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Abstract

Lieb-Schultz-Mattis (LSM) theorems provide powerful constraints on the emergibility
problem, i.e. whether a quantum phase or phase transition can emerge in a many-body
system. We derive the topological partition functions that characterize the LSM con-
straints in spin systems with Gs ×Gint symmetry, where Gs is an arbitrary space group in
one or two spatial dimensions, and Gint is any internal symmetry whose projective rep-
resentations are classified by Zk

2 with k an integer. We then apply these results to study
the emergibility of a class of exotic quantum critical states, including the well-known de-
confined quantum critical point (DQCP), U(1) Dirac spin liquid (DSL), and the recently
proposed non-Lagrangian Stiefel liquid. These states can emerge as a consequence of the
competition between a magnetic state and a non-magnetic state. We identify all possible
realizations of these states on systems with SO(3) × ZT

2 internal symmetry and either
p6m or p4m lattice symmetry. Many interesting examples are discovered, including a
DQCP adjacent to a ferromagnet, stable DSLs on square and honeycomb lattices, and
a class of quantum critical spin-quadrupolar liquids of which the most relevant spinful
fluctuations carry spin-2. In particular, there is a realization of spin-quadrupolar DSL
that is beyond the usual parton construction. We further use our formalism to analyze
the stability of these states under symmetry-breaking perturbations, such as spin-orbit
coupling. As a concrete example, we find that a DSL can be stable in a recently proposed
candidate material, NaYbO2.
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1 Introduction

An important task of condensed matter physics is to understand the quantum phase or phase
transition that emerges from a many-body system. However, this is often challenging in
strongly correlated systems, both theoretically and experimentally, due to the lack of i) theo-
retical tools to exactly solve the many-body ground state in the generic setting, and ii) exper-
imentally accessible signatures that can unambiguously diagnose the nature of the phase or
phase transition.

In light of this, Lieb-Shultz-Mattis (LSM) type constraints are especially valuable [1–3].
Given some general symmetry-related properties of a system, which are often relatively easy
to determine, the LSM constraints constrain the emergibility of a phase or phase transition,
i.e., whether this phase or phase transition can possibly emerge from this system. Such con-
straints have been widely applied to the search for exotic states beyond the symmetry-breaking
paradigm, e.g., quantum spin liquid phases and exotic phase transitions. For instance, a sim-
ple example of LSM constraints states that in a (d + 1)-d lattice spin system with SO(3) spin
rotation and lattice translation symmetries that are not explicitly or spontaneously broken, if
each unit cell hosts an odd number of spin-1/2 moments, then the ground state must be exotic
(i.e., topologically ordered or gapless). Since symmetry breaking is often relatively easy to
detect experimentally and numerically, its absence is often taken as the first evidence of an
exotic state in such systems.

There has been great progress in understanding LSM constraints in recent years [4–10]. In
particular, it was realized that LSM constraints can be captured by LSM anomalies, the quan-
tum anomalies carried by the boundaries of some higher-dimensional topological crystalline
phases. Such relations between LSM constraints and anomalies can be very powerful in con-
straining the emergibility of a phase or phase transition, because the quantum anomaly of
this phase or phase transition, which we refer to as its IR anomaly, must match with the LSM
anomaly (in a sense to be sharpened later).

In order to utilize these constraints, we need to know how to compare an LSM anomaly and
an IR anomaly. The latter can be derived from the effective field theory of the corresponding
phase or phase transition, and it is often characterized by a topological partition function
(TPF). However, to date the TPFs corresponding to the LSM anomalies are unknown in the
general setting, so the full power of the LSM constraints has not been uncovered; although
these constraints have been applied to various systems and shed important insights in the
emergibility of some states [11–14], most previous analyses were performed in a case-by-
case manner and/or did not take the full symmetry constraint into account, and a systematic
framework is lacking.

The first major goal of this paper is to fill this gap. Motivated by the studies of quantum
magnetism, we consider (2 + 1)-d spin systems with Gs × Gint symmetry, where the lattice
symmetry Gs is any of the 17 wallpaper groups, and Gint is any internal symmetry whose pro-
jective representations are classified by Zk

2 with k some integer, e.g., Gint = SO(3)× ZT
2 , the

combination of SO(3) spin rotational symmetry and time reversal symmetry. Given Gs × Gint ,
there are still topologically distinct LSM constraints, specified by the projective representation
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Figure 1: If two states have the same emergent order and exact microscopic symme-
try, and if they can be smoothly connected when symmetry-breaking perturbations
are allowed, but are necessarily separated by a phase transition when the relevant
symmetries are preserved, then these states are said to have symmetry-protected dis-
tinction.

(PR) under Gint carried by the degrees of freedom (DOF) of the system, and the spatial distri-
bution of these DOF. For all cases, we derive the TPFs of the LSM anomalies. Similar analysis is
also performed for (1+1)-d lattice spin systems. This topological characterization of the LSM
constraints is the basis of a systematic framework that uses the LSM constraints to understand
the emergibility of quantum phases and phase transitions in a many-body system.

The second major goal of this paper is to apply the obtained topological characterization of
the LSM constraints to study the emergibility of exotic states. Here we focus on exotic quantum
criticality, rather than other classes of exotic states, e.g., topological phases, which may be
more commonly done in the literature. Our choice is motivated by the following reasons.
First, quantum critical states may have many elegant structures that are worth studying, such
as emergent conformal invariance at low energies. Second, many quantum critical states can
serve as the parent states of other phases (including topological phases), which can emerge
through perturbing the quantum critical states. So a thorough understanding of the quantum
criticality may provide a unified understanding of not only the critical state itself, but also the
nearby phases. However, compared to topological phases, quantum criticality is much less
understood, especially in two and three spatial dimensions. So it is interesting and important
to further explore them.

A useful notion here is symmetry-enriched quantum criticality. This notion is actually
rather familiar, but let us discuss it in a more modern perspective. By now, it is well ap-
preciated that the universal long-distance and low-energy physics of most (if not all) quantum
many-body systems are specified by two levels of data. The first level is characterized by what
we refer to as the emergent order. In the language of renormalization group (RG), the emer-
gent order is described by properties of the RG fixed point corresponding to this system, which
are independent of the exact microscopic symmetry. For example, the RG fixed point corre-
sponding to gapped states are described by certain topological quantum field theory (TQFT),
or variants of it. Short-range entangled (SRE) states, i.e., states smoothly connected to a prod-
uct state without quantum entanglement, are related to a trivial TQFT. In contrast, long-range
entangled gapped states, which cannot be smoothly connected to product states, correspond
to some nontrivial TQFT. On the other hand, gapless states have different emergent orders,
and many of their RG fixed points are described by a conformal field theory (CFT). States
described by different RG fixed points are distinct at the level of their emergent orders.

Even if two states have the same emergent order (RG fixed point), their exact microscopic
symmetries provide a second level of data that may distinguish them. Two states with the
same emergent order but different exact microscopic symmetries are considered distinct. If
they have the same emergent order and same exact microscopic symmetries, they may still
have symmetry-protected distinction: they are not smoothly connected if certain symmetries
are imposed, while they are if these symmetries are broken (see Fig. 1). Two SRE states
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with symmetry-protected distinction are referred to as different SPTs, two topological orders
with symmetry-protected distinction are referred to as different symmetry-enriched topolog-
ical states (SETs), and two quantum critical states with symmetry-protected distinction are
referred to as different symmetry-enriched criticality. There has been great progress in under-
standing SPTs and SETs in the past years, but a systematic understanding of symmetry-enriched
criticality is lacking.

In this paper, we focus on the emergibility of a family of quantum critical states dubbed
Stiefel liquids (SLs), each of which is labeled by an integer N ¾ 5 and denoted by SL(N) [15].
The well-known deconfined quantum critical point (DQCP) [16–19] and U(1) Dirac spin liquid
(DSL) [20–22] are unified as the two simplest SLs, with N = 5 and N = 6, respectively. SL(N¾7)

are conjectured to be non-Lagrangian, i.e., they are so strongly interacting, such that they
cannot be described by any weakly-coupled continuum Lagrangian at any energy scale. We
would like to understand whether the SLs can emerge in lattice spin systems, and if they can,
which different types of symmetry-enriched SLs can emerge.

Here we characterize each realization of SL(N) by its symmetry embedding pattern (SEP),
i.e., how the microscopic symmetries act on its local, low-energy DOF. This characterization
has a number of advantages. First and most fundamentally, it captures the symmetry actions
in an intrinsic and direct way. This is in contrast to the more common treatment of emer-
gent gauge theories in condensed matter physics (e.g., for DQCP and DSL), where one first
considers the symmetry actions on gauge non-invariant operators (such as spinons) and then
converts them into actions on local operators, which is indirect and sometimes complicated,
especially when there is a (2+1)-d U(1) gauge field where the quantum numbers of the local
monopole operators cannot be identified with those of any gauge-invariant composite of the
matter fields, and when some symmetries act as duality between different gauge-theoretic for-
mulations of the same critical state. Second, using this characterization we can easily read off
the symmetry-breaking patterns of the ordered phases adjacent to the exotic quantum critical-
ity. This information provides valuable guidance on where to look for these quantum critical
states: if the corresponding ordered phases are found in a material or model, then exploring
the vicinity of the phase diagram may result in the critical state. Third, using this character-
ization it is easy to check the stability of the critical state under various perturbations, e.g.,
spin-orbit couplings (SOC). Recently, NaYbO2 and related materials emerge as candidates for
DSL [23–32]. These systems have strong SOC, so it is important to ask if DSL remains stable
under SOC. We showcase how to use our approach to argue that the DSL can be stable in
NaYbO2.

To check the emergibility of a Stiefel liquid with a given symmetry embedding pattern, we
rely on the hypothesis of emergibility [15]: a state is emergible if and only if its IR anomaly
matches with that of the LSM-like anomaly of the microscopic system. The necessity of this
condition has been established, while its sufficiency is hypothetical, but supported by many
nontrivial examples. Using the symmetry embedding pattern, we can match the IR anomaly of
an SL with the LSM anomaly of a lattice spin system characterized by the TPF we derive1, and
we search for all realizations of SL(N=5,6,7) that can emerge due to the competition between
a magnetic state and a non-magnetic state on lattice systems with Gs × Gint symmetry, where
Gs is either the p4m or p6m wallpaper group, and Gint = SO(3) × ZT

2 . We discover many
interesting realizations of these states. For example, we find that the DSL can be realized as
a quantum critical spin-quadrupolar liquid, i.e., a critical state whose most relevant spinful
excitations have spin-2. So far, the construction of the DSL is often based on a type of parton

1In Ref. [15], the TPFs for some of the LSM anomalies are listed, and anomaly-matching is performed to check
the emergibility of various SLs. However, both those TPFs and the anomaly-matching calculations therein are
problematic, and the current paper presents the correct TPFs and anomaly-matching calculations. All specific
examples studied in Ref. [15] are treated with care in this paper (see Sec. 3.3 and Appendix I), and it is found that
all final physical results regarding the emergibility of these examples are correctly obtained in Ref. [15].
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mean field. However, we show that our spin-quadrupolar realization of the DSL is beyond
that parton mean field. With all realizations at hand, we will see that, given an SL(N) and
its microscopic symmetries, different symmetry embedding patterns typically correspond to
different symmetry-enriched SLs (we discuss the subtle cases where this may not be true at
the end of Sec. 4).

We highlight that this exhaustive search of realizations of SLs is possible because we have
obtained our topological characterization of the LSM contraints, without which we cannot
examine the emergibility of states systematically. We also remark that even if the hypothesis
of emergibility turns out to be false, i.e., it is just a necessary but insufficient condition for
emergibility, the result of our search is still useful, because all SLs that are emergible must
belong to the ones we identify.

The organization of the rest of the paper and a brief summary of the main results are as
follows.

1. In Sec. 2, we derive the topological partition functions of the LSM constraints of the
lattice spin systems of our interest. The structure of these topological partition functions
is given in Eq. (1), where η is determined by the projective representation carried by
the local degrees of freedom under the internal symmetry, and λ is determined by the
locations of the local degrees of freedom. The characterization of λ for different space
groups can be found in Secs. 2.2.1, 2.2.2 and 2.2.3, and Appendix F. Some further
arguments leading to these topological partition functions are presented in Appendices
B, C, D and G.

2. In Sec. 3, we sketch how to use anomaly-matching to understand the emergibility of
various Stiefel liquids. Detailed examples of caculations are presented in this section
and also in Appendix I.

3. In Secs. 4 and 5, we present some interesting realizations of SLs, while the complete
results are summarized in the attached codes, which can be read with the instruction
in Appendix J. Table 1 records the total numbers of realizations in different cases, and
Table 2 records the numbers of realizations that are adjacent to classical regular mag-
netic orders. The stability of each realization is also analyzed, which is recorded in the
attached codes. In Appendix K, we present all stable realizations on various familiar
lattice systems. The highlighted examples in the main text include i) a deconfined quan-
tum critical point between a ferromagnet and a valence bond solid, ii) stable U(1) Dirac
spin liquids in spin-1/2 square and honeycomb lattices, iii) various realizations of the
non-Lagrangian Stiefel liquid, and iv) realizations of SLs where the most relevant spinful
excitations carry spin-2, which, in particular, include a U(1) Dirac spin liquid that cannot
be desribed by the usual parton approach.

4. We demonstrate how to use our formalism to study the stability of these states under
symmetry-breaking perturbations in Sec. 6, where we argue that the DSL can be stable
in NaYbO2. More analysis regarding NaYbO2 and twisted bilayer WSe2 is presented in
Appendix M.

5. We conclude in Sec. 7.

6. Various appendices include further details, some of which may be of general interest.
For example, Appendix A is a review of the basic mathematical tools we use. Appendix
E contains descriptions of all 17 wallpaper groups, as well as information about their
Z2 cohomology, including their Z2 cohomology rings and all representative cochains at
degree 1 and 2. Appendix H contains more details of the Stiefel liquids, including some
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that do not appear in Ref. [15]. Appendix L presents the configurations of spins of all
classical regular magnetic orders in triangular, honeycomb, kagome and square lattices.

2 Topological characterization of LSM constraints

In this section, we develop a topological characterization of the LSM constraints applicable to
a (2+1)-d lattice spin system, whose Hilbert space is a tensor product of local bosonic Hilbert
spaces, and whose Hamiltonian is also local. We assume that the system has a symmetry
group G = Gs × Gint , where Gs is one of the 17 wallpaper groups and Gint is an internal
symmetry group. Throughout this paper, we consider Gint whose projective representations
(PR) are classified by Zk

2 with some k ∈ N+, i.e., H2(Gint , U(1)ρ) = Zk
2

2, with the subscript
ρ indicating the complex conjugation action of any spacetime orientation reversal symmetry
on the U(1) coefficient. Typical examples of such Gint include SO(3), SO(3)×ZT

2 , ZT
2 , O(2),

Z2×Z2, etc. These choices of G and Gint are motivated by the systems and models relevant to
quantum magnetism. We will also perform a similar analysis for (1+1)-d lattice spin systems.

Some Gint may have multiple types of PR. For example, for Gint = SO(3) × ZT
2 ,

H2(SO(3) × ZT
2 , U(1)ρ) = Z2

2, so there are 3 different types of nontrivial PR, corresponding
to spinor under SO(3) while Kramers singlet under ZT

2 , singlet under SO(3) while Kramers
doublet under ZT

2 , and spinor under SO(3) while Kramers doublet under ZT
2 . In this paper, we

will mainly consider systems with at most one type of nontrivial PR, i.e., there may be some
DOF carrying trivial PR under Gint , but all DOF with nontrivial PR carry the same type of non-
trivial PR which we refer to as the PR type of the system. If all DOF carry trivial PR, then the PR
type of the system is said to be the trivial type. Many of our results can be straightforwardly
generalized to the case where the system has DOF with different types of nontrivial PR, on
which we sometimes explicitly comment.

2.1 Review of lattice homotopy and the connection to SPT

To be self-contained, we begin by reviewing lattice homotopy [5], in a way that will lead to
our topological characterization of the LSM constraints most easily.

All LSM constraints should be fully determined by the spatial distribution of the DOF in
the system. The key idea of lattice homotopy is that, to characterize the LSM constraints for
a given lattice system, one can always first smoothly deform the system so that all DOF are
moved to the high-symmetry points of the corresponding wallpaper symmetry group, while
preserving the G = Gs × Gint symmetry during the process. These high-symmetry points are
called the irreducible Wyckoff positions (IWP); their precise definition can be found in Ref. [5]
and they are well documented for each space group in the standard crystallographic literature.
All distributions of DOF that can be smoothly deformed into each other are referred to be in
the same lattice homotopy class. Below we always assume that a smooth deformation has been
performed, such that all DOF are located at some IWP. Then to determine the presence or
absence of an LSM constraint, one can invoke one or multiple of the following 3 types of basic
no-go theorems that preclude symmetric SRE (sym-SRE) ground states in various cases [5,33]:

1. Define a fundamental domain to be a region that tiles the 2D space under the actions
of translation and glide symmetries. When the total PR within a fundamental domain is
nontrivial, a sym-SRE ground state is forbidden.

2In this paper, a few different objects have the structure of Zk
2 with some k ∈ N. These k’s are independent

unless explicitly claimed, and we will abuse the notation to use the same k when we make a statement about this
Zk

2 structure.
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2. When there is a translation symmetry along a mirror axis, and the total PR within a
translation unit along this mirror axis is nontrivial, a sym-SRE ground state is forbidden.

3. In our case, the PR of Gint are classified by Zk
2. Then if the total PR at a C2 rotation

center is nontrivial, a sym-SRE ground state is forbidden. However, PR at a Cn rotation
center for odd n does not forbid a sym-SRE ground state.

Note that these no-go theorems do not require the full wallpaper symmetry to be applicable.
In particular, the first applies whenever there are translation or glide symmetries, the second
applies whenever there are commuting translation and mirror symmetries, and the last applies
whenever there is a rotation symmetry. When a full wallpaper symmetry is present, there
are often multiple translations, glide reflections, mirror and rotation symmetries, so a given
distribution of DOF may trigger multiple of these basic no-go theorems. It is straightforward
to check that knowing which no-go theorems are triggered is actually also sufficient to know
which lattice homotopy class this distribution of DOF is in.

One can see that, for a given wallpaper group Gs and a PR type of the system, the spatial
distributions of DOF form an Abelian group, denoted by ALH. Each group element in ALH
corresponds to a lattice homotopy class of distributions of DOF, the multiplication between
two group elements corresponds to physically stacking two such distributions of DOF together,
and the trivial group element corresponds to a distribution of DOF that is free of all 3 basic no-
go theorems above (i.e., a distribution of DOF with no net nontrivial PR in any fundamental
domain, any translation unit on any mirror axis, or any C2 rotation center). Due to the Z2
nature of the PR, the inverse of each group element is itself, so ALH = Zk

2 with k ∈ N.
It turns out that elements in ALH are in one-to-one correspondence with different LSM

constraints [5], i.e., the ground states emergible in systems with distributions of DOF corre-
sponding to different group elements of ALH must be different, in the sense that they have
different emergent order or symmetry-protected distinction. As an example, the trivial ele-
ment represents the absence of any LSM constraint, i.e., a sym-SRE ground state is allowed if
the microscopic DOF of the system are arranged in a configuration corresponding to the trivial
element. Therefore, the intuitive geometric picture based on lattice homotopy gives an elegant
characterization and classification of LSM constraints. An important observation that will be
very useful later is that the structure of ALH only depends on Gs and the fact that all PR of Gint
has a Z2 nature, but not on other details of Gint .

When PR of Gint areZk
2-classified with k > 1, the above discussion applies to the case where

at most one type of nontrivial PR is present in the system. If all nontrivial PR are allowed to
be present, all LSM constraints are classified by Ak

LH, i.e., each nontrivial PR can result in LSM
constraints classified by ALH, and nontrivial LSM constraints from different nontrivial PR are
all different.

To make this discussion more concrete, below we consider two specific examples that will
be relevant for the later part of the paper.

2.1.1 Gs = p6m

We start with the example where Gs = p6m, which is the symmetry group of triangular, kagome
and honeycomb lattices. The generators, a translation unit cell and IWP of p6m are shown in
Fig. 2. The translation vectors of T1 and T2 have the same length, and their angle is 2π/3.
There is also a 6-fold rotational symmetry, denoted by C6. Finally, there is a mirror symmetry
M , whose mirror axis passes through the C6-center and bisects the translation vectors of T1
and T2.

We wish to understand how to identify the distributions of DOF with the elements in ALH
in this example. First consider the case where all DOF in the system are in the trivial PR. This
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Figure 2: Panel (a) shows the generators of the wallpaper group p6m. In panel
(b), the hexagon is a translation unit cell of the wallpaper group p6m. It has three
IWP, usually labelled by a, b and c in crystallography, and they form the sites of the
triangular, honeycomb and kagome lattices, respectively. The C6 rotation center is at
the type-a IWP.

distribution of DOF is free of all the 3 basic no-go theorems, so it corresponds to the trivial
element of ALH, which physically implies that there is no LSM constraint associated with this
distribution of DOF, and sym-SRE ground states are allowed. This is indeed the common belief.

Next, consider putting DOF with nontrivial PR on any of the three types of IWP. First,
imagine putting DOF with nontrivial PR on the type-b IWP. One can check that none of the 3
basic no-go theorems is triggered, so this distribution of DOF also corresponds to the trivial
group element, and there should be no associated LSM constraint. Indeed, this configuration
is where the DOF are on a honeycomb lattice, and it is known that sym-SRE ground states
are allowed in this case [34–37], consistent with the absence of any LSM constraint. Second,
imagine putting DOF with nontrivial PR on the type-a IWP. One can check that all 3 basic no-
go theorems are triggered, so this configuration should correspond to a nontrivial element in
ALH, and such a system has a nontrivial LSM constraint that precludes any sym-SRE ground
state. The same is true if DOF with nontrivial PR are put on the type-c IWP. Moreover, one
can also check that the distributions of DOF on type-a and type-c IWP are in different lattice
homotopy classes, i.e., they cannot be smoothly deformed into each other. So they correspond
to different group elements in ALH, which indicates different LSM constraints. These two
types of IWP form a triangular and kagome lattice, respectively, and there is indeed no known
example of symmetric states that can emerge in both triangular and kagome lattices, without
showing any difference in emergent order or symmetry-protected distinction.3

Finally, one can also consider putting DOF with nontrivial PR on multiple of the three
types of IWP. For instance, putting these DOF on both type-a and type-c IWP is equivalent to
stacking systems with DOF arranged on a triangular lattice and kagome lattice together, which
corresponds to multiplying the two nontrivial group elements in the last paragraph.

Taken together, the above analysis indicates that the LSM constraints on a lattice with p6m
symmetry are classified by ALH = Z2

2, and the two generators can be taken to correspond to
distributions of DOF on triangular and kagome lattices, respectively.

In the above, we have worked out ALH by examining whether any of the basic no-go theo-
rems is triggered by a distribution of DOF. To finish the discussion of this case with Gs = p6m,
we demonstrate how the information about which basic no-go theorems are triggered can
uniquely determine the lattice homotopy class. In this case, we just need to consider the third
type of the basic no-go theorems. For this type of no-go theorems, there are two independent
ones, triggered by putting DOF with nontrivial PR on the type-a and type-c IWP, respectively.
So if we know which of the no-go theorems are triggered, we also know whether there are

3In fact, even spontaneously-symmetry-breaking states (such as ferromagnetic states) realized on these two
lattices should be distinct, because they have different anomalies. However, to the best of our knowledge, it is still
an open problem to explicitly calculate the complete anomalies for these spontaneously-symmetry-breaking states,
which is an interesting problem beyond the scope of the current paper.
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Figure 3: Panel (a) shows the generators of the wallpaper group p4m. In panel (b),
the square is a translation unit cell of the wallpaper group p4m. It has three IWP,
usually labelled by a, b and c in crystallography. Type-a and type-b both form a
square lattice. The C4 rotation center in panel (a) is taken to be at the type-a IWP.

nontrivial PR carried by type-a and type-c IWP. From the previous discussion, this can uniquely
determine the lattice homotopy class. This observation will be very useful when we construct
a topological characterization of the LSM constraints later.

2.1.2 Gs = p4m

Warmed up with the example where Gs = p6m, now we can easily apply the similar analysis
to the other 16 wallpaper groups. Here, we examine the case where Gs = p4m, which will be
relevant to our later discussion.

The p4m group describes the symmetry of square and checkerboard lattices. The genera-
tors, a translation unit cell and IWP of p4m are shown in Fig. 3. The translation vectors of T1
and T2 have the same length and are perpendicular. There is also a 4-fold rotational symme-
try, denoted by C4. Finally, there is a mirror symmetry M , whose mirror axis passes through
the C4-center and is parallel to the translation vector of T2. There are 3 types of IWP. The
type-a IWP is the 2-fold rotation centers of C2

4 , the type-b IWP is the 2-fold rotation centers of
T1T2C2

4 , and the type-c IWP includes the 2-fold rotation centers of both T1C2
4 and T2C2

4 . Note
that the type-a and type-b are actually also 4-fold rotation centers, and all three IWP lie on
some mirror axes.

Below, we enumerate some distributions of DOF that correspond to different elements in
ALH in this case:

1. All DOF have trivial PR: trivial element in ALH.

2. DOF with nontrivial PR at one of the three types of IWP: three different elements in ALH.

3. DOF with nontrivial PR at multiple of the IWP: product of elements in the previous case.

This analysis implies that the LSM constraints on a lattice with p4m symmetry are classified
by ALH = Z3

2, and the three generators can be taken to correspond to distributions of DOF on
the three types of IWP. Note that both the type-a and type-b IWP form a square lattice, and
type-c IWP form a checkerboard lattice. Again, it is easy to see that knowing which of the
basic no-go theorems are triggered can uniquely determine the lattice homotopy class.

Before finishing the review, we note that it has also been realized that LSM constraints
are intimately related to anomalies and higher dimensional SPTs [4, 6–9]. In the present
context, our (2+1)-d system with DOF carrying PR can be viewed as a boundary of a (3+1)-
d system made of stacked (1 + 1)-d SPTs protected by Gint , which are also classified by
H2(Gint , U(1)ρ) = Zk

2. The spatial extension of these (1 + 1)-d SPTs is along the extra di-
mension. The boundaries of these SPTs carry the PR, whose types and locations precisely
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match with the DOF of the original (2 + 1)-d system, which have been moved to the IWP
using lattice homotopy. Furthermore, the wallpaper symmetry Gs can be naturally extended
into a symmetry of the (3 + 1)-d system. Then the (3 + 1)-d system is an SPT protected by
Gs ×Gint , and a sym-SRE boundary of such a nontrivial SPT is forbidden due to the nontrivial
quantum anomaly, which implies the LSM constraints. Moreover, different SPTs have different
anomalies on the boundary, so their corresponding LSM constraints must be different, such
that ground states emergible in systems with different LSM constraints must have distinction
in their emergent order or symmetry-protected distinction. For these reasons, in the following
we will view an LSM constraint and the (3 + 1)-d Gs × Gint SPT corresponding to this LSM
constraint on equal footing.

2.2 Topological characterization of the LSM constraints

The above picture of lattice homotopy and higher dimensional SPTs allows us to derive a topo-
logical characterization of the LSM constraints. In particular, we will identify the topological
partition function (TPF) of the (3+1)-d SPT corresponding to each nontrivial LSM constraint
for a given Gs and Gint .

To do it, we use the fact that the SPT of interest can be constructed by stacking the nontrivial
(1+1)-d Gint SPT at various IWP. Suppose, in the language of Dijkgraff-Witten theories [38–40],
the TPF of this (1 + 1)-d SPT is encoded in a nontrivial cocycle in H2(Gint , U(1)ρ) ∼= Zk

2,
which can be represented by exp (iπη(a1, a2)), where a1,2 ∈ Gint and η takes values in {0, 1}
(taking η ∈ {0, 1} is valid since such SPTs are Zk

2-classified). To write down the TPF of the
relevant (3+ 1)-d Gs × Gint SPT, we view Gs on equal footing with Gint , keeping in mind that
any orientation-reversal element in Gs should also complex conjugate the U(1) coefficient, in
accordance with the crystalline equivalence principle [41]. Then the TPF can be encoded in a
cocycle Ω(g1, g2, g3, g4) in H4(Gs × Gint , U(1)ρ), where g1,2,3,4 ∈ Gs × Gint . The picture based
on lattice homotopy and stacks of (1 + 1)-d Gint SPT strongly suggests that Ω(g1, g2, g3, g4)
takes the form

Ω(g1, g2, g3, g4) = eiπλ(l1,l2)η(a3,a4) , (1)

where gi ∈ Gs × Gint is written as gi = li ⊗ ai , with li ∈ Gs and ai ∈ Gint , and λ also takes
values in {0, 1}. Physically, λ encodes the information of which IWP host the (1 + 1)-d Gint
SPT. The lattice homotopy picture further suggests that λ is completely determined by Gs and
the lattice homotopy class corresponding to the particular LSM constraint, and should be the
same for all Gint with Zk

2-classified PR and all PR types of the system. Such a cocycle implies
that the TPF, in terms of lattice gauge theory on a triangulated manifold, takes the form

Z = eiπ
∫

M4
λ[As]∪η[Aint ] , (2)

where M4 is the 4 dimensional spacetime manifold of the SPT, As and Aint are the (1-form)
gauge fields resulting from gauging Gs and Gint , respectively, and exp(iπ

∫

η[Aint]) gives the
TPF of the (1+1)-d Gint SPT. Note that although the TPF is constructed from a cup product of
λ and η, generically λ (or η) itself cannot be written as a cup product of As (or Aint).

In Appendix B, we show that the above expectation is indeed correct. Furthermore, λ(l1, l2)
can be viewed as a representative cochain in H2(Gs,Z2). Assuming that the (1+1)-d Gint SPT
is already understood (i.e., the η corresponding to the PR type of the system is known), the
task to identify the TPF for the (3+ 1)-d Gs × Gint SPT corresponding to the LSM constraints
becomes identifying λ(l1, l2) for a given Gs and lattice homotopy class.

Before proceeding, let us pause to clarify what it means to identify λ(l1, l2). After all,
as reviewed in Appendix A.1, λ(l1, l2) changes under coboundary transformations, so it is
not an invariant characterization of the LSM constraints. However, inequivalent λ’s can be
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diagnosed by quantities related to it that are invariant under coboundary transformations. So
identifying λ(l1, l2) really means identifying these topological invariants. To relate to some
known results of such topological invariants, we define ω(l1, l2) ≡ eiπλ(l1,l2), which encodes
the same information as λ(l1, l2). Then a topological invariant takes the form of α[ω], a
functional of ω.

Now we proceed to derive these topological invariants. Because λ(l1, l2) or ω(l1, l2) is
the same for all Gint , it suffices to derive it in a particularly simple and illuminating case, i.e.,
Gint = SO(3). According to Sec. 2.1, in this case the (3+1)-d Gs×Gint SPTs related to the LSM
constraints are fully characterized by the spatial distribution of Haldane chains, i.e., (1+ 1)-d
SPT protected by the SO(3) symmetry. Therefore, to characterize the LSM constraints, all we
have to do is to identify topological invariants for H2(Gs,Z2) that can tell us which IWP host
Haldane chains. To this end, we utilize the fact that, for a given spatial distribution of Haldane
chains, which IWP host Haldane chains is fully encoded in which of the 3 basic no-go theorems
are triggered. So if we can characterize the 3 basic no-go theorems using some topological
invariants, we can further get the topological invariants corresponding to the LSM constraints.

To obtain the topological invariants corresponding to the 3 basic no-go theorems, it is
useful to consider coupling the system to a probe gauge field of the SO(3) symmetry and ex-
amine the monopoles of this SO(3) gauge field, which is a method proven to be extremely
powerful [14, 42–47]. Because the wave function of the system acquires a −1 topological
phase factor when an SO(3) monopole circles around a Haldane chain4, we will see below
that if any of the 3 basic no-go theorems is triggered, the Gs symmetry will fractionalize on
the SO(3) monopole in a specific way, i.e., the SO(3) monopole will carry a specific projective
representation of Gs. The symmetry fractionalization pattern of Gs on the SO(3) monopole
will thus completely encode the LSM constraint. Since the fusion rule of the SO(3) monopole
is determined by π1(SO(3)) = Z2 [48], the symmetry fractionalization patterns of Gs on the
SO(3) monopole are classified by H2(Gs,Z2) [12, 13, 49, 50]. So the LSM constraints can be
characterized by elements in H2(Gs,Z2), consistent with the previous general discussion. This
also implies that when Gint = SO(3), for a given Gs and lattice homotopy class, the λ(l1, l2)
in Eq. (1) should be precisely the element in H2(Gs,Z2) that describes the symmetry frac-
tionalization pattern of Gs on the SO(3) monopole in the corresponding SPT. However, one
should not expect that all symmetry fractionalization patterns captured by H2(Gs,Z2) are re-
lated to LSM constraints. To see it, consider breaking the SO(3) symmetry to U(1). Then the
original LSM-related Gs × SO(3) SPT will become a trivial Gs × U(1) SPT, since the Haldane
chain is trivialized upon this symmetry breaking. Therefore, the U(1) monopole, which is the
descendent of the SO(3) monopole after symmetry breaking, should carry no nontrivial sym-
metry fractionalization pattern. It implies that certain nontrivial symmetry fractionalization
pattern on the SO(3) monopoles, or certain elements in H2(Gs,Z2), may be unrelated to LSM
constraints. We will see this explicitly below.

We start with the first no-go theorem, and focus on the case where only translation sym-
metry is important, and defer a similar discussion where the glide reflection is also important
to Appendix C. Denote the two translation generators by T1 and T2, and apply the operation
T−1

2 T−1
1 T2T1 to an SO(3) monopole, which moves it around a translation unit cell. If each

translation unit cell constains an odd (even) number of Haldane chains, this process results
in a −1 (1) phase factor, which precisely characterizes how the translation symmetry fraction-

4Consider moving a Haldane chain around an SO(3) monopole. The topological phase factor generated in this
process is given by the topological partition function of the Haldane chain, calculated on the manifold defined by
the spacetime trajectory it moves along, with a background SO(3) gauge bundle exerted by the SO(3)monopole. It

is known that the topological partition function of a Haldane chain is eiπ
∫

M wSO(3)
2 , where wSO(3)

2 is the second Stiefel-
Whitney class of the SO(3) gauge bundle. Furthermore,

∫

M wSO(3)
2 = 1 around an SO(3) monopole. Therefore,

there is a −1 phase factor generated in this process, which also implies that moving an SO(3) monopole around a
Haldane chain results in a −1 topological phase factor.
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alizes on the SO(3) monopole. By slightly abusing the notation, we write the subgroup of Gs
generated by T1 and T2 as T1 × T2. The fractionalization patterns of the T1 × T2 symmetry
should be classified by H2(T1 × T2,Z2) = Z2, so the aforementioned phase factor must be
given by the unique nontrivial topological invariant in H2(T1 × T2,Z2), i.e., α1[ω] =

ω(T1,T2)
ω(T2,T1)

.

Denote two elements in this subgroup by l1 = T x1
1 T y1

2 and l2 = T x2
1 T y2

2 , with x1,2, y1,2 ∈ Z, a
representative cochain that triggers this topological invariant is ω(l1, l2) = (−1)y1 x2 .

Next, consider the second no-go theorem. Denote the generator of the relevant mirror
symmetry by M , and suppose T generates a translation symmetry on the mirror plane. Note
that this implies T M = M T . Apply the operation M T−1M T to an SO(3) monopole, which
moves it along a trajectory that encloses a translation unit along the mirror plane. Suppose
there is an odd (even) number of Haldane chains in this translation unit, this process results
in a −1 (1) phase factor, which precisely characterizes how the symmetry group generated
by M and T fractionalizes on the SO(3) monopole. Write the subgroup of Gs generated by
M and T as M × T , the fractionalization patterns of the M × T symmetry are classified by
H2(M × T,Z2) = Z2

2. So there are two nontrivial topological invariants in H2(M × T,Z2), and

they can be written as α2[ω] =
ω(T,M)
ω(M ,T ) and αnon−LSM =

ω(M ,M)
ω(1,1) , where in the denominator 1

stands for the trivial group element in M × T . Note that αnon−LSM = −1 would imply when
the SO(3) symmetry is broken to U(1), the resulting Gs × U(1) state is a nontrivial SPT, since
this represents a nontrivial symmetry fractionalization pattern of a U(1) monopole [45, 46].
According to the previous general discussion, αnon−LSM should be unrelated to LSM constraints
of interest.

We can also directly see that αnon−LSM is unrelated to the LSM constraints without con-
sidering breaking the SO(3) symmetry. Denote two elements in M × T by l1 = T x1 M m1 and
l2 = T x2 M m2 , with x1,2 ∈ Z and m1,2 ∈ {0,1}, representative cochains that trigger these two
topological invariants are ω(l1, l2) = (−1)m1 x2 and ω(l1, l2) = (−1)m1m2 , respectively. Sup-
pose λ in Eq. (1) constains a piece λ(l1, l2) = m1m2, such that αnon−LSM = −1, from Eq. (2),
we see the TPF of the (3+ 1)-d SPT contains a part given by exp(iπ

∫

(wT M
1 )2wSO(3)

2 ), where
wT M

1 is the first Stiefel-Whitney class of the tangent bundle of the spacetime manifold, and

wSO(3)
2 is the second Stiefel-Whitney class of the SO(3) gauge bundle. In writing this down,

we have used that M is an orientation reversal symmetry and that the TPF of a Haldane chain
is exp(iπ

∫

wSO(3)
2 ). This means that when the symmetry is broken down to M × SO(3), the

system is still a nontrivial SPT.5 However, all SPTs corresponding to LSM constraints become
trivial when the lattice symmetry contains only a mirror symmetry (as can be seen from lattice
homotopy, or simply from the lack of basic no-go theorem that only requires a mirror symme-
try as the lattice symmetry), and hence a contradiction. This again means αnon−LSM = 1 for
SPTs corresponding to LSM constraints (see Appendix D for the physics of the SPTs that trigger
αnon−LSM). Therefore, the phase factor resulted from acting M T−1M T to an SO(3) monopole
must be given by α2.

Finally, consider the third no-go theorem. Denote the generator of the relevant 2-fold ro-
tational symmetry by C2, and apply C2 to an SO(3) monopole twice, which moves it around
a C2 rotation axis. Suppose there is an odd (even) number of Haldane chains in this C2 ro-
tation axis, this process results in a −1 (1) phase factor, which precisely characterizes how
the C2 rotational symmetry fractionalizes on the SO(3) monopole. Write the subgroup of Gs
generated by C2 also as C2. The fractionalization patterns of the C2 symmetry are classified
by H2(C2,Z2) = Z2, so the aforementioned phase factor must be given by the unique topolog-

5In this SPT, the symmetry M fractionalizes on the SO(3)monopole, i.e., acting M twice on an SO(3)monopole
yields a −1 phase factor. This symmetry fractionalization pattern is captured by H2(M ,Z2) = Z2, whose unique
topological invariant is αnon−LSM. So αnon−LSM should be identified as this phase factor. In Appendix D, we further
show that such an SPT can be constructed by putting on its M mirror plane a (2+ 1)-d Z2 × SO(3) SPT, whose Z2

domain walls are decorated with Haldane chains.
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ical invariant in H2(C2,Z2), i.e., α3[ω] =
ω(C2,C2)
ω(1,1) . Denote two elements in this subgroup by

l1 = C c1
2 and l2 = C c2

2 , with c1,2 ∈ {0, 1}, a representative cochain that triggers this topological
invariant is ω(l1, l2) = (−1)c1c2 .

In summary, we have found 4 basic types of symmetry fractionalization patterns of Gs,
characterized by the above 4 types of topological invariants, α1,2,3 and αnon−LSM. The first
three are related to the 3 basic no-go theorems, thus to the LSM constraints, while the last is a
non-LSM symmetry fractionalization pattern. As mentioned before, if Gint = SO(3) is broken
to U(1), αnon−LSM detects a nontrivial symmetry fractionalization pattern of a U(1)monopole,
captured by a nontrivial element in H2(Gs, Uρ(1)) 6. One can also see that α1,2,3 = −1 does
not imply that the descendent Gs × U(1) SPT is nontrivial, since they correspond to trivial
elements in H2(Gs, Uρ(1)). These 4 basic fractionalization patterns are clearly independent
of each other, as they correspond to completely different (3 + 1)-d SPTs. Furthermore, for
all 17 wallpaper groups Gs, these 4 types of fractionalization patterns give a complete set of
topological invariants that can distinguish all elements of H2(Gs,Z2), as explicitly checked in
Appendix F. These actually mean that

ALH = ker[ĩ : H2(Gs,Z2)→ H2(Gs, U(1)ρ)] , (3)

where ĩ is the map defined in Eq. (57).
With this in mind, to further derive the topological invariants corresponding to an LSM

constraint, we just need to write down the complete set of independent topological invariants
of H2(Gs,Z2), and bridge the combinations of these topological invariants with distributions of
DOF. Then each combination is a topological invariant for an LSM constraint, which determines
λ in Eq. (1). Combined with η corresponding to the PR type of the system, Eq. (1) or (2) gives
the TPF of the (3+ 1)-d Gs × Gint SPT corresponding to this LSM constraint. An advantage of
this approach is its intuitive nature, i.e., everything can be done by simply inspecting the IWP.
Below we perform this analysis in detail for the cases with Gs = p6m and Gs = p4m, which will
be relevant to the discussion of symmetry-enriched criticality later in the paper. In Appendix
F, we present all topological invariants that characterize H2(Gs,Z2), with Gs being any of the
17 wallpaper groups.

Before moving on, we stress again that the topological characterization of the LSM con-
straints obtained here applies to all Gint with Zk

2-classified PR and all PR types of the system,
although it is derived in a special case with Gint = SO(3).

2.2.1 Gs = p6m

All fractionalization patterns of p6m are classified by H2(p6m,Z2) = Z4
2. As discussed in Sec.

2.1, p6m has two IWP related to LSM constraints, type-a and type-c. The former is the 2-fold
rotation center of C3

6 , and the latter includes the 2-fold rotation centers of T1C3
6 , T2C3

6 and
T1T2C3

6 . In addition, p6m also has two independent mirror symmetries, M and C3
6 M . Using

the 4 types of basic topological invariants discussed above, we can immediately write down
the complete set of independent topological invariants which can distinguish all elements in

6More precisely, H2
Borel(Gs, U(1)ρ). Especially, H2

Borel(p1, U(1)ρ)∼= H3(p1,Zρ) = 0.
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H2(p6m,Z2):

α
p6m
1 [ω] =

ω(C3
6 , C3

6 )

ω(1, 1)
,

α
p6m
2 [ω] =

ω(T1C3
6 , T1C3

6 )

ω(1, 1)
,

α
p6m
3 [ω] =

ω(M , M)
ω(1,1)

,

α
p6m
4 [ω] =

ω(C3
6 M , C3

6 M)

ω(1, 1)
.

(4)

Physically, αp6m
1 and αp6m

2 measure the PR at the type-a and type-c IWP, respectively, while

α
p6m
3 and αp6m

4 determine whether the (3 + 1)-d Gs × Gint SPT contains a non-LSM compo-
nent. Mathematically, the correctness, completeness and independence of these topological
invariants can be checked using the representative cochains in Appendix E.

Therefore, when αp6m
3 = αp6m

4 = 1, the combinations (αp6m
1 ,αp6m

2 ) are the sought-for topo-
logical invariants that characterize the LSM constraints in a lattice with Gs = p6m. In particu-
lar, (αp6m

1 ,αp6m
2 ) = (−1, 1) and (αp6m

1 ,αp6m
2 ) = (1,−1) imply that there are DOF with nontrivial

PR at the type-a and type-c IWP, respectively, which are the generators of ALH, as discussed in
Sec. 2.1. When at least one of αp6m

3 and αp6m
4 is −1, this combination does not correspond to

any LSM constraint.
We remark that the choice of topological invariants is not unique. For example, the expres-

sion of αp6m
2 [ω] can be replaced by either

ω(T2C3
6 ,T2C3

6 )
ω(1,1) or

ω(T1T2C3
6 ,T1T2C3

6 )
ω(1,1) , because

ω(T1C3
6 ,T1C3

6 )
ω(1,1) =

ω(T2C3
6 ,T2C3

6 )
ω(1,1) =

ω(T1T2C3
6 ,T1T2C3

6 )
ω(1,1) for a cocycle ω(g1, g2) in H2(p6m,Z2), as can

be checked by using the representative cochains in Appendix E. Physically, this just means
that the 2-fold rotation centers of T1C3

6 , T2C3
6 and T1T2C3

6 are related by symmetry, so the
PR at these three rotation centers should be the same. We can also replace the expression of
α

p6m
2 [ω] by ω(T1,T2)

ω(T2,T1)
, which tells us whether there is a net nontrivial PR in a translation unit

cell and equals αp6m
1 [ω] ·αp6m

2 [ω]. This information combined with αp6m
1 [ω] also completely

specifies which IWP host Haldane chains.
It is useful to notice some interesting relations between LSM constraints with Gs = p6m

and those with Gs being a subgroup of p6m. In particular, consider the case where Gs = cmm,
which is a subgroup of p6m generated by T1, T2, C2 ≡ C3

6 and M . That is, the 3-fold rotational
symmetry generated by C2

6 is absent. This wallpaper group has 3 IWP, where the first is the
2-fold rotation center of C2, the second is the 2-fold rotation center of T1T2C2, and the last
includes the 2-fold rotation centers of both T1C2 and T2C2. Furthermore, there are two in-
dependent mirror symmetries, generated by M and C2M . Similar analysis as before indicates
that, for cmm, the 3 LSM fractionalization patterns and 2 non-LSM fractionalization patterns
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are detected by topological invariants

αcmm
1 [ω] =

ω(C2, C2)
ω(1,1)

,

αcmm
2 [ω] =

ω(T1T2C2, T1T2C2)
ω(1, 1)

,

αcmm
3 [ω] =

ω(T1C2, T1C2)
ω(1,1)

,

αcmm
4 [ω] =

ω(M , M)
ω(1, 1)

,

αcmm
5 [ω] =

ω(C2M , C2M)
ω(1,1)

.

(5)

So when αcmm
4 = αcmm

5 = 1, the combinations (αcmm
1 ,αcmm

2 ,αcmm
3 ) are the topological invari-

ants that characterize the LSM constraints in a lattice with Gs = cmm.
It is easy to see that the first IWP of cmm is just the descendent of the type-a IWP of p6m,

and the second and third IWP of cmm are descendent of the type-c IWP of p6m. Moreover, the
mirror symmetries of cmm are also the descendent mirror symmetries of p6m. This means that
the fractionalization pattern of p6m can be completely specified by that of its cmm subgroup.
More precisely, for a cmm subgroup of p6m, we have

α
p6m
1 = αcmm

1 , α
p6m
2 = αcmm

2 = αcmm
3 ,

α
p6m
3 = αcmm

4 , α
p6m
4 = αcmm

5 .
(6)

These relations allow us to focus on the cmm subgroup of a p6m group when we consider its
fractionalization classes, which sometimes simplifies the analysis.

2.2.2 Gs = p4m

Using similar analysis as before, it is easy to see that the LSM constraints for the case with
Gs = p4m are classified by Z3

2, generated by distributions of DOF with nontrivial PR on the 3
IWP. The 3 root LSM constraints can be detected by topological invariants

α
p4m
1 =

ω(C2
4 , C2

4 )

ω(1, 1)
,

α
p4m
2 =

ω(T1T2C2
4 , T1T2C2

4 )

ω(1,1)
,

α
p4m
3 =

ω(T1C2
4 , T1C2

4 )

ω(1, 1)
.

(7)

Again, the p4m symmetry requires that
ω(T1C2

4 ,T1C2
4 )

ω(1,1) =
ω(T2C2

4 ,T2C2
4 )

ω(1,1) . There are also non-LSM
fractionalization patterns classified by Z3

2, with the following topological invariants for the
corresponding generators:

α
p4m
4 [ω] =

ω(M , M)
ω(1,1)

,

α
p4m
5 [ω] =

ω(T1M , T1M)
ω(1,1)

,

α
p4m
6 [ω] =

ω(C4M , C4M)
ω(1, 1)

.

(8)
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In the case with Gint = SO(3), these three topological invariants imply that acting M , T1M
and C4M on an SO(3) monopole twice yields a −1 phase factor, respectively.

Therefore, when αp4m
4 = αp4m

5 = αp4m
6 = 1, the combinations (αp4m

1 ,αp4m
2 ,αp4m

3 ) are the
topological invariants that characterize the LSM constraints in a lattice with Gs = p4m.

Again, it is useful to note the relation between the LSM constraints for Gs = p4m and those
for its subgroups. Let us consider the pmm subgroup of p4m, generated by T1, T2, M and
C2 ≡ C2

4 . That is, the 4-fold rotation is absent while the 2-fold rotation is retained in pmm.
By inspecting the IWP of pmm, we can immediately write down the topological invariants
corresponding to the LSM constraints

α
pmm
1 [ω] =

ω(C2, C2)
ω(1, 1)

,

α
pmm
2 [ω] =

ω(T1T2C2, T1T2C2)
ω(1,1)

,

α
pmm
3 [ω] =

ω(T1C2, T1C2)
ω(1,1)

,

α
pmm
4 [ω] =

ω(T2C2, T2C2)
ω(1,1)

,

(9)

and the topological invariants for the non-LSM fractionalization patterns

α
pmm
5 [ω] =

ω(M , M)
ω(1, 1)

,

α
pmm
6 [ω] =

ω(C2M , C2M)
ω(1,1)

,

α
pmm
7 [ω] =

ω(T1M , T1M)
ω(1, 1)

,

α
pmm
8 [ω] =

ω(T2C2M , T2C2M)
ω(1,1)

.

(10)

So when all αpmm
5 = αpmm

6 = αpmm
7 = αpmm

8 = 1, the combinations (αpmm
1 ,αpmm

2 ,αpmm
3 ,αpmm

4 )
are the topological invariants that characterize the LSM constraints in a lattice with Gs = pmm.

Furthermore, by examining the relation between IWP of p4m and the IWP of its pmm
subgroup, we get

α
p4m
1 = αpmm

1 , α
p4m
2 = αpmm

2 ,

α
p4m
3 = αpmm

3 = αpmm
4 ,

α
p4m
4 = αpmm

5 = αpmm
6 ,

α
p4m
5 = αpmm

7 = αpmm
8 .

(11)

So 5 of the 6 topological invariants for p4m can be determined by examining its pmm sub-
group. To further determine the last topological invariant, αp4m

6 , one can simply examine the
subgroup generated by C4M . This observation will also simplify some analysis.

2.2.3 Topological characterization of the LSM constraints in (1+ 1)-d

In the above we have derived the topological characterization of LSM constraints in (2+ 1)-d
systems. Similar derivation can be carried out for (1+ 1)-d systems with Gs × Gint symmetry,
where Gs is one of the two line groups, and Gint is an internal symmetry group whose PR are
Zk

2-classified. In this case, the lattice homotopy picture still applies in an analogous way, and
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there are (2+1)-d Gs ×Gint SPTs corresponding to each LSM constraint. Here we present the
cocycle and TPF of these SPTs, and leave the details of derivation to Appendix G.

When Gs = p1, the line group that contains only translation generated by T , the classifi-
cation of LSM constraints is Z2, detected by the total PR inside each translation unit cell. The
cocycle describing the (2+ 1)-d p1× Gint SPT related to the nontrivial LSM constraint is

Ω(g1, g2, g3) = eiπx1η(a2,a3) , (12)

where gi = T x i ⊗ ai , with x i ∈ Z and ai ∈ Gint , for i = 1, 2,3. The corresponding TPF can be
written as

Z = eiπ
∫

M3
x∪η[Aint ] , (13)

where M3 is the (2+1)-d spacetime manifold the SPT lives in, and x is the gauge field corre-
sponding to the translation symmetry.

When Gs = p1m, the line group that contains both translation T and mirror M , the classi-
fication of LSM constraints is Z2

2, detected by the total PR at the mirror centers of M and T M .
For the case where only the mirror center of M has a net nontrivial PR, the corresponding
cocycle is

Ω(g1, g2, g3) = eiπ(x1+m1)η(a2,a3) , (14)

where gi = T x i M mi⊗ai , with x i ∈ Z, mi ∈ {0, 1} and ai ∈ Gint , for i = 1, 2,3. The correspond-
ing TPF can be written as

Z = eiπ
∫

M3
(x+m)∪η[Aint ] , (15)

where x is still the gauge field of translation, and m is the gauge field of mirror symmetry. For
the case where only the mirror center of T M has a net nontrivial PR, using similar notations,
the corresponding cocycle and TPF are respectively

Ω(g1, g2, g3) = eiπx1η(a2,a3) , (16)

and

Z = eiπ
∫

M3
x∪η[Aint ] . (17)

3 Applications to symmetry-enriched quantum criticality

The above topological characterization of the LSM constraints is not only conceptually impor-
tant, but also of practical relevance. A crucial question in condensed matter physics is what
we call the question of emergibility: given an IR effective theory, can it emerge at low ener-
gies in a lattice system described by a local Hamiltonian? This question is generically rather
challenging, and we will utilize the hypothesis of emergibility: given a (d + 1)-dimensional IR
effective theory with symmetry GIR, a necessary and sufficient condition for it to emerge from
a lattice system with symmetry GUV is that there is a symmetry embedding pattern (SEP), i.e.,
a homomorphism ϕ

ϕ : GUV→ GIR , (18)

such that the anomaly of this IR effective theory matches with the anomaly of the lattice system
coming from the LSM-like constraint, in the sense that

ΩUV = ϕ
∗ (ΩIR) , (19)
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where ΩUV describes the LSM-like anomaly of the lattice system, ΩIR is the anomaly of the
IR effective theory, and ϕ∗ is the pullback induced by ϕ (see Appendix A.2 for a review).
In fact, the necessity of this condition has been established (i.e., ’t Hooft anomaly-matching
condition), and only the sufficiency of it is hypothetical. Although this hypothesis has not been
proved so far, it is supported by many nontrivial examples. In the following we will assume
the correctness of the hypothesis of emergibility.

The hypothesis of emergibility provides an intrinsic characterization of the emergibility
of an IR effective theory, without relying on any of its specific constructions. It is especially
useful when there is no known lattice construction of this IR effective theory, but its anomaly
is known. A class of such IR theories is the non-Lagrangian Stiefel liquids (SLs) proposed in
Ref. [15]. A theory is Lagrangian if it can be described by a weakly-coupled Lagrangian at high
energies, which at low energies may flow to a strongly-coupled fixed point under RG. A non-
Lagrangian theory is one that is so strongly interacting, such that it cannot be described by any
weakly-coupled Lagrangian at any energy scale. The SLs are proposed to be an infinite family
of quantum critical states, where its simplest members are the celebrated deconfined quantum
critical point (DQCP) and U(1)Dirac spin liquid (DSL), while other members are conjectured to
be non-Lagrangian. Due to the intrinsic absence of a weakly-coupled description, it is difficult
to construct these non-Lagrangian states on a lattice system by usual means. However, the
anomalies of these SLs are derived in Ref. [15]. With ΩUV derived in Sec. 2 (given by Eqs. (1)
or (2)), we can check the emergibility of these states in various lattice spin systems, by checking
the existence of SEP that can match the anomalies. Based on this approach, some interesting
realizations of the non-Lagrangian SLs on triangular and kagome lattices are proposed [15].
Here we will explore this problem more systematically.

Motivated by their relevance in the study of quantum magnetism, in the following we
will focus on lattice systems with GUV = Gs × Gint symmetry, where Gs is p4m or p6m, and
Gint = O(3)T ≡ SO(3)× ZT

2 , the product of spin rotation and time reversal symmetries. We
further demand that the PR type of the system correspond to half-integer spin, i.e., spinor
under SO(3) while Kramers doublet under ZT

2 , which implies that the (1 + 1)-d SPT related

to the LSM constraints has a TPF exp
�

iπ
∫

M2
(wSO(3)

2 + t2)
�

= exp
�

iπ
∫

M2
wO(3)T

2

�

. For the IR

effective theory, we focus on DQCP, DSL, and the simplest non-Lagrangian SL, denoted by SL(7).
We will exhaustively search SEP that can match the anomalies of these IR theories with the LSM
anomalies on these lattices, assuming that the IR theories can emerge as a consequence of the
competition between a magnetic state (a state that breaks the SO(3) spin rotational symmetry,
e.g., a Neel state) and a non-magnetic state (an SO(3) symmetric state, e.g., a valance bond
solid (VBS)).

3.1 Review of Stiefel liquids

First, we briefly review the physics of SLs [15] (see Appendix H for more details, including
useful information absent in Ref. [15]). In Ref. [15], the proposed non-Lagrangian SLs are de-
fined in terms of 2+1 dimensional non-linear sigma models with target spaces being a Stiefel
manifold. Although this sigma-model description is very effective in capturing the kinematic
properties of the SLs, these non-renormalizable sigma models have infinite-dimensional pa-
rameter spaces, and they do not fully specify the universal low-energy physics of the system
until all their infinitely many parameters are specified. So it is desirable to have a definition of
these SLs without explicitly referring to any Lagrangian. In the following, we will review the
symmetries, anomalies and some dynamical aspects of the SLs, and these proporties can also
be viewed as an intrinsic definition of SLs without relying on any Lagrangian.

A SL is labelled by an integer N ¾ 5, and we denote this state by SL(N). The DQCP and DSL
correspond to SL(5) and SL(6), respectively, and SL(N>6) are conjectured to be non-Lagrangian.
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The DOF of SL(N) is represented by an N × (N − 4) matrix n with orthonormal columns. The
symmetry GIR of SL(N) includes Poincaré symmetry and

O(N)T ×O(N − 4)T

Z2
. (20)

The O(N) acts as n→ Ln with L ∈ O(N), and the O(N −4) acts as n→ nR with R ∈ O(N −4).
The superscript “T" represents a locking condition: an improper rotation of either the O(N)
or O(N − 4) is a symmetry if and only if it is combined with a spacetime orientation reversal
symmetry. This locking condition is one of the reasons why SL(N¾7) may be non-Lagrangian
(see Appendix H). The modding of Z2 is because the operation with L = −IN and R = −IN−4
has no action on n. For N = 5, n reduces to a 5-component vector, and GIR includes Poincaré
symmetry and an O(5)T symmetry that acts by left multiplication on n, such that the improper
rotation is combined with a spacetime orientation reversal symmetry.

The anomaly of SL(N) is captured by ΩIR, an element in H4(GIR, U(1)ρ). It is useful to
consider the projection from G̃IR ≡ O(N)T ×O(N −4)T to GIR, and the pullback of ΩIR induced
by the projection is given by Ω̃IR = eiπ L̃IR ∈ H4(G̃IR, U(1)ρ), where

L̃IR = wO(N)
4 +wO(N−4)

4 +
h

wO(N−4)
2 +

�

wO(N−4)
1

�2i�
wO(N)

2 +wO(N−4)
2

�

+
�

wO(N−4)
1

�4
, (21)

supplemented with a constraint wT M
1 + wO(N)

1 + wO(N−4)
1 = 0 (mod 2), which originates from

the locking between the spacetime orientation reversals and the improper rotations of O(N)
and O(N − 4). Here wO(N)

i , wO(N−4)
i and wT M

i are the i-th Stiefel-Whitney classes of the O(N),
O(N − 4) gauge bundles and the tangent bundle of the spacetime manifold, respectively. For
odd N , Ω̃IR completely characterizes ΩIR (see Appendix H for more details). However, for even
N , Ω̃IR misses some important information. Fortunately, it turns out that Ω̃IR is still adequate
for the following discussion, even for the case with N = 6 (see Appendix I.2 and discussions
below Eq. (229)). Below we will view Ω̃IR as the IR anomaly of SLs and omit the tilde symbol,
i.e., we rewrite Ω̃IR and L̃IR as ΩIR and LIR for simplicity.

The low-energy dynamics of SLs is not fully understood so far. There is evidence that DQCP
is a pseudo-critical state [19,51–54], which can be approximated by a CFT, whose relevant op-
erators are the conserved current, the SO(5) vector and symmetric traceless rank-2 tensor, and
possibly time-reversal breaking SO(5) singlet. There is also evidence that SL(N¾6) are genuine
CFTs with no GIR-symmetric relevant operator. Furthermore, various numerical studies (e.g.
see a recent conformal bootstrap study [55] and references therein) give (indirect) support
that the only relevant operators in these states are either conserved currents, or time-reversal-
breaking operators, or Lorentz scalar operators in the representations (VL , VR) and (AL , AR),
where VL (VR) and AL (AR) represent the vector and anti-symmetric rank-2 tensor of SO(N)
(SO(N − 4)), respectively. The effects of these relevant operators are complicated: some of
them change the emergent order of the state, but others do not (see Appendix H for more
details). We are interested in the stability of these states in a specific lattice realization, whose
symmetry is GUV. Some perturbations that are not GIR-symmetric can be GUV-symmetric and
drive the states unstable. For a realization to be stable, we demand that GUV forbid all the
aforementioned relevant perturbations that change the emergent order of the state.

It is also sometimes useful to refer to the gauge-theoretic description of the DSL (SL(6)).
This description is in terms of 4 flavors of gapless Dirac fermions coupled to a dynamical
U(1) gauge field. The global symmetry of this theory is given by Eq. (20) with N = 6. The
fundamental operator in this theory is the monopole operators of the U(1) gauge field, which
transform as a bi-vector under the (SO(6)× SO(2))/Z2 symmetry [56–58]. These monopoles
are represented by the 6×2 matrix n in the language of SLs, which are also the (VL , VR) relevant
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operator mentioned above. In terms of the gauge theory, other relevant perturbations listed
above are as follows. The conserved currents are the flavor currents of the Dirac fermions and
the electromagnetic field strengths of the U(1) gauge field, the time-reversal-breaking operator
is the fermion mass that is a singlet under the flavor symmetry, and the (AL , AR) operator is
the fermion mass that is in the adjoint representation of the flavor symmetry.

3.2 Method for anomaly-matching

Now we sketch a streamlined method to check the emergibility condition Eq. (19), for a
given symmetry embedding pattern (SEP) ϕ. This method crucially relies on the fact that
H4(GUV, U(1)ρ) = Zk

2 with some k ∈ N, which always holds if GUV = G′×ZT
2 with some group

G′. In our case, G′ = Gs × SO(3). More generally, as long as GUV = G′ × ZT
2 for any G′, we

expect this method to be useful in matching the LSM anomaly of a lattice system with the
anomaly of any IR effective theories. This subsection is relatively formal and abstract, and
readers more interested in the physical results can skip to the next section.

To motivate this method, first note that ΩUV and ϕ∗(ΩIR) are elements in H4(GUV, U(1)ρ).
To compare two elements in H4(GUV, U(1)ρ), generically we need a complete set of topological
invariants (or some equivalents) for H4(GUV, U(1)ρ), which is often difficult to obtain. This
difficulty comes from the fact that we are considering cohomology with U(1) coefficients.

Nevertheless, simplification occurs when GUV = G′ ×ZT
2 and hence H4(GUV, U(1)ρ) = Zk

2
with some k ∈ N. This enables us to connect ΩUV and ϕ∗(ΩIR) to elements in H∗(GUV,Z2),
which simplifies the analysis due to the salient features of cohomologies with Z2 coefficients.

To see the connection to H∗(GUV,Z2), first recall thatΩUV takes the form of Eq. (1). We can
view λ and η as elements in H2(Gs,Z2) and H2(Gint ,Z2), respectively. Then λ(l1, l2)η(a3, a4)
is in fact the cup product λ∪η 7, which is an element in H4(GUV,Z2) that we denote by LUV.
As a group, here the group operation of two elements in H4(GUV,Z2) is realized as the mod
2 addition of the representative cochains of these elements, which take values in Z2 = {0,1}.
Then ΩUV can be written as eiπLUV , or more formally as ĩ(LUV), where ĩ is a map induced by
the inclusion i : Z2 → U(1) introduced in Eq. (57). That is, the LSM anomaly ΩUV can be
expressed as an image of an element LUV ∈ H4(GUV,Z2) under ĩ. 8

Furthermore, there is an injective map from H4(GUV, U(1)ρ) to H5(GUV,Z2), given by p̃◦β ,
i.e., the combination of the Bockstein homorphism β : H4(GUV, U(1)ρ) → H5(GUV,Zρ) and
an injective map p̃ : H5(GUV,Zρ) → H5(GUV,Z2) (see Appendix A.2 for a brief introduction
of these maps). Here the fact that p̃ is injective is again guaranteed by H4(GUV, U(1)ρ) = Zk

2,
which is crucial for this method. This means that checking Eq. (19) is equivalent to checking

(p̃ ◦ β)ΩUV = (p̃ ◦ β)ϕ∗(ΩIR) , (22)

where both sides are elements in H5(GUV,Z2).
Now we discuss the relevant simplifying features of cohomology with Z2 coefficient. First,

for any group G, H∗(G,Z2) has a ring structure, where the addition is the mod 2 addition
as above, and the multiplication between two elements is realized as their cup product. The
entire cohomology ring H∗(G,Z2) can be presented by generators and relations, such that any
of its elements can be written as sum of cup products of these generators, while the relations
dictate that some sums are in fact the trivial element.

Moreover, H∗(Gs×Gint ,Z2)∼= H∗(Gs,Z2)⊗H∗(Gint ,Z2) for any Gs and Gint , which allows
us to understand H∗(Gs × Gint ,Z2) by understanding H∗(Gs,Z2) and H∗(Gint ,Z2) separately.

7More specifically, the cross product λ×η, defined in Eq. (67) in Appendix A.3.
8In fact, since GUV = G′ × ZT

2 , which implies that Hn(GUV, U(1)ρ) = Zk
2 for any n ∈ N, any element in

Hn(GUV, U(1)ρ) can be written as the image of an element in Hn(GUV,Z2) under ĩ.
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We are interested in the case with Gint = O(3)T ≡ SO(3) × ZT
2 . The coho-

mology ring H∗(O(3)T ,Z2) is generated by the Stiefel-Whitney classes of O(3)T , i.e.,

wO(3)T

1 ∈ H1(O(3)T ,Z2), wO(3)T

2 ∈ H2(O(3)T ,Z2) and wO(3)T

3 ∈ H3(O(3)T ,Z2), with
no relation among the generators. Sometimes we also need to write H∗(O(3)T ,Z2) as
H∗(SO(3),Z2)⊗H∗(ZT

2 ,Z2), where H∗(SO(3),Z2) is generated by the Stiefel-Whitney classes

wSO(3)
2 and wSO(3)

3 of SO(3), and H∗(ZT
2 ,Z2) is generated by t ∈ H1(ZT

2 ,Z2). These two sets of
generators are related by

wO(3)T

1 = t ,

wO(3)T

2 = wSO(3)
2 + t2 ,

wO(3)T

3 = wSO(3)
3 + twSO(3)

2 + t3 . (23)

As for H∗(Gs,Z2), we have calculated the Z2 cohomology ring, i.e., the generators and
relations, of all 17 wallpaper groups (see Appendix E). It turns out that for all wallpaper
groups Gs except p4g, all generators belong to H1(Gs,Z2) and H2(Gs,Z2). For p4g, besides
elements in H1(p4g,Z2) and H2(p4g,Z2), another element in H3(p4g,Z2) is also needed to
form a complete set of generators.

The above observations motivate us to consider the following diagram, where each rect-
angular sub-diagram is commuting 9:

H4(GIR,Z2) H4(GIR, U(1)ρ) H5(GIR,Zρ) H5(GIR,Z2)

H4(GUV,Z2) H4(GUV, U(1)ρ) H5(GUV,Zρ) H5(GUV,Z2)

ϕ∗

ĩ

ϕ∗

β

ϕ∗

p̃

ϕ∗

ĩ β p̃

. (24)

From the commutativity of the diagram, checking Eq. (22) is equivalent to checking

SQ1(LUV) = ϕ
∗(p̃ ◦ β)(ΩIR) (25)

in H5(GUV,Z2), where

SQ1 ≡ p̃ ◦ β ◦ ĩ . (26)

Some important properties and calculations of SQ1 are given in Appendix A.4. Because of
the salient features of cohomologies with Z2 coeffiecients, checking Eq. (25) is expected to be
simpler than directly checking Eq. (19) for a generic IR effective theory.

For SLs, a further simplification takes place since ΩIR = eiπLIR ∈ H4(GIR, U(1)ρ)
for SLs. Here LIR can also be viewed as an element in H4(GIR,Z2), in a way
similar to LUV ∈ H4(GUV,Z2). Then ΩIR is the image of LIR under the map
ĩ : H4(GIR,Z2)→ H4(GIR, U(1)ρ). Therefore, Eq. (25) becomes

SQ1(LUV) = ϕ
∗(SQ1(LIR)) . (27)

Below we will use this equation to check the emergibility of various SLs. We remark that
to check Eq. (19), one may attempt to check if LUV = ϕ∗(LIR). However, since ĩ is not in-
jective, this is just a sufficient but unnecessary condition of Eq. (19). As we have checked,
LUV 6= ϕ∗(LIR) in many examples where Eq. (27) holds.

9The reason to use dashed lines to connect the left corner of the diagram to the rest is because H4(GIR,Z2) is
relevant in this analysis only for theories like SLs, where ΩIR is the image of an element in H4(GIR,Z2) under ĩ. For
a generic IR effective theory, the left corner is irrelevant to the analysis of anomaly-matching. See Appendix I.1 for
an IR effective theory (the SU(2)1 CFT) where this is the case.
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3.3 Example: anomaly matching for DQCP
To make this discussion more concrete, we showcase this method in a concrete example in
detail (see Appendix I for more examples, including an example in (1+ 1)-d).

Consider the classic realization of DQCP (SL(5)) on a square lattice [16,17,19]. For DQCP,
GIR = O(5)T and Eq. (21) becomes

ΩIR ≡ exp(iπLIR) = exp
�

iπwO(5)
4

�

. (28)

In this realization, GUV = p4m×O(3)T and the SEP ϕ reads [15,19],

T1→





−I3
−1

1



 , T2→





−I3
1
−1



 ,

C4→





I3
1

−1



 , M →





I3
−1

1



 ,

O(3)T →
�

O(3)T

I2

�

,

(29)

where Ik denotes the k × k identity matrix. Note that the locking between the spacetime
orientation reversals and improper rotations of O(5) is satisfied above. The LSM anomaly Eqs.
(1) or (2) in this case can be written as

ΩUV ≡ exp(iπLUV) = exp
�

iλ1wO(3)T

2

�

, (30)

where λ1 ∈ H2(p4m,Z2) triggers αp4m
1 in Eq. (7), i.e., define ω1 ≡ ĩ(λ1) = eiπλ1 , then

α
p4m
1 [ω1] = −1 while αp4m

i [ω1] = 1 for i = 2, . . . , 6. As a concrete realization of the DQCP,
Eq. (19) must hold. Below we check it by checking its equivalent form, Eq. (27).

According to Appendix A.2,

SQ1(LIR) = wO(5)
5 and SQ1(LUV) = λ1wO(3)T

3 , (31)

where wO(3)T

3 = wSO(3)
3 + twSO(3)

2 + t3 and t ∈ H1(ZT
2 ,Z2) corresponds to the gauge field of

time reversal symmetry ZT
2 , when pulled back to the spacetime manifold M4.

It remains to calculate the pullback ϕ∗(SQ1(LIR)). Since the embedding ϕ is
block-diagonal with a 3× 3 block and a 2× 2 block, invoking the Whitney product formula,
wO(5)

5 = wO(3)
3 wO(2)

2
10, we get

ϕ∗
�

SQ1(LIR)
�

= ϕ∗
�

wO(3)
3

�

∪ϕ∗
�

wO(2)
2

�

. (32)

Hence we just need to calculate ϕ∗(wO(3)
3 ) and ϕ∗(wO(2)

2 ). The calculation of ϕ∗(wO(3)
3 ) is

straightforward,

ϕ∗
�

wO(3)
3

�

= wSO(3)
3 + (t + Ax+y)w

SO(3)
2 + (t + Ax+y)

3 , (33)

where Ax+y ∈ H1(p4m,Z2) corresponds to the sum of gauge fields of T1 and T2, when pulled
back to the spacetime manifold M4 (see Appendix E).

10Technically speaking, what we are doing is factorizing ϕ into an embedding ϕ̃ : GUV→ O(3)×O(2) composed
with an embedding ϕ0 : O(3) × O(2) → O(5). Then this equation should be thought of as the pullback of wO(5)

5
under ϕ0, which can be proven by considering the diagonal Z5

2 symmetry. In this paper we will omit this fine detail
for simplicity.
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The pullback of wO(2)
2 needs more consideration. As ϕ∗

�

wO(2)
2

�

∈ H2(p4m,Z2), it is com-
pletely determined by its action on the 6 topological invariants identified in Eqs. (7) and (8),
i.e., αp4m

i [ω] with ω = ĩ(ϕ∗(wO(2)
2 )), for i = 1, · · ·6. To obtain αp4m

i [ω], consider the six Z2

subgroups, denoted by Z(i)2 with i = 1, · · · , 6, generated by C2, T1C2, T1T2C2, M , T1M and
C4M , respectively. Their embedding into O(2) reads:

C2→
�

−1
−1

�

, T1T2C2→
�

1
1

�

,

T1C2→
�

1
−1

�

, M →
�

−1
1

�

,

T1M →
�

1
1

�

, C4M →
�

1
1

�

.

The pullback under the embedding Z(i)2 → O(2) results in an element in H2(Z(i)2 ,Z2) = Z2,
which is precisely detected by the topological invariant αp4m

i [ω]. Calculating these six pull-

backs via the Whitney product formula, we find αp4m
1 [ω] = −1, while other topological invari-

ants are +1. Hence, we establish that 11

ϕ∗(wO(2)
2 ) = λ1 . (34)

Finally, combining Eqs. (31-34) and λ1Ax+y = 0, a relation among the cohomology gener-
ators in H∗(p4m,Z2) (see Appendix E), we establish that Eq. (27) indeed holds, as expected.

We mention that some previous works have performed anomaly-matching for this example,
but some of them only did it by restricting both GUV and GIR to a few subgroups [8], and some
used non-rigorous method [15]. To the best of our knowledge, the analysis above is the first
that performs this anomaly-matching via a rigorous method, while keeping track of the full
GUV and GIR. When checking emergibility below, we always maintain such completeness and
rigor.

4 Deconfined quantum critical point and quantum critical spin liq-
uids

With the formalism developed in the previous sections, we perform an exhaustive search of
realizations of SL(N=5,6,7) that can match certain LSM constraints on lattice spin systems with
p6m×O(3)T or p4m×O(3)T symmetry, if this realization is adjacent to a magnetic state and
a non-magnetic state (this means that the SO(3) symmetry acts on some but not all entries of
n, the N × (N − 4) matrix representing the DOF of SL(N)). This search can be efficiently done
using a computer, and the complete results can be found in the attached codes [59] with the
help of Appendix J. The numbers of different types of realizations are in Table 1, where each
row represents a distinct LSM constraint, or lattice homotopy class, labeled by the IWP that
hosts half-integer spins (see Figs. 2 and 3 for the symbols of IWP), and 0 means there is no
nontrivial LSM constraint, which applies to systems with integer-spin moments or honeycomb
lattice half-integer spin systems. Note that for p4m, situations a and b always have the same
number of realizations in each case, since they both correspond to square lattice half-integer
spin systems and they are related to each other via a redefinition of the C4 center. However,
these two situations should still be viewed as distinct, because they cannot be smoothly de-
formed into each other once the p4m symmetry is specified, which means, in particular, the

11In practice, to obtain this result, it suffices to only consider the pmm subgroup and Z2 subgroup generated by
C4M , as argued in Section 2.2.2. Since the embedding of pmm is also in the diagonal form, the calculation is as
straightforward.
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C4 centers are fixed. The same holds for situations a&c and b&c. In terms of symmetry-
enriched quantum criticality, we have found 12 different p6m × O(3)T symmetry-enriched
DQCP, 105+1= 106 different p6m×O(3)T symmetry-enriched DSL, 705+14= 719 different
p6m× O(3)T symmetry-enriched SL(7), 26 different p4m× O(3)T symmetry-enriched DQCP,
372 + 1 = 373 different p4m × O(3)T symmetry-enriched DSL, and 3819 − 27 + 29 = 3821
different p4m×O(3)T symmetry-enriched SL(7). The reason for subtracting 27 in the last case
is explained at the end of this section. Many of these realizations are unstable, in the sense that
they require fine-tuning due to the existence of one or more microscopic symmetry allowed
relevant operators (see Appendix K for all stable realizations on various systems).

Below we present some interesting examples. To the best of our knowledge, none of these
examples has been discussed before. When we discuss a realization of a SL, we will also
comment on its nearby phases, which are often (but not always) some simple ordered states
and relatively easy to detect. This provides useful guide for the search of an SL, since if such
an ordered state can be found in a material or model, perturbing this ordered state may result
in an SL. A smoking-gun signature of the SLs is their large emergent symmetries, which can
manifest themselves in a set of singular correlation functions with the same critical exponent.
Moreover, for all classical regular magnetic orders [60], i.e., classical magnetic orders in which
any broken lattice symmetry can be compensated by a spin operation (see Appendix L for their
spin configurations), we identify the numbers of realizations of SLs adjacent to them (see Table
2).

In this section, we focus on realizations where the most relevant spinful excitations have
spin-1. In particular, we describe examples of realizations of DQCP as a (pseudo-)critical point,
which has a single relevant perturbation allowed by the microscopic symmetries, and stable
realizations of DSL, which has no relevant perturbation allowed by the microscopic symme-
tries. For SL(7), we discuss a realization without symmetry-allowed relevant perturbation, and
another example with a single symmetry-allowed relevant perturbation that nevertheless does
not change the state. We view both realizations of SL(7) as stable.

4.1 DQCP

It is known that there are two types of DQCPs proximate to classical regular magnetic or-
ders [17], both are transitions from an anti-ferromagnetic state to a VBS state, i.e., the colum-
nar VBS for square spin-1/2 systems [61, 62] and the Kekule VBS for honeycomb spin-1/2
systems [63]. Interestingly, we find another realization of DQCP on a honeycomb lattice spin-
1/2 system, as a transition between a ferromagnetic state and a staggered VBS state. 12 The
symmetries are realized as

T1,2 : n→ n ,

C6 : n→





I3

−1
2

p
3

2

−
p

3
2 −1

2



n ,

M : n→





I3
−1

1



n ,

O(3)T : n→
�

O(3)T

I2

�

n .

(35)

12Due to the fact that a fully polarized ferromagnetic state is always an exact eigenstate of any SO(3) symmetric
Hamiltonian, the ferromagnetic state immediately adjacent to this DQCP, which is partially polarized, must be
separated from a fully polarized one by a level crossing, i.e., first-order transition.
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Table 1: Numbers of realizations for DQCP, DSL and SL(7) in spin systems with a
p6m (upper) or p4m (lower) lattice symmetry. Two realizations with symmetry ac-
tions related by a similarity transformation are considered as a single realization.
The columns without (with) subscript “quad" represent realizations where the most
relevant spinful excitations, i.e., the n modes that transform nontrivially under the
SO(3) spin rotational symmetry, carry spin-1 (spin-2). No realization of DQCP has
the n modes carrying spin-2. The numbers in parenthesis are the numbers of stable
realizations. Here a stable DQCP means a realization that has a single relevant per-
turbation allowed by the microscopic symmetry, and a stable DSL, SL(7), DSLquad and

SL(7)quad means a realization that has no relevant perturbation allowed by the micro-

scopic symmetry. For all columns except SL(7)incom, the n modes are at high-symmetry
momenta in the Brillouin zone. For SL(7) realized on p4m symmetric lattices, there
are realizations with some n modes at incommensurate momenta, and the column
SL(7)incom documents the numbers of families of these realizations, where each family
includes infinitely many realizations labeled by a momentum, which continuously
interpolate between two realizations in the column SL(7). Two continuous families
of realizations may share a common high-symmetry momentum, at which these two
realizations turn out to be always distinct, in that symmetries other than translation
are implemented distinctly. (23,2) means that there are 23 families of realizations,
such that as long as a given realization is in the “interiors" of the family (i.e., not all
n modes are at high-symmetry momenta), the only symmetric relevant perturbation
is the one that shifts the momenta of n modes, and there are 2 other families, such
that this is still the case except at two exceptional points in the interior, where there
is an additional symmetric relevant perturbation that changes the emergent order.
The symmetry actions of the stable realizations are explicitly listed in ReadMe.nb.

Gs = p6m
spin-1/2
position

DQCP DSL SL(7) DSLquad SL(7)quad

0 10(2) 76(1) 453(0) 1(1) 12(2)
a 0 3(3) 41(8) 0 0
c 0 3(3) 35(9) 0 0

a&c 2(1) 23(5) 176(2) 0 2(0)

total
12
(3)

105
(12)

705
(19)

1
(1)

14
(2)

Gs = p4m
spin-1/2
position

DQCP DSL SL(7) SL(7)incom DSLquad SL(7)quad

0 19(0) 217(0) 1849(0) 2(0) 1(1) 22(4)
a 1(1) 23(3) 299(2) 3(2,1) 0 1(1)
b 1(1) 23(3) 299(2) 3(2,1) 0 1(1)
c 3(0) 56(4) 632(0) 2(2) 0 3(1)

a&b 1(1) 22(0) 279(0) 11(11) 0 1(0)
a&c 0 6(6) 117(6) 0 0 0
b&c 0 6(6) 117(6) 0 0 0

a&b&c 1(1) 19(2) 227(0) 6(6) 0 1(0)

total
26
(4)

372
(24)

3819
(16)

27
(23,2)

1
(1)

29
(7)

26

https://scipost.org
https://scipost.org/SciPostPhys.13.3.066


SciPost Phys. 13, 066 (2022)

Table 2: Numbers of realizations for DQCP (top), DSL (middle) and SL(7) (bot-
tom) adjacent to some colinear, coplanar and non-coplanar magnetic orders, re-
spectively, of triangular, kagome, honeycomb and square lattice spin-1/2 (or gen-
eral half-integer-spin) systems (third column) and spin-1 (or general integer-spin)
systems (fourth column). The numbers in parenthesis are the numbers of stable re-
alizations (defined in the same way as in Table 1). F stands for Ferromagnetic while
AF stands for Anti-ferromagnetic. “1 Incom” means that realizations of SL(7) adja-
cent to tetrahedral umbrella order on the square lattice spin-1/2 systems belong to
a continuous family of realizations, where the non-magnetic components of n can
have continuously changing momenta. See Appendix L for the spin configurations of
these magnetic orders, and the attached code ReadMe.nb for the explicit symmetry
actions.

Lattice Colinear order spin-1/2 spin-1

Triangular F 0 2(1)

Kagome F 0 2(1)

Honeycomb
F 2(1) 2(1)

AF 2(1) 2(1)

Square
F 0 2(0)

AF (Neel) 1(1) 2(0)

Lattice Coplanar order spin-1/2 spin-1

Triangular 120◦ 1(1) 3(0)

Kagome
q = 0 1(1) 2(0)p
3×
p

3 0 3(0)

Honeycomb V 3(0) 3(0)

Square
V 1(0) 3(0)

Orthogonal 1(0) 1(0)

Lattice Non-Coplanar order spin-1/2 spin-1

Triangular
Tetrahedral 8(4) 2(0)
F umbrella 1(0) 4(0)

Kagome

Octahedral 0 2(0)
Cuboc1 3(2) 1(0)
Cuboc2 4(3) 1(0)

q = 0 umbrella 2(1) 3(0)p
3×
p

3 umbrella 1(1) 4(0)

Honeycomb
Tetrahedral 2(0) 2(0)

Cubic 1(0) 1(0)

Square
Tetrahedral umbrella 1 Incom 2(0)

F umbrella 2(0) 2(0)

The components of n can be identified with microscopic operators that transform identically
under the above symmetries. Denote the microscopic spin-1/2 operator on the A and B sub-
lattices as SA(r ) ≡ S

�

r + 2T1+T2
3

�

and SB(r ) ≡ S
�

r + T1−T2
3

�

, respectively, where r is the
position of the C6 center of each unit cell, and T1,2 is the translation vector of T1,2. Then
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SA,i(r ) = SB,i(r ) ∼ ni for i = 1,2, 3. Denote the dimer operators as

Dx(r ) ≡ S(r + −T1+T2
3 ) · S

�

r + T1+2T2
3

�

, Dy(r ) ≡ S
�

r + T1+2T2
3

�

· S(r + 2T1+T2
3 ), and

Dz(r )≡ S
�

r + 2T1+T2
3

�

·S
�

r + T1−T2
3

�

. Then Dx(r )+ ei 2π
3 Dy(r )+ ei 4π

3 Dz(r )∼ e−i 5π
6 (n4− in5).

So n1,2,3 and n4,5 can be identified as the order parameters of a ferromagnet and a stacked VBS,
respectively. For examples below, one can perform similar analysis to identify components of
n with microscopic operators, but we will not explicitly showcase them.

Since this ferromagnetic DQCP is the simplest example of new states discovered using our
approach, it will be reassuring to also have a traditional parton-based construction [64]. In-
deed this DQCP can be constructed using Schwinger bosons S = 1

2 b†
ασαβ bβ , where the bosonic

spinons bα couple to a dynamicsl U(1) gauge field aµ. To realize the staggered VBS, we put the
Schwinger bosons into the “featureless Mott insulator" discussed in Ref. [34] – effectively this
state is constructed by putting a spin-singlet, gauge-charge Q = 2 spinon “Cooper pair" at each
C6 center. When coupled to the dynamical U(1) gauge field, the monopole operator acquires
nontrivial lattice symmetry quantum numbers due to the charged insulating background. For
example, the gauge charge Q = 2 at each C6 rotation center gives the monopole a C6 angular
momentum ei2π/3 from the Aharanov-Bohm effect. Other lattice symmetry quantum-numbers
can be analyzed in a similar fashion, following methods develped in Ref. [57]. It turns out that
the monopole carries exactly the symmetry quantum numbers of the staggered VBS. At low
energies the monopole will spontaneously condense and confine the gauge theory, resulting in
the staggered VBS phase. To access the magnetically ordered phase, we drive the spinons bα
through an insulator-superfluid transition and Higgs the U(1) gauge field. The fact that bα do
not carry any nontrival projective representation in this construction means that they can be
condensed without breaking any lattice symmetry, which means that the magnetically ordered
phase obtained this way is a ferromagnet. The effective field theory at the phase transition is
the standard (non-compact) CP1 theory for DQCP [16], described by an SU(2)-fundamental
complex Wilson-Fisher boson coupled to a dynamical U(1) gauge field aµ.

We remark that, compared to the standard DQCP realization where the magnetic side is
anti-ferromagnetic, in this realization there is one more perturbation that is likely irrelevant
at the transition, but relevant in the ferromagnetic phase and responsible for making the dis-
persion of the magnon quadratic. In the CP1 formulation of the DQCP with Schwinger bosons
b [16, 17], this operator is (i b†σ∂t b) · (b†σb). In the CPN generalization of this theory, this
operator is indeed dangerously irrelevant in the large-N limit.

The simple nature of the magnetic and VBS phases here suggests that this DQCP may be
realizable in relatively simple spin models. It will be interesting to find a sign-problem-free
lattice model and simulate this transition with the quantum Monte Carlo approach.

4.2 DSL

DSLs have been constructed for various lattices using the parton construction. There are two
widely studied DSLs: one is on the kagome lattice spin-1/2 system proximate to the q = 0
coplanar magnetic order [22,65–68]; the other is on the triangular spin-1/2 lattice proximate
to the 120◦ coplanar order [57, 58, 69–73]. On the other hand, the previously constructed
DSLs on the honeycomb and square lattices are unstable due to the presence of GUV-symmetric
monopole (i.e., the n modes) [57,58,74,75]. Interestingly, we find new stable DSLs on square
and honeycomb lattices. Our complete classification also shows that there is no DSL proximate
to the

p
3×
p

3 coplanar order on the kagome spin-1/2 system.
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For the honeycomb lattice spin-1/2 system, the symmetries act as:

T1,2 : n→









I3

−1
2

p
3

2

−
p

3
2 −1

2
1









n ,

C6 : n→







I3
1
−1

−1






n

�

1
2 −

p
3

2p
3

2
1
2

�

,

M : n→







I3
−1

−1
1






n

�

−1
1

�

,

O(3)T : n→
�

O(3)T

I3

�

n .

(36)

The magnetic order adjacent to this DSL is a regular magnetic order, i.e., a magnetic order in
which any broken lattice symmetry can be compensated by a spin operation [60]. However,
the magnetic order here appears missing in the classification in Ref. [60], which is possibly
because all magnetic orders in Ref. [60] are assumed to be realizable by product states. It
is known that some SRE states in a honeycomb lattice spin-1/2 system cannot be realized by
product states, so we do not make this assumption [34–37]. This DSL should also be emergible
in a triangular or kagome lattice integer-spin system. In these cases, the adjacent magnetic
orders are also regular but not realizable by product states. See Ref. [76] for a recent study of
these entanglement-enabled symmetry-breaking orders.

For the square lattice spin-1/2 system, the symmetries act as:

T1 : n→







I3
−1

1
−1






n

�

−1
−1

�

,

T2 : n→







I3
1
−1

−1






n

�

−1
−1

�

,

C4 : n→







I3
1

−1
1






n

�

−1
−1

�

,

M : n→







I3
1
−1

−1






n

�

−1
1

�

,

O(3)T : n→
�

O(3)T

I3

�

n .

(37)

The magnetic order adjacent to this DSL is also an entanglement-enabled regular magnetic
order.
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One interesting aspect of these realizations is that all perturbations proportional to the
entries of n are forbidden by symmetries, and the lack of this property is the reason why the
previous constructions on these systems are unstable [57, 58, 74, 75]. This property implies
that these realizations cannot be obtained as a descendent state of an SU(2) DSL [57], which is
described by 2 flavors of Dirac fermions coupled to an emergent SU(2) gauge field (including
the 2 colors, there are in total 4 Dirac fermions). To see it, note that the emergent symmetry
of the SU(2) DSL is just O(5)T , so if a U(1) DSL is its descendent, all microscopic symmetries
will be embedded into the O(5)T symmetry, which necessarily leaves some components of n
symmetry-allowed. The previous constructions of the U(1) DSL on a square and honeycomb
lattice spin-1/2 systems are indeed descendents of an SU(2) DSL, and it would be interesting
to find a parton construction of our new realizations.

4.3 SL(7)

Two realizations of the conjectured non-Lagrangian state SL(7) are given in Ref. [15]. Here we
describe some other interesting realizations.

On a kagome lattice spin-1/2 system, there is a realization with the following symmetry
actions:

T1 : n→













I3

−1
2

p
3

2

−
p

3
2 −1

2
1

1













n





1
−1

−1



 ,

T2 : n→













I3

−1
2

p
3

2

−
p

3
2 −1

2
1

1













n





−1
1
−1



 ,

C6 : n→











I3
1
−1

−1
−1











n





−1
1

1



 ,

M : n→











I3
−1

−1
1

1











n





−1
−1

1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

(38)

The magnetic order adjacent to this SL(7) is the cuboc1 order, a good classical ground state for
Heisenberg like models [60], and was found in a J1-J2-J3 model [77].

We also note that, in contrast to the DQCP and DSL, where all realizations are proximate
to some commensurate states, i.e., n have commensurate momenta in those realizations, SL(7)

can have realizations with n at incommensurate momenta. For example, on a square lattice
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spin-1/2 system, there is a family of realization with the following symmetry actions:

T1 : n→





I3
exp(−iσy k)

−I2



n





−1
1
−1



 ,

T2 : n→





I3
−I2

exp(iσy k)



n





1
−1

−1



 ,

C4 : n→











I3
1

1
1

1











n





1
1

1



 ,

M : n→











I3
1

1
1

1











n ,

O(3)T : n→
�

O(3)T

I4

�

n ,

(39)

where k ∈ [−π,π) is a generic momentum. The magnetic order adjacent to this realization is
the tetrahedral umbrella order [60].

The above represents an infinite family of realizations, where the momenta of some n
modes continuously change in the Brillouin zone. Among the relevant operators discussed in
Sec. 3.1, there is only a single one allowed by the microscopic symmetries in this family of re-
alizations, i.e., the SO(7) current∼ (n4i∂x n5i+n6i∂y n7i). We believe all these realizations can
actually be smoothly connected without encountering a phase transition, so they all represent
the same symmetry-enriched SL. This also imposes some constraints on the low-energy dynam-
ics of SL(7), i.e., although the above SO(7) conserved current is relevant, it can merely shift
the “zero momentum", but not really change the state (see Appendix H for more discussions).

5 Quantum critical spin-quadrupolar liquids

Besides the previous case, we also find realizations where the most relevant spinful excitations
carry spin-2. We dub these states quantum critical spin-quadrupolar liquids.

We have identified an interesting realization of the DSL as a quantum critical
spin-quadrupolar liquid. This realization can actually be realized on any lattice that has no
nontrivial LSM constraint, including spin-1 systems on any lattice, spin-1/2 systems on honey-
comb lattice, etc. If the lattice has a p6m or p4m symmetry, this is the only spin-quadrupolar re-
alization of DSL. The lattice translation and rotation symmetries leave n invariant, and SO(3),
time reversal T and lattice reflection M (if any) act as

SO(3) : n→
�

ϕ5(SO(3))
1

�

n ,

T : n→
�

I5
−1

�

n ,

M : n→
�

I5
−1

�

n ,

(40)
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where ϕ5(SO(3)) represents the spin-2 representation of SO(3). For this realization, if
SO(3) × ZT

2 and an arbitrary lattice rotational symmetry are preserved, all relevant pertur-
bations listed in Sec. 3.1 are forbidden. Even if only SO(3) × ZT

2 is preserved while all lat-
tice symmetries are broken, the only symmetry-allowed relevant perturbations are the spatial
components of the conserved current associated with the SO(2) emergent symmetry, which
are expected to retain the emergent order (see Appendix H). So this realization represents a
rare example of quantum critical liquid that requires only internal symmetry (but not lattice
symmetry) to be stable. The magnetic state adjacent to this DSL is a spin-quadrupolar order
where the Goldstond modes are at the Γ point of the Brillouin zone. For the non-magnetic
state, it is possible to have 〈n61〉 6= 0 while all other entries of n have zero expectation value.
This is a spin-quadrupolar realization of the DQCP, and the only possible relevant perturbation
is an SO(5) singlet that breaks time reversal, which may drive the system to forming a chiral
spin liquid.

Usually, a DSL is constructed by fermionic partons that have a non-interacting mean field
with 4 Dirac cones, which are coupled to an emergent U(1) gauge field. Below we show that
the realization above cannot be constructed in this way, which may be its most interesting
property.

To see it, let us consider how the Dirac fermions transform under the SO(3) spin rota-
tional symmetry. Denote the Dirac fermion operator as ψi with i = 1, · · ·4, which transforms
in the fundamental representation of the emergent SU(4) flavor symmetry. It is known that
ψ̄iψ j −

1
4ψ̄ψδi j , which is the fermion mass in the SU(4) adjoint representation, is identified

with Ai1 i2ε j1 j2 ni1 j1 ni2 j2 , with A and ε an anti-symmetric 6 × 6 and 2 × 2 real matrix, respec-
tively [15,57,58]. Because under SO(3) spin rotational symmetry, part of the latter operators
transforms in the spin-3 representation, the former operator must also contain components in
the spin-3 representation, which implies that the Dirac fermions must transform in the spin-
3/2 representation of the SO(3) symmetry, i.e., all 4 flavors of Dirac fermions together form
this spin-3/2 object.

Now suppose this state can be realized by a non-interacting parton mean field with 4 Dirac
cones (coupled to an emergent U(1) gauge field), the mean-field Hamiltonian of the partons
must have an on-site U(4) symmetry. In the presence of this U(4) and time reversal symmetries,
there must be at least 8 Dirac cones in the mean field. To see it, it suffices to consider one of the
4 flavors, whose mean field has on-site U(1) and time reversal symmetries. To avoid the parity
anomaly, there are necessarily an even number of Dirac cones. So taken 4 flavors together,
there are at least 8 Dirac cones, which contradicts our starting point, i.e., the mean field has
only 4 Dirac cones.

The above argument shows that this realization is beyond the simplest parton mean fields.
However, it is still possible to realize it if the partons are strongly interacting (even without
considering their coupling to the emergent gauge field), so that at low energies 4 flavors of
Dirac fermions emerge out of the strong interactions. This might be theoretically described,
say, by a further parton decomposition of the partons themselves. This is possible because if
besides time reversal the on-site symmetry is only SO(3) but not U(4), there is no anomaly, and
hence no contradiction with having 4 Dirac cones while realizing these symmetries in an on-
site fashion.13 It is an interesting challenge to find such a concrete construction in the future.
This situation is similar to the Standard Model in particle physics: the Standard Model cannot
be realized through lattice free fermions coupled to gauge fields due to fermion doubling,
but it is believed to be realizable using strongly interacting fermions since all the quantum
anomalies vanish [78–85].

Finally, we give an interesting realization of SL(7) as a quantum critical spin-quadrupolar

13One can in principle also try to implement some of these symmetries on the partons in a non-on-site fashion,
but then it is challenging to have all on-site symmetries acting on the physical operators in an on-site fashion.
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liquid, on a honeycomb lattice half-integer-spin system or any integer-spin system with p6m
symmetry. The symmetries act as follows:

SO(3) : n→
�

ϕ5 (SO(3))
I2

�

n ,

T : n→





I5
−1

1



n ,

T1 : n→ n





−1
2 −

p
3

2p
3

2 −1
2

1



 ,

T2 : n→ n





−1
2 −

p
3

2p
3

2 −1
2

1



 ,

C6 : n→





I5
1
−1



n





1
−1

1



 ,

M : n→





I5
−1

1



n .

(41)

The nearby phases of this SL(7) can be very interesting. It is possible to have 〈n73〉 6= 0 while
all other entries of n have zero expectation value. This results in the spin-quadrupolar DSL (see
Eq. (40)), except that the C2 ≡ C3

6 symmetry is broken, while all other symmetries (including
C3 ≡ C2

6 ) are intact. We can also view the above realization of SL(7) as an unnecessary phase
transition in a p31m×O(3)T symmetric DSL phase. This DSL is still stable, but the n modes
are at the ±K points. It is also possible to have 〈n13〉 6= 0 while all other entries of n have
zero expectation value, where our choice of basis is such that this condensation pattern breaks
the SO(3) symmetry to U(1). This results in a stable p6m × ZT

2 × U(1) symmetric DSL that
simultaneously has a spin-quadrupolar order. Again, the above realization of SL(7) can be
regarded as an unnecessary phase transition in a p6m×ZT

2 × U(1) symmetric DSL phase.14

6 Stability under symmetry breaking

In this section we demonstrate how to use the SEP to analyse the stability of these realizations
under symmetry-breaking perturbations. As a concrete example, we focus on a realization of
DSL on a triangular lattice spin-1/2 system that is perturbed by spin-orbit coupling (SOC),
which may be relevant to NaYbO2. In Appendix M, we give a few other examples of such
analysis, which may be relevant to twisted bilayer WSe2, a recently realized quantum simulator
for triangular lattice spin-1/2 models [86–88].

14Strictly speaking, the DSL states on the two sides of this SL(7) are slightly different, since they have different
quantum anomalies if the entire emergent symmetry is taken into account. In Ref. [15], these two DSLs are
denoted by SL(6,1) and SL(6,−1), respectively. However, if we only look at the remaining exact symmetries, there
is no difference between them. Furthermore, even if the entire emergent symmetry is considered, all correlation
functions in these two cases are simply related by a unitary transformation (which is not a symmetry of the DSL), so
practically the DSL in the two sides can be viewed as in the same phase [15]. The same is true for the p31m×O(3)T

symmetric DSL.
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Without considering the SOC, the triangular lattice spin-1/2 system has a p6m × O(3)T

symmetry, which acts on this DSL as:

T1 : n→







I3
1
−1

−1






n

�

−1
2 −

p
3

2p
3

2 −1
2

�

,

T2 : n→







I3
−1

1
−1






n

�

−1
2 −

p
3

2p
3

2 −1
2

�

,

C6 : n→







I3
1

1
−1






n

�

1
−1

�

,

M : n→







I3
−1

−1
1






n ,

O(3)T : n→
�

O(3)T

I3

�

n .

(42)

This realization was discussed in Refs. [15, 57, 58, 69–73], and it is shown in Appendix I.2
that the anomaly-matching condition Eq. (19) is indeed satisfied. From this symmetry action,
it is straightforward to check that all the relevant operators listed in Sec. 3.1 are symmetry-
forbidden, so this realization is expected to be stable if the full p6m × O(3)T symmetry is
preserved.

Recently, a quantum disordered liquid was reported in NaYbO2 [23–27] (similar phenom-
ena were reported in related materials including NaYbS2 and NaYbSe2 [28–32]). In particular,
there is evidence that this state is gapless with a low-temperature specific heat scaling as tem-
perature squared, and that it has a critical mode located at the ±K points in the Brillouin zone,
which are consistent with the above DSL realization. So it was proposed that a DSL may be re-
alized in NaYbO2. However, due to SOC, the symmetry of NaYbO2 is smaller than p6m×O(3)T ,
and an important question is whether there is symmetry-allowed relevant perturbation that
would destabilize a DSL in NaYbO2.

NaYbO2 is a layered material with space group symmetry R3̄m. Restricted to a single layer,
the remaining symmetries are [89]

T1,2, C∗6 ≡ S3 · C6, M∗ ≡ SM ·M , T , (43)

where S3 and SM act in the spin space:

S3 :





Sx
Sy
Sz



→





−1
2

p
3

2

−
p

3
2 −1

2
1









Sx
Sy
Sz



 ,

SM :





Sx
Sy
Sz



→





−1
2

p
3

2p
3

2
1
2
−1









Sx
Sy
Sz



 ,

(44)

with Sx ,y,z the microscopic (effective) spin-1/2 operators.
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Using Eq. (42), it is straightforward to extract the actions of the remaining symmetry
Eq. (43), from which one can see that all relevant operators in Sec. 3.1 are still symmetry-
forbidden. This means that the DSL can be stably realized on NaYbO2. Of course, whether
NaYbO2 actually realizes a DSL requires futher investigation.

7 Discussion

In this paper we have achieved two major goals: i) deriving the topological partition func-
tions corresponding to the LSM constraints in a large class of systems relevant to the study of
quantum magnetism, and ii) studying the emergibility of various Stiefel liquids (SLs) in lattice
spin systems. The former has wide applicability and can be applied to constrain the emergi-
bility of any state on the relevant lattice spin systems, and the latter paves the way to further
understand the elusive strongly-interacting quantum critical states.

The SLs discussed in this paper are the simplest members of their entire family, i.e., SL(N)

with N = 5, 6,7. In fact, our results have indications on the emergibility of more complicated
SLs, i.e., SL(N ,m) with N = 5, 6,7 and m > 1 [15]. Just like SL(N), the degrees of freedom of
SL(N ,m>1) are also characterized by an N × (N −4)matrix with orthonormal columns, and this
state can be obtained by coupling together m copies of SL(N) in a specifc way. Interestingly,
SL(5,m) can be viewed as a USp(2m) gauge theory with 2 flavors of gapless Dirac fermions,
and SL(6,m) can be viewed as 4 flavors of gapless Dirac fermions coupled to a U(m) gauge field.
It is expected that for a given N , there is an mc(N) such that SL(N ,m) is a CFT if and only if
m< mc(N), and mc(N ¾ 6)> 1. To discuss the emergibility of SL(N ,m>1) in lattice spin systems
with p6m×O(3)T or p4m×O(3)T symmetry, we can think that all SL(N ,m) have the same IR
anomaly as SL(N) if m is odd, and all SL(N ,m) have no IR anomaly if m is even. Furthermore,
because the degrees of freedom of SL(N ,m>1) are represented in the same way as those in SL(N),
a given symmetry embedding pattern for SL(N) is also a valid one for SL(N ,m>1), and vice versa.
So our results imply: i) For SL(N ,m>1) with an odd m and a given symmetry embedding pattern,
it can emerge in a lattice spin system if and only if SL(N) with the same symmetry embedding
pattern can emerge in this system. ii) SL(N ,m) with an even m can only emerge in lattice spin
systems with a vanishing LSM anomaly, and in such a system any symmetry embedding pattern
defined by Eq. (18) satisfies the emergibility condition Eq. (19), and is expected to describe a
physical realization of SL(N ,m) in this system.

We remark that our philosophy to study the emergibility of a quantum phase or phase
transition is different from the conventional one. Our strategy is based on anomaly-matching,
while the conventional one is based on explicit constructions of this phase or phase transition,
often in terms of a mean field (including parton gauge mean field) or a wave function. We
believe that the anomaly-based strategy captures the intrinsic essence of emergibility. After all,
any mean-field construction is also a way of doing anomaly-matching in disguise, and such a
construction by itself cannot rigorously prove the emergibility. On the other hand, although a
microscopic wave function can guarantee the emergibility, it is generically difficult to read off
the universal physics encoded in a wave function, and there is no guarantee that a proposed
wave function indeed describes the quantum phase or phase transition of interest - in fact,
in general there is no guarantee that such a wave function could be realized as the ground
state of any local Hamiltonian. So the significance of this work is not only reflected by the
specific results, but also by the fact that it demonstrates the feasibility of the anomaly-based
framework of emergibility, and the fact that this framework can yield interesting results not
envisioned before.

This anomaly-based framework of emergibility is established for lattice spin systems in this
paper. An interesting and important open problem is to generalize the topological character-
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izations of LSM constraints to other systems, and apply the results to study the emergibility
of other quantum phases and phase transitions. Systems of particular relevance are those in
(3+1)-d, those with spin-orbit coupling, those with a filling constraint due to a U(1) symmetry,
those with long-range interactions, those with a constrained Hilbert space, fermionic systems,
etc. We leave these for future work.

We have assumed that the hypothesis of emergibility is a necessary and sufficient condition
of emergibility. As mentioned before, its necessity has been established, while the sufficiency
is a reasonable conjecture. It is important to further justify or disprove (the sufficiency of) this
hypothesis. If it is disproved, it will be extremely interesting and valuable to identify a correct
necessary and sufficient condition of emergibility.

The realizations of symmetry-enriched SLs discussed here give useful guidance for the
search of these states in real materials and models. Because the ordering patterns of the nearby
phases of the SLs can be read off from the implementations of the microsopic symmetries, a
practical strategy is to identify materials and models that host these ordered states, and to
explore the vicinity of the phase diagram in order to find SLs. A smoking-gun signature of
the SLs is their large emergent symmetries, which can manifest themselves in a set of singular
correlation functions with the same critical exponent.

Our results rule out many realizations of symmetry-enriched SLs because their IR anoma-
lies do not match with the LSM anomalies. However, variants of these realizations are still
possible if there is a sector of anomalous topological order in the system (in additional to the
gapless degrees of freedom from the SLs), whose anomaly precisely compensates the mismatch
between the IR anomaly of the SL and the LSM anomaly. Although it may be unnatural in a
realistic material or model, this is a valid theoretical possibility. It may be interesting to study
such realizations in the future.

Finally, we further comment on our characterization of the symmetry enrichment pattern
of a quantum critical state with a given emergent order. Our characterization is based on
how the microscopic symmetries act on the the local, low-energy degrees of freedom. As re-
viewed in Introduction, in the literature the symmetry enrichment pattern of an emergent
gauge theory is usually specified by how the symmetries act on various “fractionalized degrees
of freedom", represented by gauge non-invariant operators [64]. This usual approach is ap-
propriate for emergent gauge theories with well-defined fractionalized quasi-particles, where
symmetry fractionalization on these fractionalized quasi-particles can be sharply defined based
on symmetry localization [90]. However, the quantum critical states discussed here are not
expected to have any well-defined quasiparticle, and all degrees of freedom are strongly cou-
pled, which makes the notion of symmetry localization ill-defined. So it is more appropriate
to directly characterize these states using symmetry actions on local operators. More formally,
the former type of theories have emergent higher-form symmetries, and symmetry actions on
fractionalized quasi-particles can be viewed as the interplay between the ordinary symme-
tries and higher-form symmetries, captured by, e.g., topological terms involving both types of
symmetries (e.g., see Ref. [47]). The critical states discussed here are believed to have no
emergent higher-form symmetry, and no such topological term exists. So it is appropriate to
directly discuss the symmetry actions on local operators.

On the other hand, we also note that even for a quantum critical state with a given emer-
gent order and given symmetry actions on local, low-energy degrees of freedom, there may
be multiple different symmetry-enriched quantum critical states that are distinguished by the
symmetry actions on some non-local and/or gapped degrees of freedom, which may mani-
fest themselves by distinct boundary critical behavior [91–98]. A detailed study of this phe-
nomenon is left for future work.
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A Review of mathematical background

In this appendix, we briefly review various mathematical concepts used in this paper. We also
define some new concepts that will be useful in the paper.

A.1 Group cohomology

In this sub-appendix, we provide a brief review of the fundamentals of group cohomology. See
Refs. [39,99,100] for more details.

Given a (discrete) group G, let X be an Abelian group equipped with a G action
ρ : G × X → X , which is compatible with group multiplication, i.e., for any g, h ∈ G, e the
identity element in G and a, b ∈ X , we have

Identity of Group Action : ρe(a) = a ,

Compatibility of Group Action : ρg (ρh(a)) = ρgh(a) ,

Compatibility of Module : ρg(ab) = ρg(a)ρg(b) .
(45)

We leave the group multiplication symbols implicit in the above. Such an Abelian group X
with G action ρ is called a G-module, denoted by Xρ. In this paper, we will mainly consider
three different cases of X , i.e., Z2, U(1) and Z. In particular, when X = Z2, the action ρg
is always trivial for any g ∈ G. When X = U(1) (X = Z), the action ρg is either trivial or
complex conjugation (multiplication by −1), i.e., a Z2 action. Therefore, ρ can be defined by
a homomorphism ρ̃ : G → Z2, and whether ρ̃(g) equals +1 or −1 determines whether the
action of ρg on U(1) and Z is trivial or non-trivial.

Let ω(g1, . . . , gn) ∈ X be a function of n group elements with gi ∈ G for i = 1, . . . , n. Such
a function is called an n-cochain, and the set of all n-cochains is denoted by Cn(G, Xρ). They
naturally form an Abelian group under multiplication,

(ω ·ω′)(g1, . . . , gn) =ω(g1, . . . , gn)ω
′(g1, . . . , gn) , (46)

and the identity element is the trivial cochain ω(g1, . . . , gn) = 1 for every (g1, . . . , gn), where
1 is the identity element in X .

We now define the coboundary map d : Cn(G, Xρ) → Cn+1(G, Xρ) acting on cochains to
be

(dω)(g1, . . . , gn+1) = ρg1
(ω(g2, . . . , gn+1))×

×
n
∏

j=1

�

ω(g1, . . . , g j−1, g j g j+1, g j+2, . . . , gn+1)
�(−1) j

(ω(g1, . . . , gn))
(−1)n+1

.

(47)

One can directly verify that d(dω) = 1 for any ω ∈ Cn(G, Xρ), where 1 denotes the trivial
cochain in Cn+2(G, Xρ). With the coboundary map, we next define ω ∈ Cn(G, Xρ) to be an n-
cocycle if it satisfies the condition dω= 1, and all n-cocycles naturally form an Abelian group
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Zn(G, Xρ) = ker[d : Cn(G, Xρ)→ Cn+1(G, Xρ)] = {ω ∈ Cn(G, Xρ) | dω= 1 } . (48)

We also define ω ∈ Cn(G, Xρ) to be an n-coboundary if it satisfies the condition ω = dµ for
some (n−1)-cochain µ ∈ Cn−1(G, Xρ), and all n-coboundaries naturally form an Abelian group

Bn(G, Xρ) = im[d : Cn−1(G, Xρ)→ Cn(G, Xρ)]

= {ω ∈ Cn(G, Xρ) | ∃µ ∈ Cn−1(G, Xρ) :ω= dµ } .
(49)

Clearly, Bn(G, Xρ) ⊆ Zn(G, Xρ) ⊆ Cn(G, Xρ), and we define the n-th group cohomology of G
to be the quotient group

Hn(G, Xρ) =
Zn(G, Xρ)

Bn(G, Xρ)
. (50)

In other words, Hn(G, Xρ) collects the equivalence classes of n-cocycles, where two n-cocycles
are considered equivalent if they differ by an n-coboundary.

It is instructive to look at the lowest cohomology groups. Let us first consider H1(G, Xρ):

Z1(G, Xρ) = {ω | ω(g1)ρg1
(ω(g2)) =ω(g1 g2) } ,

B1(G, Xρ) = {ω | ω(g) = ρg(µ)µ
−1 } .

(51)

If the G-action on X is trivial, then B1(G, Xρ) = {1} and Z1(G, Xρ) consists of group homo-
morphisms from G to X , which, in particular, map elements in the same conjugacy class to the
same image, i.e.,

ω(g−1
2 g1 g2) =ω(g1) , (52)

for any g1,2 ∈ G.
For the second cohomology, we have

Z2(G, Xρ) = {ω | ρg1
(ω(g2, g3))ω(g1, g2 g3) =ω(g1, g2)ω(g1 g2, g3) } ,

B2(G, Xρ) = {ω | ω(g1, g2) = ρg1
(µ(g2)) (µ(g1 g2))

−1µ(g1) }.
(53)

In particular, H2(G, U(1)ρ) classifies all inequivalent complex projective representations of
G, while H2(G,Z2) classifies all inequivalent real orthogonal projective representations of G,
which will be most useful throughout the paper.

A.2 Maps of group Cohomology

In this sub-appendix, we review various maps of group cohomology, which will be used
throughout the paper.

The first map we consider is the pullback of group cohomology. Consider a map between
two groups ϕ : G → H compatible with their respective group action ρG and ρH on X , in
the sense that ρϕ(g)(a) = ρg(a) for any a ∈ X and any g ∈ G or, in the case of X = U(1),Z,
ρ̃H ◦ ϕ = ρ̃G . Given such a map, we can define the pullback from Hn(H, Xρ) to Hn(G, Xρ),
which can be defined on the representative cochain ω ∈ Cn(H, Xρ) as follows

(ϕ∗(ω))(g1, . . . , gn)≡ω(ϕ(g1), . . . ,ϕ(gn)) . (54)

It is straightforward to check that it maps cocycles to cocycles, and coboundaries to cobound-
aries, so it gives a well-defined map from Hn(H, Xρ) to Hn(G, Xρ),

ϕ∗ : Hn(H, Xρ)→ Hn(G, Xρ) . (55)
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The second map we consider is the map of group cohomology induced by a map of G-
modules i : X → Y . Here i is any map from G-module X to G-module Y that preserves the
action of G, i.e., for any a ∈ X and g ∈ G we have ρg(i(a)) = i(ρg(a)). Then for any n-cochain
ω(g1, . . . , gn) ∈ Cn(G, Xρ), we can map it to another n-cochain ĩ(ω) such that

(ĩ(ω))(g1, . . . , gn)≡ i(ω(g1, . . . , gn)) . (56)

It is straightforward to check that it maps cocycles to cocycles, and coboundaries to cobound-
aries, so it gives a well-defined map from Hn(G, Xρ) to Hn(G, Yρ),

ĩ : Hn(G, Xρ)→ Hn(G, Yρ) . (57)

We will frequently use this map to convert cohomology elements in Hn(G,Z2) to elements in
Hn(G, U(1)ρ), induced by the inclusion i of Z2 = {±1} into U(1). Note that the representative
cochains ω and ĩ(ω) as a function from Gn to Z2 and U(1) are manifestly the same, but
a function representing a nontrivial element in Hn(G,Z2) can represent a trivial element in
Hn(G, U(1)ρ), because the module U(1)ρ in general yields more coboundaries compared to
the module Z2. We also consider the map of group cohomology p̃ induced by the projection p
of Z onto Z2 = {0,1}

The third map which will be useful in the analysis of anomaly/anomaly-matching is the
Bockstein homomorphism [101,102]. Consider a short exact sequence of G-modules,

1 X Z Y 1i p
, (58)

with the map i : X → Z injective, the map p : Z → Y surjective and ker[p] = im[i]. There is a
long exact sequence of the cohomology of G associated to this short exact sequence, such that
ker= im at any place of the following chain of maps,

. . . Hn(G, Xρ) Hn(G, Zρ) Hn(G, Yρ)

Hn+1(G, Xρ) . . .

ĩ p̃

β ĩ

. (59)

The map β , called the Bockstein homomorphism, is defined as follows. For [ω] ∈ Hn(G, Yρ)
and a representative cochain ω, choose a function ω̃ from Gn to Zρ such that

p((ω̃)(g1, . . . , gn)) =ω(g1, . . . , gn) . (60)

Because p is surjective, ω̃ always exists. For any choice of ω̃, it is straightforward to see that
p((dω̃)(g1, . . . , gn)) = 0 and as a result (dω̃)(g1, . . . , gn) is in the image of i. Then we define
this (unique) preimage to be the image of ω under the Bockstein homomorphism, i.e., we
have

β(ω)≡ ĩ−1(dω̃) . (61)

There are several short exact sequences that we should pay special attention to. The first
one is

1 Z R U(1) 1×2π mod 2π . (62)

When Hn(G,Zρ) and Hn+1(G,Zρ) contain torsion elements only,
Hn(G,Rρ) = Hn+1(G,Rρ) = 0, and from Eq. (59) we see that the associated Bockstein ho-
momorphism β : Hn(G, U(1)ρ) → Hn+1(G,Zρ) is an isomorphism. For most discussions in
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this paper, especially when G is a finite group (and n > 0), this Bockstein homormorphism is
indeed an isomorphism, and only in the example in Appendix I.1 it is not, on which we will
comment explicitly.

The second short exact sequence that is important to us is

1 Z Z Z2 1×2 mod 2 . (63)

For x ∈ Hn(G,Z2), the Bockstein homomorphism β2 is sometimes written as

β2(x) =
1
2

d x . (64)

When Hn(G,Zρ) = (Z2)k with some non-negative integer k, ĩ maps Hn(G,Zρ) to 0 in
Hn(G,Zρ). Therefore, from Eq. (59), we see that p̃ is injective while β2 is surjective.

We can also consider the natural map from Eq. (63) to Eq. (62), which is inclusion for
every factor as follows,

1 Z R U(1) 1

1 Z Z Z2 1

×2π mod 2π

×2

∼=
mod 2

×π i , (65)

where i is again the inclusion of Z2 = {±1} into U(1). As a result, we have a map of long exact
sequences,

. . . Hn(G,Z2) Hn+1(G,Zρ) Hn+1(G,Zρ) . . .

. . . Hn(G, U(1)ρ) Hn+1(G,Zρ) Hn+1(G,Rρ) . . .

ĩ

β2

∼=
β

. (66)

Here we distinguish the first Bockstein homomorphism by denoting it by β2, and ĩ denotes
the map induced by i : Z2 → U(1) specifically. Hence, we have β2 = β ◦ ĩ. When
Hn(G,Zρ) = (Z2)k, since β is an isomorphism while β2 is surjective , ĩ is surjective as well. It
suggests that in this case every element Ω ∈ Hn(G, U(1)ρ) can be written as ĩ(L) or eiπL for
some L ∈ Hn(G,Z2). In fact, every element Ω ∈ Hn(G, U(1)ρ) whose inverse is itself can be
written as eiπL for some L ∈ Hn(G,Z2). We use this fact throughout the paper.

A.3 Cup product and Z2 cohomology ring

In this sub-appendix, we review cup product and Z2 cohomology ring in group cohomology
that we will use [99,100,102]. We will specialize to the case where the module is Z2 = {0, 1}
and the group action ρ is trivial. The special feature of Z2, countrary to e.g. U(1), is the fact
that Z2 is a ring. Note that here addition in Z2 is regarded as the group multiplication used
in Eq. (46), and we will use + to denote this addition in this sub-appendix. There is another
ring multiplication that will be important later, which should be distinguished with the group
multiplication used in Appendix A.1.

The cross product is defined as the following operation on group cohomology,

× : Hm(G,Z2)⊗Hn(H,Z2)→ Hm+n(G ×H,Z2) , (67)

such that for x ∈ Hm(G,Z2) and y ∈ Hn(H,Z2), after choosing cochain representatives x̃ and
ỹ , we have the cochain representative of x × y as follows,

áx × y ((g1, h1), . . . , (gm+n, hm+n))≡ x̃(g1, . . . , gm) · ỹ(hm+1, . . . , hm+n) , (68)
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where gi ∈ G, hi ∈ H, i = 1, . . . , m+ n.
The cup product is defined as the following operation on group cohomology,

∪ : Hm(G,Z2)⊗Hn(G,Z2) Hm+n(G × G,Z2) Hm+n(G,Z2)
× ∆∗ , (69)

where∆ : G→ G×G is the diagonal embedding g → (g, g). We can also define it at the cochain
level, i.e., for x ∈ Hm(G,Z2) and y ∈ Hn(G,Z2), after choosing cochain representatives x̃ and
ỹ , we have the cochain representative of x ∪ y as follows,

áx ∪ y (g1, . . . , gm+n)≡ x̃(g1, . . . , gm) · ỹ(gm+1, . . . , gm+n) . (70)

We can prove that cup product is commutative, i.e., x ∪ y = y ∪ x .
The cup product ∪ gives a multiplication on the direct sum of cohomology groups

H∗(G,Z2) =
⊕

k∈N
Hk(G,Z2) . (71)

Together with the fact that 1∪ x = x where x is any element in H∗(G,Z2) and 1 here denotes
the nontrivial element in H0(G,Z2) = Z2, the cup product ∪ turns H∗(G,Z2) into a ring that
is naturally N graded and commutative. We call this ring the Z2 cohomology ring of G.

Moreover, H∗(G,Z2) is also a Z2 algebra, and therefore can be presented by generators
and relations, i.e., all elements in Hn(G,Z2) for any n > 0 are either generators or can be
expressed as sum of (cup) products of generators, and generators satisfy some relations which
dictate that certain sums of (cup) products actually yield a trivial cohomology element. We
will call a generator in Hn(G,Z2) a degree n generator. Hence, the Z2 cohomology ring of G,
i.e., H∗(G,Z2), can be written as follows,

H∗(G,Z2) = Z2[A•, · · · , B•, · · · ]/relations , (72)

with A•(B•) generators in degree 1(2) belonging to H1(G,Z2)(H2(G,Z2)), and • the name of
the generator. Together with potential higher order generators, e.g., C• in degree 3, they are
supposed to form a complete list of generators of the entire cohomology ring.

For example, the Z2 cohomology ring of the group Z2 is

Z2[Ac] , (73)

where Ac is the nontrivial element in H1(Z2,Z2) and can be thought of as nothing but the
gauge field of e.g., C2 rotation when pulled back to the spacetime manifold. In other words,
for the Z2 cohomology ring of Z2, there is a single generator Ac in degree 1 and no relation.
Accordingly, we can see that Hn(G,Z2) = Z2 for n ∈ N, with the nontrivial element given by
An

c ≡ Ac ∪ Ac ∪ · · · ∪ Ac , the cup product of n Ac ’s.
As another example, the Z2 cohomology ring of Z4 is

Z2[Ac , Bc2]/
�

A2
c = 0

�

, (74)

where here Ac is the nontrivial element in H1(Z4,Z2) and can be thought of as (the Z2 reduc-
tion of) the gauge field of C4 rotation when pulled back to the spacetime manifold, while Bc2

is the nontrivial element in H2(Z4,Z2), which corresponds to the fractionalization pattern of
the Z4 symmetry on an SO(3) monopole, with C4

4 = C2
2 = −1. That is to say, for the Z2 coho-

mology ring of Z4, there are two generators at degree 1 and 2 respectively, with the square of
degree 1 generator Ac equal to 0. Then we see that Hn(Z4,Z2) = Z2 for n ∈ N as well, and the
nontrivial element is given by Bk

c2 when n= 2k and AcB
k
c2 when n= 2k+1 (k ∈ N). Note that

for both G = Z2 and G = Z4, Hn(G,Z2) = Z2 for any n ∈ N, but the Z2 cohomology rings give
more information that differentiates the two groups.
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For any two groups G1 and G2, we have H∗(G1×G2,Z2) = H∗(G1,Z2)⊗H∗(G2,Z2). More-
over, if G can be written as G1 o G2, where G1 is a normal subgroup of G and G2 acts on
G1 by conjugation, the calculation of the Z2 cohomology ring of G can be achieved with the
help of Lyndon–Hochschild–Serre spectral sequence [99, 100] that also connects H∗(G,Z2)
with H∗(G1,Z2) and H∗(G2,Z2) which we possibly already know. The general strategy for
calculating the Z2 cohomology ring of wallpaper groups G is as follows:

1. Identify all generators and elements in the Z2 cohomology ring of G through
Lyndon–Hochschild–Serre spectral sequence.

2. If there is no relation, given generators A1, A2, B1, C1 . . . , all elements of the form
Am

1 An
2Bp

1 Cq
1 . . . , m, n, p, q · · · ∈ N will appear explicitly as different elements in the Z2

cohomology ring. Therefore, when e.g., some A2
1 is missing, we should identify some re-

lation that relates A2
1 to elements that appear explicitly, which can be achieved through

pulling back to (enough) subgroups of G.

To illustrate the strategy, in the following we calculate the Z2 cohomology ring of three
space groups in one or two spatial dimensions, including the generators and relations.

• p1: Z2[x]/(x2 = 0).

Consider the line group p1, generated by a single translation T . The cohomology of
p1 is H1(p1,Z2) ∼= Z2 while Hn(p1,Z2) ∼= 0, n > 1. Denote the nontrivial element in
H1(p1,Z2) as x , which corresponds to (the Z2 reduction of) the gauge field of transla-
tion, the Z2 cohomology ring of p1 is given by Z2[x]/(x2 = 0).

• p1m: Z2[x , m]/(x2 = xm).

Consider the line group p1m, generated by translation T and mirror symmetry M with
relation M T M = T−1. The cohomology of p1m is Hn(p1m,Z2) ∼= Z2

2, n ¾ 1. Since
p1m∼= ZoZ2, with the help of the corresponding Serre spectral sequence, we know that
Hn(p1m,Z2), n ¾ 1 is spanned by 2 elements, i.e., mn and mn−1 x . where
m, x ∈ H1(p1m,Z2) are two generators that correspond to the gauge field of mirror
symmetry and (the Z2 reduction of) the gauge field of translation, respectively.

The next thing to do is to identify x2, which does not explicitly appear as elements of
the Z2 cohomology ring. Write x2 as a1 xm + a2m2, a1,2 ∈ {0,1}. By restricting to Z2
subgroup generated by M , whose Z2 cohomology ring can be denoted by Z2[m′], we
see that x becomes 0 while m becomes m′, and thus a2 = 0. By restricting to the Z2
subgroup generated by T M , whose Z2 cohomology ring can be denoted by Z2[m′′], we
see that both x and m become m′′, and thus a1 = 1. Therefore, we have x2 = xm.

Therefore, the Z2 cohomology ring of p1m is Z2[x , m]/(x2 = xm).

• cm: Z2[Ax+y , Am, Bx y]/(Ax+yAm = 0, A2
x+y = 0, Bx yAx+y = 0, B2

x y = 0).

Consider 2d wallpaper group cm, generated by two translation symmetries T1, T2 as
well as mirror symmetry M that interchanges the two translations, i.e., M T1M = T2
and M T2M = T1. The cohomology of cm is Hn(cm,Z2) ∼= (Z2)2, n ¾ 1. Since
cm ∼= (Z × Z) o Z2, with the help of the corresponding Serre spectral sequence, we
know that H1(cm,Z2) is spanned by Ax+y and Am, while Hn(cm,Z2), n ¾ 2 is spanned
by Bx yAn−2

m and An
m. Here Am, Ax+y ∈ H1(cm,Z2) correspond to the gauge field of mirror

symmetry and (the Z2 reduction of) the sum of gauge fields of T1 and T2, respectively.
Note that since T1 and T2 map to each other under conjugation by M , the gauge field
of the two translations x and y individually is not invariant under conjugation by M ,
yet their sum that we denote by Ax+y is invariant under conjugation by M , which is
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a necessary condition for it to be a cohomology element, as required by Eq. (52). To
conform to the notation, we also denote the gauge field of mirror symmetry by Am when
considering wallpaper groups. Moreover, there is an extra degree-2 generator Bx y , i.e.,
an element belonging to H2(cm,Z2) that cannot be written as sum of cup product of el-
ements in H1(cm,Z2). The name x y comes from the fact that its restriction to subgroup
p1 generated by T1, T2 is AxAy (see Appendix E).

To identify the relations, we note that there are now 4 missing elements:
Ax+yAm, A2

x+y , Bx yAx+y , B2
x y . By restricting to the subgroup p1 generated by T1, T2 as

well as the subgroup Z2 generated by M , we see that Ax+yAm = A2
x+y = 0. By restricting

to the subgroup pm generated by T1T−1
2 , T1T2, M , we see that Bx yAx+y = 0 as well as

B2
x y = 0. Note that the pullback of Ax+y , Am and Bx y to the subgroup pm is 0, Am and

AyAm, respectively.

Therefore, the Z2 cohomology ring of cm is

Z2[Ax+y , Am, Bx y]/
�

Ax+yAm = 0, A2
x+y = 0, Bx yAx+y = 0, B2

x y = 0
�

.

A.4 SQ1

In this sub-appendix, we define a new map we call SQ1, reminiscent of Sq1 in regular Steenrod
algebra, as follows

SQ1 : Hn(G,Z2) Hn(G, U(1)ρ) Hn+1(G,Zρ) Hn+1(G,Z2) ,
ĩ β p̃

(75)

SQ1 ≡ p̃ ◦ β ◦ ĩ , (76)

where ĩ and p̃ are the map of group cohomology induced by the homomorphism of modules
i : Z2 → U(1) and p : Z → Z2, and β is the Bockstein homomorphism associated with the
short exact sequence 1→ Z→ R→ U(1)→ 1. Note that β ◦ ĩ is the Bockstein homomorphism
β2 associated with the short exact sequence 1→ Z→ Z→ Z2 → 1, and therefore when the
action ρ is trivial, SQ1 is exactly Sq1 in regular Steenrod algebra.

Moreover, SQ1 is related to Sq1 via the following simple fact

Lemma A.1. For x ∈ Hn(G,Z2), we have

SQ1(x) = SQ1(1)∪ x + Sq1(x) . (77)

Proof. According to Eq. (61), choosing a cochain x̃ ∈ Cn(G,Z) such that the Z2 reduction of
x̃ is x , we have

SQ1(x) =
1
2

�

(−1)ρ̃(g1) x̃(g2, . . . , gn+1)

+
n
∑

j=1

(−1) j x̃(g1, . . . , g j g j+1, . . . , gn+1) + (−1)n+1 x̃(g1, . . . , gn)

�

=
1
2

�

(−1)ρ̃(g1) − 1
�

x̃(g2, . . . , gn+1) + Sq1(x)

= SQ1(1)∪ x + Sq1(x) mod 2 .

(78)

�

For example, for ZT
2 with nontrivial action on U(1) or Z, we have,

SQ1(t2n+1) = 0 , SQ1(t2n) = t2n+1 , (79)

43

https://scipost.org
https://scipost.org/SciPostPhys.13.3.066


SciPost Phys. 13, 066 (2022)

where t ∈ H1(ZT
2 ,Z2) is the generator of the Z2 cohomology ring of ZT

2 . We see that in the
presence of nontrivial ρ, the operation SQ1 is not distributive with respect to the cup product.
Note that SQ1(1) is nonzero and equals t, which when pulled back to the spacetime manifold
M equals w1 as well, i.e., the first Stiefel-Whitney class of M. In contrast, for Z2 with trivial
action on U(1) or Z, we have

SQ1(A2n
c ) = 0 , SQ1(A2n+1

c ) = A2n+2
c , (80)

where Ac ∈ H1(Z2,Z2) is the generator of the Z2 cohomology ring of Z2 as well.
As another example, consider O(5) with ρ̃ : O(5) → Z2 the determinant, i.e., an O(5)

element complex conjugates an U(1) element or multiplies a Z element by −1 if and only if
the determinant of the O(5) element is −1. From Lemma A.1 we immediately have,

SQ1
�

wO(5)
4

�

= wO(5)
5 , (81)

as suggested by the calculation in the context of DQCP in Refs. [19,103].
Moreover, even if SQ1 is not distriutive with respect to the cup product, from Lemma A.1

SQ1 is still distributive with respect to the cross product involving two different groups, i.e.,
we have

Lemma A.2. For x ∈ Hm(G,Z2) and y ∈ Hn(H,Z2), we have x × y ∈ Hm+n(G ×H,Z2) and

SQ1(x × y) = SQ1(x)× y + x ×SQ1(y) . (82)

This lemma is also important when calculating SQ1 because it decomposes the calculation
into different pieces corresponding to different groups. For example, with the help of Eqs.
(79) and (80), the lemma tells us how to calculate SQ1 for the group (Z2)k with every Z2
piece acting trivially or nontrivially on U(1) or Z.

Finally, from the fact that

ALH
∼= ker

�

ĩ : H2(Gs,Z2)→ H2(Gs, U(1)ρ)
�

, (83)

as argued in Section 2.2, for LSM anomaly written as exp (iπλη) where λ ∈ H2(Gs,Z2) and
η ∈ H2(Gint ,Z2), we have

SQ1(λ) = 0 . (84)

This can also be mathematically checked by considering different representations
ρ : Gs → O(n). For example, consider Gs = p4m. Then ALH is spanned by
λ1 = Bx y + Ax+y(Ax+y + Am) + Bc2 , λ2 = Bx y , λ3 = Ax+y(Ax+y + Am) in H2(p4m,Z2) (see
Appendix E), corresponding to LSM anomaly associated to DOF at the site a, plaquette center
b, and bond center c as in Fig. 3, repectively. Consider the following three representations of
p4m. The first one is

Tx →





−1 0 0
0 −1 0
0 0 1



 , Ty →





−1 0 0
0 1 0
0 0 −1



 , C4→





1 0 0
0 0 1
0 −1 0



 ,

M →





1 0 0
0 1 0
0 0 −1



 .

(85)
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The pullback of wO(3)
2 equals Bx y +Bc2 while the pullback of wO(3)

3 is zero (see sub-Section 3.2

and especially Eq. (34)). From SQ1
�

wO(3)
2

�

= wO(3)
3 , we establish that

SQ1(Bx y + Bc2) = 0 . (86)

The second representation is

Tx →
�

1 0
0 1

�

, Ty →
�

1 0
0 1

�

, C4→
�

0 1
−1 0

�

, M →
�

1 0
0 −1

�

. (87)

The pullback of wO(2)
2 equals Bc2 , and from SQ1

�

wO(2)
2

�

= 0, we establish that

SQ1(Bc2) = 0 . (88)

The third representation is

Tx →
�

−1 0
0 −1

�

, Ty →
�

−1 0
0 −1

�

, C4→
�

1 0
0 1

�

,

M →
�

1 0
0 −1

�

,

(89)

and we have

SQ1(Ax+y(Ax+y + Am)) = 0 . (90)

Since Bx y + Bc2 , Bc2 , Ax+y(Ax+y + Am) span ALH as well, indeed we mathematically show that
SQ1(λ) = 0 for λ ∈ ALH in p4m. Then according to Lemma A.2 we also have

SQ1(λη) = SQ1(λ)×η+λ×SQ1(η) = λ×SQ1(η) . (91)

This equation will be very useful in the analysis of anomaly-matching. Note that this equation
holds for LSM constraints on lattices with any wallpaper group.

B Topological partition function corresponding to LSM

In this appendix, we provide a more rigorous argument that the cocycle corresponding to the
topological partition function (TPF) of the (3+ 1)-d Gs × Gint SPT, whose boundary has some
LSM constraint, can indeed be written in the form of Eq. (1). 15

To start, first recall that the lattice homotopy picture indicates that all LSM constraints for
a given wallpaper group Gs are classified by a group ALH = Zk

2 with some integer k. This means
that the sought-for cocycle in H4(Gs × Gint , U(1)ρ) can be written as

Ω(g1, g2, g3, g4) = eiπκ(g1,g2,g3,g4) , (92)

15Since the (3+1)-d Gs×Gint SPT is captured by an element in H4(Gs×Gint , U(1)ρ), one may attempt to show the
validity of Eq. (1) by combining the Kunneth decomposition H4(Gs ×Gint , U(1)ρ)∼= ⊕4

i=0H i(Gs, H4−i(Gint , U(1)ρ))
and the fact that the relevant (1+ 1)-d Gint SPT is captured by H2(Gint , U(1)ρ), which suggests that in the Kun-
neth decomposition only the term H2(Gs, H2(Gint , U(1)ρ)) is relevant to the LSM constraints. Although intuitively
appealing, this argument is flawed, because there is generically no unambiguous way to determine whether an ele-
ment in H4(Gs×Gint , U(1)ρ) is in H2(Gs, H2(Gint , U(1)ρ)). Our argument below does not suffer from this ambiguity.
Furthermore, even if we know that the relevant cocycle is in H2(Gs, H2(Gint , U(1)ρ)), it requires an explanation
why its representative cochain can necessarily be written as Eq. (1).
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with κ taking values in {0,1}. This allows us to view κ(g1, g2, g3, g4) as a representa-
tive cochain in H4(Gs × Gint ,Z2), where the multiplication between two elements is im-
plemented by the mod 2 addition of their corresponding representative cochains. Since
H4(Gs × Gint ,Z2)' ⊕4

i=0H i(Gs,Z2)⊗H4−i(Gint ,Z2), we can always write Ω as

Ω(g1, g2, g3, g4) =
4
∏

i=0

eiπλi(l1,··· ,li)η4−i(ai+1,··· ,a4) , (93)

where each gi ∈ Gs × Gint is again written as gi = li ⊗ ai , with li ∈ Gs and ai ∈ Gint . Both λi
and η4−i take values in {0, 1}, and they can be viewed as representative cochains in H i(Gs,Z2)
and H4−i(Gint ,Z2), respectively. Furthermore, we can view eiπη4−i(ai+1,··· ,a4) as a representative
cochain in H4−i(Gint , U(1)ρ), which can be physically interpreted as a Gint SPT living in 3− i
spatial dimensions.

Previous studies of Gs × Gint SPTs indicate that all these SPTs have a real-space construc-
tion, in which various lower dimensional SPTs (or invertible states) are decorated into various
submanifolds of the entire crystal [9, 104, 105]. Indeed, the SPT relevant to LSM constraints
can be constructed by putting copies of (1 + 1)-d Gint SPTs at various IWP of the wallpaper
group Gs. Combining these two observations together, we conclude that in Eq. (93) only
the factor with i = 2 can possibly be related to LSM constraints, because only that factor can
possibly be related to putting (1+ 1)-d Gint SPTs at various positions, while other factors in-
volve SPTs living in the wrong dimension (e.g., the i = 1 term means that some (2+1)-d Gint
SPT is decorated into the system in some way). Moreover, for a given PR type of the system,
eiπη2(a3,a4) should be the cocycle corresponding to the (1+1)-d Gint SPT whose boundary hosts
this particular PR.

Therefore, the cocycle related to LSM constraints can always be written in a form given
by Eq. (1), and λ(l1, l2), which is written as λ2(l1, l2) in Eq. (93), can be viewed as a rep-
resentative cochain in H2(Gs,Z2). Furthermore, according to the lattice homotopy picture, λ
or λ2 should just encode the information of which IWP host (1+ 1)-d Gint SPTs, so it should
be completely determined by Gs and the lattice homotopy class corresponding to each LSM
constraint, and be the same for all Gint and all PR types of the system.

We remark that the above argument does not show that all cocycles in the form of Eq. (1)
must be related to LSM constraints. In fact, in Sec. 2.2 we have found that some of them are
not. Those SPTs can be constructed by inserting a (2+1)-d Z2×Gint SPT on the mirror plane,
such that the Z2 domain wall is decorated with a (1+1)-d Gint SPT. See Appendix D for more
detail.

We also remark that although we have assumed that the projective representations of Gint
are Zk

2-classified with k some integer in the above argument, we expect that the topological
partition functions corresponding to LSM constraints can always be written in a form similar
to Eq. (1), for any Gint . Specially, if a PR type of Gint has order n, then the LSM-related cocycle
takes the form

Ω(g1, g2, g3, g4) = ei 2π
n λ(l1,l2)η(a3,a4) , (94)

where λ and η take integral values, and e
2πi
n η(a3,a4) is the cocycle corresponding to the relevant

(1+1)-d Gint SPT. Moreover, this statement, including its special form Eq. (1), has been derived
in the special cases where Gs contains only translation or only point group, using equivariant
homology [10], and we expect that the method in Ref. [10] can be generalized to an arbitrary
lattice symmetry group Gs. A systematic proof of this statement is beyond the scope of this
paper and we leave it for future work.
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C Fractionalization pattern involving both translation and glide
symmetries

Among all 17 wallpaper groups, there is only one group, pg, in which the fractionalization pat-
tern has to be specified in a way that necessarily invokes the glide symmetry. In this appendix,
we present its corresponding physical picture.

The group pg is generated by T1 and G, a translation and a glide reflection. The translation
vector of T1 is flipped under G, and G2 is another translation along a direction perpendicular
to the translation vector of T1. These generators satisfy G−1T1GT1 = 1.

Figure 4: Acting G−1T1GT1 on an SO(3) monopole. The first T1 action is marked in
blue, the following G action is marked in red, the next T1 action is marked in green,
and the last G−1 action is marked in purple. The dashed line is the reflection axis of
G. This figure shows that the operation G−1T1GT1 moves an SO((3)monopole along
a trajectory that encloses a fundamental domain.

Consider the case where Gint = SO(3). Just as in the main text, we gauge the SO(3) sym-
metry and examine the fractionalization pattern of pg on the SO(3) monopole by applying
the operation G−1T1GT1 to an SO(3) monopole, which moves the monopole around the fun-
damental domain (see Fig. 4). If the fundamental domain contains an odd (even) number
of Haldane chains, this process results in a −1 (1) phase factor, which is a signature of non-
trivial (trivial) symmetry fractionalization pattern of the pg symmetry carried by the SO(3)
monopole. Because H2(pg,Z2) = Z2, there is only one nontrivial symmetry fractionalization
pattern. A topological invariant detecting the nontrivial element in H2(pg,Z2) is given in Eq.
(192), so this must be the topological invariant that diagnoses the fractionalization pattern of
the pg symmetry on an SO(3) monopole.

D Non-LSM fractionalization patterns

In this appendix, we discuss in more detail the M × SO(3) SPT corresponding to
αnon−LSM =

ω(M ,M)
ω(1,1) = −1, which has TPF exp(iπ

∫

(wT M
1 )2wSO(3)

2 ). In particular, we will show
that this SPT can be constructed by inserting into the mirror plane of M a (2+1)-d Z2×SO(3)
SPT, whose Z2 domain walls are decorated with Haldane chains. Moreover, we will show that
for any Gint with Zk

2-classified PR, the (3+1)-d M ×Gint SPTs with αnon−LSM = −1 can always
be constructed by inserting into the mirror plane of M a (2 + 1)-d Z2 × Gint SPT, whose Z2
domain walls are decorated with the relevant nontrivial (1+ 1)-d Gint SPT.

Focusing on the case with Gint = SO(3), let us enumerate all (3+ 1)-d M × SO(3) SPTs.
According to the crystalline equivalence principle [41], the classification of these SPTs is the
same as the classification of (3+1)-d ZT

2 ×SO(3) SPTs, where ZT
2 is a time reversal symmetry.

It is known that the latter are classified by Z4
2 (e.g., see Appendix F of Ref. [45] for the descrip-
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tions of the physical properties of these SPTs). So (3+ 1)-d M × SO(3) SPTs are Z4
2-classified.

According to Ref. [106], these SPTs can all be constructed by putting on the mirror plane of
M some (2+ 1)-d invertible states that have at most a Z2 × SO(3) symmetry (note that this
Z2 symmetry does not reverse the spacetime orientation). The (2+ 1)-d Z2 × SO(3) SPTs are
classified by H3(Z2×SO(3), U(1)) = Z2×Z×Z2, where the Kunneth formula is used in calcu-
lating this classification. It is easy to read off the physical meaning of the root states of these
(2+ 1)-d SPTs: one Z2 factor represents SPTs protected purely by the Z2 symmetry, the Z fac-
tor represents spin quantum Hall states [107], which are SPTs protected purely by the SO(3)
symmetry and has a TPF given by SO(3) Chern-Simons theories, and the other Z2 factor must
represent an SPT protected by both Z2 and SO(3). The decorated-domain-wall method [108]
allows us to construct the SPT by decorating the Z2 domain walls with a Haldane chain.

All the (2+ 1)-d Z2 × SO(3) SPTs can be inserted into the mirror plane of M to construct
a (3+ 1)-d M × SO(3) SPT, and one can also insert an E8 state to the mirror plane. In total,
these give the Z4

2 classification of (3+1)-d M × SO(3) SPTs. Note inserting a Z2 SPT or an E8
state to the mirror plane results in a (3+1)-d SPT protected by M only, so these states will not
have a TPF exp(iπ

∫

(wT M
1 )2wSO(3)

2 ), which shows that this SPT requires both M and SO(3) for
protection. Now we are only left with the cases where the bosonic spin quantum Hall state
and/or the state constructed from decorated domain wall is inserted into the mirror plane. To
understand the physical properties of these states, we can refer to the corresponding (3+1)-d
ZT

2 ×SO(3) SPTs. If a spin quantum Hall state is decorated into the time reversal domain wall,
the resulting state will have fermionic SO(3) monopoles. Using the correspondence between
ZT

2 × SO(3) SPTs and M × SO(3) SPTs, this indicates that if the spin quantum Hall state is
inserted into the mirror plane, the SO(3) monopole will also be fermionic. However, the
TPF exp(iπ

∫

(wT M
1 )2wSO(3)

2 )means that the SO(3)monopole is a boson (but carries nontrivial
fractionalization pattern of the M symmetry). This means that the (3+1)-d SPT of interest must
be obtained from inserting to the mirror plane the (2+ 1)-d SPT constructed from decorated
domain wall.

In fact, one can explicitly demonstrate that a (3+ 1)-d M × SO(3) SPT constructed in this
way indeed has an SO(3) monopole carring the nontrivial fractionalization pattern of the M
symmetry. To this end, it suffices to show a simpler version of this statement: suppose we break
the SO(3) symmetry in this SPT to U(1), the U(1) monopole in the resulting state will carry
the nontrivial fractionalization pattern of M . This statement can be explicitly shown using
the method in Ref. [46] (see Appendix B therein). This also means that upon this symmetry
breaking, the resulting M ×U(1) symmetric state is a nontrivial SPT. According to the general
discussion in Sec. 2.2, this implies that αnon−LSM is unrelated to LSM constraints of interest.

The above discussion concerns about the case where Gint = SO(3). Now we argue that
for any Gint with Zk

2-classified PR, αnon−LSM can be triggered in a (3 + 1)-d M × Gint SPT
constructed in a way similar to the above, and all we need to modify is to replace the Haldane
chain decorated into the Z2 domain wall by a (1 + 1)-d Gint SPT. To this end, it suffices to
show that the TPF of this (3+ 1)-d M × Gint SPT is eiπ

∫

(wT M
1 )2η, where η ∈ H2(Gint ,Z2) and

eiπ
∫

η is the TPF of the (1+ 1)-d Gint SPT. This can be shown by noting i) this SPT is its own
inverse, and ii) this construction works for all such Gint . Then an argument very similar to
that in Appendix B suggests that the TPF of this SPT can indeed be written as eiπ

∫

(wT M
1 )2η.
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E Group Cohomology and Z2 Cohomology ring
of wallpaper groups

In this appendix, we list the Z2 cohomology rings of all 17 wallpaper groups. The calculation
is done with the help of spectral sequence. See Appendix A.3 for some brief mathematical
introduction of the relevant concepts, and Refs. [99–101] for more details. It turns out that
for all wallpaper groups Gs except p4g, the cohomology ring can be written as

H∗(Gs,Z2) = Z2[A•, · · · , B•, · · · ]/relations , (95)

with A• and B• the generators belonging to H1(Gs,Z2) and H2(Gs,Z2), respectively. Subscripts
“•" are the names of generators which differ for different Gs, and their meanings will often be
clear in the context. As a result, all elements of the cohomology ring H∗(Gs,Z2) can be written
as cup product of the generators A• and B•, but there are some relations that dictate that
certain sums of cup products actually yield a trivial cohomology element. We will present
all elements of H1(Gs,Z2) and H2(Gs,Z2) together with their representative cochains, as well
as the complete set of the relations. This encodes the full information of the cohomology
ring H∗(Gs,Z2). The situation for p4g is similar, but we need an extra degree-3 generator
C ∈ H3(p4g,Z2), which, together with the generators in H1(p4g,Z2) and H2(p4g,Z2), forms
a complete set of generators of H∗(p4g,Z2).

For later usage, we define a set of functions that take integers as their arguments:

P(x) =

�

1 , x is odd
0 , x is even

, Pc(x) = 1− P(x) , Q(x) = (−1)x ,

[x]a = {y = x (mod a)|0¶ y < a} , Pab(x) =

�

1 , x = b (mod a) ,
0 , otherwise .

(96)

• Wallpaper group 1: p1

This group is generated by T1 and T2, two independent translations which are commu-
tative,

T1T2 = T2T1 . (97)

An arbitrary group element in p1 can be written as g = T x
1 T y

2 , with x , y ∈ Z. For
g1 = T x1

1 T y1
2 and g2 = T x2

1 T y2
2 , the group multiplication rule gives

g1 g2 = T x1+x2
1 T y1+y2

2 . (98)

The Z2 cohomology ring of p1 is

Z2[Ax , Ay]/(A
2
x = 0, A2

y = 0) . (99)

Here H1(p1,Z2) = Z2
2, with generators ξ1 = Ax , ξ2 = Ay , which have representative

cochains,

ξ1(g) = x , ξ2(g) = y . (100)

H2(p1,Z2) = Z2, with generators λ1 = AxAy , which have representative cochains,

λ1(g1, g2) = y1 x2 . (101)

Indeed λ1 generates the LSM constraint.
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• Wallpaper group 2: p2

This group is generated by T1, T2 and C2, two independent translations and a C2 rota-
tional symmetry, with the following relations among generators

C2
2 = 1 , C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1 . (102)

An arbitrary group element in p2 can be written as g = T x
1 T y

2 C c
2, with x , y ∈ Z and

c ∈ {0,1}. For g1 = T x1
1 T y1

2 C c1
2 and g2 = T x2

1 T y2
2 C c2

2 , the group multiplication rule gives

g1 g2 = T x1+Q(c1)x2
1 T y1+Q(c1)y2

2 C P(c1+c2)
2 . (103)

The Z2 cohomology ring of p2 is

Z2[Ax , Ay , Ac]/(A
2
x = AxAc , A2

y = AyAc) . (104)

Here H1(p2,Z2) = Z3
2, with generators ξ1 = Ax , ξ2 = Ay , ξ3 = Ac , which have

representative cochains,

ξ1(g) = x , ξ2(g) = y , ξ3(g) = c . (105)

H2(p2,Z2) = Z4
2, with generators λ1 = (Ax + Ac)(Ay + Ac), λ2 = Ax(Ay + Ac),

λ3 = (Ax + Ac)Ay , λ4 = AxAy , which have representative cochains,

λ1(g1, g2) = y1 x2 + c1(x2 + y2 + c2) ,

λ2(g1, g2) = (y1 + c1)x2 ,

λ3(g1, g2) = y1 x2 + c1 y2 ,

λ4(g1, g2) = y1 x2 .

(106)

The generators are chosen so that they have a 1-1 correspondence with topological in-
variants presented in Appendix F. There we will also see that all of them, λ1,λ2,λ3,λ4,
generate LSM constraints.

• Wallpaper group 3: pm

This group is generated by T1, T2 and M , where T1 and T2 are translations with perpen-
dicular translation vectors, and M is a mirror symmetry such that

M2 = 1 , M T1M = T−1
1 , M T2M = T2 , T1T2 = T2T1 . (107)

An arbitrary element in pm can be written as g = T x
1 T y

2 M m, with x , y ∈ Z and
m ∈ {0,1}. For g1 = T x1

1 T y1
2 M m1 and g2 = T x2

1 T y2
2 M m2 , the group multiplication rule

gives

g1 g2 = T x1+Q(m1)x2
1 T y1+y2

2 M P(m1+m2) . (108)

The Z2 cohomology ring of pm is

Z2[Ax , Ay , Am]/(A
2
x = AxAm, A2

y = 0) . (109)

Here H1(pm,Z2) = Z3
2, with generators ξ1 = Ax , ξ2 = Ay , ξ3 = Am, which have

representative cochains,

ξ1(g) = x , ξ2(g) = y , ξ3(g) = m . (110)
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H2(pm,Z2) = Z4
2, with generators λ1 = (Ax+Am)Ay , λ2 = AxAy , λ3 = (Ax+Am)Am,

λ4 = AxAm, which have representative cochains,

λ1(g1, g2) = y1 x2 +m1 y2 ,

λ2(g1, g2) = y1 x2 ,

λ3(g1, g2) = m1(x2 +m2) ,

λ4(g1, g2) = m1 x2 .

(111)

In Appendix F, we will see that λ1,λ2 generate LSM constraints, while λ3,λ4 correspond
to non-LSM fractionalization patterns.

• Wallpaper group 4: pg

This group is generated by T1 and G, where T1 is a translation and G is a glide reflection,
such that

G−1T1G = T−1
1 . (112)

Note that G2 is a translation along the direction perpendicular to the translation vector
of T1. An arbitrary element in pg can be written as g = T x

1 Gs, with x , s ∈ Z. For
g1 = T x1

1 Gs1 and g2 = T x2
1 Gs2 , the group multiplication rule gives

g1 g2 = T x1+Q(s1)x2
1 Gs1+s2 . (113)

The Z2 cohomology ring of pg is

Z2[Ax , As]/(A
2
x = AxAs, A2

s = 0) . (114)

Here H1(pg,Z2) = Z2
2, with generators ξ1 = Ax , ξ2 = As, which have representative

cochains,

ξ1(g) = x , ξ2(g) = s . (115)

H2(pg,Z2) = Z2, with generators λ1 = AxAs, which have representative cochains,

λ1(g1, g2) = s1 x2 . (116)

In Appendix F, we will see that λ1 generates LSM constraints.

• Wallpaper group 5: cm

This group is generated by T1, T2 and M , two independent translations and a mirror
symmetry whose mirror axis bisects the translation vectors of T1 and T2. They satisfy

M2 = 1 , M T1M = T2 , M T2M = T1 , T1T2 = T2T1 . (117)

An arbitrary element of cm can be written as g = T x
1 T y

2 M m, with x , y ∈ Z and m ∈ {0,1}.
For g1 = T x1

1 T y1
2 M m1 and g2 = T x2

1 T y2
2 M m2 , the group multiplication rule gives

g1 g2 = T x1+Pc(m1)x2+P(m1)y2
1 T y1+Pc(m1)y2+P(m1)x2

2 M P(m1+m2) . (118)

The Z2 cohomology ring of cm is

Z2[Ax+y , Am, Bx y]/(A
2
x+y = 0 , Ax+yAm = 0 , Bx yAx+y = 0 , B2

x y = 0) . (119)
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Here H1(cm,Z2) = Z2
2, with two generators ξ1 = Ax+y , ξ2 = Am, which have repre-

sentative cochains

ξ1(g) = x + y , ξ2(g) = m . (120)

H2(cm,Z2) = Z2
2, with generators λ1 = Bx y , λ2 = A2

m, which have representative
cochains

λ1(g1, g2) = Pc(m1)y1 x2 + P(m1)y2(x2 + y1) ,

λ2(g1, g2) = m1m2 .
(121)

In Appendix F, we will see that λ1 generates LSM constraints, while λ2 corresponds to
non-LSM fractionalization patterns.

• Wallpaper group 6: pmm

This group is generated by T1, T2, C2 and M , two translations with perpendicular trans-
lation vectors, a C2 rotation and a mirror symmetry such that

M2 = 1 , MC2M = C2 , M T1M = T−1
1 , M T2M = T2 ,

C2
2 = 1 , C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1 .

(122)

Note that C2M is another mirror symmetry that flips the translation vector of T2. An arbi-
trary element in pmm can be written as g = T x

1 T y
2 C c

2 M m, with x , y ∈ Z and c, m ∈ {0, 1}.
For g1 = T x1

1 T y1
2 C c2

2 M m1 and g2 = T x2
1 T y2

2 C c2
2 M m2 , the group multiplication rule gives

g1 g2 = T x1+Q(c1+m1)x2
1 T y1+Q(c1)y2

2 C P(c1+c2)
2 M P(m1+m2) . (123)

The Z2 cohomology ring of pmm is

Z2[Ax , Ay , Ac , Am]/(A
2
x = Ax(Am + Ac), A2

y = AyAc) . (124)

Here H1(pmm,Z2) = Z4
2, with generators ξ1 = Ax , ξ2 = Ay , ξ3 = Ac , ξ4 = Am,

which have representative cochains,

ξ1(g) = x , ξ2(g) = y , ξ3(g) = c , ξ4(g) = m . (125)

H2(pmm,Z2) = Z8
2, with generators λ1 = (Ax + Ac + Am)(Ay + Ac), λ2 = AxAy ,

λ3 = Ax(Ay+Ac), λ4 = (Ax+Ac+Am)Ay , λ5 = (Ax+Ac+Am)Am, λ6 = (Ay+Ac)Am,
λ7 = AxAm, λ8 = AyAm, which have representative cochains,

λ1(g1, g2) = (y1 + c1)x2 + (c1 +m1)(y2 + c2) ,

λ2(g1, g2) = y1 x2 ,

λ3(g1, g2) = (y1 + c1)x2 ,

λ4(g1, g2) = y1 x2 + (c1 +m1)y2 ,

λ5(g1, g2) = m1(x2 + c2 +m2) ,

λ6(g1, g2) = m1(y2 + c2) ,

λ7(g1, g2) = m1 x2 ,

λ8(g1, g2) = m1 y2 .

(126)

In Appendix F, we will see that λ1,λ2,λ3,λ4 generate LSM constraints, while
λ5,λ6,λ7,λ8 correspond to non-LSM fractionalization patterns.
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• Wallpaper group 7: pmg

This group is generated by T1, T2, C2 and M , two translations with perpendicular trans-
lation vectors, a 2-fold rotation and a mirror symmetry with mirror axis parallel to the
translation vector of T2, and displaced from the C2 rotation center by a quarter of the
unit translation vector of T1. They satisfy

M2 = 1 , MC2M = T1C2 , M T1M = T−1
1 , M T2M = T2 ,

C2
2 = 1 , C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1 .

(127)

An arbitrary element in pmg can be written as g = T x
1 T y

2 C c
2 M m, with x , y ∈ Z and

c, m ∈ {0,1}. For g1 = T x1
1 T y1

2 C c1
2 M m1 and g2 = T x2

1 T y2
2 C c2

2 M m2 , the group multiplica-
tion rule gives

g1 g2 = T x1+Q(c1+m1)x2+Q(c1)c2m1
1 T y1+Q(c1)y2

2 C P(c1+c2)
2 M P(m1+m2) . (128)

The Z2 cohomology ring of pmg is

Z2[Ay , Ac , Am]/(A
2
y = AcAy , AcAm = 0) . (129)

Here H1(pmg,Z2) = Z3
2, with generators ξ1 = Ay , ξ2 = Ac , ξ3 = Am, which have

representative cochains,

ξ1(g) = y , ξ2(g) = c , ξ3(g) = m . (130)

H2(pmg,Z2) = Z4
2, with generators λ1 = Ac(Ay + Ac), λ2 = AcAy , λ3 = AyAm,

λ4 = A2
m, which have representative cochains,

λ1(g1, g2) = c1(y2 + c2) ,

λ2(g1, g2) = c1 y2 ,

λ3(g1, g2) = m1 y2 ,

λ4(g1, g2) = m1m2 .

(131)

In Appendix F, we will see that λ1,λ2 generate LSM constraints, while λ3,λ4 correspond
to non-LSM fractionalization patterns.

• Wallpaper group 8: pg g

This group is generated by T1, T2, C2 and G1, two translations with perpendicular trans-
lation vectors, a C2 rotation, and a glide reflection whose reflection axis is parallel to
the translation vector of T2, and displaced from the C2 center by a quarter of the unit
translation vector of T1. They satisfy

C2
2 = 1 , G1C2G−1

1 = T1T2C2 , C2T1C2 = T−1
1 , G1T1G−1

1 = T−1
1 , G2

1 = T2 . (132)

An arbitrary element in pg g can be written as g = T x
1 T y

2 C c
2Gs

1, with x , y ∈ Z and
c, s ∈ {0, 1}. For g1 = T x1

1 T y1
2 C c1

2 Gs1
1 and g2 = T x2

1 T y2
2 C c2

2 Gs2
1 , the group multiplication

rule gives

g1 g2 = T x1+Q(c1+s1)x2+Q(c1)c2s1
1 T y1+Q(c1)y2+Q(c1)c2s1+Q(c1+c2)s1s2

2 C P(c1+c2)
2 GP(s1+s2)

1 . (133)

The Z2 cohomology ring of pg g is

Z2[Ac , As, Bc(x+y)]/(A
2
s = 0, AsAc = 0, AsBc(x+y) = 0, B2

c(x+y) = A2
c Bc(x+y)) . (134)
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Here H1(pg g,Z2) = Z2
2, with generators ξ1 = Ac , ξ2 = As, which have representative

cochains,

ξ1(g) = c , ξ2(g) = s . (135)

H2(pg g,Z2) = Z2
2, with generators λ1 = Bc(x+y) + A2

c , ω2 = Bc(x+y), which have rep-
resentative cochains,

λ1(g1, g2) = c1(x2 + y2 + c2) + (c1 + c2)s1s2 + s1 x2 ,

λ2(g1, g2) = c1(x2 + y2) + (c1 + c2)s1s2 + s1 x2 .
(136)

In Appendix F, we will see that λ1,λ2 generate LSM constraints.

• Wallpaper group 9: cmm

This group is generated by T1, T2, C2 and M , two translations with translation vectors
not perpendicular to each other, a C2 rotation, and a mirror symmetry whose mirror axis
bisects the translation vectors of T1 and T2. They satisfy

M2 = 1 , MC2M = C2 , M T1M = T2 , M T2M = T1 ,

C2
2 = 1 , C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1 .

(137)

Note that C2M is another mirror symmetry whose mirror axis bisects the translation
vectors of T1 and T−1

2 . An arbitrary element in cmm can be written as g = T x
1 T y

2 C c
2 M m,

with x , y ∈ Z and c, m ∈ {0,1}. For g1 = T x1
1 T y1

2 C c1
2 M m1 and g2 = T x2

1 T y2
2 C c2

2 M m2 , the
group multplication rule gives

g1 g2 = T x1+Q(c1)X
1 T y1+Q(c1)Y

2 C P(c1+c2)
2 M P(m1+m2) , (138)

where X and Y are defined as

X = Pc(m1)x2 + P(m1)y2 ,

Y = Pc(m1)y2 + P(m1)x2 .
(139)

The Z2 cohomology ring of cmm is

Z2[Ax+y , Ac , Am, Bx y]/(A
2
x+y = AcAx+y , Ax+yAm = 0 ,

Bx yAx+y = 0 , B2
x y = (A

2
c + AcAm)Bx y) .

(140)

Here H1(cmm,Z2) = Z3
2, with generators ξ1 = Ax+y , ξ2 = Ac , ξ3 = Am, which have

representative cochains,

ξ1(g) = x + y , ξ2(g) = c , ξ3(g) = m . (141)

H2(cmm,Z2) = Z5
2, with generators λ1 = Bx y + AcAx+y + A2

c + AmAc ,
λ2 = Bx y , λ3 = AcAx+y , λ4 = (Ac +Am)Am, λ5 = AcAm, which have representative
cochains,

λ1(g1, g2) = Pc(m1)y1 x2 + P(m1)y2(x2 + y1) + c1(x2 + y2 + c2 +m2) ,

λ2(g1, g2) = Pc(m1)y1 x2 + P(m1)y2(x2 + y1) ,

λ3(g1, g2) = c1(x2 + y2) ,

λ4(g1, g2) = m1(c2 +m2) ,

λ5(g1, g2) = m1c2 .

(142)

In Appendix F, we will that λ1,λ2,λ3 generate LSM constraints, while λ4,λ5 correspond
to non-LSM fractionalization pattern.
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• Wallpaper group 10: p4

This group is generated by T1, T2 and C4, two translations with perpendicular translation
vectors that have equal length, and a 4-fold rotational symmetry, such that

C4
4 = 1 , C4T1C−1

4 = T2 , C4T2C−1
4 = T−1

1 , T1T2 = T2T1 . (143)

An arbitrary element in p4 can be written as g = T x
1 T y

2 C c
4, with x , y ∈ Z and

c ∈ {0, 1,2, 3}. For g1 = T x1
1 T y1

2 C c1
4 and g2 = T x2

1 T y2
2 C c2

4 , the group multiplication
rule gives

g1 g2 = T x1+∆x(x2,y2,c1)
1 T y1+∆y(x2,y2,c1)

2 C [c1+c2]4
4 , (144)

where

∆x(x , y, c) =











x , c = 0
−y, c = 1
−x , c = 2
y, c = 3

, ∆y(x , y, c) =











y, c = 0
x , c = 1
−y, c = 2
−x , c = 3

. (145)

The Z2 cohomology ring of p4 is

Z2[Ac , Ax+y , Bc2 , Bx y]/
�

A2
c = 0, AcAx+y = 0 ,

Bx yAx+y = Bx yAc , Bc2Ax+y = A3
x+y + Bx yAx+y ,

B2
x y = Bc2 Bx y

�

.

(146)

Here H1(p4,Z2) = Z2
2, with generators ξ1 = Ax+y , ξ2 = Ac , which have representative

cochains,

ξ1(g) = x + y , ξ2(g) = c . (147)

H2(p4,Z2) = Z3
2, with generators λ1 = Bx y + A2

x+y + Bc2 , λ2 = Bx y , λ3 = A2
x+y ,

which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +λ3(g1, g2) +
[c1]4 + [c2]4 − [c1 + c2]4

4
,

λ2(g1, g2) = Pc(c1)y1 x2 + P(c1)y2(x2 + y1) ,

λ3(g1, g2) = P41(c1)x2 + P42(c1)(x2 + y2) + P43(c1)y2 .

(148)

In Appendix F, we will see that λ1,λ2,λ3 generate LSM constraints.

• Wallpaper group 11: p4m

This group is generated by T1, T2, C4 and M , where the first three generators have the
same properties as those in p4, and the last generator M is a mirror symmetry that flips
the translation vector of T1, such that

M2 = 1 , MC4M = C−1
4 , M T1M = T−1

1 , M T2M = T2 ,

C4
4 = 1 , C4T1C−1

4 = T2 , C4T2C−1
4 = T−1

1 , T1T2 = T2T1 .
(149)

An arbitrary element in p4m can be written as g = T x
1 T y

2 C c
4 M m, with x , y ∈ Z,

c ∈ {0,1, 2,3} and m ∈ {0, 1}. For g1 = T x1
1 T y1

2 C c1
4 M m1 and g2 = T x2

1 T y2
2 C c2

4 M m2 ,
the group multiplication rule gives

g1 g2 = T x1+∆x(Q(m1)x2,y2,c1)
1 T y1+∆y(Q(m1)x2,y2,c1)

2 C [c1+Q(m1)c2]4
4 M P(m1+m2) , (150)
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where ∆x(x , y, c) and ∆y(x , y, c) are defined in Eq. (145).

The Z2 cohomology ring of p4m is

Z2[Ac , Ax+y , Am, Bc2 , Bx y]/
�

Ac(Ac + Am) = 0 , AcAx+y = 0 ,

Bx yAx+y = Bx y(Ac + Am),

Bc2Ax+y = A3
x+y + AmA2

x+y + Bx yAx+y ,

B2
x y = Bc2 Bx y

�

.

(151)

Here H1(p4m,Z2) = Z3
2, with generators ξ1 = Ax+y , ξ2 = Ac , ξ3 = Am, which have

representative cochains,

ξ1(g) = x + y , ξ2(g) = c, ξ3(g) = m . (152)

H2(p4m,Z2) = Z6
2, with generators λ1 = Bx y + Ax+y(Ax+y + Am) + Bc2 , λ2 = Bx y ,

λ3 = Ax+y(Ax+y + Am), λ4 = Am(Am + Ax+y + Ac), λ5 = AmAx+y , λ6 = AmAc ,
which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +λ3(g1, g2) +
[c1]4 +Q(m1)[c2]4 − [c1 +Q(m1)c2]4

4
,

λ2(g1, g2) = Pc(c1)y1 x2 + P(c1)y2(x2 + y1) ,

λ3(g1, g2) = P41(c1)x2 + P42(c1)(x2 + y2) + P43(c1)y2 +m1 y2 ,

λ4(g1, g2) = m1(x2 + y2 + c2 +m2) ,

λ5(g1, g2) = m1(x2 + y2) ,

λ6(g1, g2) = m1c2 .

(153)

In Appendix F, we will see that λ1,λ2,λ3 generate LSM constraints, while λ4,λ5,λ6
correspond to non-LSM fractionalization patterns.

• Wallpaper group 12: p4g

This group is generated by T1, T2, C4 and G. The first three generators have the same
properties as those in p4, and the last generator G is a glide reflection whose reflection
axis passes through the rotation center of C4 and bisects the translation vectors of T1
and T2, such that

C4
4 = 1 , C4T1C−1

4 = T2 , C4T2C−1
4 = T−1

1 , T1T2 = T2T1 , (154)

G2 = T1T2 , GT1G−1 = T2 , GT2G−1 = T1 , GC4G−1 = T2C−1
4 . (155)

Note that there is also a mirror symmetry M = T−1
1 G. An arbitrary element in p4g

can be written as g = T x
1 T y

2 C c
4Gs, with x , y ∈ Z, c ∈ {0,1, 2,3} and s ∈ {0,1}. For

g1 = T x1
1 T y1

2 C c1
4 Gs1 and g2 = T x2

1 T y2
2 C c2

4 Gs2 , the group multiplication rule gives

g1 g2 = T x1+∆x(X ,Y,c1)
1 T y1+∆y(X ,Y,c1)

2 C [c1+Q(s1)c2]4
4 GP(s1+s2) , (156)

where ∆x(x , y, c) and ∆y(x , y, c) are defined in Eq. (145), and

X = Pc(s1)x2 + P(s1)y2 +
�

P42(c2) + P43(c2)
�

s1 +∆x(s1s2, s1s2, [Q(s1)c2]4) ,

Y = Pc(s1)y2 + P(s1)x2 +
�

P41(c2) + P42(c2)
�

s1 +∆y(s1s2, s1s2, [Q(s1)c2]4) .
(157)
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The Z2 cohomology ring of p4g is

Z2[Ac , As, Bc2 , Bc(x+y), Cc2(x+y)]/
�

A2
c = 0 , AcAs = 0 ,

AcBc(x+y) = 0, AsBc(x+y) = AsBc2 ,

B2
c(x+y) = Bc2 Bc(x+y), AcCc2(x+y) = 0 ,

Bc(x+y)Cc2(x+y) = Bc2 Cc2(x+y) ,

C2
c2(x+y) = B3

c(x+y) + AsBc2 Cc2(x+y)
�

.

(158)

Here H1(p4g,Z2) = Z2
2, with generators ξ1 = Ac , ξ2 = As, which have representative

cochains,

ξ1(g) = c , ξ2(g) = s . (159)

H2(p4g,Z2) = Z3
2, with generators λ1 = Bc(x+y)+Bc2 , λ2 = Bc(x+y), λ3 = A2

s , which
have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +
[c1]4 +Q(s1)[c2]4 − [c1 +Q(s1)c2]4

4
,

λ2(g1, g2) = P40(c1)s1(P43(c2) + (c1 − c2)s2)

+ P41(c1)[Pc(s1)y2 + s1(x2 + 1− P40(c2) + (c1 − c2)s2)]

+ P42(c1)[Pc(s1)(x2 + y2) + s1(x2 + y2 + P41(c2) + (c1 − c2)s2)]

+ P43(c1)[Pc(s1)x2 + s1(y2 + P42(c2) + (c1 − c2)s2)] ,

λ3(g1, g2) = s1s2 .

(160)

In Appendix F, we will see that λ1,λ2 generate LSM constraints, while λ3 corresponds
to non-LSM fractionalization patterns.

Pay attention that there is a degree-3 generator Cc2(x+y) ∈ H3(p4g,Z2). We do not have
the explicit form of its representative cochain, but it can be determined by its pullback
to the subgroup p4 generated by T1, T2, C4, which is A3

x+y , as well as its pullback to the

subgroup cmm generated by T1, T2, T2C2, T−1
1 G, which is A3

x+y + A3
c + Bx yAm + A2

cAm.

• Wallpaper group 13: p3

This group is generated by T1, T2 and C3, two translations with translation vectors that
have the same length and an angle of 2π/3, and a 3-fold rotational symmetry, such that

C3
3 = 1, C3T1C−1

3 = T2, C3T2C−1
3 = T−1

1 T−1
2 , T1T2 = T2T1. (161)

An arbitrary element in p3 can be written as g = T x
1 T y

2 C c
3, with x , y ∈ Z and c ∈ {0,1, 2}.

For g1 = T x1
1 T y1

2 C c1
3 and g2 = T x2

1 T y2
2 C c2

3 , the group multiplication rule gives

g1 g2 = T x1+∆x(x2,y2,c1)
1 T y1+∆y(x2,y2,c1)

2 C [c1+c2]3
3 , (162)

where

∆x(x , y, c) =







x , c = 0
−y, c = 1
−x + y, c = 2

, ∆y(x , y, c) =







y, c = 0
x − y, c = 1
−x , c = 2

. (163)

The Z2 cohomology ring of p3 is

Z2[Bx y]/(B
2
x y = 0) . (164)
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Here H1(p3,Z2) = 0, while H2(p3,Z2) = Z2, with generator λ1 = Bx y , which have
representative cochain,

λ1(g1, g2) =P30(c1)y1 x2 + P31(c1)
�

y2(y2 − 1)
2

+ y2(x2 + y1)
�

+ P32(c1)
�

x2(x2 − 1)
2

+ y1 x2 + y2(x2 + y1)
�

.
(165)

In Appendix F, we will see that λ1 generates LSM constraints.

• Wallpaper group 14: p3m1

This group is generated by T1, T2, C3 and M , where the first three generators have the
same properties as those in p3, and the last one is a mirror symmetry whose mirror
axis passes through the C3 center, and is perpendicular to the angle that bisects the two
translation vectors of T1 and T2, such that

M2 = 1 , MC3M = C−1
3 , M T1M = T−1

2 , M T2M = T−1
1 ,

C3
3 = 1 , C3T1C−1

3 = T2 , C3T2C−1
3 = T−1

1 T−1
2 , T1T2 = T2T1 .

(166)

An arbitrary element in p3m1 can be written as g = T x
1 T y

2 C c
3 M m, with x , y ∈ Z,

c ∈ {0, 1,2} and M ∈ {0,1}. For g1 = T x1
1 T y1

2 C c1
3 M m1 and g2 = T x2

1 T y2
2 C c2

3 M m2 , the
group multiplication rule gives

g1 g2 = T x1+∆x(X ,Y,c1)
1 T y1+∆y(X ,Y,c1)

2 C [c1+Q(m1)c2]3
3 M P(m1+m2) , (167)

where ∆x(x , y, c) and ∆y(x , y, c) are defined in Eq. (163), and

X = Pc(m1)x2 − P(m1)y2 ,

Y = Pc(m1)y2 − P(m1)x2 .
(168)

The Z2 cohomology ring of p3m1 is

Z2[Am, Bx y]/(B
2
x y = 0) . (169)

Here H1(p3m1,Z2) = 0, with generator ξ1 = Am, which have representative cochain,

ξ1(g) = m . (170)

H2(p3m1,Z2) = Z2
2, with generators λ1 = Bx y , λ2 = A2

m, which have representative
cochains,

λ1(g1, g2) = P30(c1)[Pc(m1)y1 x2 +m1 y2(x2 + y1)]

+ P31(c1)

�

Pc(m1)
�

y2(y2 − 1)
2

+ y2(x2 + y1)
�

+m1

�

x2(x2 + 1)
2

+ y1 x2

�

�

+ P32(c1)

�

Pc(m1)
�

x2(x2 − 1)
2

+ y1 x2 + y2(x2 + y1)
�

+m1

�

y2(y2 + 1)
2

+ y1(x2 + y2)
�

�

,

λ2(g1, g2) = m1m2 .

(171)

In Appendix F, we will see that λ1 generates LSM constraints, while λ2 corresponds to
non-LSM fractionalization pattern.
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• Wallpaper group 15: p31m

This group is generated by T1, T2, C3 and M , where the first three generators have the
same properties as those in p3 and p3m1, and the last one is a mirror symmetry whose
mirror axis passes through the C3 center and bisects the translation vectors of T1 and T2,
such that

M2 = 1 , MC3M = C−1
3 , M T1M = T2 , M T2M = T1 ,

C3
3 = 1 , C3T1C−1

3 = T2 , C3T2C−1
3 = T−1

1 T−1
2 , T1T2 = T2T1 .

(172)

An arbitrary element in p31m can be written as g = T x
1 T y

2 C c
3 M m, with x , y ∈ Z,

c ∈ {0, 1,2} and M ∈ {0,1}. For g1 = T x1
1 T y1

2 C c1
3 M m1 and g2 = T x2

1 T y2
2 C c2

3 M m2 , the
group multiplication rule gives

g1 g2 = T x1+∆x(X ,Y,c1)
1 T y1+∆y(X ,Y,c1)

2 C [c1+Q(m1)c2]3
3 M P(m1+m2) , (173)

where ∆x(x , y, c) and ∆y(x , y, c) are defined in Eq. (163), and

X = Pc(m1)x2 + P(m1)y2 ,

Y = Pc(m1)y2 + P(m1)x2 .
(174)

The Z2 cohomology ring of p31m is

Z2[Am, Bx y]/(B
2
x y = 0) . (175)

Here H1(p31m,Z2) = 0, with generator ξ1 = Am, which have representative cochain,

ξ1(g) = m . (176)

H2(p31m,Z2) = Z2
2, with generator λ1 = Bx y , λ2 = A2

m, which have representative
cochains,

λ1(g1, g2) = P30(c1) [Pc(m1)y1 x2 +m1 y2(x2 + y1)]

+ P31(c1)

�

Pc(m1)
�

y2(y2 + 1)
2

+ x2 + y2(x2 + y1)
�

+m1

�

x2(x2 + 1)
2

+ y2 + y1 x2

�

�

+ P32(c1)

�

Pc(m1)
�

x2(x2 − 1)
2

+ y2 + y1 x2 + y2(x2 + y1)
�

+m1

�

y2(y2 − 1)
2

+ x2 + y1(x2 + y2)
�

�

λ2(g1, g2) = m1m2 .

(177)

In Appendix F, we will see that λ1 generates LSM constraints while λ2 corresponds to
non-LSM fractionalization pattern.

• Wallpaper group 16: p6

This group is generated by T1, T2 and C6, two translations with translation vectors that
have the same length and an angle of 2π/3, and a 6-fold rotational symmetry, such that

C6
6 = 1 , C6T1C−1

6 = T1T2 , C6T2C−1
6 = T−1

1 , T1T2 = T2T1 . (178)
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An arbitrary element in p6 can be written as g = T x
1 T y

2 C c
6, with x , y ∈ Z and

c ∈ {0, 1,2, 3,4, 5}. For g1 = T x1
1 T y1

2 C c1
6 and g2 = T x2

1 T y2
2 C c2

6 , the group multiplication
rule gives

g1 g2 = T x1+∆x(x2,y2,c1)
1 T y1+∆y(x2,y2,c1)

2 C [c1+c2]6
6 , (179)

where

∆x(x , y, c) =



























x , c = 0
x − y, c = 1
−y, c = 2
−x , c = 3
−x + y, c = 4
y, c = 5

, ∆y(x , y, c) =



























y, c = 0
x , c = 1
x − y, c = 2
−y, c = 3
−x , c = 4
−x + y, c = 5

. (180)

The Z2 cohomology ring of p6 is

Z2[Ac , Bx y]/(B
2
x y = A2

c Bx y) . (181)

Here H1(p6,Z2) = Z2, with generator ξ1 = Ac , which have representative cochain,

ξ1(g) = c . (182)

H2(p6,Z2) = Z2
2, with generators λ1 = Bx y +A2

c , λ2 = Bx y , which have representative
cochains,

λ1(g1, g2) = λ2(g1, g2) ++
[c1]6 + [c2]6 − [c1 + c2]6

6
,

λ2(g1, g2) = P60(c1)y1 x2 + P61(c1)
�

x2(x2 − 1)
2

+ y1 x2 + y2(x2 + y1)
�

+ P62(c1)
�

y2(y2 + 1)
2

+ x2 + y2(x2 + y1)
�

+ P63(c1)(x2 + y2 + y1 x2)

+ P64(c1)
�

x2(x2 − 1)
2

+ y2 + y1 x2 + y2(x2 + y1)
�

+ P65(c1)
�

y2(y2 + 1)
2

+ y2(x2 + y1)
�

.

(183)

In Appendix F, we will see that λ1,λ2 generate LSM constraints.

• Wallpaper group 17: p6m

This group is generated by T1, T2, C6 and M , where the first three generators have the
same properties as those in p6, and the last one is a mirror symmetry whose mirror axis
passes through the C6 center and bisects T1 and T2, such that

M2 = 1 , MC6M = C−1
6 , M T1M = T2 , M T2M = T1 ,

C6
6 = 1 , C6T1C−1

6 = T1T2 , C6T2C−1
6 = T−1

1 , T1T2 = T2T1 .
(184)

An arbitrary element in p6m can be written as g = T x
1 T y

2 C c
6 M m, with x , y ∈ Z,

c ∈ {0, 1,2, 3,4, 5} and m ∈ {0, 1}. For g1 = T x1
1 T y1

2 C c1
6 M m1 and g2 = T x2

1 T y2
2 C c2

6 M m2 ,
the group multiplication rule gives

g1 g2 = T x1+∆x(X ,Y,c1)
1 T y1+∆y(X ,Y,c1)

2 C [c1+Q(m1)c2]6
6 M P(m1+m2) , (185)

60

https://scipost.org
https://scipost.org/SciPostPhys.13.3.066


SciPost Phys. 13, 066 (2022)

where ∆x(x , y, c) and ∆y(x , y, c) are defined in Eq. (180), and X and Y are defined in
Eq. (174).

The Z2 cohomology ring of p6m is

Z2[Ac , Am, Bx y]/
�

B2
x y = (A

2
c + AcAm)Bx y

�

. (186)

Here H1(p6m,Z2) = Z2
2, with generator ξ1 = Ac , ξ2 = Am, which have representative

cochains,

ξ1(g) = c, ξ2(g) = m . (187)

H2(p6m,Z2) = Z4
2, with generators λ1 = Bx y + A2

c + AcAm, λ2 = Bx y ,
λ3 = (Ac + Am)Am, λ4 = AcAm, which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +
[c1]6 +Q(m1)[c2]6 − [c1 +Q(m1)c2]6

6
,

λ2(g1, g2) = P60(c1) [Pc(m1)y1 x2 +m1 y2(x2 + y1)]

+ P61(c1)

�

Pc(m1)
�

x2(x2 − 1)
2

+ y1 x2 + y2(x2 + y1)
�

+m1

�

y2(y2 − 1)
2

+ y1(x2 + y2)
�

�

+ P62(c1)

�

Pc(m1)
�

y2(y2 + 1)
2

+ x2 + y2(x2 + y1)
�

+m1

�

x2(x2 + 1)
2

+ y2 + y1 x2

�

�

+ P63(c1) [Pc(m1)(x2 + y2 + y1 x2) +m1(x2 + y2 + y2(x2 + y1)]

+ P64(c1)

�

Pc(m1)
�

x2(x2 − 1)
2

+ y2 + y1 x2 + y2(x2 + y1)
�

+m1

�

y2(y2 − 1)
2

+ x2 + y1(x2 + y2)
�

�

+ P65(c1)

�

Pc(m1)
�

y2(y2 + 1)
2

+ y2(x2 + y1)
�

+m1

�

x2(x2 + 1)
2

+ y1 x2

�

�

,

λ3(g1, g2) = m1(c2 +m2) ,

λ4(g1, g2) = m1c2 .

(188)

In Appendix F, we will see that λ1,λ2 generate LSM constraints, while λ3,λ4 correspond
to non-LSM fractionalization patterns.

F Topological invariants for all LSM constraints

In this appendix, for each of the 17 wallpaper groups, we present the topological invariants
for all LSM constraints and topological invariants for all non-LSM fractionalization patterns.
These topological invariants can all be written down by simply inspecting the IWP and/or the
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mirror axes of the relevant wallpaper groups, and they correspond to various (3+1)-d Gs×Gint
SPTs that can be constructed in a manner described in Sec. 2.2. This physics-based reasoning
implies that the topological invariants we present here are complete and independent. In Ap-
pendix E, we also provide explicit expressions of the representative cochains that correspond to
each of the topological invariants, which show mathematically that the topological invariants
here are indeed complete and independent.

• Wallpaper group 1: p1

All points in space correspond to the same IWP for p1. The fractionalization patterns
of p1 are classified by H2(p1,Z2) = Z2. There is only one nontrivial fractionalization
pattern T1T2 = −T2T1, detected by the topological invariant

α1[ω] =
ω(T1, T2)
ω(T2, T1)

. (189)

This fractionalization pattern is related to the first of the 3 basic no-go theorems in Sec.
2.1, so it corresponds to an LSM constraint, and the classification of LSM constraints is
Z2. It is straightforward to check that α1[(−1)λ1] = −1, where λ1 is defined in Appendix
E.

• Wallpaper group 2: p2

There are 4 different IWP for p2, which are rotation centers for C2, T1C2, T2C2 and
T1T2C2, respectively. The fractionalization patterns of p2 are classified by
H2(p2,Z2) = Z4

2. All fractionalization patterns are generated by 4 root patterns, de-
tected by the topological invariants,

α1[ω] =
ω(C2, C2)
ω(1,1)

,

α2[ω] =
ω(T1C2, T1C2)
ω(1, 1)

,

α3[ω] =
ω(T2C2, T2C2)
ω(1, 1)

,

α4[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)
,

(190)

corresponding to C2
2 = −1, (T1C2)2 = −1, (T2C2)2 = −1 and (T1T2C2)2 = −1 respec-

tively. All these topological invariants are related to the third of the 3 basic no-go the-
orems in Sec. 2.1, so they all correspond to LSM constraints, and the classification
of LSM constraints is Z4

2. It is straightforward to check that αi[(−1)λ j ] = (−1)δi j for
i, j = 1, . . . , 4, where λi is defined in Appendix E.

• Wallpaper group 3: pm

There are 2 different IWP for pm, which are the mirror axes for M and T1M , respectively.
The fractionalization patterns of pm are classified by H2(pm,Z2) = Z4

2. All fractional-
ization patterns are generated by 4 root patterns, detected by the topological invariants

α1[ω] =
ω(T2, M)
ω(M , T2)

,

α2[ω] =
ω(T2, T1M)
ω(T1M , T2)

,

α3[ω] =
ω(M , M)
ω(1, 1)

,

α4[ω] =
ω(T1M , T1M)
ω(1, 1)

.

(191)
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The first two topological invariants are related to the second of the 3 basic no-go theo-
rems, so they correspond to LSM constraints, and the classification of LSM constraints is
Z2

2. The last two are non-LSM fractionalization patterns. It is straightforward to check
that αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 4, where λi is defined in Appendix E.

• Wallpaper group 4: pg

All points in space belong to one IWP of pg. The fractionalization patterns of pg are
classified by H2(pg,Z2) = Z2. There is only one nontrivial fractionalization pattern,
detected by the topological invariant

α1[ω] =
ω(T1G−1, T1G)ω(T1, G)
ω(G−1, G)ω(T1, G−1)

, (192)

corresponding to the symmetry fractionalization pattern G−1T1GT1 = −1. This topolog-
ical invariant is related to the first of the 3 basic no-go theorems, so it corresponds to an
LSM constraint, and the classification of LSM constraints is Z2. It is straightforward to
check that α1[(−1)λ1] = −1, where λ1 is defined in Appendix E.

• Wallpaper group 5: cm

The group cm has one IWP, which includes points along the mirror axis of M . The
fractionalization patterns of cm are classified by H2(cm,Z2) = Z2

2. All fractionalization
patterns are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1T2, M)
ω(M , T1T2)

,

α2[ω] =
ω(M , M)
ω(1,1)

.
(193)

The first topological invariant is related to the second of the 3 basic no-go theorems, so
it corresponds to an LSM constraint, and the classification of LSM constraints is Z2. The
second one is a non-LSM fractionalization pattern. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, 2, where λi is defined in Appendix E.

• Wallpaper group 6: pmm

There are 4 different IWP for pmm, which are the intersecting point of M and C2M , the
intersecting point of T1M and C2M , the intersecting point of M and T2C2M , and the
intersecting point of T1M and T2C2M . Note that these 4 IWP can also be respectively
viewed as the rotation centers for the following four C2 rotations: C2, T1C2, T2C2 and
T1T2C2. The fractionalization patterns of pmm are classified by H2(pmm,Z2) = Z8

2. All
fractionalization patterns are generated by 8 root patterns, detected by the topological
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invariants

α1[ω] =
ω(C2, C2)
ω(1,1)

,

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)
,

α3[ω] =
ω(T1C2, T1C2)
ω(1, 1)

,

α4[ω] =
ω(T2C2, T2C2)
ω(1, 1)

,

α5[ω] =
ω(M , M)
ω(1, 1)

,

α6[ω] =
ω(C2M , C2M)
ω(1,1)

,

α7[ω] =
ω(T1M , T1M)
ω(1, 1)

,

α8[ω] =
ω(T2C2M , T2C2M)

ω(1, 1)
.

(194)

The first four topological invariants are related to the third of the 3 basic no-go theorems,
so they correspond to LSM constraints, and the classification of LSM constraints is Z4

2.
The last four are non-LSM fractionalization patterns. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 8, where λi is defined in Appendix E.

• Wallpaper group 7: pmg

There are 3 different IWP for pmg. The first includes the rotation centers of C2 and T1C2,
the second includes the rotation centers of T2C2 and T1T2C2, and the third includes
the mirror axes of M and T1M . The fractionalization patterns of pmg are classified
by H2(pmg,Z2) = Z4

2. All fractionalization patterns are generated by 4 root patterns,
detected by the topological invariants

α1[ω] =
ω(C2, C2)
ω(1,1)

,

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)
,

α3[ω] =
ω(T2, M)
ω(M , T2)

,

α4[ω] =
ω(M , M)
ω(1, 1)

.

(195)

The first two topological invariants are related to the third of the 3 basic no-go theorems,
and the third is related to the second of the 3 basic no-go theorems, so they correspond
to LSM constraints, and the classification of LSM constraints is Z3

2. The fourth topolog-
ical invariant is a non-LSM fractionalization pattern. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 4, where λi is defined in Appendix E.

• Wallpaper group 8: pg g

There are 2 different IWP for pg g. The first includes the rotation centers of C2 and
T1T2C2, and the second includes the rotation centers of T1C2 and T2C2. The fractional-
ization patterns of pg g are classified by H2(pg g,Z2) = Z2

2. All fractionalization patterns
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are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(C2, C2)
ω(1, 1)

,

α2[ω] =
ω(T1C2, T1C2)
ω(1, 1)

.
(196)

Both topological invariants are related to the third of the 3 basic no-go theorems, so they
both correspond to LSM constraints, and the classification of LSM constraints is Z2

2. It is
straightforward to check that αi[(−1)λ j ] = (−1)δi j for i, j = 1, 2, where λi is defined in
Appendix E.

• Wallpaper group 9: cmm

There are 3 different IWP for cmm. The first is the 2-fold rotation center of C2, the
second is the 2-fold rotation center of T1T2C2, and the third inlcudes the 2-fold rotation
centers of T1C2 and T2C2.

The fractionalization patterns of cmm are classified by H2(cmm,Z2) = Z5
2. All fractional-

ization patterns are generated by 5 root patterns, detected by the topological invariants

α1[ω] =
ω(C2, C2)
ω(1,1)

,

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)
,

α3[ω] =
ω(T1C2, T1C2)
ω(1, 1)

,

α4[ω] =
ω(M , M)
ω(1, 1)

,

α5[ω] =
ω(C2M , C2M)
ω(1,1)

.

(197)

The first three topological invariants are related to the third of the 3 basic no-go theo-
rems, so they correspond to LSM constraints, and the classification of LSM constraints is
Z3

2. The last two are non-LSM fractionalization patterns. It is straightforward to check
that αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 5, where λi is defined in Appendix E.

• Wallpaper group 10: p4

There are 3 different IWP for p4. The first is the 2-fold rotation center of C2
4 , the second

is the 2-fold rotation center of T1T2C2
4 , and the third includes the 2-fold rotation centers

of T1C2
4 and T2C2

4 . Note that the first two IWP are also 4-fold rotation centers. The
fractionalization patterns of p4 are classfied by H2(p4,Z2) = Z3

2. All fractionalization
patterns are generated by 3 root patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C2
4 )

ω(1,1)
,

α2[ω] =
ω(T1T2C2

4 , T1T2C2
4 )

ω(1, 1)
,

α3[ω] =
ω(T1C2

4 , T1C2
4 )

ω(1, 1)
.

(198)

All these topological invariants are related to the third of the 3 basic no-go theorems, so
they all correspond to LSM constraints, and the classification of LSM constraints is Z3

2.
It is straightforward to check that αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 3, where λi is
defined in Appendix E.
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• Wallpaper group 11: p4m

There are 3 different IWP for p4m, just like p4. The first is the 2-fold rotation center of
C2

4 , the second is the 2-fold rotation center of T1T2C2
4 , and the third includes the 2-fold

rotation centers for T1C2
4 and T2C2

4 . All these IWP are also on some mirror axes, and
the first two are also 4-fold rotation centers. The fractionalization patterns of p4m are
classified by H2(p4m,Z2) = Z6

2. All fractionalization patterns are genereated by 6 root
patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C2
4 )

ω(1,1)
,

α2[ω] =
ω(T1T2C2

4 , T1T2C2
4 )

ω(1, 1)
,

α3[ω] =
ω(T1C2

4 , T1C2
4 )

ω(1, 1)
,

α4[ω] =
ω(M , M)
ω(1, 1)

,

α5[ω] =
ω(T1M , T1M)
ω(1, 1)

,

α6[ω] =
ω(C4M , C4M)
ω(1,1)

.

(199)

The first three topological invariants are related to the third of the 3 basic no-go theo-
rems, so they correspond to LSM constraints, and the classification of LSM constraints is
Z3

2. The last three are non-LSM constraints. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 6, where λi is defined in Appendix E.

• Wallpaper group 12: p4g

There are 2 different IWP for p4g. The first includes the 2-fold rotation centers of C2
4

and T1T2C2
4 , and the second includes the 2-fold rotation centers of T1C2

4 and T2C2
4 . Note

that the first IWP are also 4-fold rotation centers, and they do not lie on any mirror axis.
The second IWP lies on some mirror axes. The fractionalization patterns of p4g are
classified by H2(p4g,Z2) = Z3

2. All fractionalization patterns are generated by 3 root
patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C2
4 )

ω(1,1)
,

α2[ω] =
ω(T1C2

4 , T1C2
4 )

ω(1,1)
,

α3[ω] =
ω(T−1

1 G, T−1
1 G)

ω(1, 1)
.

(200)

The first two topological invariants are related to the third of the 3 basic no-go theorems,
so they correspond to LSM constraints, and the classification of LSM constraints is Z2

2.
The last one is a non-LSM fractionalization pattern. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 3, where λi is defined in Appendix E.

• Wallpaper group 13: p3

There are 3 IWP for p3, and they are all 3-fold rotation centers. The fractionalization
patterns of p3 are classified by H2(p3,Z2) = Z2. All fractionalization patterns are gen-
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erated by a root pattern, detected by the topological invariant

α[ω] =
ω(T1, T2)
ω(T2, T1)

. (201)

This topological invariant is related to the first of 3 basic no-go theorems, so it cor-
responds to an LSM constraint, and the classification of LSM constraints is Z2. It is
straightforward to check that α1[(−1)λ1] = −1 for i, j = 1, . . . , 8, where λ1 is defined in
Appendix E.

• Wallpaper group 14: p3m1

There are 3 different IWP for p3m1, and they are all 3-fold rotation centers, just as in p3,
but they also lie on the mirror axes. The fractionalization patterns of p3m1 are classified
by H2(p3m1,Z2) = Z2

2. All fractionalization patterns are generated by 2 root patterns,
detected by the topological invariants

α1[ω] =
ω(T1, T2)
ω(T2, T1)

,

α2[ω] =
ω(M , M)
ω(1, 1)

.
(202)

The first topological invariant is related to the first of the 3 basic no-go theorems, so it
corresponds to an LSM constraint, and the classification of LSM constraints is Z2. The
second one is a non-LSM fractionalization pattern. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, 2, where λi is defined in Appendix E.

• Wallpaper group 15: p31m

There are 3 different IWP for p31m, and they are all 3-fold rotation centers, just as in
p3, but only one of them also lies on the mirror axes. The fractionalization patterns of
p31m are classified by H2(p31m,Z2) = Z2

2. All fractionalization patterns are generated
by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1T2, M)
ω(M , T1T2)

,

α2[ω] =
ω(M , M)
ω(1,1)

.
(203)

The first topological invariant is related to the second of the 3 basic no-go theorems,
so it corresponds to an LSM constraint, and the classification of LSM constraints is Z2.
The second is a non-LSM fractionalization pattern. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, 2, where λi is defined in Appendix E.

• Wallpaper group 16: p6

There are 3 different IWP for p6, and they are centers of 6-fold, 3-fold and 2-fold rota-
tions, respectively. The fractionalization patterns of p6 are classified by H2(p6,Z2) = Z2

2.
All fractionalization patterns are generated by 2 root patterns, detected by the topolog-
ical invariants

α1[ω] =
ω(C3

6 , C3
6 )

ω(1, 1)
,

α2[ω] =
ω(T1C3

6 , T1C3
6 )

ω(1, 1)
.

(204)
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Both topological invariants are related to the third of the 3 basic no-go theorems, so they
both correspond to LSM constraints, and the classification of LSM constraints is Z2

2. It is
straightforward to check that αi[(−1)λ j ] = (−1)δi j for i, j = 1, 2, where λi is defined in
Appendix E.

• Wallpaper group 17: p6m

There are 3 different IWP for p6m. Just as p6, they are 6-fold, 3-fold and 2-fold rotation
centers, respectively. Here all IWP also lie on some mirror axes. The fractionalization
patterns of p6m are classified by H2(p6m,Z2) = Z4

2. All fractionalization patterns are
generated by 4 root patterns, detected by topological invariants

α1[ω] =
ω(C3

6 , C3
6 )

ω(1, 1)
,

α2[ω] =
ω(T1C3

6 , T1C3
6 )

ω(1, 1)
,

α3[ω] =
ω(M , M)
ω(1, 1)

,

α4[ω] =
ω(C3

6 M , C3
6 M)

ω(1, 1)
.

(205)

The first two topological invariants are related to the third of the 3 basic no-go theorems,
and they correspond to LSM constraints, and the classification of LSM constraints is Z2

2.
The last two are non-LSM fractionalization patterns. It is straightforward to check that
αi[(−1)λ j ] = (−1)δi j for i, j = 1, . . . , 4, where λi is defined in Appendix E.

G Topological characterization of LSM constraints in (1+ 1)-d

In this appendix, we present the derivation of the topological characterization of the LSM
constraints for (1+1)-d Gs×Gint symmetric spin systems, where the results are already given
in Sec. 2.2.3.

First, we note that an argument similar to the one in Appendix B for the (2 + 1)-d case
shows that in this case the relevant cocycle can be written as

Ω(g1, g2, g3) = eiπλ(l1)η(a2,a3) , (206)

where gi ∈ Gs × Gint is written as gi = li ⊗ ai , with li ∈ Gs and ai ∈ Gint . The cocycle for
the nontrivial (1 + 1)-d Gint SPT is precisely eiπη(a1,a2), and λ can be viewed as a cocycle in
H1(Gs,Z2). Furthermore, λ is determined completely by Gs and the lattice homotopy class,
and it is the same for all Gint with Zk

2-classified PR and for all PR type of the system.
When Gs = p1, the line group that only contains translation generated by T , the lattice

homotopy picture implies that the LSM constraints in this case are classified byZ2, and the only
nontrivial LSM constraint corresponds to the case where the total PR inside each translation
unit cell is nontrivial. On the other hand, H1(p1,Z2) = Z2, so there is also only one nontrivial
cocycle. Writing an elment in p1 as T x with x ∈ Z, λ(T x) = [x]2 is a representative cochain
of the nontrivial element in H1(p1,Z2). So we can identify the cocycle corresponding to the
nontrivial LSM constraint as

Ω(g1, g2, g3) = eiπx1η(a2,a3) . (207)

When Gs = p1m, the line group that contains a translation generated by T and a mirror
symmetry generated by M , with commutation relation M T M = T−1, there are two IWP in
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each translation unit cell, which are the mirror centers of M and T M , respectively. The lattice
homotopy picture implies that the LSM constraints in this case are classified by Z2

2, and the
two root LSM constraints can be taken to correspond to the cases where the total PR at one
of the two IWP is nontrivial. On the other hand, H1(p1m,Z2) = Z2

2, so all nontrivial cocycles
in H1(p1m,Z2) must correspond to some nontrivial LSM constraint. These cocycles can be
generated by two roots represented by λ1(T x M m) = x +m and λ2(T x M m) = x , with x ∈ Z
and m ∈ {0,1}. So the cocycles corresponding to the LSM constraints can also be generated
by

Ω1(g1, g2, g3) = eiπ(x1+m1)η(a2,a3) ,

Ω2(g1, g2, g3) = eiπx1η(a2,a3) ,
(208)

where gi ∈ Gs × Gint is written as gi = T x i M mi ⊗ ai , with ai ∈ Gint .
Now our task is just to identify Ω1 and Ω2 with the distributions of DOF that trigger the

LSM constraint. To this end, first note that if M is broken while T is preserved, both Ω1 and
Ω2 reduces to Eq. (207), which implies that both of them correspond to a distribution of DOF
with a net nontrivial PR inside each translation unit cell. So one of them must correspond
to the case where the mirror center of M hosts a nontrivial PR, while the other corresponds
to the case where the mirror center of T M hosts a nontrivial PR. Suppose the mirror center
of T M hosts a nontrivial PR, then after breaking the translation symmetry while keeping M
unbroken, the system should have no LSM constraint. Only Ω2 satisfies this condition, so this
distribution of DOF is identified with Ω2, and Ω1 corresponds to the case where the mirror
center of M hosts a nontrivial PR.

H More details of the Stiefel liquids

In this appendix, we discuss more details of Stiefel liquids, some of which do not appear in
Ref. [15].

First we present some suggestive argument, but not rigorous proof, supporting that SL(N>6)

are non-Lagrangian, i.e., they cannot be described by any weakly-coupled renormalizable La-
grangian in the UV. The key observation is that it appears unlikely for such Lagrangians to
realize the SO(N), SO(N − 4) and reflection symmetries of SL(N). To see it, let us start with
even N . Usually in such a Lagrangian, symmetries like SO(N) and SO(N−4) are flavor symme-
tries, and there is a reflection symmetry that commutes with flavor symmetries. However, due
to the locking between spacetime orientation reversals and improper rotations of O(N) and
O(N − 4), SL(N) has no such a reflection symmetry. This suggests that SO(N) and SO(N − 4)
cannot be simultaneously flavor symmetries. In the special case of N = 6, which does have a
renormalizable Lagrangian description, indeed only SO(6) but not SO(2) can be identified as
a flavor symmetry. In this example, the SO(2) is realized as the flux conservation symmetry
in the gauge theoretic formulation. For N > 6, there is no known generalization of the flux
conservation symmetry that can give rise to symmetries like SO(N −4). This indicates SL(N>6)

with an even N may be non-Lagrangian. Due to the cascade structure of SLs [15], it also
suggests all SL(N>6) are non-Lagrangian.

We emphasize that the above is just a suggestive argument, but not a rigorous proof. There
can be ways to get around the above obstruction, by, e.g., implementing some symmetries via
dualities, considering Lagrangians in very complicated forms, showing that Lagrangians with
smaller symmetries can have emergent symmetries of the SLs, etc. After finding a Lagrangian
that can realize the symmetries of a SL, one still needs to make sure that its anomaly and low-
energy dynamics match with the SL, which appears also challenging. If all these nontrivial
challenges can be overcome and a renormalizable Lagrangian can be found to describe the
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SL at the end, we believe this process can generate new insights and teach us some valuable
general lessons of quantum field theories.

Next we discuss the anomalies of SLs, which should be captured by ΩIR, an ele-
ment in H4(GIR, U(1)ρ), where GIR = (O(N)T × O(N − 4)T )/Z2. Consider the pro-
jection: pSL : G̃IR ≡ O(N)T × O(N − 4)T → GIR, which induces a pullback
p∗SL : H4(GIR, U(1)ρ) → H4(G̃IR, U(1)ρ). The pullback of ΩIR, Ω̃IR ≡ p∗SLΩIR, is given by Eq.

(21), in a form Ω̃IR = eiπ L̃IR, with L̃IR ∈ H4(G̃IR,Z2) [15]. For even N , the structure of ΩIR
is still not completely understood, but it is known that Ω̃IR misses some important informa-
tion. In particular, the form of Ω̃IR suggests that two copies of SL(N) would be anomaly-free.
However, only four copies of SL(N) is anomaly-free, while two copies is still anomalous [15].

For odd N , because O(N)T = SO(N)×ZT
2 , H4(GIR, U(1)ρ) has the structure ofZk

2 with some
k ∈ N, and there exists LIR ∈ H4(GIR,Z2) such that ΩIR = eiπLIR. Now notice that the pullback
from H4(GIR,Z2) to H4(G̃IR,Z2) induced by pSL is injective, and hence we can uniquely identify
LIR from L̃IR. The result is

LIR = wSO(N)
4 +wSO(N−4)

4 +
�

wSO(N)
2 +wSO(N−4)

2

�

wSO(N−4)
2

+















w2
1wSO(N)

2 , N = 1 ( mod 8)
w2

1wSO(N−4)
2 , N = 3 ( mod 8)

w2
1(w

SO(N)
2 +w2

1), N = 5 ( mod 8)
w2

1(w
SO(N−4)
2 +w2

1), N = 7 ( mod 8)

,
(209)

where wSO(N)
i and wSO(N−4)

i are the i-th Stiefel-Whitney class of the SO(N) and SO(N − 4)
gauge bundles. Considering enlarging SO(N) and SO(N − 4) to O(N) and O(N − 4), w1 is
sum of the first Stiefel-Whitney classes of the O(N) and O(N − 4) gauge bundles. Due to the
locking between spacetime orientation reversals and improper rotations of O(N) and O(N−4),
w1 can also be viewed as the first Stiefel-Whitney class of the tangent bundle of the spacetime
manifold.

Finally, we discuss the effects of relevant operators on the DQCP (SL(5)), DSL (SL(6)) and
SL(7). Because the low-energy dynamics of these states are not fully settled down, this discus-
sion is also conjectural, and it is important to study these issues in a more rigorous manner
in the future. However, given our understanding of these states, we believe the expectations
below are reasonable.

For all SLs, the (VL , VR) operator (or the SO(5) vector for DQCP) should change the emer-
gent order of the state. Due to the cascade structure among SLs [15], it is natural that this
operator will just drive SL(N) to SL(N−1) (for DQCP, it simply gaps out the state). The time-
reversal breaking operator that is a flavor singlet is likely to drive the state into a semion
topological order, and this expectation is supported by the gauge-theoretic formulations of
DQCP and DSL, as well as the fact that the semion topological order can match the anomaly
of SL(N) if time reversal is broken (for all N ¾ 5) [15]. The (AL , AR) operator (for all N ¾ 6)
is expected to convert SL(N) into certain spontaneous-symmetry-breaking state, as supported
from the gauge-theoretic formulation of DSL [18, 57, 58]. For DQCP, the traceless symmet-
ric rank-2 tensor of SO(5) drives the state into a spontaneous-symmetry-breaking state, and
this operator is the tuning operator of the Neel-VBS transition in the standard realization of
DQCP [16,17]. All these operators change the emergent order of the states.

The remaining relevant operators to be discussed are the conserved current operators,
whose effects on various states are complicated. It turns out that some of them can change
the emergent order of the states, while others only shift the “zero momenta".

The simplest way to discuss it is perhaps to start from DSL, which has a relatively simple
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gauge-theoretic formulation in terms of N f = 4 QED3:

L=
4
∑

i=1

ψ̄i i /Daψi −
1

4e2
fµν f µν . (210)

There are conserved currents due to the SO(6) and SO(2) symmetries, where a natural basis
of the SO(6) currents is ψ̄γµT su(4)ψ, with γµ the Dirac matrices and T (su(4)) the generators
of su(4) in its fundamental representation, and the SO(2) currents are εµνλ∂

νaλ/(2π), with
a the emergent U(1) gauge field. If the time component of the SO(6) currents is added as a
pertubation to the DSL, the Dirac fermions will be doped and acquire a finite Fermi surface, so
the emergent order of the state changes. If the time component of the SO(2) currents is added,
the Dirac fermions will experience magnetic fields, Landau levels will form, and the emergent
order of the state also changes. Below we discuss the effect of the spatial components of the
currents.

For the SO(6) spatial currents, depending on the choice of T (su(4)) and γµ, various effects
can be triggered. For example, the current ψ̄γxσ30ψ merely shifts the positions of the Dirac
cones in the momentum space in a flavor-dependent way, which does not really change the
emergent order of DSL (here σi j ≡ σi ⊗ σ j , where σi=0,1,2,3 are the identity and standard
Pauli matrices). The same is true for ψ̄(γxσ30 + γyσ03)ψ. However, as another example,
ψ̄(γxσ23 + γyσ33)ψ actually converts the 4 Dirac cones into 2 pairs of quadratic band touch-
ing (and another 2 pairs of gapped bands), which does change the emergent order of the
state. By examining the effect of different spatial currents, one can see more complicated
patterns. Although a systematic description of the effects of these spatial currents is lack-
ing, it can be analyzed in a case-by-case manner. These spatial currents can all be converted
into the language of SL(6), in terms of the 6× 2 matrix n. For example, using Appendix E of
Ref. [15], we see that ψ̄γxσ30ψ ∼ n3i∂x n4i , ψ̄(γxσ30 + γyσ03)ψ ∼ n3i∂x n4i + n1i∂y n2i , and
ψ̄(γxσ23 + γyσ33)ψ∼ n4i∂x n6i + n5i∂y n6i .

Next we turn to the SO(2) spatial current, which in the language of SL(6) is ni1∂x ,y ni2, and
in the gauge theory is the electric field of the emergent U(1) gauge field. It is not obvious
what this perturbation does to the DSL. However, we argue that its effect is also to shift the
zero momenta. To see it, we consider N f = 2 QED3, with Lagrangian

L=
2
∑

i=1

ψ̄i i /Daψi −
1

4e2
fµν f µν . (211)

This theory is argued to describe the easy-plane DQCP, which has an emergent O(4) unitary
symmetry (not to be confused with the DQCP we have been discussing, which has an emergent
SO(5) unitary symmetry) [19]. In this theory, ψ̄γx ,yσ3ψ clearly only shifts the zero momenta
without changing the emergent order of the state. On the other hand, the improper Z2 rotation
of the O(4) symmetry maps this operator into the electric fields of the emergent U(1) gauge
fields [19], which means that the electric fields also play the role of shifting the zero momenta
without changing the emergent order. So we propose that in DSL (i.e., SL(6)), the SO(2) spatial
currents also only shift the zero momenta, but maintain the emergent order.

Now we turn to DQCP (SL(5)), which has a couple of gauge-theoretic formulations [19].
From any of these formulations, one can see that the time component of the SO(5) currents
changes the emergent order of the state. The formulation that has a manifest O(5)T symmetry
is an SU(2) gauge theory with 2 flavors of Dirac fermions, where the SO(5) symmetry is the
flavor symmetry of these Dirac fermions. Under similar consideration of the SO(6) spatial cur-
rents in DSL, we see that the effects of the SO(5) spatial currents in DQCP are also complicated
and need to be analysed in a case-by-case manner: some of them changes the emergent order
of the states, while others only shift the zero momenta without changing the emergent order.
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We remark that the effects of the spatial currents actually impose very strong constraints on
the possible results of our anomaly-based framework of emergibility. Within this framework, it
is easy to see that all realizations of DQCP and DSL on p6m×O(3)T and p4m×O(3)T symmetric
lattice spin systems must have all entries of n locating at some high-symmetry momenta in the
Brillouin zone, because all possile symmetry embedding patterns satisfy this condition. This
means that in all realizations, it is impossible to have a spatial current operator that is allowed
by the microscopic symmetries and can shift the zero momenta. As we have explicitly checked,
this is indeed true for all realizations obtained in our anomaly-based framework, which can
be viewed as a highly nontrivial sanity check of this framework – It nicely corroborates the
validity of the hypothesis of emergibility, the proposal that DSL can indeed be described by
SL(6), and the dynamics of DSL.

Finally, we turn to SL(7), whose low-energy dynamics is poorly understood so far. It is
still likely that the time component of the SO(7) and SO(3) currents will change the emer-
gent order. For the spatial currents, we propose the following rule. Writing an SO(7) spatial
current operator as a sum of terms of the form ni1 j∂x ,y ni2 j , then we consider the effect of
the same operator in DSL (it turns out that all such operators allowed by our microscopic
symmetries only involve at most 4 rows of n, so its corresponding operator in DSL can al-
ways be found). If this operator changes the emergent order of DSL, then it also changes
the emergent order of SL(7), and if it only shifts the zero momenta of DSL, it also only shifts
the zero momenta of SL(7). For the SO(3) spatial currents, it can be expanded as a sum as
∼ a1ni1∂x ni2+a2ni1∂x ni3+a3ni2∂x ni3+ b1ni1∂y ni2+ b2ni1∂y ni3+ b3ni2∂y ni3. We propose to
first convert it into an SO(7) spatial current ∼ a1n1i∂x n2i + a2n1i∂x n3i
+ a3n2i∂x n3i + b1n1i∂y n2i + b2n1i∂y n3i + b3n2i∂y n3i . If this SO(7) spatial current changes
the emergent order (only shifts zero momenta) using the the above criterion, then the original
SO(3) spatial current also changes the emergent order (only shifts zero momenta).

The above proposal is of course conjectural, and more rigorous work is needed to fully set-
tle it down. However, this proposal is supported by our results of anomaly-matching. We have
checked all realizations of SL(7) obtained from the anomaly-based framework of emergibility,
and found that the current operators that can shift zero momenta (according to the above
proposal) are allowed by microscopic symmetries in a realization if and only if this realization
belongs to a family where the momenta of some entries of n can change continuously.

I More examples of the calculation of pullback

In this appendix, we give three more examples of the analysis of anomaly matching, for SU(2)1,
DSL and SL(7). In Appendix I.4, we also provide relevant formula for the calculation of pullback
involving 5-dimensional representation of SO(3).

I.1 SU(2)1 and emergent anomaly

First let us consider a representative (1+1)-d quantum critical state, i.e., the (1+1)-d SU(2)1
conformal field theory, which describes the spin-1/2 antiferromagnetic Heisenberg chain at
low energies [109–111]. The IR symmetry of the theory is SU(2)×SU(2)

Z2
oZT

2
∼= O(4).

Ref. [103]works out the anomaly term of SU(2)1 after gauging the SO(4) part of GIR = O(4),
which corresponds to the interger Euler class of SO(4), e ∈ H4(SO(4),Z). The bulk topological
partition function capturing this anomaly is the Chern-Simons theory at level (+1,−1) for the
two su(2) factors of so(4) ∼= su(2)× su(2), which can be written in terms of two su(2) gauge
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fields A(1), A(2) as follows

S =
i

4π

∫

tr
�

A1 ∧ dA(1) +
2
3

A(1) ∧ A(1) ∧ A(1)
�

− tr
�

A(2) ∧ dA(2) +
2
3

A(2) ∧ A(2) ∧ A(2)
�

. (212)

It is straightforward to inspect that after gauging the ZT
2 part of GIR, the anomaly term should

correspond to the twisted Euler class of O(4), and we denote it by ẽ ∈ H4(O(4),Zρ). Note that
this anomaly does not correspond to any element in H3(GIR, U(1)ρ), i.e., the group cohomol-
ogy (not the Borel cohomology in Ref. [39]) of GIR acting nontrivially on the U(1) coeffficient
– this is the only example in this paper where the Bockstein homomorphism in Eq. (62) is not
an isomorphism. Hence we need some special care to write down the TPF of the bulk SPT
theory. 16

Consider the following homomorphism ϕ from GUV = p1m×O(3) to GIR = O(4),

T →
�

−I3
−1

�

, M →
�

I3
−1

�

, O(3)→
�

O(3)T

1

�

. (216)

The LSM anomaly of a 1D chain has been worked out in Appendix G, i.e.,

ΩUV ≡ exp(iπLUV) = exp
�

iπ(x +m)wO(3)T

2

�

. (217)

We aim to prove that under the homomorphism ϕ, the pullback of the IR theory is the UV
theory. Specifically, we need to prove that 17

β(ΩUV) = ϕ
∗(ẽ) , (218)

where β is the Bockstein homomorphism associated to the short exact sequence
1→ Z→ R→ U(1)→ 1.

From the commutativity of the square in the diagram below

H4(GIR,Zρ) H4(GIR,Z2)

H3(GUV,Z2) H3(GUV, U(1)ρ) H4(GUV,Zρ) H4(GUV,Z2)

ϕ∗

p̃

ϕ∗

ĩ β p̃

, (219)

16In this footnote we briefly review how to write down the TPF worked out in Ref. [38]. Suppose a (2+1)-d
IR theory has gauge symmmetry G and is defined on the manifold M3, which serves as the base space of some
principal bundle of G. Given an element ω ∈ H4(G,Z), it is possible to define a 3d topological gauge theory of G
as follows

S =
1
n

�

∫

B4

Ω− 〈γ∗ω, [B4]〉

�

mod 1 , (213)

where Ω is the de Rham representative of the image of ω in H4(BG,R), [B4] ∈ H4(B4,Z) is the fundamental class
of the manifold B4 that bounds n copies of the manifold M3 with some extension of the principle bundle of G, and
γ is the classifying map of the extension. When ω is a torsion element, Ω = 0, and we retrieve the more familiar
form of TPF

S = 〈γ∗(β−1(ω)), [M3]〉 , (214)

where β is the Bockstein homomorphism associated to the short exact sequence 1 → Z → R → U(1) → 1. In
particular, when G = SO(4) and ω corresponds to the Euler class e, Ω can be explicitly written as follows,

Ω=
1

8π2

�

tr
�

F (1) ∧ F (1)
�

− tr
�

F (2) ∧ F (2)
��

. (215)

In the presence of anti-unitary symmetries, the manifold M3 is assumed to be non-orientable. Then we have
to choose B4 to be non-orientable as well, and demand [B4] ∈ H4(B4,Zw) to be the fundamental class of the
non-orientable manifold B4 twisted by the orientation character w [101].

17There are two terms in Eq. (213). The first term will become 0 when pulled back to GUV, which can be explicitly
checked by considering the diagonal embedding of the Lie-algebra of so(3)∼= su(2) into so(4)∼= su(2)×su(2). Then
we just need to consider the pullback of the second term.
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we just need to prove that

SQ1(LUV) = ϕ
∗(p̃(ẽ)) . (220)

In particular, on the left hand side we have

SQ1(LUV) = (x +m)wO(3)T

3 , (221)

according to Appendix A.4, where wO(3)T

3 = wSO(3)
3 + twSO(3)

2 + t3 and t ∈ H1(ZT
2 ,Z2) cor-

responds to the gauge field of time-reversal symmetry when pulled back to the spacetime
manifold M3. On the right hand side we have p̃(ẽ) = wO(4)

4 , and

ϕ∗
�

wO(4)
4

�

= (x +m)
�

wSO(3)
3 + (t + x)wSO(3)

2 + (t + x)3
�

. (222)

Finally, using the cohomology relation x2 = xm, we see that both sides are equal to each other.
Hence we establish that the pullback of the anomaly of IR CFT SU(2)1 under the homomor-
phism ϕ as in Eq. (216) is the LSM anomaly of (1+1)-d spin chain.

Below we discuss the phenomenon of emergent anomalies. Following Ref. [8], by imposing
an extra constraint T2 = 1, we can factorize ϕ acting on p1m into two pieces, i.e., a projection
p on Z2×Z2 generated by T̃ or M , where T̃ acts trivially on U(1) or Zwhile M acts nontrivially
on U(1) or Z, composed with an embedding ϕ̃ of the Z2 ×Z2 into O(4).

ϕ = ϕ̃ ◦ p : p1m= ZoZ2 Z2 ×Z2 O(4)
p ϕ̃

. (223)

With slight abuse of notation, we denote the gauge field of T̃ as x as well. Then we have

ϕ̃∗
�

wO(4)
4

�

= (x +m)
�

wSO(3)
3 + (t + x)wSO(3)

2 + (t + x)3
�

= SQ1
�

(x +m)wO(3)T

2 + (x +m)x2
�

,
(224)

in H4(Z2 × Z2 × O(3)T ,Z2). According to the terminology in Ref. [8], the first term

(x + m)wO(3)T

2 as in Eq. (217) is the intrinsic anomaly, while the second term (x + m)x2 is
identified as the emergent anomaly. The emergent anomaly should be absent when pulled
back to p1m, which is guaranteed by the relation (x +m)x = 0 present in p1m. As a sanity
check, in the absence of mirror symmetry, i.e., in the line group p1, the intrinsic anomaly be-

comes xwO(3)T

2 and the emergent anomaly becomes x3, consistent with the example in Ref. [8].
We envision that similar emergent anomaly will be present in IR theories emerging from a

2d lattice system with wallpaper group Gs, because a lot of cohomology relations of Gs will be
absent when projected to a finite group by imposing T n

1 = T n
2 = 1 for some integer n. More

precisely, write Gs = (Z×Z)oOs, if we can find an integer n such that ϕ : Gs→ GIR factorizes
as the composition of projection and another embedding

ϕ = ϕ̃ ◦ p : Gs = (Z×Z)oOs G̃s ≡ (Zn ×Zn)oOs GIR,
p ϕ̃

, (225)

then ϕ̃∗(ΩIR) ∈ H4(G̃s × Gint , U(1)ρ) will generically not be in the form of exp(iπλη) with
λ ∈ H2(G̃s,Z2) and η ∈ H2(Gint ,Z2), but contains a nonzero piece that nevertheless vanishes
when pulled back to Gs, using certain cohomology relations of Gs that is not present in G̃s.
Specifically, when n = 2, of the 3 important relations displayed in Appendix E, the first two
relations, i.e., x2 = 0 in p1 and x2 = xm in p1m, will be absent when projected to G̃s, while
the third relation, i.e., Ax+yAm = 0 in cm, will still be present when projected to G̃s.
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For example, when the IR effective theory is the DQCP emergent from a square lattice
spin-1/2 system with wallpaper group p4m, we can choose n = 2 and G̃s = (Z2 × Z2)o D4.
The Z2 cohomology ring of G̃s is

Z2[Ax+y , Am, Ac , Bx y , Bc2 ,Bc(x+y)]/
�

Ax+yAc = 0, (Am + Ac)Ac = 0, Bc(x+y)Ac = 0 ,

Bc(x+y)
�

Bc(x+y) + Ax+y(Am + Ac)
�

= (A2
m + A2

c)Bx y + A2
x+y Bc2

�

,
(226)

with the pullback of Bc(x+y) equal to Ax+y(Ax+y + Am) in H∗(p4m,Z2), and the pullback of
Ax+y , Am, Ac , Bx y , Bc2 their namesake. Then from the fact that the IR anomaly of DQCP corre-

sponds to wO(5)
5 ∈ H5(O(5),Z2), we have

ϕ̃∗
�

wO(5)
5

�

=
�

Bx y + Bc(x+y) + Bc2

�

�

wSO(3)
3 + (t + Ax+y)w

SO(3)
2 + (t + Ax+y)

3
�

= SQ1
�

�

Bx y + Bc(x+y) + Bc2

�

wO(3)T

2 +
�

Bx y + Bc(x+y) + Bc2

�

A2
x+y

�

.
(227)

The first term
�

Bx y + Bc(x+y) + Bc2

�

wO(3)T

2 is again the intrinsic anomaly, while the second
term

�

Bx y + Bc(x+y) + Bc2

�

A2
x+y is the emergent anomaly that vanishes when pulled back to

Gs = p4m. This is a slight generalization of the result in Ref. [8] to the whole group p4m.

I.2 DSL

Next consider DSL [15, 57, 112], whose IR symmetry GIR is O(6)×O(2)
Z2

, where an improper ro-
tation of either O(6) or O(2) complex conjugates the U(1) coefficient of H4(GIR, U(1)ρ). The
precise form of the anomaly term for GIR is unknown, yet it is possible to write down its pull-
back to O(6)×O(2) under the projection p : O(6)×O(2)→ O(6)×O(2)

Z2
[15]

Ω̃IR ≡ exp(iπL̃IR)

= exp
�

iπ
�

wO(6)
4 +wO(6)

2

�

wO(2)
2 + (wO(2)

1 )2
�

+
�

(wO(2)
2 )2 +wO(2)

2 (wO(2)
1 )2 + (wO(2)

1 )4
���

,

(228)

where L̃IR ∈ H4(O(6)×O(2),Z2). On a triangular lattice, we consider the following example
embedding ϕ of GUV = p6m×O(3)T into GIR,

T1 : n→







I3
1
−1

−1






n

�

−1
2 −

p
3

2p
3

2 −1
2

�

,

T2 : n→







I3
−1

−1
−1






n

�

−1
2 −

p
3

2p
3

2 −1
2

�

,

C6 : n→







I3
1

1
−1






n

�

1
−1

�

,

M : n→







I3
−1

−1
1






n ,

O(3)T : n→
�

O(3)T

I3

�

n .

(229)
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Note that ϕ factorizes into an embedding ϕ̃ into O(6)× O(2) composed with the projection
p, i.e., ϕ = p ◦ ϕ̃. In fact, for GUV = Gs ×O(3)T with any Gs, if ϕ satisfies the condition that
some but not all entries of n are left invariant under SO(3), then ϕ can always factorize into
p ◦ ϕ̃, where ϕ̃ is a homomorphism from GUV to O(6)×O(2). Therefore, we can think of the
IR symmetry as O(6) × O(2) for simplicity in the calculation of pullback. Moreover, we can
always choose ϕ̃ such that Gs acts as identity and ZT

2 acts as minus identity in the block where
SO(3) acts.

The LSM anomaly of a triangular lattice spin-1/2 system has been obtained in Appendix E,
and we repeat it here

ΩUV ≡ exp(iπLUV) = exp
�

iπ
�

Bx y + Ac(Ac + Am)
�

wO(3)T

2

�

, (230)

where LUV ∈ H4(GUV,Z2). We wish to prove that ΩUV = ϕ∗ΩIR, which amounts to proving
ΩUV = ϕ̃∗Ω̃IR. Again, from the commuting diagram Eq. (24) (with GIR changed to O(6)×O(2)
and ϕ changed to ϕ̃), we just need to prove that

SQ1(LUV) = ϕ̃
∗ �SQ1(L̃IR)

�

. (231)

According to Lemma A.1, we have

SQ1(L̃IR) =wO(6)
5 +wO(6)

4 wO(2)
1 +wO(6)

3

�

wO(2)
2 + (wO(2)

1 )2
�

+wO(6)
2 (wO(2)

1 )3

+wO(6)
1

�

(wO(2)
2 )2 +wO(2)

2 (wO(2)
1 )2 + (wO(2)

1 )4
�

+
�

(wO(2)
2 )2wO(2)

1 + (wO(2)
1 )5

�

.
(232)

On the other hand,

SQ1(LUV) =
�

(Bx y + Ac(Ac + Am)
�

wO(3)T

3 , (233)

where wO(3)T

3 = wSO(3)
3 + twSO(3)

2 + t3 and t ∈ H1(ZT
2 ,Z2) corresponds to the gauge field of

time-reversal symmetry when pulled back to the spacetime manifold M4.
What remains is the calculation of the pullback ϕ̃∗

�

SQ1(L̃IR)
�

, which is a straightforward
application of the Whitney product formula. In particular, considering the O(2) block, the
pullback gives

ϕ̃∗
�

wO(2)
1

�

= Ac ,

ϕ̃∗
�

wO(2)
2

�

= 0 .
(234)

On the other hand, O(6) factorizes into two 3×3 blocks, and for the lower 3×3 block we have

ϕ̃∗
�

wO(3)
1

�

= Ac + Am ,

ϕ̃∗
�

wO(3)
2

�

= Bx y + A2
c ,

ϕ̃∗
�

wO(3)
3

�

= AcBx y + A2
c(Ac + Am) .

(235)

Assembling the Stiefel-Whitney class of the lower O(3) and upper O(3)T into the Stiefel-
Whitney class of O(6), we have

ϕ̃∗
�

wO(6)
5

�

= wO(3)T

3 (Bx y + A2
c) +wO(3)T

2 (AcBx y + A2
c(Ac + Am)) ,

ϕ̃∗
�

wO(6)
4

�

= wO(3)T

3 (Ac + Am) +wO(3)T

2 (Bx y + A2
c) + t(AcBx y + A2

c(Ac + Am)) ,

ϕ̃∗
�

wO(6)
3

�

= wO(3)T

3 +wO(3)T

2 (Ac + Am) + t(Bx y + A2
c) + (AcBx y + A2

c(Ac + Am)) ,

ϕ̃∗
�

wO(6)
2

�

= wO(3)T

2 + t(Ac + Am) + (AcBx y + A2
c(Ac + Am)) ,

ϕ̃∗
�

wO(6)
1

�

= t + (Ac + Am) .

(236)

Combining Eqs. (232), (233), (234) and (236), indeed we get Eq. (231). Hence we establish
that ΩUV = ϕ∗ΩIR.
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I.3 SL(7)

The next examples we want to consider are two realizations of N = 7 Stiefel liquid, i.e. SL(7),
proposed in Ref. [15] (see Sec. VII D therein). The IR symmetry GIR of the theory is O(7)×O(3)

Z2
,

and the precise form of the anomaly is given in Eq. (209) for N = 7. However, following
the example in Appendix I.2, for the sake of the analysis of anomaly-matching, we can again
think of the IR symmetry as O(7)×O(3) and consider the pullback of the anomaly under the
projection p : O(7)×O(3)→ O(7)×O(3)

Z2
,

Ω̃IR ≡ exp(iπ L̃IR)

= exp
�

iπ
�

wO(7)
4 +wO(7)

2

�

wO(3)
2 + (wO(3)

1 )2
�

+
�

(wO(3)
2 )2 +wO(3)

2 (wO(3)
1 )2 + (wO(3)

1 )4
���

,

(237)

where L̃IR ∈ H4(O(7)×O(3),Z2). We will omit the tilde symbol in the following calculation.
On a triangular lattice, we consider the following embedding ϕ of GUV = p6m × O(3)T

into O(7)×O(3),

T1 : n→















I3

−1
2

p
3

2

−
p

3
2 −1

2

−1
2

p
3

2

−
p

3
2 −1

2















n





1
−1

−1



 ,

T2 : n→















I3

−1
2

p
3

2

−
p

3
2 −1

2

−1
2

p
3

2

−
p

3
2 −1

2















n





−1
1
−1



 ,

C6 : n→











I3
1
−1

1
−1











n





1
1

1



 ,

M : n→











I3
−1

−1
1

1











n





1
1

1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

(238)

Again, the LSM anomaly of a triangular lattice spin-1/2 system is

ΩUV ≡ exp(iπLUV) = exp
�

iπ
�

Bx y + Ac(Ac + Am)
�

wO(3)T

2

�

, (239)

where LUV ∈ H4(GUV,Z2). We wish to prove that ΩUV = ϕ∗ΩIR. From the commuting diagram
Eq. (24), we just need to prove that

SQ1(LUV) = ϕ
∗ �SQ1(LIR)

�

. (240)
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According to Lemma A.1, we have

SQ1(LIR) =wO(7)
5 +wO(7)

4 wO(3)
1 +wO(7)

3

�

wO(3)
2 + (wO(3)

1 )2
�

+wO(7)
2

�

wO(3)
3 + (wO(3)

1 )3
�

+wO(7)
1

�

(wO(3)
2 )2 +wO(3)

2 (wO(3)
1 )2 + (wO(3)

1 )4
�

+
�

wO(3)
3 (wO(3)

1 )2 + (wO(3)
2 )2wO(3)

1 + (wO(3)
1 )5

�

.

(241)

Also,

SQ1(LUV) =
�

(Bx y + Ac(Ac + Am)
�

wO(3)T

3 , (242)

where wO(3)T

3 = wSO(3)
3 + twSO(3)

2 + t3 and t ∈ H1(ZT
2 ,Z2) corresponds to the gauge field of

time-reversal symmetry when pulled back to the spacetime manifold M4.
What remains is the calculation of the pullback ϕ∗

�

SQ1(LIR)
�

, which is a straightforward
application of the Whitney product formula. In particular, O(7) factorizes into one 3×3 block
and two 2× 2 block, and for the O(3) part and the O(7) part seperately, the pullback gives

ϕ∗
�

wO(3)
1

�

= Am ,

ϕ∗
�

wO(3)
2

�

= Bx y ,

ϕ∗
�

wO(3)
3

�

= 0 ,

ϕ∗
�

wO(7)
1

�

= t ,

ϕ∗
�

wO(7)
2

�

= wSO(3)
2 + t2 + A2

c + A2
m + AmAc ,

ϕ∗
�

wO(7)
3

�

=
�

wSO(3)
3 + twSO(3)

2 + t3
�

+ t(A2
c + A2

m + AmAc) + AcAm(Ac + Am) ,

ϕ∗
�

wO(7)
4

�

= (wSO(3)
2 + t2)(A2

c + A2
m + AmAc) + tAcAm(Ac + Am) ,

ϕ∗
�

wO(7)
5

�

=
�

wSO(3)
3 + twSO(3)

2 + t3
�

(A2
c + A2

m + AmAc) + (w
SO(3)
2 + t2)AcAm(Ac + Am) .

(243)

Substituting them back into Eq. (241), and using the cohomology relation B2
x y = Bc2 Bx y ,

indeed we get Eq. (242) as promised. Hence we establish that ΩUV = ϕ∗ΩIR.
On a Kagome lattice spin-1/2 system, we consider the following embedding ϕ of

GUV = p6m×O(3)T into O(7)×O(3),

T1 : n→ n





1
−1

−1



 ,

T2 : n→ n





−1
1
−1



 ,

C6 : n→











I3
−1

1
−1

−1











n





−1
1

1



 , (244)

M : n→











I3
−1

−1
1

1











n





−1
−1

1



 ,

78

https://scipost.org
https://scipost.org/SciPostPhys.13.3.066


SciPost Phys. 13, 066 (2022)

O(3)T : n→
�

O(3)T

I4

�

n .

The LSM anomaly of a Kagome lattice spin-1/2 system is

ΩUV ≡ exp(iπLUV) = exp
�

iπBx y wO(3)T

2

�

. (245)

Again, we wish to prove that ΩUV = ϕ∗ΩIR by proving SQ1(LUV) = ϕ∗
�

SQ1(LIR)
�

. SQ1(LIR)
is given in Eq. (241), while for SQ1(LUV) we have

SQ1(LUV) = Bx y wO(3)T

3 . (246)

It is now straightforward to calculate the pullback of various Stiefel-Whitney classes in Eq.
(241),

ϕ∗
�

wO(3)
1

�

= Am + Ac ,

ϕ∗
�

wO(3)
2

�

= Bx y + A2
c ,

ϕ∗
�

wO(3)
3

�

= A3
c + A2

cAm + AcBx y ,

ϕ∗
�

wO(7)
1

�

= t + Ac ,

ϕ∗
�

wO(7)
2

�

= wSO(3)
2 + t2 + tAc + A2

c + AcAm + A2
m ,

ϕ∗
�

wO(7)
3

�

=
�

wSO(3)
3 + twSO(3)

2 + t3
�

+
�

wSO(3)
2 + t2

�

Ac + t
�

A2
c + AcAm + A2

m

�

+ A3
c ,

ϕ∗
�

wO(7)
4

�

=
�

wSO(3)
3 + twSO(3)

2 + t3
�

Ac +
�

wSO(3)
2 + t2

�

�

A2
c + AcAm + A2

m

�

+ tA3
c + A2

cAm(Ac + Am) ,

ϕ∗
�

wO(7)
5

�

=
�

wSO(3)
3 + twSO(3)

2 + t3
�

�

A2
c + AcAm + A2

m

�

+
�

wSO(3)
2 + t2

�

A3
c

+ tA2
cAm(Ac + Am) .

(247)

Substituting them into (241) and using the cohomology relation B2
x y = Bc2 Bx y , indeed we get

Eq. (246), and thus establish that SQ1(LUV) = ϕ∗
�

SQ1(LIR)
�

.

I.4 Five dimensional representation of SO(3)

In all previous examples presented in this appendix, the SO(3) spin rotation symmetry is em-
bedded into the IR symmetry GIR as a 3 dimensional representation. It is natural to consider
embedding involving other representations of SO(3), whose physical relevance is illustrated
in Section 5. In this sub-appendix, we present formula relevant to mapping SO(3) into GIR as
a 5 dimensional representation of SO(3).

First consider the 5 dimensional representation ϕ5 : SO(3)→ O(5) of SO(3) alone, which
can be thought of as a symmetric traceless tensor V5, whose 5 basis are

1
p

2
(n1 ⊗ n2 + n2 ⊗ n1) ,

1
p

2
(n2 ⊗ n3 + n3 ⊗ n2) ,

1
p

2
(n3 ⊗ n1 + n1 ⊗ n3) ,

1
p

2
(n2 ⊗ n2 − n3 ⊗ n3) ,

1
p

6
(2n1 ⊗ n1 − n2 ⊗ n2 − n3 ⊗ n3) ,

(248)

where n1,2,3 form an SO(3) vector. Consider the Z2
2 subgroup of SO(3), generated by π-

rotations around the x- and y-axes, respectively. Using the above 5 basis, these twoπ-rotations
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are mapped into diag(−1, 1,−1, 1,1) and diag(−1,−1, 1,1, 1), respectively, from which (or
from the splitting principle [113]) we see that

ϕ∗5

�

wO(5)
2

�

= wSO(3)
2 , ϕ∗5

�

wO(5)
3

�

= wSO(3)
3 , ϕ∗5

�

wO(5)
1

�

= 0 , ϕ∗5
�

wO(5)
4

�

= 0 ,

ϕ∗5

�

wO(5)
5

�

= 0 .
(249)

Now go back to GUV = SO(3) × G̃ and consider a 5 dimensional representation
ϕ5 : GUV → O(5) that can be written as V5 ⊗ V1, where V5 denotes the 5 dimensional rep-
resentation of SO(3) while V1 denotes a 1 dimensional real representation of G̃ correponding
to x ∈ H1(G̃,Z2). Again from inspecting the action of the diagonal Z2

2 subgroup, we have

ϕ∗5

�

wO(5)
1

�

= x ,

ϕ∗5

�

wO(5)
2

�

= wSO(3)
2 ,

ϕ∗5

�

wO(5)
3

�

= wSO(3)
3 + xwSO(3)

2 ,

ϕ∗5

�

wO(5)
4

�

= x2wSO(3)
2 + x4 ,

ϕ∗5

�

wO(5)
5

�

= x2wSO(3)
3 + x3wSO(3)

2 + x5 .

(250)

J Strategy of exhaustive search of SEP and results

In this appendix, we briefly review our strategy of the exhaustive search of SEP. We also illus-
trate how to check all the SEPs from the csv data files we provide in the Data_and_Codes folder
and the mathematica file embedding.m, which transforms the data in csv files into matrices
representing generators C6/C4, M , T1, T2 and T . Some interesting realizations have been
shown in Sections 4 and 5.

In order to enumerate all SEPs that match LSM constraints with IR anomaly, we just need to
enumerate all embeddings from GUV to GIR and, following Section 3 and Appendix I, calculate
the pullbackϕ∗(ΩIR) to see if it is identical toΩUV corresponding to a particular LSM constraint.
Motivated by quantum magnetism, we assume that the IR theory will emerge as a consequence
of the competition between a magnetic state and a non-magnetic state. Therefore, we only
consider embeddings such that, in terms of the N × (N − 4) matrix n for SL(N), some but not
all entries of n transform under the SO(3) symmetry.

For DQCP, since the IR symmetry is O(5), all embeddings are just composed of represen-
tations of GUV. For DSL and SL(7), even though the IR symmetry is O(6)×O(2)

Z2
and O(7)×O(3)

Z2
,

respectively, because of the constraints on the embeddings, it suffices to only consider em-
beddings into O(6)×O(2)

Z2
and O(7)×O(3)

Z2
which can be respectively lifted to an embedding into

O(6) × O(2) or O(7) × O(3), as discussed below Eq. (229). Therefore, all embeddings we
consider are just composed of real representations of GUV. In other words, our task to specify
an embedding becomes finding appropriate irreducible representations of GUV, and fill them
into the O(N) and O(N − 4) matrices in a block diagonal form.

Hence let us make a detour and discuss representations of GUV = Gs × SO(3) × ZT
2 . For

any two groups G1,2, an irreducible representation V of G1 × G2 is V1 ⊗ V2, where V1,2 is an
irreducible representation of G1,2, respectively. So any irreducible representation V of GUV
takes the form of V = V 2n+1

SO(3) ⊗ Vs ⊗ VT , where V 2n+1
SO(3) is a (2n + 1)-dimensional irreducible

representation of SO(3)with n ∈ N, Vs is an irreducible representation of Gs, and VT = ±1 is an
irreducible representation of ZT

2 . The complete list of irreducible representations Vs of Gs can
be found using the method of induced representations [114–116], and we provide complete
lists of irreducible representations of p4m and p6m in the Mathematica file Representation.nb.
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To figure out which representations of GUV are relevant to our discussions, it is useful to
analyze in which blocks the SO(3) can act nontrivially, with the assumption that some but not
all entries of n transform under the SO(3) symmetry. For DQCP, SO(3) must act nontrivially
in a 3-d block, while the rest 2-d block should be a reducible or irreducible representation of
Gs ×ZT

2 . That is, the relevant representation V of GUV schematically takes the form

VDQCP =





�

V 3
SO(3) ⊗ V 1

s ⊗ V 1
T

�3×3

�

V 1
SO(3) ⊗ V 2

Gs×ZT
2

�2×2



 , (251)

where V 1
s and V 1

T are 1-d representations of Gs and ZT
2 respectively, and V 2

Gs×ZT
2

is a 2-d (re-

ducible or irreducible) representation of Gs ×ZT
2 .

For DSL, the block involving nontrivial SO(3) actions can be 3-d or 5-d, and it has to lie in
O(6). For SL(7), the block involving SO(3) should embed into O(7) and can be 3-d, 5-d or 6-d.
The 6-d representation takes the form of VSO(3)⊗V 2

Gs×ZT
2
, where VSO(3) is the 3-d representation

of SO(3), and V 2
Gs×ZT

2
involves either two 1-d representations of Gs×ZT

2 or one irreducible 2-d

representation of Gs×ZT
2 . However, it turns out that it is impossible to match the anomaly with

any LSM constraint in the presence of some 6-d block involving SO(3). Therefore, for DSL and
SL(7), we consider two cases, i.e., either SO(3) embeds as a 3-d representation, corresponding
to deconfined quantum criticle points or quantum critical spin liquids in Section 4, or as a 5-d
representation, corresponding to quantum critical spin-quadrupolar liquids in Section 5.

For DSL and SL(7), we still have freedom to choose the lifting to O(6)×O(2) or O(7)×O(3),
and different embeddings into O(6)× O(2) or O(7)× O(3) may correspond to the same em-
bedding into O(6)×O(2)

Z2
or O(7)×O(3)

Z2
. For embeddings involving 3-d representation of SO(3), we

choose such that only T acts in the 3 × 3 block as −I3, while Gs acts trivially in that block.
That is, for DSL and SL(7), the relevant representations V of GUV schematically take the form
as follows

VDSL =





�

V 3
SO(3) ⊗ 1s ⊗ (−1T )

�3×3

�

V 1
SO(3) ⊗ V 3

Gs×ZT
2

�3×3



×
�

V 1
SO(3) ⊗ V 2

Gs×ZT
2

�2×2
, (252)

and

VSL(7) =





�

V 3
SO(3) ⊗ 1s ⊗ (−1T )

�3×3

�

V 1
SO(3) ⊗ V 4

Gs×ZT
2

�4×4



×
�

V 1
SO(3) ⊗ V 3

Gs×ZT
2

�3×3
, (253)

where 1s is the 1-d trivial representation of Gs, and −1T is the 1-d non-trivial representation of
ZT

2 . For embeddings involving 5-d representation of SO(3), we choose such that both ZT
2 and

Gs act trivially in the 5×5 block. That is, the relevant representations V of GUV schematically
take the form

VDSL =





�

V 5
SO(3) ⊗ 1s ⊗ 1T

�5×5

�

V 1
SO(3) ⊗ V 1

Gs×ZT
2

�1×1



×
�

V 1
SO(3) ⊗ V 2

Gs×ZT
2

�2×2
, (254)

and

VSL(7) =





�

V 5
SO(3) ⊗ 1s ⊗ 1T

�5×5

�

V 1
SO(3) ⊗ V 2

Gs×ZT
2

�2×2



×
�

V 1
SO(3) ⊗ V 3

Gs×ZT
2

�3×3
, (255)
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where 1s and 1T are 1-d trivial representations of Gs and ZT
2 , respectively.

Having identified all possible embeddings, it is a striaghtforward exercise to calculate the
pullback in each case following Section 3 and Appendix I. We use Mathematica to automate
the computation and store results in csv files in the ancillary folder [59]. For example, data.csv
contains data for matching LSM constraints with IR anomaly of SL(N=5,6,7) when SO(3) embeds
into O(6) as a 3-d representaion, while dataSL5Rep.csv contains data for matching LSM con-
straints of p4m with IR anomaly of SL(7) when SO(3) embeds into O(7) as a 5-d representaion.
Moreover, for both p4m and p6m, there is a single embedding involving 5-d representation
of SO(3) that can match IR anomaly of DSL, shown in Eq. (40), which actually matches IR
anomaly with zero LSM constraint.

To read the embeddings, i.e., to read the explicit image of the generators C4/C6, M , T1, T2
and T in GIR, we provide a wrapper file Embedding.m. When SO(3) embeds into GIR as a 3-d
representation, it provides two functions

p4mPrintEmbedding[n_Integer, lsm_Integer, p_Integer]

p6mPrintEmbedding[n_Integer, lsm_Integer, p_Integer]

The arguments are n = 5, 6,7 corresponding to DQCP, DSL and SL(7) respectively,
lsm = 1, . . . , 8 in p4m or lsm = 1, . . . , 4 corresponding to a particular LSM constraint with
the order shown in Table 1, and p corresponding to a position in the array for a particular em-
bedding/realization. When SO(3) embeds into GIR as a 5-d representation and the IR theory
is SL(7), it also provides two functions

p4m5dPrintEmbedding[lsm_Integer, p_Integer]

p6m5dPrintEmbedding[lsm_Integer, p_Integer]

with similar arguments and output. Note that in this scenario for DQCP there is no real-
ization, and for DSL there is a single realization in p4m or p6m shown in Eq. (40). For p4m
and SL(7), it also provides a function

IncommensuratePrintEmbedding[lsm_Integer, p_Integer]

to check whether some embedding corresponds to an incommensurate order, and if it
does, output the corresponding incommensurate embedding. An illustration of how to use
these functions is provided in ReadMe.nb.

K Stable realizations on various lattice spin systems

In this appendix, we list all stable realizations of DQCP, DSL and SL(7) on triangular, kagome,
and square lattice half-integer spin systems, as well as those on p6m-anomaly-free systems
(including honeycomb lattice half-integer spin systems and all integer-spin systems with p6m
lattice symmetry) and p4m-anomaly-free systems (including all integer-spin systems with p4m
lattice symmetry). For square lattice, we only list the realizations in lattice homotopy class
with PR at the type-a IWP, from which the ones with PR at the type-b IWP can be obtained by
redefining the C4 center. As in the main text, here a stable DQCP means a realization with only
a single relevant perturbation allowed by microscopic symmetries, so that it can be realized as a
generic (pseudo-)critical point. A stable DSL means a realization with no relevant perturbation
allowed by microscopic symmetries, so that it can be realized as a stable phase. A stable SL(7)
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means a realization with either no relevant perturbation allowed by microscopic symmetries,
or a single symmetry-allowed relevant perturbation that does not change the emergent order
but only shifts the “zero momenta", so that this realization can still be viewed as a stable phase.
All stable realizations of these states, including those on lattice systems discussed here and also
those on other lattice systems, are explicitly documented in ReadMe.nb.

K.1 Stable realizations of DQCP

On all these systems, there is a single new stable realization of DQCP, given by Eq. (35), adja-
cent to ferromagnetic order on triangular lattice, kagome lattice integer spin systems or honey-
comb lattice half-integer/integer spin systems. There is a known stable realization of DQCP on
the square lattice half-integer spin system, given by Eq. (29), adjacent to anti-ferromagnetic
(Neel) order. There is another known stable realization of DQCP on p6m-anomaly-free sys-
tem [17], adjacent to anti-ferromagnetic order on honeycomb lattice half-integer/integer spin
systems, given by

T1,2 : n→





I3

−1
2

p
3

2

−
p

3
2 −1

2



n , C6 : n→





−I3
1
−1



n ,

M : n→





−I3
1

1



n , O(3)T : n→
�

O(3)T

I2

�

n .

(256)

These three are all stable realizations of DQCP.

K.2 Stable realizations of DSL

On p6m-anomaly-free systems, there is a single stable realization of DSL where the most rel-
evant spin fluctuations carry spin-1, given by Eq. (36). On both p6m-anomaly-free systems
and p4m-anomaly-free systems, there is also a single stable realization of DSL where the most
relevant spinful fluctuations carry spin-2, given by Eq. (40). Below we discuss the other sys-
tems.

Triangular lattice half-integer spin systems

On triangular lattice half-integer spin systems, there are 3 stable realizations of DSL. One of
them is known [15, 57, 58, 69–73], given by Eq. (42), adjacent to 120◦ order. The other two
have identical actions of T1,2, C6 and O(3)T :

T1 : n→







I3
1
−1

−1






n , T2 : n→







I3
−1

1
−1






n ,

C6 : n→







I3
1

1
−1






n

�

−1
1

�

, O(3)T : n→
�

O(3)T

I3

�

n .

(257)

The action of the mirror symmetry M in these two realizations are respectively

M : n→







I3
−1

−1
1






n , (258)
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and

M : n→







I3
1

1
−1






n

�

−1
1

�

. (259)

Kagome lattice half-integer spin systems

On kagome lattice half-integer spin systems, there are 3 stable realizations of DSL. One of
them is known [15,22,57,58,65–68], adjacent to q = 0 order, given by

T1 : n→







I3
1
−1

−1






n , T2 : n→







I3
−1

1
−1






n ,

C6 : n→







I3
1

1
1






n

�

−1
2 −

p
3

2p
3

2 −1
2

�

,

M : n→







I3
−1

−1
−1






n

�

−1
1

�

,

O(3)T : n→
�

O(3)T

I3

�

n .

(260)

The other two have the same actions of T1,2, C6 and O(3)T :

C6 : n→







I3
1

1
1






n , T1 : n→







I3
1
−1

−1






n ,

T2 : n→







I3
−1

1
−1






n , O(3)T : n→

�

O(3)T

I3

�

n .

(261)

And the action of M in the two realizations are respectively

M : n→







I3
1

1
1






n , (262)

and

M : n→







I3
−1

−1
−1






n

�

−1
1

�

. (263)
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Square lattice half-integer spin systems

On square lattice half-integer spin systems, there are 3 stable realizations of DSLs. One of
them is given by Eq. (37). The other two have the same actions of T1,2, C4 and O(3)T :

T1 : n→







I3
−1

1
1






n

�

−1
1

�

,

T2 : n→







I3
1
−1

1






n

�

−1
1

�

,

C4 : n→







I3
1

−1
−1






n

�

−1
1

�

,

O(3)T : n→
�

O(3)T

I3

�

n .

(264)

The action of M on these two realizations are respectively

M : n→







I3
1
−1

1






n , (265)

and

M : n→







I3
−1

1
−1






n

�

−1
1

�

. (266)

K.3 Stable realizations of SL(7)

Below we list the stable realizations of SL(7) on various systems.

p6m-anomaly-free systems

On p6m-anomaly-free systems, there are two stable realizations of SL(7), both of which have
the most relevant spinful fluctuations carrying spin-2. The symmetry actions of one of them is
given by Eq. (41). The other one has symmetry actions:

SO(3) : n→
�

ϕ5(SO(3))
I2

�

n , T : n→





I5
−1

−1



n





−1
1

1



 ,

T1,2 : n→





I5

−1
2

p
3

2

−
p

3
2 −1

2



n , C6 : n→





I5
1
−1



n





−1
1

1



 ,

M : n→





I5
−1

−1



n





−1
1

1



 .

(267)
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Triangular lattice half-integer spin systems

On triangular lattice half-integer spin systems, there are 8 stable realizations of SL(7). The first
has appeared in Ref. [15], given by Eq. (238).

The second has symmetry actions:

T1 : n→ n





1
−1

−1



 , T2 : n→ n





−1
1
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
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
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
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 ,
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






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1










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



1
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

 ,
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�

O(3)T

I4

�

n .

(268)

The third has symmetry actions:
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






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
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
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

n
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

 ,

C6 : n→










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
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

I3
−1

−1
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1


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





n





1
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1


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I4

�

n .

(269)
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The fourth has symmetry actions:

T1 : n→












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p
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−
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
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
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
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
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
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
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





n





1
1

1


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I4

�

n .

(270)

The first to the fourth realization are all adjacent to tetrahedral order.
The fifth has symmetry actions:

T1 : n→ n





1
−1

−1



 , T2 : n→ n




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
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
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
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
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(271)
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The sixth has symmetry actions:

T1 : n→


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
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
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
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
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
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
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
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

n





−1
−1

−1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

(272)

The seventh has symmetry actions:
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
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
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
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The eighth has symmetry actions:

T1 : n→
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




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
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
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
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
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(274)

Kagome lattice half-integer spin systems

On kagome lattice half-integer spin systems, there are 9 stable realizations of SL(7). The first
has appeared in Ref. [15] and is given by Eq. (244). The second is given by Eq. (38). Both
realizations are adjacent to cuboc1 order.

The third has symmetry actions
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


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
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
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
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
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(275)
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The fourth has symmetry actions

T1 : n→
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
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
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

n





1
1

−1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

(276)

The fifth has symmetry actions
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
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
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 , (277)
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
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O(3)T : n→
�

O(3)T

I4

�

n .

The third to the fifth realization are all adjacent to cuboc2 order.
The sixth has symmetry actions:
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(278)

The sixth realization is adjacent to q = 0 umbrella order.
The seventh has symmetry actions:
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 , (279)
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M : n→
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The seventh realization is adjacent to q =
p

3×
p

3 umbrella order.
The eighth has symmetry actions:
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2

1



 ,

C6 : n→











I3
−1

1
1

1











n





1
−1

1



 ,

M : n→











I3
1

−1
−1

−1











n





1
1
−1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

(280)

The ninth has symmetry actions:

T1 : n→











I3
1

1
−1

−1











n





−1
2 −

p
3

2p
3

2 −1
2

1



 ,

T2 : n→











I3
1
−1

1
−1











n





−1
2 −

p
3

2p
3

2 −1
2

1



 ,

C6 : n→











I3
−1

1
1

1











n





1
−1

1



 , (281)
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M : n→











I3
−1

−1
−1

−1











n





−1
−1

1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

p4m-anomaly-free systems

On p4m-anomaly-free systems, there are 4 stable realizations of SL(7), all of which has the
most relevant spinful fluctuations carrying spin-2.

The first has symmetry actions:

SO(3) : n→
�

ϕ5(SO(3))
I2

�

n , T : n→





I5
−1

1



n ,

T1,2 : n→





I5
1
−1



n





−1
1

1



 ,

C4 : n→





I5
1
−1



n





1
−1

1



 , M : n→





I5
−1

1



n .

(282)

The second has symmetry actions:

SO(3) : n→
�

ϕ5(SO(3))
I2

�

n , T : n→





I5
−1

1



n ,

T1,2 : n→





I5
1
−1



n





−1
1

1



 ,

C4 : n→ n





−1
−1

1



 , M : n→





I5
−1

−1



n





−1
1

1



 .

(283)

The third has symmetry actions:

SO(3) : n→
�

ϕ5(SO(3))
I2

�

n , T : n→





I5
−1

−1



n





−1
1

1



 ,

T1,2 : n→





I5
−1

1



n





−1
1

1



 , C4 : n→





I5
−1

−1



n ,

M : n→





I5
1
−1



n .

(284)
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The fourth has symmetry actions:

SO(3) : n→
�

ϕ5(SO(3))
I2

�

n , T : n→





I5
−1

−1



n





−1
1

1



 ,

T1,2 : n→





I5
−1

1



n





−1
1

1



 ,

C4 : n→





I5
1
−1



n





−1
1

1



 ,

M : n→





I5
−1

−1



n





−1
1

1



 .

(285)

Square lattice half-integer spin systems

On square lattice half-integer spin systems, there are 2 stable realizations of SL(7) where the
most relevant spinful fluctuations have spin-1 and all n modes are at high-symmetry momenta
in the Brillouin zone. There are also three realizations where some n modes can have contin-
uously changing momenta, among which two of them have only a single symmetric relevant
perturbation that shifts the momenta of the n modes, as long as these momenta are not tuned
to high-symmetry point. This is the case for the third family of realizations for most non-high-
symmetry momenta, except at two special momentum points (see below). Furthermore, there
is also one stable realization where the most relevant spinful fluctuations have spin-2 and all
n modes are at high-symmetry momenta.

We start with the 2 realizations with the most relevant spinful fluctuations carrying spin-1
and all n modes locating at high-symmetry momenta. The first has symmetry actions:

T1 : n→











I3
−1

1
1

1











n





−1
1

1



 ,

T2 : n→











I3
1
−1

1
1











n





−1
1

1



 ,

C4 : n→











I3
1

−1
1

1











n





1
−1

−1



 , (286)

M : n→











I3
−1

1
−1

−1











n





−1
−1

1



 ,
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O(3)T : n→
�

O(3)T

I4

�

n .

The second has symmetry actions:

T1 : n→











I3
−1

1
−1

1











n





−1
−1

1



 ,

T2 : n→











I3
1
−1

−1
1











n





−1
−1

1



 ,

C4 : n→











I3
1

−1
1

1











n





−1
−1

1



 ,

M : n→











I3
−1

1
1
−1











n





−1
1

1



 ,

O(3)T : n→
�

O(3)T

I4

�

n .

(287)

Next, we turn to the three realizations with some n modes at continuously changing mo-
menta. The first has symmetry actions given by Eq. (39), adjacent to tetrahedral umbrella
order, and the second has symmetry actions

C4 : n→











I3
1

1
1

1











n





1
1

1



 ,

M : n→











I3
−1

−1
−1

−1











n





−1
−1

1



 ,

T1 : n→







I3
cos k sin k
− sin k cos k

I2






n





−1
1
−1



 , (288)

T2 : n→







I3
I2

cos k − sin k
sin k cos k






n





1
−1

−1



 ,
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O(3)T : n→
�

O(3)T

I4

�

n ,

where k ∈ (−π,π) is a generic momentum. In both of these two realizations, the only relevant
perturbation that is allowed by microscopic symmetries is the one that shifts the momenta of
the n modes.

The third has symmetry actions:

C4 : n→











I3
1

1
1

1











n





1
1

1



 ,

M : n→











I3
−1

−1
−1

−1











n





1
1
−1



 ,

T1 : n→











I3
cos k sin k
− sin k cos k

cos k sin k
− sin k cos k











n





−1
1
−1



 ,

T2 : n→











I3
cos k sin k
− sin k cos k

cos k − sin k
sin k cos k











n





1
−1

−1



 ,

O(3)T : n→
�

O(3)T

I4

�

n ,

(289)

where k ∈ (−π,π) is a generic momentum. For this family of realizations, as long as k 6= ±π/2,
the only symmetric relevant perturbation is the one that shifts the momenta of the n modes.
When k = ±π/2, besides this symmetric relevant perturbation, there is an additional one that
can change the emergent order of SL(7) and make it unstable.

Finally, there is one realization where all n modes are at high-symmetry momentum, and
the most spinful fluctuations have spin-2. It has symmetry actions:

SO(3) : n→
�

ϕ5(SO(3))
I2

�

n , T : n→





I5
−1

−1



n





−1
1

1



 ,

T1 : n→





I5
−1

1



n





−1
1

1



 ,

T2 : n→





I5
1
−1



n





−1
1

1



 ,

C4 : n→





I5
1

−1



n, M : n→





I5
1
−1



n .

(290)
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L Classical regular magnetic orders

Ref. [60] studied regular magnetic orders, i.e., magnetic orders that respect all the lattice sym-
metries modulo global O(3)T spin transformations (rotations and/or spin flips). In particular,
on triangular, kagome, honeycomb and square lattices, all classical regular magnetic orders
are classified. These classical orders can all be realized by a product state, where each spin
moment on the lattice can be assigned a definite orientation. In this appendix, we explicitly
write down the spin configurations of these classical regular magnetic orders, and the lattice
symmetry actions on the order parameters.

In terms of the symmetry breaking pattern of the spin O(3)T symmetry, there are three
types of magnetic orders: collinear, coplanar and non-coplanar. The order parameter of a
collinear magnetic order is a three-component vector, n, which transforms in the spin-1 rep-
resentation of the O(3)T spin symmetry. The order parameters of a coplanar magnetic order
consists of two orthonormal three-component vectors, n1,2, both transforming in the spin-1
representation of the O(3)T spin symmetry. The order parameters of a non-coplanar magnetic
order consists of three orthonormal three-component vectors, n1,2,3, all transforming in the
spin-1 representation of the O(3)T spin symmetry.

We start from the triangular lattice. We will denote the position r of a site on a triangular
lattice by its coordinates in the basis of translation vectors of T1,2 (see Fig. 2), such that
r = xT1 + yT2, where T1,2 is the translation vector of T1,2. Under the p6m symmetry,

T1 : (x , y)→ (x + 1, y) ,

T2 : (x , y)→ (x , y + 1) ,

C6 : (x , y)→ (x − y, x) ,

M : (x , y)→ (y, x) .

(291)

1. There is a single collinear classical regular magnetic order, the ferromagnetic order,
where S(x , y) = n. Under the p6m symmetry, n is invariant.

2. There is a single coplanar classical regular magnetic order, the 120◦ order, where
S(x , y) = (−1)x+y cos π(x+y)

3 n1 + (−1)x+y sin π(x+y)
3 n2. Under the p6m symmetry,

T1,2 : n1→−
1
2

n1 −
p

3
2

n2 , n2→
p

3
2

n1 −
1
2

n2 ,

C6 : n1→ n1 , n2→−n2 ,

M : n1,2→ n1,2 .

(292)

3. There are two non-coplanar classical regular magnetic order. The first is the tetrahedral
order, where S(x , y) = (−1)xn1 + (−1)yn2 + (−1)x+yn3. Under the p6m symmetry,

T1 : n1→−n1 , n2→ n2 , n3→−n3 ,

T2 : n1→ n1 , n2→−n2 , n3→−n3 ,

C6 : n1→ n2 , n2→ n3 , n3→ n1 ,

M : n1→ n2 , n2→ n1 , n3→ n3 .

(293)

4. The second non-coplanar classical regular magnetic order is the F-umbrella order, where
S(x , y) = (−1)x+y cos π(x+y)

3 sinθn1+(−1)x+y sin π(x+y)
3 sinθn2+cosθn3, with θ a free

parameter. Under the p6m symmetry,

T1,2 : n1→−
1
2

n1 +
p

3
2

n2 , n2→−
p

3
2

n1 −
1
2

n2 , n3→ n3 ,

C6 : n1→ n1 , n2→ −n2 , n3→ n3 ,

M : n1,2,3→ n1,2,3 .

(294)
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Next we turn to the kagome lattice. Each unit cell in a kagome lattice includes three sites,
so the spin configuration will be written as Si(x , y), where (x , y) labels the position of the
unit cell in the same way as the triangular lattice, and i = 1,2, 3 represents the site obtained
by applying a half translation T1/2, T2/2 and (T1 + T2)/2 to the C6 center of the unit cell,
respectively.

1. There is a single collinear classical regular magnetic order, the ferromagnetic order,
where Si(x , y) = n for i = 1, 2,3. Under the p6m symmetry, n is invariant.

2. There are two coplanar classical regular magnetic orders. The first is the q = 0 order,
where S1(x , y) = n1, S2(x , y) = −1

2n1+
p

3
2 n2, and S3(x .y) = −1

2n1−
p

3
2 n2. Under the

p6m symmetry,

T1,2 : n1,2→ n1,2 ,

C6 : n1→−
1
2

n1 −
p

3
2

n2 , n2→
p

3
2

n1 −
1
2

n2 ,

M : n1→−
1
2

n1 +
p

3
2

n2 , n2→
p

3
2

n1 +
1
2

n2 .

(295)

3. The second coplanar classical regular magnetic order is the q =
p

3×
p

3 order, where
S1(x , y) = (−1)x+y cos π(x+y)

3 n1 + (−1)x+y sin π(x+y)
3 n2, S2(x , y) = S1(x , y), and

S3(x , y) = (−1)x+y cos π(x+y+2)
3 n1 + (−1)x+y sin π(x+y+2)

3 n2. Under the p6m symme-
try,

T1,2 : n1→−
1
2

n1 −
p

3
2

n2 , n2→
p

3
2

n1 −
1
2

n2 ,

C6 : n1→−
1
2

n1 +
p

3
2

n2 , n2→
p

3
2

n1 +
1
2

n2 ,

M : n1,2→ n1,2 .

(296)

4. There are five non-coplanar classical regular magnetic orders. The first is the octahedral
order, where S1(x , y) = (−1)yn1, S2(x , y) = (−1)xn2 and S3(x , y) = (−1)x+yn3. Under
the p6m symmetry,

T1 : n1→ n1 , n2→−n2 , n3→ (−1)x+yn3 ,

T2 : n1→−n1 , n2→ n2 , n3→−n3 ,

C6 : n1→ n3 , n2→ n1 , n3→ n2 ,

M : n1→ n2 , n2→ n1 , n3→ n3 .

(297)

5. The second non-coplanar classical regular magnetic order is the cuboc1 order, where
S1(x , y) = (−1)xn2 + (−1)x+yn3, S2(x , y) = (−1)yn1 + (−1)x+yn3 and S3(x , y) =
−(−1)xn2 − (−1)yn1. Under the p6m symmetry,

T1 : n1→ n1 , n2→−n2 , n3→−n3 ,

T2 : n1→−n1 , n2→ n2 , n3→−n3 ,

C6 : n1→−n3 , n2→−n1 , n3→−n2 ,

M : n1→ n2 , n2→ n1 , n3→ n3 .

(298)

98

https://scipost.org
https://scipost.org/SciPostPhys.13.3.066


SciPost Phys. 13, 066 (2022)

6. The third non-coplanar classical regular magnetic order is the cuboc2 order, where
S1(x , y) = (−1)xn2 − (−1)x+yn3, S2(x , y) = (−1)yn1 + (−1)x+yn3 and S3(x , y) =
(−1)xn2 + (−1)yn1. Under the p6m symmetry,

T1 : n1→ n1, n2→−n2 , n3→−n3 ,

T2 : n1→−n1 , n2→ n2 , n3→−n3 ,

C6 : n1→ n3 , n2→ n1 , n3→−n2 ,

M : n1→ n2 , n2→ n1 , n3→−n3 .

(299)

7. The fourth non-coplanar is the q = 0 umbrella order, where S1(x , y) = sinθn1+cosθn3,
S2(x , y) = −1

2 sinθn1 +
p

3
2 sinθn2 + cosθn3, and S3(x , y) = −1

2 sinθn1 −
p

3
2 sinθn2 +

cosθn3, with θ a free parameter. Under the p6m symmetry,

T1,2 : n1,2,3→ n1,2,3 ,

C6 : n1→−
1
2

n1 −
p

3
2

n2 , n2→
p

3
2

n1 −
1
2

n2 , n3→ n3 ,

M : n1→−
1
2

n1 +
p

3
2

n2 , n2→
p

3
2

n1 +
1
2

n2 , n3→ n3 .

(300)

8. The last non-coplanar classical regular magnetic order is the q =
p

3 ×
p

3 um-
brella order, where S1(x , y) = (−1)x+y cos π(x+y)

3 sinθn1 + (−1)x+y sin π(x+y)
3 sinθn2 +

cosθn3, S2(x , y) = S1(x , y), and S3(x , y) = −(−1)x+y cos π(x+y−1)
3 sinθn1

− (−1)x+y sin π(x+y−1)
3 sinθn2 + cosθn3. Under the p6m symmetry,

T1,2 : n1→−
1
2

n1 −
p

3
2

n2 , n2→
p

3
2

n1 −
1
2

n2 , n3→ n3 ,

C6 : n1→−
1
2

n1 +
p

3
2

n2 , n2→
p

3
2

n1 +
1
2

n2 , n3→ n3 ,

M : n1,2,3→ n1,2,3 .

(301)

Now we turn to the honeycomb lattice. Each unit cell of a honeycomb lattice includes
two sites, so the spin configuration will be written in terms of SA(x , y) and SB(x , y), where
the A and B sublattice can be obtained by translating by 2T1+T2

3 and T1−T2
3 from the C6 center,

respectively.

1. There are two collinear classical regular magnetic orders. The first is the ferromagnetic
order, where SA(x , y) = SB(x , y) = n. Under the p6m symmetry, n is invariant.

2. The second collinear classical regular magnetic order is the anti-ferromagnetic order,
where SA(x , y) = −SB(x , y) = n. Under the p6m symmetry,

T1,2 : n→ n ,

C6 : n→−n ,

M : n→−n .

(302)

3. There is a single coplanar classical regular magnetic order, the V order, where
SA(x , y) = cosθn1 − sinθn2 and SB(x , y) = cosθn1 + sinθn2, with θ a free param-
eter. Under the p6m symmetry,

T1,2 : n1,2→ n1,2 ,

C6 : n1→ n1 , n2→−n2 ,

M : n1→ n1 , n2→−n2 .

(303)
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4. There are two non-coplanar classical regular magnetic orders. The first is the cubic order,
where SA(x , y) = (−1)xn1 + (−1)yn2 + (−1)x+yn3 and
SB(x , y) = (−1)xn1 − (−1)yn2 + (−1)x+yn3. Under the p6m symmetry,

T1 : n1→−n1 , n2→ n2 , n3→−n3 ,

T2 : n1→ n1 , n2→−n2 , n3→−n3 ,

C6 : n1→ n2 , n2→−n3 , n3→ n1 ,

M : n1→ n2 , n2→ n1 , n3→−n3 .

(304)

5. The second non-coplanar classical regular magnetic order is the tetrahedral order, where
SA(x , y) = (−1)xn1 + (−1)yn2 + (−1)x+yn3 and SB(x , y) = −(−1)xn1 + (−1)yn2 −
(−1)x+yn3. Under the p6m symmetry,

T1 : n1→−n1 , n2→ n2 , n3→−n3 ,

T2 : n1→ n1 , n2→−n2 , n3→−n3 ,

C6 : n1→−n2 , n2→ n3 , n3→−n1 ,

M : n1→−n2 , n2→−n1 , n3→ n3 .

(305)

Finally, we discuss the square lattice. We will denote the position of a site by its coordinates
in the basis of translation vectors of T1,2 (see Fig. 3). such that r = xT1 + yT2, where T1,2 is
the translation vector of T1,2. Under the p4m symmetry,

T1 : (x , y)→ (x + 1, y) ,

T2 : (x , y)→ (x , y + 1) ,

C4 : (x , y)→ (−y, x) ,

M : (x , y)→ (−x , y) .

(306)

1. There are two collinear classical regular magnetic orders. The first is the ferromagnetic
order, where S(x , y) = n. Under the p4m symmetry, n is invariant.

2. The second collinear classical regular magnetic order is the anti-ferromagnetic order,
where S(x , y) = (−1)x+yn. Under the p4m symmetry,

T1,2 : n→−n ,

C4 : n→−n ,

M : n→ n .

(307)

3. There are two coplanar classical regular magnetic orders. The first is the orthogonal
order, where S(x , y) = (−1)x+(−1)y

2 n1 +
−(−1)x+(−1)y

2 n2. Under the p4m symmetry,

T1 : n1→ n2 , n2→ n1 ,

T2 : n1→−n2 , n2→−n1 ,

C4 : n1→ n1 , n2→−n2 ,

M : n1,2→ n1,2 .

(308)

4. The second coplanar classical regular magnetic order is the V order, where
S(x , y) = cosθn1− (−1)x+y sinθn2, where θ a free parameter. Under the p4m symme-
try,

T1,2 : n1→ n1 , n2→−n2 ,

C4 : n1,2→ n1,2 ,

M : n1,2→ n1,2 .

(309)
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5. There are two non-coplanar classical regular magnetic orders. The first is the tetrahedral
umbrealla order (also known as the AF umbrella order), where
S(x , y) = (−1)x sinθp

2
n1 −

(−1)y sinθp
2

n2 − (−1)x+y cosθn3, with θ a free parameter. Under
the p4m symmetry,

T1 : n1→−n1 , n2→ n2 , n3→−n3 ,

T2 : n1→ n1 , n2→−n2 , n3→−n3 ,

C4 : n1→−n2 , n2→−n1 , n3→ n3 ,

M : n1,2,3→ n1,2,3 .

(310)

6. The second non-coplanar classical regular magnetic order is the umbrella order (also
known as the F umbrella order), where S(x , y) = cosθn1 +

(−1)x sinθp
2

n2 +
(−1)y sinθp

2
n3.

Under the p4m symmetry,

T1 : n1→ n1 , n2→−n2 , n3→ n3 ,

T2 : n1→ n1 , n2→ n2 , n3→−n3 ,

C4 : n1→ n1 , n2→ n3 , n3→ n2 ,

M : n1,2,3→ n1,2,3 .

(311)

M Stability of DSL realizations on NaYbO2

and twisted bilayer WSe2

In this appendix, we discuss the stability of a few more examples of DSL realizations on systems
with spin-orbit coupling (SOC). The specific systems we have in mind are NaYbO2 and twisted
bilayer WSe2 (tWSe2). Recently, it was pointed out that tWSe2 is a good quantum simulator
of triangular lattice Hubbard model, which can be effectively described by a triangular lattice
spin-1/2 system in the strong coupling regime [86–88].

The symmetries of NaYbO2 are given in Eq. (43). The symmetries of tWSe2 are

T1,2, C3 ≡ C2
6 , SO(2) , T , (312)

where SO(2) is a reduced spin rotational symmetry 18.
On triangular lattice spin-1/2 systems with the full p6m×O(3)T symmetry, our exhaustive

search finds 3 realizations of DSL, given by Eqs. (42), (257) and (258). Using these symmetry
actions, it is straightforward to see that for all three realizations, the remaining symmetries
of NaYbO2 are sufficient to forbid all relevant operators of DSL listed in Sec. 3.1. However,
for the symmetry setting of tWSe2 and for all three realizations, the (AL , AR) operator (the
fermion mass that transforms in the adjoint representation of the flavor symmetry) is always
symmetry-allowed and will destablize the DSL. This means if a DSL is stably realized in tWSe2,
that realization cannot be compatible with a full p6m×O(3)T symmetry.
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