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Abstract

We found that Bidirectional LSTM and Transformer can classify different phases of con-
densed matter models and determine the phase transition points by learning features in
the Monte Carlo raw data before equilibrium. Our method can significantly reduce the
time and computational resources required for probing phase transitions as compared
to the conventional Monte Carlo simulation. We also provide evidence that the method is
robust and the performance of the deep learning model is insensitive to the type of input
data (we tested spin configurations of classical models and green functions of a quantum
model), and it also performs well in detecting Kosterlitz-Thouless phase transitions.
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1 Introduction

The study of phase transitions in many-body systems is one of the hottest research topics in
condensed matter physics. Microscopic constituents can couple and interact with each other
in many different ways, giving rise to various phases of matter having intriguing macroscopic
physical properties. Studying the transitions between different phases can give us deeper un-
derstandings of condensed matter physics especially in some non-trivial phases like topological
phases where the order parameter is not readily available [1]. Monte Carlo(MC) simulation
has been one of the most popular numerical techniques adopted to explore the physical prop-
erties of different phases in condensed matter models by the established Markov chain process.
In addition, the large amount of data generated by MC simulations can be used for data-driven
physics research, such as using machine learning to discover new physics from the data.

In the past few years, the classification of phases of matter using machine learning emerged
as a prosperous research field in physics [2,3]. Recent studies have shown that data-driven ma-
chine learning models can classify different phases by finding unknown features in condensed
matter models, and further locate the phase transition points using both supervised and un-
supervised learning techniques. Unsupervised learning does not require prior labelling of the
data. This is particular suitable for determining the number of phases in the phase diagram of
new models. Examples of common unsupervised learning techniques include principal com-
ponent analysis [4–6], meta-heuristic optimization [7], machine learning clustering [8] and
deep autoencoder [6, 8, 9]. On the other hand, although supervised learning requires prior
knowledge to label the training data, it can locate the transition points with high accuracy.
Previous work has demonstrated the success of employing supervised learning in determining
the phase transition points of, for example, the Ising models [10], the XY model [11] and the
Hubbard model [12].

However, when using MC simulation, in some cases, it requires extensive computational
resource to generate converged set of equilibrium data. For example, near the phase transition
where critical slowing down occurs and thermal fluctuation diverges, or when we do quan-
tum MC simulation, a longer time is also required for the simulation to reach equilibrium due
to the computational complexity of the algorithm, which sometimes accompanied with the
thorny sign problem [13]. To obtain the result in the thermodynamic limit, large system sizes
are needed to locate the phase transition point accurately [14]. However, when the system
size increases, the time required for simulation to reach equilibrium will also increase sharply,
which results in a great increase in the time cost and computing resources for generating the
training data. Our method being discussed here provides a novel approach to locate the phase
transition points using the input MC data before equilibrium, thus saving the lengthy compu-
tation.

In this article, we tested some of the most up-to-date deep learning models, namely the
Bidirectional Long Short-Term Memory (Bi-LSTM) and Transformer, which focus on analysing
the time-domain data. The fact that deep learning has become a hot research area in re-
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cent years has a lot to do with its success in image classification. AlexNet proposed by Alex
Krizhevsky et. al. won the championship in an image classification competition in 2012, and
its performance far outperformed other non-deep learning algorithms [15]. Later, it was found
that deep learning algorithms are also outstanding in many tasks such as image generation,
image segmentation and object detection. At the same time, people began to explore the appli-
cation of deep learning on tasks involving time-series data, such as text translation and speech
recognition and have proposed models such as Recurrent Neural Network (RNN) [16] and
LSTM [17]. Transformer has shown great potential in the field of natural language processing
in recent years, and many improved deep learning models based on Transformer prove it to
be more suitable for extracting features from very long sequences than LSTM [18].

Unlike previous approaches which used a large amount of spin configurations generated
from MC simulations after equilibrium is reached as the training data, here we used spin
configurations from the first a few tens of MC steps as the sequential data input to the deep
learning models. As a benchmark, we first employed our scheme to locate the phase transition
in the two-dimensional (2D) Ising model on a square lattice. We then further extend the scope
of data source and the condensed matter model with non-trivial phases like the topological
phase in the XY model for the deep learning analysis. Surprisingly, we find our method not
only works using spin configurations from classical MC, but also the Green functions obtained
from quantum MC. In addition, we also compared the performance of Bi-LSTM and Trans-
former with other commonly used deep learning models, namely the Fully Connected Neural
Network (FCN) and Convolutional Neural Network (CNN). We found that Bi-LSTM and Trans-
former performed far better than FCN and CNN in classifying the phases with MC data before
equilibrium. We also find that the Bi-LSTM and Transformer can correctly classify the phases
with smaller number of MC steps as compared to FCN and CNN.

The paper is organised as follows. In Section 2, we introduce our proposed method and
the deep learning models in detail. We applied our scheme to detect the phase transition in
the Ising model and compare the performance using different deep learning models in Sec. 3.
Section 4 presents the results when employing our method to other condensed matter models
with non-trivial type of phase transitions and to the quantum Hubbard model where inputs
with the Green functions generated from quantum MC is used to determine the phase transi-
tion point. A conclusion is given in Sec. 5.

2 Deep learning models for time domain analysis

Figure 1 shows a schematic illustration of our proposed learning model. We use MC method
to simulate the sequential data before reaching the equilibrium state and when the system is
far away from the phase transition point as the training input for the deep learning models.
Taking a classical spin model as an example, the sequence is formed by randomly selecting a
site in the system and take its spin configuration in the first m steps in the MC simulation. The
deep learning model extracts features from the sequential data through the LSTM block or the
Transformer block and performs binary classification of the phases. The trained deep learning
model is then fed with data from the full driving parameter range to predict which phase the
data belongs to. The phase transition point of the system is estimated from the deep learning
model’s output at the probability value of 0.5.

When one uses equilibrium spin configurations as the training data for the deep learning
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Figure 1: (a) Overall architecture of the deep learning model we used. (b) and (c)
are the sub-architectures of the LSTM block and the Transformer block, respectively.
The input to the model is 20 sequences obtained from MC simulation before reaching
equilibrium, followed by 20 LSTM blocks or Transformer blocks to extract features
from each sequential data, and finally fully connected layers are used to map the
obtained features of the sequences into binary output to predict which phase the
input data belongs to.

model, CNN can easily capture the spatial information of the configuration, such as vortexes
in the XY model. However, in our task, the deep learning model needs to extract information
from long sequences, and LSTM and Transformer are just suitable for such tasks [17, 18], so
our deep learning model is followed by a Bi-LSTM block or a Transformer block after the input
layer, then use FCN to process the extracted sequential information and output the probability
of the binary classification. The structure of the deep learning model is shown in Fig.1 (a).

Despite RNN is often used to process sequential data, its simple internal structure makes
it impossible to extract long-range correlated features in the data. On the other hand, LSTM
has a more complex internal structure to better capture long-range correlated features. The
architecture of LSTM is shown in Fig.1 (b). The internal structure of LSTM mainly consists of
memory cells, forgetting gates, memory gates and output gates [17]. The function of memory
cells (cT ) is to store important information in the input sequence (xT ) from t = 0 to t = T , the
T here is the time we feed the latest data into the LSTM blocks. The forgetting gate then judge
whether there is any invalid information in the memory cell according to the input sequence
(xT ) at time t = T and the LSTM output (hT−1) at time t = T − 1, and then set the vector
value of the invalid information to be 0. The memory gate will judge what information needs
to be added to the memory cell according to hT−1 and xT . The output gate then combines the
information of cT , hT−1 and xT to determine the output of LSTM at time t = T .
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Sometimes LSTM may fail in extracting long-range related features of the sequence be-
cause the sequence’s elements has to be read one by one. This will overflow the memory
cell information if the sequence is too long or leads to zeros in the gradient during backward
propagation in the learning process. On the other hand, Transformer can extract all ranges
of correlations in the sequence since it reads the elements of the entire sequence at one time.
The correlation between all the elements of the sequence is then learnt through a self-attention
layer and more advanced features can be extracted. The architecture of Transformer is shown
in Fig.1(c) [18]. The self-attention layer is a key part of the Transformer. In principle, it can
extract infinitely long-range correlated features.

Unlike Bi-LSTM, each sequence needs to be encoded into a feature space through the em-
bedding layer before the sequential data is fed into the Transformer block, otherwise the self-
attention layer in the Transformer block can not work efficiently. The embedding layer can be
any encoder network in deep learning, for example, we use FCN containing one hidden layer
with 50 neurons as the embedding layer. Usually, the positional information of each element
in the sequence will also be added to the embedding layer after encoding into the space of the
same dimension [18–20]. However, we found that this positional encoding is not necessary
for our task as demonstrated in the Appendix A.1 that shuffling the order of the elements in
the sequence does not have significant effect on the performance of the model. This is not
surprising because our sequential data is obtained from Markov chain Monte Carlo simulation
which is a no-memory process, whereas in tasks of natural language processing or computer
vision, the position of a word in the sentence or the position of a pixel in an image carry im-
portant information.

In the following, we applied the above machine learning scheme to the classical and quan-
tum many-body systems. For classical spin models with N = L × L sites, we used the spin
configurations of each MC step as input data, which are L× L matrices. Here, we define a sin-
gle MC step as an update that attempted to flip the spin on all the sites once. For the Hubbard
model with N sites, we used the Green functions as input, which are N × N matrices. An MC
step here is referring to an update that attempted to flip 10% of the auxiliary fields. To let the
deep learning model only focus on the information of the input data in the time dimension
instead of the pattern in the space, we did not use the entire matrix as input. For each input
sample, we randomly choose 20 elements in the matrix and pick the simulation result of these
matrix elements in m MC steps to form a tensor of the shape (20, m), as shown in Fig. 1(a). We
showed in the Appendix A.2 that selecting more elements does not improve the performance
of the deep learning models significantly.

3 Machine performance in phase transition detection from data
before equilibrium

The Ising model on a square lattice is a pedagogical model capturing the physics of a classical
phase transition in condensed matter. The model describes spin-1/2 particles in a lattice system
where each spin interacts with its nearest neighbours. The Hamiltonian of the Ising model is
given by

H = −J
∑

〈i, j〉

σiσ j , (1)
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where σi ∈ {-1,1} denotes spin-down and spin-up respectively and the sum is over all the
nearest neighbours. J characterises the coupling strength between two nearest spins and is
taken to be J = 1 in the following.

In an infinite size square lattice, the system exhibits a phase transition between the para-
magnetic phase and the ferromagnetic phase at a temperature of Tc = 2/ log(1+

p
2)≈ 2.269

[21]. When the temperature is close to zero, the interactions between the spins dominate and
all the spins tend to align in the same direction. The system is in the ferromagnetic phase with
an average magnetization M ∈ {-1,1}. When the temperature is much higher than Tc , the
direction of the spins becomes random due to thermal fluctuations. The average magnetiza-
tion of the system is approximately equal to zero and the system is in the paramagnetic phase.
Given a randomly initialized spin configuration, one can simulate how this spin configuration
reaches one of the two phases at different temperatures in equilibrium step by step using MC
method.

Spin configurations of the Ising model at equilibrium have very obvious difference between
ferromagnetic phase and paramagnetic phase. Previous work has shown that after supervised
training of an FCN or an CNN using the equilibrium data, the neural network can easily locate
the phase transition temperature of the Ising model [10]. However, for the Ising model, a ran-
domly initialized spin configuration typically requires 500 MC steps to reach its equilibrium
configuration at a given temperature. In more complex models, the time and computational
resources required for the MC simulation to reach equilibrium will even be more. In the fol-
lowing, we explored whether the neural network can also accurately determine the phase
transition temperature if it is trained with spin configurations from only the first few MC steps
that are far before equilibrium is reached.

We used MC data obtained in the temperature range T ∈ ([0,1] ∪ [4, 5]) as the training
set. The system size of the Ising model on a square lattice is L = 256. Five hundreds raw
samples were generated in each temperature range, therefore we have a total of 1000 raw
samples. As mentioned in Sec. 2, each input data of our deep learning model comes from the
spin configurations of 20 randomly selected sites. For each raw sample, we repeatedly selected
20 sites randomly to obtain multiple training samples. Altogether, we obtained 10000 training
samples from the MC raw data.

Figure 2 shows the output of the trained neural networks when fed with testing data from
full temperature range. We have 30 samples for each temperature in the testing set and the
error is calculated by the standard error of the deep learning model’s output when fed with
the corresponding testing samples. We tested the performance of FCN, CNN, Bi-LSTM and
Transformer with different MC steps m ∈ {10, 20,30, 40}. The machine outputs are fitted to a
hyperbolic tangent function of the form θ1 tanh(θ2 x+θ3)+θ4, where θ1, θ2, θ3, and θ4 are the
fitting parameters, and the fitting curves are shown as the solid lines in the plots. From Fig.
2 (a) and (b) respectively, we found that Bi-LSTM and Transformer can accurately predict the
transition temperature of the model to be Tc ≈ 2.269 as determined by an output value of 0.5
(indicated by the horizontal dashed line in the figures) from the machine. The performance of
the two models is insensitive to the chosen two temperature ranges where the training sam-
ples are taken from (see Appendix A.3). We also found that the predicted Tc is not sensitive to
the system size. Even if we go down to L = 8, where the 20 randomly selected sites consists
of 30% of the total number of sites in the system, we can still obtain a reliable estimation of
the transition temperature (see Appendix A.4). On the other hand, CNN can only predict that
Tc is around 2.269 and the results are also more sensitive to the number of MC steps (Fig.
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Figure 2: Testing result for Ising model on square lattice using (a) transformer, (b)
Bi-LSTM, (c) CNN, (d) FCN. The light blue area represents the temperature range
of our training data. Vertical black dashed line indicates the theoretically predicted
transition temperature Tc . Solid lines show the tanh fit of the output data, and their
intersects with the horizontal dashed line give the corresponding machine predicted
Tc . Transformer and Bi-LSTM accurately predicted the phase transition temperature
Tc ≈ 2.269. The performance of CNN is relatively unstable. Even if the input data
contains more MC steps, the predicted Tc by CNN still has a relatively large error.
FCN performed the worst, not only failed to predict the phase transition point, but
also for the test samples within the training temperature range. FCN was unable to
correctly classify the samples with high confidence.

2(c)). The performance of FCN is even worse. The predicted Tc is significantly larger than the
expected value (Fig. 2(d)). Besides, FCN is also less confident in classifying the two phases
as for the test samples far away from Tc , its outputs do not reach 0 or 1. It is worth noting
that in order to fairly evaluate the performance of each deep learning model, we controlled
the number of parameters of the model to be in the same order of magnitude.

Figure 3 shows the predicted transition temperature by the four deep learning models us-
ing various number of MC steps m in the input training data. Specifically, for each value of
m, we trained the model 10 times. After each training, we fitted the machine output with the
hyperbolic tangent function mentioned above. The temperature that corresponds to a fitted
value of 0.5 is taken as the Tc predicted by the model, and the error bar in the plot represents
the standard error of the extracted Tc from each training. For FCN and CNN, the predicted Tc
is unavailable when m is too small since the tanh failed to fit the output data. From the figure,
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Figure 3: Machine predicted value of the phase transition temperature Tc in the
classical Ising model on a square lattice using different MC steps. The lines joining
the data points are just guides for the eyes. In general, the transition temperature
predicted by Transformer and Bi-LSTM better agrees with the theoretical value (hor-
izontal black dashed line) than that predicted by CNN while The Tc predicted by FCN
is significantly larger than the theoretical value .

we find that except for FCN, the predicted value of Tc from all the models are reasonably close
to the expected value 2.269. However, the error in Tc predicted by CNN is in general greater
than that of Bi-LSTM and Transformer, which shows CNN is less stable than the other two
models on this task, while Bi-LSTM and Transformer perform similarly well. We also extracted
the predicted Tc by performing a linear fitting to the output as shown in the Appendix B, and
the same conclusion can be drawn.

We are not surprised by the poor performance of FCN as FCN has a natural disadvantage
when dealing with sequential data. Suppose there is an FCN model with sequential element
input, the output z of the first neuron in the first hidden layer is given by

z =
∑

i

wi x i , (2)

where wi is the weight of each input element x i . After the FCN model is trained, its weights
wi will be fixed, and these weights will only depend on the position of the elements in the
sequence. In other words, the weight of the first element of all input sequences will be the
same. However, in our training data, the information contained in the elements at the same
position in different sequences as well as their importance can be different in general.

The CNN model can solve the above problems by increasing the kernel number, while
LSTM and Transformer convert the weight into an input-related function through a complex
model architecture. Specifically, the hidden layer output of LSTM and Transformer become

z =
∑

i

f (x i)x i , (3)

where f (x i) is different for different deep learning models. In our task, f (x i) can help the deep
learning model to better locate the key input data, and extract features from this key informa-
tion to better complete the binary classification task. In fact, Transformer and Bi-LSTM have
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very similar performances as we discussed above. This is because the input sequences’ length,
which is m ∈ [2, 100], is within the storing capacity of the memory cell in Bi-LSTM and thus the
full sequential information can be retained, making the advantage of Transformer not obvious.

4 Generalizability to other models and raw data source in time
domain

We also applied our scheme to more complicated condensed matter models to test the robust-
ness of our method. The models are the Ising model on a honeycomb lattice and on a triangular
lattice, the XY model on a square lattice and the quantum Hubbard model on a honeycomb
lattice. The system size of all classical models is N = 256 × 256, while that of the Hubbard
model is N = 12× 12.

The Hamiltonian of the XY model is given by

H = −J
∑

〈i, j〉

cos(σi −σ j) , (4)

where J is the interaction strength between two nearest spins, σi ∈ (0,2π] represents the spin
angle on the lattice’s plane at the site i. Unlike the Ising model discussed in the previous sec-
tion, the phase transition occurring at Tc = 0.89 in the XY model is Kosterlitz–Thouless (KT)
type [22]. Above Tc , the spin correlation decays exponentially while it shows a power-law de-
caying behavior at temperatures below Tc . Vortexes and anti-vortexes with winding numbers
equal to 1 and −1 respectively are formed in the system [23]. At low temperatures, the vortex
and anti-vortex are tight to each other and tend to annihilate to minimize the system’s energy.
The phase transition is associated with the unbinding of the vortex-anti-vortex pairs at the crit-
ical temperature when the temperature increases. Intuitively, we shall expect these non-local
spatial feature needs to be obtained through CNN using the entire spin configuration of the
system. However, as discussed in Sec. 2, the input data used in our method is element level
series in the simulation time domain. It will be interesting to test whether the deep learning
model can still extract relevant information about the phases and accurately determine the KT
phase transition.

The Hubbard model, on the other hand, is a quantum model whose Hamiltonian is given
by

H = −t
∑

〈i, j〉

(c†
i↑c j↑ + c†

i↓c j↓ + h.c.) + U
∑

i

ni↑ni↓ −µ
∑

i

(ni↑ + ni↓) , (5)

where c†
iσ(c jσ)is the creation (annihilation) fermion operator of spin σ = {↑,↓} at site i,

niσ = c†
iσciσ is the number operator, t is the nearest neighbor hopping amplitude, U charac-

terises the Coulomb interaction strength between two electrons of opposite spins at the same
site, µ is the chemical potential. In this article, we considered µ = 0, which corresponds to
the case of half-filling. For U > 0, the system exhibits a quantum phase transition from the
semi-metal phase to the antiferromagnetic insulating phase at Uc ≈ 3.9 [24] as U increases.
Since the model is quantum in nature, input data is generated from quantum MC in which the
raw output are the Green functions. We would like to investigate whether our method can be
applied to this type of source data. Existing work has proven that Green functions after the
equilibrium is reached in the quantum MC simulation are suitable input data for deep learning
models to learn about the phase transition point [12]. As a data source for the deep learning
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Figure 4: Figures (a1)-(a2), (b1)-(b2) and (c1)-(c2) are the spin configurations at
the tenth MC steps in the Ising model on honeycomb lattice, Ising model on triangle
lattice and XY model on a square lattice, respectively, away from the phase transition
temperature. Figure (d1)-(d2) are Green functions of the Hubbard model away from
the quantum phase transition point. In the Ising models, the blue dots represent up
spin and the red dots represent down spin. In the XY model, arrows represent spin
orientation and color scale represents the magnitude of the local winding number.
In the Hubbard model, the color scale represents magnitude of the Green function’s
matrix element. Figure (a3), (b3), (c3) and (d3) shows the output of the Trans-
former and Bi-LSTM in the corresponding condensed matter models respectively.
Transformer and Bi-LSTM in the three classical models perform similarly to the Ising
model on a square lattice. However, their performance in the Hubbard model is sig-
nificantly different. The output value of the deep learning model is unstable and it
shows a step-like abrupt change in the close vicinity of the transition point.
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model, the physical interpretation of the Green function is very different from the spin con-
figuration. For example, the spin configuration represents the spatial feature of the system in
the real space, while the Green function represents the correlation between the creation and
annihilation of the electron from different sites in the Hubbard model. During the training, we
use the time-series of randomly picked elements from the Green functions. In the case of the
spin configuration, the translational symmetries in the model help preserve the universality of
the training data. However, this is not the case for the Green function, the time variation of
the correlators highly depends on which element in the Green function we picked. This may
be an adverse factor when we train the model using the Green function.

Figure 4 shows the results of the above mentioned models using Bi-LSTM and Transformer.
The error bar in the plot is obtained in the same way as that in Fig. 2. Our deep learning model
performs well on all the three classical spin models (Fig. 4(a)-(c)). In the regions far from
the phase transition point, the deep learning models can distinguish the two phases with a
high level of confidence, while near the phase transition point, the deep learning model has a
very smooth change due to confusion. When the output of the deep learning model is equal to
0.5, its corresponding temperature Tc is approximately consistent with those obtained in the
literature. The performance of our proposed deep learning model in the Ising models are in
line with our expectations. Since the only difference among these models is in the geometry
of their lattices and only the nearest-neighbor ferromagnetic interactions are present in the
models, one shall expect the same type of phase transition between the FM and PM to take
place. However, to our surprise, the deep learning model also performs well on the XY model
where the input data we used to train the model contains no spatial information. Even the
model cannot capture any information about the topological quantities in the data, the model
can still classify the two phases well. This suggests the sequential information present in the
MC steps before equilibrium may be related to the topological character of the XY model at
equilibrium. Unfortunately, it is hard to interpret what features have the deep learning models
learnt from the sequences due to the complexity of the network itself.

In the case of the Hubbard model (Fig. 4(d)), the input data to the deep learning model
is a sequence of length 100, which is about 0.01% of the quantum Monte Carlo(QMC) steps
required to reach equilibrium. We found that the output of the deep learning models does
not change gradually as in the classical models near the phase transition point, but exhibit a
significant increase from 0 to 1 as the interaction strength U increases, as shown in Fig. 4 (d3).
Moreover, the output of the deep learning models is unstable in the vicinity of the quantum
phase transition. For example, samples in the semi-metal phase are sometimes classified as an
antiferromagnetic insulator phase with high confidence. We can be sure that this difference is
not because each matrix element in the Green function contains much less information than
the spin configuration of the classical models. As we can see from the figure, most samples
near the transition are correctly classified with very high confidence. If the information in
the input data is not enough, the deep learning model will output a probability that is much
greater than 0 and much less than 1 due to confusion. Instead, the large fluctuation of the
output is mainly contributed by two factors. Firstly, unlike the spin configuration in classical
models, the input using the Green function does not obey translational symmetry, so the be-
havior of the sequence depends a lot on the choice of the element’s location. This will easily
lead to misjudgement if we pick the element with very slight difference in the two phases.
Secondly, the elements in the Green function fluctuate a lot, especially in the vicinity of the
phase transition point due to quantum fluctuation. The large fluctuation in the input data
further hinders the deep learning model from classifying the phases correctly. To improve, we
find that the fluctuation drops slightly if we increase the number of quantum MC steps m (see
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Table 1: Time cost in determining the phase transition point in the Ising and XY
models on a square lattice, and Hubbard model on a honeycomb lattice by three
different methods. The blue and teal color elements correspond to the time spent in
data collection and data processing, respectively. Zero refers to the case where the
time spent is less than the time measurable by the computer. For medium to large
system sizes, our proposed method (bottom row) significantly reduces the overall
time spent.

Model
(size)

Ising
(8× 8)

Ising
(64× 64)

Ising
(128× 128)

XY
(128× 128)

Hubbard
(9× 9)

Order parameters
from equilibrium data

5 min
0

5 hr
0

18 hr
0

14 hr
0

733 hr
6 s

Supervised learning (FCN)
from equilibrium data

2.5 hr
3 min

150 hr
3 min

550 hr
3 min

782 hr
3 min

9900 hr
3 min

Transformer/Bi-LSTM using
before equilibrium data

1 min
15 min

0.95 hr
15 min

3.9 hr
15 min

5.7 hr
15 min

35 hr
15 min

Appendix C).

Table 1 shows the approximated time cost in determining the phase boundary using our
scheme as compared to the traditional method of estimating the transition from order param-
eters and to the supervised learning method (with FCN containing one hidden layer with 100
neurons) [10] using MC or quantum MC samples after reaching equilibrium. The time cost
is evaluated on a computer with Intel i5 CPU and NVIDIA GTX1660 GPU. We presented the
time cost for data collection, which refers to generating the spin configurations or Green func-
tions (see Appendix D for the details), and that in data processing, which refers to training
the deep learning models or calculating the order parameters from the spin configurations or
Green functions. It can be seen from the table that our method takes much less time in data
collection than the other two methods while the time taken for data processing is relatively
longer due to the complexity in Transformer and Bi-LSTM themselves. However, this longer
time spent in data processing becomes more negligible in large systems when the time cost in
collecting equilibrium data becomes much more expensive. For example, our method gains an
overall time reduction of 99% and 77% as compared to FCN and order parameter calculations
using equilibrium configurations in the Ising model of system size 128× 128. Observing that
most of the time spent in collecting the equilibrium data instead of training the model, we
expect such a significant speedup will also be possible in other supervised learning models
that require a similar amount of training data.

5 Conclusion

In this work, we showed that deep learning models can rapidly classify phases in various con-
densed matter models using MC data before equilibrium and locate the critical points with
high accuracy. Among the deep learning models we have investigated, the performances of
Bi-LSTM and Transformer are found to be the best in probing the phase transition points. Both
models are mainly constructed to extract features of time-domain data. Unlike the CNN coun-
terparts, their success relies on the efficient feature extraction from the long sequential input
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data, which have not been explored in the mission of phase transition detection in previous
studies.

We also investigated the generalizability of our method to the Ising model on a honey-
comb lattice and a triangular lattice, the XY model, which undergoes a KT transition, and the
Hubbard model where the input training data comes from the Green functions generated by
quantum MC. Bi-LSTM and Transformer can determine the critical points of these condensed
matter models accurately. The results evidence that our proposed method is robust in detect-
ing various types of phase transitions in condensed matter models and in using different types
of source data.

We would like to remark that the data generated by the Markov Chain Monte Carlo simu-
lation in this study contains no time order. Bi-LSTM and Transformer do not extract features
in time order, but only information on the sequences’ elements. For future works, it will be
worth to apply the method proposed here to real time-ordered data, such as molecular dy-
namics simulated data, to study the dynamics of disordered systems or glass transitions.

The data and the codes for generating the plots in this article are available at https://
github.com/ParcoDing/Rapid-detection.
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*

A Analysis of model performance

In this section, we varied the training sample parameters to investigate the performance of
our deep learning models in detecting the phase transitions in the condensed matter models.
These parameters include the range of the driving parameters where the samples are taken
from, the number of randomly selected sites, the number of MC steps m. We also discussed
the system size effect and the effect in shuffling the elements of the sequential input.
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Figure 5: Performance of Transformer and Bi-LSTM on the Ising model on square
lattice ((a) and (b)), XY model on square lattice ((c) and (d)) and Hubbard model
on honeycomb lattice ((e) and (f)). Here, the MC steps m = 10 is used. The light
blue area represents the temperature range of our training data. Solid lines represent
the tanh fit to the output data. Shuffling the data in the simulation time dimension
does not have significant effect on the performance of Transformer and Bi-LSTM.

A.1 Shuffle time dimension input data

We experimented whether using positional embedding or shuffling the data in the time di-
mension will change the performance of the deep learning models. Figure 5 (a-d) shows the
outputs of the deep learning models for the Ising model and the XY model on a N = 32× 32
square lattice, respectively. We can see that the performance of Transformer and Bi-LSTM are
not affected significantly by the shuffling. One may understand this by the fact that the MC
simulation is a Markov chain process, where the action of each step in the simulation is in-
dependent of the previous steps. From 5 (e) and (f), we also demonstrated in the Hubbard
model on a N = 6× 6 honeycomb lattice that the deep learning models perform similarly no
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matter if the data in the time dimension is shuffled or not.

A.2 Varying number of randomly selected elements

Figure 6 shows how the output of the LSTM and Transformer changes when the number of
randomly selected sites (elements) varies for the Ising model on a square lattice. Here we
kept the number of MC steps fixed to 10. The plots show that the output of the deep learning
models have larger fluctuations as the number of elements decreases in both cases of L = 16
and L = 32. Even for temperatures far away from the transition temperature, the deep learning
models have less confidence in its prediction (the output is not either 1 or 0). The situation
improves if the number of elements increases to 20 or above. However, further increasing the
number of elements beyond 20 does not significantly increase the accuracy of the predicted
Tc . Considering the complexity of the deep learning models, the amount of memory usage
and the implementation of the model, using 20 elements in the input is a reasonable choice.
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Figure 6: Outputs of the deep learning models for an L = 16 (left) and L = 32
(right) Ising model on a square lattice with different number of randomly selected
sites (elements). Solid lines show the corresponding tanh fit to the output data.

A.3 Varying the temperature range of the training samples

We used the first 10 Monte Carlo steps and 20 randomly selected sites in the Ising model on
a square lattice prepared from different temperature ranges to feed the Bi-LSTM and Trans-
former. As shown in Fig. 7, Bi-LSTM and Transformer perform very similarly in the four
different sets of training temperature ranges.
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Figure 7: (a) and (b) show the output of Transformer and Bi-LSTM on Ising model on
square lattice, respectively. The legend indicates the range of temperatures in which
the training samples are taken from. It can been seen that the performance of the
machine is not sensitive to the training range.
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Figure 8: (a) and (b) show the output from Bi-LSTM and Transformer of the Ising
model on square lattice with different system sizes, respectively. Solid lines indicate
the fitting of the data points to the hyperbolic tangent function presented in the main
text. The Tc , as indicated by the intercept of the fitted lines and the horizontal dashed
line, agrees well with the theoretical value (vertical dashed line).

A.4 System size effect

In Fig. 8, we investigated the system size dependence in applying our scheme to extract the
phase transition temperature in the Ising model on a square lattice. Similar to the case of
L = 256 shown in Fig. 2, the number of MC steps used here is m = 10 and 20 sites are
randomly selected to form the training data. We find that the extracted Tc is insensitive to
the system size and agree well with the theoretically predicted value, despite the fact that
fluctuation in the machine’s output increases around the transition temperature when the
system size decreases.
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B Extracting the phase transition points from linear fitting

Besides fitting the deep learning models’ output to a tanh function shown in the main text,
we also performed a linear fitting to estimate the transition temperature of the L = 256 Ising
square lattice and the result for various MC steps m is shown in Fig.9. Here the linear regression
is carrying out for data in the temperature range 0.1 to 0.9. The conclusion that Bi-LSTM and
Transformer generally performs better than the FCN and CNN remains true. From the plot,
we can see that when m < 7, the output from both FCN and CNN fluctuates a lot, and the
predicted transition points are also far away from the theoretically predicted value (dashed
horizontal line). When m ≥ 7, the result of CNN begins to converge to the theoretical value,
while FCN still performs poorly. In contrast, the transition temperature located by Bi-LSTM and
Transformer converges to around the expected value much faster with respect to the number
of steps.
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Figure 9: The transition temperature of the Ising square lattice predicted by four
different deep learning models with various MC steps. The settings are the same as
that shown in Fig. 3 except that the transition temperature is extracted from fitting
the deep learning models’ output in T ∈ [0.1,0.9] linearly.

C On the machine output’s fluctuation in the Hubbard model

In the main text, we showed that although our method can accurately locate the transition
point Uc in the Hubbard model on a honeycomb lattice, the output of the deep learning model
fluctuates around the transition point. We further investigated whether increasing the length
m or the number of Green function elements in the input sequences can reduce the fluctuation.
Fig. 10 shows the difference between the output of the deep learning model and their corre-
sponding tanh fit. The larger the difference is, the stronger the output fluctuation of the deep
learning model is. From Fig.10(a) and (b), we observed that the output fluctuation increases
when coming closer to the transition point. The result shows that increasing the sequence
length can reduce the difference mildly. However, we cannot see obvious improvement when
we increase the number of input sequences in Fig. 10(c) and (d).
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Figure 10: Fluctuations in the output of the deep learning models as measured by the
differences between the output value and the tanh fit in the Hubbard model. Though
slight improvement can be found when increasing the number of MC steps, there is
no significant reduction in the fluctuation in increasing the number of selected Green
function elements.

D Sample collection details for Table 1

For the method on calculating the order parameter in the Ising model, we selected 50 values
of temperature in the range T ∈ [0, 5] with an evenly spaced interval, and collected 10 MC
samples for each temperature. Specifically, for each temperature, we first warm up the simu-
lation with 500 MC steps, and then collect one sample every 100 steps, altogether simulated
1500 MC steps.

For the method on supervised learning phase transitions in the Ising model from equilib-
rium spin configurations using FCN, to prepare the training set, we randomly selected 1000
temperature values in the range T ∈ ([0, 1]∪ [4,5]) and the MC samples are collected in the
same way as mentioned above. A total of 10000 training samples are obtained. The test set
is collected in the same way but with 50 evenly spaced values of temperature in the range
T ∈ [0, 5].

For our method on Transformer/Bi-LSTM with spin configurations before equilibrium, we
again randomly selected 1000 temperature values in the range T ∈ ([0,1] ∪ [4, 5]), but now
we only need 10 MC steps per temperature value from 20 randomly selected sites. A total of
10,000 training samples are obtained. The test set is prepared in the same way in the range
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T ∈ [0, 5] with an interval 0.1.

For the Hubbard model, the data collection is similar to that for the Ising model. Each
equilibrium Green function is obtained by averaging the Green functions of multiple quantum
MC steps (we do not need to consider the sign problem in the case of half-filling). In the or-
der parameter calculations and learning with FCN using equilibrium Green functions, we first
warm up the simulation for 100 steps and then collect the Green functions with 1000 steps to
obtain an equilibrium sample. For our method, we do not need a warm-up session or obtain
equilibrium samples through multiple steps, we can directly collect the non-equilibrium Green
functions of the first 10 quantum MC steps as our data.
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