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Abstract

Holographic complexity proposals have sparked interest in quantifying the cost of state
preparation in quantum field theories and its possible dual gravitational manifestations.
The most basic ingredient in defining complexity is the notion of a class of circuits that,
when acting on a given reference state, all produce a desired target state. In the present
work we build on studies of circuits performing local conformal transformations in gen-
eral two-dimensional conformal field theories and construct the exact gravity dual to
such circuits. In our approach to holographic complexity, the gravity dual to the opti-
mal circuit is the one that minimizes an externally chosen cost assigned to each circuit.
Our results provide a basis for studying exact gravity duals to circuit costs from first
principles.
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1 Introduction

The last couple of years have witnessed a substantial progress in the study of complexity
measures of quantum circuits both in quantum field theory and in holographic bulk prescrip-
tions (see [1] for a review). However, these two approaches have largely remained separate,
with only conjectural or qualitative connections between the two sides established.

Our paper aims to identify a scenario where such a connection can be made in a robust
manner, by constructing an explicit gravity dual to a simple quantum circuit in holographic
quantum field theories. We will achieve this by focusing on local conformal transformations in
the setting of the AdS3/CFT2 correspondence [2–4]. This has already proven to be a fruitful
ground for complexity research on the gravity [5–8] and the field theory [9–13] sides of the
correspondence. Our goal is to bridge the two perspectives by constructing an explicit gravity
dual to a sequence of local conformal transformations acting on the vacuum state.

On the bulk side, the solutions associated to local conformal transformations of the vacuum
are the Bañados geometries [14]. On the boundary side, following [9], we will consider cir-
cuits originating from the action of the exponentiated holomorphic component of the energy-
momentum tensor (or equivalently the antiholomorphic one). These circuits will be taken to
act on the vacuum state. The setup can be thought of as performing a local conformal trans-
formation in a gradual fashion. In [9] and the subsequent works [10–13], significant insights
were gained into quantifying the complexity of such a process. Due to the use of conformal
symmetry, these circuits are particularly well-suited for a holographic mapping to gravity.

We perform operations in a gradual way, i.e. as a sequence of operations indexed by a
circuit parameter that determines where we are in this process. In the holographic complexity
literature, one typically thinks about the circuit parameter as an auxiliary variable. The key
idea of our work is to identify this parameter with the physical time on the asymptotic boundary
and to use the boundary geometry to trigger the gradual state preparation of interest. While we
are not the first to advocate the use of physical time as a circuit parameter (see, in particular, [5,
15]), the novel aspect of our work is the full control we gain over both the circuit and the dual
geometry.

2 A simple quantum circuit

In this section, we describe the construction of circuits implementing conformal transforma-
tions in a gradual way. We will construct two circuits implementing this idea distinguished by
the interpretation of the circuit time parameter. In the first construction (case (a)), the circuit
parameter τ is an auxiliary parameter independent on the physical time coordinate t on the
manifold in which the conformal field theory lives, while in the second construction (case (b))
the physical time coordinate and circuit parameter are identical.

We work in a two-dimensional conformal field theory in Euclidean signature on a unit-
radius spatial circle parametrized byφ. In both constructions, the circuit starts with a reference
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state, which we take to be the vacuum |0〉 and then changes the state by acting on it with an
operator formed from Virasoro algebra generators Ln,

|ψ(τ)〉= U(τ)|0〉 , with U(τ) = P exp

�

−
∫ τ

0

dτ̃Q(τ̃)

�

, (1)

and
Q(τ) =

∑

n

ε−n(τ)Ln . (2)

U(τ) is the analytic continuation of a unitary operator to Euclidean signature. For simplicity,
we consider only one copy of the Virasoro algebra. The circuit generator Q(τ) can be equiva-
lently written by smearing the holomorphic component of the energy-momentum tensor,

Q(τ) =

∫ 2π

0

dφ
2π

T (z)ε(τ, z) , (3)

where ε(τ, z) =
∑

n εn(τ)enz and z = t+iφ with t being the Euclidean time variable. Through-
out this publication we use the notation

T (z) =
∑

n

Lnenz , T̄ (z̄) =
∑

n

L̄nenz̄ , (4)

where L̄n are the generators of the second copy of the Virasoro algebra.
The circuit implements at each τ a conformal transformation z → f (τ, z). The two con-

structions of the circuit mentioned above are distinguished by the value of ε(τ, z). Since the
conformal transformations form a group with group action realized by composition of func-
tions, the parameter ε(τ, z) is related to f (τ, z) by [9]

ε(τ, f (τ, z)) =
d

dτ
f (τ, z) . (5)

If the circuit parameter τ is an auxiliary parameter independent of z (case (a)), the solution
of this equation is given by

ε(a)(τ, z) = ḟ (τ, F(τ, z)) , (6)

where F(τ, z) is the inverse of f (τ, z) defined by f (τ, F(τ, z)) = z and ḟ denotes the derivative
of f w.r.t. its first argument, i.e. the τ-derivative at a fixed value of z. On the other hand, if
the circuit parameter τ is given by the physical time t then the holomorphic coordinate z that
is transformed by the conformal transformations depends on τ such that the solution of (5) is
given by

ε(b)(t, z) = ḟ (t, F(t, z)) + f ′(t, F(t, z)) , (7)

where f ′ denotes the derivative of f w.r.t. its second argument. The energy-momentum tensor
at circuit time τ in both constructions is given by

U†(τ)T (z)U(τ) = f ′(τ, z)2T ( f (τ, z)) +
c

12
{ f (τ, z), z} . (8)

Therefore, the action of one layer of the circuit between some τ and τ+ dτ is as follows. If τ
is treated as an independent auxiliary parameter, we get

eQ(a)(τ)dτU†(τ)T (z)U(τ)e−Q(a)(τ)dτ = f ′(τ+dτ, z)2T ( f (τ+dτ, z))+
c

12
{ f (τ+dτ, z), z} , (9)

while for τ= t,

eQ(b)(t)d t U†(t)T (z)U(t)e−Q(b)(t)d t = f ′(t + d t, z + d t)2T ( f (t + d t, z + d t)) (10)

+
c

12
{ f (t + d t, z + d t), z} . (11)
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case (a):

|ψ(τ1)〉(a)

t

φ

|ψ(τ2)〉(a)

t

φ

τ

case (b):

|ψ(τ1)〉(b)

|ψ(τ2)〉(b)

t = τ

φ

Figure 1: Depiction of the two circuits we consider. In case (a), the circuit evolution
proceeds through a sequence of states living on time slices of different spacetimes
(marked in red). There is no associated evolution with respect to physical time t. In
case (b), the states live on different time slices of the same spacetime. In holography,
in case (a) we have a sequence of independent gravity dual geometries, whereas in
case (b) we arrive at a single gravity dual geometry.

Equations (9) and (11) further illustrate the difference between the two circuit constructions.
In case (a) the state |ψ(τ)〉 lives on the same time slice in physical time (say at t = 0) for all
τ. The circuit evolution in this case creates a sequence of states dual to Bañados geometries.
On the other hand, in case (b) the states |ψ(t)〉 live on different time slices of the same ge-
ometry (see Fig. 1). Therefore, in this case time evolution also has to include evolution in the
holomorphic coordinate z. Equations (9) and (11) may also be used to derive Q(a) and Q(b) by
expanding to linear order in, respectively, dτ and d t and applying the Virasoro algebra. This
recovers, respectively, (6) and (7).

What we have described so far as case (a) is the setup considered in [9], while case (b) is
the natural generalization to consider when implementing gradual conformal transformations
in a single spacetime. Of course, the sequence of states described by these circuits differs
between the two constructions since the circuit generators Q(a) and Q(b) are different. We will
explore the consequences of these differences in the following section.

Before we close this section, let us expand on why it is particularly insightful to consider
conformal transformations in the context of holographic complexity. To this end, it is important
to emphasize that the energy-momentum tensor sector, up to the value of the central charge,
is universal across all conformal field theories. Therefore, the current setup applies equally
well to the Ising model conformal field theory and to holographic theories. Had we focused
on, for example, circuits generated by a scalar operator, it would lead to a less universal setup.
Furthermore, because of earlier efforts in [9–13], we know rather well what are the interesting
possibilities for assigning a cost to (1-2) and, in several cases, what are the optimal circuits.
Finally, the energy-momentum tensor couples to the metric in which a conformal field theory
in question lives. This opens a possibility of triggering the circuit by placing the conformal field
theory in an appropriately chosen geometry, which we discuss in the next section. Finally, in
the case of gravity in three dimensional anti-de Sitter space, the boundary metric and the
expectation value of the energy-momentum tensor allow to straightforwardly obtain the full
bulk geometry. This is what we discuss in section 4.
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3 Generating the same sequence of states using sources

3.1 General discussion

In general, physical implementations of quantum operations are based on time evolution of
quantum systems. For the circuit from section 2, the operation is generated by the generator
Q(τ) from (2). Our idea is to use the physical Hamiltonian of a conformal field theory living
in some background metric g(0)i j ,

H(t) =

∫ 2π

0

dφ
2π

Æ

g(0) T t
t , (12)

see e.g. [16], to generate the circuit. Therefore, we demand

H(t)
!
=Q(t) . (13)

This identification allows us to derive the correct background metric g(0)i j which triggers the

conformal transformations applied at each time step of the circuit1. Therefore, this construc-
tion yields a single bulk geometry for the entire circuit. Because the Hamiltonian (12) is the
generator of time translations in the physical time t, this construction is the natural method for
deriving a bulk dual to the circuit (b) constructed in the previous section in which the circuit
parameter τ is identified with t.

However, this method nevertheless allows us to write down a bulk dual to the circuit (a)
consisting of a sequence of states living on different time slices of the same spacetime manifold.
The two constructions in the implementation of these circuits derived in this section then differ
only in the source configuration g(0)i j as we will see below.

For the particular circuits from section 2, it turns out to be sufficient to choose a flat bound-
ary metric as source, however, the choice of coordinate system becomes important. General
flat metrics are parametrized by diffeomorphisms (w(z, z̄), w̄(z, z̄)) dependent on both z and
z̄,

ds2
(0) = dwdw̄=

∂ w
∂ z
∂ w̄
∂ z

dz2 +
�

∂ w
∂ z
∂ w̄
∂ z̄
+
∂ w
∂ z̄
∂ w̄
∂ z

�

dzdz̄ +
∂ w
∂ z̄
∂ w̄
∂ z̄

dz̄2 . (14)

Our conventions follow these in the previous section and entail

z = t + iφ , z̄ = t − iφ . (15)

The constant time slices with respect to which the Hamiltonian H(t) generates time evolution
are defined by z + z̄ = const. Via (13), these are also lines of constant values of the circuit
parameter.

Based on this definition for our metric, we now derive expressions for the diffeomorphisms
w(z, z̄) and w̄(z, z̄) in terms of the conformal transformations f (t, z). For this purpose we
express the Hamiltonian H(t) in terms of Virasoro generators and demand equality with the
circuit generator Q(t), implementing (13). We apply the standard tensor transformation rules
to obtain,

Tzz = T (w(z, z̄))
�

∂ w
∂ z

�2

+ T̄ (w̄(z, z̄))
�

∂ w̄
∂ z

�2

,

Tz̄z̄ = T (w(z, z̄))
�

∂ w
∂ z̄

�2

+ T̄ (w̄(z, z̄))
�

∂ w̄
∂ z̄

�2

,

Tzz̄ = T (w(z, z̄))
∂ w
∂ z
∂ w
∂ z̄
+ T̄ (w̄(z, z̄))

∂ w̄
∂ z
∂ w̄
∂ z̄

,

(16)

1See also [5] for previous work that studies holographic complexity using boundary sources.

5

https://scipost.org
https://scipost.org/SciPostPhys.13.3.061


SciPost Phys. 13, 061 (2022)

with T (z) and T̄ (z̄) defined in (4).
Note that in (16) – which is a statement about operators – we have not included the con-

tribution from the Tww̄ component. Let us briefly comment on why this is justified. It is
well-known that classically, the trace of the energy-momentum tensor in a two-dimensional
conformal field theory vanishes. In the quantum theory, Tww̄ no longer vanishes identically.
However, since our calculation is performed in flat space, Tww̄ produces only contact terms
when inserted in correlation functions. These contact terms do not contribute to correlation
functions involving time-evolved operators. This can be seen directly from the definition of
the time-evolution of an operator O,

O(t) = e
∫ t

0 d t̃H( t̃)O(0)e−
∫ t

0 d t̃H( t̃) . (17)

In correlation functions involving both O(0) and H( t̃), contact terms are proportional to δ( t̃).
Since t̃ = 0 lies just outside of the integration range for t̃ in (17), the contribution of the
contact terms drops out in the end. In fact, these contact term issues arise even in the ordinary
treatment of conformal field theory on flat space using the time-slicing defined by the w, w̄
coordinates. The textbook definition of the Hamiltonian in these coordinates is given by [17,
18]

H = L0 + L̄0 =

∫

dφw

2π
(T (w) + T̄ (w̄)) . (18)

However, from the general expression (12), we see that even in these coordinates Tww̄ is in
principle present in the Hamiltonian,

H =

∫

dφw

2π
(T (w) + T̄ (w̄) + 2Tww̄(w, w̄)) . (19)

The arguments given above show that the trace part Tww̄ produces contact terms inside corre-
lation functions that, however, do not contribute to time-evolution of operators. This explains
why the textbook definition (18) is correct even though it differs from the expression obtained
from (12).

Coming back to the derivation of the bulk dual to our circuit, combining (12) with (16)
leads to the following expression for the Hamiltonian

H(t) =

∫

dφ
2π

�

�

�

∂ w
∂ z

�2

−
�

∂ w
∂ z̄

�2
�

T (w(z, z̄)) +

�

�

∂ w̄
∂ z̄

�2

−
�

∂ w̄
∂ z

�2
�

T̄ (w̄(z, z̄))
�

. (20)

Then, using a change of integration variable to rewrite the circuit generator as

Q(t) =

∫

dφ
2π

T (z)ε(t, z) = −i

∫

dφ
2π
∂φw(z, z̄)T (w(z, z̄))ε(t, w(z, z̄)) , (21)

we can read off w(z, z̄) and w̄(z, z̄) from (13). In the remaining part of the section, we will
come back to the two cases of the circuit starting from the case (b).

3.2 Realizing case (b)

Here, we find that the w diffeomorphism is simply given by f (t, z),

w(z, z̄) = f (t, z) , (22)

where, following (15), t = (z + z̄)/2. On the other hand, the w̄ diffeomorphism trivializes,

w̄(z, z̄) = z̄ . (23)
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Figure 2: Flat cylinder in which the conformal field theory lives. Black curves corre-
spond to slices of constant time (vertical) and angle (horizontal) associated with the
w, w̄ coordinates. The red curves represent constant time and angle associated with
the z, z̄ coordinates with the now infinitesimal diffeomorphism (22-23) specified by
f (t, z) = z + ε(3t2 − 2t3) sin(z) +O(ε2) with ε = 0.2 (see also (40) for a definition
of infinitesimal conformal transformations).

We do not implement any antiholomorphic conformal transformations, therefore the circuit
only implements the trivial transformation z̄ → z̄ which leads to (23). An example of dif-
feomorphisms (22-23) and their effect on constant time slices is shown in figure 2. These
diffeomorphisms lead to the following energy-momentum tensor expectation values,

〈Tzz〉= −
c

24

�

∂ w
∂ z

�2

= −
c

24
1
4
( ḟ (t, z) + 2 f ′(t, z))2 ,

〈Tzz̄〉= −
c

24

�

∂ w
∂ z

��

∂ w
∂ z̄

�

= −
c

24
1
4
( ḟ (t, z) + 2 f ′(t, z)) ḟ (t, z) ,

〈Tz̄z̄〉= −
c

24

�

1+
�

∂ w
∂ z̄

�2�

= −
c

24

�

1+
1
4

ḟ (t, z)2
�

,

(24)

in the background

ds2
(0) =

�

1
2
( ḟ (t, z) + 2 f ′(t, z))dz +

1
2

ḟ (t, z)dz̄
�

dz̄ . (25)

Note that this background metric is not of the form dzdz̄, even after the circuit has reached
the target state. In this region t > tfinal, ḟ (t, z) = 0 and ds2

(0) = f ′final(z)dzdz̄. We may apply a
Weyl transformation

ds2
(0)→ e2ω(z,z̄)ds2

(0) =
1

f ′final(Ffinal( f (t, z)))
ds2
(0) (26)

on top of this background to bring the metric to the form dzdz̄ when t > tfinal. Here ffinal is
the total conformal transformation we produce after the circuit does its job and the inverse
Ffinal(z) is defined by ffinal(Ffinal(z)) = z. At earlier times the metric has a more complicated
form as one can see by comparing to (25), but it remains flat. In general, Weyl transformations
change the Ricci scalar as

R→ e−2ω(R− 2∇i∇iω) , (27)
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and thus lead to curved background metric. However, the Weyl transformation (26) we have
chosen preserves R= 0. This can be seen from writing (27) in w, w̄ coordinates,

e−2ω∂w∂w̄ω , (28)

which vanishes for ω = ω(w) + ω̄(w̄) = ω( f (t, z)) + ω̄(z̄). The energy-momentum tensor
transforms under Weyl transformations as2

Ti j → Ti j +
c
6
(∂iω∂ jω−

1
2

gi j∂
kω∂kω−∇i∇ jω+ gi j∇k∇kω) . (29)

Therefore, we find as expected for t > tfinal

ds2 = dzdz̄ and 〈Tzz〉= −
c

24
f ′final(z)

2 +
c

12
{ ffinal(z), z}, 〈Tzz̄〉= 0, 〈Tz̄z̄〉= −

c
24

. (30)

The intermediate form of the energy-momentum tensor for tinitial < t < tfinal depends on the
particular Weyl-rescaling we do and can be found simply by using the transformation rule (29).

Note that the Hamiltonian is not invariant under Weyl transformations due to the energy-
momentum tensor transformation (29). However, the additional term in the Hamiltonian is
proportional to the identity operator and has no observable effect.

Let us briefly discuss uniqueness of the circuit we have constructed. The circuit and its
bulk dual is specified by the boundary metric and energy-momentum tensor expectation value.
Therefore, one might ask what is the correct choice of these quantities to implement the same
sequence of states as in section 2 – equations (24) and (25) on their own, or supplemented with
the Weyl rescaling (26)? The answer is that these two choices are equivalent implementations
of the same circuit. Because the Hamiltonian changes trivially under the Weyl transformation
(26), this transformation does not affect the sequence of states in the circuit. What changes,
however, are the expectation values of the energy-momentum tensor. This feature is special to
Ti j , general tensor fields are invariant under Weyl transformations. But because the energy-
momentum tensor depends directly on the background metric through Weyl anomaly and
conservation equations, its expectation values are comparable only if they are evaluated in the
same background. In other words, the Hilbert space operator defined by Ti j in the background
ds2
(0) differs from the Hilbert space operator defined by Ti j in the background e2ωds2

(0). The
Weyl transformation (26) we have chosen merely puts the metric at t > tfinal in the same form
as that used in section 2 so that we can compare the expectation values 〈Ti j〉 in the circuit
from section 2 and its reformulation in this section. As expected, once we transform to the
background ds2

(0) = dzdz̄, we find agreement with the expectation values from section 2.

3.3 Another look at the circuit from case (a)

As we have discussed earlier, the natural interpretation of the circuit in case (a) is that of a
sequence of states in different realizations of considered conformal field theory, i.e. living in
different spacetimes. However, the realization of case (b) provides us with a possibility of an
alternative perspective on case (a). In fact, as we will see, the two cases can be realized in a
very similar manner upon identifying τ= t.

An additional issue to take into account is that in case (a) we need to perform a slight
reformulation of the circuit in order to be able to demand equality of H(t) given by (20)
and Q(t) specified in (21). The reason for this is that for a trivial conformal transformation

2This equation can be derived as a statement for the expectation value of the energy-momentum tensor from
the Weyl anomaly equation. One may check that this also holds as a operator statement by comparing with the
two-point function of the energy-momentum tensor in a general background. We have done this perturbatively up
to second order (included) in perturbation theory around flat space.
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f (t, z) = z the circuit generator Q(a)(τ= t) from section 2 vanishes while we want the Hamil-
tonian H(t) to reduce to the standard time evolution in a conformal field theory governed
by H(t) = H0 = L0 + L̄0. Therefore, we introduce a modification of Q(a)(t) by adding H0,
Q(a)(t)→Q(a)(t) +H0 before identifying it with H(t). This modification does not change the
energy-momentum tensor expectation value3 and only leads to an additional unobservable
phase if the reference state is a primary state such as the vacuum state |0〉 that we are using
as reference state. Therefore, this modification does not change the physics of the problem at
hand.

Then, using (20) and (21) we find that the w̄ diffeomorphism trivializes again, w̄(z, z̄) = z̄,
while the w diffeomorphism satisfies

ẇ(t,φ) = 1+ ε(t, w(t,φ)) . (31)

We may rewrite (31) by using the definition of ε in (5) and introducing inverse functions W
and F defined by

w(t, W (t,φ)) = φ , f (t, F(t, z)) = z , (32)

giving4

−
Ẇ (t,φ)
W ′(t,φ)

= 1−
Ḟ(t, t + iφ)
F ′(t, t + iφ)

. (33)

It is then easy to see that case (a) and (b) are implemented by sources g(0)i j described by closely
related diffeomorphisms w(z, z̄) differing only in a total vs. partial derivative with respect to
the physical time t in their defining equations.

Applying again the Weyl transformation (26), we find the following energy-momentum
tensor expectation values for t > tfinal,

〈Tzz〉= −
c

24
+

c
12
{ ffinal(z), z} , 〈Tzz̄〉= 0, 〈Tz̄z̄〉= −

c
24

. (34)

Compared to the well-known transformation law of the energy-momentum tensor under con-
formal transformations,

T (z)→ f ′(z)2T (z) +
c

12
{ f (z), z} , (35)

we find that in this circuit the f ′(z)2 prefactor is absent in the final value of the energy-
momentum tensor expectation value. Hence, we conclude that the circuit (b) more faithfully
implements gradual conformal transformations in the sense that the final state yields the well-
known energy-momentum tensor transformation rule. Nevertheless, the circuit (a) possesses
interesting features with regard to holographic complexity proposals, as we explain in section 5
and thus deserves to be studied in detail.

4 Mapping to gravity

The results of section 3 correspond to a path-integral prescription within quantum field theory
for defining the circuits of section 2 in terms of evolution in physical time. The key outcomes
of this analysis are that the circuits are defined in flat space and that it is a particular time
foliation of flat space that triggers, as time progresses, the transformation of interest.

3The modification is equivalent to the replacement f → f + const. in (9). If 〈T (z)〉 is constant, this does not
change the energy-momentum expectation value.

4Note that Ḟ(t, z) denotes a derivative of F w.r.t. its first argument and not a total derivative w.r.t. t. Likewise,
F ′(t, z) is a derivative w.r.t. the second argument of the function.
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The holographic dictionary associates the metric underlying the path-integral formulation
with the metric on the asymptotic boundary and the corresponding energy-momentum tensor
with the subleading fall-off of the bulk metric [19]. Usually, the boundary metric and the
boundary energy-momentum tensor, even if known over the entire boundary, do not specify
the dual geometry in a closed form. However, in three bulk dimensions, which is the situation
of interest, the Fefferman-Graham near-boundary expansion of the bulk metric truncates and
the input we provide from section 3 does specify the full bulk metric in a closed form.

To be more specific, if g(0)i j denotes the boundary metric and 〈Ti j〉 the allowed expecta-
tion value of the energy-momentum tensor, the exact gravity dual to the corresponding time
evolution of a state in a holographic conformal field theory takes the form [19]

ds2 =
dr2

r2
+
�

1
r2

g(0)i j + g(2)i j + r2 g(4)i j

�

d x id x j , (36)

where r is the radial direction with the asymptotic boundary at r = 0 and

g(2)i j = −
1
2

R(0)g(0)i j −
6
c
〈Ti j〉 and g(4)i j =

1
4
(g(2)(g(0))−1 g(2))i j . (37)

Therefore, the gravity dual to the circuits of interest is obtained by inserting into the above
expression the form of the boundary metric and the associated expectation value of the energy-
momentum tensor discussed in the previous section. Concretely, for the circuit (b) the bound-
ary metric is given by (26) and the energy-momentum tensor expectation value is determined
from (24) and (29) and analogously for the circuit (a). The results then basically tell us which
time-slicing of pure AdS3 one has to choose in order to implement the circuit of interest that
acts on the vacuum state.

The derived bulk metric forms a possible basis for first-principle derivations of bulk duals
to various field theory cost functions which have been proposed previously [5,9,11–13]. It can
also provide conformal field theory insights on conjectured bulk complexity measures such as
“complexity=volume” [20], “complexity=action” [21], “complexity=volume 2.0” [22], or the
infinite class of complexity measures recently proposed in [23].

5 Lessons for holographic complexity

Having derived the bulk dual to our circuit, we now turn to the study of bulk duals of boundary
cost functions and – vice versa – boundary duals to bulk complexity measures. To be specific,
we will here concentrate on two simple examples: the “complexity=volume” proposal [20]
and the squared Fubini-Study cost and associated complexity [24] applied in this context in
[12,13].

Let us make sure that all the readers are on the same page and discuss briefly what we
mean by the squared Fubini-Study cost and associated complexity. The total cost of a circuit is
a non-negative number assigned in a systematic way to each of its layers and integrated over
the circuit parameter. The discussion of costs in the high-energy physics literature is based
on [24–26]. The Fubini-Study cost is the one that originates from the distance that the circuit
traverses in the Hilbert space when acting on a given state. The associated complexity arises
from minimization of the total cost (distance). In the notation that we adopted in section 2
and following [12,13], the complexity is given by

CFS =min

∫

dτ FFS(τ)
2 , (38)

where
FFS(τ) =

q

〈0|U†(τ)Q†(τ)Q(τ)U(τ)|0〉 − |〈0|U†(τ)Q(τ)U(τ)|0〉|2 . (39)
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Note especially the inclusion of the square in equation (38). This means that compared to the
problem of geodesic motion in curved spaces, the functional that we are working with is more
similar to the kinetic energy than the length functional. An earlier critical investigation of this
and similar cost functionals can be found in [27]. When trying to make contact with the com-
plexity=volume proposal via a Fubini-Study-based ansatz, including the square is important
because we know that volume scales linearly in the central charge c, and so should complexity.
Also, as shown in [5,6], the complexity (38) matches the change of volume under infinitesimal
local conformal transformations to the leading nontrivial order. We will hence further study
this cost further in this section, and allowing ourselves a little imprecision of nomenclature,
we will refer to (38) as Fubini-Study complexity.

When the conformal transformation is expressed as a perturbative series around the iden-
tity,

f (t, z) = z + ε f1(t, z) + ε2 f2(t, z) +O(ε3) , (40)

the Fubini-Study complexity and the result of the “complexity=volume” calculation in the
relevant Bañados geometry are known to be related at the order ε2 [5,6]. To be more specific,
Ref. [6] considered the gravity dual to the state corresponding to z→ ffinal(z) and in this state
calculated the “complexity=volume” proposal in the expansion in ε, which was found to be
related to the Fubini-Study complexity measure in [5]. Let us revisit this calculation but now
at all time instances in the circuit. For t > tfinal, this reduces to the setup of [6].

For the case (b), we find the following change in volume compared to the vacuum state in
appendix A 5,

V(b) − Vpure AdS3
= ε2π

4

∑

n

(|n|3 − |n|) f n
1 (t) f

−n
1 (t) (41)

+ ε3π

4

∑

n

(|n|3 − |n|)
�

2 f n
1 (t) f

−n
2 (t)− i

∑

m

mf n
1 (t) f

m
1 (t) f

−n−m
1 (t)

�

+O(ε4) .

On the other hand, for case (a) we cannot give a general answer for the volume of extremal
slices because (31) cannot be solved for arbitrary time dependence. The most interesting
special case is the one in which the time-dependence equals that of the optimal path in the
Fubini-Study complexity functional of [12,13]. In this case, we obtain6

V(a) − Vpure AdS3
= ε2π

4

∑

n

(|n|3 − |n|)
f n
1 (t) f

−n
1 (t)

n2
+O(ε3) . (42)

See appendix A for details, including the third and the fourth order contributions to (42). We
can think about the difference V(a,b) − Vpure AdS3

as a notion of complexity of formation, i.e.
in our case a way of assigning a cost of transforming the vacuum state into the state at tfinal.
Such a notion was considered earlier in the case of thermofield double states in [28].

It is instructive to compare the above results to the Fubini-Study complexity of [12, 13].
We derive general expressions for this complexity functional to fourth order in perturbation
theory in appendix B. Interestingly, the volume change (41) in the circuit (b) matches7 as far

5The results in appendix A are given in terms of parameters Cn
1 , Cn

2 , etc. which are the n-th Fourier modes
parametrizing the location of the time slice on the boundary in w, w̄ coordinates expanded in perturbation theory.
Thus, these parameters are obtained directly from (31), taking into account that the Cn

1 , Cn
2 parameters are Fourier

modes w.r.t. φw = (w− w̄)/(2i). Note also that the calculation in appendix A is performed in Lorentzian signature.
Finally, note that the Fourier modes of f1, f2 satisfy ( f n

1,2)
∗ = f −n

1,2 such that the final expression for the volume is
real despite the presence of the imaginary unit in (41).

6See section B for the derivation of the optimal path.
7Up to a prefactor which is undetermined in the complexity functional anyway.
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as the third order in ε,

⇒ CFS = ε
2
∑

n

c
24
(|n|3 − |n|) f n

1 (t) f
−n

1 (t)

+ ε3
∑

n

c
24
(|n|3 − |n|)

�

2 f n
1 (t) f

−n
2 (t)− i

∑

m

mf n
1 (t) f

m
1 (t) f

−n−m
1 (t)

�

+O(ε4) ,
(43)

but disagrees in the fourth order (see (74) and (89)). The Fubini-Study complexities in the cir-
cuits (a) and (b) are equal to each other up to the third order in perturbation theory, therefore
(43) holds for both circuits. These results show that the Fubini-Study distance is not directly
related to volume changes. This rules out this possibility put forward in [5]. Note that gener-
alizations of CFS obtained by counting the cost in the circuit as some power of the Fubini-Study
metric (a procedure that does not change the optimal path in the circuit) cannot match the
volume change8 since also in this case, the change in the maximal volume disagrees with the
Fubini-Study complexity (see appendix B).

The bulk dual to the circuits we have derived in secs. 3 and 4 allows – at least in principle –
a derivation of bulk duals to cost functions such as the Fubini-Study metric from first principles.
The Fubini-Study metric is related to a connected two-point function of the Hamiltonian. In
general, connected two-point functions of the energy-momentum tensor are obtained from
the boundary perspective by applying variations w.r.t. the boundary metric onto the one-point
function,

〈Ti j Tkl〉=
2

p

g(0)

δ

δg i j
(0)

〈Tkl〉 . (44)

In this way, the two-point function of the Hamiltonian entering the Fubini-Study complexity
definition (77) can be derived. The important point is now, that using the relation between the
energy-momentum tensor one-point function and the bulk metric in (37), we may translate
this into a bulk calculation giving the same two-point function. This allows in principle writing
down the gravity dual to the Fubini-Study cost function used in [12, 13]. Of course, similar
derivations work for other cost functions. Our method allows for deriving bulk duals to any
cost function defined from energy-momentum tensor correlators or vice versa boundary duals
to bulk cost functions defined as functionals of the bulk metric. It may of course be the case
that the bulk duals for such cost functions does not reduce to a simple geometric quantity
in the bulk. Indeed, in general energy-momentum tensor correlators are derived by applying
variations which necessarily change the bulk metric (although of course only slightly) and lead
us to different bulk geometry. Therefore, we expect to find simple geometric duals only for
certain special cases in which the effect of the variation of the background drops out in the end.
This is also reminiscent to the situation with entanglement entropy, represented as a property
of a given bulk geometry [29–32], and general Renyi entropies requiring backreaction [33].
We leave this topic for further research.

6 Summary and outlook

We have derived gravity duals to circuits generating conformal transformations in the bound-
ary conformal field theory. Our construction was based on identifying the circuit generator
Q(τ) with the physical Hamiltonian H(t) generating time evolution in a specific background
metric g(0)i j on the boundary. Therefore, we identify the auxiliary circuit parameter τ with
the physical time t. This is the main new feature of our construction compared to previous
work on holographic complexity. Furthermore, the identification of the circuit parameter with

8We would like to thank Alex Belin for bringing this possibility to our attention.
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the physical time also allows us to derive a bulk dual to the entire circuit using the Fefferman-
Graham expansion [34]. Finally, we studied relations between “complexity=volume” [20] and
the Fubini-Study complexity measure proposed in [12,13]. As a byproduct of this analysis, we
managed to rule out the possibility that this complexity measure and the “complexity=volume”
proposal are directly related [5].

The construction of precise gravity duals to quantum circuits presented in this paper pro-
vides a new setting to study field theory cost functions directly in the bulk or conversely to
derive the dual boundary quantities associated to bulk observables like the change in the vol-
ume of an extremal time slice under time evolution. Furthermore, another interesting question
is whether any of the previously studied cost functions in [9–13] can be mapped to geometric
quantities in the bulk. For instance, in [8] it was demonstrated that the Fubini-Study dis-
tance on the space of circuits starting from scalar primary states is encoded in the maximal
and minimal perpendicular distances between infinitesimally close timelike geodesics in AdS.
Conversely, it would be interesting to understand better bulk candidates for costs considered
in [35–38]. To make further progress in this direction, cost functions on the boundary have to
be determined in terms of the bulk metric or conversely bulk observables in terms of conformal
field theory quantities like the boundary energy-momentum tensor. Our construction allows
such derivations using directly the holographic dictionary. One interesting clue that one can
use in this quest is that the costs associated with our circuits should be UV-finite and, therefore,
should not directly stem from bulk objects extending all the way to the asymptotic boundary.
The reason for the finiteness is that we do not need to alter the entanglement structure of the
reference state at arbitrarily short scales, but only in the IR.

Furthermore, the approach presented here may be generalized in a number of ways. A sim-
ple generalization is to allow Virasoro generators from the two copies of the Virasoro algebra
to act simultaneously in the circuit. Because both copies decouple, this is an obvious general-
ization of our results from section 3. Another, more interesting generalization is possible by
allowing the boundary metric to be curved. This allows for a circuit construction where the
reference and target state remain the same as here, while the sequence of states interpolating
between them changes. In general, such constructions are more difficult to interpret in terms
of gates acting on states, and hence the precise sequence of states between the reference and
target state is harder to derive. One possibility to construct such a geometry is to consider a
general Weyl-rescaled geometry without restricting the Weyl factor to allow only flat boundary
metrics, as we did here. For such a circuit, it is possible to construct a one-norm cost function
similar to that considered in [9]. We will discuss such circuits in more detail in an upcoming
work.

Finally, it would be very interesting to make further contact with the approach to gravity
duals of circuits pioneered in [5]. In particular, both approaches use non-trivial boundary
metrics to define circuits. It would be certainly interesting to understand possible relations
between them with a hope to advance in this way the field of gravity duals to cost functions
and complexity from a quantitative perspective underlying the present work.
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A Maximal volume slices

In this section, we compute the volume of extremal slices in bulk geometries obtained from
diffeomorphisms of pure AdS3. In other words, we calculate the proposed bulk dual to com-
plexity in the “complexity=volume” approach [20] in these geometries. The extremal slices
we consider asymptote to a constant time slice on the boundary in z, z̄ coordinates. Equiv-
alently, in w, w̄ coordinates the bulk metric is the standard pure AdS3 metric while the slice
asymptotes to a diffeomorphism of the constant time slice in z, z̄ coordinates. The calculation
is done perturbatively to fourth order in the perturbation parameter.

We start with the global AdS3 metric in coordinates

ds2 = − cosh2ρd t2 + dρ2 + sinh2ρdφ2 . (45)

The embedding of the maximal volume slice is determined by t(φ,ρ). The induced metric on
the maximal volume slice is given by

ds2
ind. =

�

1− cosh2ρ

�

∂ t
∂ ρ

�2
�

dρ2 − 2cosh2ρ
∂ t
∂ ρ

∂ t
∂ φ

dρdφ (46)

+

�

sinh2ρ − cosh2ρ

�

∂ t
∂ φ

�2
�

dφ2 . (47)

For the zeroth order in perturbation theory the boundary conditions are
t(φ,ρ→∞) = t0 = const. and the maximal volume slice is a constant time slice t(φ,ρ) = t0.
The volume is given as the square root of the determinant γ of the induced metric, giving a
UV divergent result

V(0) =

∫ 1/εUV

0

dρ

∫ 2π

0

dφ
p
γ=

∫ 1/εUV

0

dρ

∫ 2π

0

dφ sinhρ = 2π
�

1
εUV
− 1

�

. (48)

First and second order: We now expand around the zeroth order solution with expansion
parameter ε,

t(φ,ρ) = t0 + εt1(φ,ρ) + ε2 t2(φ,ρ) + ... . (49)

Up to second order the square root of the determinant of the induced metric is given by

p
γ= −

�

cosh2ρ sinh2ρ ṫ2
1 + cosh2ρt ′21

�

ε2

2 sinhρ
+ sinhρ , (50)

where ṫ1 =
∂
∂ ρ t1 (ρ,φ) and t ′1 =

∂
∂ φ t1 (ρ,φ). Note that the first order term O(ε) in

p
γ

vanishes and hence the volume of the extremal slice to first order is equal to the zeroth order
result. To determine the location of the extremal volume slice to first order, we perform a
variation with respect to t1, giving

−
�

3 cosh3ρ − 2 coshρ
�

sinhρ ṫ1 − cosh2ρ t ′′1 − cosh2ρ sinh2ρ ẗ1 = 0 . (51)

Decomposing t1 in a Fourier series, t1 =
∑

n tn
1(ρ)e

inφ , yields

n2 cosh2ρ tn
1 (ρ)−

�

3 cosh3ρ − 2 coshρ
�

sinhρ
∂

∂ ρ
tn
1 (ρ)− cosh2ρ sinh2ρ

∂ 2

(∂ ρ)2
tn
1 (ρ) = 0 .

(52)
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The general solution is given as a sum of two linearly independent solutions

tn
1(ρ) = Cn,+ tn

1,+(ρ) + Cn,− tn
1,−(ρ) , (53)

where

tn
1,±(ρ) =

�

cosh (ρ)− 1
cosh (ρ) + 1

�±|n|/2 cosh(ρ)± |n|
cosh(ρ)

. (54)

However, limρ→0 tn
1,− =∞ which is not consistent with the perturbative expansion. There-

fore, the solution is restricted to

tn
1(ρ) = Cn

1

�

cosh (ρ)− 1
cosh (ρ) + 1

�|n|/2 cosh(ρ) + |n|
cosh(ρ)

. (55)

The constant Cn
1 is determined from the boundary conditions. Inserting this into (50) yields

the following volume of the extremal slice to second order in the perturbation expansion,

V =

∫ 1/εUV

0

dρ

∫ 2π

0

dφ
p
γ

= V(0) − ε2π

∫ 1/εUV

0

dρ
cosh2ρ

sinhρ

∑

n

(n2 tn
1 t−n

1 + sinh2ρ
∂ tn

1

∂ ρ

∂ t−n
1

∂ ρ
)

= V(0) + ε
2π
∑

n

�

−
n2

εUV
+ |n|3 − |n|

�

Cn
1 C−n

1 .

(56)

Taking into account that the cutoff surface ρ = 1/εUV also changes under the diffeomorphism
w(z, z̄), the non-universal cutoff dependent terms in second order in the perturbation param-
eter ε cancel. Therefore, we finally obtain a finite result for the change in volume of the
extremal slice compared to pure AdS3,

V(2) = V |O(ε2) = π
∑

n

�

|n|3 − |n|
�

Cn
1 C−n

1 . (57)

Third order: The third order term V(3) is derived in the same way as the second order one.
To third order in ε, the determinant of the induced metric reads

p
γ|O(ε3) = −

cosh2ρ sinh2ρ ṫ1 ṫ2 + cosh2ρt ′1 t ′2
sinhρ

. (58)

The equation of motion for t2 is the same as the one for t1. Thus, the (UV cutoff independent)
change in volume to third order is given by

V(3) = 2π
∑

n

�

|n|3 − |n|
�

Cn
1 C−n

2 . (59)

Fourth order: In this order, the determinant of the induced metric is given by

p
γ|O(ε4) = −

1

8 sinh3ρ

�

cosh4ρ sinh4ρ ṫ4
1 + 2cosh4ρ sinh2ρ ṫ2

1 t ′21 + cosh4ρt ′41

+ 4cosh2ρ sinh4ρ ṫ2
2 + 4 cosh2ρ sinh2ρt ′22

+ 8cosh2ρ sinh4ρ ṫ1 ṫ3 + 8cosh2ρ sinh2ρt ′1 t ′3

�

.

(60)
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This gives the following equation of motion for t3,

cosh4ρ sinh2ρ ṫ2
1 t ′′1 + 3 cosh4ρt ′21 t ′′1 +

�

cosh5ρ sinh3ρ + 4cosh3ρ sinh5ρ
�

ṫ3
1

+ 4cosh4ρ sinh2ρ ṫ ′1 t ′1 ṫ1 −
�

cosh5ρ sinhρ − 4cosh3ρ sinh3ρ
�

t ′21 ṫ1

+ 3cosh4ρ sinh4ρ ṫ2
1 ẗ1 + cosh4ρ sinh2ρt ′21 ẗ1

+ 2cosh2ρ sinh4ρ ẗ3 + 2 cosh2ρ sinh2ρt ′′3 + 2
�

cosh3ρ sinh3ρ + 2 coshρ sinh5ρ
�

ṫ3 = 0 .
(61)

This can be slightly simplified by inserting the equation of motion for t1,

cosh4ρt ′21 t ′′1 + cosh3ρ sinh5ρ ṫ3
1 + 2 cosh4ρ sinh2ρ ṫ ′1 t ′1 ṫ1 − cosh3ρ sinhρt ′21 ṫ1

+ cosh4ρ sinh4ρ ṫ2
1 ẗ1 + sinh2ρ

�

cosh2ρ sinh2ρ ẗ3 + cosh2ρt ′′3
+ sinhρ coshρ(3cosh2ρ − 2) ṫ3

�

= 0 .

(62)

Decomposing t3 in a Fourier series gives

cosh2ρ sinh2ρ ẗn
3 + sinhρ coshρ(3cosh2ρ − 2) ṫn

3 − n2 cosh2ρtn
3 = gn(ρ) , (63)

where we have put all the t1-dependent parts into the function gn(ρ). The solution to this
inhomogenous differential equation is given by a sum of a special inhomogenous solution and
the solution of the homogenous equation with gn(ρ) = 0. Since the homogenous equation
is equivalent to the e.o.m. for tm

1 and tm
2 , the solution is already known. The inhomogenous

solution can be obtained by a Greens function ansatz:

− n2 cosh2ρG(ρ,ρ0) + coshρ sinhρ(3 cosh2ρ − 2)
∂

∂ ρ
G(ρ,ρ0) (64)

+ cosh2ρ sinh2ρ
∂ 2

∂ ρ2
G(ρ,ρ0) = δ(ρ −ρ0) . (65)

It is clear that the solution of (65) is equal to the solution of (52) when ρ 6= ρ0, therefore we
make the ansatz

G(ρ,ρ0) =

�

C+ tn
1,+ + C− tn

1,− , ρ < ρ0 ,
Ĉ+ tn

1,+ + Ĉ− tn
1,− , ρ > ρ0 .

(66)

Requiring continuity of G(ρ,ρ0) at ρ = ρ0 and the proper discontinuity of its derivative to
reproduce the right hand side of (65) fixes the coefficients C± and Ĉ±. Integrating over ρ0 we
obtain

tn
3,inhom.(ρ) =

tn
1,+(ρ)

2|n|(|n|2 − 1)

�

−
∫ ∞

0

dρ0
(coshρ0 + |n|) tanh(ρ0/2)|n|

sinhρ0 coshρ0
gn(ρ0)

+

∫ ∞

ρ

dρ0
(coshρ0 − |n|) tanh(ρ0/2)−|n|

sinhρ0 coshρ0
gn(ρ0)

�

+
tn
1,−(ρ)

2|n|(|n|2 − 1)

∫ ρ

0

dρ0
(coshρ0 + |n|) tanh(ρ0/2)|n|

sinhρ0 coshρ0
gn(ρ0) .

(67)

The inhomogenous part tn
3,inhom. of the solution vanishes at ρ = 0,∞:

lim
ρ→∞

tn
3,inhom.(ρ) =

�∫ ∞

0

dρ0

tn
1,+(ρ0)gn(ρ0)

2|n|(|n|2 − 1) sinhρ0

�

(tn
1,+(ρ→∞)− tn

1,−(ρ→∞)) = 0 ,

lim
ρ→0

tn
3,inhom.(ρ) =

�∫ ∞

0

dρ0

(tn
1,−(ρ0)− tn

1,+(ρ0))gn(ρ0)

2|n|(|n|2 − 1) sinhρ0

�

tn
1,+(ρ→ 0) = 0 .

(68)
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Therefore, to impose the boundary conditions obeyed by t3 we only need to consider the ho-
mogenous part of the solution as before. Furthermore, it can be shown that the inhomogenous
part tn

3,inhom. does not contribute to the volume change. The contribution of tn
3,inhom. to V(4) is

proportional to
∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
3,inhom.(ρ) + n2 tn

1,+(ρ)t
−n
3,inhom.(ρ))

=−
∫ ∞

0

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
1,+(ρ) + n2 tn

1,+(ρ)t
−n
1,+(ρ))

∫ ∞

0

dρ0

t−n
1,+(ρ0)g−n(ρ0)

sinhρ0

+

∫ ∞

0

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
1,+(ρ) + n2 tn

1,+(ρ)t
−n
1,+(ρ))

∫ ∞

ρ

dρ0

t−n
1,−(ρ0)g−n(ρ0)

sinhρ0

+

∫ ∞

0

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
1,−(ρ) + n2 tn

1,+(ρ)t
−n
1,−(ρ))

∫ ρ

0

dρ0

t−n
1,+(ρ0)g−n(ρ0)

sinhρ0
.

(69)
Using that

∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+ ṫ−n
1,− + n2 tn

1,+ t−n
1,−) (70)

= |n|2
�

1
|n|
− |n|+ coshρ +

1
coshρ

�

(tanh(ρ/2))2|n| , (71)

and
∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+ ṫ−n
1,− + n2 tn

1,+ t−n
1,−) = |n|

2
�

coshρ −
1

coshρ

�

, (72)

and applying partial integration in the last two terms of (69), we get a vanishing contribution
of tn

3,inhom. to V(4):
∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
3,inhom.(ρ) + n2 tn

1,+(ρ)t
−n
3,inhom.(ρ))

= |n|2
∫ ∞

0

dρ
t−n
1,+(ρ)g−n(ρ)

sinhρ

�

−
1
|n|
+ |n|+

�

1
|n|
+ |n|+ coshρ +

1
coshρ

�

coshρ − |n|
coshρ + |n|

− coshρ +
1

coshρ

�

= 0 .

(73)

From the remaining contribution of the homogenous term in the solution of the equation of
motion, we obtain in total

V(4) = −
∫

dρdφ
�

cosh2ρ

sinhρ

�

sinh2ρ ṫ1 ṫ3 + t ′1 t ′3 +
sinh2ρ ṫ2 ṫ2 + t ′2 t ′2

2

�

+
cosh4ρ

8 sinh3ρ

�

sinh2ρ ṫ1 ṫ1 + t ′1 t ′1
�2
�

= 2π
∑

n

(|n|3 − |n|)
�

Cn
1 C−n

3 +
1
2

Cn
2 C−n

2

�

+
π

4

∑

n,m,r

|n||m||n+ r||m− r|C1
n C1

mC1
r−mC1

−n−r

×
�

α
n,m,r
1

� k
∑

i=1

(−1)k−i

i
+ (−1)k log2

�

+αn,m,r
2

�

,

(74)
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where we have used the shorthand notation k = |n|+ |m|+ |r −m|+ | − n− r| and

α
n,m,r
1 =

1
3
(|m|3 − |m|+ |n|3 − |n|+ |r −m|3 − |r −m|+ |n+ r|3 − |n+ r|)

+ 2m|n|(n− 1/n) + 2n|m|(m− 1/m) ,
(75)

12αn,m,r
2 =4(1− k2)− 3(−1)k/2(k− k3)

+ (9(−1)k/2k− 12)(2mn− |m− r||n+ r| − (|n|+ |m|)(|n+ r|+ |m− r|)− |m||n|)

+
1

4k− k3

�

−120+ 28k2 − 4k4

+ (72− 12k2)(2mn− |m− r||n+ r| − (|n|+ |m|)(|n+ r|+ |m− r|)− |m||n|)

+ 12
|m||n||m− r||n+ r|
mn(m− r)(n+ r)

�

6− 7k2 + k4

+ (2− k2)(|n||m|+ (|n|+ |m|)(|m− r|+ |n+ r|) + |m− r||n+ r|)

− (4− 2k2)(m− r)(n+ r)− k|n||m|(|m− r|+ |n+ r|)
�

+ (9(−1)k/2(4k− 4k3)− 12(4− k2)− 12k)
�

−2m|n|/n− 2n|m|/m

+ (|n|+ |m|)|m− r||n+ r| − (2mn− |m||n|)(|m− r|+ |n+ r|)
�

+ 12
|m||n|

mn

�

2k(|m− r|+ |n+ r|) + k(|n|+ |m|)(2|m− r||n+ r| − (m− r)(n+ r))

+ 4+ 2(2|n||m| −mn)|m− r||n+ r|+ 4(|n|+ |m|)(|n+ r|+ |m− r|)

− 2|m||n|(m− r)(n+ r)
��

.

(76)

B Fubini-Study complexity

To compare our gravity results for the “complexity=volume” proposal with the Fubini-Study
complexity of [12,13], we now extend the calculation of the complexity in [12,13] to general
perturbative conformal transformations up to fourth order in perturbation theory.

The complexity functional of [12,13] is given by

CFS =

∫

ds
�

〈Q(s)2〉 − 〈Q(s)〉2
�

, (77)

with the circuit generator Q from (2). Let us treat the circuit (a) first. In this case Q = Q(a)
and

CFS =

∫

ds

∫

d xd y
4π2

Π(x , y)
ḟ (s, x)
f ′(s, x)

ḟ (s, y)
f ′(s, y)

, (78)

where

Π(x , y) = 〈T (x)T (y)〉 − 〈T (x)〉〈T (y)〉=
c

32sin4((x − y)/2)
−

h
2 sin((x − y)/2)2

. (79)

The corresponding complexity is determined by minimising (77). Thus we need to solve the
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equations of motion
∫

d x
��

−
f̈ (s, x)

f ′(s, x) f ′(s, y)
+

ḟ (s, x) ḟ ′(s, x)
f ′(s, x)2 f ′(s, y)

+ 2
ḟ (s, x) ḟ ′(s, y)

f ′(s, x) f ′(s, y)2

− 2
ḟ (s, y) ḟ (s, x) f ′′(s, y)

f ′(s, x) f ′(s, y)3

�

Π(x , y) +
ḟ (s, x) ḟ (s, y)

f ′(s, y)2 f ′(s, x)
∂yΠ(x , y)

�

= 0 .

(80)

This is achieved perturbatively. We expand

f (s, x) = x + ε f1(s, x) + ε2 f2(s, x) +O(ε3) , (81)

and determine the solution of (80) order by order in ε. Without loss of generality we take
s ∈ [0, 1] and impose the boundary conditions

f (0, x) = 0 , f (1, x) = f (x) , (82)

where the final transformation f (1, x) is the conformal transformation that yields the Bañados
geometry in the dual bulk picture. Note that in agreement with the gravity result, the first order
contribution (in ε) to the complexity vanishes.

Second order In this case, the solution of the equations of motion is given by a linearly
increasing function in the circuit time parameter s,

∫

d x f̈1(s, x)Π(x , y) = 0 ⇒ f1(s, x) = s f1(x) . (83)

Hence we obtain the following complexity9

C(2) = CFS|O(ε2) =

∫

ds

∫

d xd y
4π2

Π(x , y) ḟ 1(s, x) ḟ 1(s, y)

=
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

f n
1 f −n

1 ,
(84)

where f n
1 is the n-th Fourier mode of f1. For h = 0 and f n

1 = Cn
1 , (84) is proportional to the

“complexity=volume” result (56) from the gravity theory.

Third order To this order, we get a solution that is quadratic in s,
∫

d x f̈2(s, x)Π(x , y)

=

∫

d x
�

ḟ1(s, x)( ḟ ′1(s, x) + 2 f ′1(s, y))Π(x , y) + ḟ1(s, x) ḟ1(s, y)∂yΠ(x , y)
�

=

∫

d x
�

f1(x) f1(y)∂yΠ(x , y) + f1(x)( f
′

1(x) + 2 f ′1(y))Π(x , y)
�

⇒ f2(s, x) =
1
2

A2(x)s
2 + B2(x)s+ C2(x) .

(85)

9Note that to evaluate the x and y integrals in (77), a regularisation procedure is necessary [12,13]. Concretely,
we use differential regularisation to write the 1/ sin((x− y)/2) terms in (79) as derivatives of log[sin((x− y)/2)2]
and shift these derivatives onto the prefactor of the Π(x , y) term in (77) by partial integration (see [12, 13] for
details).
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The boundary conditions f2(0, x) = 0, f2(1, x) = f2(x) fix C2(x) = 0, 1
2A2(x)+B2(x) = f2(x).

We then obtain for the complexity to second order

C(3) = CFS|O(ε3)

=

∫

ds

∫

d xd y
4π2

Π(x , y)(2 ḟ1(s, x) ḟ2(s, y)− ḟ1(s, x) ḟ1(s, y)( f ′1(s, x) + f ′1(s, y)))

= 2
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

f n
1 f −n

2 − i
∑

n,m

m
� c

24
(|n|3 − |n|) + h|n|

�

f n
1 f m

1 f −n−m
1 .

(86)

Again, for h = 0 and Cn
2 = f n

2 − i
∑

m mf m
1 f n−m

1 this is proportional to the gravity result
(59). Both the field theory complexity functional and the gravity result are invariant under
replaing the transformation f (x) by its inverse F(x) (for C(2) and C(3) this amounts to replacing
f1(x)→− f1(x) and f2(x)→− f2(x) + f ′1(x) f1(x)).

Fourth order The equation of motion leads to a solution of f (s, x) to third order with a third
order polynomial in s,

f3(s, x) =
1
6

A3(x)s
3 +

1
2

B3(x)s
2 + sC3(x) + D3(x) . (87)

The boundary conditions f3(0, x) = 0, f3(1, x) = f3(x) determine enough of f3(s, x) to be able
to compute C(4). However, for C(4) we also need to solve the second order e.o.m. (85). This is
readily accomplished by using the Fourier decomposition of A2(x). Then (85) is equivalent to

∫

dzd xΠ(x , z)A2(x)e
−inz = (2π)2

� c
24
(|n|3 − |n|) + h|n|

�

An
2

=

∫

dzd x[in f1(x) f1(z) + f1(x)( f
′

1(x) + f ′1(z))]Π(x , z)e−inz

⇒An
2 =

−i
c

24(|n|3 − |n|) + h|n|

�

∑

r

f r
1 f n−r

1

� c
24
(|r|(2n− n3 − r + r3 + 2nr(n− r))

+ |n|(1− n2)(n− r))− h(|r|(2n− r) + |n|(n− r))
�

�

.

(88)
The complexity is then given by

C(4) = CFS|O(ε4) = CA
(4) + CB

(4) + CC
(4) , (89)

where

CC
(4) =

∫

d xd y
4π2

Π(x , y)[ f1(x) f3(y) + f3(x) f1(y)]

= 2
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

f n
1 f −n

3 ,
(90)

CB
(4) =

∫

d xd y
4π2

Π(x , y)
�

f2(x) f2(y)−
1
2

f1(x) f1(y)( f
′

2(x) + f ′2(y))

−
1
2
( f1(x) f2(y) + f2(x) f1(y))( f

′
1(x) + f ′1(y))

�

=
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

[ f n
2 f −n

2 −
∑

m

im( f n
1 f m

2 f −n−m
1 + f n

1 f m
1 f −n−m

2

+ f n
2 f m

1 f −n−m
1 )] ,

(91)

20

https://scipost.org
https://scipost.org/SciPostPhys.13.3.061


SciPost Phys. 13, 061 (2022)

and

CA
(4) =

∫

d xd y
4π2

Π(x , y)
�

1
12

A2(x)A2(y)−
1

12
(A2(x) f1(y) + f1(x)A2(y))( f

′
1(x) + f ′1(y))

+
1
12

f1(x) f1(y)(A
′
2(x) + A′2(y)) +

1
3

f1(x) f1(y)( f
′

1(x) + f ′1(y))
2
�

=
∑

m,n,r

c
24

f m
1 f n

1 f m−r
1 f −n−r

1

�

−
1
12

1
|r|3 − |r|

�

|n|(n3 − n+ r3 + 2nr(n+ r)− 2r) + (n+ r)|r|(r2 − 1)
�

�

|m|(m3 −m− r3 + 2mr(r −m) + 2r) + (m− r)|r|(r2 − 1)
�

−
1
12

�

(m+ 2n)|m|(m2 − 1) + (n+ 2m)|n|(n2 − 1) + (m+ n)|m+ n|((m+ n)2 − 1)
�

1
|m+ n|3 − |m+ n|

�

(n+ r)|m+ n|((m+ n)2 − 1)

+ |m− r|
�

r((n+ r)2 − 1) + n((m+ n)2 − 1)

− (m+ n) + (n2 −mr)(r −m)
�

�

+
1
3
(m− r)(n+ r)(|m|(m2 − 1) + |n|(n2 − 1) + |r|(r2 − 1))

�

+ terms proportional to h .

(92)
Comparison with (74) clearly shows that the field theory complexity functional (77) does not
match with the “complexity=volume” result from the gravity theory for general conformal
transformations to fourth order in perturbation theory.

To derive the Fubini-Study complexity for the circuit (b), we simply replace Q(a) by Q(b). An
analogous calculation to the one above for the circuit (a) shows that although this replacement
changes the optimal path in the circuit as expected, the value of the Fubini-Study complexity
functional is unchanged up to the third order.

Finally, let us note that the Fubini-Study complexity functional (77) is not unique in the
sense that any complexity functional defined as a time-integral of a function of the Fubini-
Study metric has the same optimal path as (77),

CFS,generalized =

∫

dsα
�Æ

〈Q(s)2〉 − 〈Q(s)〉2
�

. (93)

Here α is a positive function. Equation (77) is therefore only one particular member of a more
general family obtained by choosing α(x) = x2. Our analysis can also exclude that other mem-
ber of this family match with the volume change in the “complexity=volume” prescription. To
see this, expand the function α(x) in a power series in x . The only term in this expansion that
gives an O(ε4) contribution to the complexity but no O(ε3) and O(ε2) contributions is the x4

term. However by explicit calculation it is easy to see that this term together with the O(ε4)
contributions from x2 or x3 terms cannot give a result equal to the fourth order term (74) in
the perturbation series in ε of the volume change.
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