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Abstract

Lattice simulations along with studies in continuum QCD indicate that non-perturbative
quantum fluctuations lead to an infrared regularisation of the gluon propagator in co-
variant gauges in the form of an effective mass-like behaviour. In the present work we
propose an analytic understanding of this phenomenon in terms of gluon condensation
through a dynamical version of the Higgs mechanism, leading to the emergence of color
condensates. Within the functional renormalisation group approach we compute the ef-
fective potential of covariantly constant field strengths, whose non-trivial minimum is
related to the color condensates. In the physical case of an SU(3) gauge group this is
an octet condensate. The value of the gluon mass obtained through this procedure com-
pares very well to lattice results and the mass gap arising from alternative dynamical
scenarios.
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1 Introduction

Yang-Mills theory exhibits a mass gap, in spite of the fact that the fundamental degrees of
freedom are massless at the level of the classical action. While perturbation theory is based
on massless gluons, non-perturbative quantum fluctuations lead to exponentially decaying
correlation functions for gauge invariant observables, which are characteristic of massive ex-
citations. The lightest excitations are glueballs [1, 2], and the lightest glueball mass sets the
mass gap or confinement scale. This dynamical emergence of a mass gap in the gauge sector of
QCD has been established by numerous lattice studies, see e.g. [3–7], and continuum studies,
see e.g. [8–16].

In a gauge fixed version of QCD the effects of the mass gap manifest themselves through the
appearance of distinctive patterns in the infrared momentum region of correlation functions.
Most of the related investigations have been performed in Landau gauge QCD. In particular the
infrared behaviour of the gluon propagator in Landau gauge has been explored within large-
volume lattice simulations [17–26] and non-perturbative functional methods, such as Dyson-
Schwinger equations (DSEs) [27–31] and the functional renormalisation group (fRG) [32–35].
In combination, these investigations have led to a coherent picture: with exception of the
deep infrared regime far below the confinement scale ΛQCD, the results obtained for the gluon
propagator in the non-perturbative domain are in excellent agreement. In particular, they
are found to be well compatible with a description in terms of an effective gluon mass. Put
differently, they show the dynamical emergence of a mass gap in the gluon propagator, and in
higher order correlation functions.

The precise relation between the gluon mass in gauge fixed QCD and the physical mass
gap in Yang-Mills theory still eludes us. Nonetheless, in covariant gauges a mass gap in the
gluon propagator is required for quark confinement to occur, as has been established through
the study of the Polyakov loop expectation value in [36,37].

This situation asks for the identification and investigation of potential mechanisms which
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are able to create an effective gluon mass term. Commonly, gauge boson masses are gener-
ated by the formation of condensates, even in the absence of fundamental scalar fields. The
textbook implementation of such a scenario is realised within the theory of superconductivity.
There, the massive photon associated with the Meissner effect is linked to the condensation
of the Cooper pairs, see e.g. [38, 39], and references therein. In pure Yang-Mills theory, a
potential connection between the effective gluon mass and gluon condensates of dimension
four has mostly been discussed within the operator product expansion (OPE) [40–42]. It has
been argued in [43] that a non-perturbative condensate of composite color octets in QCD leads
to a simple description of gluon masses by the Higgs mechanism. In this scenario, the mas-
sive gluons can be identified with the lowest mass vector mesons, with a rather successful
phenomenology [44,45].

The present work is a first fRG study of a potential dynamical emergence of the effective
mass in the gauge fixed gluon propagator in QCD color condensates. This condensate is com-
puted from the Euclidean effective potential of a constant field strength Fµν as in [46], with
precision ghost and gluon propagators obtained within the fRG [47]. We find minima and
saddle points for finite non-zero Fµν. The minimum value of Fµν is related to an effective
gluon mass, and the final color blind result is obtained from an average over color directions.
Our computation of the effective gluon mass agrees very well with lattice results and results
obtained from alternative dynamical scenarios within the error bars, despite the qualitative na-
ture of the computation. The present study serves as a promising starting point for a systematic
exploration of the connection between gluon condensates and gluon mass gap.

2 Gluon Condensates

Gluon condensation can be described by non-vanishing expectation values of composite oper-
ators, such as the field strength squared, FµνFµν, being a scalar under Lorentz transformations.
In terms of the free energy or effective action of QCD, this entails that quantum effects would
trigger a non-trivial potential in these condensates, with the possibility of capturing also the
dynamics of the respective interaction channel. In this context, the classical action of Yang-
Mills theory is the first (trivial) term of such a non-trivial potential,

SA[A] =
1
2

∫

tr F2
µν =

1
4

∫

F a
µνF a

µν , (1)

with the field strength Fµν = F a
µν ta, where

F a
µν = ∂µAa

ν − ∂νA
a
µ + gs f abcAb

µAc
ν . (2)

In eq. (1), the trace is taken over the fundamental representation, with tr (ta t b) = 1
2δ

ab,
and a, b = 1, ..., N2

c − 1 for the gauge group SU(Nc). Since ensuing computations involve
covariantly constant field strengths, for which [D, F] = 0, we also report the standard relation

Fµν =
i
gs
[Dµ, Dν] , with Dµ = ∂µ − igsAµ , (3)

with the algebra valued field Aµ = Aa
µ ta.

2.1 Color condensates

Color condensates [43, 48–50] could render the gluons massive through a dynamical realisa-
tion of the Higgs mechanism. Note that, strictly speaking, a local gauge symmetry cannot be
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broken spontaneously. Nonetheless, as is well-known from the description of the electroweak
sector of the Standard Model, the language of spontaneous symmetry breaking in a fixed gauge
can be particularly useful, and will be employed in what follows.

Below we discuss a color condensate operator, derived from Fµν in the case of the physical
gauge group SU(3). Generally, a possible condensate operator of dimension four is given by
the traceless hermitian Nc × Nc matrices

χAB =
�

FAC
µν F CB

µν −
1
Nc

F C D
µν F DC

µν δ
AB
�

, (4)

where A, B, C , D = 1, ..., Nc are color indices in the fundamental representation,
FAB
µν = F a

µν(t
a)AB. The subtraction of the diagonal term makes the operator traceless, χAA = 0,

and for Nc = 3 this is an octet operator. In terms of the field strength components F a
µν, the

condensate in eq. (4) reads,

χAB =
1
2

F a
µνF b

µν

�

{ta , t b}AB −
1
Nc
δabδAB

�

. (5)

We note in passing that the above operator is only present for Nc ≥ 3. It vanishes in SU(2), as
the symmetric group invariant vanishes, dabc = tr ta{t b , t c} = 0. This already suggests that
in a realistic condensation scenario leading to a gluon mass gap, eq. (4) should be augmented
with further color condensate operators.

Introducing the composite color condensate field χAB, the quantum effective action Γ will
contain an induced kinetic term,

Γχ = Zχ

∫

x
(Dµχ)

AB (Dµχ)
BA , (6)

with a wave function renormalisation Zχ . For a non-zero expectation value 〈χAB〉, this induces
a mass term for some of the gluons,

m2
A∝ Zχ g2

s 〈χ〉
2 . (7)

Mass terms for all gluons in SU(3) require condensates of more than one octet in different
directions since at least a U(1)×U(1)-subgroup remains unbroken, as for example in [43,48–
50]. This argument also applies to higher gauge groups, Nc ≥ 3, and we have already pointed
out in this context that the color condensate operator eq. (5) vanishes for Nc = 2. Besides
different mass terms, octet condensates can also induce different effective gauge couplings for
different gluons, due to terms in the effective action, see e.g. [51,52],

∫

x
FAB
µνχ

BC F CA
µν . (8)

This closes our discussion of color condensation in Yang-Mills theories.

2.2 Color condensates and the field strength tensor

The flow equation approach with dynamical composite fields such as the color condensate field
discussed in the last section is well understood. It has been introduced and discussed in [53–
62], for applications to QCD see [59,63–67] and the review [35]. However, full computations
including the composite fieldχAB require a substantial effort, and will be considered elsewhere.

In the present work we restrict ourselves to a qualitative study, whose principal aim is to
gather insights on the possible rôle of non-singlet condensates in the confining dynamics. This
is done by building on results for the condensation of the field strength tensor within functional
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renormalisation group investigations in [46, 68, 69]. Such a colored expectation value of Fµν
is linked to non-vanishing expectation values of the color condensate operator χ in eq. (4)
as well as potential non-vanishing expectation values of further color condensate operators.
Hence, 〈Fµν〉 can be used to describe the dynamical emergence of the effective gluon mass via
color condensates, for details see Section 2.3.

We emphasise that a description in terms of Fµν and its expectation value makes it difficult
to include the full dynamics of the color condensate sector as well as the condensation pattern,
as this requires the computation of the dynamics of higher order terms in Fµν and covariant
derivatives. We also note that such an expansion about 〈Fµν〉 works naturally for observables
or more generally, expectation values of gauge invariant operators. There, singling out a color
direction is simply a means of computation. In turn, for gauge-variant expressions the expan-
sion about a non-trivial configuration mixes with the gauge fixing, and it is difficult to undo
the color selection quantitatively. Still, it can be done with an additional color averaging 〈·〉av,
which can be implemented systematically. As this concerns the understanding and underlying
structure of our work, we further explain this with two simple examples. While important, it
is not in our main line of reasoning and hence is deferred to Appendix A.

Note, that such an averaging is to date always implied in lattice simulations of gauge fixed
correlation functions as well as in most computations in functional QCD using an expansion
about the only color-symmetric background, 〈Fµν〉= 0. The intricacies mentioned above only
occur for a quantitative implementation in an expansion about a colored background. It is the
current lack of a quantitatively reliable averaging procedure, that causes the current investi-
gation to be of qualitative nature, and constitutes our largest source of systematic error.

In the present work, we compute the respective gauge invariant effective potential
Weff(Fµν) for constant field strength Fµν from the effective action Γ [A],

Weff(Fµν) =
1
V Γk[A(Fµν)] , (9)

with the space time volume V .
Specifically, we choose gauge fields with the following constant self-dual field strengths:

the components Fµν = 0 for µν 6= 01,10, 23,32 vanish, and we have

F01 = F23 =
F a

2gs
ta , F a

01 =
F a

2gs
, F a = Fna , (10a)

with a constant vector na with nana = 1. The field strength eq. (10a) can be generated from
the gauge fields

Aa
µ = −

1
2

F a
µνxν . (10b)

Evidently, the configuration is self-dual,

Fµν = F̃µν , with F̃µν =
1
2
εµνρσFρσ , (10c)

and is covariantly constant, [Dρ , Fµν] = 0.
The classical action and the classical potential Wcl as well as the color condensate eq. (4)

is obtained from the field strength squared, which reads for the configuration eq. (10),

FµνFµν =
F2

g2
s
(na ta)2 , F a

µνF a
µν =

1
g2

s
F2 . (11)

For example, for the configuration eq. (10) with eq. (11), the classical potential reduces to

Wcl(F
a) =

1
2

tr F aF b ta t b =
1

4g2
s

F2 , (12)
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where tr is the group trace in the fundamental representation as in eq. (1). From now on we
only consider configurations of the type eq. (10), and hence Weff will be written as a function
of Fna, that is Weff(F a) instead of Weff(Fµν). The factor 1/g2

s in eq. (11) reflects the RG-
scaling of the field strength, and has been introduced for convenience. Moreover, as both the
gauge fields and the field strength in eq. (10b) point in direction na of the algebra, they can
be rotated into the Cartan subalgebra without loss of generality.

Below, we briefly discuss SU(2) and SU(3) gauge groups, the former case as the simplest
example, the latter case for its physical relevance:

In the SU(2) gauge group, the Cartan subalgebra is generated by t3 = σ3/2 and the self-
dual field strength eq. (10) is given by

F01 = F23 =
F

2gs
t3 . (13)

We have already discussed above that in SU(2) the symmetric group invariant dabc vanishes,
and hence χAB

SU(2) = 0, implying (FµνFµν)AB = F a
µνF a

µνδ
AB/4 for all configurations. For eq. (13)

we find

(FµνFµν)
AB =

F2

4g2
s
δAB . (14)

The explicit computation in this work is done for the physical gauge group SU(3) with the
Cartan generators t3, t8. These are related to the Gell-Mann matrices by ta = λa/2, the re-
spective vector n has the components na = 0 for a 6= 3, 8. A self-dual field strength eq. (10) is
given by

F01 = F23 =
F

2gs

�

n3 t3 + n8 t8
�

. (15)

The octet condensate operator eq. (4) for the configuration eq. (15) reads

χAB =
F2

2g2
s

�

nanb {ta , t b}AB −
1
3
δAB

�

=
F2

2g2
s
δAB

�

δA1ν+ +δ
A2ν− +δ

A3ν3

�

, (16)

where

ν± =
1
2

�

n8

p
3
± n3

�2

−
1
3

, ν3 =
2
3
(n8)2 −

1
3

, (17)

where the trace(less) condition, χAA = 0, translates into ν++ν−+ν3 = 0 with (n3)2+(n8)2 = 1.

Non-vanishing octet condensate expectation values are in one to one correspondence to
non-trivial expectation values of its corresponding gauge-invariant eigenvalues. Hence, a non-
trivial expectation value of the field strength triggers one for the octet condensate χAB and
other color condensate operators. Therefore, in Section 4, we compute the effective potential
for covariantly constant field strength or rather Weff[Fna] for the field strength amplitude Fna

defined in eq. (10a), and the constant algebra element na ta is rotated into the Cartan subalge-
bra leading to eq. (15). The respective effective potential is shown in Figure 1 for the physical
SU(3) case with the two Cartan components F01n3 and F01n8.

Our explicit computation of the effective gluon mass is based on an expansion about the
minimum 〈F〉(na) in the three-direction with na = δa3. In SU(2) this is the Cartan direction,
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Figure 1: Effective potential Weff(F a) in the plane spanned by the Cartan subalge-
bras. The position of the non-trivial global minimum is highlighted in red.

and in SU(3) one of the absolute minima points in the three-direction, see Figure 1. Then, the
expansion about the minimum reads

F a
01 = F a

23 =
〈F〉
2gs
δa3 +O(a) , (18)

for both gauge groups, where aµ is the gauge field, that carries the fluctuations about the
field strength expectation value. With eq. (10b) we can deduce a gauge field, that generates
eq. (18). We find,

Aa
µ =
〈F〉
4gs

�

x0δµ1 − x1δµ0 + x2δµ3 − x3δµ2

�

+ aa
µ , (19)

which points in the same Cartan direction as the field strength. The fluctuation field aµ carries
the dynamics of the gauge field, leading to the O(a)-terms in eq. (18). Within this setting
we shall derive our estimates for the effective gluon mass as well as discuss constraints and
bounds for this mass.

2.3 Color condensates and the gluon mass gap

It is left to discuss the emergence of an effective gluon mass term in the presence of gluon
condensates via the expectation value 〈F a

µν〉 ∝ δa3 in Equation (18), or any other algebra
direction. This expectation value is computed from the effective potential W(F a) introduced
in section 2.2.

Expanding the effective potential in powers of the fluctuation field gauge field aµ leads
to contributions to the n-point functions of the gauge field, including the two-point function.
However, neither a contribution to the mass operator aa

µaa
µ is generated, nor do we obtain

mass terms in specific algebra directions. In particular, no mass contribution in the Cartan
a = 3 direction is induced, as is readily shown for SU(2).
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While the effective potential does not contribute to the effective mass term, the latter
receives contributions from other terms in the full, gauge invariant quantum effective action
Γ [A]. Such an action can be defined within the background field approach, which will be
detailed in Section 3. For the time being we simply assume its existence and consider the
higher order term

ΓF [A] =
ZF

4

∫

x
(DµFνρ)

a(DµFνρ)
a , (20)

where ZF is the wave function renormalisation of the condensate term. Equation (20) is the
lowest order term that generates an effective gluon mass term within an expansion about the
condensate 〈F〉. An obvious generalisation of eq. (20) is provided by

1
4

∫

x
(DµFρσ)

aZF
ab
ρσαβ(Fµν)(DµFαβ)

b , (21)

with ZF
ab
ρσαβ

(0) = ZFδραδσβδ
ab. In the following we will use the approximation

ZF
ab
ρσαβ(〈Fµν〉)≈ ZF

ab
ρσαβ(0) , (22)

hence only considering the term eq. (20).
Equation (20) leads to an effective gluon mass, but does not contribute to (covariantly

constant) solutions of the equations of motions as its first field derivative vanishes for covari-
antly constant field strengths. The relevant contribution to the effective gluon mass term is
obtained by expanding eq. (20) in powers of the gauge field, while treating the field strength
within the expansion eq. (18). To that end we conveniently recast eq. (20) into the form

ΓF [A] = −
ZF

2

∫

x
F CB
νρ (D

2)BAFAC
νρ , (23)

where the factor 1/2 in eq. (20) is now carried by the trace in the fundamental representation.
The O(A2) term is given by

ΓF [A] =
ZF

2
g2

s

∫

x
(FνρFνρ)

AB (AµAµ)
BA+ · · · , (24)

and we expand (FνρFνρ)AB about the field strength expectation value eq. (18). This implies
a non-vanishing condensate expectation value for eq. (4) as well as non-vanishing values for
other color condensate operators. The expansion about eq. (18) leads us to

(FνρFνρ)
AB =

1
g2

s
〈F〉2[(na ta)2]AB +O(a) . (25)

We drop the higher order terms in eq. (25) and insert it in eq. (24), to wit,

ΓF [A]'
ZF

2
〈F〉2

∫

x
tr (t3)2A2

µ + · · · , (26)

with the group trace in the fundamental representation. Now we evaluate eq. (26) for the con-
figurations eq. (10), which leads to our final expression for the effective gluon mass triggered
by an expectation value of the field strength proportional to t3. For general gauge groups,
eq. (26) is not color blind, which originates in the colored expansion point. It can be used to
deduce the color blind mass by a color average discussed in Appendix A.
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Before we come to our final color blind estimates, we exemplify eq. (26) within SU(2)
and SU(3). We first discuss the simple example of an SU(2) gauge group. There, the config-
uration eq. (18) leads to an F2

µν that is proportional to the identity tensor 1 in the algebra, as

4(t3)2 = 1. Indeed, as discussed below eq. (13), general field strength tensors lead to diagonal
F2
µν. In summary, in SU(2), a field strength condensate in the t3-direction leads to

ΓF [A]'
1
2

m2
3

∫

x
Aa
µAa
µ + · · · , m2

3 =
ZF

8
〈F〉2 , (27)

with a uniform mass m3 for all gluons. The subscript indicates that, while uniform, the mass
is generated by 〈F a

µν〉 ∝ δa3. Importantly, eq. (27) entails that a color condensate leads to
gluons with an effective mass. However, the current procedure with an expansion about a non-
vanishing field strength does not allow to directly infer the full effective gluon mass obtained
in a color blind computation from m2

3 in eq. (27). At this stage we only can offer estimates,
whose derivation is deferred to the end of the present section.

Before we come to these estimates, we proceed with the SU(3) example. There, we also
use the Cartan-valued configuration eq. (18) (with n8 = 0) as one of the absolute minima in
the full effective potential Weff points in this direction, see Figure 1. In contradistinction to
SU(2), the square 4(t3)2 is not the identity matrix in the algebra, but a projection onto the
first two colors,

[(t3)2]AB =
1
4
δAB

�

δA1 +δA2
�

. (28)

As expected, the expansion about a minimum of the field strength, related to one about the
octet condensate eq. (4), breaks color, and indeed, the gluon with the third color is massless
if only considering contributions from ΓF . Hence, while the present expansion shows, that the
gluons acquire an effective mass term ∝ δab, the relation of its necessarily color blind value
m2

A to the color-sensitive masses derived here is not straightforward.
Therefore, in the present work we simply deduce self-consistency constraints for the effec-

tive mass m2
A starting with the gluon mass m2

3, inferred from a field strength in the t3 direction.
To begin with, color symmetry can be restored by averaging over global color rotations as al-
ways implied in lattice simulations as well as in most computations in functional QCD. After
this averaging, all masses are identical and non-vanishing. A color average of eq. (26) leads
us to

ΓA2[A] =
ZF

2
fav(Nc)〈F〉2

∫

x
Aa
µAa
µ , (29)

with fav(Nc) encodes the color average of the factor (t3)2 in eq. (26),

fav(Nc) = 〈(t3)2〉av . (30)

The color average in eq. (30) necessarily leads to a color insensitive sum over all gen-
erators squared in the fundamental representation, which is simply the second Casimir
C2(Nc) = (N2

c − 1)/(2Nc) times the identity matrix. Moreover, there is an undetermined pref-
actor cav(Nc), which leads us to

¬

(t3)2
¶

av
= cav(Nc)

N2
c −1
∑

a=1

(ta)2 = cav(Nc)C2(Nc)1 . (31)
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In the present work we will only provide constraints for cav(Nc) and hence for fav(Nc) in
eq. (30). For example, a ’natural’ bound for the averaging factor is unity, cav(Nc)≤ 1.

In summary we arrive at

m2
A =

ZF

2
fav(Nc) 〈F〉2 . (32)

In Section 3.3 we will show, that self-consistency of the averaging in the large Nc limit en-
tails that in this limit fav(Nc)∝ Nc . Indeed, this limit holds true for Nc-independent cav. In
particular this includes the case, where we saturate the ’natural’ bound cav = 1, leading to

fav = (N
2
c − 1)/(2Nc) . (33)

For this saturation fav we obtain

m2
A =

ZF

4

N2
c − 1

Nc
〈F〉2 . (34)

Equation (34) will eventually yield our estimate of the effective gluon mass. In Section 3, we
present the formalism employed for working with the constant field strength configurations
in eq. (11). The computation of the minimum position F a = 〈F〉na is detailed in Section 4,
and an estimate of the wave function of the condensate together with the result for the mass
gap is presented in Section 5.

3 Background field approach

The condensate 〈F〉 for the field strength configuration of eq. (15) is given by the minimum
of an effective potential Weff(F na), derived from a gauge invariant effective action Γ [A], see
eq. (9). Such an action is defined in the background field approach [70], building on a linear
decomposition of the full gauge field Aµ into a fluctuating and background field. This linear
split is given by Aµ = Āµ + aµ, where aµ denotes the fluctuation field and Āµ the background
field. On the quantum level, this relation has to be augmented with the respective wave func-
tion renormalisations ZĀ = Z−2

gs
for the background field Āµ and Za for the fluctuation field aµ,

as the two fields carry different RG scalings: As indicated above, the background field scales
inversely to the strong coupling, while the fluctuation field carries the RG-scaling of the gauge
field in the underlying gauge without background field. The gauge fixing condition involves
the background field,

D̄µaµ = 0 , (35)

with the background covariant derivative D̄ = D(Ā), see eq. (3). Note, that eq. (35) is invariant
under background gauge transformations,

a→ a+ i [ω, a] , Ā→ Ā+
1
gs

D̄ω , (36)

implying a standard gauge transformation for the full gauge field: Aµ→ Aµ+(1/gs)Dω. Conse-
quently, the full gauge-fixed classical action is invariant under eq. (36), and so is the full effec-
tive action Γ [Ā, a]. Moreover, the single-field background field effective action Γ [A] := Γ [A, 0]
is gauge invariant and can be expanded in gauge invariant operators. For this reason, it also
allows for a more direct access to observables. In what follows we use the potential condensate
background eq. (10).
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3.1 Background field effective action

The gauge invariance of the background field effective action allows us to embed the momen-
tum-dependent kinetic terms and vertices in an expansion about a vanishing gauge field in full
gauge invariant terms that reduce to the original ones for Aµ → 0. An important example is
given by the (transverse) kinetic term of the gauge field, see e.g. [36,37,46],

Γ [A]∝
1
2

∫

p
Aa
µ(p) ZA(p

2) p2Π⊥µν(p)A
a
ν(−p) , (37)

with the abbreviation
∫

p =
∫

d4p/(2π)4, and the transverse and longitudinal projection oper-
ators

Π⊥µν(p) = δµν −
pµpν
p2

, Π‖µν(p) =
pµpν
p2

. (38)

The kinetic operator ZA(p2)p2 is identified as the Aµ → 0 limit of the second field derivative
of a gauge invariant term in the effective action Γ [A]. This leads us straightforwardly to the
parametrisation

Γ [A] =
1
2

∫

trFµν fA,µνρσ(D)Fρσ + · · · , (39a)

with the split

fA,µνρσ(D) =
1
2

ZA(∆s)(δµρδνσ −δµσδνρ) + Fγδ fA,γδµνρσ(D) . (39b)

In eq. (39b), we have introduced the spin-s Laplacians

∆0 = −D2 , ∆1,µν =DT,µν = −D2δµν + 2i gs Fµν , (39c)

see also eq. (86). Equation (39b) represents the most general parametrisation for a covariant
function coupled to two field strengths. Since fA,γδµνρσ is a function of the covariant derivative
D, higher order terms in the field strength tensor are contained in the second term of eq. (39b).
For Aµ = 0, all these decompositions reduce to their the momentum-dependent versions. In
particular, the kinetic term eq. (37) is obtained from eq. (39b) by taking two gauge field
derivatives at A= 0.

A further relevant example is the sum of the classical action and the term ΓF in eq. (20)
that generates the effective gluon mass. This combination is obtained with

ZA(−D2) = ZA− ZF D2 , fA,γδµνρσ = 0 . (40)

Here, ZA is the constant background wave function renormalisation multiplying the classical
action, which also entails ZA = Z−2

gs
.

The example given in eq. (40) is central for two reasons: Firstly, it demonstrates how
the condensate studied in this work emerges from the general, gauge-invariant form of the
effective action eq. (39a), which is defined in the next section within the background field
formalism. Secondly, it establishes a link between the wave function renormalisation of the
condensate and the kinetic operator of the gluon field ZA(∆s). More explicitly, due to the
generality of the split eq. (39b), eq. (40) entails that the wave function renormalisation of the
condensate eq. (20) is simply given by the D2-coefficient of the dressing function of the gluon
propagator. In the limit of vanishing background, this simply corresponds to the p4-term in
the inverse gluon propagator.
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Note that the use of different ∆s in the split eq. (39b) leads to different forms for fµ1···µ6
,

thus modifying the parametrisation of the kinetic term. Still, the different field modes carry
different spin, and the use of the respective Laplacians makes the split in eq. (39b) to be the
most natural. Typically, higher order terms within this split are suppressed in the effective
action. For example, the second derivative of the classical Yang-Mills action with respect to
the gauge field is given by ∆1 =DT , multiplied by a covariant transverse projection operator.
For covariantly constant fields with [D, F] = 0, we get

δ2

δAρδAσ

1
2

∫

x
trF2

µν =DT,ργΠ
⊥
γσ(D) , (41)

where the trace is taken in the fundamental representation. Above, we introduced the covari-
ant transverse and longitudinal projections,

Π⊥µν(D) = δµν −Π
‖
µν(D) , Π‖µν(D) = Dµ

1
D2

Dν . (42)

Equation (42) defines a decomposition in a covariantly transverse subspace with DµΠ
⊥(D) = 0.

It is complete, Π⊥(D) +Π‖(D) = 1, and trivially orthogonal. Finally, the operators have the
projection property (Π⊥(D))2 = Π⊥(D) and (Π‖(D))2 = Π‖(D).

3.2 Ghost and gluon two-point functions

When supplemented by a wave function renormalisation ZA(DT ), eq. (41) provides a very
good approximation of the full two-point function of the background gluon. This suggests the
split in eq. (39b) with the spin one Laplacian ∆1 = DT for the transverse two-point function,
and with the second term being subleading,

Γ
(2,0)
AA,µν[A, 0] = ZA(DT )DT,µσΠ

⊥
σν(D) + Fγδ∆ fA,γδµσ(D)Π

⊥
σν(D) , (43)

where ∆ fA,γδµν is a combination of derivatives of fA,µνρσ fully contracted with powers of the
field strength, see eq. (39b), and Ā= A. The transversality of eq. (43) follows from the gauge
invariance of the background field effective action, as does its covariance. In eq. (43) we have
used the notation

Γ
(n,m)
Ānφi1 ···φim

[Ā,φ] =
Γ [Ā,φ]
δĀnδφm

, φ = (a, c, c̄) , (44)

with φ denoting the ghost and gluon fluctuation field. We shall use the split eq. (39b) leading
to eq. (43) and similar natural splits for the covariant versions of the momentum dependent
two-point functions, thus going from the Landau gauge to the Landau-DeWitt gauge.

In particular one finds, that a similar line of arguments holds true for the kinetic operator
Za(p2)p2 of the fluctuation field aµ,

Γ (0,2)
aa,µν[0, 0] = Za(p

2) p2Π⊥µν(p) +
1
ξ

p2Π‖µν(p) , (45)

where eq. (38) was employed, and a diagonal form in the algebra, 1ab = δab, is implied.
Background gauge invariance entails that Γ (0,2)[A, 0] is a covariant operator under the back-
ground gauge transformations eq. (35). In consequence, the transverse part of Γ (0,2)

aa [A, 0]
can be parametrised by the generic form of a background gauge covariant function already
employed in eq. (39b), i.e.,

Γ (0,2)
aa,µν[A, 0] = Za(DT )DT,µσΠ

⊥
σν(D)−

1
ξ

D2Π‖µν(D) + Fγδ∆ fa,γδµσ(D)Π
⊥
σν(D) . (46)
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In eq. (46) we have used the spin-1 Laplacian ∆1 = DT defined in eq. (39c) in the wave
function renormalisation Za, since the transverse fluctuating gluon is a spin-1 field. For two-
flavour QCD, the validity of such covariant expansions has been confirmed explicitly for the
quark-gluon vertex, whose non-classical tensor structure can be related to higher order gauge-
invariant terms q̄ /Dnq [67].

Finally, in the case of the ghost two-point function we parametrise

Γ
(0,2)
cc̄ [A, 0] = −D2Zc(−D2) + Fµν∆ fc,µν(D) , (47)

where the use of the spin zero Laplacian in eq. (47) is suggested by the ghost being a spin
zero field. For Aµ = 0, the ghost two point function in eq. (47) reduces to that in standard
covariant gauges.

The infrared behaviour of Za(p) in the Landau gauge is an extensively studied subject, both
on the lattice as well as with functional approaches, see e.g. [26,27,29–31,35]. In particular,
two types of solutions have emerged:

(i) The scaling solution [71] has an infrared vanishing gluon propagator and a scaling
infrared behaviour,

Za,IR∝ (−D2)−2κ , Zc,IR∝ (−D2)κ , (48)

with κ≈ 0.6. In eq. (48) we have dropped terms proportional to the field strength. Note that
in this IR solution the ghost dressing function is infrared divergent. For the present compu-
tations we shall use the fRG results from [47] within a quantitatively reliable approximation,
for respective DSE results see [72].

(ii) An entire family of decoupling or massive solutions [40], where the gluon propaga-
tor and the ghost dressing function saturate at finite non-vanishing values at the origin, in
agreement with the IR behaviour found in large-volume lattice simulations. Specifically, we
have

Za,IR∝
1+ caD2 log

�

−D2

Λ2
QCD

�

−D2
, Zc,IR∝ cc . (49)

Note that the fluctuating propagator can be mapped to the background one by means of an
exact identity, characteristic of the Batalin-Vilkoviski formalism, which involves a special two-
point function, see e.g. [30,73].

We emphasise that both types of solutions agree quantitatively for momenta p2 ¦ Λ2
QCD,

with ΛQCD related to the infrared mass gap. As a result, the deviations induced to phenomeno-
logical observables by the use of either type are quantitatively minimal, see e.g. [67, 74]. In
fact, in the present work we will cover all potential solutions listed above, and show that their
IR differences are immaterial to the central question of the presence of dynamical condensate
formation.

Both types of solutions, eq. (48) and eq. (49), are infrared irregular, and do not admit a
Taylor expansion about −D2 = 0. Instead, we can expand the wave function renormalisations
about the infrared asymptotics. Making use of the relation between the condensate and gluon
wave function renormalisation established in eq. (40), we arrive at

Za/A(−D2) = Za/A,IR(−D2) + (−D2) Za/A,F +O(D4) , (50)

for both Za and ZA with Za/A,IR defined in eq. (48) and eq. (49), and Za/A,F is the wave function
ZF for fluctuation and background field respectively. The first term Za/A,IR carries the irregular
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infrared asymptotic behaviour, and Za/A,F is the (uniquely defined) constant prefactor of the
linear term in −D2. The expansion eq. (50) makes explicit that scaling and decoupling solu-
tions only differ in the IR leading term Za/A,IR, while coinciding in the expansion in powers of
−D2. This in particular entails that the overlap between gluon propagator and the conden-
sate eq. (20) is independent of the leading IR behaviour of the respective solution, scaling or
decoupling.

We are ultimately interested in the physical mass gap mgap of the fluctuation field aµ re-
sulting from the condensate term eq. (20) in the full field A = Ā+ a. The derivation of the
fluctuation field mass gap works analogously to that of eq. (32) in Section 2.3, and leads to a
contribution Γgap in the effective action with

Γgap =
1
2

m2
gap

∫

x
ab
µab
µ , (51)

where the effective gluon mass of the fluctuation gluon aµ is given by

m2
gap =

Zcond

2
fav(Nc)〈F〉2 , (52)

with Zcond = Za,F and the averaging factor fav(Nc) introduced in eq. (29) and discussed there.
In particular we have ZF = ZA,F 6= Zcond. The wave function ZF is used in eq. (32) for the mass
term in a gauge invariant effective action, and in the present approach this is the background
field effective action. The difference between the wave functions ZF and Zcond is the ratio of
the respective wave functions of the background and fluctuation gluons.

In eq. (40) we observed that the wave function renormalisation Zcond of the condensate
studied here generally appears in the dressing function of the respective gluon propagator,
cf. eq. (50). This connection will be utilised in Section 5 to determine Zcond from the in-
put gluon propagators [47] employed in the computation of the background field effective
potential Weff(F a). Supplemented with the non-trivial effective potential minimum 〈F〉, this
procedure eventually lead to our heuristic estimate of the gluon mass gap in Landau gauge
Yang-Mills theory.

3.3 Large Nc-scaling and self-consistency

The effective gluon masses m2
A in eq. (32) and m2

gap in eq. (52) show an explicit 1/Nc-scaling,
while no Nc-scaling is present in the large Nc limit, if the theory is formulated in the ’t Hooft
coupling

λ= Nc g2
s . (53)

This property serves as a self-consistency check of our computation and specifically our group
average used to derive eq. (32), eq. (52) and entailed in fav(Nc)

An illustrative and relevant example are the functional relations of the two-point function
Γ (0,2)

aa (p). Cast in a relation for the wave function Za(p), they read

Z(p2) = Zin + g2
s Nc Diags1 +O(N0

c ) , (54)

where the right hand side stands for the typical loop diagrams of e.g. (integrated) fRG flows or
Dyson-Schwinger equations. Here, Zin stands for the input dressing, either the one at the initial
UV cutoff scale (fRG) or the classical dressing (DSE). In most cases the O(N0

c ) term is dropped,
for an exception as well as a respective discussion see [75]. The term Diags1 stands for the
loop integral that depends on the wave functions of all the fields and the full vertex dressings.
Importantly, the functional relations for all other vertex dressings and wave functions have the
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same form as eq. (54). Accordingly, if dropping the subleading term of the order O(N0
c ), all

functional relations only depend on the ’t Hooft coupling eq. (56), and so do all correlation
functions. Respective lattice studies also reveal that the large Nc-limit is achieved already for
Nc ¦ 3 for most correlation functions, for a review see [76].

In summary we deduce, that in the large Nc-limit the only Nc-dependence of the effective
gluon masses m2

A in eq. (32) and m2
gap in eq. (52) is implicit in the dependence on the ’t Hooft

coupling eq. (56). This concludes our brief discussion of the Nc-scaling of correlation functions.
The relations for the effective gluon mass, eq. (32), eq. (52), show an even more direct

scaling consistency: ZF is an expansion term in the two-point function of the fluctuating gluon.
Moreover, in the presence of the condensate this two-point function approaches the effective
gluon for vanishing momentum,

lim
p→0
Π⊥µν(p)Γ

(0,2)
aa,µν(p) = 3 m2

gap . (55)

Accordingly, both Zcond and mgap have the same Nc-scaling (only dependent on the ’t Hooft cou-
pling in the large Nc-limit) as well as the same RG-scaling. In conclusion, the ratio Zcond/m

2
gap

is manifestly RG-invariant as well as Nc-independent in the large Nc-limit. This implies al-
ready, that the RG-invariant information in the effective gluon mass is given by fav(Nc) 〈F〉2.
The value of the mass itself depends on the RG-condition and should not be confused with
the gluon mass gap. The latter can be defined as the inverse screening length of the gluon
propagator which is indeed RG-invariant.

In summary, fav(Nc) 〈F〉2 should be Nc-independent in the large Nc-limit. This fixes the Nc-
scaling of fav(Nc), given that of 〈F〉2. The Nc-scaling of the latter is obtained by an Nc-analysis
of the effective potential, whose explicit computation is detailed in Section 4 and Appendix D.
Here we only need that it consists out of an ultraviolet classical piece of the form eq. (12) and
a term that depends on Nc F2,

Weff(F
a) =

1
4g2

s
F2 +∆Weff(Nc F2) , (56)

see Section 4.2. In eq. (56), g2
s is the strong coupling at a large momentum scale kUV, and we

will use kUV = 20 GeV for this scale later on. We now absorb Nc into the field strength squared
amplitude F2, i.e. F̄2 = Nc F2. With eq. (53) this leads us to

Weff(F
a) =

1
4λ

F̄2 +∆Weff(F̄
2) , (57)

and consequently

〈F̄〉= F̄min(λ) −→ 〈F〉=
1

p

Nc
F̄min(λ) . (58)

The 1/Nc-scaling for 〈F〉2 derived in eq. (58), is confirmed numerically in Appendix D. There,
the effective potential and its minimum is computed in a leading order Nc approximation and
hence shows the asymptotic 1/Nc scaling even for Nc = 2. This Nc-scaling is rooted in the
adjoint representation trace of na ta appearing the definition of the covariantly constant field
strength in eq. (10), cf. eq. (88). We have confirmed its numerical presence in a comparison
of Nc = 2, 3.

4 Background field effective potential

Now we compute the value of the field strength condensate 〈Fµν〉 discussed in Section 2.2.
For this purpose, we update the fRG computation done in [46] to a self-consistent one with
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∂tΓk[Φ] =
1

2
−

Figure 2: Depiction of the flow equation for the effective action, eq. (59).
Spiralling orange lines depict the full field-dependent gluon propagator
〈AA〉c = Gaa[Ā,φ], dashed back lines depicted the full field-dependent ghost
propagator 〈cc̄〉c = Gcc̄[Ā,φ], where the subscript stands for connected part. The
circled cross stands for the regulator insertions ∂tRa (gluon loop) and ∂tRc (ghost
loop).

fRG precision gluon and ghost propagators from [47]. In Section 4.1 we briefly review the
approach, and in Section 4.3 we report on the results for the condensate.

4.1 Flow of the background field effective potential

For the full computation we resort to the functional renormalisation group approach, for QCD-
related reviews see [33–35,55,77,78]. In this approach, an infrared regulator Rk(p) is added
to the classical dispersion. In the infrared, that is p/k→ 0, the regulator endows all fields with
a mass, typically proportional to the cutoff scale k. In addition, the regulator Rk(p) vanishes
rapidly as p/k → ∞, and the ultraviolet physics is not modified. The change of the scale
dependent effective action, Γk, under a variation of the cutoff scale k is described by the flow
equation. In the background field approach it reads

∂tΓk[Ā,φ] =
1
2

Tr Ra[Ā]Gaa[Ā,φ]− Tr Rc[Ā]Gcc̄[Ā,φ] , (59)

where t = log k/Λ is the (negative) RG time, and GA, Gc are the fluctuation propagators of
gluon and ghost respectively,

Gφ1φ2
[Ā,φ] =





1

Γ
(0,2)
k [Ā,φ] + Rk[Ā]





φ1φ2

. (60)

The traces in eq. (59) sum over momenta, Lorentz and gauge group indices, details can be
found in Appendix C. The regulator function Rk = (Ra, Rc) transforms covariantly under back-
ground gauge transformations, which preserve the background gauge invariance of the effec-
tive action. The current work utilises the propagator data from [47], which requires the use
of the same regulators for our computation of the background field effective potential. For
details on the regulators see Appendix B.

For the derivation of the (background) field strength condensate we solve the equation of
motion stemming from the effective potential Weff(F a) of covariantly constant field strength
defined in eq. (9). In the fRG approach it is obtained from its scale-dependent analogue,

Wk(F
a) =

1
V Γk[A(F

a), 0] , (61a)
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with the full effective potential being defined at vanishing cutoff scale k = 0,

Weff(F
a) =Wk=0(F

a) . (61b)

The effective potential Wk is obtained by integrating the flow equation of the background field
effective action ∂tΓk[A(F), 0], derived from eq. (59) from the initial ultraviolet scale kUV to the
running cutoff scale k. The only input in this flow are the two-point functions Γ (0,2)

aa [A(F), 0]
and Γ (0,2)

cc̄ [A(F), 0], which we can infer from Landau gauge results. This is the background
Landau-deWitt gauge with Ā = 0. For vanishing background the two-point functions only
depend on momenta, Γ (0,2)

k (p). We use the results from [47], with

Γ
(0,2)
aa,k (p) = p2 Za,k(p

2)Π⊥(p) + p2
�

1
ξ
+ Z‖a,k(p

2)
�

Π‖(p) ,

Γ
(0,2)
cc̄ (p) = p2 Zc,k(p

2) , (62)

with the transverse and longitudinal projection operators introduced in eq. (38). In eq. (62),
1

ab = δab is implied in both two-point functions. The longitudinal dressing Z‖a,k signals the
breaking of BRST invariance due to the presence of the regulators, and vanishes in the limit
k→ 0. There, the gluon two-point function in eq. (62) reduces to that of eq. (45). Moreover,
Z‖a,k is absent in the gluon propagator for the Landau gauge, ξ→ 0,

Now we switch on the background field and use the decomposition eq. (46) for the trans-
verse gluon two-point function. In addition, we drop the second line proportional to ∆ fa
comprising higher order terms. They are associated with non-classical tensor structures and
can be shown to be small in the perturbative and semi-perturbative regimes. In the Landau-
DeWitt gauge, only the gauge-fixing survives in the longitudinal propagator and we can drop
the cutoff contribution Z‖a,k. For the ghost we use eq. (47), where we drop the second term
proportional to ∆ fc . This leads us to

Γ
(0,2)
aa,k (p)'DT Za,k(DT )Π

⊥(−D)−
1
ξ

DµDν ,

Γ
(0,2)
cc̄ (p)' − D2 Zc,k(−D2) , (63)

valid for covariantly constant field strength with [D, F] = 0. For these configurations, the
transverse projection operator commutes with functions of the Laplacians ∆0 and ∆1.

4.2 RG-consistent initial condition

The flow equation eq. (61a) of the effective potential Wk(F a) is readily obtained by inserting
the approximations of eq. (63) into the flow eq. (59). The flow is evaluated for the generic
condensate background eq. (10). The details can be found in Appendix B. Finally, the effective
potential Weff(F a) of Yang-Mills theory is obtained from the integrated flow. We arrive at

Wk(F
a) =WkUV

(F a) +

∫ k

kUV

dk′

k′
∂t ′Wk′(F

a) , (64)

where WkUV
is well approximated by the classical potential eq. (12) for a large initial cutoff

scale kUV. Perturbation theory is valid for these scales, and the background field effective action
ΓkUV
[A] reduces to the classical Yang-Mills action of eq. (1), augmented with a wave function

renormalisation ZA,kUV
. All other terms are suppressed by inverse powers of kUV. This amounts

to

WkUV
(F a) =

ZA,kUV

4 g2
s

F2 =
F2

16παs(kUV)
, (65)
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Figure 3: Effective Potential as a function of F2 with a field strength pointing in the
t3-direction, (n3, n8) = (1, 0), and the cutoff scale k. The dashed line singles out the
absolute minimum of W (F), see eq. (68). The substructure of the potential at cutoff
scale k ¦ 0.5 GeV is related to the regulator used, see Appendix D. It leaves no trace
in the potential for k→ 0.

where

αs(k) =
1

4π

g2
s

ZA,k
, with ZA,kUV

= 1 . (66)

Here, ZA,k is the background wave function ZA,k(p = 0), and g2
s is the running coupling at the

initial scale kUV.
The onset of this asymptotic UV regime for cutoff scales k ¦ kon depends on the chosen

regulator or rather its shape. Roughly speaking, the sharper the regulator drops of in momenta
at about the cutoff scale, the larger is the onset scale kon. For the ghost and gluon regulators
underlying the computation of the propagators in [47], eq. (83), we choose an initial scale
kUV = 20 GeV. This is safely in the asymptotic UV regime of the regulators eq. (83), as is also
explicitly discussed in Appendix D. In summary, the computation is initialised at

αs(kUV) = 0.184 , with kUV = 20 GeV , (67)

and the running coupling data are also taken from [47], which ensures the self-consistency of
the computation.

In eq. (66) we have used that the background wave function renormalisation ZA satisfies
Z−1

A = Z2
gs

, a consequence of background gauge invariance. Moreover, RG-consistency, see
e.g. [55, 79], enforces eq. (66): the flow of the initial effective action with an infinitesimal
change of the initial cutoff scale is given by the flow equation. Phrased in terms of the effective
potential in eq. (64), this is the simple requirement that Wk and in particular Weff = Wk
is independent of kUV. Then, differentiation of eq. (64) with respect to kUV readily leads to
eq. (65). More details are deferred to Appendix D.

4.3 Results

The above derivation allows the numerical computation of the scale dependent effective po-
tential Wk(F a) by performing the integration in eq. (64) up to the respective RG-scale k. The
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result is shown in Figure 3, which shows the k-dependent effective potential as a function of
F2, with a field strength pointing in the t3-direction: (n3, n8) = (1,0). The condensate 〈F〉
is given by the solution of the equation of motion (EoM) for the effective potential Weff(F a),
given by

∂Weff(F a)
∂ F

�

�

�

�

F=〈F〉
= 0 , (68)

for the generic field strengths of eq. (15). The emergence of a non-trivial minimum is clearly
visible in the non-perturbative regime® 1 GeV, and its position indicated with the black dashed
line in Figure 3.

The gauge invariant information of the field strength Fµν is stored in its eigenvalues, which
do not change under (unitary) gauge transformations. In the present case, only the F01 = F23
components and their anti-symmetric counterparts are non-vanishing, and they are propor-
tional to a combination of the Cartan generators, see eq. (15). The traces in the flow equation
are in the adjoint representation, and the six non-vanishing eigenvalues of n3 t3 + n8 t8 are
given by

τ
(1)
± =± n3 ,

τ
(2)
± =±

�1
2

n3 +
p

3
2

n8
�

,

τ
(3)
± =±

�1
2

n3 −
p

3
2

n8
�

, (69)

for more details see e.g. [80, 81]. The global, degenerate minima in Figure 1 are located in
the direction of the eigenvectors. The underlying Weyl symmetry maps the different minima
into each other, and is seen in Figure 1.

From eq. (68) we determine the expectation values or rather saddle point position of the
condensate in both directions. We find that the expectation value in n3-direction is a global
minimum, while in the n8-direction the EoM singles out a saddle point. Both points are in-
dicated by the red and blue dots respectively in Figure 1. We determine the value of the
minimum by interpolation,

〈F〉2λ3
= 0.98(11)GeV4 , (70)

where the error is obtained by a variation of 2% in the initial coupling αs. More details on the
RG-consistency of this procedure are provided in Appendix D. Equation (70) is the result of
an SU(3) computation without the Nc rescaling.

As discussed below eq. (15), the minimum in eq. (70) is composed by the condensates of
both F2 and F F̃ . Due to the CP-violating nature of an F F̃ condensate, its contribution to our
condensate value is tightly constrained by experimental data. Nonetheless, the value quoted
in eq. (70) should be interpreted as an estimate colorless condensate 〈F2〉.

The present first-principle Yang-Mills result eq. (70) corroborates the phenomenological
estimates, i.e. 〈F2〉 = 0.854(16)GeV4 [82], as already remarked in [46]. Indeed, the nor-
malisation procedure used here is similar to that in the phenomenological computation. In
contrast, both eq. (70) and the phenomenological estimates disagree with the lattice estimate
〈F2〉 = 3.0(3)GeV4 [83]. The latter value is extracted from 〈G2〉 = 0.077(7) in [83], and
applying 〈F2〉 = 4π2〈G2〉. In this context we remark that the total normalisation may differ,
even though all procedures provide RG-invariant results: for example, one may multiply the
respective result by the RG-invariant ratio of couplings at different momenta, αs(p2

1)/αs(p2
2),

resulting in a global factor. This amounts to mapping the factor αs from one momentum scale
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Figure 4: Gluon propagators from the fRG [47] in the scaling (red) and decoupling
(blue) scenario as well as lattice data from [22]with a continuum and infinite volume
extrapolation, see [84,85]. Coloured/black markers show the data. Solid lines show
the respective fits from which the wave function renormalisation Zcond (cf. eq. (72)) is
computed. The fit Ansätze are given in eq. (95). Here, we plot fits to the propagator
data over the maximal fit interval, see also Appendix E for details.

to another. While we lack a comprehensive interpretation, we simply point out that the lattice
definition involves αs at a low momentum scale, conversely to the present procedure, and that
used in phenomenological applications.

For comparison we also provide the saddle point value,

〈F〉2λ8
= 0.85(11)GeV4 , (71)

which may be used for a further error estimate of the relation between octet and colorless
condensates, as the octet condensate should be averaged over all color directions.

5 Gluon mass gap

The aim of this section is to use eq. (52) and eq. (70) for an estimate of the mass gap. Evidently,
to accomplish this, the determination of the wave function renormalisation Zcond is required.

Inspecting the condensate generating kinetic term, see eq. (20), one finds that its analogue
for the fluctuating gluon also contains contributions of the type

Zcond

2

∫

x
aa
µ(∂

2)2Π⊥µν(∂ )a
a
ν + . . . . (72)

Hence, the kinetic term for the field strength not only gives rise to the condensate, but also
overlaps with the gluon propagator. More specifically, as can be read off eq. (72), the p4-term
of the fluctuation gluon two-point function carries the wave function renormalisation Zcond as
a prefactor, as made explicit in eq. (50).

Note that by means of eq. (39a) and eq. (40), the p4-term must be solely given by eq. (72),
as ZA implicitly defined in eq. (39b) encodes the full gluon propagator dressing function,
see eq. (37). In terms of an operator product expansion, Zcond can be extracted by deter-
mining the p4-coefficient in the origin of the inverse input gluon propagator data from [47],
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used in the calculation of the condensate effective potential in Section 4. This is done via a fit,
given by

Zfit(p
2) = Zas(p

2) + Zp2 + Zcond p2 , (73)

where only the infrared asymptotes Zas(p2) distinguish between scaling and decoupling so-
lutions (cf. eq. (48) and eq. (49). A detailed discussion of the fitting procedure is provided
in Appendix E, and the respective fits in comparison to the propagator data from [47] and the
lattice data of [22] are depicted in Figure 4.

Equation (73) makes it apparent that scaling and decoupling solutions differ only in the
infrared, where the p4-term is subleading. We determine Zcond from the fRG scaling solution
of [47] as well as the lattice decoupling solution of [22]. Combining both estimates, we arrive
at the value for the wave function renormalisation

Zcond = 0.149(19)GeV−2 . (74)

Now we use the wave function renormalisation from eq. (74), the condensate value 〈F2〉
eq. (33) as well as the saturation bound eq. (33) for the averaging factor fav in the relation
for the effective gluon mass eq. (52). This leads us to

mgap = 0.312(27)GeV . (75)

Equation (75) is the main result of the present work and provides an estimate for the effective
gluon mass in the Landau gauge. The relatively large uncertainty in eq. (75) originates pre-
dominantly from the error for Zcond in eq. (74). In particular, it does not include a systematic
error estimate, and is solely rooted in the small amount of data points for the gluon propagator
of [47] in the deep IR.

A large source for the systematic error is the current lack of a quantitative color average
as discussed in detail in Appendix A. Moreover, the field strength condensate eq. (70) also re-
ceives contributions from the topological condensate 〈F F̃〉, see the discussion there and below
eq. (15). Accordingly, we simply note that inserting the literature value from phenomenologi-
cal 〈F2〉 estimates [82] reduces the value in eq. (75) to mgap = 0.291(19)GeV. The same value
is obtained by the use of the saddle point value eq. (71), which we use as an error estimate.

We can compare our result for the effective gluon mass eq. (75) with that deduced from the
lattice data [22] with a continuum and infinite volume extrapolation, see [84,85]. These data
are shown in Figure 4, and the mass gap is given by the value of the inverse lattice propagator
in the origin. We find

m(lattice)
gap = 0.3536(11)GeV , (76)

which agrees within two standard deviations with our estimate eq. (75).
A further direct test of the present results is provided by the comparison with the effective

gluon mass in eq. (104) obtained via the Schwinger mechanism with mgap = 0.320(35)GeV
after scale matching. This is an alternative approach for the dynamical emergence of a gluon
mass gap in the Landau gauge, for details see Appendix F. The results compare very well,
which is to be expected as our propagator with the gluon mass gap agrees well with the lattice
results, as does the propagator obtained with the Schwinger mechanism.

We emphasise that the estimate for the gluon mass gap depends on our choice for the color
averaging factor fav in eq. (29): with eq. (33) we have saturated the ’natural’ bound cav = 1
in eq. (31), leading to eq. (34). In fact, the non-trivial compatibility of the present results
with that obtained from lattice propagators and via the Schwinger mechanism corroborates
the aforementioned choice.
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We close this section with the remark that, while the effective gluon mass or rather the
gluon mass gap in the Landau or Landau-DeWitt gauge is a gauge variant quantity, its size is di-
rectly related to physical scales such as the string tension and the confinement-deconfinement
temperature, see [36, 37]. Still, its value varies with the gauge as does its precise relation to
the physical scales and mechanisms. Consequently, the numerical estimates of its value are
rather disparate, ranging from a few hundred MeV up to 1 GeV, depending on the details of the
approach and the definition employed, see e.g. [8,25,40,86–98]. Nonetheless, all these deter-
minations convey information about the same gauge-invariant physical information, namely
the Yang-Mills mass gap.

6 Summary and outlook

In the present work we have explored the dynamical emergence of a mass gap in the Yang-
Mills correlation functions via the formation of color condensates, in the physical case with
the SU(3) gauge group one of these condensates is the octet condensate, see eq. (4). Such
a condensate may be triggered by a Higgs-type mechanism in low energy QCD, similar and
potentially related to dynamical chiral symmetry breaking in QCD with the pion as pseudo-
Goldstone bosons.

In the current work we have carried out a qualitative analysis within the fRG approach to
QCD by computing the minimum 〈F〉 of the effective potential W (F a) in the three direction
of the Cartan subgroup. This non-vanishing field strength is related to non-vanishing color
condensates as discussed in Section 2.2. We have computed the effective potential W(F a) for
covariantly constant field strength which develops a non-trivial minimum if quantum fluctu-
ations are successively taken into account with the fRG flow, see Figure 1. The condensate
value eq. (70) is in good agreement with phenomenological estimates, but both disagree with
lattice results. As discussed in section 4.3, this latter discrepancy may be due to a difference
in the normalisations employed.

The relation between the gluon condensate and the mass gap is given by eq. (52). We em-
phasise that the mass gap eq. (52) triggered by the condensate depends on the RG-condition
and naturally has the RG-properties of a mass function: while the condensate itself is indepen-
dent of the RG-condition, the condensate wave function is not and carries the RG-properties
of the inverse gluon propagator. Consequently, the mass gap derived from eq. (52) has the
RG scaling of the inverse gluon propagator, as it should. Accordingly, for a comparison of the
results for the mass gap obtained here with that in the literature the potentially different RG-
schemes and conditions have to be taken into account. Most fRG-computations including the
present one are done in MOM2, for a detailed discussion see [74].

These considerations result in our estimate of the gluon mass gap, mgap = 0.312(27)GeV,
where our choice eq. (29) for the color averaging factor fav saturates the ’natural’ bound,
see also the discussion below eq. (32). This estimate compares well to the lattice estimate
m(lattice)

gap = 0.3536(11)GeV. The latter values is obtained from the continuum and infinite vol-
ume extrapolation [84] of the lattice data in [22], after matching the momentum scales and
the renormalisation point.

We have also compared our result for the mass gap with that obtained with the longitudinal
Schwinger mechanism within the framework of the pinch technique [30], see Appendix F and
the very recent analysis see [99]. This analysis leads to m(Schwinger)

gap = 0.320(35)GeV, which is
in excellent agreement with our estimate.

In summary, the findings of the present work suggest that the gluon condensation as a
mechanism for mass generation works well. Beyond improving the systematic error of the nu-
merical estimate, on theoretical grounds it would be desirable to establish a deeper connection
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between the Schwinger mechanism and the condensate formation.
Currently, we are upgrading the present computation with the dynamical inclusion of the

composite octet condensate operator, discussed in Section 2.1. Then, the octet condensate
is taken into account as an effective low energy degree of freedom, allowing us to study the
relevance of a potentially non-trivial condensate dynamics. We hope to report on respective
results in the near future.
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A Expansions around condensates and color averages

In this Appendix we discuss the implementation of expansions around non-trivial condensates,
and comment on the subtleties of the color-averaging procedure associated with the central
mass formula in eq. (34). In order to illustrates the properties and subtleties, we employ two
simple examples: spontaneous symmetry breaking in a scalar O(N) theory, and (color) center
symmetry breaking in finite temperature Yang-Mills theory.

Let us first consider a scalar field theory with an O(N) field φ (including the discrete Z2
symmetry when N = 1 ) in the symmetric phase. In the symmetric phase, both the effective
action, Γ [φ], as well as expectation values of observables, are typically expanded around
φ = φ0, where

φ2
0 = lim

V→∞

1
V

∫

V
〈φ(x)φ(0)〉 , (77)

is defined by the order parameter of the theory. The order parameter eq. (77) can also be
obtained from

φ0 = lim
J→0
〈φ〉 , (78)

where J indicates an external current (or magnetisation) coupled to the field, limJ→0

∫

x Jφ,
which is finally removed. Alternatively, within a finite volume one may use boundary condi-
tions that break the symmetry, and then take the infinite volume limit.

Either way, the effective action Γ is invariant under the full symmetry group of the under-
lying theory by definition, whereas the vacuum state (the solution of the equations of motion)
breaks the symmetry.

Thus, quite importantly, the apparent symmetry breaking in Γ , seemingly induced by the
expansion point, is absent for the full effective action. In turn, a given approximation scheme
may break this symmetry (for example a finite order of a Taylor expansion about φ = φ0).
This symmetry can be restored subsequently by averaging the approximated effective action
Γapp[φ] over the symmetry group, Γ [φ] = 〈Γapp[φ]〉av. Note in this context, that in our exam-
ple case of an O(N) theory the averaged expectation value of the field vanishes, 〈φ〉av = 0, as
it must. Moreover, the operator in eq. (77) has the full symmetry and hence does not change
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under the averaging procedure, while 〈φ〉 does.

In the case of the effective gluon mass, the underlying symmetry is a gauge-symmetry. For
this reason we also consider a second, closer, example, the expectation value of the Polyakov
loop 〈L〉 in finite temperature Yang-Mills theory,

L =
1
Nc

trP exp{i gs

∮

A0(x)} , (79)

where the integral
∮

in eq. (79) is over x0 ∈ [0, 1/T], and the trace is taken in the fundamental
representation. Here, T denotes the temperature and P is the path ordering operator. The
underlying symmetry is the center symmetry ZNc

of the gauge group with L→ z L and z ∈ ZNc
.

We have the order parameter

L2
0 = lim

V→∞

1
V

∫

V
〈L(0)L†(x)〉 , (80)

which is non-vanishing in the confining disordered low temperature phase. Typically, both in
functional approaches as well as on the lattice, eq. (80) is obtained by an infinitesimal explicit
center symmetry breaking in the Cartan direction t3, similar to introducing an infinitesimal
explicit breaking of O(N) symmetry described above. In the t3 direction the Polyakov loop
takes real values and we get

L0 = 〈L(x)〉 , (81)

with a real positive L0, which is a non-trivial solution of the equation of motion (of A0) at
finite temperature. The expectation value of the order parameter serves as a physical expan-
sion point for observables as well as the effective action in functional approaches, both in first
principle QCD computation and low energy effective theories of QCD. In quantitative approx-
imations the results for observables agree very well with lattice simulations, for the Polyakov
loop itself see [81]: The observables are either color blind in the first place and hence do not
require a color average and are insensitive to it, or, as in the case of the Polyakov loop, a color
direction was singled out for the computation in the first place.

However, the comparison of gauge fixed correlation functions or parts of it is more intricate,
as then the averaging is required and may also affect the gauge fixing, for more details and
further literature see in particular [67, 101] and the recent review [35]. This intricacy also
applies in the present situation and makes a direct comparison of the effective gluon mass
difficult.

The lack of a quantitative averaging procedure has forced us to introduce the averaging
factor fav(Nc) in our results, see eq. (29) and the definition of the effective gluon mass, eq. (32)
and eq. (52). In the present work we have only determined its Nc-dependence with the consis-
tency of the large Nc scaling. As mentioned in the main text, the value of fav(Nc) is the largest
source of systematic error for the effective gluon mass.

B Flow of the effective potential

Here we provide some details of the computation of the integrated flow eq. (64) of the effective
potential, eq. (61a) from the flow equation eq. (59) and the propagators eq. (62). Inserting
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the latter into eq. (59) yields,

∂tWk(F
a) =

3
2

Tr
∂tR

⊥
a (DT )

DT Za,k(DT ) + R⊥a (DT )
+

1
2

Tr
∂tR

‖
a(−D2)

−D2 + R‖a(−D2)

+
1
2

Tr P0
∂tR

⊥
a (−D2)

−D2 Za,k(−D2) + R⊥a (−D2)
− Tr

∂tRc(−D2)
−D2Zc,k(−D2) + Rk,c(−D2)

(82)

−
3
2

Tr
∂tR

⊥
a (p

2)

p2 Za(p2) + R⊥a (p2)
−

1
2

Tr
∂tR

‖
a(p

2)

p2 Za(p2) + R‖a(p2)
− Tr

∂tRc(p2)
p2 Zc,k(p2) + Rk,c(p2)

,

where the contributions in the first line are the glue contributions, and P0 denotes the pro-
jection on the zero-mode. The traces in eq. (82) sum over momenta or space-time, as well
as internal and Lorentz indices of the respective field modes. We have three covariant trans-
verse modes and one covariant longitudinal mode, the trivial gauge mode. The term in the
second line is the ghost contribution, and the field-independent subtraction in the third line
normalises the potential to Wk(F a = 0) = 0. We choose the regulator in consistency with the
input data. The regulators in [47] are defined as,

Ra,k(p) = p2 r(x)
�

Z̃a,kΠ
⊥(p) +Π‖(p)

�

,

Ra,k(p) = p2 r(x)Z̃c,a , (83)

with the projection operators Π⊥,‖ defined in eq. (38). In eq. (83), x is the dimensionless
momentum variable, x = p2/k2, and the shape function r(x) used in [47] is given by,

r(x) =
�

1
x
− 1

�

1

1+ e
x−1

a

, a = 2× 10−2 . (84)

The shape function eq. (84) is a smoothened version of the Litim shape function, [102]. The
cutoff dependent prefactors Z̃a/c are given by

Z̃a,k = Za,k([k
n + k̃n]1/n) , Z̃c,k = Zc,k(k) , (85)

with k = 1 GeV. The choice eq. (85) ensures that the regulators have the same (average)
momentum scaling as the two-point functions, regulators proportional to the respective wave
function renormalisations of the fields are RG-adapted, see [55]. Moreover, the scale k = 1 GeV
is introduced for computations convenience; it leads to a gluon regulator, that does not diverge
at p = 0 for k→ 0. While even a singular regulator choice at p = 0 does not contribute to the
momentum integral, it complicates the numerics.

In [67] the regulator was used as it optimises fully momentum dependent approximations,
see [55]. However, the resolution of eq. (82) requires the computation of TrF(−D2) and
TrF(−DT ) in terms of the discrete Eigenvalues or spectrum of the Laplacians −D2 and DT .
The spectral properties of the Laplacians are discussed in Appendix C. see also [46].

The optimisation of the approximation in terms of its momentum dependence as used
in [67] comes at the price that soft but sharp regulators delay the onset of the asymptotic
ultraviolet scaling in the presence of a discrete momentum spectrum, see [103]. Here, asymp-
totic UV scaling entails, that the effective action reduces to the classical one with a running
prefactor, see eq. (65). Indeed, for non-analytic regulators such as the Litim regulator or the
sharp regulator the asymptotic UV scaling. In Appendix D we investigate the asymptotic UV
scaling in the present set up as well as the regulator (in)dependence of our results.
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(a) Integrated UV Flow of the effective
potential, Wk(F a) − WkUV

(F a), defined in
eq. (92), for F a = Fδa3 as a function of
F2. Here, kUV = 20 GeV. The substructure for
kon ¦ k ¦ 1 GeV resolves the shape of the reg-
ulator eq. (84).

(b) Effective Potential Wk(F a), defined in
eq. (64), for F a = Fδa3 as a function of F2

in the regime 0 ≤ k ≤ kUV = 20 GeV. The
substructure for kon ¦ k ¦ 1 GeV resolves the
shape of the regulator eq. (84). For k = 0 see
also Figure 1.

Figure 5: Cutoff dependence of the effective potential.

C Spectral properties of Laplacians

In this section we will comment on the background-covariant Laplacians, which were used for
the momentum dependence of the Landau-gauge propagators in eq. (59) and eq. (82). Their
explicit form follows from the gauge-invariant background field effective action [104] and is
given by

DT µν = −D2δµν + 2i g Fµν , DLµν = −DµDν , (86)

and Dgh = −D2. The transverse Laplacian also contains the spin-1 coupling to the background
field.

The traces over the Laplace-type operators in eq. (82) can be evaluated upon introduction
of Laplace transforms using standard heat-kernel techniques. The subtleties arising from the
presence of a self-dual background are discussed in-depth in e.g. [68,105,106]. Here, we just
quote the relevant spectra in self-dual backgrounds from [46],

Spec
¦

− D2
©

= Fl(n+m+ 1), n, m= 0, 1,2, . . . ,

Spec
¦

DT

©

=

�

Fl(n+m+ 2) , multiplicity 2
Fl(n+m) , multiplicity 2

,

(87)

where Fl = |νl |F/
p

2. Here, dividing by
p

2 accounts for the multiplicity in a self-dual formu-
lation of Fµν, and νl are the eigenvalues to the adjoint color matrix na ta. The covariant spin-1
Laplacian DT has a double zero mode for n = m = 0 which is due to the symmetry between
colour-electric and colour-magnetic field. The spectral problem of the longitudinal Laplacian
DL can be mapped onto that of −D2, such that eq. (87) is sufficient for the calculation in the
main part of the paper, see e.g. [68,105,106]. The trace Tr′ is defined as that without the zero
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Figure 6: RG-consistency of the effective potential Weff(F a): It is shown for in-
tegrating the initial effective potential eq. (89) at different initial cutoff-scales
kUV = 20,18, 15 GeV to k = 0. The result is independent of the initial scale (RG-
consistency).

mode, and for a general function F we get,

Tr′F(DT) =2
N2

c −1
∑

l=1

�

Fl

4π

�2
(

∞
∑

n,m=0

F
�

Fl(n+m+ 2)
�

+
∞
∑

n=0

∞
∑

m=1

F
�

Fl(n+m)
�

+
∞
∑

n=1

F
�

nFl

�

)

=4
N2

c −1
∑

l=1

�

Fl

4π

�2 ∞
∑

n,m=0

F
�

Fl(n+m+ 1)
�

= 4 Trxc F(−D2) , (88)

where the trace Tr sums over momentum or space-time, internal indices and Lorentz indices
of the respective field mode. Equation (88) displays an isospectrality relation between −D2

and the non-zero eigenvalues of DT. As a consequence, all gluon and ghost modes except for
the two zero modes couple in the same fashion to the selfdual background. This allows us to
compute eq. (82).

D UV Asymptotics of the effective potential and regulator inde-
pendence

The present work utilises the ghost and gluon propagators from [47]; which has been obtained
within a quantitative approximation to the full Yang-Mills system. There, and in respective
works in QCD, [67,75,107] it has been checked that the choice of the regulator is of subleading
importance for the propagators at vanishing cutoff scale, which is one of the self-consistency
checks that goes into an estimate of the systematic error.

As mentioned at the end of Appendix B, the relatively sharp regulator here delays the onset
of UV asymptotics and hence the onset cutoff scale k ¦ kon of the regime in which the effective
potential reduces to the classical form eq. (65). For the sake of convenience we recall it,

Wk(F
a)

k¦kon−→
F2

16παs(k)
, αs(k) =

1
4π

g2
s

ZA,k
, (89)
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with ZA,k = ZA,k(p = 0). In this regime the flow is simply a linear function in F2 with the slope
∂t1/(16παs). Hence, for large cutoff scales we have,

∂tWk(F
a)→−

∂tαs(k)
αs(k)

1
16παs(k)

F2 . (90)

The coupling αs in eq. (89) is the background coupling which has the same (two-loop) univer-
sal β-function as the fluctuation coupling αs,fluc = g2

s /(4πZa Z2
c ) computed in [47]. However,

the equivalence of the perturbative β-functions still allows for a global rescaling αs = γ̄αs,fluc
whose value is checked by comparing the two flows for k→ kUV,

γ̄= lim
F2→0

16πα2
s,fluc

∂tαs,fluc

∂tWk

F2
≈ 1 . (91)

This fixes our initial condition, and in Figure 5 we show both, the respective integrated flow,
Figure 5a, and the full cutoff dependent effective potential that also involves the initial condi-
tion, Figure 5b. The integrated flow from the UV scale kUV = 20 GeV to a general cutoff scale
k is given by

Wk(F
a)−WkUV

(F a) = −
∫ kUV

k

dk
k
∂tWk(F

a) . (92)

One clearly sees the linear dependence on F2 for k → kUV. At lower scales k → kon with
kon ≈ 14 GeV the transition regime sets in, in which the integrated flow resolves the shape
function. Finally, for physical cutoff scales k ® 1 GeV, the form of the shape function gets
irrelevant and the integrated flow is getting smooth again. This shows very impressively that
the information about the shape function is integrated out and disappears in the physical limit
k→ 0.

We have also checked that the effective potential Weff(F a) is RG-consistent [55,79]. This
is the simple requirement that Weff(F a) does not vary if the flow is initiated at another cut-
off scale kUV. Accordingly, it is a consistency check on the initial effective potential WkUV

.
Figure 6 depicts the physical effective potential Weff(F a), obtained from computations with
kUV = 15, 18, 20 GeV. The initial effective potentials are given by eq. (89), where the scale
dependency of the coupling αs is obtained from the 1-loop beta function of the background
coupling. These computations confirm the quantitative validity of the one-loop estimate for
WkUV

for these large initial cutoff scales. In turn, for lower cutoff scales, the one-loop form is
gradually lost which can be easily seen by the substructure (in F2) of the flow.

Finally, we also report on results for the effective potential obtained by integrating the flow
with a smoother regulator

Rk(p) = k2 e−p2/k2
. (93)

Such a regulator decreases the numerical effort considerably. Note that this is not a self-
consistent computation as it also requires cutoff-dependent propagators computed with the
same regulator eq. (93). However, we use this as a stability test of our results, and hence a
further systematic error control. The respective result for the cutoff dependent effective po-
tential is shown in Figure 7, and one clearly sees that the use of a smoother regulator removes
the substructures in the flow. The minimum value of F2 at k = 0 is given by

〈F2〉λ3
= 0.93(14)GeV4 , (94)

to be compared with eq. (70). These values compare well, which informs our estimate of the
systematic error.
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Figure 7: Effective Potential Wk(F a), defined in eq. (64), for F a = Fδa3 as a function
of F2 obtained from integrating the flow with the regulator eq. (93). In comparison
to Figure 5b the regulator is much smoother, which translates to the smoothness in
kon ¦ k ¦ 1 GeV.

E Fitting procedure

Formally, the coefficient Zcond in eq. (50) is defined via an operator product expansion of the
gluon propagator, and stems from the local operator eq. (20). The present computation of
the effective potential Weff is detailed in Appendix D, Appendix C, Appendix B and uses the
scaling propagator from [47]. The latter is obtained within a quantitative approximation of
the coupled set of functional equations for Yang-Mills correlation functions, for respective DSE
results see [72]. In [47], also decoupling solutions have been computed including a lattice-
type solution, for respective lattice propagators see [20,85].

The extraction of the p4-coefficient stemming from eq. (20) requires the distinction of the
infrared dynamics in the propagator, which in the present approach relates to the emergence

Table 1: Extrapolation results for the wave function renormalisation Zcond at p = 0
based on the fit results for Zcond(pmin) as a function of the lower fit interval bound
pmin, see Figure 8. The final estimate is obtained as the average of the scaling fRG
and decoupling lattice data. In order to conservatively estimate possible systematic
uncertainties (see text), we use the separate scaling fRG and lattice results as error
bars.

Zcond [GeV−2]
scaling (fRG) 0.168(31)

decoupling (lattice) 0.129(19)
decoupling (fRG) 0.1147(22)

Estimate 0.149(19)
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Figure 8: Linear extrapolation of Zcond to the lower fit interval bound pmin = 0,
yielding Zcond = 0.149(19). The explicit fit results for Zcond are obtained via a fit
of eq. (95) to the scaling fRG data of [47] (blue squares), and to the lattice data
of [22, 85] (green squares). Zcond, being defined as the operator product expan-
sion coefficient should be extracted at p = 0: we extract this information from an
extrapolation of the fit results towards p = 0 (red squares), and use as a minimal
pmin ≈ 0.8 GeV, below which the details of the implementation of the IR dynamics
begin to matter. The triangular data points mark fit results for pmin below the fit
regime for the interpolation. The final estimate for Zcond (eq. (99) and eq. (74)) is
obtained as the mean of the lattice and scaling fRG results for Zcond, whose numerical
values can be found in Table 1.

of the color condensates, from the coefficients of the local operators. This mixing for small
momenta makes it impossible to extract the p4-coefficient in an expansion about p = 0 without
further information on the momentum dependence of the condensate. Instead we shall evalu-
ate the propagator for sufficiently large momentum scales, for which the condensate vanishes,
〈F〉 → 0. The cutoff scale resembles the momentum scale p, indeed it is introduced in the two-
point function itself as a momentum cutoff. Hence, we deduce from the flow of the minimum
of Weff depicted in Figure 3, that the condensate vanishes for p ¦ 1/2 GeV. Accordingly we
determine Zcond from fits

Z fit
a (p

2) =
Zm

p2
+ Zp2 + Zcond p2 (95)

to the gluon wave function Za(p2) in the momentum regime

p ∈ [pmin , pmax] , (96)

with

pmin ∈ [0.77,1.27]GeV , pmax ∈ [1.95,2.23]GeV , (97)

where the range of values for pmin is adapted to the data points of the sparse fRG data.
The upper bound pmax is chosen such, that the interval sustains a Taylor expansion while

containing a sufficient amount of data points for fitting, also adapted to the fRG data points.
Its maximum value is further constrained by the UV boundary of the lattice data from [85],
which are used for comparison as well as the error estimate, together with the lattice data
from [22].
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The constants Zm, Zp2 and Zcond in eq. (95) are fit parameters. Here Zm takes care of the
infrared gapping dynamics, and Zp2 related to a standard (infrared) wave function renormali-
sation. Both parts carry the details of the IR behaviour of the propagator and may vary largely
for different solutions. In turn, the coefficient Zcond should not.

We perform the fits for different values of the lower fitting interval bound pmin. For every
fit, pmax is varied between the points in the pmax interval, comp. eq. (97). In addition, we
transform the lattice and fRG data sets into the respective (inverse) dressing function and
inverse propagator, and fit those with the respective fit functions corresponding to eq. (95).
This provides us with a Zcond(pmin) given as the average over the single fit results for the
different values of pmax and representations of the data set, with uncertainty given by the
standard deviation.

Eventually, we extract the wave function renormalisation Zcond at p = 0 via a limiting
procedure as

Zcond = lim
pmin→0

Zcond(pmin) . (98)

The limit is obtained within an extrapolation of the Zcond(pmin) discussed below. We extract
Zcond from both the scaling fRG data of [47] as well as the lattice solution [85], see Figure 8
and Table 1 for the numerical values. We also provide Zcond from a lattice-type fRG decoupling
solution for comparison in Table 1. When lowering the lower fit interval bound pmin, the results
for Zcond differ more and more. This can be attributed to the different infrared behaviour
of the two data sets. Accordingly, we exclude as many incompatible data points as possible
from the extrapolation fit regime while keeping enough data for a meaningful prediction of
Zcond(p = 0).

As the data from [47] are relatively sparse and hence the respective Zcond(pmin) and the
extrapolation show large error bars, we support this extrapolation with one obtained from
dense fRG data provided in [108, 109]. While the approximation used in the latter computa-
tions is not as sophisticated as that used in [47], it allows for a relatively quick production of
dense data. The scaling solution of [108] yields Zcond = 0.166(33), which agrees extremely
well with the scaling solution estimate of [47], comp. Table 1.

Our final estimate for Zcond is obtained by averaging the scaling fRG and lattice result,
yielding

Zcond = 0.149(19) . (99)

The error bars are given by the separate extrapolation results for scaling fRG and lattice data
in order to incorporate systematic uncertainties such as the influence of the different infrared
behaviours.

F Schwinger mechanism

In order to facilitate the comparison with the literature, in this Appendix we modify the nota-
tion employed in the main body of the article, denoting by∆(q2) and D(q2) the gluon and ghost
propagators, respectively, and by Z(q2) and F(q2) their dressing functions: Z(q2) := q2∆(q2)
and F(q2) := q2D(q2).

According to one of the main approaches put forth in a number of works [99, 110–113],
the generation of an effective gluon mass proceeds through the non-Abelian implementation
of the well-known Schwinger mechanism [114–117]. Within this scenario, the fundamental
vertices that enter in the DSE of the gluon propagator, ∆(q2), contain longitudinally coupled
massless poles, which eventually trigger the result ∆−1(0) := m2

gap.

31

https://scipost.org
https://scipost.org/SciPostPhys.13.2.042


SciPost Phys. 13, 042 (2022)




µ




+
µ

Y(k2)

k

k k

m2
gap =

+
µ

k

k

C

C
q → 0

q → 0

0.0 1.0 2.0 3.0 4.0 5.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

P
o
le

 r
e
s
id

u
e
s

C(r)
C(r)

Figure 9: Left panel: Diagrammatic representation of eq. (103). Right panel: the
momentum dependence of C(q2) and C(q2).

In particular, the three-gluon vertex, IΓµαβ(q, r, p), and the ghost-gluon vertex, IΓµ(q, r, p) ,
are composed by two distinct types of terms, namely

IΓµαβ(q, r, p) = Γµαβ(q, r, p) +
qµ
q2

gαβC1(q, r, p) + · · · ,

IΓµ(q, r, p) = Γµ(r, p, q) +
qµ
q2

C(q, r, p) , (100)

where the terms Γµαβ(q, r, p) and Γµ(q, r, p) contain all pole-free contributions, which may
diverge at most logarithmically as q→ 0 [118]. The ellipses in the first relation of eq. (100)
denote terms proportional to rα/r

2 or pβ/p
2, which are annihilated when contracted with the

transverse (Landau gauge) gluon propagators inside the relevant diagrams of the DSEs, or
tensorial structures that are subleading in the limit q→ 0.

A detailed analysis [119] based on the Slavnov-Taylor identities satisfied by the above
vertices reveals that

C1(0, r,−r) = C(0, r,−r) = 0 . (101)

Therefore, the Taylor expansion of C1(q, r, p) and C(q, r, p) around q = 0 yields

lim
q→0

C1(q, r, p) =2(q · r)
�

∂ C1(q, r, p)
∂ p2

�

q=0
︸ ︷︷ ︸

C(r2)

+O(q2) , (102)

lim
q→0

C(q, r, p) =2(q · r)
�

∂ C(q, r, p)
∂ p2

�

q=0
︸ ︷︷ ︸

C(r2)

+O(q2) .

Thus, inserting the vertices of eq. (100) into the DSE of the gluon propagator and taking the
limit q→ 0, one arrives at (see Appendix E) [112]

m2
gap =

3CAαs

8π

∫ ∞

0

d y Z2(y) [6παsCAY (y)− 1]C(y) +
CAαs

8π

∫ ∞

0

d y F2(y)C(y) . (103)

In the above formula, αs = g2
s /4π, defined at the renormalisation point µ where the ingredi-

ents of eq. (103) have been renormalised, within the momentum subtraction (MOM) scheme;
the renormalisation point has been chosen at µ= 4.3 GeV. Moreover, CA is the Casimir eigen-
value of the adjoint representation with CA = Nc for SU(N). Finally, Z(y) and F(y) denote the
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dressing functions of the gluon and ghost, respectively, and Y (k2) is an appropriately projected
contribution of the subdiagram shown in Appendix E.

The functional form of the pole residues C(k2) and C(k2) is determined from the linear
homogeneous system of coupled Bethe-Salpeter equations that they satisfy. This system is
derived from the corresponding DSEs governing the dynamics of IΓµαβ(q, r, p) and IΓµ(q, r, p),
in the limit q→ 0; for further details, see [112].

The resulting eigenvalue problem yields non-trivial solutions for C(k2) and C(k2), for a
specific value of the coupling αs, which depends on the details of the ingredients that enter in
the kernels of the Bethe-Salpeter system. It is important to emphasise that the homogeneity
and linearity of the equations leaves the overall scale of the corresponding solutions undeter-
mined. The scale setting is implemented by solving the vertex DSEs for general kinematics,
using as input the particular αs that was singled out by the eigenvalue condition. Then, from
the general 3-D solution the particular slice that corresponds to C(k2) and C(k2) is identified,
furnishing precisely the correctly rescaled version of the solutions obtained from the system.
The final form of the scale-fixed pole residues is shown in Appendix E.

The next step consists in substituting into eq. (103) the scale-fixed C(k2) and C(k2), and
use refined lattice data [85] for the gluon and ghost dressing functions, Z(k2) and F(k2).
The lattice propagators have been normalised at the point µ = 4.3 GeV, namely the highest
momentum scale available in this simulation. For the purpose of the comparison with the
results computed in the present work we match the scales of the lattice data in [85] with that
in [47], which leads us to

m(Schwinger)
gap = 0.320(35)GeV . (104)

Equation (104) is in excellent agreement with the estimate mgap = 0.322(34)GeV obtained
in the present work, see eq. (75). Both compare rather favourably to the central lattice
value ∆−1/2(0) = 0.354 GeV. The predominant source of error in the calculation using the
Schwinger mechanism originates from the uncertainties in the non-perturbative structure of
the pole-free vertex Γµαβ(q, r, p), which affects both the determination of the function Y (k2) in
eq. (103), as well as the kernels of the Bethe-Salpeter equations that determine the functions
C(k2) and C(k2).
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