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Abstract

Layered van der Waals materials have risen as powerful platforms to artificially engi-
neer correlated states of matter. Here we show the emergence of a multiferroic order in
a twisted dichalcogenide bilayer superlattice at quarter-filling. We show that the compe-
tition between Coulomb interactions leads to the simultaneous emergence of ferrimag-
netic and ferroelectric orders. We derive the magnetoelectric coupling for this system,
which leads to a direct strong coupling between the charge and spin orders. We show
that, due to intrinsic spin-orbit coupling effects, the electronic structure shows a non-
zero Chern number, thus displaying a topological multiferroic order. We show that this
topological state gives rise to interface modes at the different magnetic and ferroelec-
tric domains of the multiferroic. We demonstrate that these topological modes can be
tuned with external electric fields as well as triggered by supermoiré effects generated
by a substrate. Our results put forward twisted van der Waals materials as a potential
platform to explore multiferroic symmetry breaking orders and, ultimately, controllable
topological excitations in magnetoelectric domains.
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1 Introduction

Twistronics has provided a new strategy to engineer correlated states stemming from the
emergence of nearly flat moiré bands [1–6]. Twisted bilayer graphene represents an early
example of this, displaying nearly flat bands close to 1◦ rotation that become strongly corre-
lated [1–4]. Twisted graphene multilayers provide thus a correlated model with strong in-
teractions that can be easily controlled via electronic gating, leading to both symmetry bro-
ken [7–11] and topological states [12–14]. Other layered van der Waals materials including
transition metal dichalcogenides (TMDs) represent an excellent building block to engineer
a twisted system [15–20, 20–23]. Specifically, TMDs monolayers can already display ordered
phases [24,25] that can be combined to form a twisted system. Moreover, they provide a source
for spin-orbit coupling interactions [26–28], which may drive a non-trivial topological charac-
ter in the moiré system [16]. Experimental realizations of twisted transition metal dichalco-
genide heterostructures have shown emergent magnetic and charge order [15–20, 20–23],
including the emergence of strong magnetoelectric response [29] and a Haldane Chern in-
sulator [30]. However, the potential emergence of multiferroic order in an artificial twisted
system remains relatively unexplored.

Multiferroic materials are characterized by the simultaneous existence of more than one
symmetry breaking [31–33]. These multiple symmetry breaking materials display a strong
coupling between their different order parameters. For the particular case of electric and
magnetic orders, a magnetoelectric coupling [34] provides a venue for the electric control
of magnetic orders, a feature with a huge potential interest. Different multiferroic mecha-
nisms have been studied over the past years, both in bulk compounds [35–37] and recently
in two-dimensional monolayers [38–40]. In the realm of moiré materials, the strongly corre-
lated states emerging in twisted systems provide an additional platform to artificially engineer
multiferroics associated with the moiré length scale.

In this work, we show how a topological multiferroic order can be engineered in a twisted
dichalcogenide bilayer. We start showing how twisted transition metal dichalcogenide homo-
bilayers realize an effective correlated model in a staggered honeycomb superlattice. We show
how the existence of competing long-range electronic interactions leads to the simultaneous
emergence of ferrimagnetic and ferroelectric orders at quarter-filling. This multiferroic behav-
ior is accompanied by a strong magnetoelectric coupling. Subsequently, we will analyze the
necessary ingredients to turn this twisted multiferroic into a topological multiferroic. Finally,
we show how the different ferroic domain walls that one can engineer in this topological
system allow the magnetoelectric creation and control of topological Jackiw-Rebbi solitons.
Our results put forward a strategy to obtain a multiferroic order in a twisted van der Waals
heterostructure, and to exploit magnetoelectric control of multiferroic domains to engineer
topological excitations.

2 Model

We start by describing the heterostructure, consisting of two layers of a transition metal
dichalcogenide twisted forming a moiré pattern. The structure of the twisted TMD bilayer
is shown in Fig. 1a, where each site corresponds to a transition metal atom. Two different
inequivalent sites emerge: i) AA sites (yellow circles) where the transition metal atoms are per-
fectly aligned forming a triangular lattice and ii) two equivalent AB and BA sites (red circles)
where the transition metal atoms are perfectly misaligned and form a staggered honeycomb
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Figure 1: (a) Schematic of the twisted bilayer triangular lattice associated with the
transition metal M of the MX2. Sites AB and BA are structurally equivalent and
display a staggered honeycomb lattice with a lattice parameter corresponding to
the moiré length LM . (b) Staggered honeycomb lattice model. Moiré unit cell in
green and AB (BA) sites are depicted as white (gray) circles. First neighbor hopping
t, on-site U , and first neighbor V Coulomb interactions are schematically shown.
(c) Emergent ferrimagnetic and fully gapped charge density wave orders from the
quarter-filling staggered honeycomb model. In this state, the electric charge gets
more localized in the BA sites which leads to an emergent electric polarization in the
staggered honeycomb lattice.
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lattice.1 First principles and multiorbital Slater-Koster calculations [41–45] have shown the
emergence of nearly flat bands in this twisted structure, stemming from the spatial modula-
tion in the moiré unit cell. The emergent moiré mini bands feature localized states both in
triangular and honeycomb lattices, corresponding to Wannier orbitals localized in the differ-
ent stacking regions shown in Fig. 1a. In the following, we focus on the moiré mini-bands
featuring a honeycomb lattice [41,46,47]. We focus on the regime in which the two sublattices
of the effective moiré honeycomb model feature Wannier states localized in different layers,
realizing an effectively staggered honeycomb model.2 The Wannier Hamiltonian produced by
the moiré pattern is written as

H = t
∑

〈i j〉s

c†
i,sc j,s + U

∑

i

c†
i↑ci↑c

†
i↓ci↓ + V

∑

〈i j〉ss′
c†

i,sci,sc
†
j,s′ c j,s′ , (1)

where t is the first neighbor hopping, U the on-site Coulomb interaction and V the first neigh-
bor Coulomb interaction, c†

i,s and c j,s′ are the usual creation and annihilation fermionic op-
erators for the Wannier moiré orbitals i and j. As a reference, the effective value of t for
the twisted dichalcogenide system can be tuned from 1 to 50 meV depending on the twist
angle [43,47–49]. It is worth noting that in the nearly flat regime, the effective model is dom-
inated by first neighbor hopping due to localization of the Wannier states in specific points of
the moire unit cell of transition metal dichalcogenides. The values of U and V range from 5
to 100 meV depending on twist angle and screening effects [49–52]. Our results focus on the
regime in which U , V are smaller than the separation between moire bands. Long-range in-
teractions run between neighboring moiré Wannier orbitals 〈i j〉. Such electronic interactions
stem originally from electronic repulsion of the d-orbitals of the transition metal dichalco-
genide and generically long-range electrostatic repulsion. These interactions are directly pro-
jected in those nearly flat bands and are the ones effectively included in eq. (1). A schematic
of the model is shown in Fig. 1b. We will focus on the quarter-filling limit, a regime that can
be experimentally reached by electronic gating of the mini-bands.

The interacting model is solved using a self-consistent mean-field procedure including all
the Wick contractions that allow magnetic symmetry breaking, hopping renormalization, and
charge orders.3 In the case of a multiferroic with electric and magnetic orders the order pa-
rameters are the electric polarization P stemming from the staggered nature of the lattice:

P = d

�

∑

s

〈c†
BA,scBA,s〉 −

∑

s

〈c†
AB,scAB,s〉

�

, (2)

where d is the vertical distance between sublattices that corresponds to the bilayer width,
which we will take in natural units d = 1. The magnetization in the z-direction on each of the
sites Mα, (α= AB, BA) is given by

Mα =
∑

s

σz
ssc

†
α,scα,s = 〈c

†
α,↑cα,↑〉 − 〈c

†
α,↓cα,↓〉 , (3)

and M =
∑

α Mα. A non-zero value on these order parameters induced by the interactions U , V
indicates the spontaneous emergence of the associated magnetic or charge order. A multifer-

1Note that including the effect of the chalcogen atoms in the twisted system will generate an inequivalence
between AB and BA sites that will be effectively translated into a small sublattice imbalance in the staggered
honeycomb model.

2The flat bands near the Fermi level or valence band edge will be the easiest to access experimentally via
electronic gating, and hence this has been our subject of study.

3Anomalous terms related to the superconducting order are not included. The self-consistent calculations were
carried out in the unit cell of the staggered honeycomb lattice in momentum space with a well converged 10×10
k-mesh. An initial guess with finite ferroic orders was used in the calculations.

4

https://scipost.org
https://scipost.org/SciPostPhys.13.3.052


SciPost Phys. 13, 052 (2022)

roic behavior will occur when both order parameters P and M are simultaneously different
than zero.

Figure 2: Emergence of the multiferroic order. (a,b,c) Phase diagrams as a function
of the on-site U and first neighbor V Coulomb interactions for the different order
parameters defined in the text: Magnetization M on sites AB (a) and BA (b), and
electric polarization P (c). Magnetization is promoted by U interactions, and V in-
teractions promote a sublattice imbalance that generates a finite electric polarization.
A ferrimagnetic phase and a fully gapped charge density wave coexist in the top-right
region of the phase diagram. This multiferroic behavior can be better seen in a cut
at U/t = 6. (d) Order parameters as a function of V/t for U/t = 6, P (M) in the top
(bottom) panel. For V/t > 1 both order parameters present a finite value and the
magnetization on each site becomes inequivalent.

3 Multiferroic order from competing interactions

From a physical point of view, the quarter filling in the staggered honeycomb lattice offers a
natural platform in which electronic interactions can lead simultaneously to the emergence of
a charge order and a magnetization. Compared to the well studied half-filling case, in which
electronic interactions lead to an antiferromagnetic insulator, the quarter-filling case allows
the stabilization of charge order, thus leading to a net electric polarization in the staggered
honeycomb lattice. The onsite Coulomb interaction U leads to a magnetic Stoner instability, in
the half-filling case this leads to an equal magnetization in absolute value in each of the sites,
since there are 2 electrons for 2 sites. For the realistic case in which first neighbor Coulomb
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interactions V are smaller than onsite, U > V , a sublattice imbalance will not be promoted,
since this is energetically unfavorable, i. e., an electron is already occupying each site. In
the quarter-filling case only 1 electron is available for the 2 sites, the onsite interaction will
promote a Stoner instability leading to magnetic order. However, in this case, for U > V ,
V will be able to promote a sublattice imbalance, since the sites are not fully occupied by an
electron. Therefore, the quarter filling case allows for the simultaneous emergence of magnetic
and electric orders.4

The resulting phase diagram at quarter filling of the interacting Hamiltonian (eq. (1)) for
the different order parameters is shown in Fig. 2. Figures 2ab show the phase diagram as
a function of the on-site U and first neighbor V Coulomb interactions for the magnetization
in each of the sites AB and BA respectively. It can be seen how on-site interactions promote
magnetism in the system (right side of the phase diagrams). For U/t > 4 a spontaneous
magnetization emerges in both sites of the lattice. Figure 2c shows the phase diagram for the
electric polarization. It can be seen that the combination of on-site and first neighbor Coulomb
interaction leads to the emergence of an electric polarization P (top right corner of the phase
diagram). The emergence of the electric polarization is a consequence of the spontaneous
charge order, promoted by first neighbor Coulomb interactions, between sites AB and BA. In
a staggered honeycomb lattice, a staggered charge order produces a net electric polarization
in the perpendicular direction, leading to a ferroelectric dipole. In doped monolayer semicon-
ductors spin-orbit coupling favors an out-of plane magnetic ordering, thus driving the magne-
tization in the z-direction [53].5 Therefore, the simultaneous emergence of the magnetic and
ferroelectric orders constitutes a multiferroic order in the system, like the one depicted in Fig.
1c.

The emergence of the multiferroicity can be rationalized in Fig. 2d. There, a plot of
both orders P and M as a function of V is shown fixing U/t = 6. It can be seen that for
V/t < 1 a ferromagnetic order occurs where both sites display the same magnetization and,
for the same V values, no net polarization is present in the system. For V/t > 1 a stagger
charge order is promoted as a function of V , creating a spontaneous electric polarization and
leading the ferromagnetic order to a ferrimagnetic one. Associated with the charge order,
the magnetization in each of the sites becomes different, a feature that is directly reflecting a
magneto-electric coupling. The spin polarized situation and the stagger charge order can be
observed in the band structure shown in Fig. 3a. At quarter-filling a gap opens due to Coulomb
interactions, promoting a spin polarized situation and the charge gets more localized on the BA
site, creating a sublattice imbalance. The onsite interaction U plays also an important role in
the stabilization of the CDW order. The relevance of U stems from inducing a spin symmetry
breaking, which in turn pins the chemical potential at the Dirac point at the majority spin
channel. This pinning allows the first neighbor interaction V to drive a CDW state, as such a
symmetry breaking allows opening up a gap at the Dirac point. Therefore, onsite interactions
cooperate with V to drive CDW at quarter filling.6 The multiferroic order that emerges from
the interplay between U and V in the interacting Hamiltonian of eq. (1) is a combination of
ferroelectric and ferrimagnetic orders.

The specific values for the electric polarization and magnetic moments will depend on the
specific values of the electronic interactions U and V as shown in Fig. 2d. However, we can
establish upper bounds for the electric and magnetic moments. For the magnetic moment,
strong onsite interactions fix a value of 0.5 µB per moiré unit cell. For the electric dipole, the

4The three-quarter filling case would be similar to the quarter-filling one and it would also lead to a multiferroic
order in the case of electron-hole symmetry.

5We also note that in the absence of such anisotropy, or in regimes in which it is not dominant, potentially non-
collinear magnetic textures could emerge in the system, whose analysis goes beyond the scope of this manuscript.

6At low values of U we have found in our analysis (but not shown, since V > U) that a CDW can also be formed
for big values of V , i.e. V > U , but in this case the magnetic order does of course not emerge.
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Figure 3: Calculations in the multiferroic regime at U/t = 6 and V/t = 1.5. (a) Band
structure, the colormaps represent the eigenvalue of the operator: sz (sublattice site)
in the left (right) panel. A spin polarized and sublattice situation can be identified.
(b) Magnetoelectric coupling analysis. Evolution of the order parameters P (top
panel) and M (bottom panel) as a function of an external electric field in the z-
direction. Due to the strong magnetoelectric coupling, both the electric polarization
and the ferrimagnetic order are controlled with the external electric field. The orders
saturate at E/t = 0.5.

vertical localization of the Wannier orbitals plays also a fundamental role. The symmetry of
the staggered honeycomb lattice guarantees that the emergence of a sublattice imbalance will
produce a vertical electric polarization in the system, which relies on the vertical localization
of the Wannier orbitals in each of the layers. In particular, in transition metal dichalcogenides,
the Wannier states correspond to localized modes in each layer that appear due to local band
bending due to the local stacking. This yields an upper bound for the vertical shift as the
interlayer distance controlling the electric polarization of the system. Variations to this perfect
localization will reduce the value of the ferroelectric polarization. Therefore, considering an
interlayer distance of 4 Å and a perfect localization of the electron in one of the layers, we can
establish an upper bound for the electric dipole on the order of ≈1 Debye per moiré unit cell.

A fundamental feature of multiferroic systems that display simultaneously electric and
magnetic orders is the magnetoelectric coupling [34]. It refers to the existing coupling between
the different order parameters associated with each of the ferroic states. In particular, a strong
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magnetoelectric coupling allows controlling one of the orders by tuning the other one [36,
54]. Multiferroics whose microscopic mechanism leads to the simultaneous emergence of both
orders are known as type-II multiferroics [32,33]. Their ferroic orders are not independent and
therefore a strong magnetoelectric coupling is expected. In the system that we are studying
multiferroicity arises due to the combination of competing electronic interactions, leading to
the simultaneous emergence of a ferroelectric and a ferrimagnetic order. Therefore, we might
expect a strong magnetoelectric coupling in this twisted multiferroic. In order to analyze that,
we will include in the interacting Hamiltonian of eq. (1) the effect of an external electric field
(E) perpendicular to the layers that directly couples to the ferroelectric dipole. This term takes
the form

HE = E
∑

s

�

c†
AB,scAB,s − c†

BA,scBA,s

�

, (4)

which is nothing but a bias difference between Wannier orbitals in the AB and BA due to the
staggered nature of the honeycomb lattice.

Figure 3b shows the evolution of the electric polarization P and magnetization M on each
of the sites as a function of the electric field E. It can be seen that increasing the electric field
increases the electric polarization as expected for a ferroelectric. Moreover, the module of the
magnetization on each of the sites gets modified by the electric field, thus providing electric
control of the ferrimagnetic order. These results show clear evidence of strong magnetoelectric
coupling in the twisted multiferroic. It is worth noting that while the direction of the ferroelec-
tric polarization is locked to the out-of-plane direction, the direction of the magnetization does
not have any preferential direction. In the absence of spin-orbit coupling, only the modules of
the ferroic order parameters are magnetoelectrically coupled in the interacting Hamiltonian
that we are considering.

4 Topologically non-trivial moiré multiferroic

So far we have shown that a multiferroic behavior can emerge in the twisted system as a conse-
quence of Coulomb interactions. Another important aspect associated to twisted TMDs is the
possible realization of non-trivial topological states [55]. This section will aim to analyze the
potential emergence of topological excitations associated with the twisted multiferroic system
that we are studying. Transition metal dichalcogenides are well known to show strong spin-
orbit coupling effects [56–58], which are known to account for the emergence of topological
phase transitions [55]. In particular, the breaking of mirror symmetry in our system triggers
the emergence of a Rashba SOC interaction in the low energy effective model [56, 59]. In
our twisted system, either the emergence of the out-of-plane electric polarization, or the in-
clusion of a substrate break mirror symmetry. Furthermore, the use of Janus transition metal
dichalcogenides [60–62]would provide a built-in mirror symmetry breaking triggering a large
intrinsic Rashba SOC effect [45]. The projection onto the low energy model of the effective
Rashba SOC interaction takes the form:

HR = iλR

∑

〈i j〉,ss′
z ·
�

σs,s′ × di j

�

c†
i,sc j,s′ , (5)

where the sum runs over the first neighbors, λR controls the strength of the Rashba interaction,
di j represents a unit vector pointing from the site j to i, σ are the Pauli matrices and z is a
unit vector along the z-direction.

We show the interacting electronic structure in Figure 4a, where the effect of the Rashba
interaction in the multiferroic regime is observed. At low values of λR (left panel), the insulat-
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Figure 4: Topological analysis of the interacting Hamiltonian at U/t = 6 and
V/t = 1.5. (a) Effect of the Rashba spin orbit coupling (λR/t) in the band struc-
ture, Berry curvature and Chern number C: for λR = 0, C = 0 (left panel) and for
λR = 1.0, C = −1 (right panel). (c) Phase diagram of the Chern number as a function
of λR/t and the external electric field bias E/t. At a given value of λR (for instance
λR = 1.0, dashed line) it is possible to modify the topological character of the system
with an electric bias.

ing system has a Chern number C = 0 and therefore displays a trivial topological character. At
high enough values of λR (right panel), a band inversion occurs, leading to a non-zero Chern
number and turning the multiferroic system into a Chern insulator. This topological transition
driven by Rashba spin-orbit coupling can be better analyzed in Fig. 4b. In that plot the in-
teracting Hamiltonian (eq. (1)) is solved including both the electric field term (eq. (4)) and
the Rashba SOC interaction (eq. (5)) in the multiferroic regime (U/t = 6 and V/t = 1.5). A
phase diagram of the topological character (Chern number C) as a function of the electric field
E and the Rashba SOC λR is shown in Fig. 4b. The boundary between the orange (C = −1)
and blue (C = 0) regions is where the band gap closes leading to a band inversion and conse-
quently to a topological phase transition. Interestingly, in this phase diagram, we can see that
the external electric field can cause a topological transition at a given value for the Rashba
SOC (see the dashed line at λR/t = 1). This result shows that it is possible to control the topo-
logical character of this system via external electric fields. Therefore, this, together with the
multiferroic character of the twisted system, will lead to a magnetoelectric control of diverse
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topological excitations in the ferroic domain walls of this twisted system as we will address in
the next section.

The value of the Rashba SOC will be determined by the transition metal and the ligand
atoms. It is important to consider that the energy scales relevant in the twisted system are
on the order of meV, both for hopping and Rashba SOC. Therefore, values on that order of
magnitude for the Rashba spin-orbit coupling will be enough to obtain a non-trivial topological
character as we can see from Fig. 4b.

5 Topological modes in multiferroic domains

In a conventional multiferroic material, different domains are expected to emerge when the
sample is cooled at applied electric and magnetic fields. Furthermore, by local application
of electric fields, junctions between different multiferroic domains can be engineered. In this
section, we address the emergence of topological interface modes in the different domain
walls that can occur in the topological multiferroic. In particular, we can encounter purely
ferroelectric domains, purely ferrimagnetic domains, and simultaneously ferroelectric and fer-
rimagnetic domains. The topological character of each of these domains can be controlled by
an external electric field as addressed in the previous section. This will allow the manipulation
of the emergent interface-topological states. Furthermore, we will show how the underlying
modulations induced by a substrate naturally lead to the emergence of topological modes as-
sociated to a new supermoiré length scale [63–65].

5.1 Tunable topological states in domain walls

Up to this point, we have based all the analyses on a full self-consistent solution of the in-
teracting Hamiltonian of eq. (1). Since we will analyze now interfaces between different
ferroic domains, in this section we will take a minimal effective mean-field Hamiltonian corre-
sponding to the uniform limit, yet without solving self-consistently the interface problem. The
effective mean-field Hamiltonian takes the form

HN = t̃
∑

〈i j〉s

c†
i,sc j,s +m

∑

s

�

c†
AB,scAB,s − c†

BA,scBA,s

�

+∆Z

∑

i,s

σz
ssc

†
i,sci,s +HE +HR , (6)

where t̃ is the moiré hopping renormalized by the Coulomb interactions, m accounts for the
interaction-induced charge order accounting for the emergence of the electric polarization,
and ∆Z is the interaction induced exchange field associated with the spin polarization in the
system. From the microscopic point of view, the three parameters depend on the interactions
U and V . At quarter-filling values with m/t = 0.6 and ∆Z/t = 2.0, the previous Hamiltonian
is analogous to the mean-field result obtained self-consistently above. In the following we will
include the external electric field HE (eq. (4)) and Rashba spin-orbit coupling HR (eq. (5)) in
eq. (6). These terms account for the magnetoelectric coupling and the non-trivial topological
character in the effective Hamiltonian.

A schematic of a device showing a minimal interface displaying topological excitations
between ferroic domains is shown in Fig. 5a. In a sample with two domains, left (L) and
right (R), external electric fields EL and ER allow controlling the topological character in each
of them. Due to the existence of two valleys K and K ′ in the underlying electronic structure,
a valley flux CK and CK ′ can be defined. Given that the Berry curvature is strongly localized
around each valley, the total Chern number becomes C = CK + CK ′ , and the so-called valley
Chern number is given by CV = CK − CK ′ . In the absence of inter-valley scattering, the valley
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Figure 5: Magnetoelectric control of topological excitations in the domain walls of a
topological multiferroic. (a) Schematic device that allows controlling the topological
character of two connected ferroic domains, L (left) and R (right) domains, with ex-
ternal electric fields applied in the z direction, EL and ER respectively. The domains
are semi-infinite in the y direction. The domain wall occurs at y = 0. In the x di-
rection the lattice is periodic. Three different ferroic domain walls can occur: F E
purely ferroelectric, F M purely ferrimagnetic and F EM simultaneously ferroelectric
and ferrimagnetic. The tables summarize the value of the valley Chern numbers CK
and CK ′ as a function of the external electric fields for each kind of domain wall. The
number of emergent interface states is also included. (b) Momentum resolved inter-
face spectral function A(ω, kx) for each of the domain walls F E (top panels), F EM
(middle panels) and F M (bottom panels) and for the different EL and ER values sum-
marized in the tables of panel (a). The calculations were performed with the effective
Hamiltonian (eq.(6)) considering |m/t|= 0.6, |∆Z/t|= 2.0 and λR/t = 0.8.

11

https://scipost.org
https://scipost.org/SciPostPhys.13.3.052


SciPost Phys. 13, 052 (2022)

is a good quantum number, each valley becomes independent and the valley Chern number
CV becomes quantized. Each valley can provide a topological flux of ±1/2, whose sign is
determined by the combination of magnetic and electronic symmetry breaking, and acts as an
independent topological source. Therefore, at the different ferroic domain walls (Fig. 5a) the
emergence of an interface state at the K (K ′) point is determined by CK ,R−CK ,L (CK ′,R−CK ′,L),
i.e., the difference between the corresponding valley Chern numbers of domains R and L.
The Chern number difference in each sector can be ±1 or 0. A non-zero value implies the
emergence of a topological interface state in that valley sector. Therefore, since there are two
independent sectors (K and K ′), the number of topological excitations that we can encounter
at the interface can be 2, 1, or 0. Moreover, for finite values in the difference between valley
Chern numbers (±1), the sign at each valley determines the direction of propagation of the
interface states. When the total number of interface states is 2, an opposite sign will indicate
that both states counter-propagate, while the same sign will indicate co-propagation. Tables
summarizing all the possible situations that can occur as a function of the external electric fields
for each domain (EL and ER) are shown in Fig. 5a. At huge value of the external electric fields
(E/t = ±1.0 in the tables), valley Chern numbers are no longer good topological numbers
due to intervalley mixing, and each domain is simply a trivial multiferroic. Consequently, no
interface states will emerge in this limit situation. The Chern numbers are unaffected by the
interface termination. For topological states with a valley Chern number, if the interface is too
sharp a small gap could be opened driven by a strong intervalley scattering.

In order to demonstrate the emergence of topological interface states for each of the situa-
tions summarized in the tables of Fig. 5a, we have computed the momentum resolved interface
spectral function A(ω, kx). This is shown in Fig. 5b for all the different situations. In the case
of purely ferroelectric domains (F E top panels) increasing the value of the external electric
fields drives the system from 0, 1, 2 counter-propagating and 0 interface states. In the case of
purely ferrimagnetic domains (F M bottom panels) increasing the value of the external elec-
tric fields drives the system from 2 co-propagating states to 1 state and ultimately 0 interface
states at large bias. In the case of simultaneous ferrimagnetic and ferroelectric domains (F EM
middle panels) increasing the value of the external electric fields drives the system from 2
co-propagating states, 1 state, 2 counter-propagating, and ultimately at large bias 0 interface
states. Therefore, these results prove the magnetoelectric control that can be achieved on the
topological excitations of this topological multiferroic.

5.2 Topological domains in a supermoiré

So far, we have considered that the twisted bilayer dichalcogenide displays a single moiré pat-
tern, whose length scale LM gives rise to the emergent staggered honeycomb lattice. However,
in real moiré systems, a substrate is also present (as depicted in Fig. 6a). In particular, the
lattice of an underlying substrate, such as boron nitride, gives rise to an additional supermoiré
pattern between each dichalcogenide [63–65]. When projected on the nearly flat bands of the
twisted system, this additional supermoiré pattern gives rise to a modulation of the original
effective moiré superlattice. As sketched in Fig. 6b, from the point of view of the effective low
energy model of the moiré system, this underlying supermoiré pattern gives rise to a modula-
tion in space of the moiré model [66,67]. In the following, and for the sake of concreteness, the
unit cell associated with the combination of the moiré pattern of the substrate and the twisted
dichalcogenide will be denoted as the ultracell and will have an associated lattice parameter
LSM that will be commensurate with the original moiré supercell with lattice parameter LM
(see Fig. 6b). For computational reasons, the supermoiré potential is chosen to be commensu-
rate with the supercell of the original moiré cell (staggered honeycomb unit cell) and it takes
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Figure 6: (a) Effect of a substrate on a twisted topological multiferroic. A super-
moiré potential is induced in the twisted system by the substrate. (b) Sketch of the
supermoiré potential on the staggered honeycomb lattice. The external field com-
mensurates with a 5 × 5 ultracell of the staggered honeycomb lattice, LSM = 5LM .
(c) Supermoiré potential of LSM = 30LM used in the calculations. The electric po-
tential creates a modulation with different topological-charge regions, C = 0 on the
maximum values of the potential and C = −1 for the minimum values. (d) Local
density of states (LDOS) at zero energy for the LSM = 30LM supermoiré potential
shown in panel (c). Circular topological states emerge at the boundaries of regions
with different topological invariant, i.e, inside and outside of the emergent circles.

the following functional form:

ESM (r) =
∑

i

cos
�

bi · r
n

�

, (7)

where bi are the reciprocal lattice vectors of the moiré supercell (the summation runs over the
3 bi vectors related by the C3 symmetry). The product bi · r equals 2π when r takes the value
of the lattice vectors of the original moiré unit cell, and n is an integer that commensurates
the supermoiré length LSM with the original moiré length LM as LSM = nLM . Therefore, the
function in eq. (7) allows to generate a modulated potential as the one shown in Fig. 6b for
LSM = 5LM in the original staggered honeycomb lattice. We can see that the cosine functions
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of the supermoiré potential give rise to a 6 fold symmetry.
We now analyze the effect of a substrate on the twisted topological multiferroic. As noted

above, a substrate induces a supermoiré potential in the twisted system as shown in Fig. 6b.
When projected in the Wannier moiré orbitals, this modulation gives rise to an electrostatic
potential that modulates the staggered Wannier honeycomb lattice that describes the twisted
topological multiferroic. As shown in Fig. 6c, we introduce a modulated external field (eq.
(7)) commensurate with a 30× 30 ultracell, i.e. LSM = 30LM , and analyze how the substrate
might also lead to the emergence of topological excitations using the effective multiferroic
Wannier Hamiltonian (eq. (6)). In our calculations the amplitude of the supermoiré potential
ESM is normalized to the range ESM/t = [0, 1.3]. This modulated potential creates regions
with different topological invariant, C = 0 on the maximum values of the potential and C = −1
for the minimum values.7 As a consequence, in the interface between these two topological
regions zero energy states appear. In Fig. 6d, the local density of states at zero energy is
plotted. We can observe that circular topological states emerge in the topological multiferroic.
Since the origin of the interface modes is topological, a smooth reconstructions at the interface
will not impact the boundary modes. This can be easily confirmed in Fig. 6d where the
supermoiré potential induces regions with different topological invariant. In this case the
boundaries have a different edge termination in each direction, but we can see that the circular
boundary modes emerge without being affected by those different terminations. These zero
energy states are commensurate with the modulation created by the substrate. Therefore, the
substrate can also be seen as a source of topological excitations for the twisted topological
multiferroic that we have studied.

6 Conclusions

To summarize, we have shown how a topological multiferroic order can emerge in twisted tran-
sition metal dichalcogenide bilayers. The staggered honeycomb lattice produced by the moiré
system can be described by an interacting Wannier Hamiltonian with on-site and first neigh-
bor Coulomb interactions. We have shown that, at quarter-filling, on-site interactions lead to
a spin polarized system displaying a magnetic order, while first neighbor interactions promote
a charge order leading to a spontaneous electric polarization. As a result, the combination
of competing repulsive interactions leads to a multiferroic order displaying simultaneously
ferroelectric and ferrimagnetic orders. A strong magnetoelectric coupling emerges due to the
coupling between charge and spin degrees of freedom promoted by the competing interactions.
We further showed that the inclusion of spin-orbit interactions associated to mirror symmetry
breaking leads to a topologically non-trivial multiferroic order. We showed that the topological
multiferroic displays topological excitations at the different ferroic domain walls, both in the
spin and charge sectors. In particular, we have shown that external magnetoelectric control of
these topological excitations can be achieved with external electric fields. Finally, by includ-
ing the impact of an underlying substrate in the moiré system, we showed the emergence of
topological excitations created by the supermoiré on the twisted topological multiferroic. Our
findings put forward twisted dichalcogenides as a promising platform to engineer a topologi-
cal multiferroic order. Finally, our results pave the way to achieve magnetoelectrically-tunable
topological excitations, providing a starting point towards the potential use of topological mul-

7The Chern numbers in the different regions are taken as the ones that would correspond in the uniform limit
for the corresponding local values of the parameters. Therefore, they are not explicitly computed locally for the
modulated system. This would be formally possibly using a Green’s function formalism. Nonetheless, for big
enough domains, as those considered in our manuscript, the local Chern number in the moire can be directly
inferred from its value in the uniform case with the associated local Hamiltonian parameters.
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tiferroic modes in quantum technologies.
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[26] K. Kośmider and J. Fernández-Rossier, Electronic properties of the MoS2-WS2 heterojunc-
tion, Phys. Rev. B 87, 075451 (2013), doi:10.1103/PhysRevB.87.075451.

[27] X. Xu, W. Yao, D. Xiao and T. F. Heinz, Spin and pseudospins in layered transition metal
dichalcogenides, Nat. Phys. 10, 343 (2014), doi:10.1038/nphys2942.

[28] P. Rivera, K. L. Seyler, H. Yu, J. R. Schaibley, J. Yan, D. G. Mandrus, W. Yao and X. Xu,
Valley-polarized exciton dynamics in a 2D semiconductor heterostructure, Science 351, 688
(2016), doi:10.1126/science.aac7820.

[29] Y. Xu, K. Kang, K. Watanabe, T. Taniguchi, K. F. Mak and J. Shan, Tunable bilayer Hubbard
model physics in twisted WSe2, arXiv:2202.02055.

[30] W. Zhao et al., Realization of the Haldane Chern insulator in a Moiré lattice,
arXiv:2207.02312.

16

https://scipost.org
https://scipost.org/SciPostPhys.13.3.052
https://doi.org/10.1038/s41586-020-3028-8
https://doi.org/10.1038/s41586-020-2963-8
https://doi.org/10.1038/s41586-021-03815-6
https://doi.org/10.1038/s41586-021-04171-1
https://doi.org/10.1038/s41586-021-03853-0
https://doi.org/10.1103/PhysRevB.104.214403
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1038/s41563-021-00959-8
https://doi.org/10.1038/s41567-021-01171-w
https://doi.org/10.1038/nphys3527
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1103/PhysRevB.87.075451
https://doi.org/10.1038/nphys2942
https://doi.org/10.1126/science.aac7820
https://arxiv.org/abs/2202.02055
https://arxiv.org/abs/2207.02312


SciPost Phys. 13, 052 (2022)

[31] N. A. Hill, Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B 104, 6694
(2000), doi:10.1021/jp000114x.

[32] N. A. Spaldin and R. Ramesh, Advances in magnetoelectric multiferroics, Nature Mater.
18, 203 (2019), doi:10.1038/s41563-018-0275-2.

[33] M. Fiebig, T. Lottermoser, D. Meier and M. Trassin, The evolution of multiferroics, Nat.
Rev. Mater. 1, 16046 (2016), doi:10.1038/natrevmats.2016.46.

[34] M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys. 38, R123 (2005),
doi:10.1088/0022-3727/38/8/r01.

[35] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Srinivasan, Multiferroic magneto-
electric composites: Historical perspective, status, and future directions, J. Appl. Phys. 103,
031101 (2008), doi:10.1063/1.2836410.

[36] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha and S.-W. Cheong, Electric polarization
reversal and memory in a multiferroic material induced by magnetic fields, Nature 429,
392 (2004), doi:10.1038/nature02572.

[37] M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy and
A. Fert, Tunnel junctions with multiferroic barriers, Nature Mater. 6, 296 (2007),
doi:10.1038/nmat1860.

[38] H. Ju et al., Possible persistence of multiferroic order down to bilayer limit of van der Waals
material NiI2, Nano Lett. 21, 5126 (2021), doi:10.1021/acs.nanolett.1c01095.

[39] Q. Song et al., Evidence for a single-layer van der Waals multiferroic, Nature 602, 601
(2022), doi:10.1038/s41586-021-04337-x.

[40] A. O. Fumega and J. L. Lado, Microscopic origin of multiferroic order in monolayer NiI2,
2D Mater. 9, 025010 (2022), doi:10.1088/2053-1583/ac4e9d.

[41] Y. Zhang, T. Liu and L. Fu, Electronic structures, charge transfer, and charge order
in twisted transition metal dichalcogenide bilayers, Phys. Rev. B 103, 155142 (2021),
doi:10.1103/PhysRevB.103.155142.

[42] Z. Zhan, Y. Zhang, P. Lv, H. Zhong, G. Yu, F. Guinea, J. Ángel Silva-Guillén and
S. Yuan, Tunability of multiple ultraflat bands and effect of spin-orbit coupling in
twisted bilayer transition metal dichalcogenides, Phys. Rev. B 102, 241106 (2020),
doi:10.1103/PhysRevB.102.241106.

[43] Y. Zhang, Z. Zhan, F. Guinea, J. Ángel Silva-Guillén and S. Yuan, Tun-
ing band gaps in twisted bilayer MoS2, Phys. Rev. B 102, 235418 (2020),
doi:10.1103/PhysRevB.102.235418.

[44] S. Venkateswarlu, A. Honecker and G. Trambly de Laissardière, Electronic localization
in twisted bilayer MoS2 with small rotation angle, Phys. Rev. B 102, 081103 (2020),
doi:10.1103/PhysRevB.102.081103.

[45] D. Soriano and J. L. Lado, Spin-orbit correlations and exchange-bias control in twisted
Janus dichalcogenide multilayers, New J. Phys. 23, 073038 (2021), doi:10.1088/1367-
2630/ac12fb.

17

https://scipost.org
https://scipost.org/SciPostPhys.13.3.052
https://doi.org/10.1021/jp000114x
https://doi.org/10.1038/s41563-018-0275-2
https://doi.org/10.1038/natrevmats.2016.46
https://doi.org/10.1088/0022-3727/38/8/r01
https://doi.org/10.1063/1.2836410
https://doi.org/10.1038/nature02572
https://doi.org/10.1038/nmat1860
https://doi.org/10.1021/acs.nanolett.1c01095
https://doi.org/10.1038/s41586-021-04337-x
https://doi.org/10.1088/2053-1583/ac4e9d
https://doi.org/10.1103/PhysRevB.103.155142
https://doi.org/10.1103/PhysRevB.102.241106
https://doi.org/10.1103/PhysRevB.102.235418
https://doi.org/10.1103/PhysRevB.102.081103
https://doi.org/10.1088/1367-2630/ac12fb
https://doi.org/10.1088/1367-2630/ac12fb


SciPost Phys. 13, 052 (2022)

[46] L. Xian, M. Claassen, D. Kiese, M. M. Scherer, S. Trebst, D. M. Kennes and A. Rubio, Re-
alization of nearly dispersionless bands with strong orbital anisotropy from destructive in-
terference in twisted bilayer MoS2, Nat. Commun. 12, 5644 (2021), doi:10.1038/s41467-
021-25922-8.

[47] M. Angeli and A. H. MacDonald, Γ valley transition metal dichalcogenide Moiré bands,
Proc. Natl. Acad. Sci. U.S.A. 118, e2021826118 (2021), doi:10.1073/pnas.2021826118.

[48] M. H. Naik and M. Jain, Ultraflatbands and shear solitons in Moiré patterns of
twisted bilayer transition metal dichalcogenides, Phys. Rev. Lett. 121, 266401 (2018),
doi:10.1103/PhysRevLett.121.266401.

[49] F. Wu, T. Lovorn, E. Tutuc and A. H. MacDonald, Hubbard model physics in
transition metal dichalcogenide Moiré bands, Phys. Rev. Lett. 121, 026402 (2018),
doi:10.1103/PhysRevLett.121.026402.

[50] T. Cea, N. R. Walet and F. Guinea, Electronic band structure and pinning of Fermi energy to
Van Hove singularities in twisted bilayer graphene: A self-consistent approach, Phys. Rev. B
100, 205113 (2019), doi:10.1103/PhysRevB.100.205113.

[51] J. M. Pizarro, M. Rösner, R. Thomale, R. Valentí and T. O. Wehling, Internal screening and
dielectric engineering in magic-angle twisted bilayer graphene, Phys. Rev. B 100, 161102
(2019), doi:10.1103/PhysRevB.100.161102.

[52] X. Liu, Z. Wang, K. Watanabe, T. Taniguchi, O. Vafek and J. I. A. Li, Tuning electron
correlation in magic-angle twisted bilayer graphene using Coulomb screening, Science 371,
1261 (2021), doi:10.1126/science.abb8754.

[53] J. E. H. Braz, B. Amorim and E. V. Castro, Valley-polarized magnetic state in hole-
doped monolayers of transition-metal dichalcogenides, Phys. Rev. B 98, 161406 (2018),
doi:10.1103/PhysRevB.98.161406.

[54] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, Magnetic control of
ferroelectric polarization, Nature 426, 55 (2003), doi:10.1038/nature02018.

[55] F. Wu, T. Lovorn, E. Tutuc, I. Martin and A. H. MacDonald, Topological insulators
in twisted transition metal dichalcogenide homobilayers, Phys. Rev. Lett. 122, 086402
(2019), doi:10.1103/PhysRevLett.122.086402.

[56] A. Kormányos, V. Zólyomi, N. D. Drummond and G. Burkard, Spin-orbit coupling, quan-
tum dots, and qubits in monolayer transition metal dichalcogenides, Phys. Rev. X 4, 011034
(2014), doi:10.1103/PhysRevX.4.011034.
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