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Abstract

We propose realizations of the Poisson structures for the Lax representations of three
integrable n-body peakon equations, Camassa–Holm, Degasperis–Procesi and Novikov.
The Poisson structures derived from the integrability structures of the continuous equa-
tions yield quadratic forms for the r -matrix representation, with the Toda molecule clas-
sical r -matrix playing a prominent role. We look for a linear form for the r -matrix rep-
resentation. Aside from the Camassa–Holm case, where the structure is already known,
the two other cases do not allow such a presentation, with the noticeable exception of
the Novikov model at n = 2. Generalized Hamiltonians obtained from the canonical
Sklyanin trace formula for quadratic structures are derived in the three cases.
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1 Introduction

Peakon solutions to non-linear two-dimensional (x , t) integrable fluid equations have been
shown to exhibit themselves integrable dynamics in several interesting cases. They take the
generic form

ϕ(x , t) =
n
∑

i=1

pi(t) e
−|x−qi(t)| , (1)

and their dynamics for (pi , qi) is deduced from a reduction of the 1+1 fluid equations for
ϕ(x , t).

Integrability of peakons entails the existence of a Poisson structure for (pi , qi) deduced from
the original Poisson structure of the fluid fields, including ϕ(x , t); the existence of a Hamilto-
nian h(pi , qi) and Poisson-commuting higher Hamiltonians, a priori deduced by reduction of
the continuous Hamiltonians to peakon solutions for the integrable 1+1 dynamical system. In
a number of cases, the dynamics is expressed in terms of a Lax equation:

L̇ = [L, M] , (2)

where L, M are (p, q)-dependent matrices and (2) contains all equations for pi(t), qi(t) ob-
tained from plugging (1) into the 1+1 integrable equation.

The Lax matrix naturally yields candidate conserved Hamiltonians h(k) = tr(Lk). Poisson-
commutation of h(k) is equivalent [1] to the existence of an r-matrix formulation of the Lax
matrix Poisson brackets:

{L1, L2}=
∑

{Li j , L jk} ei j ⊗ ekl = [r12, L1]− [r21, L2] . (3)

The r-matrix itself may depend on the dynamical variables [2]. A simple example of such dy-
namical r-matrix is given by the reformulation of the well-known “quadratic” r-matrix struc-
ture, extensively studied [3–5]. We recall the form of this quadratic structure:

{L1, L2}= a12 L1 L2 − L1 L2d12 + L1 b12 L2 − L2c12 L1 , (4)

where a12 = −a21, d12 = −d21, b12 = c21 to ensure antisymmetry of the Poisson bracket. When
the regularity condition1

a12 − c12 = d12 − b12 (5)

is fulfilled, (4) is indeed identified with (3) by setting r12 =
1
2(a12 L2 + L2a12)− L2c12. Hence

when the regularity condition (5) is fulfilled, the quantities tr Lk mutually Poisson-commute,

1The name ’regularity’ will be motivated in section 5.
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ensuring the integrability of the peakon models. The case a = d, b = c = 0 was first charac-
terized by E. Sklyanin [6]; a = d, b = c yields the so-called classical reflection algebra [3,4].

We consider here the three integrable peakon equations discussed in e.g. [7] for which the
key features of Poisson structure, integrability and Lax matrix, have been established:

1. The Camassa–Holm equation [8, 9]. Poisson structure for peakons is given in [10],
Lax formulation in [11] although the Poisson structure here is not the one in [10]. We shall
comment and relate the two structures in Section 2.

2. The Degasperis–Procesi equation [12, 13]. Poisson structure for peakons is given also
in [10]. Lax formulation is given in [13], also commented in [14].

3. The Novikov equation [15]. Poisson structure for peakons is given in [16]. Lax formu-
lation is given in [17].

Note that a fourth peakon-bearing integrable equation was identified (so-called modified
Camassa–Holm equation [18, 19]), but peakon integrability properties are obstructed by the
higher non-linearity of the modified Camassa–Holm equation, precluding the consistent re-
duction of Poisson brackets and Hamiltonians to peakon variables [20].

We will establish in these three cases the existence of a quadratic r-matrix structure (4). In
this paper, we only study the peakon dynamics inside the Weyl chambers defined by relative
positions of the peakons qi . We postpone the consideration of the possible crossings of the
boundaries of the Weyl chambers to further studies.

We will show that the four parametrizing matrices a, b, c, d are equal or closely connected
to the Toda An r-matrix [21]. This close connection can be understood in the Camassa–Holm
and Novikov cases, via an identification between the Lax matrix of Camassa–Holm and the
well-known Toda molecule Lax matrix [22]. In addition, the construction of the Novikov Lax
matrix as LNov = T LCH, where T =

∑n
i, j

�

1 + sgn(qi − q j)
�

ei j , relates the two r-matrices by
a twist structure. The occurence of a12 in the Camassa–Holm context however also requires
an understanding of the Camassa–Holm peakons Poisson bracket in [10] as a second Poisson
bracket in the sense of Magri [23,24], where the first Poisson bracket is the canonical structure
{qi , p j}= δi j , to be detailed in Section 2.

Each following section is now devoted to one particular model, resp. Camassa–Holm (Sec-
tion 2), Degasperis–Procesi (Section 3), and Novikov (Section 4). We conclude with some
comments and open questions. As a convention, to lighten the presentation, we will use the
notation a, b, c, d,γ in the Camassa–Holm case, a′, b′, c′, d ′,γ ′ for Degasperis–Procesi models,
and a′′, b′′, c′′, d ′′,γ′′ for Novikov ones.

2 Camassa–Holm peakons

The Camassa–Holm shallow-water equation reads [8,9]

ut − ux x t + 3uux = 2uxux x + uux x x . (6)

The n-peakon solutions take the form

u(x , t) =
n
∑

i=1

pi(t) e
−|x−qi(t)| , (7)

yielding a dynamical system for pi , qi:

q̇i =
n
∑

j=1

p j e−|qi−q j | , ṗi =
n
∑

j=1

pi p j si j e−|qi−q j | , (8)
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where si j = sgn(qi − q j). This discrete dynamical system is described by a Hamiltonian

H =
1
2

n
∑

i, j=1

pi p j e−|qi−q j | , (9)

such that
ḟ = { f , H} , (10)

with the canonical Poisson structure:

{pi , p j}= {qi , q j}= 0 , {qi , p j}= δi j . (11)

The same dynamics is in fact also triggered [10] by the reduced Camassa–Holm Hamiltonian:

H =
∑

i

pi , (12)

with the reduced Camassa–Holm Poisson structure (which is dynamical and “non-local”):

{pi , p j}= si j pi p je
−|qi−q j | ,

{qi , p j}= p je
−|qi−q j | ,

{qi , q j}= si j

�

1− e−|qi−q j |
�

.

(13)

It is also encoded in the Lax formulation [8,25]

d L
d t
= [L, M] , (14)

with

L =
n
∑

i, j=1

Li jei j , Li j =
p

pi p j e−
1
2 |qi−q j | , (15)

where ei j is the n× n elementary matrix with 1 at position (i, j) and 0 elsewhere.

2.1 The linear Poisson structure

We summarize here the results obtained in [11]. The Poisson structure (11) endows the Lax
matrix (15) with a linear r-matrix structure

{L1 , L2}= [r12 , L1]− [r21 , L2] , with r12 = a12 − b12 . (16)

In (16), a12 is the An−1 Toda r-matrix

a12 =
1
4

n
∑

i, j=1

si j ei j ⊗ e ji = −a21 and b12 = −at2
12 , (17)

with by convention sgn(0) = 0 and t2 denotes the transposition in space 2. Connection of
the Lax matrix with the Toda r-matrix structure was already pointed out in [11]. The r-
matrix structure (16) is indeed identified with the same structure occuring in the so-called
Toda lattice models [24]. One can add that the r-matrix structure for the Toda lattice in [11]
and the peakon dynamics in (16) is directly identified with the well-known r-matrix structure
for Toda molecule models [22] (strictly speaking, this identification holds in the first Weyl
chamber, where sgn(qi − q j) = sgn(i− j)). Indeed, both Toda lattice and peakon Lax matrices
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endowed with the canonical Poisson structure (11) are representations of the abstract An−1
Toda molecule structure

L =
∑

i

x i hi +
1
2

∑

α∈∆+

xα(eα + e−α) , (18)

where {xα , xβ}= xα+β and {x i , xα}= α(i) xα, with [hi , eα] = α(i)eα. Here, hi and eα denote
the usual Cartan elements and root vectors with root α, ∆+ denotes the positive root system,
and the Killing form is normalized as tr(hih j) = δi j and tr(eαeβ) = δαβ .

In the highly degenerate case of Toda Lax matrix (where xα = 0 for non-simple roots α),
it is directly checked that a and b yield the same contribution to (16), implying that the Toda
Lax matrix has an r-matrix structure parametrized by a12 solely, as it is well-known [21].

2.2 The quadratic Poisson structure

The new result which we shall elaborate on now is stated as:

Proposition 2.1 The Poisson structure (13) endows the Lax matrix (15) with a quadratic r-
matrix structure:

{L1, L2}= [a12, L1 L2]− L2 b12 L1 + L1 b12 L2 , (19)

where a12 and b12 are given in (17).

Proof: Direct check by computing the Poisson bracket {Li j , Lkl} on the left hand side and right
hand side. The antisymmetry of the Poisson structure, explicitly realized by (19), allows to
eliminate “mirror display”, i.e. (i j, kl)↔ (kl, i j). The invariance of the Poisson structure (19)
under each operation t1 and t2 is due to the symmetry L t = L of (15), the identification of
b12 = −at2

12, and the antisymmetry at1 t2
12 = −a12. It allows to eliminate transposed displays

(i j, kl)↔ ( ji, kl)↔ ( ji, lk)↔ (i j, kl) and to check only a limited number of cases (indeed
13 cases).

Remark that the form (19) ensures that the regularity condition (5) is trivially obeyed. The
Poisson bracket structure (16) is indeed a restriction to a coadjoint orbit, of the well-known
Kostant–Kirillov bracket on sl(n) restricted to symmetric matrices (on the full set of which
it does not determine a symplectic structure). The quadratic Poisson bracket (19) defined
from the antisymmetric and symmetric components a, b of the linear structure, is a related
natural object (also known as Sklyanin bracket). We expect that its intrinsic interpretation
as a Poisson structure on symmetric matrices may be connected to the notion of Heisenberg
double introduced in [2].

The Poisson structure (13), identified as a second Poisson structure in the sense of Ma-
gri [23], yields the natural quadratization (19) of the r-matrix structure (16). This fact is
consistent with the fact that (13) is obtained by reduction to peakon variables of the second
Poisson structure of Camassa–Holm, built in [10], while (11) is obtained by reduction of the
first Camassa–Holm Poisson structure. Reduction procedure (from fields to peakon variables)
and recursion construction (à la Magri, see [24]) are therefore compatible in this case, and the
compatibility extends to the r-matrix structures of the reduced variables. Such a consistency at
the r-matrix level is not an absolute rule. For instance, the first and second Poisson structures
for the Calogero–Moser model yield r-matrix structures, “linear” [26] and “quadratic” [27],
but with different r-matrices.
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2.3 The Yang–Baxter relations

Quadratic structure. As is known from general principles [5], quadratic Poisson r-matrix
structures obey consistency quadratic equations of Yang–Baxter type to ensure Jacobi iden-
tity of Poisson brackets. In the case of original Camassa–Holm pair (a, b) in (17), the skew-
symmetric element a12 obeys the modified Yang–Baxter equation:

[a12, a13]+[a12, a23]+[a13, a23] =
1

16

�

Ω123−Ω
t1 t2 t3
123

�

, with Ω123 =
n
∑

i, j,k=1

ei j⊗e jk⊗eki . (20)

The symmetric element b12 obeys an adjoint-modified Yang–Baxter equation directly obtained
from transposing (20) over space 3:

[a12, b13] + [a12, b23] + [b13, b23] =
1
16

�

−Ωt3
123 +Ω

t1 t2
123

�

. (21)

Cancellation of a suitable combination of (20) and (21) with all permutations added, together
with symmetry of the Camassa–Holm Lax matrix, allows to then check explicitly Jacobi iden-
tity for LCH and Poisson structure (19).

Linear structure. The Jacobi identity for the linear Poisson structure (16) also follows from
(20) and (21). It is equivalent to the cyclic relation:

[[r12, r13] + [r12, r23] + [r32, r13], L1] + c ycl ic = 0 , (22)

where cyclic stands for sum over cyclic permutations of (1,2, 3).
The Yang–Baxter "kernel" [r12, r13]+[r12, r23]+[r32, r13]must now be evaluated. In many

models, it is known to be equal to 0 (classical Yang–Baxter equation) or to a combination of
the cubic Casimir operators Ω123 and Ωt1 t2 t3

123 (modified Yang–Baxter equation). If any of these
two sufficient conditions holds, (22) is then trivial. However, in the Camassa–Holm case,
the situation is more involved. Indeed from (20) and (21), and denoting the Casimir term
C123 ≡ Ω123 −Ω

t1 t2 t3
123 , one has:

[r12, r13] + [r12, r23] + [r32, r13] = C123 + C t3
123 + C t2

123 − C t1
123 , (23)

which is neither a cubic Casimir nor even cyclically symmetric. Realization of (22) indeed
follows from explicit direct cancellation of the first (factorizing) Casimir term in (23) under
commutation with L1 + L2 + L3 and cross-cancellation of the remaining 9 terms, using in
addition the invariance of L under transposition. We have here a textbook example of an r-
matrix parametrizing a Poisson structure for a Lax matrix without obeying one of the canonical
classical Yang–Baxter equations.

3 Degasperis–Procesi peakons

This integrable shallow-water equation reads [13]

ut − ux x t + 4uux = 3uxux x + uux x x . (24)

Note that, together with the Camassa–Holm equation, it is a particular case of the so-called
b-equations:

ut − ux x t + (β + 1)uux = βuxux x + uux x x , (25)

for which integrability properties are established for β = 2 (Camassa–Holm) and β = 3
(Degasperis–Procesi), by an asymptotic integrability approach [13]. This approach fails at
β = 4.
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3.1 The quadratic Poisson structure

For β = 3, n-peakon solutions are parametrized as

u(x , t) = 1
2

n
∑

j=1

p j(t) e
−|x−q j(t)| , (26)

yielding a dynamical system:

ṗ j = 2
n
∑

k=1

p j pk s jk e−|q j−qk| ,

q̇ j =
n
∑

k=1

pk e−|q j−qk| .

(27)

Note the extra factor 2 in ṗ j compared with the Camassa–Holm equation.
The Lax matrix is now given by

Li j =
p

pi p j

�

Ti j − si j e−|qi−q j |
�

, (28)

with
Ti j = 1+ si j , i, j = 1, . . . , n . (29)

The dynamical equations (27) derive from the Hamiltonian H = tr(L) and the Poisson structure
obtained by reduction from the canonical Poisson structure of Degasperis–Procesi:

{pi , p j}= 2pi p jsi j e−|qi−q j | ,

{qi , p j}= p je
−|qi−q j | , (30)

{qi , q j}=
1
2si j

�

1− e−|qi−q j |
�

.

Again one notes the non-trivial normalization of the Poisson brackets in (30) compared with
(13) which will have a very significant effect on the r-matrix issues. Let us note that the
Hamiltonian associated to a time evolution ḟ = { f , H} consistent with the dynamics (27) is
in fact the conserved quantity noted P in [13]. The Hamiltonian H in [13] is tr L2.

Let us now state the key result of this section.

Proposition 3.1 The Poisson structure (30) endows the Lax matrix L given in (28) with a
quadratic r-matrix structure:

{L1, L2}= [a′12, L1 L2]− L2 b′12 L1 + L1 b′12 L2 , (31)

where (we remind our convention that sgn(0) = 0)

a′12 =
1
2

∑

i, j

si j ei j ⊗ e ji = 2 a12 , (32)

b′12 = −
1
2

∑

i, j

si j ei j ⊗ ei j −
1
2
Q12 , with Q12 =

n
∑

i, j=1

ei j ⊗ ei j . (33)

Proof: : By direct check of the left hand side and right hand side of (31). Since the Lax ma-
trix L is neither symmetric nor antisymmetric, many more cases of inequivalent index displays
occur. More precisely, 12 four-indices, 18 three-indices and 5 two-indices must be checked.

The regularity condition (5) is again trivially fulfilled.
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3.2 The Yang–Baxter equations

The matrix a′12 in the Degasperis–Procesi model is essentially the linear Toda r-matrix as in
the Camassa–Holm model. On the contrary, the b′ component of the quadratic structure (31)
must differ from the b component in the quadratic Camassa–Holm bracket (19) by an extra
term proportional to Q12 = P t1

12 = P t2
12 =Q21, where P12 =

∑n
i, j=1 ei j ⊗ e ji is the permutation

operator between space 1 and space 2. For future use, we also note the property

P2
12 = In ⊗ In and P12 M1 M ′2 P12 = M ′1 M2 , (34)

M1 Q12 = M t
2 Q12 and Q12 M1 =Q12 M t

2 , (35)

which holds for any n× n matrices M and M ′.

Remark 3.1 Since the Lax matrix LCH of Camassa–Holm peakons is a symmetric c-number ma-
trix, L = L t , one checks that

P12 L1 L2 = L2 L1 P12 and L1 P
t1
12 L2 = L2 P

t1
12 L1 . (36)

Hence the (a′, b′) pair of r-matrices yielding the quadratic Poisson structure for Degasperis–Procesi
peakons yields (up to a factor 2) the quadratic Poisson structure for Camassa–Holm peakons with
a pair (a, b− 1

4Q), since the extra contribution −L2 Q12 L1 + L1 Q12 L2 cancels out. In this case,
we will call this pair an alternative presentation for Camassa–Holm peakons.

The Degasperis–Procesi (a′, b′) pair obeys a set of classical Yang–Baxter equations which
is simpler than the Camassa–Holm pair (a, b). The skew-symmetric element a12 still obeys a
modified Yang–Baxter equation

[a′12, a′13] + [a
′
12, a′23] + [a

′
13, a′23] =

1
4

�

Ω123 −Ω
t1 t2 t3
123

�

, (37)

but the symmetric element b′ obeys an adjoint-modified Yang–Baxter equation with zero right-
hand-side:

[a′12, b′13] + [a
′
12, b′23] + [b

′
13, b′23] = 0 . (38)

Remark 3.2 A term proportional toP12 can be added to a′12, leading to a matrix ea′12 = a′12+
1
2P12.

This term is optional, it does not change the Poisson brackets, nor the regularity condition. If
added, it allows the relation b′12 = −(ea

′
12)

t2 , which already occurred for the Camassa–Holm
model. However, such a term breaks the antisymmetry relation a′21 = −a′12, which has deep
consequences at the level of Yang–Baxter equations. Indeed, the form of the left-hand-side in
(20) heavily relies on this antisymmetry property of a′12. In fact, if one computes "naively"
[ea′12, ea′13] + [ea

′
12, ea′23] + [ea

′
13, ea′23], one finds exactly zero and could be tempted to associate it

to a Yang–Baxter equation with zero right-hand-side. Yet, the "genuine" Yang–Baxter equation,
i.e. the relation ensuring the associativity of the Poisson brackets, plugs the Ω-term back into the
game, leading in fine to again a modified Yang–Baxter equation.

3.3 Search for a linear Poisson structure

Contrary to the Camassa–Holm peakon case, the canonical Poisson bracket (11) is not com-
patible with the soliton-derived Poisson bracket structure (30). Indeed, the linear pencil
{· , ·}can + λ{· , ·}DP (“can” is for canonical and DP for Degasperis–Procesi) does not obey Ja-
cobi identity due to extra non-cancelling contributions from the non-trivially scaled brackets
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of {p, p} and {q, q} in (30). The statement is consistent with the fact, pointed out in [10],
that no second local Poisson structure exists in the Degasperis–Procesi case, contrary to the
Camassa–Holm case (where it is denoted as B1 in [10]).

Consistently with the absence of a second local Poisson structure for soliton Degasperis–
Procesi equation yielding a “linear” r-matrix structure for the Lax matrix, one observes that
the associated linear r-matrix structure naively defined by r12 = a′12 + b′12, does not yield
consistent Poisson brackets for the variables in the Lax matrix. If one indeed sets

{L1, L2}= [a′12 + b′12, L1]− [a′21 + b′21, L2] , (39)

the Poisson brackets for individual coordinates of L are inconsistent, due to the antisymmetric
part in (28), contrary to the Camassa–Holm case where Li j = L ji .

We also checked using software calculations that (at least for n running from 2 to 7)
that there is no non-trivial linear combination r ′12 = x a′12 + y b′12 such that the relation
{L1 , L2} = [r ′12 , L1] − [r ′21 , L2] with L given in (28), yield a consistent Poisson structure
for the (pi , q j) variables.

The peakon Lax matrix (28) realizes therefore an interesting example of a non-dynamical
quadratic (a′, b′) Poisson structure where there is no associated linear r-matrix structure. The
exact form, or even the existence, of such linear r-matrix structure for Degasperis–Procesi
peakons remains an open question.

4 Novikov peakons

The Novikov shallow-wave equation reads

ut − ux x t + 4u2ux = 3uuxux x + u2ux x x , (40)

showing now a cubic non-linearity instead of a quadratic one as in Camassa–Holm or
Degasperis–Procesi. Originally proposed by Novikov [28] as an integrable partial differential
equation, it was later shown [16] to have integrable peakons:

u(x , t) =
n
∑

i=1

pi(t) e
−|x−qi(t)| . (41)

4.1 The quadratic Poisson structure

The complete integrability structure was established in [17]. The dynamical system for pi , qi
reads

ṗi = pi

n
∑

j,k=1

si j p j pk e−|qi−q j |−|qi−qk| ,

q̇i =
n
∑

j,k=1

p j pk e−|qi−q j |−|qi−qk| ,

(42)

still with the notation si j = sgn(qi − q j). They constitute a Hamiltonian system where the
Poisson structure takes the following form:

{pi , p j}= si j pi p j e−2|qi−q j | ,

{qi , p j}= p j e−2|qi−q j | ,

{qi , q j}= si j

�

1− e−2|qi−q j |
�

.

(43)
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The conserved Hamiltonians are obtained as traces of a Lax matrix

L = T PEP , (44)

where
Ti j = 1+ si j , Pi j = piδi j , Ei j = e−|qi−q j | . (45)

In other words, the time evolution (42) is described by the Hamilton equation ḟ = { f , H},
with H = 1

2 tr L and the PB (43).
Redefining now

q̄ j = 2q j and p̄ j = p2
j , (46)

yield a Poisson structure
{p̄i , p̄ j}= 4si j p̄i p̄ je

−|q̄i−q̄ j | ,

{q̄i , p̄ j}= 4p̄ je
−|q̄i−q̄ j | ,

{q̄i , q̄ j}= 4si j

�

1− e−|q̄i−q̄ j |
�

,

(47)

identical to the Camassa–Holm peakon structure (13) up to a factor 4. The Lax matrix now
reads

Li j =
n
∑

k=1

Tik
Æ

p̄k p̄ j e−
1
2 |q̄ j−q̄k| , (48)

exactly identified with T LCH .
Hence, the Novikov peakons are in fact described by a Lax matrix simply twisted from the

Camassa–Holm Lax matrix (L→ T L) and an identical Poisson bracket, a fact seemingly over-
looked in [17]. The r-matrix structure immediately follows, but several inequivalent structures
are identified due to the gauge covariance pointed out in section 3:

Proposition 4.1 The Poisson structure (43) endows the Lax matrix (48) with a set of quadratic
r-matrix structure

{L1, L2}= a′′12 L1 L2 − L1 L2d ′′12 + L1 b′′12 L2 − L2c′′12 L1 , (49)

where
a′′12 = 4 T1 T2 a12 T−1

1 T−1
2 , d ′′12 = 4 a12 ,

b′′12 = T2

�

− 4at2
12 −Q12

�

T−1
2 , c′′12 = b′′21 ,

(50)

and a12 is given in (17).

The proof follows trivially from section 2 and gauge invariance in section 3.
The regularity condition (5) is fulfilled by this Poisson structure. Although less trivial than

in the previous two cases this property will be proved in the next section.

4.2 The Yang–Baxter equations

The Yang–Baxter equations for (50) follow immediately by suitable conjugations by T of the
Yang–Baxter equations for the alternative form of Degasperis–Procesi structures matrices. Pre-
cisely, from the redefinitions in (50) the Yang–Baxter equations for a′′, b′′, c′′ and d ′′ read

[a′′12, a′′13] + [a
′′
12, a′′23] + [a

′′
13, a′′23] = Ω123 −Ω

t1 t2 t3
123 ,

[d ′′12, d ′′13] + [d
′′
12, d ′′23] + [d

′′
13, d ′′23] = Ω123 −Ω

t1 t2 t3
123 ,

[a′′12, b′′13] + [a
′′
12, b′′23] + [b

′′
13, b′′23] = 0 ,

[d ′′12, c′′13] + [d
′′
12, c′′23] + [c

′′
13, c′′23] = 0 ,

(51)
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where in writing the right-hand-side of the relation for a′′, we have used the property that
Ω123−Ω

t1 t2 t3
123 commutes with any product of the form M1 M2 M3 for any matrix M (M = T for

the present calculation). Note that the adjoint Yang–Baxter equations for b′′ and c′′ remain
with zero right-hand-side, despite the conjugations by T depend on the matrices (e.g. a′′ or
b′′) one considers.

Linear structure. As for the Degasperis–Procesi case, we looked for a linear combination
r ′′12 = x a′′12+ y b′′12+z c′′12+ t d ′′12 such that the Poisson structure {L1 , L2}= [r ′′12 , L1]−[r ′′21 , L2]
with L given in (48), yield a consistent Poisson structure for the (pi , q j) variables. For n > 2,
the only solution is given by r ′′12 = x (a′′12+ b′′12− c′′12− d ′′12) which is identically zero due to the
regularity relation (5). The calculation was done using a symbolic computation software for
n running from 3 to 5. Hence, in the generic case, we conjecture that there is no non-trivial
linear structure, at least directly associated to the quadratic one. Again, the existence (and the
exact form) of such linear r-matrix structure for general Novikov peakons remains an open
question.

In the particular case n= 2, there is indeed a solution related to the solution

r ′′12 =
1
2

�

a′′12 − b′′12 − c′′12 + d ′′12

�

= a′′12 − c′′12 =







1 0 0 0
2 0 −1 0
0 1 0 0
2 0 −2 1






. (52)

The r-matrix obeys the modified Yang–Baxter relation

[r ′′12, r ′′13] + [r
′′
12, r ′′23] + [r

′′
32, r ′′13] = Ω123 −Ω

t1 t2 t3
123 , (53)

and leads to PB of the form

{p̄1 , p̄2}= −4 s12

p

p̄1 p̄2 e−
1
2 |q̄1−q̄2| ,

{q̄1 − q̄2 , p̄1}= 4

√

√ p̄1

p̄2
e−

1
2 |q̄1−q̄2| + 4 ,

{q̄1 − q̄2 , p̄2}= −4

√

√ p̄2

p̄1
e−

1
2 |q̄1−q̄2| − 4 .

(54)

Indeed since the combination q̄1 + q̄2 does not appear in the expression of L, one can realize
a consistent associative, albeit degenerate, Poisson bracket by setting {q̄1 + q̄2 , X } = 0 for
all X . In order to obtain a non-degenerate Poisson structure, one has to implement the PBs
{q̄1+q̄2 , X }= fX (p̄1, p̄2, q̄1, q̄2) for X = p̄1, p̄2, q̄1−q̄2 and solve all functional equations (on the
functions fX ) provided by the Jacobi identities. Finally, among the solutions, find a solution
that leads to a non-degenerate Poisson structure. This is beyond the scope of this article.

4.3 Dual presentation for Novikov peakons

Let us remark that the form of the Novikov Lax matrix LN = T LCH suggests a dual presentation
for the Novikov peakons. Indeed, one can introduce the Lax matrix eLN = LCH T , which takes
explicitly the form

eLi j =
n
∑

k=1

p

p̄k p̄i e−
1
2 |q̄i−q̄k| Tk j . (55)

In that case, the PB (43) have still a quadratic structure of the form (49), but with now

ea′′12 = 4 a12 , ed ′′12 = 4 T−1
1 T−1

2 a12 T1 T2 ,

eb′′12 = T−1
1

�

− 4at2
12 −Q12

�

T1 , ec′′12 = eb
′′
21 .

(56)
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It is easy to see that these matrices still obey precisely the same Yang–Baxter relations (51).
The Hamiltonians one constructs using eLN are exactly the same as for LN . Thus, we get

a dual presentation of exactly the same model and the same Hamiltonians. This property
extends to the calculation presented in the next section.

5 Non-trivial boundary terms for peakons

A general construction of Poisson-commuting Hamiltonians from any quadratic structure (4)
is based on the product of two dynamical objects: L obeying (4) and Q obeying a dual Poisson
structure:

{Q1,Q2}=Q1Q2a12 − d12Q1Q2 +Q2 b12Q1 −Q1c12Q2 , (57)

with {Q, L} = 0. It is then easy to show that QL obeys a linearizable (albeit dynamical) r-
matrix Poisson structure:

{Q1 L1,Q2 L2}= [r12,Q1 L1]− [r21,Q2 L2] , (58)

where
r12 =

1
2(d12Q2 L2 +Q2 L2d12)−Q2 b12 L2 . (59)

The traces tr
�

(QL)k
�

are thus seen to be Poisson-commuting dynamical quantities. Following
the traditional approach of integrable systems with boundary [6,29], these boundary matrices
characterize the boundary condition. Note however that this approach is mainly used in the
quantum case: in the classical (i.e. PB) case, the relation is less clear and deserves a more
detailed study.

We restrict ourselves in this paper to the case when the dual term Q is a non dynamical
matrix γ, hence obeys the purely algebraic, dual reflection equation:

γ1γ2a12 − d12γ1γ2 + γ2 b12γ1 − γ1c12γ2 = 0 . (60)

More general peakon Hamiltonians can then be defined for each solution γ of the dual classical
reflection equation (60). In the case where γ is diagonal, one in fact re-obtains the original
Hamiltonians by a rescaling of the pi variables, see below. The Hamiltonians take the form
tr
�

(γL)k
�

. The solution γ = In exists whenever the condition (5) holds, motivating its desig-
nation as regularity condition. Note that in the Freidel–Maillet approach [5], the immediate
correspondence between solutions γ of the dual equation and solutions γ−1 of the direct equa-
tion (r.h.s. of (4) = 0) is used to yield an equivalent form of the commuting Hamiltonians.

We shall now propose classes of invertible solutions to the classical reflection equation
(60) for each of the three peakon cases. Let us first emphasize that any solution γ ′ of (60)
where a′12 = 2a12, b′12, c′12 = b′21, d ′12 = 2a12 are the matrices associated with the Degasperis–
Procesi peakons, or to the alternative presentation of Camassa–Holm peakons, corresponds to
a solution γ′′ = γ ′T−1 for the reflection equation associated to the Novikov peakons, since the
structure matrices are related as: b′′12 = 2T2 b′12 T−1

2 , c′′12 = b′′21, a′′12 = 2T1 T2 a′12 T−1
1 T−1

2 and
d ′′12 = 2a′12. Hence the Degasperis–Procesi case provides solutions for the two other peakon
models.

Lemma 5.1 If γ ′ is a solution of the Degasperis–Procesi reflection equation (60), then for any
diagonal matrix D, the matrix Dγ ′D is also a solution of the reflection equation.

Proof: The structure matrices a′12 and b′12 of (60) for the Degasperis–Procesi peakons obey :

a′12 D1D2 = D1D2 a′12 and D1 b′12 D2 = D2 b′12 D1 , (61)
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where we used also the property (35). Now, multiplying (60) by D1D2 on the right or / and
the left hand sides, and using the above properties of a′12 and b′12, leads to the desired result.

Note that the transformation γ ′ → Dγ ′D is equivalent to a canonical redefinition pi → d2
i pi .

Proposition 5.2 For Degasperis–Procesi peakons, and for n arbitrary, we have two fundamental
solutions:

(i) the unit matrix In ,
(ii) the matrix T introduced in (29).

Moreover, when n is even, we have an additional solution, whose explicit form depends on the Weyl
chamber we consider for the variables qi . In the first Weyl chamber, where qi > q j ⇔ i > j, it
takes the form

(iii) S id =

n
2−1
∑

i=0

�

e2i+1,2i+2 − e2i+2,2i+1

�

= In/2 ⊗
�

0 1
−1 0

�

. (62)

In any other Weyl chamber defined by a permutation σ such that qi > q j ⇔ σ(i) > σ( j), the
solution Sσ takes the form

Sσ =

n
2−1
∑

i=0

�

eσ(2i+1),σ(2i+2) − eσ(2i+2),σ(2i+1)
�

. (63)

Using the lemma 5.1, it leads to 2 (resp. 3) classes of solutions for n odd (resp. even).
All these solutions are also valid for the alternative presentation of Camassa–Holm, and (once

multiplied on the left by T) for the Novikov model. The solutions (i) and (iii) are also valid for
the original Camassa–Holm model.

Proof: (i) The unit matrix is trivially a solution since (60) is then the regularity condition.
(ii) The reflection equation for T projected on a generic element ei j ⊗ ekl contains explicitly
the indices i, j, k, l, and possibly two summation indices corresponding to the products by γ ′1
and γ ′2. Since the entries of the matrices depend on the indices only through the sign function
sgn(r− s), it is sufficient to check the relations for small values of n. We verified them through
a symbolic calculation software for n running from 2 to 8.
(iii) Similarly, the reflection equation for S needs to be checked for small values of n. We
verified it through a symbolic calculation software for n running from 2 to 8.

Remark 5.1 For all three models, if γ is a solution to the reflection equation, then γt is also a
solution. For Camassa–Holm peakons, γ−1 is also a solution. However, the classes of solutions
induced by these transformations falls in the ones already presented in proposition 5.2.

Note that dressing T by the diagonal matrix D = diag((−1)i) yields T−1, which is also a
solution to the Degasperis–Procesi reflection equation. Moreover, it proves that the unit matrix
is also a solution of the reflection equation (60) in the Novikov case, proving the property
mentioned in the previous section that regularity condition is fulfilled by the Novikov r-matrix
structure.

6 Hamiltonians

Now that the quadratic r-matrix structure have been defined, we are in position to compute
higher Hamiltonians for each of the three classes of peakons. These Hamiltonians will be PB-
commuting, with the Poisson brackets (13), (30) or (43), depending on the peakon model that
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is to say the Lax matrices (15), (28) or (48). We provide also some cases of Hamiltonians with
non-trivial boundary terms. Note however that when non diagonal boundary terms enter into
the game, the square root of the momenta p j may be involved, notably for boundary terms
associated to the T matrix, see e.g. (66). In that case, one should check the sign of these
momenta, and the corresponding conserved quantity will be real only in the domains where
the positivity of p j is preserved.

6.1 Camassa–Holm Hamiltonians

In addition to the peakon Hamiltonian HCH = tr L =
∑

i pi , we get for instance

H(1)CH = tr L =
∑

i

pi ,

H(2)CH = tr L2 =
∑

i, j

pi p j e−|qi−q j | ,

H(3)CH = tr L3 =
∑

i, j,k

pi p j pk e−
1
2 |qi−q j | e−

1
2 |q j−qk| e−

1
2 |qk−qi | .

(64)

We recognize in H(1)CH and H(2)CH the usual Camassa–Holm Hamiltonians, as computed e.g. in
[10].

Diagonal boundary term. If one chooses γ = D as a diagonal solution to the reflection
equation, we get another series of PB-commuting Hamiltonians:

tr(DL) =
∑

i

di pi ,

tr
�

(DL)2
�

=
∑

i

d2
i p2

i + 2
∑

i< j

di d j pi p j e−|qi−q j | ,

tr
�

(DL)3
�

=
∑

i, j,k

di d j dk pi p j pk e−
1
2 |qi−q j | e−

1
2 |q j−qk| e−

1
2 |qk−qi | .

(65)

One gets a "deformed" version of the Camassa–Holm Hamiltonians, with deformation param-
eters di . Since they can be interpreted as a rescaling p j → d j p j of the momenta, the corre-
sponding PDE will have just the same rescaled form.

T -boundary term. Choosing now γ= DT D as a solution to the reflection equation, we get:

tr(γ L) =
∑

i

d2
i pi + 2

∑

i< j

did j
p

pi p j e−
1
2 |qi−q j | ,

tr
�

(γ L)2
�

=
∑

i

d4
i p2

i + 3
∑

i 6= j

d2
i d2

j pi p j e−|qi−q j | + 4
∑

i 6= j

d3
i d j

Ç

p3
i p j e−

1
2 |qi−q j |

+ 6
∑

i, j,k
all 6=

d2
i d jdk pi

p

p j pk e−
1
2 |qi−q j | e−

1
2 |qi−qk|

+
∑

i, j,k,l
all 6=

(1+ s jksl i) did jdkdl
p

pi p j pkpl e−
1
2 |qi−q j | e−

1
2 |qk−ql | .

(66)

Note that since the alternative presentation of Camassa–Holm peakons describes the same
Poisson structure, the above Hamiltonians are also valid when using the presentation of section
2.
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S-boundary term for n even. Since for Camassa–Holm peakons, the Lax matrix L is sym-
metric while Sσ is antisymmetric, we get in any Weyl chamber

tr
�

(SσL)2m+1
�

= 0 ,∀m . (67)

As an example of non-vanishing Hamiltonian, we have for γ = DSσD (in the Weyl chamber
defined by σ):

tr
�

(γL)2
�

= 2
n/2−1
∑

`=0

d̄σ`o pσ(`o) pσ(`o+1)

�

e−|qσ(`o+1)−qσ(`o)| − 1
�

, (68)

where `o = 2`+ 1 and d̄σ
`o = d2

σ(`o)d
2
σ(`o+1).

6.2 Degasperis–Procesi Hamiltonians

Diagonal boundary term. Considering immediately the case with diagonal matrix γ ′, we
have

tr(γ ′L) =
∑

i

di pi ,

tr
�

(γ ′L)2
�

=
∑

i

d2
i p2

i +
∑

i< j

di d j pi p j

�

2− e−|qi−q j |
�

e−|qi−q j | ,

tr
�

(γ ′L)3
�

=
∑

i, j,k

did jdk pi p j pk

�

− 3 e−|qi−qk|−|q j−qk| + 4 e−
1
2 (|qi−qk|+|q j−qk|+|q j−qi |)

�

.

(69)

The "usual" Hamiltonians tr Lm are recovered by setting di = 1, ∀i.

T -boundary term. In any Weyl chamber, we get

tr(γ ′Tγ ′L) =
∑

i

di pi +
∑

i 6= j

di d j
p

pi p j e−|qi−q j | ,

tr
�

(γ ′Tγ ′L)2
�

=
�∑

i, j

di d j
p

pi p j

�2
+
∑

i 6= j

d2
i d2

j pi p j

�

1− e−|qi−q j |
�2

− 4
∑

i 6= j

d2
i d j pi

p

p j

�

1− e−|qi−q j |
�

�∑

k

dk
p

pk

�

− 8
∑

q j<qi<qk

did jdk
p

pi p j pk

�

1− e−|q j−qk|
�

�∑

l

dl
p

pl

�

+ 2
∑

i, j,k
all 6=

d2
i d jdk pi

p

p j pk

�

1− e−|qi−q j |
��

1− e−|qi−qk|
�

+ 8
∑

qi<q j<qk<ql

did jdkdl
p

pi p j pkpl

�

1− e−|qi−ql |
��

1− e−|q j−qk|
�

.

(70)

15

https://scipost.org
https://scipost.org/SciPostPhys.13.2.044


SciPost Phys. 13, 044 (2022)

S-boundary term for n even. In the Weyl chamber characterized by σ, we get for
γ ′
σ = DSσD:

tr(γ ′σL) = 2

n
2−1
∑

`=0

d̄σ`o

p

pσ(`o) pσ(`o+1)

�

1− e−|qσ(`o)−qσ(`o+1)|
�

,

tr
�

(γ ′σL)2
�

= 2

n
2−1
∑

`=0

(d̄σ`o)2 pσ(`o) pσ(`o+1)

�

1− e−|qσ(`o)−qσ(`o+1)|
�2

+ 2

n
2−1
∑

`=0

n
2−1
∑

j=0
j 6=`

d̄σ`o d̄σjo
p

pσ(`o) pσ(`o+1)pσ( jo) pσ( jo+1)

×
�

2e−|qσ(`o+1)−qσ( jo)| − e−|qσ(`o+1)−qσ( jo+1)| − e−|qσ(`o)−qσ( jo)|
�

,

(71)

where we noted `o = 2`+ 1 and jo = 2 j + 1 to have more compact expressions. Once again,
we noted d̄σ

`o = d2
σ(`o)d

2
σ(`o+1).

6.3 Novikov Hamiltonians

We recall that the Novikov and Camassa–Holm Lax matrices are related by LNov = T LCH and
that the solutions of the dual reflection equation (60) are related dually: γ′′ = γ T−1. The
basic combination γ′′L entering the Hamiltonians for the Novikov peakons therefore yields
the same object as for the Camassa–Holm case. Hence Camassa–Holm and Novikov peakons
share identical forms of commuting Hamiltonians, a consistent consequence of their sharing
the same Poisson structure (47) after renormalization (46).

7 Conclusion

We should start this section with some brief comments on the newly constructed integrable
Hamiltonians in section 6, focusing for simplicity on the Camassa–Holm case (66) and (68).
They exhibit original features when compared to the already known ones (64): the already
commented-on explicit

p
p dependence; the three- and four-body interaction already present

at order 2 in (66) and the pairing of nearest neighbours 2`, 2`+ 1 observed in (68). It is not
clear at this stage whether such features may arise from the description of peakon dynamics
when non trivial boundary conditions and/or defects conditions (shock or jump at some fixed
point) are introduced in the Camassa–Holm equation. Indeed this type of boundary condi-
tion with “reflection” effects usually yields dynamics for the collective modes characterized by
potentials depending on x + y which are not directly observed here inside the absolute-value
terms. However, the interaction of 3 and 4 peakons at order 2 or the pairing of nearest neigh-
bour peakons may still be a more subtle effect of boundary/defect conditions “entangling”
direct and reflected/transmitted peakons: as an example, the 4-body absolute-value terms in
(66) always contain two + signs and two − signs, possibly signaling an interaction between
two direct and two reflected peakons. However, the nearest neighbour pairing observed in
(68) is not obvious to characterize as such. In any case a much more detailed analysis would
be required.

Having established the quadratic Poisson structures for three integrable peakon models,
in every case based on the Toda molecule r-matrix and its partial transposition, many issues
remain open or have arisen in the course of our approach.

Amongst them we should mention the problem of finding compatible linear Poisson struc-
tures and their underlying r-matrix structures. Only solved for the Camassa–Holm peakons
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this question is particularly subtle in the case of Degasperis–Procesi peakons as follows from
the discussion in Section 3.3.

Another question left for further studies here is the extension of integrability properties
beyond the exact peakon dynamics, on the lines of the work in [11] regarding Camassa–
Holm peakons and (not surprisingly) based on the linear (and canonical) Poisson structure, yet
unidentified in other cases. The difficulty is to disentangle , whenever only a quadratic struc-
ture is available, the peakon potential in the Lax matrix from the dynamical weight function
in the n-body Poisson brackets (the so called G function in [10]).

Excitingly, the quadratic structures we have found open the path to a quantized version of
peakon models, in the form of ABC D algebras, following the lines developed in [5]. We hope
to come back on this point in a future work.

Finally in this same extended integrable peakons the still open problem of full understand-
ing of the unavoidably dynamical r-matrix structure remains a challenge.
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