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Abstract

We build and analytically calculate the Generalised Gibbs Ensemble partition function
of the integrable Soft Neumann Model. This is the model of a classical particle which is
constrained to move, on average over the initial conditions, on an N dimensional sphere,
and feels the effect of anisotropic harmonic potentials. We derive all relevant averaged
static observables in the (thermodynamic) N →∞ limit. We compare them to their long-
term dynamic averages finding excellent agreement in all phases of a non-trivial phase
diagram determined by the characteristics of the initial conditions and the amount of
energy injected or extracted in an instantaneous quench. We discuss the implications of
our results for the proper Neumann model in which the spherical constraint is imposed
strictly.
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1 Introduction

This paper is mainly devoted to the analytic calculation of the partition function of the clas-
sical integrable Soft Neumann Model in the Generalized Gibbs Ensemble (GGE). From it we
derive all relevant averaged static observables. The motivation for this study stems from the
interest in characterising the stationary measure that integrable, though non purely quadratic,
macroscopic models may reach after instantaneous quenches. Most of previous similar studies
focused on quantum models, and several review articles summarise methods and results [1–
9]. Less attention has been paid to classical out of equilibrium macroscopic integrable sys-
tems [10–24] and we contribute here to their better understanding.

The concrete problem that we chose to analyse is very rich. On the one hand, it relates
to fundamental physics concepts, such as the meaning of ergodicity. On the other hand, the
selected model connects to pure mathematics. Indeed, Neumann’s system [25] is intimately
related to celebrated non-linear wave equations [26,27], among other problems which we will
shortly review below. A further relation is to the disordered systems area since the potential
harmonic energy maps to the one of the spherical Sherrington-Kirkpatrick spin-glass [28].

Given the large breath of the present study, we organise this Introduction in five separate
parts which develop: the ergodicity statement, our program, the model, our goals and main
results and, finally, the layout of the paper.

Ergodicity

The thermalisation properties of large dimensional classical Hamiltonian systems have re-
gained interest in recent years. This renewed attraction has been boosted by the aim to reach a
better understanding of similar issues in the quantum realm. Of particular interest are macro-
scopic classically integrable systems [29–31] for which the approach to Gibbs-Boltzmann equi-
librium is not ensured and alternative asymptotic measures could be the relevant ones in the
stationary state.

Typical observables in macroscopic isolated integrable classical models are described by a
Generalised Microcanonical Ensemble (GME) in which the value of all independent constants

3

https://scipost.org
https://scipost.org/SciPostPhys.13.3.048


SciPost Phys. 13, 048 (2022)

of motion are fixed [32]. More explicitly, their long-time averages

A= lim
τ→∞

lim
tst�t0

τ−1

∫ tst+τ

tst

d t ′ A(t ′) , (1)

with tst the time needed to reach stationarity (which could scale with the system size), and
their statistical averages calculated with the flat GME measure,

〈A〉GME =
∑

conf

AρGME with ρGME =

N
∏

µ=1
δ(Iµ − Iµ(0))

∑

conf

N
∏

µ=1
δ(Iµ − Iµ(0))

, (2)

where the sums run over all allowed phase space variables and the thermodynamic limit is
taken, coincide. Here, Iµ are the phase space expressions of the constants of motion and Iµ(0)
are the values they take at the initial time t = 0. In a classical integrable system there are as
many constants of motion as degrees of freedom and, consequently, they constrain the phase
space manifold visited by the dynamics in a much more restrictive way that in a standard non-
integrable system in which there are only a few conserved quantities, e.g. the total energy, the
linear and angular momentum, etc.

In conventional equilibrium situations, it is usually much more convenient to invoke en-
semble equivalence and use a canonical representation to calculate statistical averages of local
observables. The natural proposal for the canonical GGE measure is

ρGGE = Z−1
GGE e−

∑

µ γµ Iµ . (3)

The γµ are as many Lagrange multipliers as constants of motion, and they are fixed by requiring
that the phase space averages of the N constants of motion, 〈Iµ〉GGE, be equal to their values at
the initial conditions, Iµ(0). However, it is not obvious that the expression (3) can be derived
from the GME distribution in (2).

The challenge is, then, to construct the GGE of a classical integrable model of non-trivial
kind, that is, one that is not just an ensemble of independent harmonic oscillators. Once this
done, if the Newtonian dynamics of the model in question were also solvable, one should put
to the test the main GGE claim: that in the stationary limit1 the long-time average, A in Eq. (1),
and the phase space average,

〈A〉GGE = Z−1
GGE

∑

conf

Ae−
∑

µ γµ Iµ (4)

calculated in the N →∞ limit, coincide (for any non explicitly time dependent, non patho-
logical and in some sense local observable A),

A= 〈A〉GGE . (5)

In this paper we calculate exactly the GGE measure of a non-trivial integrable classical
model, the Soft Neumann model, and we show the equivalence between time averages and
statistical averages, by calculating the former with mixed analytic-numerical methods. In the
rest of the introduction we give a more extended background to our study.

The program

1The time tst is the time-scale needed to reach stationarity and it will typically be much longer than a microscopic
time-scale t0.
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The out of equilibrium dynamics of systems of interest are usually studied by perform-
ing quenches, that is, sudden changes of a control parameter. The dynamics of macroscopic
open and non-integrable systems following such quenches have been studied for more than
50 years. Some of the questions asked in this context are: Does a system reach a stationary
state? If it does, which is the stationary measure that describes the time average of typical
observables? Are thermodynamic concepts playing a role during the approach to the asymp-
totic state and/or when the system has reached it? These questions have been addressed with
analytic, numeric and experimental means in a host of out of equilibrium open classical situa-
tions and an interesting picture of critical relaxation [33,34], phase ordering kinetics [35–39],
and glassy dynamics [40–42] among other cases has emerged out of these studies. It is to be
noted that in all the circumstances just cited the systems remain out of equilibrium forever if
the thermodynamic limit is taken from the outset and times are not conveniently scaled with
system size.

Knowing that some classical open macroscopic systems, as the ones mentioned in the pre-
vious paragraph, can remain far from equilibrium in their thermodynamic limit, one can ex-
pect this to happen, and even more so, to classical closed integrable macroscopic systems which
cannot act as a thermal bath on themselves [29–31]. One may then wonder whether a GGE
description could apply to the long-term evolution of local observables in such classical inte-
grable systems.

We launched a program to study this question in a series of papers recently published [10–
12, 43]. We picked a family of analytically solvable, but yet non-trivial (mean-field) mod-
els which, when evolved with stochastic dynamics due to their coupling to an environment,
present rich relaxation dynamics, and do not reach thermal equilibrium on ample variation
of the control parameters [40–42]. Since we expected to find interesting behaviour for New-
ton dynamics, we adapted the quenches to follow the system’s evolution in isolation. More
concretely, we took thermalised initial conditions at a chosen temperature, we instantaneously
switched off any possible connection to a bath, and we let them evolve under classical mechan-
ics rules. We first focused on a non-integrable case, the so-called p = 3 spherical disordered
spin model with Newtonian dynamics. We showed that this model can act as a bath on itself
and equilibrate for certain values of the parameters, while it keeps its glassy properties for
others even when evolved in isolation [43]. Next, we identified a classical integrable model
with non-trivial dynamics, the Neumann Model, and we introduced its soft version, the Soft
Neumann Model, which is easier to treat analytically. Interestingly, this model is connected to
the spherical p = 2 or Sherrington-Kirkpatrick model [10–12] and its dynamical version intro-
duced in [44, 45] of the disordered systems literature. Due to its almost harmonic character,
this model appears as the simplest non-trivial integrable macroscopic system.

We give below a short introduction to the definition of the Soft Neumann Model and some
of its more relevant properties in the context of our study.

The model

The Neumann Model (NM) describes a classical point-like massive particle constrained to
move on a sphere embedded in an N dimensional space, under the effect of an anisotropic
harmonic potential [25]. The spring constants along the principal axes are fixed parameters
which characterise the potential energy and the kinetic energy is of the usual kind. The NM is
an integrable model for which the explicit form of the N constants of motion in involution Iµ
with µ= 1, . . . , N are known as quartic functions of the phase space variables [46,47]. In the
mathematical physics community it has been studied for small number of variables [48–50]. In
its soft version, which we introduced in [10–12] and we call the Soft Neumann Model (SNM),
the spherical constraint is imposed only on average over the initial conditions. Concretely,
the initial conditions are drawn from a probability distribution and they are forced to satisfy
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the spherical constraint on average. Moreover, the trajectories are also required to verify this
constraint on average over the initial configurations.

Models of free oscillators, constrained by a quadratic function of the phase space variables,
are integrable and give rise to celebrated non-linear wave equations such as the Korteweg-
deVries, non-linear Schrödinger, Sine-Gordon, and Toda lattice equations [26, 46]. They also
provide a way to solve “inverse spectral problems” which consist in finding, from a given
discrete spectrum, the potential from which it originates, in cases in which the spectrum is a
finite band one. This kind of models appear in other areas of physics as well. As shown in [51],
and later developed in the string theory literature, a large class of classical solitonic solutions
of the classical type IIB string action in the AdS5 × S5 background can be classified in terms
of solutions of the Neumann integrable system.

The NM and SNM can also be thought of as the classical mechanics extensions [44, 45]
of a statistical physics model with only potential energy which was originally introduced as
the “simplest” spin-glass [28] and it was later recognised to be a mean-field model for the
easier paramagnetic-ferromagnetic transition. In this interpretation, the spring constants are
the eigenvalues of a symmetric interaction matrix which couples the (real) spins in a fully
connected way. For independent Gaussian couplings between real spins, this model is called
the spherical Sherrington-Kirkpatrick or p = 2 spherical. In this case, the eigenvalues are
distributed according to the Wigner semi-circle law in the infinite size limit. A quite extended
list of papers with descriptions of the conventional equilibrium [28, 52–61] and stochastic
relaxation [62–70] of this model can be found in the bibliography. This model also appears
as a classical limit of the SYK model [71].

The constrained random harmonic potential is sufficiently complex to allow for a phase
transition in the ensemble of equilibrated initial conditions that we use. Those belonging to one
or the other phase will subsequently evolve after the quench, and dynamic phase transitions
will thus be generated. All in all, the Newton dynamical system has a non-trivial phase diagram
partially figured out in [10–12] with a variety of methods.

In [10, 11] we adapted techniques from the mean-field disordered systems literature to
derive Schwinger-Dyson equations coupling overall correlation and linear response functions
averaged over initial conditions, in the thermodynamic limit. From their analysis we identified
three dynamic phases differentiated by whether the trajectories depart macroscopically from
the initial positions or not, and the susceptibility to infinitesimal perturbations. However, even
in equilibrium, a complete understanding of the macroscopic behaviour of this model needs
to monitor the components of the particles position, sµ with µ = 1, . . . , N and, in the case of
Newtonian dynamics, the knowledge of the momentum components pµ is also necessary to
complete the picture. In the N →∞ limit, these becomes functions of a continuous variable
λ.

Goals & main results

The goals of this paper are twofold. On the one hand, we solve the dynamics in a mode-
resolved way which allows us to compute the time-averaged 〈s2

µ〉i.c.
and 〈p2

µ〉i.c.
for finite though

rather large N . On the other hand, and most importantly, we construct the GGE measure and
we calculate exactly in the N →∞ limit the static mode averages, 〈s2(λ)〉GGE and 〈p2(λ)〉GGE.
We then compare these expressions to the dynamic ones. In short, our main results are the
following.

1. First of all, with a mixed analytic-numeric treatment we exhibit that in the large size
limit, N � 1, and in the long-time limit, t � tst, with tst a characteristic time-scale
which possibly scales with N , the SNM reaches a stationary state. More precisely, we
show that in this long time limit the averages 〈s2

µ〉i.c.
and 〈p2

µ〉i.c.
take constant values.
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2. We revisit the dynamic phase diagram of the SNM by studying the mode resolved evo-
lution. We deduce that it presents four phases which we call “extended”, “coordi-
nate quasi-condensed”, “coordinate condensed”, and “coordinate and momentum quasi-

condensed” depending on how the particle covers the sphere and the scaling of 〈s2
N 〉i.c.

and 〈p2
N 〉i.c. with N . These are the projections in the direction with the largest spring

constant (the edge eigenvector of the Gaussian interaction matrix in the spin model
interpretation).

3. Importantly enough, we verify that the asymptotic states in all four phases of the SNM
phase diagram satisfy a generalised ergodic hypothesis with the GGE measure,
〈s2
µ〉i.c.

= 〈s2
µ〉GGE and 〈p2

µ〉i.c.
= 〈p2

µ〉GGE where the dynamic averages are computed nu-
merically over sufficiently long time windows.

4. We identify two kinds of initial conditions, both consistent with the spherical constraint,
and we call them symmetric and symmetry broken. The fluctuations of the spherical
primary and secondary constraints behave differently for these two groups. In one phase
of the SNM phase diagram we evidence condensation phenomena [72–74] for symmetric
initial conditions and macroscopic fluctuations which make the connection with the NM
invalid.

Our results demonstrate that a meaningful GGE measure can be constructed for a non-
trivial classical integrable model. One of the reasons why this model is interesting is that
it is interacting, in the sense that it is not simply mappable on an ensemble of independent
harmonic oscillators, and its constants of motion are non-trivial quartic functions of the space
phase variables. Moreover, in its original formulation it involves long-range interactions. For
these two reasons it was not obvious a priori that a canonical measure could be applicable.
Recall that in long-range interacting systems the notion of a subsystem is not straightforward
and the additivity of the conserved quantities is not justified either [75,76].

Layout

The paper is structured as follows. In Sec. 1 we present the three models we use and
the relations between them; namely, the Neumann Model (NM), the Soft Neumann Model
(SNM) and the spherical Sherrington-Kirkpatrick model also called p = 2 spherical in the
disordered systems literature. The next Sec. 3 explains the initial conditions that we choose
and quench protocol that we implement. In Sec. 4 is the core of our paper: we introduce
here the GGE measure and the harmonic Ansatz which allows us to evaluate it in the large N
limit. Next, in Sec. 5 we derive exact expression for the relevant averaged observables and
Lagrange multipliers. The comparison between the dynamic and GGE observables is presented
in Sec. 6. Section 7 is devoted to the analysis of the fluctuations in the GGE and dynamic
formalisms, especially in cases in which there is condensation. Finally, in Sec. 8 we present
our conclusions and we discuss related studies which appeared recently in the literature. The
paper is complemented by several Appendices in which we provide technical details.

2 The model

In this Section we introduce the model and we relate it to two well-known problems in the
integrability and disordered systems literature: the Neumann and the spherical Sherrington-
Kirkpatrick (or so-called p = 2) models, respectively.

We are concerned with the motion of a particle constrained to stay, on average over the
initial conditions, on the N−1 dimensional sphere. Calling ~s and ~p its position and momentum,
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and sµ and pµ their projections on orthogonal directions ~vµ, with µ = 1, . . . , N , the mean
spherical constraints read

〈φ〉i.c. ≡
N
∑

µ=1

〈s2
µ〉i.c. = N , 〈φ′〉i.c. ≡

N
∑

µ=1

〈sµpµ〉i.c. = 0 , (6)

where 〈. . . 〉i.c. represents the average over the initial conditions, distributed according to a
phase-space probability density ρi.c.({sµ(0)}, {pµ(0)}). The particle is not free, but it is subject
to an anisotropic quadratic potential,

V (~s) = −
1
2

N
∑

µ=1

λµs2
µ , (7)

with harmonic constants, λµ, drawn from a probability distribution, ρ(λµ). For concreteness,
we choose ρ(λµ) to be the Wigner semi-circle law,

ρ(λµ) =
1

2πJ2

Ç

(2J)2 −λ2
µ for λµ ∈ [−2J , 2J] , (8)

and zero otherwise, and we order the λµ in such a way that λ1 < λ2 < · · · < λN−1 < λN .
The reason for this choice is the connection to the disordered Sherrington-Kirkpatrick model
that we will discuss below. There are as many positive as negative λµs but the motion is
not unstable since the particle is constrained to move (on average) on the sphere. Several
useful properties of this distribution are summarised in App. A. Most of our qualitative results
are generic, they will be recovered in very similar form for other distributions ρ with finite
support and no repeated values of the λµ.

The potential energy landscape is very simple. Some of its important features are that
its minimum is achieved for sN = ~s · ~vN = ±

p
N and sµ 6=N = 0, and takes the value

Vmin = −(λN/2)N . The first excited states have one unstable direction, it is given by
sN−1 = ±

p
N and sµ6=N−1 = 0, and have potential energy V1st = −(λN−1/2)N . So on and

so forth one identifies all metastable points in the potential energy landscape.
With all these elements at our disposal, we define the model through the Hamiltonian,

H[z(t)] =
∑

µ

p2
µ

2m
+
∑

µ

1
2
(z(t)−λµ)s2

µ −
N
2

z(t)

≡ Hquad +
1
2

z(t)

�

∑

µ

s2
µ − N

�

, (9)

where z(t) is a function of time given by

z(t) =
∑

µ

〈p2
µ〉i.c.

m
+
∑

µ

λµ〈s2
µ〉i.c. , (10)

and ensures the validity of the spherical constraint, on average over the initial conditions. Here
and in the following we only write explicitly the time dependence of the Lagrange multiplier
z and not the one of the phase space variables sµ and pµ, which should be assumed. There
is no need to add a Lagrange multiplier for the secondary constraint. Once we introduce z(t)
the secondary constraint is satisfied automatically, see Section 2.1.

The equations of motion can be written as,

ṡµ =
�

sµ, H[z(t)]
	

=
pµ
m

,

ṗµ =
�

pµ, H[z(t)]
	

= −sµ
�

z(t)−λµ
�

,
(11)
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where {· · · } denotes the Poisson bracket. The equations of motion in Eq. (11) represent a
system of harmonic oscillators with time-dependent frequencies

ω2
µ(t) =

z(t)−λµ
m

, (12)

coupled through the time dependent Lagrange multiplier z(t). Note that the system remains
non-linear due to the mode’s coupling through z.

2.1 Conservation laws

Our model does not posses any strictly conserved quantity. However, the dynamics induced by
H[z(t)] conserve on average the same phase-space functions that the Neumann Model [25],
which we introduce below and discuss in App. B, conserves exactly. To begin with, we show
that the definition of z(t) in Eq. (10) can be derived from the imposition of the primary con-
straintφ on average. To see this, let us take the second equation of motion in Eq. (11), multiply
both sides by sµ, sum over all µ and take the average over ρi.c.. We end up with,

z(t)
∑

µ

〈s2
µ〉i.c. = −m

∑

µ

�

〈s̈µsµ〉i.c. +λµ〈s2
µ〉i.c.

�

. (13)

Imposing 〈φ〉i.c. =
∑

µ〈s
2
µ〉i.c. − N = 0 implies

∑

µ〈ṡ
2
µ〉i.c. + 〈sµs̈µ〉i.c. = 0, as can be

easily seen by differentiating twice. Inserting these conditions in Eq. (13) we find
z(t) =

∑

µm〈ṡ2
µ〉i.c. + λµ〈s2

µ〉i.c , which is exactly the definition of z(t) given in Eq. (10). In
conclusion, z(t) is determined self-consistently to enforce 〈φ〉i.c. = 0.

The time variation of the secondary constraint is

dφ′

d t
=

¨

∑

µ

sµpµ, H[z(t)]

«

=
∑

µ

�

p2
µ

m
− (z(t)−λµ)s2

µ

�

, (14)

and it is not conserved on a trajectory basis. However, taking the average over ρi.c. and using
the definition of z(t) we find that dt〈φ′〉i.c. = 0, i.e., it is conserved on average. Moreover, if
one takes 〈φ′〉i.c. = 0 at t = 0, we conclude that the average is zero at all times.

Let us now study the phase space functions

Iµ = s2
µ +

1
mN

∑

ν(6=µ)

s2
µp2
ν + p2

µs2
ν − 2sµpµsνpν

λν −λµ
, (15)

which, we will recall later, where found to be strictly conserved in the Neumann model [46,47].
We find that,

m
2

dIµ
d t
= {Iµ, H[z(t)]}= sµpµ + s2

µ

 

1
N

∑

ν(6=µ)

sνpν

!

− sµpµ

 

1
N

∑

ν(6=µ)

s2
ν

!

. (16)

It is clear from here that these functions are not conserved on each trajectory by our model.
However, if we take initial conditions such that

〈s2
µsνpν〉i.c. = 〈s2

µ〉i.c.〈sνpν〉i.c. , (17)

for µ 6= ν, as fulfilled, for example, ifρi.c. is Gaussian in sµ and pµ without correlations between
different modes (a case that we will analyse in detail in the rest of the paper) then

m
2

d〈Iµ〉i.c.

d t
= 〈sµpµ〉i.c. + 〈s2

µ〉i.c.
1
N

∑

ν(6=µ)

〈sνpν〉i.c. − 〈sµpµ〉i.c.
1
N

∑

ν(6=µ)

〈s2
ν〉i.c. . (18)
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Rearranging terms and using
∑

µ〈s
2
µ〉i.c. = N and

∑

µ〈sµpµ〉i.c. = 0,

d〈Iµ〉i.c.

d t
= 0 , (19)

and all Iµs are conserved on average over the initial conditions.

Finally, we analyse the conservation on average of 2Hquad =
∑

µ

�

p2
µ/m−λµs2

µ

�

,

dHquad

d t
=
�

Hquad, H[z(t)]
	

= −
z(t)
m

∑

µ

sµpµ . (20)

Taking the average with respect to ρi.c. and using 〈φ′〉i.c. = 0, we deduce that Hquad is also
conserved on average. This is not surprising since

Hquad = −
1
2

∑

µ

λµ Iµ , (21)

under the constraints.

2.2 Long times and large N limits

In Newtonian form the equations of motion are

m s̈µ + (z(t)−λµ)sµ = 0 . (22)

The dynamics reduce to the ones of a set of uncoupled harmonic oscillators only if z(t) reaches
a long-times limit with a strictly constant value. This is only possible in the large N and long
times limit taken in the precise order

lim
t→∞

lim
N→∞

z(t)≡ z f . (23)

Indeed, in order to have a well defined long time limit, we need N →∞, given that for finite
N there will always be oscillations of z(t) around its average.

In [10,11] we derived Schwinger-Dyson equations in the N →∞ limit which allowed us
to study the long-time evolution in the thermodynamic limit. This approach does not yield
information about the behaviour of the µ modes independently. If we want to treat them one
by one, we are forced to keep N finite. Another formalism [87], mixing analytic and numeric
methods, allowed us to reach long but also finite times in systems with finite size [10,11]. This
point will be very important for the analysis of the numerical solution presented in Sec. 6.

2.3 The Neumann model

The celebrated Neumann Model (NM) describes the dynamics of a particle strictly constrained
to move on the N − 1 dimensional sphere, under the effect of fixed Hookean forces [25]. It
can be formulated in two ways which we summarise in App. B.

The model we have just introduced reproduces on average the main characteristics of the
Neumann model. We expect them to be completely equivalent in the N →∞ limit provided
that the relative fluctuations of the constraints vanish. To draw an analogy with the ensembles
of statistical mechanics, our model is the "grand canonical" version of the Neumann model
in which the spherical constraint, playing the role of the "number of particles", is conserved
only on average. We can therefore expect equivalence between both representations if the
fluctuations of the quantity to be constrained vanish. We will study this point in detail in
Sec. 7, adapting ideas in [72–74] to the problem at hand.
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2.4 The spherical Sherrington-Kirkpatrick model

The choice of a quadratic potential with harmonic constants distributed with the semi-circle
Wigner law, see Eq. (7), is motivated by a very well-known model of a disordered system, the
spherical Sherrington-Kirkpatrick or p = 2 model. In App. C we recall the canonical equilib-
rium properties of this model when in contact with a thermal bath at temperature T0. We
use this probability distribution to draw the initial conditions for the dynamic evolution of our
particle, with the physical motivation given in Sec. 3.

3 Initial conditions and quench protocol

To specify the dynamics of the system we need to choose the initial state and the Hamilto-
nian that drives the evolution. We address now how we implement these choices. We discuss
the initial measures used: a Gaussian centered at zero with finite or diverging dispersion
(Sec. 3.1.1), and a mixed two pure-state measure with the possibility of symmetry breaking
induced by a vanishing pinning field (Sec. 3.1.2) [72–74]. We briefly describe the quench pro-
tocol and the energy injection or extraction it induces in Sec. 3.2. We evaluate the Uhlenbeck
constants of motion in Sec. 3.3. Finally, in Sec. 3.4 we recall results found in [10] using the
Schwinger-Dyson equations.

3.1 Initial conditions

Concerning the choice of initial conditions, we will be guided by the Boltzmann equilibrium
statistical properties of the model with potential energy (7), which we call H(0) when the
harmonic constants are λ(0)µ . We distinguish three cases:

– The direction ~vN with the largest harmonic constant λ
(0)
N plays no special

role and the position of the particle has no macroscopic projection on it,
sN (t = 0) ≡ ~s(t = 0) · ~vN = O(1). The fluctuations around this value are order 1.
Their average vanishes and the variance is O(1). We call these initial configurations
extended.

– The position of the particle is mostly aligned with this direction and
sN (t = 0) ≡ ~s(t = 0) · ~vN = O(N1/2). The configurations are therefore very close to
the minimal energy one. We call these initial configurations condensed with symmetry
broken.

– The position of the particle is not macroscopically aligned with the direction ~vN but
there are large fluctuations in the ensemble of initial conditions in such a way that
〈s2

N (t = 0)〉i.c. =O(N). We say that there is condensation of fluctuations in this case.

These configurations correspond to the conventional thermal equilibrium of the model
defined by H(0) at temperatures T0 ≥ J0, in the first case, or T0 ≤ J0 in the second and third
cases. The initial conditions are sketched in Fig. 1, more details are given below and in App. C.
We then switch off any connection to the environment, change the Hamiltonian to H and let
the system evolve in isolation in the way described in Sec. 3.2.
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3.1.1 Symmetric distribution

Finite N initial conditions drawn from

ρi.c.({pµ, sµ}) =
1

Zeq
e
−

1
T0

∑

µ

p2
µ

2m
−

1
T0

∑

µ

(z(N)eq −λ
(0)
µ )

2
s2
µ

, (24)

with Zeq the partition function, preserve the symmetry sN ↔−sN . The λ(0)µ follow the Wigner

law, and each element has variance J2
0/N . This distribution is equivalent to the equilibrium

measure of the p = 2 spherical spin model at temperature T0, see App. C, with the aggregate
of a Maxwell distribution for the momenta. The Lagrange multiplier z(N)eq imposes the primary
constraint on average, while the average of the secondary constraint is satisfied automatically
since 〈sµpµ〉i.c. = 0, ∀µ. The upper-script (N) indicates that zeq depends on the system size.

The relevant statistical averages are

〈 p2
µ 〉i.c. = mT0 ∀µ, N , (25)

〈 s2
µ 〉i.c. =

T0

z(N)eq −λ
(0)
µ

∀µ, N , (26)

where the Lagrange multiplier z(N)eq can be obtained, numerically, as the solution of the spher-
ical constraint equation

N
∑

µ=1

〈 s2
µ 〉i.c. =

N
∑

µ=1

T0

z(N)eq −λ
(0)
µ

= N . (27)

In a previous work (see Sec. 5.5 in Ref. [10]), we have checked that the solution z(N)eq of Eq. (27)
has correct large N limits in both the high and low temperature phases. Moreover, we find
that z(N)eq > λN for any finite N , which ensures that the averages 〈s2

µ〉i.c. are well defined.
Note that for this set of initial conditions the sN mode always has a vanishing average

〈sN 〉i.c. = 0. It is its variance 〈s2
N 〉i.c., instead, that diverges with N in the condensed phase

while it is O(1) in the extended one.
Once the finite size Lagrange multiplier is obtained, we replace it in Eq. (26) to obtain

〈 s2
µ(0

+) 〉i.c. = 〈 s2
µ 〉eq, which together with 〈 p2

µ(0
+) 〉i.c. = 〈 p2

µ 〉eq and 〈 pµ(0+)sµ(0+) 〉i.c. = 0,
are a set of initial condition for the mode dynamics.

Some initial spin configurations of this kind are shown with red arrows in Fig. 1, in the
middle and right graphs. The symmetry property is illustrated by the fact that ~m, the average
of ~s shown with a (green) dot, vanishes. The two concentrical spheres in the middle graph
represent the fluctuations of the spherical constraint, see Sec. 7 and Refs. [72–74].

3.1.2 Symmetry broken configurations

In the condensed phase we can envision another kind of initial conditions, such that the last
mode acquires a large average but with an O(1) variance,

ρi.c.({pµ, sµ}) =
1

Zeq
e

−
1
T0

∑

µ

p2
µ

2m
−

1
T0

N−1
∑

µ=1

(z(N)eq −λ
(0)
µ )

2
s2
µ −

1
T0

(sN − s̄N )
2

2σ2
N , (28)

where σN is an O(1) number. In order to fix 〈sN 〉i.c. = s̄N we use the spherical constraint,

N =
∑

µ

〈 s2
µ 〉i.c. =

N−1
∑

µ=1

T0

z(N)eq −λ
(0)
µ

+ s̄2
N +σ

2
N . (29)
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-
〈s2

N 〉eq = qinN 〈s2
N 〉eq =O(1)

T0/J0T0/J0 < 1 T0/J0 > 1

Condensed Extended

symmetry broken or symmetric

〈sN 〉eq =O(N 1/2) 〈sN 〉eq = 0

Figure 1: The three kinds of initial conditions. Symmetry broken and symmetric
for T0/J0 < 1, which we call condensed because of 〈s2

N 〉eq = qinN , and extended
with 〈s2

N 〉eq = O(1) for T0/J0 ≥ 1. The (green) vector ~m represents the symmetry
broken direction, while the (red) arrows ~s indicate different realisations of the initial
conditions.

In the large N limit, z(N)eq → λ
(0)
max = 2J0 (see App. C) and we can drop the sub-leading contri-

bution σ2
N . Thus,

lim
N→∞

s̄2
N = N

�

1−
T0

J0

�

≡ Nqin , (30)

and the last mode can assume two values s̄N = ±
p

Nqin, breaking the sµ→−sµ symmetry of
the Hamiltonian. The symmetry breaking can also be generated with a small "ordering field"
in the direction of the N -th mode, see Ref. [28].

In the large N limit the symmetric and symmetry broken initial conditions give the same
quadratic averages 〈 p2

µ 〉i.c. and 〈 s2
µ 〉i.c.. Since in the numerical simulations we focus only on

quadratic averages, the results for them will be the same no matter which initial conditions
we take. For simplicity we choose to use the symmetric initial conditions in the numerics.
The difference between both types of initial conditions becomes important, though, when we
consider higher order averages such as 〈 s4

µ 〉i.c. related to the fluctuations of the quadratic
quantities. This issue will help us understanding the dynamics for some ranges of parameters
and it will be relevant when we discuss the equivalency with the Neumann Model in Sec. 7.

3.2 Quench protocol

We perform an instantaneous quench so that at time t = 0+ the averages

〈p2
µ(0

+)〉i.c. = mT0 , 〈s2
µ(0

+)〉i.c. =
T0

z(0)eq −λ
(0)
µ

, (31)

where z(0)eq is the Lagrange multiplier fixed with interaction strength J0, and the condensation
or not of the last mode, are not altered. The further evolution is driven by the Hamiltonian

H[z(t)] =
∑

µ

p2
µ

2m
+
∑

µ

1
2
(z(t)−λµ)s2

µ with λµ =
J
J0
λ(0)µ . (32)

For J = J0 the system remains in the initial thermal equilibrium.
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For each initial condition, the mode energy variation is

∆eµ ≡ eµ(0
+)− eµ(0

−) = ekin
µ (0

+) + epot
µ (0

+)− ekin
µ (0

−)− epot
µ (0

−) , (33)

with the kinetic and potential energies

ekin
µ =

1
2m

p2
µ , epot

µ = −
1
2
λµs2

µ . (34)

Since the quench is instantaneous for each initial state, p2
µ(0

+) = p2
µ(0
−), there is no variation

of the modes’ kinetic energy. Moreover, s2
µ(0

+) = s2
µ(0
−) for all µ implies

∆eµ = −
1
2
(λµ −λ(0)µ )s

2
µ(0
−) = −

1
2

�

J
J0
− 1

�

λ(0)µ s2
µ(0
−) =

�

J
J0
− 1

�

epot
µ (0

−) . (35)

For positive λ(0)µ and J/J0 > 1, or for negative λ(0)µ and J/J0 < 1, there is potential, and hence

total, energy extraction from the µth mode. Instead, for positive λ(0)µ and J/J0 < 1 or for

negative λ(0)µ and J/J0 > 1 there is potential, and also total, energy injection in the µth mode.
Figure 2 summarises the averaged mode energy variation at the quench. We note that the

modes close to the edge are softer than the rest. In particular, the N th one is the softest and
its energy the most altered by the quench. In the figure we refer to the phases that we will
find in the dynamic phase diagram, phase I for T0 > J0 and J < J0, phase II for T0 > J0 and
J > J0, phase III for T0 < J0 and J > J0, and phase IV for T0 < J0 and J < J0 [12].

Concerning the total energy density variation at the quench, one needs to sum over all
modes the expression above

∆e =
1
N

∑

µ

∆eµ = −
1
2

�

J
J0
− 1

�

1
N

∑

µ

λ(0)µ s2
µ(0
−) =

�

J
J0
− 1

�

epot(0−) , (36)

−10

−5

0

5

10

−2 −1 0 1 2

〈∆
e(
λ
)〉 i

.c
.

λ/J

Inj Sec I
Ext Sec II
Ext Sec III
Inj Sec IV

Figure 2: Averaged mode energy variation at the instantaneous quench in the
N →∞ limit. The parameters are T0 = 1.5> J0, J = 0.4< J0 in phase I (injection),
T0 = 1.5 > J0, J = 1.6 > J0 in phase II (extraction), T0 = 0.5 < J0, J = 1.2 > J0
in phase III (extraction), and T0 = 0.5 < J0, J = 0.4, J0 in phase IV (injection).
In phases I and II 〈∆eN 〉i.c. is finite while in phases III (green) and IV (violet) it is
proportional to N .
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and the sign is fully determined by the prefactor since epot(0−) is negative in all cases. Whereas
the quench is found to inject an extensive amount of energy if J/J0 < 1, it extracts an extensive
amount of energy if J/J0 > 1 [10].

In the course of the evolution the mode total energies will reshuffle until, in the N →∞
limit, a stationary limit is reached in which, we will see, they remain constant.

Since the system is isolated, the total energy density in the asymptotic state, e f , is the
same as the one at t = 0+, right after the quench, e f = 〈e(0+)〉i.c.. The averaged ki-
netic energy is 〈ekin(0+)〉i.c. = T0/2 in all sectors, while the averaged potential energy is
equal to 〈epot(0+)〉i.c. = −JJ0/(2T0) for extended initial conditions (phases I and II) and
〈epot(0+)〉i.c. = −JJ0/(2T0)[1− (1− T0/J0)

2] for condensed initial conditions (phases III and
IV). The averaged kinetic and potential energies are not constant in time but the total en-
ergy is. In the asymptotic stationary limit one can use the total energy conservation and
z(t) = 2(〈ekin(t)〉i.c.−〈epot(t)〉i.c.), to derive the kinetic energy parameter dependencies given
in the last column of Table 1.

3.3 The Uhlenbeck integrals

In App. D we prove that, for the initial conditions and the Wigner density of λµ that we choose,
the averaged constants of motion are given by

〈I(λ)〉i.c. = k1
b−λ
a−λ

, for

�

J0 ≥ T0 and allλ ,
J0 < T0 and allλ 6= λN .

(37)

The parameters k1, a and b depend on J0, T0, J :

k1 =
T2

0

J0J
and b =

J(J + J0)
T0

in all cases , (38)

while

a =







J
T0

�

J0 +
T0

2

J0

�

≥ 2J T0 ≥ J0 ,

2J T0 ≤ J0 .
(39)

For T0 < J0 one has to single out the N th constant of motion:

〈IN (0
+)〉i.c. =

�

1−
T0

J0

��

1−
T0

J

�

N + o(N) . (40)

In the last equation, the prefactor vanishes at T0 = J0 and IN should become O(1) and equal
to the value in Eq. (37). One can easily verify that

∫

dλρ(λ)〈I(λ)〉i.c. + 〈IN (0+)〉i.c./N = 1.
Some relations we will use later are

a± 2J =
J

J0T0
(T0 ± J0)2 ,

a− b =
J

J0T0
(T0

2 − J0J) ,
T0 ≥ J0 . (41)

The constants 〈Iµ〉i.c. define the allowed sub-space in phase space. We next discuss several
aspects of them which will help us understand the dynamic behaviour of the particle.

The spectrum of constants of motion is shown, for several representative sets of parameters,
in Fig. 3 with high temperature (a) and low temperature (b) initial conditions, respectively.
We should note that in (a), though there is a strong variation close to the right edge, none of
the curves diverges. Instead, in (b) the N th constant of motion is proportional to N .
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(a) (b)
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0
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−2 −1 0 1 2

T0 = 1.5 J0

〈I
(λ
)〉 i

.c
.

λ/J

J/J0 = 0.5 (I)
1 (equil)

(T0/J0)
2 (II)
6 (II) −10

−5

0

5

10

−2 −1 0 1 2

T0 = 0.75 J0

λ/J

J/J0 = 0.35 (IV)
(T0/J0)

2 (IV)
1 (equil)
6 (III)

Figure 3: The spectrum of constants of motion averaged over the initial condi-
tions. Extended (a) and condensed (b) initial conditions are plotted separately in
the two panels for parameters given in the two keys.

One can readily check that for T0 > J0 and T0/J > 1, 〈IN (0+)〉i.c. < 0. This is what we
will call phase I and is represented with a white background in Fig. 4 (a). Also for extended
initial conditions, T0 > J0, within what we call phase II, T0/J < 1, the sign of the largest mode
averaged constant is decided by

〈IN (0
+)〉i.c. =

�

> 0 T0 < (J0 + J)/2 y < (1+ x)/2 ,
< 0 T0 > (J0 + J)/2 y > (1+ x)/2 ,

phase II . (42)

This defines a straight line separating a region IIa (white background) from a region IIb
(dashed blue background) both in phase II. Below this line, the sign is positive while above it,
it is negative.

Another important fact is that for condensed initial conditions T0 < J0, and the first factor
in 〈IN 〉i.c. is positive definite. Instead, the second factor changes sign at the transition between
phase III (dashed blue background) and IV (white background):

〈IN (0
+)〉i.c. =

�

> 0 T0 < J phase III ,
< 0 T0 > J phase IV .

(43)

For T0/J0 < 1, on the straight line y = (1+ x)/2, the bulk integrals are all equal, with the
N th one distinguishing from the rest and ensuring the validity of the sum rule

∑

µ〈Iµ〉i.c. = N .
For T0/J0 > 1, all integrals of motion equal one on the curve y2 = x as can be observed in
Fig. 3 (a). We will show in Sec. 5 that an exact solution with Gibbs-Boltzmann equilibrium
properties is found for such parameters. On the continuation of this curve below T0/J0 = 1
the integrals of motion differ from each other. Still, we have also found a particularly simple
exact solution for these parameters though not one of conventional equilibrium. The full curve
y = x2 is shown in violet in Fig. 4 (a).

3.4 Schwinger-Dyson equations in the N →∞ limit

In this Section we briefly summarise the phase diagram derived in the N →∞ limit from the
analysis of the Schwinger-Dyson equations. See Ref. [10] for more details on these methods
and Fig. 4 (b) for a recap.
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(a) (b)

0
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3

0 1 2 3

I

T
0
/J

0

J/J0

IIa

IIb

IIIIV

〈IN〉i.c. < 0

〈IN〉i.c. > 0

0

1

2

3

0 1 2 3

T
0
/J

0

J/J0

zf = T0 + J2/T0

q = 0

zf = 2J

q = 0

zf = 2J q > 0

I

II

III

Figure 4: Properties in parameter space. (a) Sign of the last conserved quantity,
〈IN 〉i.c., in different sectors of the {T0/J0, J/J0} plane. Below the horizontal line
T0 = J0, 〈IN 〉i.c. =O(N). In the full white region 〈IN 〉i.c. < 0 while in the blue dashed
part 〈IN 〉i.c. > 0. The violet solid line represents T0/J0 = (J/J0)1/2. 〈Iµ〉i.c. = 1 for all
µ on this curve in phase II but they keep a µ dependence on the curve’s continuation
in phase IV. (b) The dynamical phase diagram obtained in [10] from the study of the
asymptotic limit of the Schwinger-Dyson equations coupling correlation and linear
response in the strict thermodynamic limit. The labels in the three phases display
the values of the asymptotic Lagrange multiplier, z f , and the limit of the self time-
delayed correlation function q. The static susceptibility equals χst = 1/T0 to the left
of the diagonal and χst = 1/J to the right of it. q0 ≡ limt→∞ C(t, 0) 6= 0 in III and
vanishes elsewhere. From the analysis of the scaling of 〈s2

N 〉 and 〈p2
N 〉 we were able

to identify phase IV, see Section 5 and Fig. 5.

As common in the treatment of fully connected disordered models, one can derive closed
Schwinger-Dyson equations, which couple the time-delayed disorder averaged self-correlation
and linear response, in the strict N →∞ limit. These equations include the influence of the
initial conditions as special terms that know about the distribution with which those have been
drawn. The observables are then computed under the procedure

lim
N→∞

[〈. . . 〉i.c.]λ , (44)

where [. . . ]λ denotes an average over quenched randomness and, eventually, times are
taken to diverge only after the thermodynamic limit. A detailed mixed analytical and
numerical study of these equations leads to the phase diagram in Fig. 4 (b) [10]. Ba-
sically, three phases were identified, distinguished by different values of the asymptotic
Lagrange multiplier, z f ≡ limt→∞ z(t), the susceptibility, χst = R̃(ω = 0), the limit
of the self-correlation q = limt→∞ limtw→∞ C(t, tw) and the one of the correlation with
the initial condition q0 = limt→∞ C(t, 0). The correlation is the position-position one,
C(t, tw) = N−1

∑

µ[〈sµ(t)sµ(tw)〉i.c.]λ. All these values, in these three phases and a new one
that we recognise here (see phase IV in Section 5 and Fig. 5), are given in Table 1. The con-
trol parameter dependence of the asymptotic time-averaged kinetic energy density can also be
used to distinguish the phases and are given in the last column in the same Table.
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Table 1: Control parameters and relevant measurements: the asymptotic La-
grange multiplier z f , the static susceptibility χst, the limit of the self-correlation
q = limt→∞ limtw→∞ C(t, tw), the asymptotic correlation with the initial condition

q0 = limt→∞ C(t, 0), and the kinetic energy density e f
kin = 〈ekin〉i.c., in the four phases

of the phase diagram. We recall that e f = 2e f
kin − z f /2.

Phase Parameters z f χst q q0 4e f
kin

I T0 > J T0 +
J2

T0

1
T0

0 0 −
J0J
T0
+ 2T0 +

J2

T0

II J > T0 > J0 2J
1
J

0 0 −
J0J
T0
+ T0 + 2J

III J > T0 & J0 > T0 2J
1
J

> 0 > 0 T0(1+
J
J0
)

IV J < T0 < J0 T0 +
J2

T0

1
T0

0 0
J T0

J0
− 2J + 2T0 +

J2

T0

4 The Generalised Gibbs Ensemble

Local observables in the asymptotic stationary limit of the evolution of integrable systems are
expected to be equal to their averages over the Generalised Gibbs Ensemble (GGE) measure.
They should therefore be derived from variations of the GGE partition function

ZGGE =

∫

d~s d~p dz dz′ exp

�

−
∑

µ

γµ Iµ −
z
2

�

∑

µ

s2
µ − N

�

+
z′

2

�

∑

µ

sµpµ

��

, (45)

with respect to adequately added sources that we omit to write to lighten the notation. The
γµ are Lagrange multipliers which should be implicitly fixed by the GGE equations,

〈Iµ〉i.c. = 〈Iµ〉GGE , (46)

where 〈· · · 〉GGE denotes an average with respect to the measure in Eq. (45).
In Eq. (45) we propose a “soft” version of the GGE in which the constraints are imposed on

average through the Lagrange multipliers z and z′. (We will see that these are related but are
not identical to the multipliers used in the dynamic formalism.) The relationship between this
formulation of the GGE and the one involving strict constraints will be addressed in Sec. 7.
We will explain how to recover the equilibrium Maxwell-Boltzmann distribution from Eq. (45),
when no quench is performed, in Sec. 4.6. In the rest of this Section we evaluate the partition
function.

4.1 The action

As a first step towards the evaluation of ZGGE, let us expand the expression of the GGE measure
by using the definition of the integrals of motion,

ZGGE =

∫

d~s d~p dz dz′ exp
�

−
N
∑

µ=1

�

γµ +
z
2

�

s2
µ +

z′

2

∑

µ

sµpµ +
zN
2

+
1

mN

∑

µ6=ν

η(µ,ν) (s2
µp2
ν − sµsνpµpν)

�

. (47)
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At this stage it is important to proceed to an analytic continuation in the last term in Eq. (47).
The idea is to complete the sum, adding the µ = ν contribution, by introducing a regularised
fraction

η(µ,ν)≡
� γµ − γν
λµ −λν

�

R
, (48)

where R stands for regularised. The only requirement for this function is to be continuous in the
thermodynamic limit and to verify η(µ,ν) = (γµ − γν)/(λµ −λν) for µ 6= ν. This continuation
is simply a rewriting of the partition function and not a new definition as it can be verified that

∑

µ 6=ν

γµ − γν
λµ −λν

(s2
µp2
ν − sµsνpµpν) =

∑

µ,ν

� γµ − γν
λµ −λν

�

R
(s2
µp2
ν − sµsνpµpν) . (49)

In the following we will detail when this change plays a role and which key element it intro-
duces.

Next, we define auxiliary fields,

A(s)µ = s2
µ , A(p)µ = p2

µ , A(sp)
µ = sµpµ , (50)

and we introduce factors 1

1∝
∫

∏

µ

dA(p)µ dl(p)µ exp

�

∑

µ

l(p)µ
�

A(p)µ − p2
µ

�

�

, (51)

where we avoided writing numerical factors. Analogous expressions involving A(s)µ and A(sp)
µ

are also introduced. Inserting these identities, and after some simple steps, we find

ZGGE =

∫

d~s d~p dA(p)µ dl(p)µ dA(s)µ dl(s)µ dA(sp)
µ dl(sp)

µ dz dz′ ×

exp
�

−
∑

µ

γµA(s)µ +
1

mN

∑

ν,µ

η(µ,ν)
�

A(s)µ A(p)ν − A(sp)
µ A(sp)

ν

�

−
z
2

�

∑

µ

A(s)µ − N

�

+
z′

2

∑

µ

A(sp)
µ

+
∑

µ

�

l(s)µ A(s)µ + l(p)µ A(s)µ + l(pp)
µ A(sp)

µ

�

(52)

−
∑

µ

�

l(s)µ s2
µ + l(p)µ p2

µ + l(sp)
µ sµpµ

�

�

,

where, again, we omitted irrelevant numerical factors. With this choice of auxiliary variables
the expression in the exponent is automatically organised in a group of terms that depend
only on the new variables A(s,p,sp)

µ and the Lagrange multipliers l(s,p,sp)
µ , and another group of

quadratic terms in the original phase-space variables {sµ, pµ}. The Gaussian integrals over
{sµ, pµ} can then be easily computed,

∏

µ

∫

dsµ dpµ exp

�

−
1
2

�

sµ pµ
�

�

2l(s)µ l(sp)
µ

l(sp)
µ 2l(p)µ

�

�

sµ
pµ

�

�

∝
∏

µ

h

4l(s)µ l(p)µ −
�

l(sp)
µ

�2i−1/2
, (53)

and the GGE partition function can be rewritten as

ZGGE∝
∫

dA(p)µ dl(p)µ dA(s)µ dl(s)µ dA(sp)
µ dl(sp)

µ dz dz′ exp (−NS) , (54)
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with the action S given by

S =
1
N

∑

µ

γµA(s)µ −
1

mN2

∑

µ,ν

η(µ,ν)
�

A(s)µ A(p)ν − A(sp)
µ A(sp)

ν

�

−
1
N

∑

µ

�

l(s)µ A(s)µ + l(p)µ A(p)µ + l(sp)
µ A(sp)

µ

�

+
1

2N

∑

µ

ln
h

4l(s)µ l(p)µ −
�

l(sp)
µ

�2i

+
z

2N

�

∑

µ

A(s)µ − N

�

−
z′

2N

∑

µ

A(sp)
µ . (55)

Up to now the treatment has been exact for any N . In order to proceed further we have to
make some approximations.

4.2 Saddle-point evaluation

In the large N limit the saddle-point values of the A’s will be equal to their averages under the
GGE measure

A(s)µ
�

�

S.P. = 〈s
2
µ〉GGE , A(p)µ

�

�

S.P. = 〈p
2
µ〉GGE , A(sp)

µ

�

�

S.P. = 〈sµpµ〉GGE , (56)

where
�

�

S.P. indicates that the quantities are evaluated at the saddle-point. We note that S is an
O(1) object with respect to N and we are making saddle-point evaluations with respect to N
quantities. This procedure can be justified by taking a continuum limit in which sums over µ
are replaced by integrals over λ with the adequate density. To keep the notation light, we do
not make this passage explicit here and we stick to the discrete notation.

The first group of 3N saddle-point equations comes from differentiating the action with
respect to l(s,p,sp)

µ ,

A(s)µ =
2l(p)µ

4l(s)µ l(p)µ −
�

l(sp)
µ

�2 , A(p)µ =
2l(s)µ

4l(s)µ l(p)µ −
�

l(sp)
µ

�2 , (57)

and similarly for A(sp)
µ . The second group of 3N saddle-point equations arise from differenti-

ating the action with respect to A(s,p,sp)
µ ,

l(s)µ = γµ +
z
2
−

1
mN

∑

ν
A(p)ν η(µ,ν) , l(p)µ = −

1
mN

∑

ν
A(s)ν η(µ,ν) ,

l(sp)
µ =

z′

2
+

2
mN

∑

ν
A(sp)
ν η(µ,ν) . (58)

The last two equations represent the constraints and are derived from the differentiation of
the action with respect to z and z′,

∑

µ

A(s)µ = N ,
∑

µ

A(sp)
µ = 0 . (59)

These are 6N +2 equations for the mean-fields A(s,p,sp)
µ , the Lagrange multipliers l(s,p,sp)

µ , z and
z′.
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4.3 The conserved quantities

The system of saddle-point equations obtained in the previous Subection should be comple-
mented with the equations that determine the GGE Lagrange multipliers γµ.

The averages of the conserved quantities over the GGE distribution are

〈Iµ〉GGE = −
∂ ln ZGGE

∂ γµ
. (60)

In the saddle-point approximation, at leading order in N ,

ln ZGGE = −NS(A(s,p,sp)
µ , l(s,p,sp)

µ , z, z′)
�

�

�

S.P.
. (61)

From Eq. (55) we easily obtain

〈Iµ〉GGE = A(s)µ +
1

mN

∑

ν(6=µ)

1
λν −λµ

��

A(s)µ A(p)ν − A(sp)
µ A(sp)

ν

�

+ (µ↔ ν)
�

�

�

�

S.P.
. (62)

The contribution of the regularisation of (γµ − γν)/(λµ − λν) for µ = ν induces sub-leading
corrections to the last expression in the large N limit. The additional set of equations for the
γµ’s can be obtained by equating the right-hand-side of Eq. (62) with 〈Iµ〉i.c.. Equations (62)
together with Eqs. (57)-(59) form a closed set which involve all the unknowns. It has the
value of the conserved quantities in the initial state 〈Iµ〉i.c. and the value of J in the evolution,
which is specified by the λµ = (J/J0)λ(0)µ , as only inputs.

4.4 Simplification of the saddle-point equations

Henceforth we do not write explicitly |S.P., but we recall that the equations hold at the saddle-
point level. We will focus on the manifold of solutions with A(sp)

µ = 0, ∀µ, for which the

secondary constraint
∑

µ A(sp)
µ = 0 is satisfied automatically, and the Lagrange multiplier z′

can be safely discarded, as well as the l(sp)
µ which also vanish. We will see in the next Section

that this particular manifold of solutions correctly captures the dynamics of the system.
With this prescription the system of saddle-point equations can be simplified to

A(p)µ =

�

−2
mN

∑

ν

A(s)ν η(µ,ν)

�−1

,

A(s)µ =

�

2γµ + z −
2

mN

∑

ν

A(p)ν η(µ,ν)

�−1

,

∑

µ

A(s)µ = N ,

(63)

which, together with the GGE equations,

〈Iµ〉GGE = A(s)µ +
1

mN

∑

ν(6=µ)

1
λν −λµ

�

A(s)µ A(p)ν + A(s)ν A(p)µ
�

= 〈Iµ〉i.c. , (64)

form a closed system coupling the mean-fields A(s,p)µ , the Lagrange multiplier enforcing the
primary spherical constraint z, and the GGE Lagrange multipliers γµ.

These equations are invariant under a simultaneous change γµ → γµ +
c
2 and z → z − c,

where c is an arbitrary number. We could choose c = z to formally eliminate z from the equa-
tions. In other words, we could “absorb” z into the Lagrange multipliers γµ. This is possible
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because
∑

µ〈Iµ〉GGE =
∑

µ A(s)µ , which implies that fixing the values of the conserved quantities
automatically fixes the value of the primary constraint. In short, the Lagrange multiplier z is
redundant. However, eliminating z̃ would obscure the equilibrium limit discussed in Sec. 4.6
so we keep it.

The analytic continuation leading to η(µ,ν) plays an important role in scenarii in which
the system condenses. As an example let us assume that we have A(s)N = 〈s

2
N 〉GGE = O(N) and

A(p)N = 〈p
2
N 〉GGE =O(1). Then, for the N th mode

A(p)N =

�

−2
mN

∑

ν

A(s)ν η(N ,ν)

�−1

=
�

(Ã(p)N )
−1 −

2
mN

A(s)N η(N , N)
�−1

, (65)

A(s)N =

�

2γN + z −
2

mN

∑

ν

A(p)ν η(N ,ν)

�−1

=
�

(Ã(s)N )
−1 −

2
mN

A(p)N η(N , N)
�−1

, (66)

where Ã(p)N and Ã(s)N are the mean-field solutions without the analytic continuation. In this case
the difference between the two saddle-point approximations is extensive as we have

A(p)N = Ã(p)N +O(1) , A(s)N = Ã(s)N +O(N) . (67)

It is yet unclear at this stage which set of solutions should be taken as a meaningful mean-
field decoupling. We will explain later why the analytic continuation is the correct approach,
necessary in cases with condensation.

We can extract a useful identity from Eqs. (63). First, we take the right-hand-sides of the
first two equations in (63) to their left-hand-sides and we sum over µ. Then we subtract the
resulting equations to find

∑

µ

A(s)µ
�

2γµ + z
�

= 0 . (68)

This equation will be useful in the developments of the next Subsections.

4.5 Harmonic Ansatz

We now propose a simple parametrisation of the solution of Eqs. (63),

A(s)µ = 〈s
2
µ〉GGE =

Tµ
z −λµ

, A(p)µ = 〈p
2
µ〉GGE = m Tµ , (69)

which corresponds to the ensemble average of a system of harmonic oscillators with frequen-
cies z−λµ at different temperatures Tµ. This parametrisation reduces the number of unknowns

from {A(s)µ , A(p)µ } (2N in number) to {Tµ} and z (only N+1). We will show that if the parameters
{Tµ} and z are such that the first equality in (63) and Eq. (68) are verified, then the second
equality in Eq. (63) follows automatically, i.e., the parametrisation is consistent. The system
of equations (63) and (68) can then be reduced to

m Tµ =

�

−2
mN

∑

ν

Tν
z −λν

η(µ,ν)

�−1

,
∑

µ

Tµ
z −λµ

(2γµ + z) = 0 . (70)

In fact, starting from the first equation above and using the identity

1
z −λν

1
λν −λµ

=
1

z −λµ

�

1
z −λν

−
1

λµ −λν

�

, (71)
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we end up with

Tµ
z −λµ

=
N
2

�

γµ

∑

ν

Tν
z −λν

−
∑

ν

Tν
z −λν

γν −
∑

ν

Tνη(µ,ν)

�−1

. (72)

Next we use the second equation in (70) in the last equality to finally arrive at

Tµ
z −λµ

=

�

2γµ + z −
2
N

∑

ν

Tνη(µ,ν)

�−1

, (73)

which is nothing but the second equation in (63) written under the harmonic Ansatz.
The mode temperatures Tµ are fixed by 〈Iµ〉i.c. = 〈Iµ〉GGE, which now reads

〈Iµ〉i.c. = 〈Iµ〉GGE =
Tµ

z −λµ
+

Tµ
N

∑

ν(6=µ)

Tν
λν −λµ

�

1
z −λµ

+
1

z −λν

�

, (74)

and is independent of the γµ. Thanks to the steps detailed in App. ??, we rewrite this equation
as

〈Iµ〉i.c. = 〈Iµ〉GGE =
2Tµ

z −λµ

 

1+
1
N

∑

ν(6=µ)

Tν
λν −λµ

−
〈s2

N 〉GGE

2N
δµN

!

. (75)

The last term gives a non-vanishing contribution only for µ= N and in the case of condensed
initial conditions.

The parameter z should be found by imposing
∑

µ〈Iµ〉GGE = N . It is important to recall
that z from the harmonic Ansatz is not necessarily related to the parameter z appearing in the
GGE measure, which could be absorbed in the γµ’s by the shift γµ 7→ γµ − z/2.

Equations (74) determine the mode temperatures Tµ. The first equation in (70) yields the
spectrum of Lagrange multipliers γµ and the second one determines z.

4.6 Equilibrium case

The constants of motion satisfy

∑

µ

�

−
λµ

2

�

Iµ =
1

4mN

∑

µ 6=µ

(sµpν − pµsν)
2 −

∑

µ

λµ

2
s2
µ , (76)

see Eq. (B.15). The right-hand-side reduces to Hquad, defined in Eq. (9), see also Eq. (B.1),
provided both constraints, φ and φ′, are satisfied. The last statement is easy to show, and it
is the consequence of a rearrangement of the kinetic term:

1
2

∑

µ6=µ

(sµpν − pµsν)
2 =

∑

µ

p2
µ

∑

ν(6=µ)

s2
ν −

∑

µ

sµpµ
∑

ν(6=µ)

sνpν

≈
∑

µ

p2
µ

�

N − s2
µ

�

+
∑

µ

p2
µs2
µ ≈

1
2m

∑

µ

p2
µ , (77)

where, to go from the first to the second line, we have used the primary constraint φ and the
secondary constraint φ′. In fact, the symbol ≈ denotes that the two sides are equal provided
the constraints are satisfied. Considering these facts, we expect the solution of the saddle-point
equations corresponding to

γµ = −λµ/(2T0) , (78)
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to be related to the equilibrium behaviour of Hquad, under the spherical constraint. In this
Subsection we explore this connection.

We start by considering the first equation in (70). It is easy to show that, with the above-
mentioned choice of the γµ, we obtain

Tµ = T0 . (79)

This result is consistent with the equilibrium average induced by Hquad. It is important to
stress that if we had not implemented the analytic continuation, Eq. (48), the result would
have been

Tµ =
T0

1−
1
N

Tµ
z −λµ

=
Harm.Ansatz

T0

1−
1
N
〈s2
µ〉GGE

, (80)

which departs from the equilibrium average imposed by Hquad for modes such that
〈s2
µ〉GGE = O(N). This would be the case for the N th mode for condensed initial conditions.

This remark justifies the introduction of the analytic continuation, given that having used it,
the saddle-point equations reproduce the proper equilibrium results.

Additionally, if we investigate the consequences of choosing γµ = −λµ/(2T0) on the second
equation in (70), we find that the solution reads Tµ/(z −λµ) = T0/(zeq −λµ) in the N →∞
limit, with zT + 1= z = zeq, ensuring that the second equation in (70) is also satisfied.

In conclusion, solving the saddle-point equations with γµ = −λµ/(2T0) we see that, in the
N →∞ limit, the GGE expectation values coincide with the ones obtained with the Maxwell-
Boltzmann equilibrium measure of Hquad at temperature T0.

Finally, note that in equilibrium, Eqs. (74) have to be imposed setting λµ = λ(0)µ , in other
words, J = J0, and one should find Tµ = T0 for all µ. If one compares the right-hand-side
in Eq. (74) to the expressions for 〈Iµ〉GGE, it is not hard to see that they are identical with
Tµ replaced by T0 and z by zeq showing that the latter are solutions to the set of N coupled
equations.

One can easily check that this equilibrium solution is the only one compatible with γµ
being proportional to λµ. To prove it, it is enough to set γµ = −aλµ in the first equation in
(70) and use the spherical constraint. The resulting equation is Tµ = 1/(2a) and one recovers
a constant spectrum of temperatures, the one of equilibrium.

5 Analytic solution in the large N limit

In this Section we derive, analytically, the spectra of mode temperatures and Lagrange mul-
tipliers in all phases of the phase diagram exposed in Fig. 5. We proceed differently in cases
with 〈IN 〉i.c. = O(1) (extended) and 〈IN 〉i.c. = O(N) (condensed). A detailed comparison of
the analytic expressions and the numerical solutions will be presented in Sec. 6.

5.1 Equations in the continuum limit

In the infinite N limit, we can replace

1
N

∑

µ

f (λµ)→
∫

dλ ρ(λ) f (λ) , (81)

though in some cases we have to be careful and separate the contribution of the N th mode
which could scale linearly with N . Within the harmonic Ansatz and in the continuum limit the
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saddle-point Eqs. (70) read

2T (λ) =

�

−
∫ ′

dλ′ ρ(λ′)
T (λ′)
z −λ′

�

γ(λ)− γ(λ′)
λ′ −λ

�

+ q
γ(λ)− γN

λN −λ
(1−δλ,λN

)

�−1

∫

dλ ρ(λ)
T (λ)
z −λ

(2γ(λ) + z) = 0 ,

(82)

where −
∫

indicates the principal value in the singularity at λ = λ′, and the prime stresses the
fact that the contribution of the largest mode has been separately taken into account with the
addition of the last term in the first equation. The term proportional to q = 〈s2

N 〉GGE/N can only
be present for λ 6= λN for parameters with condensation. We will also explore the possibility
of having TN ∝ N in which case a separate contribution to the integral in the second equation
should also be considered. In short we define

q = 〈s2
N 〉GGE/N , τ= 〈p2

N 〉GGE/(mN) , (83)

and we see whether there are solutions with finite values of q and τ in some parts of the phase
diagram.

The GGE equations (75) take the form,

〈I(λ)〉GGE =
2T (λ)
z −λ

�

1−−
∫ ′

dλ′ρ(λ′)
T (λ′)
λ−λ′

−
τ

λ−λN
(1−δλ,λN

)−
q
2
δλ,λN

�

= 〈I(λ)〉i.c. , (84)

for all λ including λN . We used a loose notation in δλ,λN
here and above. One can easily check

that
∫

dλ ρ(λ) 〈I(λ)〉GGE+ 〈IN 〉GGE/N =
∫

dλ ρ(λ) T (λ)/(z−λ)+ 〈s2
N 〉GGE/N = 1, where the

integral run over the “bulk” and in some cases the additional terms are non-vanishing and
contribute to the correct normalisation.

The 〈I(λ)〉i.c. and 〈IN 〉i.c. were calculated in the N →∞ limit in App. D and their param-
eter dependence summarised in Sec. 3.3. In this limit the saddle-point evaluations are fully
justified. Taken together, Eqs. (82)-(84) constitute a closed system of integral equations for
the functions T (λ), TN , γ(λ), γN and the parameters z and z. One of the numerical procedures
that we employ uses Eq. (84) and the spherical constraint to fix T (λ), TN and z. Then, the sec-
ond equation in (82) determines z, and the first one the ensemble of γs. Surprisingly enough,
these equations also admit an analytic solution which we expose in the next Subsections.

5.2 Temperature and multiplier spectra for T0 = (JJ0)1/2

The Ansatz
T (λ) = J 〈I(λ)〉i.c. , (85)

with the explicit form of 〈I(λ)〉i.c. = k1(b − λ)/(a − λ) given in Eq. (37) and the parameter
dependence of k1, a and b given below this equation, solves Eqs. (82)-(84) on the special curve
T0 = (JJ0)1/2. Below we give some details of this solution for T0 ≥ J0 and T0 < J0.

5.2.1 Extended cases T0 ≥ J0

For the special choice of parameters T0 = (JJ0)1/2 and T0 ≥ J0 (phase II) there is no ini-
tial condensation, the constants of motion are all identical to one, 〈I(λ)〉i.c. = 1, and the
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Figure 5: The dynamic phase diagram. The names of the phases refer to the scaling
of 〈s2

N 〉 and 〈p2
N 〉 (both averaged over the GGE or the dynamics) with N and the

consequent condensation or quasi-condensation phenomena, see the explanation in
the text. All transition lines are continuous.

total energy is e f = 0. It turns out that the quenched system behaves as in canonical equi-
librium at a single temperature, since all mode temperatures are identical, T (λ) = T f = J
and the γ(λ) become simply −β f λ/2 (plus an additive constant which can be absorbed by
the Lagrange multiplier z). The latter identity can be checked by verifying that Eq. (82), or
its discrete µ version Eq. (70), are solved by these γ(λ) for any choice of β f . One then has
∫

dλρ(λ)γ(λ) I(λ) = −(β f /2)
∫

dλρ(λ)λ I(λ) = β f Hquad. Therefore, the GGE measure re-
duces to the Gibbs-Boltzmann one. It is the constraint

∫

dλρ(λ) 〈I(λ)〉GGE = 1 which imposes
T (λ) = T f = J . Moreover, although 〈s(λ → 2J)〉GGE diverges, this divergence is integrable
and the form

〈s2(λ)〉GGE =
J

2J −λ
(86)

correctly verifies the spherical constraint without any need to separate a macroscopic 〈s2
N 〉GGE.

We therefore have

T (λ) = T f = J and γ(λ) = −
λ

2J
∀λ . (87)

This spectrum of mode temperature together with z = 2J yield the kinetic and potential ener-
gies e f

kin = J/2 and e f
pot = −J/2, consistently with the values given in Table I.

In [10] we solved the Schwinger-Dyson equations for parameters satisfying this particular
relation and we found that the dynamics soon reached a stationary limit with the fluctuation-
dissipation theorem holding at T f = J . The results we have just derived for the GGE measure
are in agreement with the system reaching conventional equilibrium at T f = J for these special
parameters although we have extracted energy from the system in the quench. We also note
that in the stationary regime, in which the time-dependent z has reached its stationary limit
z f = 2J , the Hamiltonian becomes one of independent harmonic oscillators.
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Figure 6: Finite size dependence on the special curve T0 = (JJ0)1/2 in phase II
with parameters T0 = 1.5 J0 and J = 2.25 J0. (a) 〈s2

N 〉GGE, with a power law fit
with parameters Cs = 0.95 and αs = 0.66. (b) 〈p2

N 〉GGE and the horizontal line
〈p2

N 〉GGE = J . Though there are very large error bars, this constant falls well within
them. The results have been averaged over up to 50 different realisations of the
harmonic constants and the error bars represent the variance around the average.

In Fig. 6 we display finite N data for parameters on the special curve in phase II. The data
are consistent with 〈p2

N 〉GGE = J (m= 1) and suggest a power law divergence of 〈s2
N 〉GGE with

N , with an exponent smaller than one, αs ∼ 0.66.

5.2.2 Condensed cases T0 < J0

On the continuation of the curve T0 = (JJ0)1/2 in phase IV, that is for T0 ≤ J0, the averaged
constants of motion in the bulk are not all identical. Still, the rather simple expressions

T (λ) = J
z −λ

2J −λ
and γ(λ) =

1
2J
(2J −λ)

λ− J −
p

JJ0

λ− z
, (88)

with z = T0 + J2/T0 = (J/J0)1/2(J + J0) yield the exact solution of Eqs. (82) and (84) on this
curve, with no need to separate the N th mode contributions. (We omitted the additive constant
in γ(λ).) A way to prove this result is to first solve for the spectrum of mode temperatures and
then treat the set of equations that fix γ(λ)with the Ansatz γ(λ) = (2J)−1(2J−λ)(λ−v)/(λ−z)
and v a parameter that is forced to take the form in Eq. (88). The λ dependence of these
expressions reduces to the one in (87) on the special curve in phase II. In the continuum limit,
T (λ) diverges at the edge of the spectrum but the divergence is integrable. One can check
that

∫

dλρ(λ)T (λ) = 2e f
kin with 2e f

kin given in the last line of Table I. Concomitantly, γ(2J)
vanishes. We note that

〈s2(λ)〉GGE =
J

2J −λ
(89)

on the whole special curve both in II and IV, and the spherical constraint is satisfied all along it.
For these reasons it is not necessary to separate the contribution of the N th mode in Eqs. (82)
and (84) when working on the special curve.

5.3 Temperature spectra in the extended phases I and II

It turns out that one can find a general solution for T (λ) everywhere in the phase diagram. In
this Section we describe the construction of this solution in phases I and II.
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In cases with T0 ≥ J0 we can neglect 〈s2
N 〉GGE/N and rewrite Eq. (84) in the form

ρ(λ)
(z −λ)

2
〈I(λ)〉i.c. = ρ(λ)T (λ)

�

1−−
∫

dλ′ρ(λ′)
T (λ′)
λ−λ′

�

, (90)

with 〈I(λ)〉i.c. given in Eq. (37). We will search an exact expression for πρ(λ)T (λ).
Let us define the complex function ζ(λ) = ζR(λ) + iζI(λ). The Kramers-Kronig relations

link its imaginary and real parts, ζI(λ) and ζR(λ), according to

ζI(λ) = −
1
π
−
∫

dλ′
ζR(λ′)
λ′ −λ

, ζR(λ) =
1
π
−
∫

dλ′
ζI(λ′)
λ′ −λ

, (91)

if the decay of |ζ(λ)| at infinity is at least as fast as 1/|λ|. Identifying

ζI(λ) = πρ(λ)T (λ) , (92)

Eq. (90) becomes

ζI(λ)(1+ ζR(λ)) = g(z,λ)≡
π

2
ρ(λ) (z −λ) 〈I(λ)〉i.c. . (93)

For |λ|< 2J , g 6= 0 and this implies

ζR 6= −1 and ζI = g/(1+ ζR) . (94)

For |λ| ≥ 2J , g = 0 and
ζI = 0 or ζR = −1 . (95)

Noticing that ζ2 = (ζ2
R−ζ

2
I )+2iζRζI implies 2ζRζI = Imζ2, the left-hand-side of Eq. (93) can

also be written as Im(ζ+ ζ2/2+ f ), with f ∈ R that is Im f = 0. Then,

Im(ζ+ ζ2/2+ f ) = Im(ζ+ ζ2/2) = g . (96)

The (opposite) Kramers-Kronig relation applied to the complex function ζ+ζ2/2+ f leads to

Re(ζ+ ζ2/2+ f ) =
1
π
−
∫

dλ′
Im(ζ+ ζ2/2+ f )

λ′ −λ
=

1
π
−
∫

dλ′
g(λ′)
λ′ −λ

≡
1
2

G . (97)

Using Re(ζ+ ζ2/2+ f ) = ζR+ (ζ2
R− ζ

2
I )/2+ f we can now distinguish g 6= 0 (|λ|< 2J) from

g = 0 (|λ|> 2J).
In the case g 6= 0, Re(ζ+ ζ2/2+ f ) = ζR+ ζ2

R/2+ f − g2/[2(1+ ζR)2] yields

ζR+
ζ2

R

2
+ f −

g2

2(1+ ζR)2
=

1
2

G , (98)

which, after adding and subtracting 1/2 and rearranging a little bit the various terms, becomes
an equation that fixes (1+ ζR)2:

0= (1+ ζR(λ))
4 − (1+ ζR(λ))

2 [1+ G(λ)− 2 f (λ)]− g2(λ) , (99)

or, in terms of ζ2
I ,

0= ζ4
I (λ) + ζ

2
I (λ) [1+ G(λ)− 2 f (λ)]− g2(λ) . (100)

Both are simple bi-quadratic equations, the first one for 1 + ζR, the second one for ζI. The
solutions read

2ζ2
I (λ) = −[1+ G(λ)− 2 f (λ)] +

�

[1+ G(λ)− 2 f (λ)]2 + 4g2(λ)
	1/2

, (101)

2(1+ ζR(λ))
2 = [1+ G(λ)− 2 f (λ)] +

�

[1+ G(λ)− 2 f (λ)]2 + 4g2(λ)
	1/2

, (102)
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for λ ∈ [−2J , 2J], where we chose the positive signs to ensure the positivity of the results. It
is easy to check that these expressions verify (93) for any f .

In the case g = 0, that is, outside the interval [−2J , 2J], ζI = 0 or ζR = −1. Then, Eq. (97)
implies

ζI = 0 ⇒ ζR +
ζ2

R

2
+ f =

G
2
⇒ ζR = −1± (1+ G − 2 f )1/2 , (103)

ζR = −1 ⇒ 1+ ζ2
I = 2 f − G ⇒ ζI = (2 f − 1− G)1/2 . (104)

The first line gives a continuous function ζR at |λ|= 2J , where g = 0, if we keep the plus sign.
The second line would give discontinuous ζR and ζI . We therefore select

ζI(λ) = 0 , ζR(λ) = −1+ (1+ G(λ)− 2 f (λ))1/2 , for |λ|> 2J . (105)

Having an explicit expression for ζI(λ) in the interval [−2J , 2J], written in Eq. (101), we
know the spectrum of mode temperatures T (λ) = ζI(λ)/[πρ(λ)] for |λ|< 2J . With this trick,
the solution is parametrized by an unknown function f (λ).

To go further, we need the explicit forms of g and G. The former is

g(λ) =
1

4J2

p

4J2 −λ2 θ (2J − |λ|) (z −λ) k1
b−λ
a−λ

, (106)

where

k1 =
T2

0

J0J
and b =

J(J + J0)
T0

in all cases, (107)

and

z =







T0 +
J2

T0
if T0 > J ,

2J if T0 < J ,
a =







J
T0
(J0 +

T0
2

J0
) if T0 > J0 ,

2J if T0 < J0 .
(108)

Note that a > 2J for T0 ≥ J0 and a = 2J for T0 ≤ J0. It will also be important to notice that
a = z in the full phase III and b = z in phase IV. In the case T0 < J0 we have to take care of the
condensed mode too.

The integral in G reads

G(λ)≡
2
π
−
∫

dλ′
g(λ′)
λ′ −λ

= −k1−
∫

dλ′ρ(λ′)
(z −λ′)
(λ−λ′)

(b−λ′)
(a−λ′)

, (109)

where we used the fact that the constants of motion averaged over the initial conditions are
rational functions. This integral has been discussed in App. A, see Eq. (A.6), and its result
depends on whether λ and a belong to the interval [−2J , 2J] or not. We know that a is
outside or at the border of this interval. Therefore,

G(λ)











=
k1

2J2

�

λ2 −λ(b+ z − a) + (b− a)(z − a) +
p

a2 − 4J2 (a− b) (a− z)
(λ− a)

− 2J2

�

,

λ→∞
−−−→ finite .

The first line refers to |λ|< 2J , where the function G is regular, even at its boundary, λ= 2J .
Outside the interval its expression changes, it is given in App. A, we do not need to repeat it
here, and one can check that it approaches a constant in the infinite λ limit.
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Summarising,

2[πρ(λ)T (λ)]2 = −[1+ G(λ)− 2 f (λ)] +
�

[1+ G(λ)− 2 f (λ)]2 + 4g2(λ)
	1/2

, (110)

with g(λ) in Eq. (106), the parameters a, b, z specified below this equation, and G(λ) in the
last unnumbered equation above, with the same parameters. More details on the functions
g and G are given in App. E. The real function f (λ) is, for the moment, free. For extended
situations, as in I and II, we can safely set it to zero. We will see below that the same can be
done in phase III, while in phase IV we need to take a special form of f .

We here summarise some salient features of the spectrum of mode temperatures in phases I
and II which are deduced from the solution above. Their detailed derivation is given in App. E.

• In phase I, z > 2J . The averages 0 < T (2J) = 〈p2(2J)〉GGE and 0 < 〈s2(2J)〉GGE
= (z − 2J)〈p2(2J)〉GGE are both finite, as well as the full spectrum of mode tempera-
tures.

• In phase II, z = 2J , but one can check that 〈p2(2J − ε)〉GGE = T (2J − ε) = O(1) (with
ε→ 0). Consequently, 〈s2(2J−ε)〉GGE diverges at the edge. Nevertheless, the divergence
is integrable and there is no need to separate an O(N) contribution of the last mode
to ensure the validity of the spherical constraint. This is confirmed by the numerical
solution of the GGE and saddle-point equations for finite N , see Fig. 6 (on the special
curve) and Fig. 7 (away from it). Both plots allow us to confirm that 〈s2(λN )〉GGE does
not grow linearly with N . Away from the special curve a fit suggests 〈s2(λN )〉GGE ∼ N1/2

but the large error bars inhibit us from fully justifying this law. The numerical data
support the finite limit of 〈p2(λN )〉GGE as well.
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Figure 7: Finite size dependence in phase II, away from the special curve
T0 = (JJ0)1/2, for parameters T0 = 1.5 J0 and J = 1.7 J0. (a) 〈s2

N 〉GGE, with a
power law fit with parameters Cs = 1.28, αs = 0.52 (b) 〈p2

N 〉GGE. The results have
been averaged over up to 50 different realisations of the harmonic constants and the
error bars represent the variance.

5.4 Temperature spectra in the condensed phases

We are now in a position to treat the cases with condensation of the N th mode:

〈s2
N 〉GGE = q N , 〈p2

N 〉GGE = TN = τN , (111)
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with q and τ finite, but possibly vanishing, and m= 1.
We start by rewriting the GGE Eqs. (84) in the form

(z −λ)
2

〈I(λ)〉i.c. = T (λ)

�

1−−
∫ ′

dλ′ρ(λ′)
T (λ′)
λ−λ′

−
τ

λ−λN

�

λ 6= λN ,

1
2
〈I(λN )〉i.c. = qN

�

1−−
∫

dλ′ρ(λ′)
T (λ′)
λN −λ′

−
q
2

�

λ= λN ,

(112)

and we search a solution for the bulk πρ(λ)T (λ), and the separate edge values τ= q(z−λN ).

5.4.1 Phase III

In phase III one expects τ = 0 and 〈s2
N 〉GGE = qN = O(N). Therefore, in the first equation

in (112) one can neglect the last term within the square brackets and obtain the spectrum of
temperatures in the bulk in the same way as we did in Sec. 5.3, leading to Eq. (110) with f = 0.
Once the function T (λ) for λ 6= λN is known, one can safely continue it to λ→ λN finding a
finite value, in agreement with the no need to separate the N th component contribution.

The second quadratic equation in (112) fixes q:

1
2

�

1−
T0

J0

��

1−
T0

J

�

= q

�

1−−
∫

dλ′ρ(λ′)
T (λ′)

2J −λ′
−

q
2

�

. (113)

The integral is finite (the divergence at the edge is integrable) and using the spherical con-
straint is simply given by 1− q. Thus,

q2 =
�

1−
T0

J0

��

1−
T0

J

�

. (114)

Consistently, q vanishes at the borders of phase III, both for T0 = J0 and T0 = J , and is identical
to one for T0 = 0. Otherwise, it takes values in the interval (0,1). (An alternative way of fixing
q is to integrate Eq. (84) over λ with the weight ρ(λ) excluding the last mode, that is, taking
∫ ′

dλρ(λ) . . . . In a few steps one recovers Eq. (113) and from it (114).)

5.4.2 Phase IV

In phase IV, TN could be O(N) and the contribution of the last term in the right-hand-side
of the first equation in (112) should not be neglected a priori. We use the knowledge of the
exact solution on the special curve T0 = (JJ0)1/2, see Sec. 5.2.2, as a guideline to build the
solution on the full phase IV with the current method. We thus find that there is only quasi
condensation of both the N th coordinate and momentum in this phase. More precisely, 〈s2(λ)〉
and 〈p2(λ)〉 calculated in the N →∞ limit diverge at the edge of the spectrum, but 〈s2

N 〉GGE
and 〈p2

N 〉GGE scale sub-linearly with N (contrary to what we wrote in [12]).

The special curve

First, we verify that the already known spectrum of mode temperatures (88) solves the
generic equations for parameters on the special curve. Using the T (λ) in Eq. (88), the complex
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ζ(λ) function reads

ζI(λ) =











1
2J

√

√2J +λ
2J −λ

(z −λ) , λ ∈ [−2J , 2J] ,

0 , λ /∈ [−2J , 2J] ,

(115)

ζR(λ) =











1
2J
(z − 2J −λ) ,

1
2J

1
2J −λ

�

(z − 2J)2J − (z −λ)
�

λ−
p

λ2 − (2J)2
�	

,
(116)

where ζI was written from its definition and ζR derived from it using the Kramers-Kronig
relation. Within the interval [−2J , 2J] the expressions above yield

ζI(1+ ζR) = πρ(λ)T (λ)(1+ ζR) =
π

2
ρ(λ) (z −λ)

1
J

T (λ) , (117)

where we used ζI = πρ(λ)T (λ). After several cancellations we recover the first expression
for ζR in Eq. (116). If, instead, we use the just derived result in Eq. (116)

πρ(λ)T (λ)(1+ ζR) = πρ(λ)T (λ)
�

1+
1

2J
(z −λ− 2J)

�

=
π

2
ρ(λ)

(z −λ)2

2J −λ
, (118)

and one recovers Eq. (88). Outside of the interval [−2J , 2J], Eq. (117) is just 0 = 0. Thus,
the T (λ) we knew is consistent with the generic equations.

Now, we now want to obtain

πρ(λ)T (λ)≡ ζI(λ) =
1

2J

√

√2J +λ
2J −λ

(z −λ) , (119)

from the generic expression (101). On the curve T0 = (JJ0)1/2,

G(λ) + 1 =
1

2J2 (2J −λ)
�

(z − 2J)2 2J − (z −λ)2λ
�

=
1

2J2

�

λ2 − 2λ(z − J) + (z − 2J)2
�

, (120)

while

g(λ) =
1

4J2

�

2J +λ
2J −λ

�1/2

(z −λ)2 . (121)

At λ = 2J , G(λ) is regular while g(λ) diverges as a square root. If f (λ) were also regular at
this edge, the generic solution (101) would imply ζI ∼ g1/2 ∼ (2J − λ)−1/4, while we know
that ζI ∼ (2J −λ)−1/2. Therefore, the function f should be different from zero and dominate
the behaviour at λ = 2J . The idea is then to fix the function f by looking at the behaviour
close to the edge,

2ζ2
I = −[1+ G − 2 f ] +

�

[1+ G − 2 f ]2 + 4g2
	1/2 ∼ 2 f + | − 2 f |= 4 f , (122)

which, using the expected form of ζ2
I with T (λ) ∼ J(z − 2J)/(2J − λ) in this same limit, is

solved by

f (λ) =
1

2J
(z − 2J)2

2J −λ
for λ' 2J . (123)

We note that f (λ) is identical to zero for J = J0, where z→ 2J and phase IV joins phase III.
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Introducing now this f in the second member of Eq. (122), with G from Eq. (120) and g
from Eq. (121), one recovers the correct solution T (λ) = J(z − λ)/(2J − λ) for all λ on the
special curve T0 = (JJ0)1/2. We conclude that the addition of a function f with the properties
underlined above is instrumental to find the correct temperature spectrum on the special curve
in IV.

Finally, we need to check that the second equation in (112), after replacing λN = 2J , is
compatible with vanishing q and τ on the special curve in IV. This equation reads

ι ≡
〈I(λN )〉i.c.

N
= 2q

�

1−−
∫

dλ′ρ(λ′)
T (λ′)

2J −λ′
−

q
2

�

, (124)

and determines q. (Alternatively, one can take the first equation in (112) and integrate it over
λ with the weight ρ(λ) excluding the last mode to find this same equation.) The integral
can be estimated from the already known T (λ) for λ 6= λN and it diverges. Indeed, since
T (λ) = J(z − λ)/(2J − λ) the integrand has a factor 1/(2J − λ)2 which makes it divergent.
Thus, q must vanish on this curve, as well as τ, in the N →∞ limit, to let the left-hand-side
be finite.

Away from the special curve

Going back to Eq. (112) with the inclusion of the last non-vanishing term in the square
brackets for generic parameters in phase IV, the steps detailed in the previous Subsection are
only slightly modified to yield

0 = ζ4
I (λ) + ζ

2
I (λ)

�

�

1−
τ

λ− 2J

�2
+ G(λ)− 2 f (λ)

�

− g2(λ) , (125)

for λ 6= λN . Our guess now is that in the full phase IV, and close to the edge,

2 f̃ (λ)≡
2τ

λ− 2J
−

τ2

(λ− 2J)2
+ 2 f (λ) =

2κ(T0/J0, J0/J)
2J −λ

. (126)

If this were so,

(πρT )2 = ζ2
I ∼ 2 f̃ ∼

2κ
(2J −λ)

=⇒ T (λ∼ 2J)∼
(2κJ3)1/2

2J −λ
, (127)

with κ to be determined as a function of the control parameters. We know already that it
should satisfy κ = 0 on the horizontal line T0 = J0 and on the diagonal T0 = J . So one
could expect the numerator to be proportional to z − 2J from the second condition. The first
condition is achieved by another factor (T0− J0)2/J

3/2
0 which equals z−2J on the special line.

Moreover, one should recover the expression in (123) for parameters on the special curve.
Hence we propose

κ(T0/J0, J0/J) =
1
2

√

√T0

J2
(z − 2J)3/2

�

1−
T0

J0

�

. (128)

We note that T (λ ∼ 2J) diverges as (2J − λ)−1 and is integrable over the interval with semi-
circle law weight. After some replacements and simplifications, once written in terms of adi-
mensional parameters the numerator in Eq. (127) reads

κ=
J2

0

2J

�

�

�

�

T0

J0
−

J
J0

�

�

�

�

3� J0

T0
− 1

�

. (129)

Introducing the 2 f̃ given in Eq. (126) with this κ in Eq. (125), we find the full parameter
dependence of ζI and hence T (λ) for all λ.
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We then checked numerically that this form leads to results which are in excellent agree-
ment with what we get for the bulk temperatures from the direct solution of the saddle-point
and GGE equations. Moreover, we verified that the integral of T (λ) coincides with twice the
kinetic energy density and that 〈s2(λ)〉 is normalised to one with no need to consider separate
contributions from q and τ. Therefore they vanish not only on the special line but in the full
phase IV. This is once again justified by the fact that the integral in Eq. (124) diverges.

Summary

Let us now summarise the salient features of the spectrum of mode temperatures and the
observables in phases III and IV of the phase diagram.

• In phase III, T (2J) = 1/2
p

T0J/J0 (J0+J−2T0)/
p

T0 − J − J0 is finite as well as the full
spectrum of temperatures. Instead, from the bulk solution we obtain that 〈s2(2J−ε)〉GGE
is inversely proportional to z − 2J + ε and diverges for ε→ 0. Moreover, to ensure the
validity of the averaged spherical constraint one has to treat the N th mode contribution
separately, and fix 〈s2

N 〉GGE = qN from Eq. (114).

• In phase IV both bulk T (λ) and 〈s2(λ)〉 diverge close to the border with (2J −λ)−1 but
we do not need to separate the contributions of the N th mode. Indeed, the N th mode
averages 〈s2

N 〉GGE and 〈p2
N 〉GGE are sub-linear in N and do not contribute to the macro-

scopic values of, e.g., the averaged kinetic energy and spherical constraint. Numerical
evaluations of the N dependencies of 〈p2

N 〉GGE and 〈s2
N 〉GGE are shown in Fig. 8 away

from the special curve. The relative values are in good agreement with the harmonic
relation 〈p2

N 〉GGE = (z−λN )〈s2
N 〉GGE and the sub-linear growth with N is exhibited by the

red lines.
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Figure 8: Finite size dependence in phase IV for parameters T0 = 0.8 J0 and
J = 0.5 J0, which lie away from the special curve T0 = (JJ0)1/2. (a) 〈s2

N 〉GGE
against N and a power law fit to all data points with αs = 0.62± 0.03. (b) 〈p2

N 〉GGE
against N , together with the power CpNαs with αs = 0.62 (in red) which describes
the data quite satisfactorily, apart from the first data point at N = 20. (A fit to all
points including the N = 20 one yields αp = 0.4 ± 0.05 which is not consistent
with the harmonic Ansatz.) The results have been averaged over up to 50 disorder
realisations and the error bars represent the variance around the average.

34

https://scipost.org
https://scipost.org/SciPostPhys.13.3.048


SciPost Phys. 13, 048 (2022)

5.5 The multipliers γ(λ)

The equations that fix the mutipliers γ(λ), Eqs. (82), multiplied by πρ(λ)/(z −λ) become

πρ(λ)
z −λ

= −2π
γ(λ)ρ(λ)T (λ)

z −λ
−
∫

dλ′
ρ(λ′) T (λ′)
(z −λ′)(λ−λ′)

+ 2π
ρ(λ)T (λ)

z −λ
−
∫

dλ′
ρ(λ′) T (λ′)γ(λ′)
(z −λ′)(λ−λ′)

+ 2KI(λ) ,

(130)

with

KI(λ)≡ π
ρ(λ)T (λ)

z −λ
q
γ(λ)− γN

λN −λ
(1−δλN ) , (131)

for λ 6= λN . Note that KI(λ) depends on γ(λ). There is also the integral constraint in the
second Eq. (82) to be taken into account. We define the real and imaginary parts of two
complex functions φ and Ξ

φI(λ) = π
ρ(λ)T (λ)

z −λ
, φR(λ) = −−

∫

dλ′
ρ(λ′)T (λ′)
(z −λ′)(λ−λ′)

, (132)

ΞI(λ) = π
ρ(λ)T (λ)γ(λ)
(z −λ)

, ΞR(λ) = −−
∫

dλ′
ρ(λ′)T (λ′)γ(λ′)
(z −λ′)(λ−λ′)

, (133)

and we use them to rewrite Eq. (130) as

hI(λ)− KI(λ) ≡
πρ(λ)

2(z −λ)
− KI(λ)

= ΞI(λ)φR(λ)−ΞR(λ)φI(λ) = Im[Ξ(λ)φ∗(λ) + l(λ)] , (134)

where we defined two real functions hI and l(λ), the first one with a known expression and
the second one to be fixed below. Concomitantly,

hR(λ)− KR(λ) = −−
∫

dλ′
ρ(λ′)

2(z −λ′)(λ−λ′)
−

1
π
−
∫

dλ′
KI(λ′)
(λ−λ′)

= Re[Ξ(λ)φ∗(λ)] + l(λ)

= ΞR(λ)φR(λ) +ΞI(λ)φI(λ) + l(λ) . (135)

We choose l(λ) = −KR(λ) + a to get rid of contributions to Eqs. (134) and (135) that would
have the unknowns within an integration (ensured by the first term −KR in l) and the correct
result in the equilibrium limit (the addition of the term a to be fixed below) Equations (134)-
(135) form a set of two linear equations for the unknown Ξ:

�

hI − KI
hR − a

�

=

�

−φI φR
φR φI

��

ΞR
ΞI

�

, (136)

with solution
�

ΞR
ΞI

�

=
1

φ2
R +φ

2
I

�

−φI φR
φR φI

��

hI − KI
hR − a

�

, (137)

which implies

ΞI =
1

φ2
R +φ

2
I

[φR(hI − KI) +φI(hR − a)] . (138)

Using now the definitions of ΞI and KI , with qN = 〈s2
N 〉GGE, and a = KI φR/φI

(φ2
R +φ

2
I )γ(λ) +φR 2q

γ(λ)− γN

λN −λ
=

(z −λ)
πρ(λ)T (λ)

(φRhI +φIhR) . (139)

The choice of a will be clear below, when comparing the generic result to the expected one in
standard equilibrium (J = J0). This equation fixes the spectrum γ(λ).
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5.5.1 Useful identities

Before making explicit the parameter dependence of γ(λ) in the various phases of the phase di-
agram, we present two identities that will be useful to evaluate the right-hand-side of Eq. (139):

−φR(λ) = −
∫

dλ′
ρ(λ′)T (λ′)
(z −λ′)(λ−λ′)

= −
1

z −λ

�

1− q−−
∫

łdλ′
ρ(λ′)T (λ′)
λ−λ′

�

, (140)

−2hR(λ) = −
∫

dλ′
ρ(λ′)

(z −λ′)(λ−λ′)
= −

1
z −λ

�

−
∫

dλ′
ρ(λ′)
z −λ′

−−
∫

dλ′
ρ(λ′)
λ−λ′

�

= −
1

z −λ
1

2J2
×
�

(z −λ) for z = 2J (II-III) ,
�

z −
p

z2 − (2J)2 −λ
�

for z ≥ 2J (I-IV) .
(141)

We can rewrite φR, for λ 6= λN , with the help of Eq. (112)

〈I(λ)〉GGE =
2T (λ)
z −λ

�

1−−
∫

dλ′
ρ(λ′)T (λ′)
λ−λ′

�

= 〈I(λ)〉i.c. , (142)

as

φR(λ) = −
q

z −λ
+
〈I(λ)〉i.c.

2T (λ)
. (143)

Then,

φ2
I +φ

2
R =

�

πρ(λ)T (λ)
z −λ

�2

+
�

−
q

z −λ
+
〈I(λ)〉i.c.

2T (λ)

�2

=
1

(z −λ)2

�

[πρ(λ)T (λ)]2 +
�

−q+
〈I(λ)〉i.c.(z −λ)

2T (λ)

�2�

. (144)

We also have

φRhI +φIhR =

=
�

−
q

z −λ
+
〈I(λ)〉i.c.

2T (λ)

�

πρ(λ)
2(z −λ)

+
πρ(λ)T (λ)
2(z −λ)2

�

z −λ−
p

z2 − (2J)2

2J2

�

, (145)

which reads, in a slightly more compact form,

φRhI +φIhR =

=
πρ(λ)

2(z −λ)2

�

−q+
〈I(λ)〉i.c.(z −λ)

2T (λ)
+

T (λ)(z −λ)
2J2

−
T (λ)

p

z2 − (2J)2

2J2

�

. (146)

5.5.2 Special cases

Extended phases I and II

In cases with no condensation (phases I and II) we do not have to worry about the function
K since it vanishes. Moreover, q = 0. Equation (139) simplifies to

(φ2
R +φ

2
I )γ(λ) =

(z −λ)
πρ(λ)T (λ)

(φRhI +φIhR) , (147)

and replacing (φ2
R +φ

2
I ) and (φRhI +φIhR) using Eqs. (144) and (146), respectively, we find

the following expression for γ(λ):

γ(λ) = (z −λ)
J2〈I(λ)〉i.c.(z −λ) + T2(λ)[(z −λ)−

p

z2 − (2J)2]

[J〈I(λ)〉i.c.(z −λ)]
2+ [2πJρ(λ)T2(λ)]2

, (148)
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which holds for all λ.

Equilibrium in phase I

In equilibrium in phase I, at T0 ≥ J0 = J , z = T0 + J2
0/T0, T (λ) = T0, and

〈I(λ)〉i.c. =
T2

0

J2
0

2J2
0

T0
−λ

J2
0

T0
+ T0 −λ

=
T2

0

J2
0

2J2
0

T0
−λ

z −λ
. (149)

Replacing in Eq. (148) one finds

γ(λ) =
J2

0

T2
0

−
λ

2T0
. (150)

The constant should be irrelevant and the λ dependence is the correct one.

On the special curve in phase II

On the special curve T0 = (J0J)1/2 in phase II, 〈I(λ)〉2i.c. = 1 for all λ, all temperatures are
equal, T (λ) = J , and z = 2J . Equation (148) yields

γ(λ) = 1−
λ

2J
. (151)

Equilibrium in phase III

In equilibrium in phase III, T0 < J0 = J , z = 2J0, T (λ) = T0, q = 1− T0/J0,

〈I(λ)〉i.c. =



























T2
0

J2
0

2J2
0

T0
−λ

2J0 −λ
=

T2
0

J2
0

2J2
0

T0
−λ

z −λ
forλ < 2J0 ,

�

1−
T0

J0

�2

N forλ= 2J0 ,

(152)

and

γ(λ) = c −
λ

2T0
for all λ , (153)

with c an arbitrary constant. We can then check the validity of Eqs. (82) with the N th mode
contribution explicitly separated,

2T0−
∫

dλ′ ρ(λ′)
T0

z −λ′
γ(λ′)− γ(λ)
λ−λ′

+ 2T0 q
γN − γ(λ)
λ−λN

= 2T0−
∫

dλ′ ρ(λ′)
T0

(z −λ′)
1

2T0
+ 2T0 q

1
2T0

= 1 ,

which is just the spherical constraint.
We can now try to check the generic form in equilibrium. Under such conditions we can

replace T (λ) = T0, z = 2J0, J = J0 and evaluate φR and φI

φ2
R =

�

T0

2J2
0

�2

, φ2
I =

T2
0

4J4
0

�

2J0 +λ
2J0 −λ

�

. (154)
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On the other hand,

(φRhI +φIhR)
(z −λ)
πρ(λ)

=
T0

2J2
0

. (155)

Going back to Eq. (139) and replacing γ(λ) = c −λ/(2T0) for all λ including λN , we get

T0
T2

0

J3
0

1
2J0 −λ

�

c −
λ

2T0

�

+ 2T0
T0

2J2
0

�

1−
T0

J0

�

1
2T0

=
T0

2J2
0

. (156)

We see that the linear terms in λ cancel while the constant term then fixes c to c = J0/T0. For
J0 = T0, parameters for which we join equilibrium in phase I and the beginning of the special
curve in phase II, c = 1, consistently with the results found above.

On the special curve in phase IV

Here,

φR =
1

2J
and φI =

πρ(λ)J
2J −λ

=⇒ φ2
R +φ

2
I =

1
J

1
2J −λ

,

(φRhI +φIhR)
(z −λ)
πρ(λ)

=
1

4J

�

1+
z −

p

z2 − (2J)2 −λ
2J −λ

�

,
(157)

so that Eq. (139) yields

γ(λ) =
1

4J
2J −λ
z −λ

�

2J −λ+ z −λ−
Æ

z2 − (2J)2
�

, (158)

which, after replacing z with the parameters on the special line, becomes

γ(λ) =
1

2J
(2J −λ)

J +
p

J0J −λ
√

√ J
J0
(J0 + J)−λ

. (159)

We note that γ(λ→ 2J) = 0.

6 Comparison between static and dynamic results

We now present a thorough comparison between the GGE predictions and the dynamic be-
haviour. We focus on the square coordinates s2

µ, the square momenta p2
µ which are equivalent

to the temperatures Tµ, and the GGE Lagrange multipliers γµ. Concerning the static calcu-
lations, we either work with finite N or in the infinite N limit. In the former case, we solve
Eqs. (62) together with the saddle-point Eqs. (63) and the spherical constraint, without mak-
ing any assumption on the form of the solution. Next, we apply the harmonic Ansatz that
allows us to take the N →∞ limit. We then either use Eqs. (75) to determine the tempera-
ture spectrum T (λ) numerically or we simply use the analytic T (λ) derived in Secs. 5.3 and
5.4 – consistently, they are indistinguishable. With this spectrum, we then construct the GGE
averaged s2

µ. We present data for the Lagrange multipliers γµ for finite systems and we com-
pare them to the analytic expressions derived in Sec. 5.5. Finally, we use the method sketched
in Sec. 6.1 to derive the dynamic results. The comparison of both sets of results, besides allow-
ing us to test the GGE hypothesis, Eq. (5), will provide more information on the four phases
in the phase diagram. (In this Section we set m= 1.)
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6.1 Mode dynamics for finite N systems

The dynamics of the mode averages 〈s2
µ(t)〉i.c. and 〈ṡ2

µ(t)〉i.c. can be solved conveniently using
an approach described in detail in Ref. [10]. In this section we introduce the method briefly
and highlight some subtle points in its implementation.

The method is based on an amplitude-phase Ansatz [84–87] for the mode trajectories,

sµ(t) = sµ(0)

√

√

√

Ωµ(0)

Ωµ(t)
cos

∫ t

0

d t ′Ωµ(t
′) +

ṡµ(0)
Æ

Ωµ(t)Ωµ(0)
sin

∫ t

0

d t ′Ωµ(t
′) . (160)

The main ingredient of this formulation is the function Ωµ(t), which depends on the mode µ
but not on the initial conditions for sµ and ṡµ. This is very convenient, because the averages
over initial conditions pass through Ωµ(t) and only act over factors containing sµ(0) and ṡµ(0).
The auxiliary function Ωµ(t) satisfies the equation,

1
2

Ω̈µ(t)

Ωµ(t)
−

3
4

�

Ω̇µ(t)

Ωµ(t)

�2

+Ω2
µ(t) =ω

2
µ(t) =

(z(t)−λµ)
m

. (161)

Of course, initial conditions Ωµ(0) and Ω̇µ(0) should be supplied. However, it turns out that
the initial conditions for Ωµ can be arbitrarily chosen, i.e., any real initial condition for Ωµ will
generate exactly the same dynamics for the physically relevant observables related to sµ and pµ.
In other words, even if the time-dependence of Ωµ(t) is modified by choosing different initial
conditions, the dynamics of the physical observables, which typically depend on combinations
of the form Ωµ(0)/Ωµ(t) cos2

�

∫ t
0 d t ′Ωµ(t ′)

�

, are independent of the initial conditions chosen
for Ωµ(t).

As we mentioned earlier, for the same quench, i.e., the same values of T0, J0 and J , sym-
metric and symmetry broken initial conditions produce the same averages for phase-space
functions which are quadratic in {sµ, pµ}. Given that z(t) depends only on quadratic averages,
this means that z(t) and consequently Ωµ(t) are the same for both sets of initial conditions.

The question remains about the dynamics of 〈sN (t)〉i.c. for symmetry broken initial condi-
tions. Coming back to Eq. (160) we get,

〈sN (t)〉i.c. = 〈sN (0)〉i.c.

√

√ΩN (0)
ΩN (t)

cos

∫ t

0

d t ′ΩN (t
′) , (162)

where, for symmetry broken initial conditions, 〈sN (0)〉i.c. = sN =O(N1/2), see Sec. 3.1.2. On
the other hand,

〈s2
N (t)〉i.c. =

〈s2
N (0)〉i.c.ΩN (0)

ΩN (t)
cos2

∫ t

0

d t ′ΩN (t
′)

+
〈ṡ2

N (0)〉i.c.

ΩN (0)ΩN (t)
sin2

∫ t

0

d t ′ΩN (t
′) . (163)

Given that 〈s2
N (0)〉i.c. = s2

N +σ
2
N , where σN = O(1), and the fact that 〈ṡ2

N (0)〉i.c. = O(1), we
conclude that,

〈s2
N (t)〉i.c. = 〈sN (t)〉2i.c. +O(1) , (164)

which implies that both averages coincide in the large N limit. In conclusion, the phase-
amplitude Ansatz is able to accommodate the symmetry broken situation in which 〈sN (t)〉i.c.
acquires a non-vanishing and extensive value.
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6.2 Check of the harmonic Ansatz

We start with two checks of the harmonic Ansatz. The first one tests its accuracy within the
dynamic formalism. The second one confronts the GGE predictions to the exact asymptotic
steady state parameter dependence of the (time-averaged) kinetic energy.
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z(t)− λ
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Figure 9: Test of the harmonic Ansatz with dynamic data. N = 1024 system with
parameters in the four phases of the phase diagram: in phase I, T0 = 1.5 J0 and
J = 0.4 J0; in phase II, T0 = 1.5 J0 and J = 1.7 J0; in phase III, T0 = 0.5 J0 and
J = 0.8 J0; and finally in phase IV, T0 = 0.5 J0 and J = 0.4 J0. λ are the post-
quench harmonic constants and they are normalised by J in the horizontal axes
letting them all vary between −2 and 2. The dashed black lines are the analytic
predictions z f −λ= T0+ J2/T0−λ (I and IV) and z f −λ= 2J −λ (II and III), while
the red lines are the numerical solution to the dynamic equations.

The most direct test of the harmonic Ansatz we could think of is to compare
〈p2
µ(t)〉i.c.

/〈s2
µ(t)〉i.c.

to z(t)−λµ, all computed with the dynamic formalism. Within the har-
monic hypothesis, these two quantities should be equal. We plot them for parameters in the
four phases of the phase diagram in Fig. 9. The agreement is perfect in all phases. We also
compare with the analytic prediction for z(t)−λµ, given by z f −λµ with z f = 2J in phases II
and III, and z f = T0 + J2/T0 in phases I and IV.
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Figure 10: Test of the harmonic Ansatz within the GGE calculation. The kinetic
energy density as a function of J/J0 for two values of the initial temperature T0/J0
of the initial conditions. The black dots are numerical results obtained with the har-
monic Ansatz for the evaluation of the GGE and the curves represent the exact values
for T0/J0 = 1.5 (above) and T0/J0 = 0.5 (below).
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The second test of the accuracy of the harmonic Ansatz consists in comparing the parameter
dependence of the kinetic energy density that it predicts, to the exact one. This is represented
in Fig. 10, where the black dots are the numerical evaluation of 〈ekin〉GGE in a system with
N = 100 and the solid curves represent the exact values recalled in Table 1 evaluated at
T0/J0 = 1.5 (above) and T0/J0 = 0.5 (below). There is perfect agreement.

6.3 GGE and dynamic averages

6.3.1 Phase I

In the whole phase I, both with energy injection or extraction, the asymptotic z f is larger than
λN , there is no condensation of modes, and the constants of motion are all O(1) including the
N -th one.
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2
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λ/J

γ
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λ/J

Figure 11: Comparison of the dynamic and GGE results in phase I with energy
injection, T0 = 1.5 J0 and J = 0.4 J0. (a) The averaged p2(λ), (b) the averaged
s2(λ) and (c) the Lagrange multipliers γ(λ). Finite size dynamic data for N = 100
and N = 1024 compared to the GGE analytic results. Here and in all following
plots we measure p2 in units of J0, which is set to 1 as well as m. All grey curves
represent the pre-quench equilibrium values; in (a) they are the initial temperature,
T0/J0 = 1.5, in (c) γµ = −β ′λ(0)µ /2 = −J0λµ/(2T0J) = −0.33λµ/J . All quantities
are finite at the edge of the spectrum.

In Fig. 11 we show numerical results for parameters such that there is energy injection in
this phase. We compare the solution of the GGE equations for 〈s2

µ〉GGE and 〈p2
µ〉GGE for finite N ,

the analytic expressions for infinite N , and the numerical integration of the mode equations
for finite N . The GGE results for finite N show some oscillations in the middle of the spectrum
which can be ascribed to the finite system size. In panel (c) we plot the spectrum of γµ for the
N = 100 system. The outlier data points in the middle of the spectrum could well be finite size
effects, since they correspond to the same modes for which the 〈s2

µ〉GGE and 〈p2
µ〉GGE deviate

from their more regular trend. Ignoring these points, the rest of the data display a rather
linear dependence on the mode index, though the slope is different from the equilibrium one
at the pre-quench parameters, which is plotted with a grey inclined thin line. Having said this,
the N →∞ behaviour of γµ is not completely linear. (As a side comment, in this phase the
instantaneous steady state approximation introduced in [10] was very accurate, see Fig. 13 in
this reference.)

Parameters with energy extraction in this phase lead to equivalent perfect agreement be-
tween GGE and dynamics. The only difference is the bending downwards of the temperature
spectrum close to the right edge.
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6.3.2 Phase II

In Fig. 12 we show numerical results in phase II. In general, the dynamic behaviour is in very
good agreement with the GGE predictions both on the special line and away from it. The
accord deteriorates a bit when moving far away from the transition. This is linked to the fact
that the integration of the dynamic equations in cases in which z = λN is hard close to the
edge of the spectrum. We give more details on the reason for this when treating cases in phase
III, which suffer from the same problems.
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Figure 12: Comparison of the dynamic and GGE results in phase II. The quench
parameters are T0 = 1.5 J0 and J = 1.7 J0. (a) 〈p2(λ)〉, (b) 〈s2(λ)〉 and (c) GGE
Lagrange multipliers γ(λ). The N →∞ GGE results can be confronted to the dy-
namic ones with finite N . Note the fast grow of 〈s2〉GGE at the edge of the spectrum
in (b) accompanied by a vanishing 〈p2〉GGE in (a). The grey horizontal line in (a)
is at the initial temperature T0 = 1.5 J0, the grey curve in (b) is the initial average
〈s2
µ(0

+)〉i.c. and in (c) the grey straight line represents the pre-quench equilibrium

values γ(λ) = −β ′λ(0)/2 = −J0λ/(2T0J) = −0.333λ/J . The zoom highlights the
fact that γ deviates from the straight line close to the edge of the spectrum.

6.3.3 Phase III

In Fig. 13 we show numerical results in phase III, with parameters such that there is energy
injection. The static data are in very good agreement with the dynamic ones in the bulk of the
spectrum but there are significant deviations at the edge. In fact, the solution of the dynamic
mode equations gets tricky for λ close to λN in phases in which z f = limN→∞λN (II and III).
More concretely, at finite N the last mode cannot be considered to be in a stationary state, and
to take numerically N →∞ together with the corresponding large time limit is impossible.

In Fig. 14 we show the magnitude of the relative temporal fluctuations, as quantified with
the dispersion from the mean, as a function of µ for all phases in the phase diagram. It is clear
that in phases II and III the fluctuations are large and the modes near the edge of the spectrum
are not yet stationary.

6.3.4 Phase IV

In Fig. 15 we display numerical results for parameters in phase IV, The agreement between dy-
namic and GGE averages is extremely good. Note the divergencies of 〈s2〉 and 〈p2〉 at the edge
of the spectrum singled out and discussed in the analytic Section, which are not proportional
to system size though.

42

https://scipost.org
https://scipost.org/SciPostPhys.13.3.048


SciPost Phys. 13, 048 (2022)

0.45

0.5

0.55

0.6

−2 −1 0 1 2

(a)

0.1

1

10

100

1000

−2 −1 0 1 2

(b)

0

1

2

3

4

−2 −1 0 1 2

(c)

−0.58

−0.53

1.95 2

⟨p
2
(λ
)⟩/

J
0

λ/J

Dynamics N = 100
N = 1024

GGE N = 100
N = ∞

⟨s
2
(λ
)⟩

λ/J

γ
(λ
)

λ/J

Figure 13: Comparison of the dynamic and GGE results in phase III, with energy
injection. The quench parameters are T0 = 0.5 J0 and J = 0.8 J0. (a) 〈p2(λ)〉, (b)
〈s2(λ)〉 and (c) GGE Lagrange multipliers γ(λ). Note the divergence of 〈s2(λ)〉GGE at
the edge of the spectrum and the finite value that 〈p2

N 〉GGE takes for N →∞. The
reason for the deviating dynamic point in (a) is discussed in the text. The grey curves
represent the initial values. The inset in (c) highlights the behaviour of γ(λ) close to
the edge.
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Figure 14: Temporal fluctuations of the mode frequencies in all phases of the
phase diagram in a system with N = 1024. The temperature of the initial conditions
are T0 = 1.5 J0 in phases I and II and T0 = 0.5 J0 in phases III and IV. The post-quench
interaction is J = 0.4 J0 (phase I), J = 1.7 J0 (phase II), J = 1.2 J0 (phase III), and
J = 0.5 J0 (phase IV).

6.4 Balance of mode energies

For J/J0 < 1 the system gets energy from the quench while for J/J0 > 1 it releases energy.
Right after the instantaneous quench, each positive (negative) mode receives (releases) energy
for J/J0 < 1, and does the opposite for J/J0 > 1, see Sec. 3.2. Although in the further evolution
the energy of the modes are not individually conserved, the initial heating or cooling of the
edge modes is maintained in the quenches we showed. In Fig. 11 in phase I, Fig. 13 in phase III,
and Fig. 15 in phase IV, results for quenches with energy injection are studied, and the right
end modes get hotter. On the contrary, with global energy extraction, one heats the negative
modes close to the left edge, and cools the positive ones close to the right edge, see e.g. Fig. 12
in phase II.

A direct consequence of the validity of the harmonic Ansatz is that, asymptotically, each
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Figure 15: Comparison of the dynamic and GGE results in phase IV, with energy
injection. The quench parameters are T0 = 0.5 J0 and J = 0.4 J0. (a) 〈p2(λ)〉,
(b) 〈s2(λ)〉 and (c) GGE Lagrange multipliers γ(λ). The grey curves are the initial
profiles.

mode should satisfy energy equipartition, with a modified spring constant z f −λµ,

1
m
〈p2
µ〉i.c.

= (z f −λµ) 〈s2
µ〉i.c.

= Tµ , (165)

and its total energy be constant
〈eµ〉i.c. = 2Tµ , (166)

and equal to twice the mode temperature. The spectra of Tµ which we derive analytically in
this paper comply with these relations.

7 Fluctuations

In this Section we focus on the analytic study of fluctuations within the dynamic and GGE
approaches. As mentioned in Sec. 2.3 the fluctuations of the constraints with respect to the
initial conditions decide whether our model is equivalent to the Neumann one in the large
N limit. In the statistical realm, the fluctuations of the constraints calculated with the GGE
measure determine the equivalency between canonical (with strict spherical constraints) and
grand-canonical (constraints on average as in Eq. (45)) formulations of the GGE. We will show
that in both dynamical and statistical calculations there are no relevant fluctuations in phases
I, II and IV while there are in phase III making the equivalence of the NM and SNM models
arguable for parameters in this part of the phase diagram.

7.1 Symmetric initial conditions

In Sec. 3.1.1 we introduced initial conditions which are in equilibrium at low and high tem-
perature with respect to the canonical phase diagram and do not break any symmetry. At low
temperatures, in this kind of initial configurations, the fluctuations of sN scale with N in a way
that ensures the spherical constraint on average, but the average of this mode is still zero. In
this Section, we first evaluate the fluctuations of the primary and secondary constraints φ and
φ′ along the trajectories generated by these initial conditions. We also use the corresponding
GGE measure to evaluate the fluctuations of φ and φ′. Then we compare.

7.1.1 Fluctuations in the dynamics

Our objective in this section is to address the scaling of the fluctuations of the primary and
secondary constraint at all times. To do it, we check the scaling of the fluctuations at the initial
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time (initial conditions) and in the asymptotic state (long time averages). These two check-
points will give us a complete picture about the dynamics of the fluctuations of the constraints.

Before we proceed to the main analysis, it would be useful to recall the scaling of the
averages 〈s2

N (t)〉i.c. and 〈p2
N (t)〉i.c. in the different phases of the parameter space.

We start with the scaling in the initial conditions, i.e., at t = 0. In phases I and II, T0 > J0,
the initial conditions are not condensed, hence 〈s2

N (0)〉i.c. and 〈p2
N (0)〉i.c. do not scale with N .

In phases III and IV, T0 < J0, the initial conditions are condensed, i.e., 〈s2
N (0)〉i.c. scales linearly

with N [73,74].
On the other hand, as was established in the previous section, the scaling of the long time

averages of these quantities is the same as the corresponding statistical averages in the GGE.
In phases I, II and IV there is no condensation. In particular, there is no N dependent scaling

in phase I while, from the numerics we see sublinear scaling of 〈s2
N 〉i.c. in phase II and of both

〈s2
N 〉i.c. and 〈p2

N 〉i.c. in phase IV (for reference, the corresponding finite N GGE averages are
shown in Figs. 6, 7 and 8).) In phase III the long time average of 〈s2

N (t)〉i.c. scales linearly with
N , which indicates condensation.

As an interesting example, in Fig. 16 we show the scaling of the long time averages for a
point in sector IV. Even though the initial conditions are condensed, the scaling of the long-
time average of 〈s2

N (t)〉i.c. is clearly sublinear, which is compatible with the predictions of the
GGE, see Sec. 5.4.2. We can also observe that the long time average of 〈p2

N (t)〉i.c. develops
a sublinear but non-trivial scaling with N that was not present in its initial conditions. In a
similar fashion, in sector II, 〈s2

N (t)〉i.c. picks up a sublinear but non-trivial scaling even if the
initial conditions show no scaling with N (not shown).
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Figure 16: Scaling of the averages at the edge of the spectrum for a phase IV
point, T0 = 0.8 J0 and J = 0.6 J0. The exponents of the fits are αs = 0.63 and
αp = 0.65.

We first calculate the fluctuations of φ =
∑

µ s2
µ(t)− N . For symmetric initial conditions,

〈sµ(0)〉i.c.= 〈pµ(0)〉i.c. = 0, 〈sµ(0)sν(0)〉i.c.= δµν〈s2
µ(0)〉i.c., 〈pµ(0)pν(0)〉i.c.= δµν〈p2

µ(0)〉i.c.,
and 〈sµ(0)pν(0)〉i.c. = 0, for all µ,ν, where 〈· · · 〉i.c. denotes an average over initial conditions.
Moreover, the dynamics are given by the phase-amplitude Ansatz, see Sec. 6.1:

sµ(t) = sµ(0)aµ(t) + ṡµ(0)bµ(t) , (167)
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where, in order to ease the notation, we defined

aµ(t)≡

√

√

√

Ωµ(0)

Ωµ(t)
cos

∫ t

0

d t ′Ωµ(t
′) , bµ(t)≡

1
Æ

Ωµ(t)Ωµ(0)
sin

∫ t

0

d t ′Ωµ(t
′) .

We now have to calculate higher order averages involving products of time-dependent four
phase space variables, that is averages of the kind 〈s2

µ(0)s
2
ν(0)〉i.c.. In order to do it, we exploit

that the initial distribution is Gaussian for all modes, including the last one, even in cases in
which sN condenses. Then, according to Isserli’s theorem,

〈s2
µ(0)s

2
ν(0)〉i.c. = (1−δµν)〈s2

µ(0)〉i.c.〈s2
ν(0)〉i.c. + 3δµν〈s2

µ(0)〉
2
i.c. . (168)

Similar relations apply to averages involving pµ(0). Putting all these identities together and
after some simple algebra we obtain

®�

∑

µ

s2
µ(t)

�

�

∑

ν

s2
ν(t)

�

¸

i.c.

− N2 = 2
∑

µ

〈s2
µ(0)〉

2
i.c.a

4
µ(t)

+4
∑

µ

〈s2
µ(0)〉i.c.〈ṡ2

µ(0)〉i.c.a
2
µ(t)b

2
µ(t) + 2

∑

µ

〈ṡ2
µ(0)〉

2
i.c. b

4
µ(t) . (169)

Using the form of the dynamical Ansatz in Eq. (167) and the mean values in Eq. (168)

1
N2

®�

∑

µ

s2
µ(t)

�

�

∑

ν

s2
ν(t)

�

¸

i.c.

− 1=
2

N2

∑

µ

〈s2
µ(t)〉

2
i.c. . (170)

This expression is valid at all times and even for finite N . Given this expression, we have three
different scenarios. If all averages 〈s2

µ(t)〉i.c. are O(1) then
∑

µ〈s
2
µ(t)〉

2
i.c. is O(N) and the vari-

ance vanishes as N−1 in the large N limit. Instead, if there is condensation 〈s2
N (t)〉i.c. =O(N),

which implies 〈s2
N (t)〉

2
i.c. = O(N2), and the variance remains O(1) even in the large N limit.

An intermediate case appears whenever we have sublinear scaling of 〈s2
N (t)〉i.c. with a power

αN < 1. In such case the fluctuations vanish, but eventually slower than N−1.
Bearing this in mind, we see that the fluctuations of φ vanish in the large N limit in phases

I and II, both for the initial conditions and in the long-time limit. In phases III and IV, the
initial conditions are condensed, and that implies that the fluctuations of φ do not vanish in
the large N limit. However, the situation can be easily corrected if, instead of symmetric initial
conditions, we use symmetry broken ones, see Sec. 3.1.2. In such case, the fluctuations of φ
are well behaved both for phase III and IV, see Sec. 7.2.1. Regarding the long times limit in the
initially condensed phases, the fluctuations of φ remain condensed in phase III and vanish in

phase IV. Notice that we are estimating the scaling of the average 〈s2
N (t)〉

2
i.c. using the known

scalings of 〈s2
N (t)〉i.c.. We have numerically checked that such estimation is correct.

Next we study the variance of the secondary constraint φ′ =
∑

µ sµpµ. To perform the
calculation we recall that

ṡµ(t) = sµ(0)cµ(t) + ṡµ(0)dµ(t) , (171)

with

cµ(t)≡ −
1
2

√

√

√

Ωµ(0)

Ωµ(t)

Ω̇µ(t)

Ωµ(t)
cos

∫ t

0

d t ′Ωµ(t
′)−

q

Ωµ(0)Ωµ(t) sin

∫ t

0

d t ′Ωµ(t
′) ,

dµ(t)≡

√

√

√

Ωµ(t)

Ωµ(0)
cos

∫ t

0

d t ′Ωµ(t
′)−

1
2

1
Æ

Ωµ(0)Ωµ(t)

Ω̇µ(t)

Ωµ(t)
sin

∫ t

0

d t ′Ωµ(t
′) .
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As for the analysis of the primary constraint, we use Gaussian decouplings to calculate the
higher order averages over initial conditions:

1
N2

®�

∑

µ

sµ(t)pµ(t)

�

�

∑

ν

sν(t)pν(t)

�

¸

i.c.

=

1
N2

∑

µ

〈s2
µ(t)〉i.c.〈p2

µ(t)〉i.c. +
1

N2

∑

µ

〈sµ(t)pµ(t)〉2i.c. . (172)

The first term can give a non-vanishing contribution in the large N limit only if both 〈s2
N (t)〉

and 〈p2
N (t)〉 have amplitudes that scale linearly with N , which is not verified in any phase.

This implies that the first term does not poses any threat to the vanishing of fluctuations of the
secondary constraint in the large N limit neither for the initial conditions, nor for the long-time

limit. Again, note that we are estimating the scaling of 〈s2
N (t)〉〈p

2
N (t)〉 using the known scaling

of 〈s2
N (t)〉 and 〈p2

N (t)〉. In this case we have also checked that the estimation is correct. On
the other hand, we have checked that the second term in (172) is similarly innocuous.

These observations have a deep meaning regarding the equivalence between the dynamics
under the averaged or the strict spherical constraints. In phases I and II the two are equivalent
in the large N limit, since the constraints are fulfilled on average and their variances vanish
with increasing N . In phases III and IV the primary constraint fails, and the dynamics of the two
models are not completely equivalent. However, the scaling of the fluctuations of the primary
constraint can be corrected if we chose symmetry broken initial conditions, see Sec. 7.2.1.

Similar conclusions are deduced from the study of the fluctuations in the GGE, which will
be analysed in the next Subsection for the same kind of initial conditions.

7.1.2 Fluctuations in the Generalised Gibbs Ensemble

In this Section we study the fluctuations of the two constraints in the GGE formalism. For
simplicity, we use the discrete µ form of the GGE action and saddle-point equations. The
continuous limit, with N →∞, can be easily obtained at every step of the calculations. We

introduce sources J (s2)
µ and J (p

2)
µ coupled to s2

µ and p2
µ, and we thus transform the GGE parti-

tion function into a generating functional, from which averages can be readily calculated. For
example,

−
∂ ln ZGGE[J ]
∂J (s2)

µ

�

�

�

�

�

J=0

= 〈s2
µ〉GGE , −

∂ ln ZGGE[J ]
∂J (p2)

µ

�

�

�

�

�

J=0

= 〈p2
µ〉GGE ,

∂ 2 ln ZGGE[J ]
∂J (s2)

µ J (s2)
ν

�

�

�

�

�

J=0

= 〈s2
µs2
ν〉GGE − 〈s2

µ〉GGE〈s2
ν〉GGE .

(173)

After simple manipulations which involve the saddle-point equations, we find

〈s2
µs2
ν〉GGE − 〈s2

µ〉〈s
2
ν〉GGE = 2δµν 〈s2

µ〉
2
GGE ,

〈p2
µp2
ν〉GGE − 〈p2

µ〉〈p
2
ν〉GGE = 2δµν 〈p2

µ〉
2
GGE ,

〈s2
µp2
ν〉GGE = 〈s2

µ〉GGE〈p2
ν〉GGE ,

(174)

which correspond to averages over independent Gaussian ensembles with zero mean for all µ.
We can observe that whenever 〈s2

N 〉GGE or 〈p2
N 〉GGE are order N , as in the condensed phase

III, the fluctuations of s2
N and p2

N are proportional to N2. As already explained in the description
of the canonical equilibrium of the spherical Sherrington-Kirkpatrick model, this phenomenon
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is known as condensation of fluctuations [73, 74], does not involve symmetry breaking, but
has a deep impact on the fluctuations of the constraints.

The fluctuations of the primary constraint are

1
N2

®�

∑

µ

s2
µ

�

�

∑

ν

s2
ν

�

¸

GGE

− 1=
2

N2

∑

µ

〈s2
µ〉

2
GGE . (175)

In phase I, all the averages 〈s2
µ〉GGE are order 1, which means that the fluctuations are order

N−1. In phase II, all the averages 〈s2
µ〉GGE are order 1, except for 〈s2

N 〉GGE which is order Nα

with α ∼ 0.5. This implies, again, that the fluctuations vanish in the large N limit. In phase
III, 〈s2

N 〉GGE is order N , and the fluctuations do not vanish but turn up to be order 1 in the large
N limit. In phase IV, the situation is similar to phase II, all the averages 〈s2

µ〉GGE are order 1,

except for 〈s2
N 〉GGE which is order N a with a < 1. This implies that the fluctuations vanish in

the large N limit.
Regarding the secondary constraint, we have,

1
N2

®

∑

µν

sµpµsνpν

¸

GGE

=
1

N2

∑

µ

〈s2
µ〉GGE〈p2

µ〉GGE . (176)

In phases I, II and III these fluctuations vanish as N−1 for large N . In phase IV 〈s2
N 〉GGE∝ Nαs

and 〈p2
N 〉GGE ∝ Nαp with αs < 1 and αp < 1, see Sec. 5.4.2, which implies that the relative

fluctuations in the secondary constraint also vanish, but slower than N−1.
These observations have an impact on the equivalence of the ensembles defined by im-

posing the constraints exactly or on average. Whenever the relative fluctuations of both con-
straints vanish on average, the results obtained with the “spherically averaged” ensemble are
completely equivalent to those obtained with the strictly spherical one. We can conclude that
in phases I, II and IV both ensembles are equivalent in the N →∞ limit, whereas in phase III
they are not since the fluctuations of the primary constraint do not vanish in such limit. The
situation is similar to the one studied by Kac and Thompson [72] but with the difference that
in our case we have additional momenta and, consequently, one additional constraint.

As a brief summary, for symmetric initial conditions the two ways of imposing the constraint
are equivalent in phases I, II and IV, but they are not in phase III.

The situation in phase III can be fixed if we introduce symmetry breaking in the GGE, which
will be done in the next Section.

7.2 Symmetry broken initial conditions

In phase 3.1.2 we discussed the initial conditions, at low temperature with respect to the
equilibrium phase diagram, that break rotational symmetry by attributing an N -dependent
value to 〈sN 〉i.c.. The spherical constraint is also satisfied with this choice. We now evaluate
the fluctuations of these configurations in the dynamical and GGE formalisms.

7.2.1 Fluctuations in the dynamics

Separating the contribution of the N th mode from the terms involving only the bulk variables,
and performing the Gaussian averages (with zero mean) over the bulk variables,

®�

∑

µ

s2
µ(t)

�

�

∑

ν

s2
ν(t)

�

¸

i.c.

=

 

∑

µ(6=N)

¬

s2
µ(t)

¶

i.c.

!2

+ 2
∑

µ(6=N)

¬

s2
µ(t)

¶2

i.c.

+2



s2
N (t)

�

i.c.

∑

ν(6=N)




s2
ν(t)

�

i.c.+



s4
N (t)

�

i.c. . (177)
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In phase III, in the large N limit, the N th mode is a non-fluctuating condensate with



s4
N (t)

�

i.c. =



s2
N (t)

�2
i.c. , (178)

(note the absence of factor 3 meaning that this is not the consequence of the Wick factorisation
but the one of sN ∝ (qN)1/2 + o(N1/2)). Equation (177) simplifies to

1
N2

®�

∑

µ

s2
µ(t)

�

�

∑

ν

s2
ν(t)

�

¸

i.c.

=
1

N2

�

∑

µ

¬

s2
µ(t)

¶

i.c.

�2

+ o(1) = 1+ o(1) .

In phase IV the N th mode, in the long-time limit, scales as



s2
N (t)

�

i.c. ∝ Nαs with αs < 1.
We numerically checked that the second, third and fourth terms in the r.h.s of Eq. (177) are
negligible, i.e. they scale slower than N2. Thus the equation for the primary constraint sim-
plifies to

1
N2

®�

∑

µ

s2
µ(t)

�

�

∑

ν

s2
ν(t)

�

¸

i.c.

=
1

N2

�

∑

µ

¬

s2
µ(t)

¶

i.c.

�2

+ o(1) = 1+ o(1) .

In a nutshell, with symmetry broken initial conditions, in phases III and IV our model
verifies the primary constraint as the fluctuations vanish in the thermodynamic limit.

Let us now consider the fluctuations of the secondary constraint. Separating the N th mode
contribution from the rest of the terms, and using the independent harmonic oscillator Ansatz
(in the bulk) which implies 〈sµ(t)pµ(t)〉i.c. = 0, we find

1
N2

®�

∑

µ

sµ(t)pµ(t)

�

�

∑

ν

sν(t)pν(t)

�

¸

i.c.

=
1

N2




s2
N (t)p

2
N (t)

�

i.c. .

For both phases III and IV we have



s2
N (t)p

2
N (t)

�

i.c. = o(N2). Thus the secondary constraint
– as well as the first one – is strictly verified in the thermodynamic limit.

These results imply that with the use of symmetry broken initial conditions the relative
fluctuations of both the primary and secondary constraint vanish in the thermodynamic limit.
This, in turn, implies that, if we use these initial conditions, there is no difference in imposing
the constraints on average or exactly for large N . We should also recall that the symmetric
or symmetry broken initial conditions produce different results only for observables which
involve a product of three or more phase-space variables {sµ, pµ}, see Sec. 3.1.2. In particular,
for the observables considered in this work, averages of quadratic functions of sµ and pµ, both
sets of initial conditions give the same results.

7.2.2 Fluctuations in the Generalised Gibbs Ensemble

In this Section we develop a formulation of the GGE that includes a symmetry breaking pinning
field, by virtue of which the last mode can acquire a non-vanishing average. In parts we use
the language of the spin Sherrington-Kirkpatrick model; more precisely, we name the field a
magnetic one and “magnetized” means 〈sN 〉GGE = qN .

The introduction of a magnetic field in the equilibrium partition function breaks the Z2
symmetry (sµ→−sµ) and introduces a “magnetised” state as the new thermal equilibrium in
the low temperature phase. We follow similar steps in the GGE formulation. We introduce a
resolution of identity with a delta function which fixes the average of sN to a value ms, which
can eventually be taken to scale with N or vanish. We express the Dirac delta with the help of
its Fourier representation, with an auxiliary (imaginary) field hs acting on sN as pinning field:

1∝
∫

dms dhs ehs(ms−sN ) . (179)
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ms represents 〈sN 〉GGE at the saddle point level.
Two reasons can be evoked to justify this approach. First, in the case in which the spring

forces are not rescaled (J = Jo) the GGE partition function should give the same results as
the equilibrium measure. This means that in the low temperature phase if the Z2 symmetry
is broken in the initial conditions we need to obtain the same symmetry breaking in the GGE
measure. However, the GGE partition function in Sec. 4 yields 〈sN 〉GGE = 0 for all parameters.
Indeed, focusing on Eq. (53) the absence of linear term with respect to sN prevents the system
from getting magnetised. Thus, the auxiliary field hs should correct this problem. Secondly,
in previous papers [10, 11] the dynamics were studied using the Martin-Siggia-Rose generat-
ing functional and the Schwinger-Dyson equations derived in the thermodynamic limit taken
before switching off the pinning fields. These equations couple self-correlation and linear re-
sponse defined as

R(t, t ′) = lim
~h→~0

lim
N→∞

1
N

∑

µ

¬∂ s(h)µ (t)

∂ hµ(t ′)

¶

, (180)

where the superscript (h) indicates that the trajectory s(h)µ (t) is calculated under the field.
Therefore, if we want to match the Schwinger-Dyson dynamic results with a GGE calcula-
tion, we need to take the same convention for the order of limits, meaning we shall take the
thermodynamic limit first.

The full study of the GGE partition function with this extra auxiliary field hs is similar to the
one presented in Sec. 4, and can be found in App. F. Here we just give the relevant definitions
and we stress some key steps in the derivation. First, the full set of auxiliary variables, which
we gather under one vector,

~ϕ ≡
�

{A(p
2)

µ }µ∈[[1,N]], {A(sp)
µ }µ∈[[1,N]], {l(p

2)
µ }µ∈[[1,N]], {l(sp)

µ }µ∈[[1,N]], z
�

, (181)

(where the As, ls and z have the same meaning as in the GGE construction already presented,
see Eq. (F.19) and its derivation) can be split into a component acting on the N th mode – ~ϕN
– and the other ones acting on the rest of the modes – ~ϕbulk. After integrating over ~s and ~p the
GGE measure takes the form

ZGGE∝
∫

d ~ϕ e−S( ~ϕ)∝
∫

d ~ϕ e−SN ( ~ϕN )−Sbulk( ~ϕ) , (182)

see the development in App. F. Written in this form SN depends only on ~ϕN , Sbulk involving
all other modes, and the modes are coupled through z. The end point in this Appendix is that
the calculation returns the harmonic Ansatz with

〈s2
µ〉GGE =

Tµ
z −λµ

and 〈p2
µ〉GGE = mTµ for µ 6= N , (183)

and slightly different conditions on the N th mode

〈p2
N 〉GGE = m(z −λN )〈m2

s 〉 ~ϕN
. (184)

The last mode action – up to subextensive contributions – then reads

2SN ( ~ϕN ) =
m2

s

〈s2
N 〉~s, ~p −m2

s

, (185)

with

〈. . . 〉~s, ~p =
∫

d~s d~p e−S(~s, ~p, ~ϕ) . . . . (186)
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In phase III, this action describes two magnetised states with opposite magnetisation ±ms,
the fluctuation 〈s2

N 〉~s, ~p −m2
s being independent of the magnetisation considered. In phases I,

II and IV this saddle-point approach for the GGE measure also describes the correct stationary
measure. Indeed, in these regions we trivially have ms = 0 in the thermodynamic limit.

We conclude that the fluctuations of the primary constraint in the symmetry broken GGE
vanish in the thermodynamic limit, as well as those of the secondary constraint. This, in turn,
implies that for the symmetry broken GGE the formulations imposing the constraints exactly
or on average give the same results for large N .

7.3 Summary

In short, we can extract the following conclusions on the identity or differences in the system’s
behaviour, depending on whether the constraint is imposed on average or strictly, for both
symmetric (Sec. 7.1.1) or symmetry broken (Sec. 7.2.1) initial conditions and in the static
calculation (Secs. 7.1.2 and 7.2.2).

• Phases I and II. Imposing the spherical constraint on average or strictly yield equivalent
results in the large N limit. First, the fluctuations of the primary and secondary con-
straints with respect to the initial condition measure vanish for large N , meaning that
the initial conditions are indeed of Neumann form. Moreover, the fluctuations of the
constraints maintain their scaling properties throughout the dynamics, and then, the
dynamics are also of Neumann type.

• Phase III. The fluctuations of the primary constraint with symmetric initial conditions do
not vanish in the large N limit, while the ones of the secondary constraint do vanish in
the same limit. The dynamics preserve these scaling properties. The initial conditions
are not of Neumann form, but the dynamics do conserve the primary constraint. A
simple picture of what is going on is that we are averaging over trajectories that live
on a sphere, but a different sphere for each initial condition. However, if we consider
symmetry broken initial conditions, the divergence in the fluctuations of the primary
constraint are cured and the dynamics of the two models are equivalent even in this
sector.

• Phase IV. The properties of the initial conditions are the same as for sector III. The dif-
ference is that the scaling in the asymptotic state does respect both constraints (there is
no condensation in the long-time averages).

Turning now to the statistical mechanics realm, in Secs. 7.1.2 and 7.2.2 we calculated
the scaling of the constraint fluctuations in the GGE formalism without and with symmetry
breaking, respectively. This allow us to draw conclusions about the equivalency between the
soft GGE with partition function given by Eq. (45) and the strictly constrained GGE, with
partition function given by

ZGGE =

∫

d~s d~p exp

�

−
∑

µ

γµ Iµ

�

δ

�

∑

µ

s2
µ − N

�

δ

�

∑

µ

sµpµ

�

. (187)

The symmetry broken formulation includes the imaginary fields that generate a non-vanishing
average of sN (phase III). The conclusions are similar to those obtained for the dynamical
calculation. In phases I, II and IV the two formulations are equivalent. In phase III, with
〈sN 〉GGE = 0 the fluctuations of the primary constraint do not vanish in the large N limit and
the soft and strict GGEs are not equivalent. Instead, the symmetry broken formulation of
the soft GGE fixes the scaling of the primary constraint rendering the soft and strict GGEs
equivalent in the large N limit.
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(a) (b)

Figure 17: Dynamic phase diagrams and typical trajectories. (a) Symmetric initial
conditions. The four phases appear as squares in this representation. The scaling
with N of the fluctuations of the primary and secondary constraints in the dynamics
of the SNM are written in the four boxes. The spheres represent real space and the
location of the typical trajectories are represents by the shaded surfaces in I, II, III
and with a curve in IV. In phase III all trajectories are embedded on a sphere but their
radius is not always

p
N . (b) Symmetry broken initial conditions.

8 Conclusions

Our results contribute to the characterisation of macroscopic classical integrable systems, and
the understanding of their asymptotic properties in statistical physics terms.

The asymptotic dynamics of the Soft Neumann Model after instantaneous quenches can
be rationalised in terms of a rich dynamic phase diagram. Based on the analysis of global
quantities like the auto correlation function and the linear susceptibility with the Schwinger-
Dyson approach, in [10] we established a phase diagram, which we reproduce in Fig. 4 (b).

This paper completes and gives a much more detailed description of these phases via a
static and dynamic mode resolved analysis which characterises all 〈s2

µ〉 and 〈p2
µ〉 and, in partic-

ular, yields the scaling of 〈s2
N 〉 and 〈p2

N 〉 with system size. Our central result is the calculation
of the GGE partition sum and the averages of mode dependent observables which we could
express as (implicit) functions of the control parameters. We then successfully compared the
GGE averages to the dynamic ones computed numerically over sufficiently long time windows
in large systems. In the stationary limit and within our numerical accuracy dynamic and static
averages coincide.

In Figs. 17 we illustrate the system’s behaviour in the four phases using a representation of
the phase diagram, in terms of (J/T0, T0/J0), which renders the phases rectangular. In Fig. 18
we show the plane corresponding to the N th mode and we use the notation 〈. . . 〉 to represent
both the dynamic and GGE averages. The behaviour of the averaged trajectories in the N th
plane of phase space are summarised below.

• In phases I, II and IV a typical trajectory moves on the sphere and does not have a
macroscopic projection on any of the coordinates, not even the N th one, which is singled-
out as the vertical direction of the sketch. The GGE averages 〈pN 〉GGE and 〈sN 〉GGE vanish
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as also do the time averages 〈. . . 〉i.c. of the same observables, see Fig. 18. 〈p2
µ〉GGE and

〈s2
µ〉GGE are all o(N). The exact solution that we found in this paper allowed us to prove

that sN and pN are only quasi-condensed in phase IV, as sketched by the fluctuations
sketched in Fig. 18 (d) (contrary to what we claimed in [12]).

• In phase III, a typical trajectory starting from a symmetry broken initial condition with
a macroscopic projection on the direction of the N th coordinate keeps this projection in
the course of time and, typically, precedes around it. The trajectory does not leave the
sphere. The GGE as well as the dynamic averages of the momentum in this same N th di-
rection, 〈pN 〉GGE = 〈pN 〉i.c., vanish. Instead, 〈sN 〉GGE = 〈sN 〉i.c. are proportional to±N1/2.
The sign depends on the sense of the initial condition and the power and prefactor en-
sure that the spherical constraint is satisfied. This is indicated by the two green dots
in Fig. 18 (c). If, instead, symmetric initial conditions are used, 〈sN 〉GGE = 〈sN 〉i.c. = 0
and the large fluctuations of the primary constrained are represented in the N th plane
in Fig. 18 (b). For both kinds of initial conditions 〈s2

N 〉= qN .

(a) (b) (c) (d)

Figure 18: Sketches of the sN and pN dependencies with N . The colour code
follows the one of the four phases. (a) Phases I and II. (b) Phases III with symmetric
initial conditions. (c) Phases III with symmetry broken initial conditions. (d) Phase
IV.

The equivalence between the Soft Neumann Model and the original model in which the
constraint is imposed strictly is another issue that deserved our attention. We addressed it by
studying the fluctuations of the primary and secondary constraint, which amounts to comput-
ing averages of quartic functions of the phase space variables.

• In phase I, II and IV the two models are equivalent since the fluctuations of both con-
straints vanish in the thermodynamic limit.

• In phase III with symmetric initial conditions all dynamical trajectories of the SNM are
embedded on a sphere but their radius is not always equal to N1/2. For symmetry broken
initial conditions the fluctuations of the primary constraint vanish and the two models
become equivalent again.

Still, beyond the possible differences between the SNM and NM, the equivalence between
dynamic and stationary averages calculated with the GGE still holds in all phases.

Interesting paths to extend our study could be to consider the effect of weak integrability
breaking perturbations [20,21], and a particularly attractive way to do it would be to connect
the Hamiltonian dynamics of the Neumann model to the relaxational one of the stochastic
open system [62–68]. Another intriguing issue is whether a similar approach can be adapted
to treat the ferromagnetic finite dimensional O(N) model, with an explicit space structure.
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Let us end with a short comment of other studies of classical integrable models. Sev-
eral authors have recently developed a Generalised Hydrodynamic Theory of quantum inte-
grable many-body finite dimensional systems with an extensive number of coupled conserva-
tion laws [92–95]. The assumption of local Gibbs-Boltzmann equilibrium, at the heart of usual
hydrodynamic theories, is replaced in these models by an assumption of local equilibrium in
a Generalised Gibbs Ensemble. Following these papers, applications to classical field theories
and lattice models were considered, for example, to the sinh-Gordon model [15] and the Toda
system [16, 17]. The main difference between the model we treated and the ones studied in
these papers is its “mean-field” character or, in other terms, the fact that in terms of inter-
actions, the spherical constraint can be interpreted as a long-range one. This simplification
allowed us to obtain exact results in the large N limit with no approximation scheme.

A The Wigner semi-circle law

The Wigner semi-circle law is

ρ(λ) =
1

2πJ2

Æ

(2J)2 −λ2 for λ ∈ [−2J , 2J] , (A.1)

and zero otherwise. We recall here, for future reference, a number of integrals of this density.
Its normalization and symmetry ensure

∫

dλρ(λ) = 1 ,

∫

dλρ(λ)λ= 0 ,

∫

dλρ(λ)λ2 = J2 . (A.2)

Then,

Int0(a)≡ −
∫

dλρ(λ)
1

a−λ
=











a
2J2

a ∈ [−2J , 2J] ,

1
2J2

�

a− sgn(a)
p

a2 − (2J)2
�

a /∈ [−2J , 2J] ,
(A.3)

with −
∫

the principal part. With simple recursions one finds

Int1(a) ≡ −
∫

dλρ(λ)
λ

a−λ
= −
∫

dλρ(λ)
�

λ− a
a−λ

+
a

a−λ

�

= −1+ a Int0(a) ,

Int2(a) ≡ −
∫

dλρ(λ)
λ2

a−λ
= −
∫

dλρ(λ)
λ(λ− a+ a)

a−λ
= a Int1(a) .

(A.4)

We now use these expressions to evaluate

−
∫

dλρ(λ)
(c −λ)(d −λ)
(a−λ)(b−λ)

= 1+
1

b− a

�

(cd − a(c + d) + a2) Int0(a)

−(cd − b(c + d) + b2) Int0(b)
�

, (A.5)

for a 6= b. At this level the expression is symmetric under a ↔ b and c ↔ d. Some checks
are the following. For b = c = d = 0 or a = c = d = 0 one recovers −Int1(a) = 1− a Int0(a).
For b = d and a = c, or b = c and a = d, the result reduces to 1, by normalization.
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Now we need to distinguish different cases depending on a ∈ [−2J , 2J] and b ∈ [−2J , 2J]
or not. Multiplying the integral in (A.5) by 2J2(b− a) and calling the result Int:































−(b− a)
�

cd − (c + d)(b+ a) + a2 + b2 + ab− 2J2
�

a & b ∈ [−2J , 2J] ,
�

cd − a(c + d) + a2
�

a a ∈ [−2J , 2J]&
−
�

cd − b(c + d) + b2
� �

b−
p

b2 − (2J)2
�

+ (b− a)2J2 b /∈ [−2J , 2J] ,
�

cd − a(c + d) + a2
� �

a−
p

a2 − (2J)2
�

−
�

cd − b(c + d) + b2
� �

b−
p

b2 − (2J)2
�

+ (b− a)2J2 a & b /∈ [−2J , 2J] .

(A.6)

(To avoid writing signs, we took a, b positive in the cases in which they are outside the interval
[−2J , 2J].) Consistently, all expressions are symmetric with respect to c ↔ d. The first and
third cases are also anti-symmetric with respect to a↔ b (recall that we multiplied the integral
by b− a). A particular case, valid for c = a and d 7→ a, is

−
∫

dλρ(λ)
a−λ
b−λ

=











1
2J2
[(a− b)b+ 2J2] b ∈ [−2J , 2J] ,

1
2J2

�

(a− b)
�

b−
p

b2 − (2J)2
�

+ 2J2
�

b /∈ [−2J , 2J] .
(A.7)

If we look at c = d, which is what we have in the integral defining G on the special line
T0 = (JJ0)1/2 > J0,

−
∫

dλρ(λ)
(c −λ′)2

(a−λ′)(b−λ′)
=

1
(b− a)

�

(c − a)2 Int0(a)− (c − b)2 Int0(b) + (b− a)
�

. (A.8)

One also has

−
∫

dλρ(λ)
a−λ

(b−λ)(λ− c)
=

b− a
b− c

[−Int0(b) + Int0(c)]− Int0(c) , (A.9)

for a 6= b 6= c.

B The Neumann Model

The Neumann Model (NM) describes the dynamics of a particle strictly constrained to move
on the N−1 dimensional sphere under the effect of harmonic forces [25]. It can be formulated
in two ways that we summarise below.

B.1 Constrained formulation

In the constrained formulation the NM is given by a harmonic Hamiltonian

H =
∑

µ

p2
µ

2m
−
∑

µ

λµs2
µ

2
≡ Hquad , (B.1)

with λµ 6= λν for µ 6= ν, under the primary and secondary constraints

φ =
∑

µ

s2
µ − N = 0 , φ′ =

1
N

∑

µ

sµpµ = 0 , (B.2)

respectively. The Greek indices µ, ν run from 1 to N . The second equation is a consistency
condition that follows from imposing

φ̇ ≡
dφ
d t
= {φ, H}= 0 , (B.3)
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where the curly brackets are the conventional Poisson ones. Note that we use a notation
oriented towards the formulation of the so-called p = 2 disordered model that we introduce
in Sec. C. In particular, the minus sign in the potential energy implies that the modes with
higher/lower energy are the those with lower/higher λ. In order to calculate the evolution
of various quantities, the constraints can be taken into account by transforming the Poisson
brackets into Dirac brackets. In the specific case of the spherical constraint the Dirac bracket
is given by

{ f , g}D = { f , g}+
1
2
{ f ,φ}

�

φ′, g
	

−
1
2

�

f ,φ′
	

{φ, g} . (B.4)

The form of the Dirac brackets is determined solely by the constraints. In this way, the dynamics
of the phase space function f under the Hamiltonian H and subject to the constraints φ and
φ′ is given by its Dirac bracket with the Hamiltonian H:

ḟ = { f , H}D . (B.5)

Using the Dirac brackets we then derive the equations of motion for the constrained model:

ṡµ =
�

sµ, H
	

D =
pµ
m

,

ṗµ =
�

pµ, H
	

D = −sµ

�

1
N

∑

ν

�

p2
ν

m
+λνs

2
ν

�

−λµ

�

,
(B.6)

where we have used φ′ = 0, and which can be condensed as

ms̈µ = −sµ(z({sµ}, {pµ})−λµ) , (B.7)

with the phase-space function

z({sµ}, {pµ})≡
1
N

∑

ν

�

p2
ν

m
+λνs

2
ν

�

. (B.8)

This function represents the restoring force that keeps the particle on the sphere, and will play
an important role when we define the "soft" version of the model in Sec. ??.

B.2 Unconstrained formulation

The equations of motion (B.6) can be obtained from a different Hamiltonian involving canon-
ical variables that vary freely in phase space. Following [48], we introduce new momentum
variables rµ through the canonical transformation

pµ = rµ

�

1
N

∑

ν

s2
ν

�

− sµ
∑

ν

sνrν . (B.9)

The variables sµ and rµ are canonical, {sµ, rν} = δµν, and it can be verified that the induced
Poisson brackets between the sµ and pµ variables reproduce the Dirac brackets of the con-
strained version. Basically,

�

sµ, pν
	

D =
�

sµ, pν(s, r)
	

,
�

pµ, pν
	

D =
�

pµ(s, r), pν(s, r)
	

. (B.10)

Moreover, N−1
∑

µ sµrµ = 0. The equation of motion for sµ and rµ can be obtained from the
Hamiltonian:

H ′ =
1

4N

∑

µ6=ν

L2
µ,ν −

1
2

∑

µ

λµs2
µ , (B.11)
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where the Lµ,ν are the elements of an angular momentum anti-symmetric matrix
p

m Lµ,ν = sµrν − rµsν . (B.12)

The equations of motion are now obtained in the canonical way

ṡµ =
∂ H ′

∂ rµ
, ṙµ = −

∂ H ′

∂ sµ
, (B.13)

and are equivalent to Eqs. (B.6).

B.3 The constants of motion

Most importantly, K. Uhlenbeck found that the equations of motion of the unconstrained for-
mulation for sµ and rµ lead to the existence of conserved quantities in involution with respect
to the Poisson bracket [47]:

Iµ = s2
µ +

1
mN

∑

ν(6=µ)

1
λν −λµ

L2
µ,ν(s, r)

= s2
µ +

1
mN

∑

ν(6=µ)

s2
µp2
ν + p2

µs2
ν − 2sµpµsνpν

λν −λµ
. (B.14)

These expressions satisfy two constraints for any choice of the λµ,
∑

µ

λµ Iµ = −2H ′ ,
∑

µ

Iµ =
∑

µ

s2
µ . (B.15)

Since
∑

µλµ Iµ = −2H ′(s, r), the dynamics of the {sµ, rµ} system are integrable in the sense
of Liouville. The dynamics of the constrained {sµ, pµ} are also integrable, since
Lµ,ν(s, r) = Lµ,ν(s, p), and the Poisson brackets for {sµ, rµ} imply the Dirac brackets for {sµ, pµ}.

C The spherical Sherrington-Kirkpatrick model

The statistical mechanics of the SNM is directly related to the so called p = 2 spherical spin
model or spherical Sherrington-Kirkpatrick (SSK) model, for which the λµ’s are taken to be
the eigenvalues of a random real symmetric matrix in which each element is drawn from a
Gaussian distribution conveniently normalised, that is to say, a matrix in the GOE ensemble.

In the context of disordered spin systems, the p = 2 spherical spin model or SSK has
“potential energy” [28]

Hpot = −
1
2

∑

i 6= j

Ji jsis j = −
1
2

∑

µ

λµs2
µ . (C.1)

The variables are the real “spins” si , i = 1, . . . , N , which interact through the coupling strengths
Ji j = J ji , that can be thought of as being the elements of a real symmetric matrix with
eigenvalues λµ. The last equality is the result of a diagonalisation, and sµ = ~s · ~vµ with
~s = (s1, . . . , sN ) and ~vµ the µ-th eigenvector or the matrix Ji j . The sum runs over µ = 1, . . . , N
and we will order the eigenvalues in such as way that λ1 < · · · < λN . The units are such that
[Hpot] = [Ji j] = J and [λµ] = [Ji j]⇒ [s2

µ] = 1.
In order to constrain the range of variation of the real spins, a global spherical constraint

is introduced in the definition of the partition function

Zeq =

∫

∏

µ

dsµ

∫ c+i∞

c−i∞
dzeq e−βHpot e−

βzeq
2

�

∑

µ s2
µ−N

�

. (C.2)
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Working at fixed zeq, the Gaussian integration over the sµ yields

〈s2
µ〉eq =

T
zeq −λµ

, (C.3)

with [zeq] = J . The Lagrange multiplier zeq is then fixed by imposing the spherical constraint
on average:

1=
1
N

∑

µ

〈s2
µ〉eq −→ 1= T

∫

dλ
ρ(λ)

zeq −λ
. (C.4)

Using the semi-circle law for the eigenvalue density in the N → ∞ limit, valid for random
elements Ji j with variance J2/N ,

ρ(λ) =
1

2πJ2

p

4J2 −λ2 , (C.5)

one finds
zeq −

Ç

z2
eq − (2J)2 = 2βJ2 , (C.6)

as long as zeq > 2J , leading to the temperature dependent function

zeq = T +
J2

T
≡ z+ for T > Tc = J . (C.7)

Below Tc = J , Eq. (C.6) ceases to have a real solution. The Lagrange multiplier is then fixed
to its minimal value

zeq = 2J = λN ≡ z− , (C.8)

and the spherical constraint (C.4) is no longer satisfied since

T

∫

dλ
ρ(λ)

zeq −λ
= T

∫

dλ
ρ(λ)

2J −λ
=

T
J

. (C.9)

There are two ways to solve the latter conundrum. The simplest one is to propose that the
N th mode condenses:

sµ=N = ±
p

N
�

1−
T
J

�1/2

+δsµ=N , (C.10)

ensuring the validity of the spherical constraint

1
N

∑

µ

〈s2
µ〉eq =

�

1−
T
J

�

+
T
J
= 1 . (C.11)

In this case, the spin vector ~s has a macroscopic projection on the eigenvector associated to
the largest eigenvalue, ~s · ~vN ∝

p
N . As shown in [28], the introduction of a magnetic field in

the equilibrium partition function breaks the Z2 symmetry (sµ →−sµ) and introduces such a
magnetised state as in as the thermal equilibrium in the low temperature phase.

Another possibility is that the fluctuations of the N -th mode are the ones that condense,
meaning that

〈s2
N 〉eq =

�

1−
T
J

�

N , (C.12)

with no macroscopic projection of the spin vector in the direction of ~vN ,

〈sN 〉eq = 0 . (C.13)
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One can interpret the types of low temperature thermal equilibrium as arising from two
orders of limits. The Z2 symmetric solution is obtained when the magnetic field is taken to
zero before the thermodynamic limit (limN→∞ limh→0) while the Z2 symmetry broken one
is obtained when the thermodynamic limit is taken first (limh→0 limN→∞). We will see the
influence of these two kinds of initial states, and how similar condensation of fluctuations
arise in the dynamics of the SNM model in Sec. 7. For more details on the difference of the
two kinds of equilibrium at T < J and how this is related to inequivalence of equilibrium
ensembles see [72–74].

The equilibrium linear susceptibility to a field that couples globally to the spins,
−h
∑

i si = −h
∑

µ sµ is

χeq ≡
1
N

∑

µ

δ〈sµ〉heq

δh

�

�

�

�

�

h=0

=
β

N

∑

µ

�

〈s2
µ〉eq − 〈sµ〉2eq

�

=

�

1/T T > J ,
1/J T < J ,

(C.14)

where in the first identity we used the static fluctuation-dissipation theorem.
The static properties of this model and, especially, its fluctuations, have called a recent

surge of interest in the mathematical physics community [52–59], see also [60,61].
In the statistical physics context, the relevant dynamics to be considered are of Langevin

type, with dissipation and noise induced by the coupling to a bath. Many studies of the re-
laxation dynamics of this model after quenches across the critical temperature into the low
temperature phase demonstrated that, in the course of time, the spin configuration tends to
align with the eigenvector associated to the largest eigenvalue without being able to do it if
the N →∞ limit is taken from the outset [62–68]. If, instead, one lets time scale with N three
relaxation regimes are clearly distinguished in the approach to thermal equilibrium [69,70].

D Averaged constants of motion

We evaluate two types of average of the Uhlenbeck constants of motion. In App. D.1 we
use the canonical equilibrium Gibbs Boltzmann distribution at temperature T0 for the initial
conditions, and we take the mean over it. In App. ?? we average over the GGE measure using
the harmonic Ansatz.

D.1 Thermal initial conditions

On average over the equilibrium initial measure ρ0 the constants of motion are

〈Iµ(0+)〉i.c. = 〈s2
µ(0

+)〉i.c.

+
1

mN

∑

ν(6=µ)

1
λν −λµ

�

〈s2
µ(0

+)p2
ν(0

+)〉i.c. + 〈p2
µ(0

+)s2
ν(0

+)〉i.c. (D.1)

−2〈sµ(0+)pµ(0+)sν(0+)pν(0+)〉i.c.

�

= 〈s2
µ(0

+)〉i.c. +
1

mN

∑

ν(6=µ)

〈s2
µ(0

+)〉i.c.〈p2
ν(0

+)〉i.c. + 〈p2
µ(0

+)〉i.c.〈s2
ν(0

+)〉i.c.

λν −λµ
.

The factorisation of the average of the four factors in the last term, which eventually makes its
contribution vanish, is justified because of the Gaussian character of the measure and because
the sum runs over ν(6= µ). The factorisation is safe even in cases in which the fluctuations of
the N th mode are macroscopic. Apart from sub-leading corrections, these averages satisfy the
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two global constraints:
∑

µ

〈Iµ(0+)〉i.c. =
∑

µ

〈s2
µ(0

+)〉i.c. = N , (D.2)

∑

µ

λµ〈Iµ(0+)〉i.c. =
∑

µ

λµ〈s2
µ(0

+)〉i.c. −
1
m

∑

µ

〈p2
µ(0

+)〉i.c.

+
1

mN

∑

µ

〈s2
µ(0

+)〉i.c.〈p2
µ(0

+)〉i.c.

= −2〈H(0+)〉i.c. +O(1) . (D.3)

D.1.1 T0 > J0 (extended initial condition)

In this case

〈Iµ(0+)〉i.c. =
T0

zeq(T0)−λ
(0)
µ

+
T0

2

N

∑

ν(6=µ)

1
λν −λµ





1

zeq(T0)−λ
(0)
µ

+ (µ↔ ν)



 , (D.4)

and the sums can be readily rearranged in such a way that they can be calculated analytically:

〈Iµ(0+)〉i.c. =

�

1+
2T0J0

J
−
∫ 2J0

−2J0

dλ′
ρ(λ′)

λ′ −λ(0)µ
+

T0J0

J

∫ 2J0

−2J0

dλ′
ρ(λ′)

zeq(T0)−λ′

�

.

The kind of integrals in the last two terms appear in the derivation of the Wigner semi-circle
law using the Coulomb gas approach and are sometimes called Tricomi’s Theorem. They are
recalled in App. A as well. When λ′ lies within the interval of variation of the integration
variable, as in the second term between the square brackets,

−
∫ 2J0

−2J0

dλ′

2πJ2
0

Æ

(2J0)2 −λ′2

λ′ −λ(0)µ
= −

λ(0)µ

2J2
0

, (D.5)

see Eq. (5.24) in Ref. [90]. The result for the second integral is different, since T0 > J0 and the
Lagrange multiplier zeq(T0) is larger than 2J0 (or equal to this value at T0 = J0). The integral
yields

∫ 2J0

−2J0

dλ′
ρ(λ′)

zeq(T0)−λ′
=

1

2J2
0

�

zeq(T0)−
q

(zeq(T0))2 − 4J2
0

�

. (D.6)

Then

〈Iµ(0+)〉i.c. =
T0

zeq(T0)−λ
(0)
µ

§

1−λ(0)µ
T0

J0J
+

T0

2J0J

�

zeq(T0)−
q

(zeq(T0))2 − 4J2
0

�

ª

.

We can now use zeq(T0) = T0 + J2
0/T0 to simplify a bit this form

〈Iµ(0+)〉i.c. =
T0

2

J0J

(J2
0 + J0J)/T0 −λ(0)µ
(J2

0 + T0
2)/T0 −λ

(0)
µ

=
T0

2

J0J

(J2
0 + J0J)/T0 − J0λµ/J

(J2
0 + T0

2)/T0 − J0λµ/J
. (D.7)

We have verified that the two constraints,
∑

µ〈Iµ〉i.c. = N and
∑

µλ
(0)
µ 〈Iµ〉i.c. = −2〈H〉i.c.

= −
∑

µ〈p
2
µ〉i.c./m+

∑

µλ
(0)
µ 〈s

2
µ〉i.c., are satisfied by these expressions.
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For future reference, we can see which is the condition on the parameters imposed by
〈Iµ(0+)〉i.c. > 0. Focusing on the largest eigenvalue, µ = N , for which λ(0)N = 2J0, one easily
checks that the denominator is a perfect square and hence always positive. Concerning the
numerator, the condition for positivity is

1< y <
1+ x

2
with x =

J
J0

and y =
T0

J0
. (D.8)

In the full phase I and in a part of phase II, delimited by the two straight lines in the inequality,
〈IN (0+)〉i.c < 0. To the right of this line, in phase II, 〈IN 〉i.c. > 0.

A special case is the one in which the numerator and denominator in the second fac-
tor in Eq. (D.7) are equal and the 〈Iµ〉i.c. lose their µ dependence. This is achieved for
J2

0 + J0J = J2
0 + T2

0 which implies J/J0 = (T0/J0)2 and is shown with a blue line within phase
II in Fig. 4. On this curve, all 〈Iµ〉i.c. equal one and satisfy the two constraints,

∑

µ〈Iµ〉i.c. = N
and

∑

µλµ〈Iµ〉i.c. = −2〈H(0+)〉i.c. = −2e f = 0, see Table 1.
Several typical cases are plotted in Fig. 3 (a).

D.1.2 T0 < J0 (condensed initial condition)

For µ= N we can focus on the leading O(N) contribution

〈IN (0
+)〉i.c. = 〈s2

N 〉i.c.

 

1+
T0

N

∑

ν(6=N)

1
λν −λN

!

+ 〈p2
N 〉i.c.

1
mN

∑

ν(6=N)

〈s2
ν〉i.c.

λν −λN

7→
�

1−
T0

J0

��

1−
T0

J

�

N −
1
N

∑

ν(6=N)

T2
0

z(0) −λ(0)ν

1
λN −λν

, (D.9)

where we took the continuum limit in the calculation of the integral in the first term. The last
term is more delicate to handle. In the infinite N limit we know that z(0)→ 2J0 and λN → 2J
so we can expect this full second term to diverge with N . One can check numerically that
N−1

∑

µ6=N (λN −λµ)−2 = o(N). A way to confirm the sub-linear scaling with N is to check that
the first term is enough to ensure the normalisation of the constants of motion once the other
〈Iµ〉i.c. with µ 6= N as computed. Indeed, for µ 6= N

〈Iµ(0+)〉i.c. = 〈s2
µ〉i.c.

 

1+
T0

N

∑

ν(6=µ)

1
λν −λµ

!

+ 〈p2
µ〉i.c.

1
mN

∑

ν(6=µ,N)

〈s2
ν〉i.c.

λν −λµ

+ 〈p2
µ〉i.c.

1
mN

〈s2
N 〉i.c.

λN −λµ
=

T0
2

J2
0 J

(JJ0 + J2
0 )/T0 − J0λµ/J

2− λµ/J
. (D.10)

This expression coincides with the one in Eq. (D.7) for T0 > J0 if we identify zeq(T0) there
with 2J0 here. We can also check that the normalised sum of the Iµs, including the O(1)
contribution of the N -th mode, equals 1. Therefore,

〈IN (0
+)〉i.c. =

�

1−
T0

J0

��

1−
T0

J

�

N . (D.11)

Since T0/J0 < 1 the first factor is positive. In phase III J/J0 > T0/J0 and, therefore, J > T0
implying that 〈IN (0+)〉i.c. is positive. Instead, in phase IV J/J0 < T0/J0 and one has that
〈IN (0+)〉i.c. is negative. Summarising

〈IN (0
+)〉i.c. =

�

> 0 in phase III ,
< 0 in phase IV .

(D.12)
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In phase IV one can identify the straight line 2T0/J0 = (1 + J/J0) on which the bulk
constants of motion are all equal, 〈Iµ 6=N 〉i.c. = T0

2/(J0J), and 〈IN 〉i.c. = −(1−J/J0)2 J0/(4J)N ,
complying with the two constraints in the large N limit. The straight line 2T0/J0 = (1+ J/J0)
is shown in Fig. 4 and the bulk 〈Iµ 6=N 〉i.c. in some representative cases are depicted in Fig. 3 (b).

The conservation of the integrals imposes constraints on the stationary state reached after
the quench. Four different regions of the phase diagram, see Fig. 4, are easily identified ac-
cording to the sign and scaling with N of 〈I(λN )〉i.c. although do not coincide exactly with the
dynamic phases.

D.2 The constants of motion in the GGE

Separating the sums as we did in Eq. (D.9),

〈Iµ〉GGE = 〈s2
µ〉GGE

 

1+
1
N

∑

ν(6=µ)

〈p2
ν〉GGE

λν −λµ

!

+ 〈p2
µ〉GGE

1
mN

∑

ν(6=µ)

〈s2
ν〉GGE

λν −λµ
. (D.13)

In the second sum we have to consider separately the case µ 6= N and µ= N , and the last one
is the tricky one, since in phases III and IV, 〈IN 〉GGE should be O(N).

Let us first look at phase III, where 〈s2
N 〉GGE = O(N) and 〈p2

N 〉GGE = O(1) while all the
other averages are also O(1). The averaged N th constant of motion is

〈IN 〉GGE = 〈s2
N 〉GGE

 

1+
1

mN

∑

ν(6=N)

〈p2
ν〉GGE

λν −λN

!

+ 〈p2
N 〉GGE

1
mN

∑

ν(6=N)

〈s2
ν〉GGE

λν −λN

= qN

 

1+
1
N

∑

ν(6=N)

Tν
λν −λN

!

− TN
1
N

∑

ν(6=N)

Tν
(λν −λN )2

→ qN

 

1−
1
N

∑

ν(6=N)

Tν
λN −λν

!

= q2N , (D.14)

where we dropped the sub-leading contribution of the last term in the second line, and we
obtained a result which is consistent with Eq. (D.11).

In phase IV we know 〈p2
µ〉GGE = (z − λµ)〈s2

µ〉GGE for all µ including µ = N , and z > λN .
Moreover, the analytic solution explained in the main body of the paper indicates that
〈s2
µ〉GGE ∝ (λN − λµ)−1. Thus, the two sums in the first line of Eq. (D.14) have a power

of (λN −λν)2 in the denominator with a finite numerator. We already know that these sums,
in the large N limit, go as a power of N which is smaller than one, say N a. Thus, they dominate
the right hand side and

〈IN 〉GGE ∝ −〈s2
N 〉GGE N a . (D.15)

Then, the result can be proportional to N if 〈s2
N 〉GGE ∝ N1−a. Note that the sign is correct,

since 〈IN 〉GGE is negative in phase IV. 〈p2
N 〉GGE is also proportional to N1−a in this phase because

of the harmonic relation. In short we have

〈s2
N 〉GGE = (z −λN )〈p2

N 〉GGE =O(N1−a) . (D.16)

E Details of the exact solution

In this Appendix we give more details on the exact solution. In particular, we focus on the
behaviour close to the edge of the spectrum of harmonic constants, that is to say, on the coor-
dinates µ∼ N .
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Both g2 and G take some special forms in certain phases of the phase diagram or for special
relations of the parameters. They can also be simply expanded for 0 < ε = 2J − λ� 1. We
review some of these useful properties here.

E.1 Properties of g(λ)

Two simple cases are

[4J2 g(λ)]2 = [(2J)2 −λ2]×
�

(z −λ)2 for a = b in II ,
(b−λ)2 k2

1 in III since z = a .
(E.1)

In equilibrium J0 = J and this implies b = 2J2/T0 and a = z at all T0. These parameters
fall in phases I and III. The latter relation induces some simplifications and

geq(λ) =
πT0

2

2J2
ρ(λ)

�

2J2

T0
−λ

�

. (E.2)

For a 6= 2J , that is, in phases I and II,

[4J2 g(ε)]2 = k2
1(z − 2J + ε)2

�

4J
(b− 2J)2

(a− 2J)2
ε

+
(−ab2 + 12abJ − 6b2J − 20aJ2 + 8bJ2 + 8J3)

(a− 2J)3
ε2 + O(ε3)

�

. (E.3)

In phase I, the leading order is order ε. In phase II, z = 2J , and the lowest order is ε3. On the
special curve T0 = (JJ0)1/2 in phase II

[4J2 g(ε)]2 = ε3 [4J − ε] . (E.4)

In phase III, a = z = 2J and

[4J2 g(ε)]2 = k2
1ε(4J − ε)(b− 2J + ε) . (E.5)

Instead, in IV, a = 2J , z 6= 2J and

[4J2 g(ε)]2 = 4Jk2
1(z − 2J)2(b− 2J)2

1
ε

, (E.6)

to leading order. On the special curve, T0 = (JJ0)1/2, b = z and the two factors in the numer-
ator combine into a fourth power.

E.2 Properties of G(λ)

In equilibrium J0 = J , b = 2J2/T0, and a = z at all T0. One has

Geq(λ) =
T0

2

2J4

�

λ2 −
2J2

T0
λ− 2J2

�

. (E.7)

Working a little bit with these expressions one recovers χI = πρT0, with T0 constant, from
our general solution of the quartic equation above, setting f = 0.

On the special curve in II, on which k1 = 1, a = b, and 〈Iµ〉i.c. = 1,

1+ G(λ) =
λ

2J2
(λ− z)< 0 if a = b in II . (E.8)
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Figure 19: Parameters helping the calculation of the limits

Since z = 2J in this phase, one easily sees from there that the expansion close to the edge starts
at order ε on this line. In the rest of phase II, the O(ε0) also brings some special consequences,
since it vanishes identically, and one has

G(2J − ε) = −1 in the full phase II . (E.9)

In the full phase III, one finds a similar expression for G(λ) since a = z,

G(λ) =
T0

2

2J0J3

�

λ2 − bλ− 2J2
�

in the full phase III . (E.10)

For the particular equilibrium case J0 = J , one recovers Eq. (E.7). In phase IV, a = 2J but
z 6= a > 2J . In particular, on the special line in IV, T0

2 = J0J , k1 = 1, b = z = (J/J0)1/2(J + J0)
and

1+ G(λ) =
1

2J2

�

λ2 − 2λ(z − J) + (z − 2J)2
�

if b = z in IV . (E.11)

In complete generality, close to the edge of the [−2J , 2J] interval, for ε= 2J−λ, G behaves
as

2J2

k1
G(ε) = 2J(a− b− z + J)− (a− b)

p

a2 − 4J2 a− z
a− 2J

+ (b− a)(z − a)

+

�

−a+ b− 4J + z +
(a− b)

p
a2 − 4J2(a− z)
(a− 2J)2

�

ε

+

�

1−
(a− b)

p
a2 − 4J2(a− z)
(a− 2J)3

�

ε2

+O(ε3) . (E.12)

E.3 The solution close to the edge of the spectrum

At the right edge of the [−2J , 2J] interval, if f = 0 and 1+ G ∼ +ε0 (finite and positive) the
situation in phases I and III,

2χ2
I = 2(πρT )2 '

2g2

1+ G
=

2π2

4
ρ2(z −λ)2|〈I〉i.c.|2

1+ G
, (E.13)
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for λ= 2J − ε, and this implies

T (2J) =
1
2
(z − 2J) |〈I(2J)〉i.c.|

1
p

1+ G(2J)

=
(z − 2J)
(a− 2J)

T0

2J0

|J0 + J − 2T0|
p

1+ G(2J)
. (E.14)

• In phase I, z > 2J and a > 2J and 0 < T (2J) = 〈p2(2J)〉GGE and
0< 〈s2(2J)〉GGE = (z − 2J)〈p2(2J)〉GGE are also finite.

• In phase III, z = a = 2J , two factors cancel and
T (2J) = 1/2

p

T0J/J0 (J0 + J − 2T0)/
p

T0 − J − J0 is finite. Instead, 〈s2(2J)〉GGE is in-
versely proportional to 2J −λ and diverges at λ→ 2J .

In phase II, z = 2J and a > 2J . Right at the edge of the spectrum 1+G(2J) = 0. The first
order correction in ε becomes the leading one and it is proportional to (T0−J)/(T0−J0) (with
positive proportionality constant) and hence negative in the full phase, 1+ G(2J − ε) ∼ −ε.
Concerning g, g(2J −ε) =O(ε3/2) changing sign on another special straight line, on which it
vanishes identically. It is therefore smaller than 1+ G in the full phase.

• In phase II one cannot apply the expression (E.14). Instead,

2χ2
I = 2(πρT )2 ' −(1+ G) + |1+ G|

�

1+ 2
g2

(1+ G)2

�

' −2(1+ G) + 2
g2

|1+ G|
' −2(1+ G) . (E.15)

From here we get 〈p2(2J − ε)〉GGE = T (2J − ε) ∝ ε/ε = O(1). Consequently,
〈s2(2J − ε)〉GGE =O(ε).

• On the special line in II, the solution is derived in a different way. T (λ) = J is finite for
all λ and thus 〈s2(2J)〉GGE should diverge driven by the denominator z − 2J .

Finally, in phase IV, z > 2J , a = 2J and 1+ G(2J) 6= 0.

• Both T (λ) and 〈s2(λ)〉GGE diverge at the edge in the same way, driven by the divergence
of 〈IN 〉i.c., and should therefore scale with N .

• On the special line in IV, we know T (λ) = J[T0/J0 (J + J0)−λ]/[2J −λ] and it diverges
at the edge.

F Saddle-point and broken symmetries

In this Appendix we explain how to implement symmetry breaking in the GGE formalism, in
other words, how to let the N th mode coordinate and momentum acquire averages which
scale as N1/2.

Take the GGE action

S(~s, ~p, z) =
N
∑

µ=1

�

γµ +
z

2J

�

s2
µ −

1
mN

∑

µ6=ν

η(µ,ν) (s2
µp2
ν − sµsνpµpν) . (F.16)

65

https://scipost.org
https://scipost.org/SciPostPhys.13.3.048


SciPost Phys. 13, 048 (2022)

Following the same approach as in Sec. 4, we decouple the quartic interactions using the

auxiliary variables A(p
2)

µ , A(sp)
µ , and now also ms defined as

A(p
2)

µ =
1
N

∑

ν(6=µ)

η(µ,ν) s2
ν , A(sp)

µ =
1

mN

∑

ν(6=µ)

η(µ,ν) sνpν ,

ms = sN .

(F.17)

The last variable will let the N th mode have non zero averages. The condition is introduced
with an imaginary Lagrange multiplier:

1=

∫

d ms δ (ms − sN )∝
∫

d ms dhs exp [hs(ms − sn)] . (F.18)

In this context the sum in the action does not need to be completed with the µ = ν term.
The fields hs and ms will guarantee (sub)extensive contributions to the last mode, making the
previous continuation irrelevant. In order to make the notation more compact, we collect all
other auxiliary variables in a single vector ~ϕ:

~ϕ =
�

{A(p
2)

µ }µ∈[[1,N]], {A(sp)
µ }µ∈[[1,N]], {l(p

2)
µ }µ∈[[1,N]], {l(sp)

µ }µ∈[[1,N]], z
�

. (F.19)

In phases III we expect extensive contribution from the N th mode. The point of the follow-
ing calculation is to perform single-valued saddle-points for ~ϕ and multi-valued saddle-points
for ms and hs – the variables describing the last mode. With the introduction of ~ϕ, ms and hs
to decouple the quartic interactions, the action reduces to

S(~s, ~p, ~ϕ, m̃, h̃) =
∑

µ

�

(γµ +
z

2J
)s2
µ −

p2
µ

m
A(p

2)
µ + sµpµA(sp)

µ

�

− hs(ms − sN )

−
∑

µ

l(p
2)

µ

�

A(p
2)

µ −
1
N

∑

ν(6=µ)

η(µ,ν) s2
ν

�

−
∑

µ

l(sp)
µ

�

A(sp)
µ −

1
mN

∑

ν(6=µ)

η(µ,ν) sνpν
�

=
1
2

∑

µ

V †
µMµVµ −

∑

µ

�

l(sp)
µ A(sp)

µ + l(p
2)

µ A(p
2)

µ

�

− hs(ms − sN ) , (F.20)

where

Mµ ≡

�

M (ss)µ M (sp)
µ

M (ps)
µ M (pp)

µ

�

, (F.21)

with components

M (ss)µ = 2γµ +
z
J
+

2
N

∑

ν(6=µ)

η(µ,ν) l(p
2)

ν ,

M (sp)
µ = A(sp)

µ +
1

mN

∑

ν(6=µ)

η(µ,ν) l(sp)
ν ,

M (ps)
µ = A(sp)

µ +
1

mN

∑

ν(6=µ)

η(µ,ν) l(sp)
ν , (F.22)

M (pp)
µ = −

2
m

A(p
2)

µ .
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Finally,

Vµ =

�

sµ
pµ

�

, ∀µ ∈ J1, NK . (F.23)

It is now important to remark that

∂ S

∂ A(p
2)

µ

= −l(p
2)

µ −
p2
µ

m
,

∂ S

∂ l(p
2)

µ

= A(p
2)

µ −
1
N

∑

ν(6=µ)

η(µ,ν) s2
ν ,

∂ S

∂ A(sp)
µ

= −l(sp)
µ + sµpµ ,

∂ S

∂ l(sp)
µ

= A(sp)
µ −

1
N

∑

ν(6=µ)

η(µ,ν) sνpν ,

(F.24)

and
〈s2
µ〉~s, ~p − 〈sµ〉

2
~s, ~p = M−1

µ

(ss)
, 〈p2

µ〉~s, ~p − 〈pµ〉
2
~s, ~p = M−1

µ

(pp)
,

〈sµpµ〉~s, ~p − 〈sµ〉~s, ~p 〈pµ〉~s, ~p = M−1
µ

(sp)
, 〈sN 〉~s, ~p = −hsM

−1
N
(ss)

,
(F.25)

where we used the definition

〈. . . 〉~s, ~p =
∫

d~s d~p e−S(~s, ~p, ~ϕ,m̃,h̃) . (F.26)

The integration over ~s and ~p is quadratic and can be performed. The GGE partition function
becomes (up to sub-extensive contributions)

ZGGE∝
∫

d ~ϕ dm̃ dh̃ e−S( ~ϕ,m̃,h̃) , (F.27)

with

S( ~ϕ, m̃, h̃) = −N

∫

dλρ(λ)
�

l(sp)(λ)A(sp)(λ) + l(p
2)(λ)A(p

2)(λ)
�

+
N
2

∫

dλρ(λ) ln det M(λ)−
�

l(sp)
N A(sp)

N + l(p
2)

N A(p
2)

N

�

+
1
2

ln det MN − hsm̃s −
1
2

hs
2M−1

N
(ss)

, (F.28)

where we took the continuum limit for the sums over modes in the bulk.
At this stage it is important to clarify what will be our procedure to obtain the different

saddle-points. As mentioned earlier, ~ϕ will take one value while ms and hs can be multi-valued.
Thus, the strategy will be to start with the saddle-point equations for ~ϕ and then focus on ms
and hs. Some of the equations for ~ϕ will explicitly depend on ms and hs. Therefore, we will
average the ~ϕ saddle-point equations over ms and hs. As an example if we have something of
the form

∂ S

∂ l(sp)
µ

�

�

�

�

~ϕ,ms ,hs

= 0 =⇒ g( ~ϕ, ms, hs) = 0 , (F.29)

we will in fact solve the averaged equation

〈g( ~ϕ, ms, hs)〉ms ,hs
= 0 , (F.30)

where 〈· · · 〉ms ,hs
is the average over all the possible saddle-points of ms and hs.
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Saddles on ~l(sp) and ~A(sp)

To begin with, in the saddle-point approximation

∂ S

∂ l(sp)
N

�

�

�

�

~ϕ,ms ,hs

= −A(sp)
N +

1
m

∫

dλρ(λ)
γN − γ(λ)
λN −λ

〈s(λ)p(λ)〉~s, ~p = 0 . (F.31)

As we expect 〈s(λ)p(λ)〉~s, ~p = l(sp)(λ) = 0 for each mode in the bulk we will take as a saddle-

point A(sp)
N = 0. We will see in the following that this guess is consistent with the other saddle-

point equations. We then focus on the saddle-point equations:

∂ S
∂ hs

�

�

�

�

~ϕ,ms ,hs

= ms − 〈sN 〉~s, ~p = 0 , (F.32)

∂ S

∂ A(sp)
N

�

�

�

�

~ϕ,ms ,hs

= −l(sp)
N + 〈sN 〉~s, ~p 〈pN 〉~s, ~p = −l(sp)

N = 0 . (F.33)

Focusing now on the bulk we have

0=
1
N

∂ S
∂ l(sp)(λ)

�

�

�

~ϕ,ms ,hs

=−ρ(λ)A(sp)(λ) +
1
2

∫

dλρ(λ)
∂ det M(λ)
∂ l(sp)(λ)

1
det M(λ)

+
1

2N
∂ det MN

∂ l(sp)(λ)
1

det M(λ)
−

1
2N

∂ hs
2M−1

N
(ss)

∂ l(sp)
, (F.34)

and

1
N

∂ S
∂ A(sp)(λ)

�

�

�

~ϕ,ms ,hs

=−ρ(λ)l(sp)(λ) +
1
2

∫

dλρ(λ)
∂ det M(λ)
∂ A(sp)(λ)

1
det M(λ)

= 0 .

With the input l(sp)
N = 0 it is straightforward to observe that lsp(λ) = Asp(λ) = 0 is a solu-

tion of the saddle points equations. It enables to verify a posteriori the assumption we made
previously, 〈s(λ)p(λ)〉~s, ~p = 0. Consequently, the system of saddle-point equations reduces to

2ρ(λ)〈s2(λ)〉~s, ~p =
�

γ(λ) +
z
J
+

∫

dλ′ρ(λ′)
γ(λ)− γ(λ′)
λ−λ′

l(p
2)(λ′) +

γ(λ)− γN

λ−λN
l(p

2)
N

�−1
,

ρ(λ)〈p2(λ)〉~s, ~p =
�−2

m
A(p

2)(λ)
�−1

, 〈sN 〉~s, ~p = −hs

�

2γN +
z
J

�−1
,

¬

�

sN − 〈sN 〉~s, ~p
�2¶

~s, ~p
=
�

2γN +
z
J

�−1
,
¬

�

pN − 〈pN 〉~s, ~p
�2¶

~s, ~p
=
�−2

m
A(p

2)
N

�−1
.

Saddles on ~l(p
2) and ~A(p

2):

Finally, using Eq. (F.24), the saddles over ~l(p
2) and ~A(p

2) yield

1
N

∂ S
∂ l(p2)(λ)

�

�

�

~ϕ,ms ,hs

= −ρ(λ)A(p
2)(λ) +

∫

dλ′ρ(λ′)
γ(λ)− γ(λ′)
λ−λ′

〈s2(λ′)〉~s, ~p

+
γ(λ)− γN

N(λ−λN )
〈s2

N 〉~s, ~p,ms ,hs
= 0 ,

1
N

∂ S
∂ A(p2)(λ)

�

�

�

~ϕ,ms ,hs

= −ρ(λ)l(p
2)(λ)−ρ(λ)〈p2(λ)〉~s, ~p = 0 , (F.35)

∂ S

∂ l(p
2)

N

�

�

�

�

~ϕ,ms ,hs

= −A(p
2)

N +
1
m

∫

dλρ(λ)
γN − γ(λ)
λN −λ

〈s2(λ)〉~s, ~p = 0 ,

∂ S

∂ A(p
2)

N

�

�

�

�

~ϕ,ms ,hs

= −l(p
2)

N − 〈p2
N 〉~s, ~p, ms ,hs

= −l(p
2)

N +
1

2A(p
2)

N

= 0 .
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The equations in the bulk are equivalent to

2ρ(λ)〈s2(λ)〉~s, ~p =
�

γ(λ) +
z

2J
−

1
m

∫

dλ′ρ(λ′)
γ(λ)− γ(λ′)
λ−λ′

〈p2(λ′)〉~s, ~p

−
1
m
γ(λ)− γN

N(λ−λN )
〈p2

N 〉~s, ~p, ms ,hs

�−1
,

2
m
ρ(λ)〈p2(λ)〉~s, ~p = −

�

∫

dλ′ρ(λ′)
γ(λ)− γ(λ′)
λ−λ′

〈s2(λ′)〉~s, ~p +
γ(λ)− γN

N(λ−λN )
〈s2

N 〉~s, ~p, ms ,hs

�−1
.

The same harmonic Ansatz can be proposed with the condition

〈p2
N 〉~s, ~p,ms ,hs

= (z −λN )〈s2
N 〉~s, ~p,ms ,hs

. (F.36)

Using Eqs. (F.32) and (F.35) the terms in the action which depend on ms and hs explicitly read,
in the thermodynamic limit,

Sms ,hs
( ~ϕ, m̃, h̃) = m2

s

� z
2J
+ γN + 2

∫

dλ′ρ(λ′)
γN − γ(λ′)
λN −λ′

l(p
2)(λ′)

�

=
m2

s

〈s2
N 〉~s, ~p, ms ,hs

− 〈m2
s 〉ms ,hs

, (F.37)

with again the condition for the saddle points:

〈p2
N 〉~s, ~p, m̃, h̃ = (z −λN )〈s2

N 〉~s, ~p, m̃, h̃ . (F.38)

Finally with the harmonic Ansatz the action in the bulk becomes

Sbulk

�

~s, ~p, T (λ), z
�

= N

∫

dλρ(λ)
1

T (λ)

� p2(λ)
2m

+ (z −λ)s2(λ)
�

. (F.39)

We end here this detailed calculation of the GGE partition function. The analysis of the
results and its physical implications can be found in Sec. 7.2.
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