
SciPost Phys. 13, 056 (2022)

Covariant entanglement wedge cross-section,
balanced partial entanglement and gravitational anomalies

Qiang Wen1,2? and Haocheng Zhong2†

1 Shing-Tung Yau Center of Southeast University, Nanjing 210096, China
2 School of Mathematics, Southeast University, Nanjing 211189, China

? wenqiang@seu.edu.cn, †zhonghaocheng@outlook.com

Abstract

The balanced partial entanglement (BPE) was observed to give the reflected entropy
and the entanglement wedge cross-section (EWCS) for various mixed states in differ-
ent theories [1, 2]. It can be calculated in different purifications, and is conjectured to
be independent from purifications. In this paper we calculate the BPE and the EWCS
in generic covariant scenarios in two-dimensional CFTs with and without gravitational
anomalies, and find that they coincide with the reflected entropy. In covariant configu-
rations we determine the partition for the purifying system with the help of the gravi-
tational anomalies, and we extend our discussion to topological massive gravity (TMG).
We give the first prescription to evaluate the entropy quantity associated to the EWCS
beyond Einstein gravity, i.e. the correction to the EWCS from the Chern-Simons term in
TMG. Apart from the gravity theory and geometry, further input from the mixed state
should be taken into account.
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1 Introduction

In recent years, concepts and ideas of quantum information sciences have been applied to
holographic theories between gravity and quantum field theories, which strongly suggests that
gravity actually emerges from the entanglement structure of the dual quantum field theory. On
the other hand, investigations for quantum gravity also stimulate new understanding in quan-
tum information sciences. One example is the measure of correlations in mixed states. This
topic has received lots of inspiration from high energy physics and has attracted considerable
attention recently.

The entanglement entropy is one of the most important and common measure for quantum
entanglement. For a bipartite system AB ≡ A∪B in a pure state |Ψ〉, the entanglement entropy
SA of the subsystem A is defined as the von Neumann entropy of the reduced density matrix
ρA = TrB |Ψ〉 〈Ψ| of A. The entanglement entropy SA captures the amount of entanglement
between A and B. Nevertheless, if we want to measure the correlation between A and B when
AB is in a mixed state, the entanglement entropy is no longer a good measure. This can be
clearly shown by introducing an auxiliary system O such that ABO makes up a pure state, which
is called a purification of AB. In such a purification SA captures the amount of entanglement
between A and BO, rather than the one between A and B.

Indeed, it is hard to define a simple quantity that may capture the “amount of entan-
glement” in mixed states, and even harder to clarify what does it mean by the “amount of
entanglement” in mixed states. Nevertheless, several different measures have been proposed,
which collect different types of correlations and are used for different purposes. Many of the
measures are defined in terms of an optimization problem, which makes them formidable to
calculate except in some extremely simple systems. These measures include the entanglement
of formation, the entanglement of distillation, the entanglement of purification (EoP) and so
on. For example, consider an arbitrary auxiliary system A′B′ which purifies AB, the EoP is de-
fined to be the minimal value of SAA′ among all the possible purifications and all the possible
partition A′B′ = A′ ∪ B′ for the purifying system [3].

There are also measures defined directly on the density matrix ρAB of the mixed state
and being calculable. One important example is the logarithmic entanglement negativity [4–
8], which is defined as E(A, B) = ln Tr|ρ̃AB|, where ρ̃AB is the partial transposed ρAB on the
A indices. Another interesting measure is the reflected entropy [9], which is defined to be
SR(A, B) = SAA′/2, where SAA′ is evaluated in the canonical purification of the mixed state. Note
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that, throughout this paper the reflected entropy we defined is half of its original definition [9].
Since the negativity and the reflected entropy are both calculable, they are wildly explored in
many condensed matter systems, as well as holographic theories. Nevertheless, it is still hard
to perform their calculation in quantum field theories.

In AdS/CFT, the reduced density matrix of a boundary region AB duals to a specific bulk
region called the entanglement wedge WAB, which is a co-dimension-one surface bounded by
AB and corresponding Ryu-Takayanagi (RT) surface EAB

1,

∂WAB = AB ∪ EAB . (1)

Inside the entanglement wedge, the minimal cross-section (EWCS) ΣAB that separates A from
B is a special geometric quantity that could be considered as a natural measure of the entan-
glement between A and B, hence it should be dual to a measure of mixed state correlations.
It is an important topic to explore as the duality will extend the correspondence between the
geodesics anchored on the boundary and the entanglement entropy, to the correspondence
between geodesic chords and mixed state correlations. It can be considered as a finer version
of the RT formula.

Interestingly, multiple of the above-mentioned measures for mixed state correlations are
claimed to be dual to the area of the EWCS, which is similar to the way the RT surface cap-
tures the entanglement entropy. These measures include the EoP [3,10,11], the entanglement
negativity [12–14], the reflected entropy [9], the “odd entropy” [15], the “differential purifi-
cation” [16], the entanglement distillation [17, 18]. Recently, the duality for the EWCS goes
beyond AdS/CFT. Based on the geometric picture [19–22] for the holographic entanglement
entropy in several holographic models beyond AdS/CFT, the EWCS is generalized to the cases
of 3-dimensional flat holography [23] and (warped) AdS3/warped CFT correspondence [24].
Furthermore, the correspondence between the negativity, the reflected entropy and the EWCS
is confirmed by explicit calculations on both sides. See [25–27] for more relevant discussions.

All the above measures are defined in different ways hence should capture different types
of correlations. For some of the measures, it is hard to prove or disprove their duality with
the EWCS due to the difficulty to conduct explicit calculations. For those calculable measures,
explicit calculations can only be conducted and found matched with the EWCS in several
special cases. The evidence for generic scenarios, and the logic indicating that these measures
of correlations lead to a clear geometric picture is still missing. It is also possible that in
holographic theories several of them coincide with each other and can be given by the EWCS.
So far there are more evidences for the duality between the reflected entropy and the EWCS,
but it is still hard to confirm or exclude other proposals.

In this paper we focus on a new quantity named the balanced partial entanglement (BPE)
[1, 2], which is the partial entanglement entropy (PEE) [28, 29] that satisfies certain balance
conditions. The PEE satisfies the key property of additivity, as well as all the properties (in-
equalities) satisfied by the mutual information. It is proposed in [28,29] to give a fine descrip-
tion for the spatial structure of quantum entanglement for quantum systems. Furthermore,
its correspondence to the geodesic chords in the context of holography is also proposed and
confirmed in [28, 29] using the geometric picture in the gravity side. For these reasons, it is
possible to extract correlations in mixed states that correspond to the EWCS from the PEE.
This is explicitly done in [1,2], where the BPE is defined in terms of the PEE with no reference
to the geometric picture in the bulk. We will give an explicit introduction for the PEE and the
BPE in the next section. Before that, let us summarize the advantages and dis-advantages of
the BPE compared with the above-mentioned measures.

1Originally the entanglement wedge is the causal development of this co-dimension one surface.
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Advantages of the BPE

• The BPE can be defined in any purification of the mixed state ρAB.

• The BPE can be easily calculated. More explicitly it is just a linear combination of certain
subset entanglement entropies in ABA′B′, where the partition of the purifying system
A′B′ is determined by the balance conditions, i.e. solving several linear equations.

• The BPE is a quantum information quantity which can be applied to general quantum
systems. In holographic theories, the BPE exactly matches with the EWCS at order c.

• In the canonical purification, it is easy to see that the BPE coincides with the reflected
entropy, hence could be considered as a generalization for the reflected entropy.

• Most of the measures are mainly explored in the static configurations while the BPE can
be naturally extended to covariant scenarios, which is one of the main topics of this
paper.

Disadvantages of the BPE

• Since the BPE can be defined in general purifications, we need to demonstrate that the
BPE is purification independent if we claim it to be an intrinsic quantity. Although the
independence from purifications for the BPE has passed several non-trivial tests in [2],
it has not been proved in generic configurations.

• So far, calculations of the BPE are confined in two-dimensional theories. The reason is
that our evaluation for the PEE is mostly well-studied in two-dimensional theories via
the so-called ALC proposal (see the paragraphs near (8) for a brief introduction), which
cannot be generalized to higher dimensions straightforwardly.

On the gravity side, the EWCS is mostly explored in AdS3/CFT2 for static configurations.
Its extension to covariant configurations (see for example [27,30]) and in higher dimensions
2 remains rarely explored. Another important direction to generalize our understanding of
the EWCS is to consider gravities beyond Einstein gravity, for example the gravities with
high derivative corrections, and topological massive gravity (TMG) with an additional Chern-
Simons (CS) term described by (56). So far, such generalizations have been extensively studied
for the RT surfaces, see [38–42] for the higher derivative gravities and [43] for TMG. Similar
generalization for the EWCS should also be very interesting and important. In this paper we
will give explicit discussions on the EWCS in TMG.

Main tasks

In this paper our first task is to investigate the BPE and the EWCS in generic covariant scenarios
in two-dimensional CFTs. This is meaningful because the measures proposed to capture mixed
state correlations are rarely explored in covariant configurations. We find that the BPE, the
EWCS and the reflected entropy exactly match with each other. In covariant configurations
the partition points of A′B′ can vary in the two-dimensional spacetime rather than settled on
a time slice, we therefore need two parameters to fix one partition point. Then we come up
with the problem that the number of the balance conditions is less than the number of the
parameters we need to fixed all the partition points. We will solve this problem by considering
the CFT2 with gravitational anomalies where the left and the right moving central charges
are different. In these theories the balance conditions should hold for both the right moving

2See [31–37] for calculations in higher dimensional Einstein gravity with matter, excitation or time evolution.
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and the left moving sectors. This will double the number of constraints from the balance
conditions, which is enough to fix all the partition points in A′B′. Another way to fix the
partition points is to extend the EWCS in the bulk into a geodesic anchored on the boundary,
then the points where the extended geodesic reaches the boundary are the partition points for
A′B′. As expected we find that the BPE exactly matches with the reflected entropy calculated
in [44], as well as the EWCS in covariant configurations.

Our second task is to evaluate the correction to the EWCS from the CS term in TMG. For
Einstein gravity, entropy quantities are proportional to the area of extremal surfaces while
for generic gravities with covariant Lagrangian constructed from metric, the entropy receives
corrections to the area term which can be calculated by the Wald formula [45–47]. The correc-
tions to the black hole entropy and the entanglement entropies have been extensively studied
in literature (see [43,48] in the case of TMG). Nevertheless, for the EWCS which is assumed to
capture certain mixed state correlations, similar to the way that the RT formula or Bekenstein-
Hawking formula does for pure states, the correction from the additional terms beyond the
Einstein-Hilbert action in the action has not been explicitly explored before3. In TMG, the
EWCS without the correction from the CS term will no longer match with its field theory
counterpart, i.e. the reflected entropy and the BPE. In this paper, we will give a simple and
natural prescription to embed the correction to the EWCS geometrically.

2 Backgrounds

2.1 A brief introduction to the balanced partial entanglement

The definition of the BPE is based on the concept of the PEE [28, 29, 49], which is a quasi-
local measure of entanglement between two space-likely separated regions. For example if we
denote the two regions as A and B, the PEE between them is denoted as I(A, B)4. The entangle-
ment contour [50], which is the derivative version of the PEE, has been explored in the Gaussian
state of several free lattice models [50–57] and is used to characterize the density distribution
of the entanglement entropy SA for the region A. It has been studied to capture evolution
of the entanglement distribution [50, 56, 58, 59], in holographic theories [21, 28, 60–62] and
quantum information theories [60, 61, 63]. In the context of holography, the entanglement
contour has a geometric interpretation, which is a fine correspondence between the points on
the boundary interval A and the points on the RT surface EA [21,28]. More interestingly, such
a fine correspondence indicates that a segment on the RT surface will corresponds to the PEE
between Ai , a subset of A, and Ā. This observation inspires our later study on the EWCS in
terms of the PEE [1,2], since the EWCS is also a geodesic chord in the bulk.

The PEE satisfies all the properties of the mutual information. For example, it is also
symmetric under permutation and reproduces the entanglement entropy SA when AB is in a
pure state (normalization),

I(A, B) = I(B, A) , SA = I(A, B)|B→Ā . (2)

Unlike any other measure, the PEE is featured by the key property of additivity, i.e.

I(A, BC) = I(A, B) + I(A, C) . (3)

Due to the permutation symmetry and the additivity property, one can further split the regions
A and B into smaller and smaller pieces until single sites, hence the PEE is just given by a

3See [44] for an earlier attempt without justification.
4Note that the symbol we used for PEE looks quite similar to the mutual information I(A, B).
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collection of PEE between two sites,

I(A, B) =
∑

i∈A, j∈B

I(i, j) , (4)

where I(i, j) means the PEE between the ith site and jth site. Furthermore, according to the
normalization, the entanglement entropy can be evaluated from the PEEs

SA = I(A, Ā) =
∑

i∈A, j∈Ā

I(i, j) , (5)

as well as the entanglement contour

sA(i) = I(i, Ā)
�

�

�

i∈A
, (6)

which is a function defined on A that characterizes how much entanglement each site inside A
contributes to the entanglement entropy SA. In continuous systems like quantum field theories,
the summation becomes integration. When we consider the contribution from a subregion
Ai to SA, we just collect all the contribution from the sites inside Ai . Usually we write this
contribution as sA(Ai), it is indeed a PEE between Ai and Ā,

sA(Ai)≡ I(Ai , Ā)≡ IAi Ā . (7)

Hereafter we interchangeably use the notations between sA(Ai) and I(Ai , Ā).
One may ask whether all the entanglement quantities can be evaluated based on the PEE.

The answer is definitely no. In [49, 50], a set of physical requirements that the PEE should
respect is classified, which include the aforementioned properties like normalization, permu-
tation symmetry, additivity and other four requirements5. One may worry that the solutions to
the set of requirements are not unique hence the concept of the PEE or entanglement contour
is not well-defined. It is true that the uniqueness of the PEE has not been confirmed in generic
theories. However, it can be confirmed at least in the following two configurations:

1. Generic two-dimensional theories where all the degrees of freedom lives with a natural
order along the spatial direction [28, 29, 58] and highly symmetric higher dimensional
theories where the contour function only depends on one coordinate which we call the
quasi-one-dimensional configurations [60];

2. Higher dimensional theories with Poincaré symmetry [49].

We stress that the evaluation of the entanglement entropies following (5) only works for con-
nected regions even for the above two types of configurations, for disconnected regions it is
not solved in the context of the PEE.

Although, the mathematical definition for the PEE based on the density matrix is not es-
tablished, several different proposals for the PEE that satisfy all the physical requirements
have been proposed. One particular proposal we will use to calculate PEE is the additive lin-
ear combination (ALC) proposal [28, 29] for two-dimensional field theories, which has been
shown [28,29,58] to satisfy all the physical requirements for generic theories.

• The ALC proposal: Consider an interval A and partition it into three non-overlapping
subregions: A= αL ∪ α ∪ αR, where α is some subregion inside A and αL (αR) denotes
the regions left (right) to it. In this configuration, the ALC proposal claims that:

sA(α) = I(α, Ā) =
1
2

�

SαL∪α + Sα∪αR
− SαL

− SαR

�

. (8)

5The other four additional requirements include the invariance under local unitary transformations, invariance
under symmetry transformation,positivity and upper bound.
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Figure 1: Figures extracted from [2], licenced under CC-BY 4.0. The purification of
a region AB is given by ABB′A′ for adjacent (left) and non-adjacent (right) intervals.
When the intervals are adjacent the auxiliary system A′B′ consists of A′B′ = A′ ∪ B′.
In the non-adjacent case, the auxiliary system A′B′ consists of A′B′ = A′1∪B′1∪A′2∪B′2.

The ALC proposal is supposed to be general and applicable for any theories in two dimensions,
except for some disconnected systems where the order for the degrees of freedom becomes
ambiguous.

Then we introduce the so-called balanced partial entanglement entropy (BPE) [1]. Con-
sider a bipartite system HA⊗HB equipped with the density matrix ρAB, and a purifying system
A′B′ = A′ ∪ B′ which makes a pure state |ψ〉 together with AB, such that TrA′B′ |ψ〉〈ψ| = ρAB.
There exists a special partition of the auxiliary system A′B such that the PEE satisfies IAB′ = IA′B,
which we call the balance condition. It represents some balance points for the correlations be-
tween AA′ and BB′.

For the cases where A and B are adjacent, the balance condition have the following useful
and equivalent expressions

1)sAA′(A) = sBB′(B);

2)IAB′ = IA′B;

3)SA− SB = SA′ − SB′ .

(9)

The above three expressions are equivalent to each other using the ALC proposal. For
example in this case we have

sAA′(A) =
1
2
(SAA′ + SA− SA′) = IAB + IAB′ . (10)

Compared with (8), here we have A= α , A′ = αL and αR = ;. Note that in the adjacent case
we can see the PEE IAB equals to half of the mutual information,

IAB = sAA′B′(A) =
1
2
(SAA′B′ + SA− SA′B′) = I(A, B)/2 . (11)

Hereafter we will also refer to the PEE IAB′ and IBA′ as the crossing PEEs of the purification
|ψ〉.

In the case where A and B are not adjacent, the balance conditions are a bit different since
the complement A′B′ becomes disconnected. We need to further separate the disconnected
regions, A′ = A′1 ∪ A′2 and B′ = B′1 ∪ B′2. As a result, they can be considered in pairs (see the
right figure in Fig.1), and the balance conditions should be imposed on both pairs [1]. In other
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words, we have two independent balance conditions for non-adjacent scenarios, which can be
expressed as the following two equivalent ways:

1) sAA′(A2) = sBB′(B2) , sAA′(A
′
1) = sBB′(B

′
1) ,

2) SA′1
− SB′1

= SAA′2
− SBB′2

, SA′2
− SB′2

= SAA′1
− SBB′1

.
(12)

The condition IAB′ = IA′B is consistent with the above conditions.
With the balance conditions clarified, the BPE (A : B) is then just given by the PEE sAA′(A)

under the balance conditions, i.e.,

BPE (A : B) = sAA′(A)|balance . (13)

An interesting aspect of the BPE is that, the balance requirements also minimize the summation
of the crossing PEEs.

2.2 CFT2 with gravitational anomalies and entanglement entropy

The quantum field theory we will study in this paper is the two-dimensional CFTs with gravi-
tational anomalies [64]. Such theories have unequal left central charges cL and right central
charges cR appearing in the local conformal algebras. Let us consider a covariant interval A in
these type of theories with endpoints given by

A : (x1, t1)→ (x2, t2) . (14)

When the theory is in the vacuum state on a plane, the entanglement entropy for the above
interval is just given by [43]

SA =
cL

6
log

�zA

δ

�

+
cR

6
log

�

z̄A

δ

�

, (15)

where zA = x − t and z̄A = x + t. The above result can be obtained using the replica trick
[65–67]. In order to manifest the contribution from the anomalies, we define z = RAeiθA,
where

RA =
q

x2
21 − t2

21 , x21 = x2 − x1 , t21 = t2 − t1 (16)

is the proper length of the interval A and θA is the boost angle of A in spacetime. It will be
more convenient to use the boost angle κA = −iθA, such that

κA = tanh−1
�

t21

x21

�

. (17)

Then in terms of RA and κA the entanglement entropy can be written as

SA =
cL + cR

6
log

�

RA

δ

�

−
cL − cR

6
κA , (18)

where the second term is exactly the contribution from anomalies. Also, the entanglement
entropy for a static interval with length RA at finite temperature is given in [43],

SA =
cR + cL

12
log

�

βLβR

π2δ2
sinh

�

πRA

βL

�

sinh
�

πRA

βR

��

+
cR − cL

12
log





sinh
�

πRA
βR

�

βR

sinh
�

πRA
βL

�

βL



 . (19)
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In the rest of this paper, in order to distinguish the anomalous and non-anomalous contri-
bution we define

cano ≡ (cL − cR), cgeo ≡ (cL + cR) . (20)

We call the non-anomalous contribution geometric since it corresponds to pure geometric quan-
tities in holography. The entanglement entropy is therefore decomposed into two terms, which
are proportional to cgeo and cano respectively, i.e.

SA = Sgeo
A + Sano

A . (21)

Similar decomposition will be applied to other quantities like the BPE, reflected entropy and
the quantity associated to the EWCS on gravity side.

3 Covariant balanced partial entanglement and gravitational
anomalies

In this section we will calculate the BPE for CFT2 with or without gravitational anomaly for
generic covariant configurations, and compare the results with the reflected entropy carried
out in [44]. Note that, the BPE can be defined in non-holographic systems, hence the calcula-
tions in this section goes beyond AdS/CFT.

3.1 Balanced partial entanglement for adjacent intervals

Figure 2: Setup for two adjacent covariant intervals A and B in the vacuum state of
a CFT2 with gravitational anomalies. The auxiliary system A′B′ is the complement of
AB on the spatial curve, and is partitioned by the point Q.

Now we consider two adjacent covariant intervals A and B in the vacuum state of a CFT2
with gravitational anomalies, as illustrated in Fig.2. The intervals are given by

A : (x1, t1)→ (x2, t2) , B : (x2, t2)→ (x3, t3) , (22)

which are embedded in an infinitely long and spacelike curve. The system settled on the curve
is in a pure state |Ψ〉 and the complement A′B′ can be considered as the purifying system for
the mixed state represented by the reduced matrix ρAB on AB. Before imposing the balance
conditions, the partition point Q which divides A′B′ into A′ ∪ B′ can be any point spacelike-
separated from (x1, t1) and (x3, t3) outside the causal development of AB. If we consider a CFT
without gravitational anomalies, the solutions for the only balance condition (9) form a curve
in spacetime, which will give us different BPE(A, B) when moving the partition point Q along
this curve. In other words, the balance conditions cannot uniquely determine the partition
points Q hence give different BPEs in the case of the CFT without gravitational anomalies.
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This contradicts with the claim of [2] that the BPE is an intrinsic measure of the mixed state
correlation hence should be unique when ρAB is settled down. In the following we will show
that when the contribution from gravitational anomalies is considered, the partition point Q
will be uniquely determined and give the right BPE(A, B) that reproduces the reflected entropy.

If one considers cL and cR as independent, then the balance conditions should be imposed
independently to both the logarithmic term and the term from gravitational anomalies. In
such a way the balance condition (9) splits into two independent constraints,

Sgeo
A − Sgeo

B = Sgeo
A′ − Sgeo

B′ , Sano
A − Sano

B = Sano
A′ − Sano

B′ . (23)

A similar strategy was previously used to solve the covariant BPE [68] in the 3-dimensional
flat holography [20,69,70]. Let us denote the position of Q as (x0, t0), and set (x1, t1) = (0, 0)
without loss of generality. However, the solutions to the above balance conditions in terms of
the parameters x2,3 and t2,3 are quite complicated. In the following we will use the other set
of parameters we defined in section 2.2,

x2 = RA cosh[κA] , x3 = RAB cosh[κAB] ,

t2 = RA sinh[κA] , t3 = RAB sinh[κAB] . (24)

The proper length RB and boost angle κB are determined by

tanh[κB] =
RA sinh[κA]− RAB sinh[κAB]
RA cosh[κA]− RAB cosh[κAB]

, R2
B = R2

A+ R2
AB − 2RARAB cosh[κA−κAB] , (25)

then the solutions to the balance conditions are given by

x0 =
RARAB(2RA cosh(κAB)− RAB cosh(κA))
−4RARAB cosh(κA− κAB) + 4R2

A+ R2
AB

,

t0 =
RARAB(2RA sinh(κAB)− RAB sinh(κA))
−4RARAB cosh(κA−κAB) + 4R2

A+ R2
AB

.
(26)

When the balance conditions determine the partition point Q, which we refer to as the bal-
ance point hereafter, the entanglement entropies for all the subsets on the total system can be
calculated by the formula (18). The BPE(A, B) is then given by the PEE sAA′(A) satisfying the
balance conditions,

BPE(A, B) =sAA′(A) =
1
2
(SAA′ + SA− SA′) |balanced

=
cgeo

12
log

�

RARB

δRAB

�

−
cano

12
(κA+κB − κAB) +

cgeo

12
log (2) , (27)

which exactly matches with the reflected entropy calculated in [44].

3.2 Minimizing the crossing correlations with the balance conditions

In the adjacent case the PEE I(A, B) = I(A, B)/2, which is just half the mutual information,
then

sAA′(A) = I(A, B)/2+ I(A, B′) . (28)

We use the second expression of (9): IAB′ = IA′B. In [2], it was shown that in the static
configurations with no gravitational anomalies, the balance conditions indeed minimize the
crossing PEEs. More explicitly we have

(IAB′ + IBA′) |balance = 2IAB′ |balance = (IAB′ + IBA′) |minimized , (29)
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where the minimization is among all the partition of A′B′. Furthermore, the minimized cross-
ing PEE is given by a constant

IAB′ |balance = (IAB′ + IBA′)/2|minimized =
c
6

log2 . (30)

This constant is a generalization of the so-called Markov gap [71], which is defined as the
difference between the reflected entropy and the mutual information. It was proposed in [2]
that the crossing PEE at the balance condition is a universal tripartite correlation that is inde-
pendent from purifications. This proposal has been tested in many configurations including
both the holographic and non-holographic models [2]. This is necessary for the claim that the
BPE is an intrinsic measure for the mixed state correlations.

Here we explore the minimized crossing PEE in covariant configurations with gravitational
anomalies. Firstly, we take a look at the crossing PEE under the balance conditions. It is easy
to see that, the first term plus the second term in the BPE(A, B) (27) give the half the mutual
information I(A, B)/2 = (SA + SB − SAB)/2. Then we find that the difference between the
BPE(A, B) and I(A, B)/2 is just the third term in (27),

IAB′ |balance =sAA′(A)|balance − IAB

=BPE(A, B)− I(A, B)/2

=
cgeo

12
log(2) , (31)

which is a constant and does not receive contribution from the anomalies.
Let us go away from the balance point for a moment and consider undetermined (x0, t0)

outside AB. The PEEs like IAB′ can be calculated using the ALC proposal (8), hence we can
compute the crossing PEE and decompose it into two contributions:

IC ≡ (IAB′ + IBA′) = I geo
C + Iano

C , (32)

where I geo
C ∝ cgeo and Iano

C ∝ cano. These two contributions are functions of x0 and t0 and
are given by

I geo
C =

cgeo

24
log





R4
AB

�

2RAt0 sinh(κA)− 2RAx0 cosh(κA) + R2
A− t2

0 + x2
0

�2

R2
AR2

B

�

x2
0 − t2

0

� �

2RAB t0 sinh(κAB)− 2RAB x0 cosh(κAB) + R2
AB − t2

0 + x2
0

�



 ,

Iano
C =

cano

24



log





(t0 + x0)
�

e−κARA+ t0 − x0

�2
(−eκAB RAB + t0 + x0)

(t0 − x0) (−eκARA+ t0 + x0)
2 (e−κAB RAB + t0 − x0)









+
cano

12
(κA− 2κAB +κB) ,

(33)
where we used the parameters defined in (24). As expected, one can check that the crossing
PEE under the balance condition (26) is just given by

IC |balance =
cgeo

6
log2 . (34)

Now we explore whether the crossing PEE reaches its minimal value under the balance
conditions. One can explicitly verify that when the balance conditions (26) are satisfied, we
have

∂ I geo
C

∂ x0
|balance = 0 ,

∂ I geo
C

∂ t0
|balance = 0 ,

∂ Iano
C

∂ x0
|balance = 0 ,

∂ Iano
C

∂ t0
|balance = 0 ,

(35)
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which means the two contributions I geo
C and Iano

C , as well as their summation IC , reaches a
saddle point at the balance point. In the static case there is a general argument demonstrating
that the balance point is the minimum point of IC . Here we directly calculate the second order
derivatives of IC to check whether the saddle is a minimum point. The criterion for the saddle
to be a minimum point is to satisfy the following two inequalities

∂ 2IC

∂ 2 x0

�

�

�

balance

∂ 2IC

∂ 2 t0

�

�

�

balance
−
�

∂ 2IC

∂ x0∂ t0

�2
�

�

�

balance
> 0 , (36)

∂ 2IC

∂ 2 x0

�

�

�

balance
> 0 . (37)

It is indeed hard to explicitly check the above inequalities in general as the expression become
very complicated. Nevertheless, we find that by using (24), the left-hand side of (36) is always
some square function multiplying c2

geo − c2
ano. For example when we fix κA = 0 we find

∂ 2IC

∂ 2 x0

�

�

�

balance

∂ 2IC

∂ 2 t0

�

�

�

balance
−
�

∂ 2IC

∂ x0∂ t0

�2
�

�

�

balance

=

�

c2
geo − c2

ano

�

�

4R2
A+ R2

AB − 4RARAB cosh(κAB)
�4

576R4
AR4

AB

�

R2
A+ R2

AB − 2RARAB cosh(κAB)
�2 .

(38)

Since cgeo > cano, the inequality (36) holds in general. For the second criterion we calculate
the left-hand side of (37), which also has complicated expression. We find that it can be written
in the following formula

∂ 2IC

∂ 2 t0

�

�

�

balance
=
∂ 2IC

∂ 2 x0

�

�

�

balance
=N1 cgeo +N2 cano , (39)

where N1,2 are two functions of the four parameters that determines A and B. They satisfy the
following equations

N1 +N2 =
(eκARAB − 2eκAB RA)

4

24R2
AR2

AB (e
κAB RA− eκARAB)

2 > 0 ,

N1 −N2 =
e−2(κA+κAB) (eκAB RAB − 2eκARA)

4

24R2
AR2

AB (e
κARA− eκAB RAB)

2 > 0 ,

(40)

which are enough to demonstrate that the inequality (37) is satisfied in general. One can
furthermore verify that the balance point is a minimum point for I geo

C , but is neither a minimum
or maximal point for Iano

C .
In summary we demonstrated that, in general covariant scenarios where A and B are ad-

jacent, the crossing PEE reaches its minimal value under the balance condition, which is a
constant conjectured to be universal,

IC |balance = 2IAB′ |balance = IC |minimized = cgeo/6 log 2 . (41)

Since there is no contribution proportional to cano, we conclude that this universal tripartite
entanglement has no contribution from the gravitational anomalies. The BPE in these cases
can be written as

BPE(A, B) =
1
2

I(A, B) +
cgeo

12
log 2 . (42)

In the covariant cases without gravitational anomalies, where cL = cR = c, we found the second
term become c/6 log2, which is exactly the universal constant we got in [2]. We therefore
have checked the universality of the minimized crossing PEE in the covariant scenarios with
gravitational anomalies.
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3.3 Balanced partial entanglement for non-adjacent intervals

Figure 3: Figure extracted from [2], licenced under CC-BY 4.0. Setup for two non-
adjacent covariant intervals A and B in the vacuum state of a CFT2 with gravitational
anomalies. The auxiliary system A′B′ is partitioned by the points Q1,Q2 into four
subintervals A′1, A′2, B′1, B′2.

Here we consider the scenarios where A and B are spacelike-separated regions with the
following endpoints

A : (x1, t1)→ (x2, t2) , B : (x4, t4)→ (x5, t5) . (43)

The purification AA′BB′ is again the vacuum state on an infinitely long line. The purifying
system A′B′ is now disconnected and will be divided into four regions by two partition points
Q1 and Q2, see Fig.3. We denote the coordinates for the partition points to be

Q2 : (x0, t0) , Q1 : (x3, t3) , (44)

such that the subintervals in the purifying system are given by

A′1 : (x2, t2)→ (x3, t3) , B′1 : (x3, t3)→ (x4, t4),

A′2 : (x0, t0)→ (x1, t1) ,

B′2 : −∞→ (x0, t0)∪ (x5, t5)→∞ .

(45)

Similarly, we divide the entanglement entropy into contributions from the geometric terms
and the gravitational anomalies. In this case the balance conditions (12) turns out to be four
independent conditions

Sgeo
A′1
− Sgeo

B′1
= Sgeo

AA′2
− Sgeo

BB′2
, Sgeo

A′2
− Sgeo

B′2
= Sgeo

AA′1
− Sgeo

BB′1
, (46)

Sano
A′1
− Sano

B′1
= Sano

AA′2
− Sano

BB′2
, Sano

A′2
− Sano

B′2
= Sano

AA′1
− Sano

BB′1
, (47)

which are enough to determine the positions of the two partition points.
The position of Q2 will be on the left of A as long as A have a smaller size than that of B.

Otherwise, it will be on the right-hand side of B. Let us assume that A has a smaller size, then
the coordinates of all the points need to satisfy certain constrains. Firstly, both A and B should
be spacelike intervals, and the whole system should be settled on a spacelike curve. Secondly,
we should have,

x0 < x1 < x2 < x3 < x4 < x5 . (48)

The above inequality will help us select the proper solutions to the balance conditions. For the
non-adjacent cases it will be convenient to introduce the follow cross ratios

η=
(t1 − t2 − x1 + x2)(t4 − t5 − x4 + x5)
(t1 − t4 − x1 + x4)(t2 − t5 − x2 + x5)

, η̄=
(t1 − t2 + x1 − x2)(t4 − t5 + x4 − x5)
(t1 − t4 + x1 − x4)(t2 − t5 + x2 − x5)

.

(49)
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We can again set x1 = t1 = 0 without losing generality. At first. we solve the equation
(47) and get

x0 =
2t2

3 x5 − t2
5 x3 + x3 x5(x5 − 2x3)

(−2t3 + t5 + 2x3 − x5)(−2t3 + t5 − 2x3 + x5)
,

t0 = −
−2t2

3 t5 + t3(t5 − x5)(t5 + x5) + 2t5 x2
3

(−2t3 + t5 + 2x3 − x5)(−2t3 + t5 − 2x3 + x5)
.

(50)

Then we plug the above solution into (47) to solve (x3, t3). However, it is quite hard to get
the full analytic solution with all the other three endpoints of AB free. We need to fix two
endpoints, for example (x2, t2) and (x4, t4), hence only the two parameters (x5, t5) are free.
It will further simplify the calculation by replacing (x5, t5) with (η, η̄). For example, if we set

case 1 : t2 = 0, x2 = 1, t4 = 0, x4 = 3 , (51)

we find the solution for (47)

x3 =
p
η
�

9
p

η̄+ 6
�

+ 6
p

η̄+ 3
�

3
p
η+ 1

� �

3
p

η̄+ 1
� , t3 =

3
�p
η−

p

η̄
�

�

3
p
η+ 1

� �

3
p

η̄+ 1
� . (52)

Plugging the above solutions (50) and (52) into the PEE

sAA′(A) =
1
2

�

SAA′1
+ SAA′2

− SA′1
− SA′2

�

, (53)

then the BPE is given by sAA′(A)|balance:

BPE(A, B) =
cgeo

24
log

�p
η+ 1

� �
p

η̄+ 1
�

�p
η− 1

� �
p

η̄− 1
� +

cano

24
log

�p
η+ 1

� �
p

η̄− 1
�

�p
η− 1

� �
p

η̄+ 1
� , (54)

which is exactly the same as the reflected entropy calculated in [44]. Although it is hard for us
to get the analytic BPE for all the endpoints of AB settled to be free, we can adjust the position
of the points (t2, x2) and (t4, x4). For example, we can consider the following choices,

case 2 : t2 =
1
2

, x2 = 1, t4 = 1, x4 = 3 ,

case 3 : t2 =
1
2

, x2 = 1, t4 = −
1
2

, x4 = 5 .
(55)

We find that, no matter how we adjust the other two endpoints, the BPE(A, B) will always be
given by the same formula (54) as long as they are settled on a spacelike curve. Hereafter
we will refer to the terms proportional to cgeo, cano of the BPE, or the reflected entropy, as the
geometric term and the anomalous term respectively. One may also test (numerically) that the
crossing PEE IC ≡ I(A, B′1∪B′2)+I(B, A′1∪A′2) reaches its minimal value at the balance point.
In Fig. 4, we illustrate one example with a set of parameters provided.

4 Correction to entanglement wedge cross-section from gravita-
tional anomalies

4.1 Correction to Ryu-Takayanagi surfaces from gravitational anomalies

Now we turn to TMG [72, 73] which are proposed to be dual to the holographic CFTs with
gravitational anomalies. The action of TMG in AdS includes the Einstein-Hilbert term, a cos-
mological constant term and an additional CS term,

STMG =
1

16πG

∫

d3 x
p

−g

�

R+
2
`2
+

1
2µ
εαβγ

�

Γρασ∂βΓ
σ
γρ +

2
3
ΓρασΓ

σ
βηΓ

η
γρ

�

�

. (56)
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Figure 4: We evaluate case 1 (51) with η = 1/5, η̄ = 1/6, cgeo = 55, cano = 37, and
we additionally consider that the first balance requirement (50) is satisfied. In this
case, the crossing PEE IC is a function of x3, t3. We will let either x3 or t3 satisfy
the second balance requirement (52) and see whether the saddle of IC is settled
at the balance point of the other parameter. Left figure: The blue curve describes
IC = IC(x3, t3|balance) and the red vertical line corresponds to x3 at the balance
point. Right figure: The blue curve describes IC = IC(x3|balance, t3) and the red
vertical line corresponds to t3 at the balance point. The black dot in the two figures
denotes the same balanced crossing PEE which is indeed the minimum point. Other
cases can be verified in a similar manner.

The Einstein gravity is recovered in the limit µ→∞. Specializing to the locally AdS3 solutions
to the gravity, the dual CFT is described by Virasoro algebra with left and right central charges
[74]. In this paper, we adopt the notations from [43]:

cL =
3`
2G
(1−

1
µ`
) , cR =

3`
2G
(1+

1
µ`
) . (57)

In the following we set ` = 1. Accordingly the correspondence between the two-dimensional
CFTs with gravitational anomalies and the locally AdS3 solutions to TMG is established [75–
78]. The black hole entropy in such theories is derived in [48] by extending the Wald Formula
[45–47]. The result shows that the correction from the CS term is proportional to the area
of the inner horizon. This is also consistent with earlier explorations on this topic via some
indirect methods [75,79–81].

Interestingly, the holographic entanglement entropy in this context was also explicitly cal-
culated in [43] by generalizing the Lewkowycz-Maldacena prescription [82]. The new picture
broadens the RT geodesic into a worldline action for a spinning particle in three-dimensional
curved spacetime,

SEE =
1

4G

∫

C
dτ
�

Ç

gαβ ẊαẊ β +
1
µ

ñ · ∇n
�

, (58)

where C represents the worldline of the particle, ñ and n are unit spacelike and timelike vectors
along the worldline and are normal to each other, v is the tangent vector along the worldline
C , and ∇n≡ vµ∇µn. More explicitly they satisfy the following constraints,

n · v = 0 , ñ · v = 0 , n · ñ= 0 , n2 = −1 , ñ2 = 1 . (59)

We will limit our discussion on the locally AdS3 spacetime, where the worldline that extrem-
izes the action functional turns out to be a geodesic, then the first term in (58) is just the
familiar Ryu-Takayanagi term which is contributed from the Einstein-Hilbert action while the
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second term is the contribution from the CS term. It has been verified that the holographic
entanglement entropy (58) exactly matches with the CFT results (18) computed by the replica
technique provided (57). One may consult [43, 83, 84] for more discussions about the above
entanglement entropy functional.

Here we talk about a subtlety in the derivation of (58) which will be important in our later
discussion for the EWCS. The subtlety is originated from the fact that the action of TMG is not
manifestly invariant under diffeomorphism. According to [43], if we give the following metric
ansatz,

ds2 =eεφ(σ)δabdσadσb + (g y y + Kaσ
a + · · · )d y2 + eεφ(σ)Ua(σ, y)dσad y (60)

to the near cone region when applying the replica trick in the bulk, the contribution from the
CS term to the entropy is given by

SCS =
1

16µG

∫

C
d yεab∂aUb . (61)

In the above parameterization, y is the coordinate along the geodesic, σ1,2 are the perpen-
dicular coordinates, Ka is the extrinsic curvatures, and φ(σ) stores the information of the
regularization of the cone. The second term of (58) is indeed another formula to rewrite (61),
and the two normal vectors can be chosen to be

n=
∂

∂ σ1
, ñ=

∂

∂ σ2
, (62)

which depend on the choice of coordinates hence are not covariant. More explicitly
if we perform an infinitesimal y-dependent rotation for the perpendicular coordinates
δσa = −θ (y)εa

bσ
b, the variation of the integrand in (61) is just a total derivative,

δ
�

σab∂aUb(y)
�

= 4θ ′(y) . (63)

Interestingly, the entropy contributed from the CS term shifts by a boundary term from the
endpoints of the integral [43],

δSCS =
1

4Gµ

�

θ (y f )− θ (yi)
�

, (64)

where y f and yi in this case represent the two points where the geodesic anchored on the
boundary.

If the contribution from the CS term is coordinate dependent, how can it capture any
intrinsic physical information? Authors in [43] proposed that, this contribution should capture
the intrinsic information of how the local coordinates twist along the geodesic. Fortunately,
since the integration only depend on the boundary terms, only the difference between the
initial and the final status of the normal vector n (or ñ) matters. The integral will make sense
if there is a physical way to determine n f given ni . This is true as the near curve metric at the
boundary points yi and y f should coincide with the spacetime we used to define the boundary
CFT. If we take ni ∝ ∂t , then (62) instructs that

n f ∝ ∂t , (65)

where t is the time coordinate of the boundary CFT. With ni chosen, the CS term contribution
can be captured by the following formula [43],

SCS =
1

4Gµ
log

�

q(s f ) · n f − q̃(s f ) · n f

q(si) · ni − q̃(si) · ni

�

, (66)
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where s parametrizes the geodesic and the two vectors q(s) and q̃(s) give a reference parallel
transported normal frame satisfying

q2 = −1 , q̃2 = 1 , q · v = 0 , q̃ · v = 0 ,

q · q̃ = 0 , ∇qν = 0 , ∇q̃ν = 0.
(67)

It has been verified in [43] that the above formula (66) exactly captures the contribution from
the gravitational anomalies to the entanglement entropy on the field theory side. Also (66)
can be applied to the black hole horizon which is a closed loop. Although there is no boundary
condition for the normal vector n in this case, the integration along the loop will give the same
answer as [48] for any choice of n.

To conclude, the CS term contribution associated to a closed black hole horizon, or the RT
surface anchored on the boundary, can get rid of the unphysical dependence on the choice of
coordinates. The main reason is that, the change of the integral (61) under a change of the
coordinates is up to a boundary term, which can be physically determined by the boundary
conditions of the bulk metric. For the case of the EWCS, it is natural to consider correction
from the CS term to be the integration on the EWCS instead of the whole RT surface. A naive
and straightforward guess for the generalized EWCS in TMG could be6,

EW (A, B) =EEH
W (A, B) + ECS

W (A, B) ,

EEH
W (A, B) =

1
4G

Leng th(ΣAB) ,

ECS
W (A, B) =

1
4Gµ

∫

ΣAB

dτ ñ · ∇n ,

(68)

where ΣAB is the cross section, the first term is the familiar contribution from the Einstein-
Hilbert action while the second term represents the correction from the CS term. Given the
duality between TMG and the CFT2 with gravitational anomalies, it is natural to conjecture
that the measure EW (A, B) is the holographic dual of the BPE or the reflected entropy in the
boundary field theory as in the cases of no gravitational anomalies,

EW (A, B) = BPE(A, B) = SR(A, B) . (69)

More explicitly, the first term EEH
W (A, B) in (68) should reproduce the geometric term of the

BPE and the second term ECS
W (A, B) should reproduce the anomalous term. In the following

we will analytically verify that EEH
W (A, B) indeed gives the same result as the geometric term of

the BPE for generic covariant configurations. We will then give a new geometric prescription
to calculate ECS

W (A, B), and check that the correction reproduces the anomalous term of the
BPE.

4.2 Length of the EWCS in covariant scenarios

In the static cases, the EWCS ΣAB is defined as the minimal cross-section of the entanglement
wedge WAB which separates A from B. In covariant scenarios, the entanglement wedge no
longer settle on a constant time slice such that the minimal surface for the EWCS could be
generalized to the extremal surface, similar to the case that the RT formula is generalized to
the HRT formula. More explicitly the EWCS will be the saddle geodesic among all the geodesics
anchored on different pieces of EAB.

6See [44] for some earlier discussion.
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4.2.1 Poincaré coordinates vs light-cone coordinates

Before we move on to explicit calculations, we make clear what coordinate systems we will
extensively use and list some useful formulas to simplify calculations. In this paper we will
focus on Poincaré AdS3 with the metric given by

ds2 =
−d t2 + d x2 + dz2

z2
. (70)

It is useful to implement the transformations

U =
t + x

2
, V =

x − t
2

, ρ =
2
z2

, (71)

to work in light-cone coordinates:

ds2 =
dρ2

4ρ2
+ 2ρdUdV . (72)

Accordingly the points (t i , x i) in the previous discussion will be denoted by (Ui , Vi) in this
section.

In light-cone coordinates, any two spacelike-separated points, e.g. (U1, V1,ρ1) and
(U2, V2,ρ2), can be connected by a geodesic chord parametrized by

U =
lU
2

tanhτ+ cU , V =
lV
2

tanhτ+ cV , ρ =
2 cosh2τ

lU lV
, (73)

where τ is an affine parameter such that the tangent vector along the curve is given by

v =
1

lVρ
∂U +

1
lUρ

∂V +
4ρ (U − cU)

lU
∂ρ . (74)

The length of this geodesic chord is given by a general formula derived in the appendix C
in [21]:

LAdS (U1, V1,ρ1, U2, V2,ρ2) =

1
2

log

�

ρ2 (ρ2 + X ) +ρ1 (ρ2Y (2ρ2 + X ) + X ) + (ρ1 +ρ2ρ1Y )2

2ρ1ρ2

�

, (75)

where
Y = 2 (U1 − U2) (V1 − V2) ,

X =
Ç

ρ2
1 + 2ρ2ρ1 (ρ1Y − 1) + (ρ2 +ρ1ρ2Y )2 .

(76)

For parametrization (73), the reference normal frame q, q̃ determined by (67) can be cho-
sen to be

q =
lU

p

2lU lVρ
∂U −

lV
p

2lU lVρ
∂V ,

q̃ =

√

√ 2
lU lVρ

�

−
lU (U + V − cU − cV )

lU + lV
∂U −

lV (U + V − cU − cV )
lU + lV

∂V + 2ρ∂ρ

�

,

(77)

up to an overall sign related to a choice of handedness.
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Figure 5: Illustration of EWCS in the adjacent case. The red curve is the EWCS ΣAB
whose extension (the dashed blue line) ends at the balance point (t0, x0). The vector
nm is normal to both the EWCS and EAB, while nb∝ ∂t .

4.2.2 Adjacent cases

For our purpose, the setup for adjacent AB is illustrated in Fig.5. A point on the RT curve EAB
from (U1, V1,∞) to (U3, V3,∞) can be parametrized by:

Uk =
U3 − U1

2
k+

U3 + U1

2
, Vk =

V3 − V1

2
k+

V3 + V1

2
,

ρk =
2

(U3 − U1)(V3 − V1)(1− k2)
,

(78)

where k = tanhτ such that (U1, V1,∞) corresponds to k = −1 and (U3, V3,∞) corresponds to
k = 1. According to our previous discussions, EEH

W is given by the length of geodesic segment
ΣAB between (U2, V2,ρ2→∞) and the point (Um, Vm,ρm) which we denote as m:

EEH
W =

LAdS (Um, Vm,ρm, U2, V2,ρ2)
4G

, (79)

where (Um, Vm,ρm) satisfies

∂

∂ k
LAdS (Uk, Vk,ρk, U2, V2,ρ2)

�

�

k=m = 0 , (80)

and k = m symbolically means that (Uk, Vk,ρk) = (Um, Vm,ρm). The above condition demon-
strates that the segment ΣAB is extremal. We further set (U2, V2) = (0,0) without losing gen-
erality, the solution of the above saddle condition is given by

ksaddle =
U1V1ρ2 − U3V3ρ2

1+ U1V1ρ2 + U3V3ρ2
→

U1V1 − U3V3

U1V1 + U3V3
, (81)

in the limit of ρ2→∞. We therefore have

Um =
U1U3(V1 + V3)
U1V1 + U3V3

,

Vm =
V1V3(U1 + U3)
U1V1 + U3V3

,

ρm =
(U1V1 + U3V3)2

2U1V1U3V3(U1 − U3)(V1 − V3)
.

(82)
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Plugging the point m into the length formula (75) for geodesic chords, we have

EEH
W =

1
8G

log
�

8U1U3V1V3ρ2

(U3 − U1)(V3 − V1)

�

. (83)

In order to match with the BPE (27), we should transfer to the parameters we used in the
last section by using (71) and the following relations,

x1 = −RA coshκA , t1 = −RA sinhκA , x3 = RB coshκA , t3 = RB sinhκB, (84)

tanhκAB =
RA sinhκA+ RB sinhκB

RA coshκA+ RB coshκB
,

R2
AB = R2

A+ R2
B + 2RARB cosh (κA−κB) .

(85)

At last we arrive at

EEH
W =

1
4G

log
�

2RARB

δRAB

�

=
cgeo

12
log

�

2RARB

δRAB

�

, (86)

where δ comes from the cut-off z2 = δ. We can clearly see that EEH
W coincides with the geometric

term of (27).
The EWCS has a direct relation with balance conditions in a way that the EWCS is part

of the spacelike geodesic connecting the solutions of balance conditions, i.e. the extension of
ΣAB reaches the balance point as illustrated in Fig.5. To be more concrete, we rewrite (26) in
the light-cone coordinate:

U0 =
2U1U3

U1 + U3
, V0 =

2V1V3

V1 + V3
, (87)

such that the geodesic from (U2, V2,ρ2) = (0, 0,∞) to (U0, V0,∞) is given by 7

Us =
U1U3

U1 + U3
s+

U1U3

U1 + U3
, Vs =

V1V3

V1 + V3
s+

V1V3

V1 + V3
,

ρs =
(U1 + U3)(V1 + V3)
2(1− s2)U1U3V1V3

.
(88)

On this geodesic, one can verify that when

s =
U3V1 + U1V3

U1V1 + U3V3
, (89)

the corresponding point is exactly the saddle point m given by (82).

4.2.3 Non-adjacent cases

We consider a non-adjacent configuration illustrated in Fig.6. When the entanglement wedge
is connected, there are two RT curves E1,E2, with E1 connecting (U2, V2,∞) and (U4, V4,∞)
parametrized by

Ug =
U4 − U2

2
g +

U4 + U2

2
, Vg =

V4 − V2

2
g +

V4 + V2

2
,

ρg =
2

(U4 − U2)(V4 − V2)(1− g2)
,

(90)

7In this section there are two different geodesics (parametrized by k and s respectively) from which one should
distinguish.
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Figure 6: Illustration of EWCS in the non-adjacent case. The red curve is the EWCS
ΣAB whose extension (the dashed blue line) ends at the balance points (t0, x0) and
(t3, x3) and the RT surface is disconnected EAB = E1 ∪ E2. The vectors nM ,m are
normal to both the EWCS and E1,2.

and E2 connecting (U1, V1,∞) and (U5, V5,∞) parametrized by

Uh =
U5 − U1

2
h+

U5 + U1

2
, Vh =

V5 − V1

2
h+

V5 + V1

2
,

ρh =
2

(U5 − U1)(V5 − V1)(1− h2)
.

(91)

The lengths of all the geodesic chords connecting the two RT curves can be calculated
by substituting the above parametrizations into (75). To calculate EEH

W , we need to impose
extremal conditions with respect to g, h respectively:

∂

∂ g
LAdS

�

Ug , Vg ,ρg , Uh, Vh,ρh

�

= 0 , (92)

∂

∂ h
LAdS

�

Ug , Vg ,ρg , Uh, Vh,ρh

�

= 0 . (93)

The solutions g = gsaddle, h = hsaddle to the above saddle equations gives the two endpoints
m and M of the EWCS respectively, whose length can be calculated by (75),

EEH
W =

LAdS (Um, Vm,ρm, UM , VM ,ρM )
4G

. (94)

Specifically we consider the setup of Case 1 (51) with (U1, V1) = (0, 0) and set (U5, V5) or
η, η̄ free. It is useful to introduce parameters ζ, ζ̄:

ζ≡
p
η+ 1
p
η− 1

, ζ̄≡
p

η̄+ 1
p

η̄− 1
. (95)

We find the solutions are given by

gsaddle =−
4+ 5ζ+ 5ζ̄+ 4ζζ̄

5+ 4ζ+ 4ζ̄+ 5ζζ̄
, (96)

ssaddle =
ζ̄
�

2+ ζ̄
�

+ ζ2
�

1+ 2ζ̄
�

+ 2ζ
�

1+ ζ̄
�

4+ ζ̄
��

1+ 2ζ̄+ ζ
�

2+ 2 (4+ ζ) ζ̄+ (2+ ζ) ζ̄2
� . (97)
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Then, in terms of η, η̄ the two endpoints of the EWCS are given by:

Um =
1
2
+

1

1+ 9
p

ηη̄
,

Vm =
1
2
+

1

1+ 9
p

ηη̄
,

ρm =
(1+ 9

p

ηη̄)2

18
p

ηη̄
,

(98)

and

UM =
3(−1+ 3η)(−1+ η̄)

2+ 8
p

ηη̄− 6η̄+ 6η(−1+ 3η̄)
,

VM =
3(−1+η)(−1+ 3η̄)

2+ 8
p

ηη̄− 6η̄+ 6η(−1+ 3η̄)
,

ρM =
(1+ 4

p

ηη̄− 3η̄+η (−3+ 9η̄))2

18
p

ηη̄(−1+η)(−1+ η̄)
.

(99)

Eventually we arrive at

EEH
W =

1
8G

log
�

ζζ̄
�

=
cgeo

24
log

�p
η+ 1

� �
p

η̄+ 1
�

�p
η− 1

� �
p

η̄− 1
� , (100)

which coincides with the geometric term of (54). Other cases can be verified in a similar
manner. One can arrive at the same formula starting from other setup different from Case 1.

Similar to the adjacent case, the EWCS in the non-adjacent case is part of the geodesic con-
necting the two partition points Q1,2 (see Fig.6), which are previously determined by balance
conditions with the help of gravitational anomalies. We rewrite (50) and (52):

U0 =
1
2
+

1

1− 3
p

η̄
, V0 =

1
2
+

1
1− 3

p
η

, (101)

U3 =
1
2
+

1

1+ 3
p

η̄
, V3 =

1
2
+

1
1+ 3

p
η

. (102)

The geodesic parameterized by ω from (U0, V0,∞) to (U3, V3,∞) is given by:

Uω =
3
p

η̄

−1+ 9η̄
ω+

1
2
+

1
1− 9η̄

,

Vω =
3
p
η

−1+ 9η
ω+

1
2
+

1
1− 9η

,

ρω =
(−1+ 9η)(−1+ 9η̄)

18(1−ω2)
p

ηη̄
.

(103)

One can check that the two end points of the EWCS M (99) and m (98) lie exactly on this
geodesic with

ω=ωM ≡
2
�p
η (1− 3η̄) +

p

η̄− 3η
p

η̄
�

1+ 4
p

ηη̄− 3η̄+η (−3+ 9η̄)
, (104)

ω=ωm ≡
3(pη+

p

η̄)

1+ 9
p

ηη̄
. (105)

This again confirms that, the partition points for A′B′ satisfying the balance requirements are
exactly where the extension of the EWCS anchors on the boundary.
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4.3 Correction to the EWCS from gravitational anomalies

4.3.1 Prescription

Figure 7: Illustration of EWCS for the two non-adjacent symmetric intervals.

Unlike the RT surfaces, the EWCS is a geodesic chord in the bulk with the endpoints not
anchored on the asymptotic boundary. In such scenarios, the boundary conditions are not
useful to determine how much the normal vector n is twisted along the geodesic between the
initial and the final endpoints of the EWCS. In other words, the second integration in (68) on
the EWCS is coordinate dependent, which can no longer be fixed by the boundary conditions.
This makes the proposal (68) un-physical and brings new challenge to calculate or even define
the contribution from the CS term to the entropy quantity EW (A, B).

In this subsection, we will first show that the dependence of the coordinates for the inte-
gration on the EWCS is indeed needed for us to reproduce the BPE or the reflected entropy in
the dual field theory. Then we will give a new geometric prescription to calculate the correc-
tion to the EWCS from the CS term. The prescription will tell us how to properly choose the
n vectors at the endpoints of the EWCS according to the intervals A and B.

Previously we show that the BPE and the reflected entropy consist of two parts, the
geometric term and the anomalous term. Let us consider the symmetric configuration illus-
trated in Fig.7 where the endpoints of A and B have reflection symmetry with respect to the
origin O. When the entanglement wedge is connected, the EWCS, which is defined as the
saddle geodesic anchored on the two disconnected RT curves E1,2, lies along the ρ coordinate
and anchors on the two turning points of E1,2. It is interesting that, when we change ∆U and
∆V while keeping the configuration symmetric under reflection with respect to the origin O,
the RT surface E1 will rotate with the turning point m fixed. Also the turning point M of E2 is
fixed when we rotate the interval A′1 ∪ B′1 by adjusting ∆u and ∆v.

An important observation we get is that, under the rotations we mentioned above, the
segment ΣAB, as well as EEH

W (A, B), are fixed, while the anomalous term of the BPE changes.
To be more specific, we have κA = κB. If we only adjust ∆u and ∆v, then κAB is fixed while
κA changes. This definitely changes the value of (κA+ κB − κAB) which is proportional to the
anomalous term of the BPE. In summary, one geodesic chord in the bulk could correspond to
the BPE (or the reflected entropy) of different mixed states, which have different values. This
contrasts with our experience for the cases without gravitational anomalies that the entropy
quantity associated to the EWCS is totally determined by the gravity theory and the geometry.
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Thanks to the coordinate dependence of the integral
∫

ΣAB
dτ ñ ·∇n, there is room to adjust

the normal vectors n at the endpoints of the EWCS. A further input that determines the n and
ñ vectors at the endpoints should come from the mixed state. Note that, the endpoints of the
EWCS are anchored on the RT surface of the mixed state system AB, which may contain the
information we need to settle down the normal frame. We claim that, the three normalized
vectors v (spacelike), n (timelike) and ñ (spacelike) that determine the normal frame at the
endpoints of the EWCS are chosen by the following prescription:

• v is the vector tangent to the EWCS;

• ñ is the vector tangent to the RT surface where the endpoint of the EWCS is anchored;

• n is determined by the above v and ñ, which is a normalized vector normal to both of
the EWCS and the RT surface of AB.

Both n, ñ can be determined up to an overall sign related a choice of handedness. Here we
only need choices of the signs to ensure that the term inside logarithm of (66) is positive. We
will give further discussions on this point in the discussion section. With the normal vectors
properly chosen, the correction to the EWCS from the CS term is then straightforwardly given
by (66). For example, the two vectors nm and nM in Fig.7 are chosen following our prescrip-
tion. In the following we will apply the above prescription to generic configurations of AB and
show that, the integration ECS

W (A, B) will reproduce the anomalous term of the BPE.

4.3.2 Adjacent cases

Let us consider again the configuration illustrated in Fig.5 and set (U2, V2) = (0,0) without
loss of generality, one endpoint of ΣAB intersects with EAB while the other one anchors on the
boundary. By using (74) for two geodesics (78) (88) at the interaction point m, two tangent
vectors are given by:

vΣAB
=

U1U3(U1 − U3)(V 2
1 − V 2

3 )

(U1V1 + U3V3)2
∂U +

V1V3(U2
1 − U2

3 )(V1 − V3)

(U1V1 + U3V3)2
∂V

+
(U3V1 + U1V3)(U1V1 + U3V3)
U1U3V1V3(U1 − U3)(V1 − V3)

∂ρ ,

vEAB
=

2U1U3V1V3(−U1 + U3)
(U1V1 + U3V3)2

∂U +
2U1U3V1V3(−V1 + V3)
(U1V1 + U3V3)2

∂V

+
(U1V1 − U3V3)(U1V1 + U3V3)
U1U3V1V3(U1 − U3)(V1 − V3)

∂ρ ,

(106)

when k takes the value of (81) while s takes the value of (89) for the corresponding tangent
vectors respectively. We can directly verify that they are normal to each other. According to
our prescription,

ñm = vEAB
, (107)

such that n can be obtained after solving

nm · ñm = 0 , nm · vΣAB
= 0 , n2

m = −1 . (108)

The solution is given by (up to a minus sign in the first two components):

nm =±
p

F(V 2
1 + V 2

3 )

V1(V1 − V3)V3H2
∂U ∓

p
F(U2

1 + U2
3 )

U1(U1 − U3)U3H2
∂V

+
(U3V1 − U1V3)Hp

F
∂ρ ,

F ≡U2
1 U2

3 V 2
1 V 2

3 (U1 − U3)
2(V1 − V3)

2 ,

H ≡U1V1 + U3V3 .

(109)
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For the endpoint (U2, V2,∞) on the boundary, n is the future-directing timelike vector for the
dual CFT as discussed above:

nb = z∂t =
1

p

2ρ
(∂U − ∂V ) . (110)

Indeed this choice can not be explained following our prescription since the RT surface EAB
vanishes here. It only corresponds to certain limit for the non-adjacent cases. We will give
further discussion at this point in the last section. The right choice of nm in (109) should make
the term inside logarithm of ECS

W positive, and we find that the one with plus sign in the first
component does satisfy the requirement. Using (71)(84)(85) and applying (77) to (88) to
calculate the reference normal frame q, q̃ along ΣAB, we have8

qm · nm − q̃m · nm

qb · nb − q̃b · nb
=

eκB RA+ eκARB

RAB
, (111)

which gives

log
�

qm · nm − q̃m · nm

qb · nb − q̃b · nb

�

=
1
2

�

κA+ κB + log
eκB RA+ eκARB

eκARA+ eκB RB

�

= κA+ κB −κAB ,
(112)

we therefore have:

ECS
W =

1
4Gµ

(κA+κB − κAB) = −
cano

12
(κA+κB −κAB) , (113)

which coincides with the anomalous term of (27).

4.3.3 Non-adjacent cases

Again we consider the configuration illustrated in Fig.6 and focus on Case 1 (51) with
(U1, V1) = (0,0), the two RT curves E1,E2 under consideration are parametrized by (90) (91),
and the endpoints m, M of ΣAB are given by (98) and (99) respectively. Each endpoint of
ΣAB intersects with one RT curve and we can apply (74) for both the RT curves such that our
prescription gives

ñm = vE2
=

18
p
η
p

η̄

(1+ 9
p
η
p

η̄)2
∂U +

18
p
η
p

η̄

(1+ 9
p
η
p

η̄)2
∂V +

1− 81ηη̄

9
p
η
p

η̄
∂ρ ,

ñM = vE1
=

12
p
η(−1+ 3η)(−1+ η̄)

p

η̄

(1+ 4
p
η
p

η̄− 3η̄+η(−3+ 9η̄))2
∂U +

12(−1+η)pη
p

η̄(−1+ 3η̄)

(1+ 4
p
η
p

η̄− 3η̄+η(−3+ 9η̄))2
∂V

+
(1− 3η̄)2 + 9η2(1− 3η̄)2 +η

�

−6+ 20η̄− 54η̄2
�

9(−1+η)pη(−1+ η̄)
p

η̄
∂ρ ,

(114)
at the endpoints m and M respectively. Next the n vector at m and M can be found by solving

nm · ñm = 0 , nm · vΣAB

�

�

m = 0 , n2
m = −1 ,

nM · ñM = 0 , nM · vΣAB
|M = 0 , n2

M = −1 ,
(115)

8Note that with parametrization (88), the initial endpoint is (U2, V2,∞) and the final endpoint is (Um, Vm,ρm).
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where vΣAB

�

�

m, vΣAB

�

�

M are tangent vectors of ΣAB (103) at m and M respectively, given by

vΣAB

�

�

m =
3(−1+ 9η)

p

η̄

(1+ 9
p
η
p

η̄)2
∂U +

3
p
η(−1+ 9η̄)

(1+ 9
p
η
p

η̄)2
∂V +

1
3

�

1+ 9η
p
η
+

1+ 9η̄
p

η̄

�

∂ρ ,

vΣAB

�

�

M =
3(−1+η)(−1+ 9η)(−1+ η̄)

p

η̄

(1+ 4
p
η
p

η̄− 3η̄+η(−3+ 9η̄))2
∂U +

3(−1+η)pη(−1+ η̄)(−1+ 9η̄)

(1+ 4
p
η
p

η̄− 3η̄+η(−3+ 9η̄))2
∂V

−
2(pη+

p

η̄)(−1+ 3
p
η
p

η̄)(1+ 4
p
η
p

η̄− 3η̄+η(−3+ 9η̄))

9(−1+η)pη(−1+ η̄)
p

η̄
∂ρ .

(116)
We therefore have:

nm =∓
3(1+ 9η)

p

η̄

(1+ 9
p

ηη̄)2
∂U ±

3
p
η(1+ 9η̄)

(1+ 9
p

ηη̄)2
∂V +

1
3

�

1− 9η
p
η
+
−1+ 9η̄
p

η̄

�

∂ρ , (117)

nM =±
3(η(9η− 2) + 1)(η̄− 1)

p

η̄

(η(9η̄− 3) + 4
p
η
p

η̄− 3η̄+ 1)2
∂U ∓

3(η− 1)pη(η̄(9η̄− 2) + 1)

(η(9η̄− 3) + 4
p
η
p

η̄− 3η̄+ 1)2
∂V

−
2(pη−

p

η̄)(3pη
p

η̄+ 1)(η(9η̄− 3) + 4
p
η
p

η̄− 3η̄+ 1)

9(η− 1)pη(η̄− 1)
p

η̄
∂ρ . (118)

Choosing the up sign of the above solutions and applying (77) to (103) we find

log
�

qm · nm − q̃m · nm

qM · nM − q̃M · nM

�

= −
1
2

log

�p
η+ 1

� �
p

η̄− 1
�

�p
η− 1

� �
p

η̄+ 1
� , (119)

such that

ECS
W = −

1
8Gµ

log

�p
η+ 1

� �
p

η̄− 1
�

�p
η− 1

� �
p

η̄+ 1
� =

cano

24
log

�p
η+ 1

� �
p

η̄− 1
�

�p
η− 1

� �
p

η̄+ 1
� , (120)

which is exactly the anomalous term of (54). One can check that, for other configurations, like
Case 2,3 (55), the anomalous term will be given by the same formula.

5 Summary and discussion

5.1 Summary for the main results

• We calculated the BPE in the CFT2 with and without gravitational anomalies, and find
they coincide exactly with the reflected entropies. This is a non-trivial test to the claim
that the BPE is purification independent and captures the same type of mixed state cor-
relations as the reflected entropy.

• Using the correspondence between the CFT2 with gravitational anomalies and locally
AdS geometries in TMG, we explore the holographic picture for the BPE and the re-
flected entropy, which is the entropy quantity associated to the EWCS. We extend the
concept of the EWCS to be the saddle geodesic chord connecting the different pieces of
the disconnected RT surface EAB. We calculated the length of the covariant EWCS and
find it reproduce the part of the BPE proportional to cL + cR.

• We expect the correction to the EWCS from the CS term in TMG should reproduce the
part of the BPE and the reflected entropy originated from the gravitational anomalies,
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i.e. the correction is proportional to cL − cR. Based on this expectation, we find that
the gravity theory and the near curve geometry is not enough to capture the anomalous
part of the BPE. Further input from the mixed state ρAB should be taken into account,
which is just carried by the RT surface EAB. Our prescription requires the vector n at the
endpoints of the EWCS to be normal to both the EAB and the EWCS.

Our results give further clear evidence to the conjecture that, the BPE is an intrinsic mea-
sure for mixed state correlations and duals to the EWCS in holography. The BPE exactly
matches with the reflected entropy in covariant scenarios with and without gravitational
anomalies. The minimized crossing PEE (or the Markov gap [71] in the case of canonical
purification ), which is conjectured to be universal for the adjacent cases, receives no contri-
bution from the gravitational anomaly. Although, the partition points of the purifying system
are determined with the help of the anomalies, the position of the partition points does not de-
pend on the anomalies. On the other hand, in holographic theories with geometric description,
the partition points can also be determined by extending the EWCS, with no reference to the
gravitational anomalies. We may conclude that the existence of the gravitational anomalies is
not essential for us to calculate the BPE for the covariant configurations.

More importantly, we gave a novel prescription to evaluate the corrections to the EWCS
from the CS term in TMG. This is indeed the first explicit calculation on the corrections to
the EWCS in theories beyond Einstein gravity9. Despite little was explored, this could be an
important research direction in the future. The non-covariance property of TMG makes this
evaluation even more challenging, and makes the prescription not intrinsic on the gravity side.
Although this is surprising to us, it may not happen in other higher derivative gravities which
have covariance. Nevertheless, we see that this non-intrinsic property of our prescription is
indeed necessary to reproduce the results for the BPE and the reflected entropy with gravita-
tional anomalies.

Currently the entanglement negativity attracts considerable attention from both of the con-
densed matter community and the high energy community. However, the way the negativity
is defined is quite different from the reflected entropy and BPE, hence it is difficult to see how
these quantities are related and differ from each other. In AdS/CFT the three quantities are all
claimed to be dual to the EWCS. Recently, the negativity in CFT2 with gravitational anomaly is
also carried out in [44] using the monodromy techniques. However the results do not match
with the EWCS. For example, in the adjacent case the negativity differ from the EWCS by a
constant of order c, which is just the balanced crossing PEE. On the other hand the negativity
calculated by the correlation functions of twist operators [13] gives a more accurate matching
with the EWCS and the reflected entropy. All in all, as was pointed out in [85], our current
understanding of the entanglement negativity have not led to a clear geometric picture yet.
We hope to revisit to this point and get further understanding in the future.

5.2 More on the prescription

For the covariant configurations without gravitational anomalies, the correspondence between
the BPE and the EWCS can be demonstrated by the fine correspondence [28] between the
points on the boundary interval and the points on the RT surface. See the arguments in sec-
tion 6 of [1] for the static configurations. The fine correspondence is originated from slicing
the entanglement wedge with the so-called modular slices [28], and the claim is that the con-
tribution from any site inside A to SA is represented by its partner point on the RT surface. For

9In [44] the authors also considered the EWCS in TMG in the symmetric configurations shown by Fig.7. They
used the n vector given in [84] which have an explicit formula along the whole EWCS, and did the integration
∫

ΣAB
dτ ñ · ∇n along the EWCS. Nevertheless, we found their calculation not consistent and eventually will not

reproduce the reflected entropy in general cases. See the erratum of [44].
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each point on A, if we consider the geodesic emanating from it and intersects with EAB verti-
cally, the intersection point on EAB is the partner point. This partnership was only explicitly
discussed in the static cases, but we see no obstacle to extend this partnership to the covariant
cases as long as the modualr flow is local. The fine correspondence further indicates that for
any subinterval Ai inside A, the PEE sA(Ai) is given by the length of a geodesics chord Ei , which
consists of all the partner points of the points in Ai , i.e, a correspondence between geodesics
chords and PEE [28].

sA(Ai) =
Leng th(Ei)

4G
. (121)

For example, consider the configuration in Fig.8, where the extension of ΣAB determines
the partition of the purifying system A′B′. The extended ΣAB gives the entanglement entropy
for the interval A′1AA′2. Since EAB and ΣAB are normal to each other, according to the fine
correspondence, the partners for the points inside A are just those settled on ΣAB,

sA′1AA′2
(A) =

Leng th(ΣAB)
4G

. (122)

On the other hand, the extended ΣAB is also the RT surface of B′1BB′2. According to the fine
correspondence in WBB′ we also have,

sB′1BB′2
(B) =

Leng th(ΣAB)
4G

. (123)

The observation that the same EWCS ΣAB corresponds to two PEEs, sAA′(A) and sBB′(B), is
a manifestation of the balance condition. Together with (122) and (123), we arrive at the
correspondence between BPE(A, B) and the EWCS.

Next we include the gravitational anomalies and ask whether the balance condition can
help us choose the right n previously given in our prescription. As we have shown that, the
same EWCS ΣAB corresponds to two different PEEs sAA′(A) and sBB′(B), depending on whether
we apply the fine correspondence in the entanglement wedge of AA′ or BB′. With the entan-
glement wedge chosen, we need to set up a standard for choosing the direction (sign) of the
vectors in the normal frame. Here we choose the direction of v by requiring that when walking
along v, the entanglement wedge should lie on the left-hand side of v. At this point we only
require that ñ points inwards the entanglement wedge. Then n is determined by

n= v × ñ . (124)

What we want to emphasize is that, the normal frames chosen by the same standard from
different sides of EAB should show a reflection symmetry with respect to EAB in the near curve
region and give the same n from each side. This reflection symmetry of the normal frames is
again a manifestation of the balance requirement for the anomalous contribution, which gives
us a hint on how to determine ñ, and also n. Although, the symmetry is indeed not manifest
globally in configurations like Fig.8, but will appear after a conformal transformation which
lead to the Rindler bulk, where the AA′ and BB′ becomes the two sides of an eternal black
hole [86]. In the canonical purifications discussed in [9], the reflection symmetry is obvious.
With this local reflection symmetry, the choice that ñ should be tangent to EAB is the only one
that leads to the same vector n from both sides. Following this standard, if we consider the
entanglement wedge WAA′ , the vectors in the normal frame are shown by the black arrows
in Fig.8. If we consider WBB′ from the other side, the v and ñ vectors will change their sign,
while n remains unchanged, as well as the integral (66).
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Figure 8: The blue lines are the RT surfaces EAB while the red curve is the EWCS ΣAB
which is normal to EAB. Though the figure looks static, we should consider it to be a
covariant configuration.

5.3 Reproducing the entanglement entropy from the EWCS

The last topic we would like to discuss is the reproduction of the correction to the RT formula
[43] when the EWCS extends to the asymptotic boundary. In [9, 60] it was proposed that
the BPE (or the reflected entropy) is a good regulator for the entanglement entropy with a
geometric cutoff 10. Let us shrink A′1 and A′2 while keeping A′1AA′2 fixed, hence the geodesic
extended from the EWCS is also fixed. Accordingly, the regions B′1 and B′2 will also shrink due
to the balance conditions. When A approaches AA′, the EWCS approaches the RT surface such
that

BPE(A, B) = sAA′(A)|balanced → SA . (125)

The physical meaning of the PEE tells us that, the regulator means to ignore the contribution
from A′ to SA.

Figure 9: Left: The blue line is the RT surface EAB, while the red curve is the EWCS
ΣAB which is normal to EAB. The cutoff region A′1B′1 is now boosted. Right: A causal
wedge in the Rindler space with cutoffs εu,v . The green segments are A′1 and A′2.

10In [60], the geometric regulator is classified and its difference between the UV cutoff was clarified. Never-
theless, in two-dimensional theories the difference only affects higher order corrections which disappears when
δ→ 0.
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Let us consider the configuration shown in Fig.8 and assume the figure is settled on a time
slice. According to our standard to choose v and ñ, when the cutoff region A′i is infinitesimal,
we get the same n as [43] near the asymptotical boundary, i.e. n∝ ∂t . Hence in the static
case our prescription reproduces the prescription proposed in [43] to calculate the correction
to the entanglement entropy.

However, in covariant scenarios, we have the freedom to rotate the cutoff region A′iB
′
i while

keeping the causal development of AA′ fixed. Such rotations do not change the EWCS but will
change the normal vectors n near the asymptotical boundary (see the left figure in Fig.9).
The change of the n vector will affect the integral (66) significantly, which indicates that the
correction from the CS term is highly sensitive to the boost angle of cutoff region A′iB

′
i . This

goes beyond the scope of the paper [43].
Fortunately, we find that another calculation for such scenarios was carried out in [83],

which calculated the correction using the generalized Rindler method [19, 20]. Consider an
interval with endpoints being (− lu

2 ,− lv
2 ) and ( lu

2 , lv
2 ), the causal wedge covers

−
lu
2
< u<

lu
2

, −
lv

2
< v <

lv

2
, (126)

which is captured by the rectangular region with blue boundary in the right figure of Fig.9.
One can construct the Rindler transformations which map the causal wedge to an infinitely
large Rindler spacetime. Introducing a volume cutoff such that the Rindler space only covers
a subset (see the region enclosed by the dashed red rectangular) of the causal wedge

−
lu
2
+ εu < u<

lu
2
− εu , −

lv

2
+ εv < v <

lv

2
− εv , (127)

where εu,v are infinitesimal positive parameters. Here the cutoff scheme is the same for the
two endpoints. The short green segments in the right figure is just the A′1 and A′2 regions which
are now determined by εu,v . The regions B′1,2 are determined by A′1,2 via the balance condi-
tions. As was classified in [60], the entanglement entropy evaluated by the Rindler method
belongs to those evaluated from entanglement contour via geometric regulators. Hence the
results from the Rindler method should be consistent with those evaluated using the BPE, the
reflected entropy or the EWCS with the CS term correction. The correction to the holographic
entanglement entropy from the CS term is evaluated by calculating the area of the inner hori-
zon in the Rindler space [48]. With the regulation parameters εu and εv given, the result is
quite simple [83],

SCS
A =

1
4Gµ

log
�

lu
εu

εv

lv

�

. (128)

In [83] the author made the choice εu = εv hence the cutoff region A′i is static. This choice
reproduces the result of [43]. Nevertheless, if we keep the cutoff region covariant the result
will be quite sensitive to the boost angle of A′i . This sensitivity gives a non-trivial consistency
test for our prescription.

In section 4.3, the results for the adjacent cases are based on our choice n ∝ ∂t at the
joint endpoint of A and B. One can check that these results can only be reproduced from the
non-adjacent cases with static A′1B′1.
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