. Rev. Lett. 84, 3017 (2000), doi:10.1103/PhysRevLett.84.3017.

[23] G. V. Soni, B. M. Jaffar Ali, Y. Hatwalne and G. V. Shivashankar, Single particle track-
ing of correlated bacterial dynamics, Biophys. J. 84, 2634 (2003), doi:10.1016/s0006-
3495(03)75068-1.

[24] S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy and A. K. Sood, A micrometre-
sized heat engine operating between bacterial reservoirs, Nat. Phys. 12, 1134 (2016),
doi:10.1038/nphys3870.

[25] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Ac-
tive particles in complex and crowded environments, Rev. Mod. Phys. 88, 045006 (2016),
doi:10.1103/RevModPhys.88.045006.

[26] C. Valeriani, M. Li, J. Novosel, J. Arlt and D. Marenduzzo, Colloids in a bacterial bath:
Simulations and experiments, Soft Matt. 7, 5228 (2011), doi:10.1039/C1SM05260H.

20

https://scipost.org
https://scipost.org/SciPostPhys.13.2.041
https://doi.org/10.1103/PhysRevE.104.024605
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevE.87.022145
https://doi.org/10.1007/s10955-013-0904-8
https://doi.org/10.1103/PhysRevE.91.022128
https://doi.org/10.1007/s10955-017-1734-x
https://doi.org/10.1007/s10955-017-1734-x
https://doi.org/10.1103/PhysRevE.96.042130
https://doi.org/10.1103/PhysRevE.84.061108
https://doi.org/10.1103/PhysRevE.84.021119
https://doi.org/10.1088/1742-5468/2013/12/P12005
https://doi.org/10.1103/PhysRevE.87.052124
https://doi.org/10.1103/PhysRevLett.84.3017
https://doi.org/10.1016/s0006-3495(03)75068-1
https://doi.org/10.1016/s0006-3495(03)75068-1
https://doi.org/10.1038/nphys3870
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1039/C1SM05260H


SciPost Phys. 13, 041 (2022)

[27] C. Maggi, M. Paoluzzi, N. Pellicciotta, A. Lepore, L. Angelani and R. Di Leonardo, Gener-
alized energy equipartition in harmonic oscillators driven by active baths, Phys. Rev. Lett.
113, 238303 (2014), doi:10.1103/PhysRevLett.113.238303.

[28] A. Gopal, É. Roldán and S. Ruffo, Energetics of critical oscillators in active bacterial baths,
J. Phys. A: Math. Theor. 54, 164001 (2021), doi:10.1088/1751-8121/abe5cb.

[29] C. Maes, Fluctuating motion in an active environment, Phys. Rev. Lett. 125, 208001
(2020), doi:10.1103/PhysRevLett.125.208001.

[30] O. Granek, Y. Kafri and J. Tailleur, Anomalous transport of tracers in active baths, Phys.
Rev. Lett. 129, 038001 (2022), doi:10.1103/PhysRevLett.129.038001.

[31] H. Seyforth, M. Gomez, W. B. Rogers, J. L. Ross and W. W. Ahmed, Nonequilibrium fluc-
tuations and nonlinear response of an active bath, Phys. Rev. Research 4, 023043 (2022),
doi:10.1103/PhysRevResearch.4.023043.

[32] S. M. Mousavi, G. Gompper and R. G. Winkler, Active bath-induced localization
and collapse of passive semiflexible polymers, J. Chem. Phys. 155, 044902 (2021),
doi:10.1063/5.0058150.

[33] A. Pal and S. Sabhapandit, Work fluctuations for a Brownian particle driven
by a correlated external random force, Phys. Rev. E 90, 052116 (2014),
doi:10.1103/PhysRevE.90.052116.

[34] É. Fodor, T. Nemoto and S. Vaikuntanathan, Dissipation controls transport and phase tran-
sitions in active fluids: Mobility, diffusion and biased ensembles, New J. Phys. 22, 013052
(2020), doi:10.1088/1367-2630/ab6353.

[35] S. Chaki and R. Chakrabarti, Effects of active fluctuations on energetics of a colloidal parti-
cle: Superdiffusion, dissipation and entropy production, Physica A: Stat. Mech. Appl. 530,
121574 (2019), doi:10.1016/j.physa.2019.121574.

[36] P. Baerts, U. Basu, C. Maes and S. Safaverdi, Frenetic origin of negative differential re-
sponse, Phys. Rev. E 88, 052109 (2013), doi:10.1103/PhysRevE.88.052109.

[37] B. Li, L. Wang and G. Casati, Negative differential thermal resistance and thermal transistor,
Appl. Phys. Lett. 88, 143501 (2006), doi:10.1063/1.2191730.

[38] S. Leitmann and T. Franosch, Nonlinear response in the driven lattice Lorentz gas, Phys.
Rev. Lett. 111, 190603 (2013), doi:10.1103/PhysRevLett.111.190603.

[39] A. K. Chatterjee, U. Basu and P. K. Mohanty, Negative differential mobility in interacting
particle systems, Phys. Rev. E 97, 052137 (2018), doi:10.1103/PhysRevE.97.052137.

[40] A. K. Chatterjee and P. K. Mohanty, Assisted exchange models in one dimension, Phys. Rev.
E 98, 062134 (2018), doi:10.1103/PhysRevE.98.062134.

[41] D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini, J. Tailleur and F. van Wijland, Sta-
tistical mechanics of active Ornstein-Uhlenbeck particles, Phys. Rev. E 103, 032607 (2021),
doi:10.1103/PhysRevE.103.032607.

[42] I. Santra, U. Basu and S. Sabhapandit, Run-and-tumble particles in two di-
mensions: Marginal position distributions, Phys. Rev. E 101, 062120 (2020),
doi:10.1103/PhysRevE.101.062120.

21

https://scipost.org
https://scipost.org/SciPostPhys.13.2.041
https://doi.org/10.1103/PhysRevLett.113.238303
https://doi.org/10.1088/1751-8121/abe5cb
https://doi.org/10.1103/PhysRevLett.125.208001
https://doi.org/10.1103/PhysRevLett.129.038001
https://doi.org/10.1103/PhysRevResearch.4.023043
https://doi.org/10.1063/5.0058150
https://doi.org/10.1103/PhysRevE.90.052116
https://doi.org/10.1088/1367-2630/ab6353
https://doi.org/10.1016/j.physa.2019.121574
https://doi.org/10.1103/PhysRevE.88.052109
https://doi.org/10.1063/1.2191730
https://doi.org/10.1103/PhysRevLett.111.190603
https://doi.org/10.1103/PhysRevE.97.052137
https://doi.org/10.1103/PhysRevE.98.062134
https://doi.org/10.1103/PhysRevE.103.032607
https://doi.org/10.1103/PhysRevE.101.062120


SciPost Phys. 13, 041 (2022)

[43] U. Basu, S. N. Majumdar, A. Rosso and G. Schehr, Active Brownian motion in two dimen-
sions, Phys. Rev. E 98, 062121 (2018), doi:10.1103/PhysRevE.98.062121.

[44] I. Santra, U. Basu and S. Sabhapandit, Active Brownian motion with directional reversals,
Phys. Rev. E 104, L012601 (2021), doi:10.1103/PhysRevE.104.L012601.

[45] R. A. Usmani, Inversion of Jacobi’s tridiagonal matrix, Comput. Math. Appl. 27, 59 (1994),
doi:10.1016/0898-1221(94)90066-3.

[46] M. Baiesi, C. Maes and B. Wynants, Fluctuations and response of nonequilibrium states,
Phys. Rev. Lett. 103, 010602 (2009), doi:10.1103/PhysRevLett.103.010602.

[47] C. Maes, Response theory: A trajectory-based approach, Front. Phys. 8 (2020),
doi:10.3389/fphy.2020.00229.

[48] M. Baiesi and C. Maes, An update on the nonequilibrium linear response 15, 013004
(2013), doi:10.1088/1367-2630/15/1/013004.

[49] S. Lepri, Thermal conduction in classical low-dimensional lattices, Phys. Rep. 377, 1
(2003), doi:10.1016/S0370-1573(02)00558-6.

[50] L. Caprini and U. M. B. Marconi, Time-dependent properties of interacting active matter:
Dynamical behavior of one-dimensional systems of self-propelled particles, Phys. Rev. Re-
search 2, 033518 (2020), doi:10.1103/PhysRevResearch.2.033518.

[51] P. Singh and A. Kundu, Crossover behaviours exhibited by fluctuations and correlations in a
chain of active particles, J. Phys. A: Math. Theor. 54, 305001 (2021), doi:10.1088/1751-
8121/ac0a9f.

[52] L. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press,
New York, US, ISBN 9780123736376 (1943).

22

https://scipost.org
https://scipost.org/SciPostPhys.13.2.041
https://doi.org/10.1103/PhysRevE.98.062121
https://doi.org/10.1103/PhysRevE.104.L012601
https://doi.org/10.1016/0898-1221(94)90066-3
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.3389/fphy.2020.00229
https://doi.org/10.1088/1367-2630/15/1/013004
https://doi.org/10.1016/S0370-1573(02)00558-6
https://doi.org/10.1103/PhysRevResearch.2.033518
https://doi.org/10.1088/1751-8121/ac0a9f
https://doi.org/10.1088/1751-8121/ac0a9f

	Introduction
	Model
	Results
	Stationary energy current
	Negative differential conductivity
	Current reversal

	 Kinetic temperature

	Conclusions
	Stationary state Current
	Kinetic temperature profile
	l near left boundary
	l near right boundary

	Linear response: Differential conductivity
	References

