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A definition of primary operators in J T -deformed CFTs
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Abstract

J T̄ - deformed CFTs provide an interesting example of non-local, yet UV-complete two-
dimensional QFTs that are entirely solvable. They have been recently shown to possess
an infinite set of symmetries, which are a continuous deformation of the Virasoro-Kac-
Moody symmetries of the seed CFT. In this article, we put forth a definition of primary
operators in J T̄ - deformed CFTs on a cylinder, which are singled out by having CFT-like
momentum-space commutation relations with the symmetry generators in the decom-
patification limit. We show - based on results we first derive for the case of J1 ∧ J2 -
deformed CFTs - that all correlation functions of such operators in the J T̄ - deformed
CFT can be computed exactly in terms of the correlation functions of the undeformed
CFT and are crossing symmetric in the plane limit. In particular, two and three-point
functions are simply given by the corresponding momentum-space correlator in the un-
deformed CFT, with all dimensions replaced by particular momentum-dependent con-
formal dimensions. Interestingly, scattering amplitudes off the near-horizon of extremal
black holes are known to take a strikingly similar form.
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1 Introduction

A long-standing challenge in holography has been to find the microscopic description of generic
extremal and non-extremal black holes, whose near-horizon region does not contain an AdS3
factor. One can obtain important clues into the nature of the holographic dual by studying the
asymptotic symmetries of the near-horizon backgrounds of interest [1], as well as scattering
amplitudes [2, 3], which in principle give access to the symmetries [4] and, respectively, the
correlation functions of the dual theory.

To date, the most progress has been made in the case of extremal black holes, whose near-
horizon region universally contains [5] a factor known as warped AdS3: a deformation of
AdS3 that preserves SL(2,R)× U(1) isometry. The asymptotic symmetries of this space-time
enhance the U(1) factor to one copy of the Virasoro algebra, leading to the so-called Kerr/CFT
proposal [6], which states that the near-horizon dynamics of extremal black holes is described
by a chiral half of a two-dimensional CFT, where the chirality is due to taking the strict extremal
limit [7].

The study of scattering off the near-extremal black hole geometry naively appears to cor-
roborate this claim, since it leads to a (scalar) momentum-space two-point function of the
form [8]

GTL,R
(p, p̄)∼ T2h(p̄)−1
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, (1.1)

which precisely corresponds to the momentum-space two-point function in a two-dimensional
CFT at left and, respectively, right-moving temperatures TL,R. Similar results hold for higher-
point functions [9].

This conclusion may nevertheless be a bit too fast, because the operator dimensions that
appear in the above formula, which are extracted from the solution to the scalar wave equation
in the near-horizon geometry, depend explicitly on the momentum, p̄, along the U(1) direc-
tion. This fact immediately implies that the “CFT” in the Kerr/CFT correspondence cannot be
a standard, local CFT1. Indeed, a detailed study of the near-horizon geometry [13] reveals
that the holographic dual is instead a two-dimensional analogue of a dipole theory [14], ob-
tained by deforming the CFT by a finely-tuned set of irrelevant operators that preserve the left
SL(2,R) symmetry and lead to a UV-complete theory. This structure of the irrelevant deforma-
tion implies that the resulting theory - sometimes called a “dipole CFT” - is local and conformal
on the left, but non-local on the right. Operators in these theories are best described in a mixed
position - momentum basis, and the left-moving piece of their correlation functions has a form

1Consequently, the asymptotic symmetry results of [6] (or, more rigorously, [10]) should not be interpreted as
suggesting that the dual theory is a standard CFT, but rather that non-local theories can posses Virasoro symmetry,
a fact that was recently proven in [11,12].
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dictated by the SL(2,R)L conformal symmetry; however, the left conformal dimensions gener-
ically depend on the right-moving momentum [15].

The fact that the dual theory is non-local raises some immediate questions regarding (1.1).
While the left-moving piece of this correlator is meaningful - since it corresponds to the Fourier
transform of a local, conformal two-point function (albeit with a dimension that depends on
the momentum along the other direction) - its right-moving piece, which resides entirely on
the non-local direction, appears to have no intrinsic meaning, since it can always be rescaled
by an arbitrary function of p̄ [16]. The question that we would like to address in this article
is: to what extent is an expression of the form (1.1) in such a non-local theory meaningful?

That this correlator may actually be meaningful is suggested by the example of dipole-
deformed field-theories, whose non-locality is extremely constrained by a star product struc-
ture. Operators in this theory and the allowed counterterms must respect this structure, which
effectively makes the theory renormalizable [17], if the original QFT was so. Thus, in presence
of additional structures that constrain the non-locality, one may hope to be able to assign an
unambiguous meaning to an expression such as (1.1).

The main goal of this article is to identify such additional structures for the case of two-
dimensional non-local QFTs that may model the microscopic physics of generic extremal black
holes. Specifically, we will be working with the example of J T̄ - deformed CFTs [18] - a class
of universal irrelevant deformations of two-dimensional CFTs by an operator that is bilinear in
the stress tensor and a U(1) current, which lead to a UV-complete QFT. These theories belong
to the more general class of Smirnov-Zamolodchikov irrelevant current-current deformations
[19], of which the T T̄ deformation [19, 20] is a particularly rich and interesting example
[21–24]. While J T̄ - deformed CFTs are not exactly a model for the Kerr/CFT correspondence
because the deformation is double-trace - and thus corresponds to AdS3 with mixed boundary
conditions [25] - a single-trace variant [26, 27] of this deformation is. Notwithstanding, J T̄
- deformed CFTs do appear to posses the correct non-local QFT structures that are relevant
for the Kerr/CFT correspondence, in addition to being highly tractable. The concrete question
that we would like to address in this article is whether a formula such as (1.1) can be made
sense of in the context of J T̄ - deformed CFTs.

This question has two aspects. The first is that one should find a basis of operators for
which the correlation functions are expected to take a simple form. In usual CFTs, these are
local operators - in fact, primary operators, if we want the higher-point functions to also be
nicely constrained. In J T̄ - deformed CFTs, the primary constraint is easily imposed on the local
left-moving side and yields correlation functions that are consistent with SL(2,R) invariance,
the only change being that the left conformal dimensions and U(1) charges are shifted from
their undeformed values h̃, q̃ by a momentum-dependent contribution [28]

h(p̄) = h̃+λq̃p̄+
λ2k

4
p̄2 , q(p̄) = q̃+

λk
2

p̄ , (1.2)

where λ is the deformation parameter. Our (more non-trivial) goal is to find a similar con-
straint that fixes the right-moving dependence of the correlators.

The other aspect concerns the method used to compute the correlation functions. Given
the definition of the deformation in terms of an irrelevant flow, conformal perturbation theory
comes in naturally, and this was the method used in [28] to analyse J T̄ correlators, and in [29]
(see also [30–32]) for the more involved T T̄ case. However, note that the correlation functions
computed with this method are UV divergent, and so need to be regulated and renormalized;
however, it is a priori not clear whether any choice of UV regulator and which choices of
counterterms would be allowed.

In this article, we approach the computation of J T̄ correlators in a different way, which cir-
cumvents the issue of UV divergences and understanding what are the allowed counterterms.
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Instead, we rely on the flow equation with respect to λ satisfied by the energy eigenstates, the
symmetry generators and an appropriately-defined set of operators to construct the correla-
tion functions of interest. Our approach is similar in spirit to the one used in [33] to discuss
T T̄ correlators, though our basis of operators is different and the correlation functions we
compute are manifestly finite throughout, as well as fully explicit.

More concretely, to fix the right-moving part of the correlator, we use the fact that J T̄ -
deformed CFTs were recently shown to possess an infinite-dimensional “pseudo-conformal”
symmetry [34], implemented - at the classical level - by field-dependent generalizations of
conformal and affine U(1) transformations

v → f̄ (v) , v ≡ V −λφ , (1.3)

where V is the right-moving coordinate and φ is the bosonisation of the U(1) current (with
its zero mode removed, if working on the cylinder). The corresponding symmetry generators
have been constructed in [12,34] at the classical level, and in [11] at the full quantum level.
The quantum construction relied on the existence of an alternate basis for these symmetries,
denoted as the “flowed” representation, in which the generators - denoted with ae - are simply
defined to flow in the same way as the energy eigenstates. By construction, they satisfy a
Virasoro-Kac-Moody algebra [35]; more non-trivially, they can also be shown to be conserved.
A similar construction holds on the left-moving side. The generators of the left conformal and
right pseudo-conformal (1.3) symmetries are given in terms of the flowed symmetry generators
by

Ln = L̃n +λHR J̃n +
λ2kH2

R

4
δn,0 , L̄n = ˜̄Ln +λ : HR

˜̄Jn : +
λ2kH2

R

4
δn,0 ,

Jn = J̃n +
λk
2

HRδn,0 , J̄n = ˜̄Jn +
λk
2

HRδn,0 ,

(1.4)

where the : : denote normal ordering, i.e. ˜̄Jn is to the right of HR for n> 0, and to the left for
n< 0. Note the above relation resembles a ‘spectral flow’ by the right-moving Hamiltonian, HR.
The algebra of these generators is Virasoro-Kac-Moody on the left and a non-linear deformation
of it on the right; also, the left and right generators do not commute.

It is interesting to ask whether this deformed (Virasoro-Kac-Moody)2 symmetry can help
us fix the form of correlation functions, as it does in usual CFTs.

In two-dimensional CFTs, one can define primary operators - of dimension (h, h̄) - either
through their transformation properties under finite conformal transformations z → z′(z),
z̄→ z̄′(z̄)

O′(z′, z̄′) = (∂zz′)−h(∂z̄ z̄′)−h̄O(z, z̄) , (1.5)

or through their commutation relations with the Virasoro generators

[Ln,O(z)] = h(n+ 1)znO+ zn+1∂zO , n≥ −1 (1.6)

and similarly on the right. For n= ±1, 0 this relation, together with the SL(2,R) invariance of
the vacuum, completely fixes the form of two and three-point functions, and highly constrains
higher-point ones.

In J T̄ - deformed CFTs, it is not clear how to define an analogue of (1.5). One may naively
attempt to simply replace z̄ in (1.5) by its field-dependent counterpart z̄ − λφ; however, this
is in tension with the known fact that the left-moving dimensions depend on the right-moving
momentum as in (1.2), which forces one to treat at least the right-movers in momentum space.
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As we will show, it is nevertheless possible to come rather close to a definition of ‘primary’ op-
erators in J T̄ - deformed CFTs that is analogous to the momentum-space counterpart of (1.6).
The correlation functions of the resulting operators are completely fixed in terms of the cor-
responding undeformed CFT correlators and, interestingly, take a form that highly resembles
(1.1). To what extent our proposal is ‘the’ correct definition of primary operators in these
non-local CFTs is left for future investigations.

This article is organised as follows. In section 2, we study a simple toy model for the
J T̄ deformation, which also exhibits two sets of symmetry generators related by an operator-
dependent spectral flow. For this example we show, using only flow equations and the inter-
play of the symmetry generators, that general deformed primary correlators are completely
determined by their undeformed counterparts. In section 3, we apply the same technique
to compute general correlation functions in J T̄ - deformed CFTs, making appropriate adjust-
ments for the non-locality of the model. We conclude with a discussion in section 4. Various
technical details of the symmetry algebras are detailed in the appendices, as well as a very
explicit realisation of the toy model of section 2 in terms of deformed free bosons.

2 J1 ∧ J2 warmup

In this section, we would like to “warm up” for the construction of primary operators in J T̄
- deformed CFTs by studying a simple toy model that also exhibits two possible bases for the
symmetry generators, related by an operator-dependent spectral flow. This model is the so-
called J1 ∧ J2 deformation of a two-dimensional CFT, which is the simplest possible Smirnov-
Zamolodchikov deformation - built from two U(1) currents - and also corresponds to a two-
dimensional toy model for a four-dimensional gauge theory in presence of a θ term [36].

Since the J1∧ J2 deformation is exactly marginal, all the powerful tools of conformal sym-
metry are still applicable to the deformed theory; in particular, it is very clear what the primary
operators are. Throughout this section, we will make an effort to treat this deformation in a
language that is also applicable to the J T̄ deformation, which will provide a very useful guid-
ing principle for how to proceed when the conformal symmetry is deformed to the non-local,
field-dependent symmetries (1.3).

2.1 Brief review of the J1 ∧ J2 deformation

We consider a one-parameter (λ) family of two-dimensional CFTs that posses two global U(1)
conserved currents, J1,2. The actions describing the various members of this family are related
via the flow equation

∂ S
∂ λ
= −

∫

d2 x eαβ
�

J1
αJ2
β

�

λ
, (2.1)

where the bilinear operator appearing on the right-hand side is defined via point-splitting [19]
and the current components are computed in the deformed CFT. The deformed spectrum has
been understood in [36, 37], and certain aspects of correlation functions have been analysed
in [29]. In this subsection, we will review some of these results, in a language that parallels
the J T̄ analysis of [11].

Classical analysis

It is useful to first understand the effect of the J1∧J2 deformation at the classical level. This is
perhaps simplest to present in Hamiltonian language. We thus consider a Hamiltonian density
H(πi ,φi), which admits at least two U(1) symmetries that we associate to shifts in two scalars,

5

https://scipost.org
https://scipost.org/SciPostPhys.13.3.045


SciPost Phys. 13, 045 (2022)

φ1,2. As a result, the Hamiltonian depends on these two canonical variables only through their
spatial derivatives, φ′1,2. The two shift currents have components

J a
t = π

a
p

k , J a
σ = ∂φ′aH

p

k , a = 1, 2 , (2.2)

where we have allowed for an arbitrary level2, k. We will also consider the topologically
conserved currents

J̃ a
t = φ

′a
p

k , J̃ a
σ = ∂πa

H
p

k , (2.3)

and will assume that in the undeformed CFT, with Hamiltonian density H(0)(πi ,φi), the com-
binations J a

α ± J̃ a
α are (anti)chiral, which implies that

∂πaH(0) = πa , ∂φ′aH
(0) = φ′a . (2.4)

The flow equation obeyed by the deformed Hamiltonian reads (in the convention εtσ=εσt=1)

∂λH = εαβ J1
αJ2
β = k(π2∂φ′1H−π1∂φ′2H) . (2.5)

This equation can be solved by making the Ansatz

H(λ) = eH(λ) + λ
2k2

2
(π2

1 +π
2
2) +λk(φ′1π2 −φ′2π1) , (2.6)

which implies that eH(λ) satisfies the equation

∂λH̃ = kπ2(∂φ′1
eH−φ′1)− kπ1(∂φ′2

eH−φ′2) . (2.7)

This is solved by eH(λ) =H(0), using the initial condition (2.4). One can easily check, following
e.g. [38], that the stress tensor computed from the resulting deformed Hamiltonian (2.6) is
both symmetric and traceless, and thus the deformed theory remains a CFT. In this theory, it
is useful we introduce the left/right Hamiltonian currents (P is the momentum density)

HL,R ≡
H±P

2
, P =

∑

i

πiφ
′
i . (2.8)

We can now use the deformed Hamiltonian (2.6) and the definitions (2.2), (2.3) to compute
the components of the deformed conserved currents. A basis for the currents that are now
(anti)chiral is given by

J 1
L,R =

p
k

2
(π1 ±φ′1 ±λkπ2) , J 2

L,R =
p

k
2
(π2 ±φ′2 ∓λkπ1) , (2.9)

where the above expressions represent their time components and, by definition, J a
L,σ = J a

L,t ,
J a

R,σ = −J
a

R,t . The Poisson brackets of the currents in this basis are diagonal and λ - indepen-
dent

�

J a
L (σ),J

b
L (σ̃)

	

= −
�

J a
R (σ),J

b
R (σ̃)

	

=
k
2
δ′(σ− σ̃) ,

�

J a
L (σ),J

b
R (σ̃)

	

= 0 (2.10)

2Even if k is an anomaly coeficient, for bosons it appears already at the level of the classical Poisson brackets.
This allows one to understand many properties of the deformation with just a classical analysis.
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and their commutators with the deformed Hamiltonian currents HL,R(λ) yield the standard
Witt-Kac-Moody algebra between (anti)chiral currents in a CFT. It is also interesting to note
that the combinations

ĤL ≡HL −
1
k

∑

a

(J a
L )

2 , ĤR ≡HR −
1
k

∑

a

(J a
R )

2 , (2.11)

are independent of λ. Thus, they equal the corresponding quantities in the undeformed CFT,
which are nothing but the spectral-flow-invariant piece of the Hamiltonian currents. This
structure is reminiscent of that of the left-moving Hamiltonian in J T̄ - deformed CFTs [11].

One final observation that will be useful shortly is that, if we define the total currents
J a
α ≡ J a

L,α +J a
R,α, then the deforming operator can also be written in terms of them as

OJ1∧J2 = εαβ J1
αJ2
β = 2(J 1

L J
2
R −J 1

R J
2
L ) = ε

αβJ 1
αJ

2
β . (2.12)

Quantum analysis

We now move on to the quantum theory, and place the J1 ∧ J2 - deformed CFT on a cylinder
of radius R. Following [19], we consider eigenstates |nλ〉 of the energy and the charge, whose
shift and, respectively, winding charges are

na =

∫

dσ 〈J a
t 〉 , wa =

∫

dσ 〈J̃ a
t 〉 . (2.13)

Since the deformation is integrable, it does not change the Hilbert space of states on the cylin-
der, but it induces a flow of the energy eigenstates, of the form

∂λ|nλ〉= XJ J̄ |nλ〉 (2.14)

where XJ J̄ = −X
†
J J̄ is a well-defined operator acting on the Hilbert space, which we will deter-

mine shortly.
We would now like to understand how the energies and chiral charges qa, q̄a - i.e., the

charges associated to the zero modes

Qa =

∫

dσJ a
L , Q̄a =

∫

dσJ a
R (2.15)

of the currents (2.9) - depend on λ. Using first order quantum-mechanical perturbation theory
and the factorization properties of the Smirnov-Zamolodchikov operator in energy eigenstates,
we find

∂λEλn = 〈nλ|∂λH|nλ〉= R
�

〈nλ|J1
σ|nλ〉〈nλ|J

2
t |nλ〉 − 〈nλ|J

1
t |nλ〉〈nλ|J

2
σ|nλ〉

�

=
1
R
[n2(w1 +λkn2)− n1(w2 −λkn1)] , (2.16)

where ∂λH is the spatial integral of (2.5) over the circle and we used (2.2) to compute the
spatial components J a

σ. Since the shift and winding charges defined above are quantized, and
thus cannot flow with λ, this equation immediately integrates to the following expression for
the deformed energies

Eλn = E(0)n +
λ2k
2R
(n2

1 + n2
2) +

λ

R
(w1n2 −w2n1) . (2.17)

While this expression is entirely analogous to (2.6), note that it does not immediately follow
from it.
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The charges associated to the chiral conserved currents (2.9) are given by

qa = q̃a +
λk
2
εabnb , q̄a = ˜̄qa −

λk
2
εabnb , (2.18)

where q̃a, ˜̄qa ≡ (na ± wa)/2 stand for the undeformed (anti)chiral charges and ε12 = ε12 = 1.
Using the state-operator correspondence to map the energies of eigenstates on the cylinder
to the conformal dimensions of local operators on the plane, we find that the spectrum of
left/right conformal dimensions in the J1 ∧ J2 - deformed CFT depends on λ as

h= h̃+λεabq̃anb +
λ2k

4
nana , h̄= ˜̄h−λεab ˜̄qanb +

λ2k
4

nana (2.19)

where h̃, ˜̄h= (E(0)n ± Pn)R are the undeformed conformal dimensions.
Thus, the effect of the J1∧ J2 deformation on the spectrum of energies or, equivalently, on

the local operator dimensions is precisely that of a simultaneous spectral flow in the two U(1)
directions, with charge-dependent parameters ηa = −η̄a = λεabnb that are opposite on the
left and the right. Note that the total momentum charge na = qa + q̄a is unaffected. One can
easily check that ĥ= h− (qaqa)/k is left invariant, as expected.

2.2 Flow of the states and of the symmetry generators

We would now like to determine the form of the operator XJ J̄ entering the flow equation
(2.14) for the J a ∧ J b - deformed energy eigenstates at least in the classical limit, in analogy
with the results of [12] for J T̄ . Using first order quantum-mechanical perturbation theory and
assuming the CFT degeneracies are dealt with, this operator can be read off from

∂λ|n〉λ =
∑

m 6=n

〈mλ|∂λH|nλ〉
Eλn − Eλm

|mλ〉 , (2.20)

where ∂λH is the spatial integral of (2.5), performed on the t = 0 slice3

∂λH =

∫

dσεαβ J1
αJ2
β =

∫

dσεαβJ 1
αJ

2
β , (2.21)

where we used (2.12). To obtain a useful expression for XJ J̄ , we follow the steps outlined
in [33] for the case of T T̄ . This involves splitting the two current insertions in the deforming
operator using a δ function, which is subsequently rewritten in terms of the Green’s function
on the cylinder, which satisfies

∂σG(σ− σ̃) = δ(σ− σ̃)−
1
R

. (2.22)

After these manipulations, we obtain

∂λH =
2
R
εabQaQ̄b − ∂t

∫

dσdσ̃G(σ− σ̃)J 1
t (σ)J

2
t (σ̃) , (2.23)

where Qa, Q̄a are the chiral charge operators (2.15). The first term can also be written as a
total time derivative by bosonising the currents J a

L,R = ∂±ϕ
a
L,R and noting that the zero modes

of the chiral scalars thus introduced satisfy

[H,ϕa
L,0] = −iQa , [H,ϕa

R,0] = −iQ̄a . (2.24)

3As explained in [12], for t 6= 0 the flow operator will receive additional contributions proportional to ∂λEλn .
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Then, 2εabQaQ̄b = [H, iεab(ϕa
L,0Q̄

b+Qaϕb
R,0)] = −i d

d t (. . .). The next step is to use an integral
representation of the denominator in (2.20) to rewrite it as

∂λ|nλ〉= −i
∑

m 6=n

∫ 0

−∞
d t etε|mλ〉〈mλ|∂λH(t)|nλ〉 , (2.25)

where ε > 0 is an infinitesimal regulator. Performing the integral and taking ε→ 0, we find

∂λ|nλ〉= −i
∑

m 6=n

|mλ〉〈mλ

�

�

�

�

εab

R

�

ϕa
L,0Q̄

b +Qaϕb
R,0

�

−
∫

dσdσ̃G(σ− σ̃)J 1
t (σ)J

2
t (σ̃)

�

�

�

�

nλ〉 .

(2.26)
It is easy to argue [12] that the matrix elements of the first term will vanish between different
eigenstates, and thus will drop from the sum4. It is also easy to see, e.g. using a Fourier
decomposition, that the second term will only have non-zero matrix elements if the eigenstates
are different. Then, in the classical limit, the flow ‘operator’ for the energy eigenstates is simply
given by

XJ J̄ = i

∫

dσdσ̃G(σ− σ̃)J 1
t (σ)J

2
t (σ̃) . (2.27)

We would now like to derive how the various currents flow with respect to λ. For our purposes,
it will be sufficient to understand this at the classical level. If a classical current is left invariant
by

D̃λ ≡ ∂λ − i{XJ J̄ , · } , (2.28)

then we will assume this implies that at the quantum level, it will flow in the same way, (2.14),
as the energy eigenstates. Introducing the total momentum operator

Πa =Qa + Q̄a =
p

k

∫

dσπa (2.29)

we find that the various currents satisfy

D̃λJ a
L =

k
2R
εabΠb , D̃λJ a

R = −
k

2R
εabΠb , D̃λHL =

1
R
εabJ a

L Π
b , D̃λHR = −

1
R
εabJ a

RΠ
b .

(2.30)
Consequently, the following combinations

H̃L ≡HL −
λ

R
εabJ a

L Π
b +
λ2k
4R2
(Πa)

2 , J̃ a
L ≡ J a

L −
λk
2R
εabΠ

b , (2.31)

H̃R ≡HR +
λ

R
εabJ a

RΠ
b +
λ2k
4R2
(Πa)

2 , J̃ a
R ≡ J a

R +
λk
2R
εabΠ

b , (2.32)

flow in the same way as the energy eigenstates. In terms of the (dimensionless) Fourier modes
of these generators, now seen as operators, we have

J̃ a
m = J a

m −
kηa

2
δm,0 , L̃m = Lm −ηaJ a

m +
kηaη

a

4
δm,0 ,

˜̄J a
m = J̄ a

m −
k η̄a

2
δm,0 , ˜̄Lm = L̄m − η̄a J̄ a

m +
kηaη

a

4
δm,0 , (2.33)

4Note this derivation of the flow operator is significantly easier than its J T̄ [12] and T T̄ (currently not under-
stood) counterpart, where the main difficulty lies is finding the projection of each of the two terms on the energy
eigenstates.
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where we introduced the operator-dependent spectral flow parameter

ηa = λεabΠ
b = −η̄a . (2.34)

Thus, we find that in J1∧ J2 - deformed CFTs, there exist two interesting bases for the symme-
try generators, which are related by an operator-dependent spectral flow. One basis consists of
the generators Lm, Jm, L̄m and J̄m, which directly implement conformal and affine U(1) trans-
formations. The other basis consists of the generators L̃m, J̃m and their right-moving counter-
parts, which have the property that they flow with λ in the same way as the energy eigenstates,
namely

|nλ〉= Uλ|n0〉 , L̃m(λ) = UλLm(0)U
−1
λ , (2.35)

where Uλ = Pe
∫

XJ J̄ dλ and |n0〉, Lm(0) are the energy eigenstates and, respectively, the sym-
metry generators in the undeformed CFT. This structure exactly parallels the one observed for
J T̄ -deformed CFTs [11].

In either basis, the symmetry algebra consists of two commuting copies of the Virasoro-
Kac-Moody algebra, consistently with the fact that the spectral flow parameter, even though
operator-valued, commutes with all the modes of the symmetry currents. The Hilbert space is
organised into highest-weight representations of this algebra, which can be built with respect
to either Lm or L̃m. Note that primary states |hλ〉 with respect to one basis will also be primary
with respect to the other; however, the descendants in one basis will generally be a linear
combination of descendants of the same level in the other. Note also that, due to (2.35), the
eigenvalues of the zero modes of the flowed generators are independent of λ, and thus will
equal those of the undeformed CFT

L̃0|nλ〉= h̃|nλ〉 , J̃0|nλ〉= q̃|nλ〉 , ˜̄L0|nλ〉= ˜̄h|nλ〉 , ˜̄J0|nλ〉= ˜̄q|nλ〉 . (2.36)

The flow (2.19), (2.18) of the conformal dimensions and chiral charges is then explained
by the relation (2.33) between the flowed and the standard conformal generators, where the
operator-dependent spectral flow parameter takes on its eigenvalue corresponding to the state
under consideration.

2.3 From states and generators of symmetries to operators

We would now like to compute correlation functions of primary operators in the J1 ∧ J2 -
deformed CFT. Of course, since the deformed theory is still a CFT and the conformal dimensions
of primary operators are known (2.19), one can immediately write down the primary two-
and three-point functions in this theory up to an overall normalization. In this section, we will
show that it is in fact possible to determine all the correlation functions in this model exactly in
terms of the correlation functions of the undeformed CFT. That this should have been possible
is implied by the results of [29] on the flow of correlation functions in J1∧J2 - deformed CFTs;
our method allows, in addition, to write down an entirely explicit expression for the relation
between the deformed and undeformed correlators of primary operators.

Since this exercise is supposed to serve as warm-up for the more difficult J T̄ case, we
would like to phrase our computations entirely in terms of states and symmetry generators
on the cylinder, which are quantities that we have access to also in J T̄ - deformed CFTs. In
particular, we will do our best to avoid resorting to radial quantization or the state-operator
correspondence, which have not (yet) been formulated for these theories. The plan of this
section is to slowly build some intuition for our construction; for the actual proposal, the
reader can skip to (2.48).
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An observable that can be straightforwardly constructed from the above building blocks
is the cylinder two-point function, seen as the overlap of an in- and an out-state created by
acting with a (primary) operator on the vacuum

O(w)|0〉= ewheew L−1 |h〉 . (2.37)

In the above, |h〉 is a primary state on the cylinder, w = τ+ iσ is the complex coordinate on
the cylinder (τ= i t) and L±1 = −e±w∂w, L0 = −∂w are the global conformal generators on the
cylinder, which satisfy the SL(2,R) algebra with the usual conventions. There is a completely
analogous contribution from the right-moving side, which we do not write to avoid cluttering.

The equation above is derived in several steps: first, one uses the state-operator correspon-
dence to map the primary state on the cylinder to a primary operator inserted at the origin of
the plane |h〉 → Opl(0)|0〉. This may be understood as the definition of the primary operator.
Next, one can define an operator at an arbitrary location z on the plane by translating5 it with

Lpl
−1 = −∂z , i.e. Opl(z) = ezLpl

−1Opl(0)e−zLpl
−1 . When acting on the vacuum, which is annihilated

by the right L−1 factor, we obtain the plane analogue of (2.37), Opl(z)|0〉= ezLpl
−1 |h〉. The final

step is to map the resulting expression back to the cylinder via z = ew, using the fact that in
radial quantization, Lpl

−1 is identified with its counterpart on the cylinder, as well as the relation
O(c y l)(w) = ewhOpl(z), which follows from the transformation properties (1.5) of primary op-
erators under conformal transformations. Of course, almost none of these steps would hold6

in J T̄ - deformed CFTs, but the final result is a well-defined expression on the cylinder, which
we could simply use it to define the operators that we would like to consider.

It may in fact be possible to give an interpretation to (2.37) directly on the cylinder,
by thinking of the primary state as being created by an operator insertion at τ = −∞, i.e.
|h〉 = limτ→−∞ e−hτO(τ), and of the exponentiated L−1 as implementing a conformal trans-
formation that brings the point at −∞ to finite distance. Again, one needs to be careful about
the fact that L−1 is not a Hermitean operator; however, as we show in appendix A, its action
on a primary state can be reproduced by the action of a combination of the Hermitean opera-
tors L1 + L−1 and i(L1 − L−1), with appropriately chosen coefficients. While this picture does
help avoid the map to radial quantization on the plane when constructing the action of these
operators, it does not necessarily help justify a definition of the form (2.37) for J T̄ - deformed
CFTs7.

5Note that this is not a unitarily-implemented translation, even though the prefactor does take the familiar
form

zL−1 + z̄ L̄−1 = −(z∂z + z̄∂z̄) = −(t∂t + x∂x ) = iH t − iP x with H = i∂t , P = −i∂x , z = x + i t,

because L−1 is not Hermitean in radial quantization, and thus H, P are not, either. In fact, a translation is not a
symmetry of the CFT in radial quantization, because the latter singles out a special point - the origin of the plane
- where operators are inserted. The fact that Opl(z) takes the form quoted in the text is implied by the Ward
identities (1.6) associated with translations, which are independent of the quantization we choose [39].

6Some of the complications that one encounters are: i) The map from the cylinder to the plane, assuming it
can be well-defined, will be field-dependent (1.3), and thus τ→−∞ and τ= 0 on the cylinder will not map to a
fixed location and, respectively, a fixed circle on the plane. Relatedly, dilatations correspond to a field-dependent
symmetry in J T̄ . This makes it difficult to formulate a state-operator correspondence precisely, even if intuitively
such a map may exist; ii) The generator of right-moving translations on the plane - which are standard symmetries
- does not appear to be identified with L̄−1 on the cylinder, which implements a field-dependent transformation.
This can be easily established by noting that L−1 and L̄−1 on the cylinder do not commute (C.6) (except when
R→∞), whereas they obviously do on the plane; iii) Instead of mapping back to the cylinder, one could simply
attempt to compute correlation functions on the plane. However, in this case it is not clear how to define Hermitean
conjugation, given the general lack of understanding of radial quantization in this theory. In particular, since Lpl

1
implements a field-dependent symmetry, it is not clear whether the coordinate appearing in the out bra should
rather be a field-dependent coordinate. Using a different quantization, such as [40], does not appear to help,
either.

7The reason is that in J T̄ - deformed CFTs, the transformation taking the point at −∞ to finite distance is field-
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To compute correlators, we will also need the expression for the out state

〈0|O(w) = e−wh〈h|ee−w L1 , (2.38)

which follows from the simple fact that on the cylinder, hermitean conjugation8 sends
w= i(t +σ)→−w. Taking the overlap, one obtains

〈O(w1)O(w2)〉= e−hw12〈h|ee−w1 L1 eew2 L−1 |h〉= e−hw12 e−2h ln(1−e−w12 ) =
�

2 sinh
w12

2

�−2h
,

(2.39)
where we used the relation (A.5) and the primary condition. This is of course the correct result
on the cylinder, where the dimension is given by (2.19).

As advertised, a nice feature of this method is that it recasts the computation of the cylinder
two-point function only in terms of states and symmetry generators, which are in principle
also accessible in J T̄ - deformed CFTs9. On the down side, this method is limited to two-point
functions only. Also, it is not clear whether (2.37) provides a satisfactory definition for the
primary operators in J T̄ - deformed CFTs, since we were unable to motivate this particular
choice for the action of the operator.

To proceed, it is useful to perform the calculation of the two-point function via overlaps
in a slightly different way, which explicitly involves the flowed generators (2.33). In terms of
them, the two-point function (2.39) reads

〈O(w1)O(w2)〉= e−hw12〈hλ|ee−w1 L1 eew2 L−1 |hλ〉= e−hw12〈hλ|ee−w1 (L̃1+ηa J̃a
1 )eew2 (L̃−1+ηa J̃a

−1)|hλ〉 ,
(2.40)

where ηa = λεabΠb is the spectral flow operator (2.34) and we have reinstated the label λ
on the state, to emphasize its flow properties. Since ηa commutes with all the modes of the
currents and, inside this correlator, it is acting on the state |hλ〉, then we can simply replace it by
its eigenvalue ηa

O = λε
abnb in this state. We then observe that the states and all the operators

in the above expression flow with λ in exactly the same way (2.35), and thus this correlator will
be identical to the corresponding one in the undeformed CFT. In particular, its λ dependence is
entirely due to the explicit λ - dependence of ηa

O. Rather than evaluating this correlator in the
undeformed CFT, we will prefer to work with the flowed states and generators in the deformed
theory, keeping in mind that the two computations are simply related by conjugation by the
unitary operator Uλ, defined in (2.35).

The correlator can now be evaluated using the following BCH-type formula

eew(L̃−1+ηJ̃−1)e−ew L̃−1 = eη
∑∞

n=1
1
n enw J̃−n (2.41)

dependent, and thus one may wonder whether one should replace the field-independent label ew in the definition
(2.37) by a field-dependent one. In fact, one can easily check that an operator defined via (2.37) in J T̄ - deformed
CFTs lacks a number of desirable properties - for example, the action of the field-independent operator eαL0 does
not correspond to the translation w→ w+α in the label of the operator, as expected, except in the R→∞ limit.
For more details, see appendix C.

8In radial quantization on the plane, one has instead 〈0|O(z) ≡ (ez′ L−1 |h〉)† = z−2h〈h|eL1/z , using z′ = 1/z,
which follows from the action of hermitean conjugation on the cylinder and the map z = ew.

9It is clear that the overlap of two states of the form (2.37) and (2.38) can be evaluated also in in J T̄ - deformed
CFTs, since algebra of the unflowed generators is known; see e.g. appendix C. If the operators in question only
depend on the left-moving coordinate, then only the commutation relations of the left-moving generators, L±1,
are relevant. These are simply SL(2,R) commutation relations, and one can proceed exactly as above to find the
deformed left-moving piece of the two-point function, which has the expected form. We are however interested
in its behaviour on the right-moving side. There, one encounters the complication that the algebra of L̄±1,0 does
not close, but instead generates the entire Kac-Moody tower. While the calculation is still in principle doable, we
will see in the sequel that this proposal is in fact not equivalent to the one we finally settle for in the case of J T̄ -
deformed CFTs.
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derived in appendix A, which also holds if we sum over several currents. Using this, the overlap
is

〈O(w1)O(w2)〉= e−hw12〈hλ|ee−w1 L̃1 eηO
∑∞

n=1
1
n e−nw1 J̃n eηO

∑∞
n=1

1
n enw2 J̃−n eew2 L̃−1 |hλ〉 (2.42)

= e−(h−h̃)w12 e
kη2

O
2

∑∞
n=1

1
n e−nw12 〈Õ(w1)e

ηO
∑∞

n=1
1
n enw2 J̃−n eηO

∑∞
n=1

1
n e−nw1 J̃nÕ(w2)〉 ,

where in the first line we have used the fact that hermitean conjugation sends w → −w,
in addition to its usual effect on the generators, and in the second line we used the BCH
identity eAeB = eBeAe[A,B], valid if [A, B]∝ I , to commute the exponentials of the currents.
We additionally modeled the action of eew L̃−1 on the state |hλ〉 by the action of an auxiliary
operator Õ(w), acting on the vacuum

Õ(w)|0λ〉= ewh̃eew L̃−1 |hλ〉 . (2.43)

This relation follows from the corresponding relation in the undeformed CFT, by conjugation
with Uλ. The operator Õ is simply defined via the relation

Õ(w)≡ UλOC F T (w)U
−1
λ , (2.44)

and need not correspond to a physical operator in the deformed CFT. Given this definition,
it follows that Õ(w) satisfies the same Ward identities with the flowed currents as the corre-
sponding quantities in the undeformed CFT, namely

[J̃ a
n , Õ(w)] = q̃a enwÕ(w) , n≥ 0 . (2.45)

This in turn implies that, for any coefficients αn,

eαn J̃a
n Õ(w)e−αn J̃a

n = eαnq̃aenw
Õ(w) , e−αn J̃a

−nÕ(w)eαn J̃a
−n = e−αnq̃ae−nw

Õ(w) , (2.46)

where the second relation is the hermitean conjugate of the first (using O†
q(w) = O−q(−w)).

Using these relations to commute the J̃n and J̃−n factors past the adjacent operators (and
noting the one on the left has charge −q̃), the final answer that we obtain for the correlator is

〈O(w1)O(w2)〉= ew12(h̃−h)e
kη2

O
2

∑∞
n=1

1
n e−nw12+2ηO q̃

∑∞
n=1

1
n e−nw12 〈Õ(w1)Õ(w2)〉

=
e−hw12

(1− e−w12)2(h̃+ηO q̃+ k
4η

2
O)

, (2.47)

where we used
∑∞

n=1
1
n e−nw = − ln(1 − e−w) and the fact that the Õ two-point function is

identical to the one in the undeformed CFT, where the operator dimension was h̃. Thus, this
method precisely reproduces the shift of the operator dimensions due to the J1∧J2 deformation
inside the correlation function.

We are now ready to present our general construction. We define a set of “operators” Õ(w)
as solutions to the flow equation

∂λÕ(w) = [XJ J̄ , Õ(w)] , (2.48)

with the initial condition that Õ(w)λ=0 equal the CFT primary operators inserted at a point
w on the cylinder. One should think of these operators as being defined on the t = 0 slice10,
despite the w label (which has no physical meaning, except at λ= 0). This flow equation can

10For the original CFT operators, we should therefore write O(w) = ewL0O(0)e−wL0 .
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certainly be integrated to an equation of the form (2.44), though it will not in general produce
a local operator in the deformed CFT (see appendix B for an explicit example). Nevertheless,
the correlation functions11 of the flowed operators will be identical to those in the undeformed
CFT, by virtue of the fact that they obey the same flow equation as the deformed states. Such
operators have been previously considered in [33]. One of their nice features is that they can
clearly also be defined in J T̄ - deformed CFTs.

Our task is now to relate the correlation functions of the physical primary operators, O(w),
in the deformed CFT to those of the unphysical operators Õ(w), which simply equal the original
CFT correlators. For this, we need to relate O(w) and Õ(w) in the deformed theory. This is
straightforward in J1 ∧ J2 - deformed CFTs, which are conformally invariant, and so primary
operators must obey the usual conformal Ward identity12

= enw[nhO(w) + ∂wO(w)] , n≥ −1 ,

[J a
n ,O(w)] = qaenwO(w) , n≥ 0 ,

where, according to (2.19), (2.18)

h= h̃+ηa
Oq̃a +

kη2
O

4
, qa = q̃a +

kηa
O

2
, ηa

O = λε
abnb (2.49)

and similarly for the right-movers.
On the other hand, the flow equation applied to the original Ward identity implies that

[ L̃n, Õ(w)] = enw[nh̃Õ(w) + ∂wÕ(w)] , n≥ −1 , (2.50)

together with (2.45). Using the relationship (2.33) between the flowed and the unflowed
generators, it is easy to show that the relation between O(w, w̄) and Õ(w, w̄) is given by

O(w, w̄) = εAOw+BO w̄eη
a
O
∑∞

n=1
1
n enw J̃a

−n+η̄
a
O
∑∞

n=1
1
n enw̄ ˜̄Ja

−nÕ(w, w̄) e−η
a
O
∑∞

n=1
1
n e−nw J̃a

n−η̄
a
O
∑∞

n=1
1
n e−nw̄ ˜̄Ja

n ,
(2.51)

where

AO = ηaqa +ηa
O J̃ a

0 −
k
4
(ηa

O)
2 −ηa

Oq̃a , BO = η̄
aq̄a + η̄

a
O

˜̄J a
0 −

k
4
(η̄a

O)
2 − η̄a

O
˜̄qa (2.52)

and we have reinstated the right-movers. The subscript on the operators AO, BO indicate that
they depend on the charges of the particular operator under consideration. One should also be
careful to distinguish the operators ηa from their eigenvalue ηa

O, with [ηa,O(w)] = ηa
OO(w).

Of course, in the case at hand we have η̄a = −ηa, since the spectral flow (2.33) acts in opposite
ways on the left- and the right-movers.

One can easily check that O(w) satisfies the usual Hermiticity condition O†
q(−w) =O−q(w)

O†
q(−w) = e−η

a
O
∑ 1

n enwJ−nÕ†
q(−w)eη

a
O
∑ 1

n e−nwJa
n−A†

Ow = e−AO† wO−q(w)e
−A†

Ow =O−q(w) , (2.53)

where we used the fact that the charges of O† are opposite from those of O and that AO is
hermitean. We have again dropped the right-movers, for simplicity.

Thus, we find a rather simple, closed-form relation between the primary operators of inter-
est and the auxiliary operators Õ that we defined through the flow equation. In appendix B,

11Even if our notation will be mostly euclidean, we will tacitly consider the analytic continuation to Wightman
functions, in terms of which the flow picture makes sense.

12This follows from the usual relation (1.6) on the plane, using z = ew and Opl(z) = e−whOc y l(w).
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we present explicit expressions for both sets of operators for the case of J1∧J2 - deformed free
bosons, which make it clear that Õ(w) are non-local, and thus do not correspond to physical
operators that we would like to consider otherwise.

In view of our previous discussion, note that the left prefactor in the relation between O
and Õ above can be understood by acting with both sides of equation (2.51) on the vacuum,
case in which it can be mapped to the relation (2.41) between L−1 and L̃−1. Heuristically, if one
thinks of the primary state as being created by the insertion of a primary operator at τ= −∞
on the cylinder, then the action of O(w) can be obtained by conformally mapping the point at
infinity to finite distance using the standard conformal generator L−1, whereas the action of
Õ(w) is obtained by using instead the flowed generator L̃−1. However, this intuition does not
help in understanding the right-hand factor in (2.51), nor why is the spectral flow operator
evaluated to ηO, even when not acting with (2.51) on the vacuum, from either the left or the
right. Therefore, while intuitively useful and correct in the particular computation of the two-
point function above, the state overlap picture fails to identify the general map between the
two operators13. In the following subsection, we use the relation (2.51) to compute arbitrary
correlators in the J1 ∧ J2 - deformed CFT.

2.4 Correlation functions and a bootstrap check

Given the expression (2.51) for the primary operators in the J1∧J2 - deformed CFT in terms of
the auxiliary operators Õ(w), whose correlation functions are known, computing correlation
functions of O(w) becomes simply a matter of properly commuting the current modes through.

Let us start with the two-point function. Evaluating two copies of (2.51) in the vacuum,
we find

〈O(w1)O(w2)〉 = e−
∑2

i=1(
k
4η

2
i +η

a
i q̃a

i )wi (2.54)

× 〈e(ηaqa
1+η

a
1 J̃a

0 )w1Õ(w1)e
−ηa

1

∑∞
n=1

1
n e−nw1 J̃a

n e(ηaqa
2+η

a
2 J̃a

0 )w2 eη
a
2

∑∞
n=1

1
n enw2 J̃a

−nÕ(w2)〉 ,

where we have used the fact that the vacuum is annihilated from the left by J̃ a
n with n> 0 and

from the right by J̃ a
−n. Next, we note that in the above, the leftmost ηa and J̃ a

0 will evaluate to
zero, since they are acting on the vacuum; as for the middle ones, they are evaluated on the
eigenstate created by Õ(w2)|0〉, so they evaluate to ηa

2 and, respectively, q̃a
2 . The remaining

manipulations are identical to those performed in the previous section, and we obtain14

〈O(w1)O(w2)〉= e−
∑2

i=1(
k
4η

2
i +η

a
i q̃a

i )wi+ηa
2(q

a
2+q̃a

2)w2 e−(
k
2η

a
1η

a
2+η

a
1 q̃a

2+η
a
2 q̃a

1)
∑

n
1
n e−nw12 〈Õ(w1)Õ(w2)〉 .

(2.55)
Performing the sum and using charge conservation, which sets −η1 = η2 ≡ ηO and
−q̃1 = q̃2 ≡ q̃, we find

〈O(w1)O(w2)〉=
e−(ηO q̃+ k

4η
2
O)w12

(1− e−w12)
k
2η

2
O+2ηO q̃

·
�

e
w12

2 − e−
w12

2

�−2h̃
=
�

e
w12

2 − e−
w12

2

�−2(h̃+ηO q̃+ k
4η

2
O) ,

(2.56)
which is the correct result, including all the normalizations. A similar computation hols on the
right.

13This observation will be particularly relevant in J T̄ - deformed CFTs, where the spectral flow operator does
not commute with the modes of the current, and therefore it is important to establish whether it is the operator or
its eigenvalue that appears in the definition of O.

14Note that the action of a charge operator, e.g. J0, on an out state yields minus its charge, since
J0|h, q〉= q|h, q〉 ⇒ 〈h,−q|J0 = q〈h,−q|= −(−q)〈h,−q|.
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We can use the same kind of manipulations to compute the three-point function

〈O1(w1)O2(w2)O3(w3)〉= e−
∑3

i=1(
k
4η

2
i +η

a
i q̃a

i )wi 〈Õ1(w1)e
−ηa

1

∑ 1
n e−nw1 J̃a

n e(ηaqa
2+η

a
2 J̃a

0 )w2+ηa
2

∑ 1
n enw2 J̃a

−n

× Õ2(w2) e−η
a
2

∑ 1
n e−nw2 J̃a

n e(ηaqa
3+η

a
3 J̃a

0 )w3+ηa
3

∑ 1
n enw3 J̃a

−nÕ3(w3)〉 . (2.57)

Inside this correlator, the operators ηa, J̃ a
0 have the following eigenvalues, from left to right:

ηa = ηa
2 + η

a
3 = −η

a
1, J̃ a

0 = −q̃a
1 and ηa = ηa

3, J̃ a
0 = q̃a

3 . Upon commuting the current modes
through, we find

〈O1(w1)O2(w2)O3(w3)〉=

e−
kη2

1
4 w1−

kη2
2

4 w2+
kη2

3
4 w3−ηa

1 q̃a
1 w1−ηa

1qa
2 w2+ηa

2 q̃a
3 w2+ηa

3 q̃a
3 w3(1− e−w12)(η

a
2 q̃a

1+η
a
1 q̃a

2+
k
2η

a
1η

a
2)

× (1− e−w23)η
a
3 q̃a

2+η
a
2 q̃a

3+
k
2η

a
2η

a
3(1− e−w13)η

a
3 q̃a

1+η
a
1 q̃a

3+
k
2η

a
1η

a
3〈Õ1(w1)Õ2(w2)Õ3(w3)〉 . (2.58)

The expected form of this correlator is that of a primary three-point function on the cylinder,
namely

〈O1(w1)O2(w2)O3(w3)〉 ∼
ew1h1+w2h2+w3h3

(ew1 − ew2)h1+h2−h3(ew2 − ew3)h2+h3−h1(ew1 − ew3)h1+h3−h2

=
e−w1h1+w2(h1−h3)+w3h3

(1− e−w12)h1+h2−h3(1− e−w23)h2+h3−h1(1− e−w13)h1+h3−h2
, (2.59)

where the dimensions are given by (2.19). It is easy to check that the exponents of the
(1− e−wi j ) factors in (2.58) precisely match these, since

h1 + h2 − h3 = h̃1 + h̃2 − h̃3 −ηa
1q̃a

2 −η
a
2q̃a

1 −
k
2
ηa

1η
a
2 (2.60)

and cyclic permutations thereof, where we used charge conservation q̃a
3 = −q̃a

1 − q̃a
2 ,

ηa
3 = −η

a
1 − η

a
2. Moreover, it turns out that all the prefactors in (2.58) combine precisely

into the numerator of (2.59), with the end result that the three-point function of primaries in
the J1∧J2 - deformed CFT is given by (2.59) times the OPE coefficient, C̃123, in the undeformed
CFT.

We thus find that, while the conformal dimensions and charges shift as in (2.19), (2.18),
the OPE coefficients, which contain the dynamical information of the theory, are unchanged
by the deformation

CABC = C̃ABC . (2.61)

Finally, we work out the four-point function, with the result

〈O1(w1)O2(w2)O3(w3)O4(w4)〉= eP
∏

i< j

(1− e−wi j )η
a
j q̃a

i +η
a
i q̃a

j +
k
2η

a
i η

a
j 〈Õ1(w1)Õ2(w2)Õ3(w3)Õ4(w4)〉 ,

(2.62)
where the prefactor comes from evaluating the operators Ai inside the correlator, and reads

P = −
∑

i

(
k
4
η2

i +η
a
i q̃a

i )wi − (ηa
1qa

2 +η
a
2q̃a

1)w2 + [(η
a
3 +η

a
4)q

a
3 +η

a
3(q̃

a
3 + q̃a

4)]w3 + (η
a
4qa

4 +η
a
4q̃a

4)w4 .

(2.63)
Using this, one can check that the expression for the four-point function can be simplified to

〈O1(w1)O2(w2)O3(w3)O4(w4)〉=
∏

i< j

�

e
wi j
2 − e−

wi j
2

�
2
k (qiq j−q̃i q̃ j)

〈Õ1(w1)Õ2(w2)Õ3(w3)Õ4(w4)〉 .

(2.64)
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It is also easy to see, using charge conservation, that any correlation function of the primary
operators O(wi)will be related through a factor of exactly the same form to the corresponding
correlator in the undeformed CFT. Thus, the correlation functions of primary operators in the
deformed theory can be rather trivially expressed in terms of the undeformed correlators.

Note that the expression (2.64) for the four-point function is crossing symmetric, assum-
ing crossing symmetry of the original CFT correlator. It is interesting to rewrite this result
in the language of conformal partial waves, using the fact that in a two-dimensional CFT
that possesses an affine U(1) symmetry, the Virasoro-Kac-Moody conformal partial wave15

Wh,q(zi , hi , qi , c) can be written as a spectral-flow-invariant Virasoro block contribution Vĥ
times an affine U(1) block, U

Wh,q(zi , hi , qi , c) = U(zi , qi)Vĥ(zi , ĥi , c − 1) . (2.65)

This was shown in [43] for the case of a neutral exchanged operator, and in [41, 42] in the
general case. In the above, ĥi = hi−q2

i /k are the spectral-flow invariant pieces of the conformal
dimensions and the affine U(1) block is given by

U(zi , qi) =
∏

i< j

z
2qi q j

k
i j . (2.66)

In a given channel, the four-point function can be written as an infinite sum over conformal
partial waves corresponding to the particular Virasoro-Kac-Moody representations being ex-
changed

〈O1(z1)O2(z2)O3(z3)O4(z4)〉=
∑

h,q

C12hC34hWh,q(zi , hi , qi , c) . (2.67)

Since the effect of the J1 ∧ J2 deformation is to induce a charge-dependent spectral flow
transformation that leaves ĥ invariant, the only change in the Virasoro-Kac-Moody blocks will
come from the change inU(zi , qi), which only depends on the charges of the external operators.
Thus, the change in the conformal partial waves is

Wh,q(zi , hi , qi , c)
J1∧J2

−→
∏

i< j

z
2qi q j

k −
2q̃i q̃ j

k
i j Wh,q(zi , hi , qi , c) , (2.68)

irrespectively of which operator is being exchanged. Mapping this result from the plane to the
cylinder and using the fact that the OPE coefficients are unchanged by the deformation, we
can immediately reproduce the change (2.64) in the four-point function. This is another way
to check that crossing symmetry is satisfied. The bootstrap equations of the deformed CFT are
thus trivially solved, given their solution in the undeformed CFT [41].

3 Primary operators in J T̄ - deformed CFTs

Armed with our understanding of the J1 ∧ J2 - deformed primaries in a language that is in
principle generalizable to J T̄ , we would now like to present our proposal for defining primary
operators in J T̄ - deformed CFTs. To set up the stage, we start with a few general remarks
about the similarities and differences between the J1 ∧ J2 and J T̄ cases.

15Here, zi , hi , qi are the positions, dimensions and respectively U(1) charges of the external operators, h, q are
the dimension and charge (constrained by conservation) of the primary on whose family we project, and c is the
central charge of the CFT.
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3.1 Setup and general remarks

Let us summarize our current understanding of J T̄ - deformed CFTs that is relevant for this
question. On the cylinder, the J T̄ - deformed energy eigenstates flow according to

∂λ|nλ〉= XJ T̄ |n〉λ , (3.1)

where λ now represents the J T̄ flow parameter and XJ T̄ is a presumably well-defined operator
that was worked out in [12] at the classical level, and discussed in [11] at the quantum level.
Given XJ T̄ , one can define two commuting sets of Virasoro-Kac-Moody generators L̃n, J̃n and
˜̄Ln, ˜̄Jn via the flow equation

∂λeLn = [XJ T̄ ,eLn] (3.2)

etc., which can be shown to be conserved [11]. This flow equation implies that primary states
in the undeformed CFT will flow to primaries with respect to the L̃n and that the eigenvalues
of L̃0, etc., are independent of λ [35], and thus equal the corresponding eigenvalues in the
undeformed CFT

L̃0|hλ〉= h̃|hλ〉 , J̃0|hλ〉= q̃|hλ〉 , ˜̄L0|hλ〉= ˜̄h|hλ〉 , ˜̄J0|hλ〉= ˜̄q|hλ〉 . (3.3)

Thus, in terms of the flowed generators, the structure of the Hilbert space looks the same as
that of the undeformed CFT: primary states have the same dimensions as in the seed CFT, and
descendant states can be built by acting with eL−n, etc. on them.

As explained in [11], the generators that implement (pseudo)conformal and affine U(1)
transformations in the deformed theory are given by

Ln = eLn +λHReJn +
λ2kH2

R

4
δn,0 , Jn = J̃n +

λk
2

HRδn,0 ,

L̄n = eL̄n +λ:HR
eJ̄n : +

λ2kH2
R

4
δn,0 , J̄n = ˜̄Jn +

λk
2

HRδn,0 ,

(3.4)

whose relation to the L̃n resembles a spectral flow whose parameter is proportional to the right-
moving Hamiltonian. More specifically, the left-moving generators Ln, Jn implement usual
conformal and affine U(1) transformations, whereas the right-moving generators L̄n, J̄n (with
the exception of the global generators L̄0, J̄0) implement field-dependent conformal (1.3) and
affine U(1) transformations. This structure is entirely analogous to the one we have uncovered
in J1 ∧ J2 - deformed CFTs; note, however, that now the spectral flow “parameter” does not
commute with the modes of the right-moving currents, which adds a layer of complication to
the problem.

Given our understanding of the states and symmetry generators on the cylinder, the ques-
tion is how to define a physical primary operator, O, and construct its correlation functions.
Since the theory is local and conformal on the left, O should obey the standard primary condi-
tion with respect to the left-moving generators Ln, Jn. The non-trivial part of our task is to find
an appropriate notion of a “primary condition” also on the non-local right-moving side. This
problem does not have a counterpart in J1 ∧ J2 - deformed CFTs, where the Ward identities
that primary operators must satisfy are simply determined by the fact that the deformed theory
stays a CFT.

Since HR - the generator of right-moving translations - enters the relation (3.4) between the
two sets of generators, it makes sense to choose a basis of operators that diagonalizes its action,
i.e. work in momentum space. This is also instructed by the non-locality of the deformed CFT,

18

https://scipost.org
https://scipost.org/SciPostPhys.13.3.045


SciPost Phys. 13, 045 (2022)

and in particular the fact that the left primary dimensions depend on the eigenvalue of this
operator as in (1.2). Thus, a first difference with the J1 ∧ J2 - case is that we are forced to
work in momentum space, at least as far as the right-movers are concerned. For uniformity
reasons, we will choose this basis on both sides.

As in the previous section, we will construct candidate primary operators, O, based on an
auxiliary operator Õ that is defined to flow with the J T̄ parameter in the same way as the
energy eigenstates. As before, we will attempt to relate the vacuum correlation functions of
the candidate O to those of Õ, which are identical to the correlation functions in the unde-
formed CFT, as implied by the flow equation. Note, however, that now the ‘flowed vacuum’
state |0λ〉 = Uλ|0〉λ=0, to which the above argument applies, is not annihilated by one of the
global SL(2,R)L generators on the cylinder16. More specifically, the flow equation implies that
L̃−1|0λ〉= 0 which, in terms of the unflowed generators, translates into

L−1|0λ〉= λJ−1HR|0λ〉=
2
λk

�

R−

√

√

R2 +
λ2kc
24

�

J−1|0λ〉 , (3.5)

where we used the known result [27] for the flowed finite-size energy eigenvalues (in this
case, the ground state). Thus, on the cylinder, the flowed vacuum is not SL(2,R) invariant.
While we see no obvious reason that an SL(2,R) - invariant vacuum should not exist, this state
will clearly be different from |0λ〉.

The reason we would like the vacuum to be annihilated by the SL(2,R)L generators is that
only then do we expect the primary correlation functions to take the standard form dictated by
conformal symmetry. It is therefore important to construct this state of a priori greater physical
interest in J T̄ - deformed CFTs on the cylinder17. Rather than addressing this interesting
problem - which appears somewhat complicated - we will simply avoid it by taking the R→∞
limit, which forces the two candidate vacuum states to coincide.

Our approach can thus be summarized as follows: given that out best understanding of
the states, symmetry generators and their flow is on the cylinder, we will present our general
construction of the candiate primary operators and their correlation functions in this setting.
However, this construction is only expected to yield results consistent with SL(2,R) invariance
(and its right-moving analogue) in the R→∞ limit, where one is effectively working on the
plane. This limit will turn out to also resolve a consistency problem that we will encounter
along the way.

As we already mentioned, due to the non-locality of the model, we need to work in momen-
tum space. We will thus start by reviewing some basic results about momentum-space Ward
identities for primary fields in a CFT, before presenting our proposal for the momentum-space
primary operators.

3.2 CFT Ward identities in momentum space

Let us start by introducing the momentum-space operators

O(p) =
∫

dw e−pwO(w) , (3.6)

16This problem does not appear in J1∧ J2 - deformed CFTs, because the ηa in (2.34) does annihilate the flowed
vacuum.

17By definition, this state would be annihilated by L−1, which would translate, as above, into an explicitly λ
- dependent relation between the action of L̃−1 and J̃−1 on it. This in turn implies that this state will not satisfy
a simple flow equation involving XJ T̄ , though one may be able to explicitly write it in the basis (3.1), using λ -
dependent coefficients. This state would also need to satisfy an appropriate constraint with respect to the global
right-moving generators, whose algebra - which is not SL(2,R) - is listed in appendix C.
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where w = i(t + σ) corresponds to a Lorentzian coordinate on the cylinder. There is, as
always, also a right-moving contribution, with mometum p̄, so that the spatial momentum
p− p̄ is quantized. Since all formulae in this subsection are identical for the right-movers, we
will omit writing them explicitly.

Momentum-space CFT correlation functions can be computed by either taking the Fourier
transform of the corresponding position-space Wightman functions [44, 46], or by solving
the conformal Ward identities directly in momentum space [45]. While these studies were
concerned with momentum-space correlators of the CFT on the plane, for the problem at
hand we are interested in the form of the momentum-space conformal Ward identities on
the cylinder. These can be obtained by Fourier-transforming the position-space commutators
(2.49) of the Ln, Jn, with the result

[Ln,O(p)] = (n(h− 1) + pR)O
�

p−
n
R

�

, [Jn,O(p)] = qO
�

p−
n
R

�

. (3.7)

Despite their unusual form, these can in principle be used to fix the form of the correlation
functions18.

While it would certainly be interesting to further explore the properties of the solutions
to these Ward identities on the cylinder, here we are mostly interested in the limit R →∞,
where they should reduce to the well-known momentum-space Ward identities on the plane.
To show how this comes about, we need to relate the (dimensionless) SL(2,R) generators on
the cylinder, Ln = −R e

nw
R ∂w for n= ±1, 0 to the planar ones, Lpl

n = −wn+1∂w, as R→∞. This
can be simply achieved by expanding the cylinder generators at large R

L0 = −R∂w = RLpl
−1 , L±1 = −R∂w ∓w∂w −

w2

2R
∂w +O(1/R2) . (3.10)

The inverse relation reads

Lpl
−1 =

1
R

L0 , Lpl
0 =

1
2
(L1 − L−1) +O(1/R2) , Lpl

1 = R(L1 + L−1 − 2L0) +O(1/R) . (3.11)

Expanding the momentum-space commutators (3.7) of the operator O(p)with the Ln, we find

[Lpl
−1,O(p)] = pO , [Lpl

0 ,O(p)] = (h− 1)O− p ∂pO+O(1/R2) ,

[Lpl
1 ,O(p)] = p ∂ 2

p O+ 2(1− h)∂pO+O(1/R2) , (3.12)

exactly as expected. One can check that the solution to these Ward identities, e.g. for the
two-point function, agrees with the R→∞ limit of its cylinder counterpart (3.9).

3.3 A proposal for primary operators in J T̄ - deformed CFTs

We are now ready to construct a set of momentum-space operators in J T̄ - deformed CFTs that
come as close as possible to being primary, in the sense of (3.7). As we explained, we will start
by working on the cylinder and then take the R →∞ limit in which, at least for a CFT, the

18For example, for a two-point function, they give a constraint of the form

0= 〈0|L1 L−1O1(p1)O2(p2)|0〉= [(1− h1 + p1R)(h1 + p1R) + (1− h2 + p2R)(h2 + p2R)]O1(p1)O2(p2) (3.8)

+ (1− h1 + p1R)(h2 − 1+ p2R)O(p1 + 1/R)O(p2 − 1/R) + (1− h2 + p2R)(h1 + p1R− 1)O(p1 − 1/R)O(p2 + 1/R) ,

where two generator insertions are necessary in order to respect momentum conservation. A solution to the above
constraint is

〈O1(p1)O2(p2)〉 ∼ e±iπR(p1−p2)/2Γ (h1 + p1R)Γ (h2 + p2R) , where p1 + p2 = 0 , (3.9)

which is proportional to the Fourier transform of the position space two-point function.
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momentum-space Ward identities and their solutions seamlessly translate from the cylinder to
the plane.

We start by introducing again a set of operators Õ(w, w̄) that formally satisfy the flow
equation

∂λÕ(w, w̄) = [XJ T̄ , Õ(w, w̄)] , (3.13)

with the initial condition that they equal the local operator O(w, w̄) in the undeformed CFT.
This definition automatically implies that the correlation functions of Õ(w, w̄) will be identical
to those in the undeformed CFT, irrespectively of the non-locality of the deformed theory,
provided we evaluate them in the flowed vacuum state, |0λ〉. We re-emphasize that these
operators - previously discussed in [33] - are just auxiliary, formal constructs with no particular
physical significance, as they do not correspond to local operators even on the local, left-
moving side. In particular, w, w̄ are simply labels, corresponding to the position of the initial
local CFT operator that we flow, which have no particular meaning in the deformed theory.

Since both Õ(w, w̄) and L̃n, etc. flow in the same way with XJ T̄ , it follows that Õ(w, w̄)
will satisfy the usual Ward identities

[ L̃n, Õ(w, w̄)] = enw[nh̃Õ(w, w̄) + ∂wÕ(w, w̄)] , [J̃n, Õ(w, w̄)] = enwq̃ Õ(w, w̄) ,

[˜̄Ln, Õ(w, w̄)] = enw̄[n˜̄hÕ(w, w̄) + ∂w̄Õ(w, w̄)] , [J̃n, Õ(w, w̄)] = enw̄˜̄q Õ(w, w̄) , (3.14)

where, again, w, w̄ are just labels inherited from the undeformed theory.
As explained at the beginning of this section, our candidate primary operators should be

constructed in momentum space, and so they satisfy

[HR,O(p, p̄)] = p̄O(p, p̄) . (3.15)

In addition, they should be primary with respect to the unflowed left-moving generators Ln, Jn

Ln = L̃n +ηJ̃n +
kη2

4
δn,0 , Jn = J̃n +

kη
2
δn,0 , η≡ λHR , (3.16)

with the expected eigenvalues

h= h̃+ηOq̃+
kη2

O

4
, q = q̃+

k
2
ηO , ηO = λp̄ . (3.17)

This simply translates into the constraint (3.7), where h, q are given above. The reason we
introduced the above notation is to highlight the similitude with the J1 ∧ J2 example.

Given our experience with the J1 ∧ J2 deformation, we can easily construct a solution for
the left-moving piece of O(p, p̄) that satisfies (3.7). As for its right-moving piece, we expect a
similar constraint to hold in terms of the right-moving generators L̄n, J̄n; however, given that
these are not standard conformal generators, we do not know exactly what relation to impose.
We thus resort to simply guessing an appropriate right-moving factor, work out its properties,
and then justify our choice a posteriori via its rather reasonable predictions in the R → ∞
limit.

Our proposed definition of an operator that has the required commutation relations with
the left-moving generators and possibly reasonable commutators with the right-moving ones
is

O(p, p̄) =

∫

dwdw̄ e−pw−p̄w̄εAOw+BO w̄eηO
∑∞

n=1
1
n (e

nw J̃−n+enw̄ ˜̄J−n)Õ(w, w̄)e−ηO
∑∞

n=1
1
n (e
−nw J̃n+e−nw̄ ˜̄Jn) , (3.18)
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where AO and BO are operators - which we will determine shortly - that depend on the con-
served quantum numbers of O and - as in the J1 ∧ J2 case - are assumed to be linear com-
binations of J̃0, ˜̄J0 and HR. Note that, unlike in the J1 ∧ J2 example, these operators do not
commute with exponential factor that follows. The split between AO, BO and the p, p̄ factors
we pulled out is of course completely arbitrary, but will be soon fixed in a convenient fashion.
For the time being, we are still working on the cylinder and have set R = 1; the factor of the
radius can be easily reinstated by dimensional analysis: w→ w/R and p→ pR, with η fixed.

Given this explicit expression, we can simply compute the commutators of O(p, p̄) with
the various generators. The simplest such commutator is with the left-moving current, which
reads

[Jn,O(p, p̄)] =
�

q̃+
k
2
ηO

�

O(p− n, p̄) (3.19)

exactly as expected. Note that for n 6= 0, the shift in the charge comes from the coefficient of
J̃n in the exponent of (3.18), which therefore needs to be a number. For n= 0, it comes from
the commutator with HR, which thus sets ηO = λp̄, with p̄ defined in (3.15).

The commutator with Ln reads

[Ln,O(p, p̄)] =

�

n

�

h̃+ηOq̃+
kη2

O

4
− 1

�

+ p

�

O(p− n, p̄)

+

�

ηO J̃0 +ηq− AO −ηOq̃−
kη2

O

4

�

O(p− n, p̄)

+ (λp̄−ηO)O(p, p̄)J̃n , (3.20)

where the last term vanishes, for the reason we just stated. The primary condition with respect
to Ln then fixes

AO = ηO J̃0 +ηq−ηOq̃−
k
4
η2

O , (3.21)

which is entirely analogous to the expression (2.52) we obtained in J1 ∧ J2 - deformed CFTs.
We now turn to the commutation relations with the right-movers, still for R finite. The

commutation relations with the right-moving U(1) current are

[J̄n,O(p, p̄)] =
�

˜̄q+
kηO

2

�

O(p, p̄− n) + ˜̄Jn[O(p, p̄)−O(p+ aαr
n, p̄+ bαr

n)] , (3.22)

where a, b are the coefficients of HR inside AO, BO and αn, given in (C.2), is defined through
the commutator

[ ˜̄Jn, HR] = ˜̄Jnαn . (3.23)

The somewhat suspicious-looking operator-valued shift of the arguments in the last term is
simply a shorthand for the corresponding Fourier-space expression, and follows from the con-
tribution of terms of the form

˜̄Jn − ecHR ˜̄Jne−cHR = ˜̄Jn(1− e−cαn) , (3.24)

with c = aw or bw̄ to the commutator. Interestingly, this shift affects both the left and the
right-moving side. Note also that (3.21) implies that a = λq.

Notwithstanding the second term - which will turn out to be negligible at large R - (3.22)
takes precisely the form of a CFT Ward identity between an affine Kac-Moody current and an
operator of right-moving charge

q̄ = ˜̄q+
kηO

2
, (3.25)
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which exactly mirrors the behaviour on the left-moving side. The fact that all the J̄n modes
have this behaviour, and not just the n= 0 one (which corresponds to the global right-moving
charge), is an interesting output of our construction.

Let us now also fix the operator BO, e.g. by computing the commutator of O(p, p̄) with
˜̄L0 = HR(R−λJ̃0 −

λ2k
4 HR) which, using (3.15), yields19

[˜̄L0,O(p, p̄)] =

�

p̄+λq̃p̄+
λ2k

4
p̄2 −λJ̃0 p̄−λqHR

�

O(p, p̄) . (3.26)

This commutator can also be evaluated by using (3.18) and the Ward identity (3.14) for Õ,
with the result

[˜̄L0,O(p, p̄)] = (p̄− BO)O(p, p̄) . (3.27)

Equating the two expressions, we find that the solution for BO is identical20 to the one for AO,
(3.21). This may seem a bit surprising, as we would have expected the right-moving BO to
depend on the right-moving charges and current operators, as it does in J1∧J2 - deformed CFTs
(2.52), and not on the left-moving ones. The reason for this dependence can be traced back to
the fact that L̄0 - the dimensionless right-moving generator that is related to ˜̄L0 by spectral flow
- does not equal RHR, but rather L̄0 = RvHR, where Rv = R−λ(J0 − J̄0) is the field-dependent
radius of the field-depedent right-moving coordinate. This field-dependent rescaling has no
counterpart in J1∧J2 - deformed CFTs, and we could not see any simple modification of (3.18)
that would yield a BO of the expected form, without spoiling the rather pleasing commutation
relations we have obtained so far. One could, of course, consider working in terms of the
field-dependent coordinate on the right-moving side - which natually involves factors of Rv -
but the resulting expressions are significantly more complicated than (3.18).

The reason that this particular expression for BO is problematic is due to its effect on the
correlation functions of O(p, p̄) on the cylinder, which will be discussed in the next subsection.
However, as we will show, this effect is subleading at large R. Since, as we explained earlier, the
R→∞ limit is also needed to resolve the problem with the choice of vacuum in J T̄ - deformed
CFTs, we will simply continue to use the proposed expression (3.18), despite its drawbacks at
finite R, and show that it does indeed yield very reasonable predictions as R→∞.

Let us now finally compute the commutation relations of O(p, p̄) with the unflowed right-
moving generators, L̄n, given in (3.4). We find

[ L̄n,O(p, p̄)] =

�

n

�

˜̄h+ηO
˜̄q+

kη2
O

4
− 1

�

+ p̄

�

O(p, p̄− n)

+ (˜̄Ln+ : η ˜̄Jn :)[O(p, p̄)−O(p+ aαn, p̄+ bαn)]

+ [(ηO −η)(q̃− ˜̄q)−ηO(J̃0 − ˜̄J0)]O(p, p̄− n) . (3.28)

The first term on the right-hand side looks exactly like a momentum-space conformal Ward
identity in a CFT, where the right-moving conformal dimension of the operator is given by

h̄= ˜̄h+ηO
˜̄q+

kη2
O

4
. (3.29)

Using ηO = λp̄, this exactly corresponds to a momentum-dependent spectral flow of the right-
moving dimensions. Note that, unlike for the left-movers, this expression does not follow from

19Note we could have chosen the eigenvalue of HR in (3.15) to be different from the p̄ factor appearing in the
definition (3.18). This would have simply resulted in an expression for BO that depended on both constants, as
only p̄− BO is fixed.

20One can also check that with this choice, O(p, p̄) satisfies the expected Hermiticity conditions.
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the flow of the right-moving energy eigenvalues on the cylinder, as the latter involve a factor
of q̃, rather than ˜̄q.

The second term can be written as L̄n multiplying the term in parantheses (with a = b = λq),
since the latter vanishes for n = 0. As we will argue, this term will drop out in the R →∞
limit. The last term is required by the definition of the right-moving generators, which include
a factor of the field-dependent radius - e.g. for n = 0, L̄0 = HRRv . Since we have chosen to
diagonalize HR, and not L̄0, this term is a simple consequence of the non-trivial commutator
of O with the winding operator appearing in Rv .

Let us now discuss the R →∞ limit of these commutators. We note that the “operator-
valued shift” of p, p̄ in (3.22) and (3.28) scales with R as

p+
λqαn

R
≈ p+

λqnħh
R2

, as R→∞ . (3.30)

Thus, the contribution of this term to the commutators of O with L̄n, J̄n scale as 1/R2 in the
large R limit. It is easy to see from (3.12) that these terms will consequently not contribute to
the Ward identities on the plane, at least as far as L̄±1,0 are concerned. As for the last term in

(3.28), we note that it is suppressed by 1/R in the commutator with L̄0/R≈ Lpl
−1, and it drops

out from the combinations L̄1 − L̄−1 and R(L̄1 + L̄−1 − 2 L̄0), which are in principle identified
with the plane generators.

To summarize, while at finite R our candidate primary operators obey precisely CFT Ward
identities with respect to the left-moving generators and certain ‘CFT-like’ Ward identities with
respect to the right-moving ones, in the R → ∞ limit all Ward identities appear to reduce
to exactly CFT ones, at least as far as the global conformal and Kac-Moody generators are
concerned. This is consistent with the fact that the right-moving algebra becomes Virasoro-
Kac-Moody in the strict R→∞ limit. One should be cautious, however, about the presence of
subtle contributions to the Ward identities in this limit - related to the momentum dependence
of the conformal dimensions - and thus a more careful study is called for.

While the CFT-like form of the Ward identities (3.22) and (3.28) looks rather appealing,
especially as R→∞, note that we have by no means derived it from first principles. For that,
one would need to better understand how operators transform under the pseudo-conformal
symmetries generated by L̄n, J̄n, taking into account the fact that their algebra is not Virasoro-
Kac-Moody at finite R. One can alternatively use the Ward identities we worked out as a
definition of what is to be meant by a primary operator in the non-local J T̄ - deformed CFT,
whose solution is, of course, (3.18). However, it seems hard to justify the choice (3.22), (3.28),
especially at finite R. It is, nevertheless, intriguing that our candidate primary operators (3.18)
satisfy such simple-looking Ward identities with respect to the pseudo-conformal generators,
which likely hint towards a much richer, pseudo-local structure of J T̄ - deformed CFTs. This
intuition is further supported by our results for the correlation functions, which are presented
in the next subsection.

3.4 Correlation functions

The computation of correlation functions of the candidate primary operators (3.18) in J T̄
- deformed CFTs proceeds in direct analogy to its J1 ∧ J2 counterpart, which we detailed
in section 2.4. We will first evaluate the correlation functions at finite R, using the flowed
vacuum |0λ〉 - in which the correlators of the auxiliary Õ operators reduce to the ones in the
undeformed CFT - and only take the R →∞ limit at the end. This way of proceeding will
make it clear that the contribution associated with the non-CFT-like term in (3.28) drops out
from the correlation function in the decompactification limit.

The momentum-space two-point function of the candidate primary operators reads
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〈O−q(p1, p̄1)Oq(p2, p̄2)〉=
∫

d2w1d2w2e−
∑

i(pi wi+p̄i w̄i)e−ηvacq(w12+w̄12)−ηO(q̃−˜̄q)w̄12

× 〈Oh1,h̄1
(w1, w̄1)Oh2,h̄2

(w2, w̄2)〉 , (3.31)

where p̄1 = −p̄2 = −p̄ by momentum conservation, imposed as usual by the integral over the
center of mass position. The correlation function on the last line is a usual position-space CFT
two-point function, with the same normalization as in the undeformed CFT, but with conformal
dimensions given by

hi(p̄i) = h̃i +λq̃i p̄i +
λ2k

4
p̄2

i , h̄i(p̄i) =
˜̄hi +λ˜̄qi p̄i +

kλ2

4
p̄2

i , (3.32)

where h̃i ,
˜̄hi are the conformal dimensions of the respective operator in the undeformed CFT.

The momentum-dependent shift in the dimensions, which corresponds to a spectral flow with
parameters ηi = η̄i = λp̄i for each of the operators, occurs through exactly the same mecha-
nism as for the J1∧ J2 two-point function (2.56). The only differences with this previous case
are that: the spectral flow operator no longer annihilates the flowed vacuum, so we defined

η|0λ〉= λHR|0λ〉= ηvac|0λ〉 6= 0 , (3.33)

where the actual eigenvalue can be read off from (3.5). This term contributes to the correlator
as indicated above. The second difference is due to the expression (3.21) for BO which, as
discussed, depends on the left-moving U(1) charges, instead of the right-moving ones. This
leads to an explicit additional dependence on the winding charge, also indicated in (3.31).

We now write the 〈O1(w1, w̄1)O2(w2, w̄2)〉 correlator in terms of its Fourier transform,
Ghi ,h̄i

(p, p̄)× δ2(p1 + p2), and perform the trivial integral over wi , w̄i . We obtain

〈O−q(−p,−p̄)Oq(p, p̄)〉=
∫

dp′dp̄′δ(p′ − p+ηvacq)δ(p̄
′ − p̄+ηvacq+ηO(q̃− ˜̄q))Ghi(p̄),h̄i(p̄)(p

′, p̄′)

= Ghi(p̄),h̄i(p̄)

�

p−ηvacq, p̄−ηvacq−ηO(q̃− ˜̄q)
�

, (3.34)

where q itself depends on p̄ as in (3.17). Thus, the momentum-space two-point function
of the operators (3.18) is precisely given (up to some trivial shifts in the arguments) by a
momentum-space CFT two-point function, but with the conformal dimensions replaced by
their momentum-dependent counterparts21 (3.32). Remarkably, this is exactly the same be-
haviour that we observed in (1.1) for scattering amplitudes off near-extremal black holes!

Let us now study the three-point function of O(p, p̄). We similarly obtain

〈O1(p1, p̄1)O2(p2, p̄2)O3(p3, p̄3)〉=
∫

d2wi e−
∑

i(wi pi+w̄i p̄i)eηvac
∑

i qi(wi+w̄i) (3.35)

× e−η1(q1−q̄1)w̄1+[η2(q3−q̄3)−η1(q2−q̄2)]w̄2+η3(q3−q̄3)w̄3〈Oh1,h̄1
(w1, w̄1)Oh2,h̄2

(w2, w̄2)Oh3,h̄3
(w3, w̄3)〉 ,

where the three-point function appearing on the last line corresponds precisely to a CFT
three-point function in position space, with conformal dimensions given by the momentum-
dependent expressions (3.32) and is derived through exactly the same steps as for the J1 ∧ J2

21Note that when writing this expression, one should replace the dimensions by their momentum-dependent
counterparts not only in the functional part of the correlator, but also in the prefactors, which contain factors of
e.g. Γ (h). This resonates with the behaviour of the correlation functions discussed in the single-trace version of
T T̄ -deformed CFTs, which are computed using worldsheet string theory [47].
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- deformed three-point function (2.58). Fourier-transforming this (CFT) expression and per-
forming the wi , w̄i integrals, one again obtains a result that corresponds to the original mome-
ntum-space CFT three-point function with the operator dimensions replaced by (3.32), and
with slightly shifted arguments, as in (3.34). Note this implies that the OPE coefficients, ap-
propriately defined, do not change with the deformation, as was the case in J1 ∧ J2.

The computation of higher-point functions on the cylinder proceeds in an identical manner.
In the case of the four-point function, we note that while the position-space four-point function
that appears in the integrand is entirely crossing symmetric, as we showed in section 2.4 for
the analogous J1 ∧ J2 deformation, the winding-dependent prefactors due to the unexpected
form of BO are not, and thus spoil the crossing symmetry of the result. Consequently, our
proposal is not quite correct in finite size.

This is however easy to fix by taking the R→∞ limit. Noting that the only way in which
these winding terms enter the correlator is through the shift of the argument of the momentum-
space correlator, as in (3.34), it is clear that they can be dropped in the R→∞ limit, since
they scale as ηO(q̃−˜̄q)/R with respect to p̄. A similar comment applies to the ηvacq term, which
can also be dropped. The resulting four-point functions are simply the Fourier transform of
position-space correlators of the form (2.64), which are manifestly crossing symmetric and are
entirely determined by the corresponding four-point function in the undeformed CFT. These
correlation functions should be considered in the R→∞ limit, in which they simply become
correlators on the plane. Identical comments apply to higher-point functions.

The fact that all the correlation functions of our candidate J T̄ primary operators are en-
tirely determined by the original CFT correlators in such a strikingly simple manner strongly
suggests that J T̄ - deformed CFTs possess a very similar structure to that of standard two-
dimensional CFTs, which simply awaits for the right language to be uncovered. We hope that
some of the tools proposed in this article will be helpful in making progress on this interesting
issue.

4 Discussion

In this article, we have argued that, despite their non-locality, J T̄ - deformed CFTs do al-
low for a notion of primary operators with respect to the generators of the field-dependent
symmetries that act on the non-local side. We moreover showed how to compute arbitrary
correlation functions of these operators exactly in terms of the correlators of the undeformed
CFT. These correlation functions appear consistent (i.e., they obey crossing symmetry) in the
decompactification limit.

As discussed in the introduction, that special non-local theories may posses a structure that
is sufficiently rigid to completely fix the form of low-point correlation functions is extremely
interesting, as such theories could provide a microscopic dual to generic near-extremal (and,
possibly, also non-extremal [48]) black holes. It thus seems worthwhile to better understand
this structure, as well as its possible generalizations, and compare it to the results of scattering
in black hole backgrounds.

A basic question is to understand from “first principles” the Ward identities that primary op-
erators should satisfy, by relating them to the expected (position-space) transformation prop-
erties of the operator under field-dependent coordinate transformations. This “first principles”
derivation should also be able to determine whether there are corrections to the primary oper-
ator that involve the field-dependent coordinate, an effect that we could perhaps not see due
to the large R limit.

A related task is to directly work out the general constraints that these Ward identities
impose on correlation functions, i.e. without appealing to the auxiliary construction involv-
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ing the Õ operators, but rather paralleling the usual argument used for standard CFTs. This
question can be asked either on the cylinder or on the plane, and each case presents its own
challenges: on the cylinder, one first needs to undestand the properties of the SL(2,R) - in-
variant vacuum which, as explained, is different from the flowed one, and thus the result for
the correlation functions could be rather different from those discussed in the previous sec-
tion; on the plane, the momentum-space Ward identities should receive contributions from
the explicit momentum dependence of the conformal dimensions, which is not clear how to
recover from the R →∞ limit. Nonetheless, the final result that we have obtained for the
correlation functions suggest that one should obtain as many constraints as there are in usual
CFTs, though the language in which they are expressed may be different.

On the more technical side, an interesting issue that we have encountered concerns the
possible definitions of a vacuum state for J T̄ - deformed CFTs on a cylinder, and its SL(2,R)
invariance properties. For the two possible choices of vacuum we discussed in section 3.1, it
would be interesting to work out their definition and exact relation, both at finite radius and
in the R→∞ limit. Another interesting technical question is to understand how the construc-
tion presented in this article works in the specific case of conserved currents, for example the
stress tensor, and how to express these symmetry currents in terms of the associated conserved
charges. This may also clarify how the field-dependent coordinate, which is essential for the
definition of the charges, may fit in with the flow equations and momentum-space picture for
the operators used herein.

Finally, it would be very interesting to extend these results to other special non-local the-
ories, such as T T̄ - deformed CFTs. An essential input for our present construction was the
existence, in J T̄ - deformed CFTs, of two different bases for the right-moving symmetries:
as a set of generators that flow in the same way as the energy eigenstates or, as the genera-
tors that directly implement pseudoconformal transformations. In T T̄ - deformed CFTs, only
the first set have been shown to exist at the full quantum level [11]; as for the generators of
field-dependent symmetries, they are currently understood only at a classical level and on the
plane [34]. One may nevertheless hope that the needed relation between the two will eventu-
ally be found (though, most likely, it will not correspond to a spectral flow, since the existence
of a U(1) current is not required in this case) and can be used to define an analogous set of pri-
mary operators. It is interesting to note that the most naïve guess - based on the analogy with
J T̄ - for how an appropriately defined ‘primary’ two-point function will be changed - namely,
via a momentum-dependent shift in the conformal dimensions - matches the behaviour found
in [29].

Other interesting extensions of this work would be to the single-trace versions of the T T̄
and J T̄ deformation, where one should, in addition, be able to compare the proposed defi-
nition of the primary operators with the expectation from worldsheet string theory [47, 49].
One may hope that, by extending these type of symmetries and their consequences to an ever
larger class of theories, one would ultimately be able to conjecture a set of axioms (e.g., for the
correlation functions) that all “dipole CFTs” - or, more generally, all “non-local CFTs” - should
obey, and that this definition would be general enough to capture, in a holographic sense, the
near-horizon dynamics of all extremal and non-extremal black holes.
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A SL(2,R) and Kac-Moody generator identities

In this appendix, we derive a few identities that are useful in the manipulations of section 2.3.

• SL(2,R)

Given the SL(2,R) generators L±1,0, which satisfy the usual commutation relations, we would
like to find the relations between the coefficients (a, b, c) and (ã, b̃, c̃) in

eaL−1 e2bL0 ecL1 = eãL1 e2b̃L0 e c̃ L−1 , (A.1)

which correspond to two different ways of parametrizing the same group element. This iden-
tity can be derived by using the following representation of L±1,0

L−1 =

�

0 1
0 0

�

, L0 =
1
2

�

1 0
0 −1

�

, L1 =

�

0 0
−1 0

�

. (A.2)

Using this, we find

eaL−1 e2bL0 ecL1 =

�

1 a
0 1

��

eb 0
0 e−b

��

1 0
−c 1

�

=

�

eb − ace−b ae−b

−ce−b e−b

�

, (A.3)

and

eãL1 e2b̃L0 e c̃ L−1 =

�

e b̃ c̃e b̃

−ãe b̃ e−b̃ − ãc̃e b̃

�

. (A.4)

This leads to the relation

b = − ln(e−b̃ − ãc̃e b̃) , a =
c̃

e−2b̃ − ãc̃
, c =

ã

e−2b̃ − ãc̃
. (A.5)

We also note the identity

eαL1+2β L0+γL−1 ≡ eM = cosh(
p

det M)I + sinh(
p

det M)
M

p
det M

, (A.6)

which we can use to show that (z = Re z + i Imz = |z|eiφ)

ezL−1−z̄ L1 = eeiφ tanh |z|L−1 e−2L0 ln cosh |z|e−e−iφ tanh |z|L1 . (A.7)

Thus, if we let ew = eiφ tanh |z| and act on |h〉, we obtain precisely (2.37), up to certain overall
factors coming from the action of the middle term. Note that |ew| < 1 or Re w < 0, which
implies that this interpretation only applies to operators that are to the past of the τ= 0 slice,
where the state is defined.

Another possibly useful identity is

eαL0 eew L−1 = eew+αL−1 eαL0 , (A.8)

which can be used to check that L0 implements a translation of the state created by acting
with O(w) on the vacuum O(w)|0〉= ewheew L−1 |h〉.
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• SL(2,R) - Kac-Moody

A more interesting identity to derive is the following

eew(L̃−1+ηJ̃−1)e−ew L̃−1 = eη
∑∞

n=1
1
n enw J̃−n (A.9)

claimed in the same section, where η is a constant or an operator that commutes with all other
operators that appear in this expression.

To prove this, we first use the Baker-Campbell-Hausdorff formula, which states that

eX eY = e
∑∞

n=1
1
n (−1)n−1

∑

ri ,si
c(ri ,si)[X r1 Y s1 ...X rn Y sn ] , (A.10)

where i ∈ {1, . . . n}, ri+ si > 0, c(ri , si) are some numerical coefficients determined from these
numbers, and the term in brackets is a nested commutator of X ’s and Y ’s. In our case

X = ew(L̃−1 +ηJ̃−1) , Y = −ew L̃−1 , (A.11)

so [X , Y ] = ηe2w J̃−2, and all further commutators with either X or Y will decrease the level
of J̃−n by one and add a multiplicative factor of ew, times some numerical coefficient. Conse-
quently, the term on the right-hand side must take the form

eew(L̃−1+ηJ̃−1)e−ew L̃−1 = eη
∑∞

n=1 cnenw J̃−n , (A.12)

for some numerical coefficients cn that we will now determine. This can be done by comparing
the two ways of computing the 〈O(w1)O(w2)〉 overlap presented in section 2.3.

One way consists of simply repeating the steps in (2.42), using (A.12) instead

〈O(w1)O(w2)〉 = e−hw12〈hλ|ee−w1 (L̃1+ηO J̃1)eew2 (L̃−1+ηO J̃−1)|hλ〉

= ew12(h̃−h)〈Õ(w1)e
ηO

∑∞
n=1 cne−nw1 J̃n eηO

∑∞
n=1 cnenw2 J̃−nÕ(w2)〉

= ew12(h̃−h)e
kη2

O
2

∑

n nc2
ne−nw12 〈Õ(w1)e

ηO
∑∞

n=1 cnenw2 J̃−n eηO
∑∞

n=1 cne−nw1 J̃nÕ(w2)〉

= ew12(h̃−h)e
kη2

O
2

∑

n nc2
ne−nw12+2ηO q̃

∑

n cne−nw12 〈Õ(w1)Õ(w2)〉 . (A.13)

However, the alternate computation we performed, using just the commutation relations of
the unflowed generators, yields directly (2.39). Comparing the two expressions, we conclude
that cn =

1
n .

B J1 ∧ J2 - deformed free bosons

In this appendix, we work out in detail the case of J1 ∧ J2 - deformed free bosons, which
should help concretize the general analysis of section 2 . Parts of this analysis have previously
appeared in [25,37].

B.1 Classical analysis

We start with a variation on the calculation in appendix A of [25]. Consider the action

S = −κ
∫

d x+d x− [∂ φ1∂̄ φ1 + ∂ φ2∂̄ φ2 −λ(∂ φ1∂̄ φ2 − ∂̄ φ1∂ φ2)] =

∫

dσd t L , (B.1)
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where x± = σ± t and ∂ , ∂̄ = 1
2(∂σ± ∂t). The components of the two conserved shift currents

Jα,a = − ∂L
∂ (∂αφa)

are

J1
+ = κ (∂ φ1 +λ∂φ2) , J1

− = κ (∂̄ φ1 −λ∂̄ φ2) , (B.2)

J2
+ = κ (∂ φ2 −λ∂φ1) , J2

− = κ (∂̄ φ2 +λ∂̄ φ1) . (B.3)

Note that the action satisfies a flow equation of the Smirnov-Zamolodchikov type22,
∂λL= −εαβ J1

αJ2
β

, provided we choose

κ=
1

1+λ2
. (B.4)

Using this, we can construct chiral currents by taking linear combinations of J1,2
α and the

components of the topologically conserved current J̃ a, with

J̃ a
+ = ∂ φa , J̃ a

− = −∂̄ φa . (B.5)

A basis for these currents is

J1
L =

J1 +κJ̃1 −λκJ̃2

2
= κ∂ φ1 , J1

R =
J1 −κJ̃1 −λκJ̃2

2
= κ∂̄ φ1 , (B.6)

J2
L =

J2 +κJ̃2 +λκJ̃1

2
= κ∂ φ2 , J2

R =
J2 −κJ̃2 +λκJ̃1

2
= κ∂̄ φ2 . (B.7)

We would now like to compute the Poisson brackets of the chiral currents. For this, we work
out the canonical momenta

π1 = κ (φ̇1 +λ∂σφ2) , π2 = κ (φ̇2 −λ∂σφ1) , (B.8)

which satisfy the canonical equal-time commutation relations {φa(σ),πb(σ′)}= δab δ(σ−σ′),
and express the currents in terms of them. We find that the Poisson brackets of the above chiral
currents are diagonal in this basis, but are proportional to a factor of κ, which represents the
level of the chiral algebra. It is desirable to work instead with the combinations

J 1
L,R = J1

L,R ±λJ2
L,R , J 2

L,R = J2
L,R ∓λJ1

L,R , (B.9)

which have level one. Their expression in terms of the canonical variables is

J 1
L,R =

1
2
(π1 ±φ′1 ±λπ2) , J 2

L,R =
1
2
(π2 ±φ′2 ∓λπ1) . (B.10)

The Hamiltonian density is given by

H = πaφ̇a −L= 1+λ2

2
(π2

1 +π
2
2) +

1
2
(φ′21 +φ

′2
2 ) +λ(φ

′
1π2 −φ′2π1) , (B.11)

in agreement with our general result (2.6).

22Our conventions are εσt = εtσ = 1.
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B.2 Quantum analysis

The shift in the chiral charges and the energies of (primary) states on the cylinder with mo-
menta na and windings wa were worked out in full generality in section 2.1. Using the state-
operator correspondence, these states correspond to (primary) vertex operators that carry
these charges, of the form

V(z, z̄) = : eica
Lφ

a
L(z)+ica

Rφ
a
R(z̄) : , (B.12)

where φa
L,R are the left- and right-moving pieces of the above scalar fields and ca

L,R are coeffi-
cients that we would like to determine. For simplicity, we will concentrate on the left-moving
piece of the vertex operator and drop the ‘L’ index. The action (B.1) implies that the OPEs of
the scalars is

φa(z)φb(z
′) = −

δab

2κ
ln(z − z′) . (B.13)

The currents ∂ φa are primary with dimension 1, as can be checked by computing their OPE
with the stress tensor, Tzz = κ

∑

a(∂ φa)2. The OPE of the above vertex operator with the chiral
left currents J a = κ(∂ φa +λεab∂ φb) is thus

J a(z)V(0)∼
ca +λεabcb

2z
V(0) . (B.14)

Equating the coefficients of z−1 with the flowed charge qa in (2.18), we find

ca = 2κ(qa −λεabqb) . (B.15)

For the right-moving coefficients, the sign of λ is switched and qa → q̄a. The associated
dimensions are given by the (primary) OPEs

T (z)V(0)∼ 1
4z2

∑

a

c2
a

κ
V(0) + 1

z
∂ V(0) =

∑

a q2
a

z2
V(0) + 1

z
∂ V(0) . (B.16)

The left conformal dimension of this operator is
∑

a(q
a)2, in perfect agreement with (2.19).

It is useful to rewrite the exponent as

caφa = 2qaκ(φa +λεabφ
b)≡ 2qaϕa (B.17)

and similarly on the right, where ϕa
L,R simply correspond to the bosonisation of J a

L,R. The
vertex operator thus takes the form

V(z, z̄) = : e2iqaϕa
L(z)+2iq̄aϕa

R(z̄) : . (B.18)

The mode expansion of ϕa
L is given in terms of the modes J a

n of J a, i.e.

ϕa
L(z) = ϕ

a,0
L − iJ a

0 ln z + i
∑

n 6=0

J̃ a
n

n
z−n (B.19)

and similarly on the right, where we used the fact that J a
n = J̃ a

n for n 6= 0 to render the
expression more familiar. Note that the zero modes of the left and right chiral bosons are
independent. It is easy to see that these operators, even inserted at zero, will flow with λ.
To completely specify them, we need to spell out the normal ordering - that is, we put all the
annihilation operators to the right of the creation ones

V(z) =: e2iqaϕ
a
L := e2iqaϕ

0,a
L +2qa

∑∞
n=1

J̃ a
−n
n zn

e2qaJa
0 ln z−2qa

∑∞
n=1

J̃ a
n
n z−n

. (B.20)
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The OPE of two such operators can be computed using the BCH formula and the current
commutation relations. We find

Vq1
(z1)Vq2

(z2) = e4iqa
1qb

2 [J
a
0 ,ϕb

0 ] ln z1−2qa
1qa

2

∑∞
n=1

1
n (z2/z1)n: Vq1

(z1)Vq2
(z2) := e2qa

1qa
2(ln z1+ln(1−z2/z1)) ·

: Vq1
(z1)Vq2

(z2) := (z1 − z2)
2q1·q2 : Vq1

(z1)Vq2
(z2) : , (B.21)

where we used [ϕ0,a, J b
0 ] =

i
2δ

ab. This yields the correct OPE of vertex operators. Note that
the zero mode contribution plays an essential role in rendering the correlator translationally-
invariant. Including the right-moving piece, we also see that these operators are mutually
local, since qa

1qa
2 − q̄a

1 q̄a
2 is λ-independent.

We would now like to construct the free boson realisation of the flowed operator Ṽ(z) and
compare it to the above operator. At λ= 0, this operator is simply VC F T (z) =: e2iq̃aφa(z) :, where
φa(z) has a decomposition of the form (B.19) in terms of the undeformed current modes. At
finite λ, Ṽ is given by integrating the flow equation (2.48). The flow operator in this theory is
(2.27), which in terms of Fourier modes reads

XJ J̄ =
∑

n6=0

1
2πn

(J1
n J2
−n − J̄1

n J̄2
−n + J1

n J̄2
n − J̄1

n J2
n ) . (B.22)

As one can see from (2.30), the action of this operator on the non-zero modes φnzm
a (z) inside

VC F T is to simply turn them into modes of the deformed current, J̃n. On the other hand, since
the zero mode of the current - which equals the λ - independent J̃ a

0 - commutes with XJ J̄ ,
it will not flow. The scalar zero mode part cannot be inferred from the simple classical flow
equation; however, we do know it should be simply 2iqaϕ

a
0 , because the flowed state carries

charge qa, and the charge is carried entirely by the zero mode. Given all this, a candidate Ṽ(z)
operator is

Ṽ(z) =:e2iqaϕ
a
0+2iq̃a(ϕa

nzm(z)−iJ̃a
0 ln z) : . (B.23)

This is in perfect agreement with the relation (2.51) between the primary and the flowed
operator, upon conformally transforming from w to z. The fact that the coefficients of the zero
and non-zero modes are different clearly indicates that Ṽ(z) is not a local operator. On the
other hand, if we compute the OPE of two such operators, we find

Ṽ(z1)Ṽ(z2) =
�

1−
z2

z1

�2q̃1·q̃2

e4iq̃a
1 ln z1qb

2 [J̃
a
0 ,qb

2ϕ
b
L,0+q̄b

2ϕ
b
R,0] :Ṽ(z1)Ṽ(z2)

:= (z1 − z2)
1
2 q̃1·q̃2 :Ṽ(z1)Ṽ(z2): , (B.24)

where we used the fact that the commutator [J̃α0 ,ϕb
L/R,0] = −

i
2(δ

abδL −
λ
2ε

ab) and that
qa + q̄a = na. Therefore, these operators have the same OPE as the original CFT local op-
erators, even though they are not themselves local.

C The unflowed J T̄ algebra

The algebra of the unflowed generators in J T̄ - deformed CFTs was spelled out in [11], and is
rather involved. For the purposes of this article, we would like to only collect its subalgebra
that contains the global SL(2,R) generators L±1,0 and their right-moving counterparts L̄±1,0.
Unlike the case of standard CFTs, here the algebra generated by these elements does not close:
instead, one must include at least the entire infinite tower of left- and right-moving affine
U(1) generators. In this appendix, we spell out explicitly the commutation relations of this
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subalgebra, which may be helpful in following the main text. Note that, following [11], we
use the notation Kn instead of Jn for the current modes.

The commutation relations of the unflowed generators in the deformed SL(2,R) - Kac-
Moody subsector are, starting with the right-moving sector

[ L̄1, L̄−1] = 2ħhL̄0 +λ(K̄−1 L̄1 + L̄−1K̄1 +λK̄−1K̄1α1)α1 , [ L̄0, L̄±1] = − L̄±1α±1Rv , (C.1)

where

αn =
2

kλ2

�
Æ

(R−λQK)2 +ħhkλ2n− (R−λQK)
�

=
nħh

R−λQK
+O(ħh2) , (C.2)

with QK = J0+
λk
2 HR. Note the first commutator implies that the Kac-Moody tower cannot be

decoupled, since it is generated by K±1 and L±1. Then

[K̄m, K̄n] =
kmħh

2
δm+n −

λk
2

K̄nαnδm,0 +
λk
2

K̄mαmδn,0 , (C.3)

[ L̄0, K̄n] = −K̄nαnRv , [ L̄−1, K̄n] = −nħhK̄n−1 −λK̄−1K̄nαn +
λk
2

L̄−1α−1δn,0 , (C.4)

[ L̄1, K̄n] = −nħhK̄n+1 −λK̄nαnK̄1 +
λk
2

L̄1α1δn,0 . (C.5)

The commutators with the left-moving generators are

[L0, L̄±1] = L̄±1(±ħh− Rα±1) , [L1, L̄±1] = −λK1 L̄±1α±1 , [L−1, L̄±1] = −λK−1 L̄±1α±1 ,

(C.6)

[Km, L̄n] = −
λk
2

L̄nαnδm,0 , [Km, K̄n] = −
λk
2

K̄nαnδm,0 . (C.7)

Note in particular that L−1 and L̄−1 do not commute at finite R. The left generators all commute
with L̄0 and their algebra is just the standard SL(2,R) - Kac-Moody one.

The commutation relations of these generators reduce to the standard ones in the R→∞
limit, given the scaling (C.2) of the αn. In particular, the combinations (3.11) of the right-
moving generators do satisfy an SL(2,R) algebra in this limit, though their definition is now
only valid up to O(1/R). The commutators between the right- and the left-moving generators
also vanish as R→∞.

The above commutation relations make it clear that a proposal for the way that O(w) acts
on the cylinder vacuum, of the form suggested in section 2.3

O(w, w̄)|0〉 ?
= ewh+w̄h̄eew L−1 eew̄ L̄−1 |h, h̄〉 (C.8)

misses many of the properties that one may want it to have. First, since L−1 and L̄−1 do not
commute, this is not equivalent to e.g. exp

�

ew L−1 + ew̄ L̄−1

�

, and thus the definition of the
in/out operator is ambiguous. Second, since

eα L̄0 eew̄ L̄−1 e−α L̄0 = eew̄+αRvα
r
1 L̄−1 , (C.9)

we see that L̄0, despite being the unambiguous generator of right-moving translations on the
cylinder, does not induce a simple shift in the label w̄ of the operator proposed above; rather,
the shift is field-dependent, except in the R→∞ limit.
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