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Abstract

We propose and investigate a scheme for engineering a synthetic thermal bath for a
bosonic quantum gas in a one-dimensional optical lattice based on Markovian feedback
control. The performance of our scheme is quantified by the fidelity between the steady
state of the system and the effective thermal state. For double-well and triple-well sys-
tems with non-interacting particles, the steady state is found to be an exact thermal
state, which is attributed to the fact that the transfer rates between all pairs of cou-
pled eigenstates satisfy detailed balance condition. The scenario changes when there
are more lattice sites, where the detailed balance condition does not hold any more,
but remains an accurate approximation. Remarkably, our scheme performs very well at
low and high temperature regimes, with the fidelity close to one. The performance at
intermediate temperatures (where a crossover into a Bose condensed regime occurs) is
slightly worse, and the fidelity shows a gentle decrease with increasing system size. We
also discuss the interacting cases. In contrast to the non-interacting cases, the scheme
is found to perform better at a higher temperature. Another difference is that the min-
imal temperature that can be engineered is nonzero and increases with the interaction
strength.
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1 Introduction

Atomic quantum gases in optical lattice constitute a unique experimental platform for study-
ing quantum many-body systems due to their high controllability and good isolation from the
environments [1]. The latter offers a unique opportunity to experimentally study coherent
nonequilibrium dynamics of many-body systems [2]. It however also blocks the study of inter-
esting non-equilibrium properties of open quantum systems. This topic has attracted tremen-
dous interest in recent years, including non-equilibrium steady state in driven-dissipative sys-
tems [3–14], dissipative phase transition where the steady state exhibits various nonequilib-
rium phases and phase transitions due to the competition of unitary and dissipative dynam-
ics [15–24], the effect of dissipation on many-body localization [25–40], and dissipation en-
gineering where the coulping between the system and the reservoir is designed to steer the
system dynamics for a prespecified target [41–49], just to name a few.

In order to study non-equilibrium steady states and dynamics of open systems in atomic
quantum gases, one has to artificially synthesize an environment. Dephasing noise has been
implemented in experiments with ultracold atoms via the off-resonant scattering of lattice
photons [31, 50]. Another approach to engineer a bath is introducing a second species of
atoms [51, 52] which plays the role of environment. There are also experiments which use
a second hyperfine state to serve as a bath [53]. Here, we consider the quantum engineer-
ing of a synthetic thermal bath via Markovian feedback control [54, 55]. As an important
measurement-based feedback method, Markovian feedback control has been applied to vari-
ous problems, including the stabilization of arbitrary one-qubit quantum states [56, 57], the
manipulation of quantum entanglement between two qubits [58–61], as well as optical and
spin squeezing [62–64].

In our previous work [65], we have shown that Markovian feedback control can be used
to prepare single targeted eigenstates of a bosonic quantum gas in an optical lattice. Here, we
will use a similar feedback scheme to realize the engineering of a thermal bath. Our paper
is organized as follows: a brief introduction to the Markovian feedback theory is given in
Section 2, which is followed by the description of our model in Section 3. The main results
are shown in Section 4. Here we present the basic idea of our scheme and focus on the non-
interacting case. For illustration, we start with the discussion of small systems with two sites
in Section 4.1, three sites in Section 4.2, and four sites in Section 4.3. We then discuss the
general case in Section 4.4. This is followed by a discussion of system-size dependence in
Section 4.5, where kinetic theory is exploited to treat large systems. The interacting case is
discussed in Section 5 before a summary of the main results in Section 6 to conclude.
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2 Markovian feedback control

Our scheme is based on the Markovian feedback master equation (ME) [54,55]. Here we give
a brief introduction to it. Suppose a system described by Hamiltonian H is under a homodyne
measurement described by operator c, its dynamics is then governed by the stochastic master
equation (SME) [54,55] (ħh= 1 hereafter),

dρc = −i[H,ρc]d t +D[c]ρcd t +H[c]ρcdW , (1)

with

H[c]ρ := cρ +ρc† − Tr[(c + c†)ρ]ρ ,

D[c]ρ := cρc† −
1
2
(c†cρ +ρc†c) . (2)

Here ρc denotes the quantum state conditioned on the measurement result,

Ihom = Tr[(c + c†)ρ] + ξ(t) , (3)

with ξ(t) = dW/d t and dW being the standard Wiener increment with mean zero and vari-
ance d t. By using the information acquired from the measurements, one can introduce feed-
back control to the system which allows to steer the system’s dynamics to achieve desired
effects.

There are various strategies to implement the feedback control [66]. Here we consider a
direct feedback scheme, where a signal-dependent, i.e. conditional, feedback term IhomF is
added to the Hamiltonian. Such a feedback is assumed to be instantaneous, namely, the delay
time between the measurement and the application of the control field is small compared to
the typical timescales of the system. For cold atoms in cavity (which is a potential experimental
setup to implement our scheme), the typical time scales (such as tunneling time) are on the
order of milliseconds [69]. Hence, a control on the higher kHz scale is sufficient, which can
be achieved easily using digital signal processors. This assumption ensures the Markovianity
of the dynamical description. According to Markovian feedback control theory [54, 55], the
system is then governed by the feedback-modified SME

dρc = −i[H +Hfb,ρc]d t +D[A]ρcd t +H[A]ρcdW , (4)

with collapse operator
A= c − iF , (5)

and feedback-induced term Hfb =
1
2(c

†F+Fc). By comparing Eqs. (4) and (1), one can see that
the effect induced by the feedback loop is replacing the collapse operator c by A and adding
an extra term Hfb to the Hamiltonian.

By taking the ensemble average of the possible measurement outcomes, we arrive at the
feedback-modified ME [54,55]

dρ
d t
= −i[H +Hfb,ρ] +D[A]ρ ≡ Lρ . (6)

Note that we have assumed perfect detection with efficiency η= 1. The following discussions
will be focused on the steady state of this ME unless stated otherwise.
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Figure 1: The coefficient zl in the measurement operator, see Eq. (9), for M = 10.

3 Model

The system under consideration is a bosonic quantum gas of N atoms in a one-dimensional
chain with open boundary condition. It is described by the Bose-Hubbard Hamiltonian

H = −J
M−1
∑

l=1

(a†
l al+1 + a†

l+1al) +
U
2

M
∑

l=1

nl(nl − 1) , (7)

where al (a†
l ) annihilates (creates) a particle on site l and nl = a†

l al counts the particle number
on site l, with

∑

l nl = N . The first term in (7) describes tunneling between nearest neighbor
sites with rate J , and the second term denotes on-site interaction with strength U .

We are interested in the quantum simulation of the coupling of this system to a thermal
bath based on Markovian feedback control. For this purpose, we consider the measurement
operator [65]

c =
p
γ

M
∑

l=1

zl nl , (8)

which is a weighted sum of the on-site occupations with

zl =
gl+1 − gl−1

gl
, gl =

√

√ 2
M + 1

sin
�

πl
M + 1

�

, (9)

and feedback operator

F = −i
p
γλ

M−1
∑

l=1

(a†
l al+1 − a†

l+1al) , (10)

which describes nearest neighbor tunneling with a complex tunneling rate. Here, γ denotes
measurement strength andλ is a free parameter to be optimized. Figure 1 shows the coefficient
zl in the measurement operator for a system with M = 10 sites. The measurement (8) can
be implemented via homodyne detection of the off-resonant scattering of structured probe
light from the atoms [67–69]. The detection efficiency can be enhanced by placing the system
inside an optical cavity [69–72], so that via the Purcell effect [73] the photons are scattered
predominantly into one cavity mode. The feedback (10) can be realized by accelerating the
lattice [65,74].

We will focus on the weak measurement case (with the measurement strength γ much
smaller than the typical energy scale of the system) so that the effect of the feedback-induced
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term Hfb in Eq. (6) is small compared to the system Hamiltonian H and the steady state is
diagonal in the eigenbasis of the system. To quantify the performance of our scheme, we use
the fidelity between the steady state ρss and the effective thermal state ρT ,

f = tr
Æp

ρTρss
p
ρT , (11)

where

ρT = e−βH/tr(e−βH) , (12)

with inverse temperature β = 1/(kB T ) (the Bolzmann constant kB is set to be 1 hereafter).

4 Non-interacting case

Let us start with the non-interacting case, i.e., U = 0. The jth single-particle eigenstate is
given by

| j〉=
M
∑

l=1

g( j)l |l〉, g( j)l =

√

√ 2
M + 1

sin
�

π jl
M + 1

�

, (13)

with eigenenergy E j = −2J cos jπ
M+1 . Note that ‘gl ’ in the coefficient zl of the measurement

operator (8) is exactly g(1)l .
We have shown in Ref. [65] that for λ= 1, the ground state of the non-interacting system

|1〉⊗N (with all particles occupying the single-particle ground state |1〉) is the unique dark state
of the collapse operator A = c − iF , i.e., A|1〉⊗N = 0. Thus, the steady state of the system is
the ground state, which corresponds to a zero-temperature state. If we set λ = −1, then the
steady state becomes the highest excited state, which corresponds to a negative-temperature
state. For λ = 0, i.e., when there is no feedback control, the collapse operator is given by the
measurement operator c, which is hermitian, the steady state then becomes the maximally
mixed state, i.e., an equal mixture of all the eigenstates, which corresponds to an infinite-
temperature state.

From these results, one might wonder how the steady state of the so-controlled system
looks, when varying λ continuously from 1 to −1. Quite remarkably, we find that not only the
energy of the steady state continuously increases from the ground-state energy to the energy
of the most excited state, but also that the steady state is to very good approximation given by
a thermal state, whose inverse temperature smoothly changes from∞ to −∞. Thus, solely
by varying λ thermal steady states of arbitrary temperature can be prepared.

To illustrate this point, we first study small systems with M = 2 (Section 4.1), 3 (Sec-
tion 4.2) and 4 (Section 4.3), and then discuss the case of general M in Section 4.4. Note that
for the non-interacting cases, the mapping between λ and the temperature T of the effective
thermal bath does not depend on the particle number N . Hence, we will focus on the single
particle case for the discussion of λ-T mapping in Sections 4.1-4.4. The system-size depen-
dence of fidelity is discussed in Section 4.5, where kinetic theory is introduced in order to treat
large systems.

Before jumping to the discussion of our scheme, let us first recapitulate the steady state of a
system which is weakly coupled to a bath [75]. The dynamics of the occupation probabilities in
the eigenstates, pi ≡ 〈i|ρ|i〉, decouples from the off-diagonal elements of the density operator
which decay as one approaches the steady state, and is described by the Pauli rate equation,

ṗi =
∑

j

�

p jRi j − piR ji

�

, (14)
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where Ri j denotes the transfer rate from eigenstate | j〉 to |i〉. The terms of the sum correspond
to the net probability flux from states | j〉 to state |i〉. The steady state is obtained by setting
ṗi = 0, i.e.,

∑

j

�

p jRi j − piR ji

�

= 0 . (15)

If the bath is a thermal bath of temperature T , the transfer rates satisfy detailed balance con-
dition,

Ri j

R ji
= e−(Ei−E j)/T . (16)

This condition implies that the steady state, obtained by solving Eq. (15), is given by the Gibbs
state with pi = Z−1e−Ei/T and Z =

∑

i e−Ei/T . For this equilibrium state, the sum on the right-
hand side of Eq. (15) vanishes term by term. Thus, the net probability flux between two states
|i〉 and | j〉 vanishes. This is the property of detailed balance, which is characteristic for the
thermodynamic equilibrium.

4.1 Two sites

For a double-well system with M = 2, we can write out the collapse operator A= c− iF in the
eigenbasis {|g〉, |e〉} as

A=
p
γ

�

0 1+λ
1−λ 0

�

=
p
γ (1+λ) |g〉〈e|+pγ (1−λ) |e〉〈g| . (17)

By setting λ = 1, the second term disappears and the ground state |g〉 becomes the dark
state of A, i.e., A|g〉 = 0. In turn, the steady state will be the ground state |g〉. Likewise, by
setting λ= −1, the first term disappears and the steady state will be the excited state |e〉. For
−1< λ < 1, both terms exist and the steady state will be a mixed state.

From Eq. (17), we can see that the transfer rate from the ground state |g〉 to the excited
state |e〉 is Reg = |〈e|A|g〉|2 = γ(1−λ)2, and the transfer rate from the excited state |e〉 to the
ground state |g〉 is Rge = |〈g|A|e〉|2 = γ(1+ λ)2. Suppose the system is coupled to a thermal
bath at temperature T , the ratio between these two rates should satisfy the detailed balance
condition

Reg

Rge
= e−(Ee−Eg )/T , (18)

which implies a thermal probability distribution. Hence, our model can be used to mimic the
coupling of the double-well system to a thermal bath at temperature T by imposing

(1−λ)2

(1+λ)2
= e−2J/T . (19)

This leads to a mapping between the free parameter λ in our feedback scheme (10) and the
temperature of the effective thermal bath,

T2 =
1

log
�1+λ

1−λ

� J . (20)

Note that although for a two-level system every steady state which is diagonal in the eigenbasis
trivially corresponds to a thermal state with some temperature, our results become non-trivial
for larger system sizes, as discussed below.
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4.2 Three sites

For a triple-well system with M = 3, the collapse operator A= c − iF in the eigenbasis reads

A=
p
γ





0 1+λ 0
1−λ 0 1+λ

0 1−λ 0



 . (21)

If the system is coupled to a thermal bath, each pair of the transfer rates between two cou-
pled eigenstates should satisfy the detailed balance condition. In the special case considered
here (21), we have two identical pairs of transfer rates, and the detailed balance condition
can be satisfied by setting

Ri j

R ji
= e−(Ei−E j)/T , (22)

with the transfer rate Ri j = |〈i|A| j〉|2 and energy E j = −2J cos jπ
M+1 = {−

p
2J , 0,

p
2J}. The

temperature of the effective thermal bath is related to the free parameter λ as

T3 =
J

p
2 log

�1+λ
1−λ

� =
T2p

2
. (23)

4.3 Four sites

For a system with four sites, the collapse operator A= c − iF in the eigenbasis reads

A=
p
γ







0 A12,+ 0 A14,+
A12,− 0 A23,+ 0

0 A23,− 0 A34,+
A14,− 0 A34,− 0






, (24)

where

A12,± =
2
p

5
(1±λ) ,

A14,± =
3−
p

5

2
p

5
(1±λ) ,

A23,± =
4− 2

p
5

2
p

5
+

3+
p

5

2
p

5
(1±λ) ,

A34,± =
2
p

5
(1±λ) = A12,± . (25)

In this case, we have four pairs of transfer rates and it is impossible for all of them to sat-
isfy the detailed balance condition. Neverthethess the steady state is found to be close to a
thermal state. As shown in Fig. 2 (a) and (b), the fidelity between the steady state and the
corresponding thermal state is very close to one over the whole parameter regime. Here, the
inverse temperature of the thermal state is fixed by optimizing the fidelity and is shown in (c).
We also compare the distribution of the steady state (solid lines) and the thermal state (dashed
lines) in the eigenbasis in (d). The overall behavior is found to be quite similar. Note that the
results are symmetric with respect to λ = 0. In the following discussion, we will focus on the
case with λ > 0.
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Figure 2: The fidelity between the steady state and the corresponding thermal state
as a function of (a) the free parameter λ and (b) the inverse temperature β . The
inverse temperature of the thermal state is fixed by optimizing the fidelity and is
shown in (c). (d) compares the distribution of the steady state (solid lines) and
the corresponding thermal state (dashed lines) on the eigenbasis of the system at
various λ [marked by circles in (a)]. The parameters are M = 4, N = 1, U = 0, and
γ= 0.001J .

4.4 General M

For general M , we cannot find an exact expression between λ and the temperature of the
effective thermal bath T , as in the double-well and triple-well case [Eqs. (20) and (23)]. Nu-
merically, one can fix T by optimizing the fidelity between the steady state and a thermal state
with the temperature as a control parameter. A typical λ-T mapping is shown in Fig. 3 (solid
line). As expected, a smaller λ corresponds to a higher temperature.

At some parameter regime, we can get an approximated expression for the λ-T mapping.
For λ∼ 1 (low temperatures), the main population is concentrated in the first two eigenstates.
The distribution satisfies

R12p2 −
∑

j
R j1p1 = 0 . (26)

By mapping this distribution to a thermal distribution,

p1

p2
= e−(E1−E2)/T , (27)
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Figure 3: The temperature of the effective thermal bath as a function of λ. The blue
line denotes the result from numerical optimization where T is optimized to give the
highest fidelity between the steady state and the corresponding thermal state. The
green dashed line is the approximated result of Eq. (33) for low temperatures, and
the orange line is the approximated result of Eq. (34) for high temperatures. The
parameters for numerical simulations are N = 1, M = 10, U = 0, γ= 0.001J .

we get

T =
E2 − E1

log(p1/p2)
=

E2 − E1

log(R12/
∑

j R j1)
. (28)

By using Ri j = |〈i|A| j〉|2, with A= c−iF , c =pγ
∑

l zl |l〉〈l|, F = −i
p
γλ
∑

l(|l〉〈l+1|−|l+1〉〈l|),
Eqs. (9) and (13), one can show that for odd j, R1 j = R j1 = 0, and for even j, R1 j = γA2

1 j,+,

R j1 = γA2
1 j,−, where

A1 j,± = f ( j,α)
1±λ
M + 1

, (29)

with

f ( j,α) =
2sinα sin( jα)

sin[( j + 1)α/2] sin[( j − 1)α/2]
, (30)

and α= π/(M + 1). And the energy gap reads

∆E = E2 − E1 = 2J [cosα− cos(2α)] . (31)

For large M , we have sinα' α, and thus f ( j,α)' 8 j/( j2 − 1). This gives

R12 '
�

16
3

�2

γ
(1+λ)2

(M + 1)2
,

∑

j
R j1 ' 38γ

(1−λ)2

(M + 1)2
. (32)

Substitution of it into Eq. (28) gives

T '
∆E

log
�

14(1+λ)2
19(1−λ)2

� . (33)
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For λ∼ 0 (high temperatures), the mapping between λ and T is found to be well approximated
by

T '
T2p

M − 1
=

J
p

M − 1 log
�1+λ

1−λ

� . (34)

In Fig. 3, we compare the numerical results (solid lines) with the above approximated ex-
pressions [Eqs. (33) and (34)] (dashed lines) and find good agreements in the corresponding
parameter regimes.

4.5 System-size dependence

Now we investigate the system-size dependence of the fidelity. Figure 4(a) shows the fidelity
for various particle number N with lattice site number M = 4. We can see that overall the
fidelity is very high, especially at low and high temperatures. The fidelity at the intermediate
temperature regime is a bit lower, and shows a gentle decrease as N increases [see Fig. 4(b)].
In Figs. 4(c) and (d), we fix the particle number at N = 1 and investigate the dependence of
the fidelity on the lattice site number M . The fidelity is found to decrease with increasing M ,
as 1.12M−0.04 from curve fitting. It is not surprising to see this behavior, as when the system
size increases, there are more transfer rates, and the approximation to the detailed balance
condition will become worse. Nevertheless, fidelities larger than 90, 95, 99 percent are found
for systems of size M ® 150, M ® 40, and M ® 10, respectively.

All of the above discussions are based on the numerical calculation of steady state of the
ME (6), which is obtained by the exact diagonalization of the Liouvillian superoperator L,
with Lρ = −i[H +Hfb,ρ]+D[A]ρ. For a system with N particles and M sites, the dimension
of the Hilbert space is D = (N +M − 1)!/N !/(M − 1)!, and the Liouvillian superoperator L is
a D2 by D2 matrix. For instance, for M = 4 and N = 8, D = 330, thus we need to diagonalize
a 108900 by 108900 matrix. This simple example shows that it is hard to treat large systems
by using the exact diagonalization approach.

To circumvent this problem, we resort to kinetic theory for the mean occupations in the
single-particle eigenstate 〈ni〉. The time evolution of 〈ni〉 is governed by

d
d t
〈ni〉=

∑

j

�

Ri j〈n j(1+ ni)〉 − R ji〈ni(1+ n j)〉
	

.

This set of equations is not closed as the single-particle correlations depend on two-particle
correlations, which in turn depend on three-particle correlations, and so on. To get a closed
set of equations, we employ the mean-field approximation 〈nin j〉 ' 〈ni〉〈n j〉, which then leads
to

d
d t
〈ni〉 ≈

∑

j

�

Ri j〈n j〉[1+ 〈ni〉]− R ji〈ni〉[1+ 〈n j〉]
	

.

For the steady state, we have
∑

j

�

Ri j〈n j〉[1+ 〈ni〉]− R ji〈ni〉[1+ 〈n j〉]
	

= 0 . (35)

In order to check the validity of the mean-field results, we perform a semi-classical Monte-
Carlo simulation [5]. In this approach, the density matrix is approximated by a mixed su-
perposition of Fock states ρ =

∑

n pn|n〉〈n|, with n = (n1, n2, . . . , nM ), i.e., the off-diagonal
elements which decouple with the diagonal elements and decay with time are neglected for
weak system-bath coupling [75]. The equations of motion for the Fock-space occupation prob-
abilities pn is then mapped to a random walk in the classical space spanned by the Fock states
|n〉 (not their superposition) [5]. This method gives accurate results after sufficient statistical
sampling.
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Figure 4: (a) The fidelity between the steady state and the corresponding thermal
state as a function of T for various N . (b) The minimal fidelity vs N . (c) The fidelity
between the steady state and the corresponding thermal state as a function of T for
various M . (d) The minimal fidelity vs M . The parameters are M = 4 for (a) and
(b), N = 1 for (c) and (d), U = 0, and γ= 0.001J .

In Fig. 5, we compare the mean-field results of Eq. (35) (dashed lines) with the exact
results (solid lines) and the semi-classical Monte-Carlo results (circles). For a small system
with M = 4 and N = 8 [see Fig. 5(a)], there is a tiny deviation between the mean-field results
and the other two (which show excellent agreement with each other). For a larger system with
M = 10 and N = 50 [see Fig. 5(b)], which is not accessible by exact diagonalization, we find
a good agreement between the mean-field results and that from semi-classical Monte-Carlo
simulations. These results give us the confidence to use Eq. (35) to study larger systems in the
following.

If the system is coupled to a thermal bath of temperature T , 〈ni〉 should satisfy the Bose
distribution,

〈ni〉T =
1

e(Ei−µ)/T − 1
, (36)

where the chemical potential µ is fixed by
∑

i 〈ni〉T = N . In Fig. 6, we compare the results of
Eqs. (35) [solid lines in Figs. 6(a), (d)] and (36) [dashed lines in Figs. 6(a), (d)] for M = 6 and
N = 100. Here, the temperature T [see Fig. 6(b)] is optimized to give the minimal error [see
Fig. 6(c)]

ε =
1
N

r

∑

i
(〈ni〉 − 〈ni〉T )2 , (37)

which is an intensive quantity. We can see that over the whole parameter regime, the two dis-
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Figure 5: Comparison of the mean occupations in the single-particle eigenstate 〈ni〉
between Monte-Carlo (MC), mean-field (MF) and exact diagonalization (ED) results.
The MC results are obtained by averaging over 1000 trajectories. The error bars
denote one standard deviation. Most of the time, they are smaller than the bullets.

tributions agree with each other very well. The maximal error is found at some intermediate
temperature regime, marked by black dotted line in Fig. 6(c). Even in this case, the disagree-
ment between the two distribution is very small, as shown by the black curves in Fig. 6(d).

Note that in thermodynamic limit, M →∞ at constant density N/M , thermal fluctuations
prevent the formation of a Bose condensate in a one-dimensional system at finite temperature.
However, for a finite size system, a crossover into a Bose condensed regime with a relative
occupation of order 1 in the ground state occurs when the temperature T reaches the conden-
sation temperature Tc ≈ 8.3NJ/M2 [7], which is defined as the temperature where half of the
particles occupy the single-particle ground state. By inspecting the mean occupations in the
energy eigenbasis as shown in Figs. 6(a), (d), one can see that the error slightly increases in
the crossover regime, where a condensate builds up. Note that in the limit of infinite temper-
ature the feedback strength λ approaches zero [see orange dotted line in Fig. 6(b)], so that
the system is only subjected to continuous measurement, which is known to guide the system
into an infinite temperature state.

Figure 7 shows the dependence of the error on the lattice size. In Fig. 7(a), we fix the
filling factor at N/M = 5, while in Fig. 7(b) we fix the particle number N . In both cases, the
error increases with the system size. Although the maximal error becomes significant for large
systems, the error at low temperatures (for instance T ' 0.1J as shown in dashed lines) is still
small.

5 Interacting case

So far, we have discussed about the non-interacting cases. Now let us consider interacting
particles. Figure 8 shows the results for M = N = 4 with interaction strength U = 4J . We
can see that over a wide parameter regime, a high fidelity is still available. It is remarkable
to observe that by solely employing measurement and feedback operators that are quadratic
in the field operators (i.e. single-particle operators) it is sufficient to engineer thermal baths
for an interacting system with high fidelity. Different from the non-interacting case, where
the minimal fidelity is found at an intermediate temperature T , here the fidelity increases
monotonously with T , as shown in Fig. 8(b). While even in the worst case, the distribution of
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Figure 6: (a) Comparison of the results from Eqs. (35) (solid lines) to a thermal
distribution (36) (dashed lines), whose corresponding temperature T as a function
of λ is shown in (b). T is fixed by minimizing the error (37), which is shown in (c)
as a function of T . (d) Comparison of 〈ni〉 (solid lines) and 〈ni〉T (dashed lines) at
three different T marked by dotted lines in (b) and (c). In (a), the vertical dotted
line marks the temperature where the maximal error occurs; the vertical dot-dashed
line marks the condensation temperature Tc ≈ 8.3NJ/M2 [7], which is defined as
the temperature where half of the particles occupy the single-particle ground state.
The parameters are M = 6, N = 100.

the steady state in the eigenbasis is found to be close to a thermal distribution, as shown by
the blue curves in Fig. 8(d).

For the interacting case, the minimal temperature of the effective thermal bath that can
be engineered is nonzero, and increases roughly linearly with the interaction strength U , as
shown in Fig. 9(a). Given that a zero-temperature bath would lead to the ground state as
steady state, the increase of the achievable bath temperature with interaction strength seems
to imply worse performance of our scheme in preparing the ground state also for strong in-
teractions. But this is not the case, as shown in Fig. 9(b). The fidelity between the steady
state and the ground state (orange dot-dashed line) is found to first drop with increasing in-
teraction strength, and then starts to gradually increase after reaching a dip. Over the whole
parameter regime, the fidelity is considerably high, noting that the fidelity per particle is over
0.871/N ≈ 0.97 for N = 4 particles. This is attributed to the fact that for the strongly interact-
ing case, the energy gap between the ground state and the first excited state is of the order
of U , and thus also increases with the interaction strength. Hence, despite the increase of
achievable bath temperature with increasing interaction strength, our scheme performs well

13

https://scipost.org
https://scipost.org/SciPostPhys.13.3.059


SciPost Phys. 13, 059 (2022)

0 20 40
M

0.0

0.1

0.2

0.3

0.4

0.5
er

ro
r 

N/M = 5
maximal
T 0.1J
T J

0 20 40
M

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r 

(a) (b)
N = 100
N = 1000
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Figure 9: (a) The minimal temperature of the effective thermal bath that can be
engineered as a function of the interaction strength. (b) The fidelity between the
steady state and the corresponding thermal state (blue solid line) and the ground
state (orange dot-dashed line). The parameters are M = 4, N = 4, γ= 0.01J .

both at finite temperatures and for the preparation of the ground state.

6 Conclusion

In conclusion, we have shown that Markovian feedback control can be used to engineer a
synthetic thermal bath for a bosonic quantum gas in a one-dimensional optical lattice. For
small systems, our discussions are focused on the steady state of the Markovian feedback
ME (6), which is obtained from exact diagonalization of the Liouvillian superoperator. The
performance of our scheme is quantified by the fidelity between the steady state and the ef-
fective thermal state. For double-well and triple-well systems with non-interacting particles,
the transfer rates between all pairs of coupled eigenstates satisfy detailed balance condition,
and thus the steady state is a thermal state. The scenario changes when there are more lattice
sites, where the detailed balance condition does not hold any more, but also here deviations
from detailed balance remain small. Remarkably, our scheme performs very well at low and
high temperature regimes, with the fidelity close to one. The performance at the intermediate
temperature regime is slightly worse, and the fidelity shows a gentle decrease with increasing
system size. Due to the rapid growth of the dimension of the Hilbert space, it is time and
memory consuming to treat large systems by using exact diagonalization. We then use kinetic
theory to study the mean occupations in the single-particle eigenstate (35), and compare them
with the Bose distribution (36). The results for large systems show similar behavior with those
for small ones. Disagreement between the distributions appears at intermediate temperatures,
where a crossover into a Bose condensed regime occurs. All the above discussions are for non-
interacting systems. For the interacting cases, the scheme is found to perform better at a higher
temperature, in contrast to the non-interacting cases. Moreover, the minimal temperature that
can be engineered is nonzero and increases with the interaction strength. Nevertheless, the
performance of our scheme is found to be good over the whole parameter regime, from weak
interactions to strong interactions. As an outlook, it will be interesting to engineer driven dis-
sipative systems via feedback control and study the nonequilibrium dynamics or steady states.
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