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Abstract

We investigate the Morita equivalences of (4+1)-dimensional topological orders. We
show that any (4+1)-dimensional super (fermionic) topological order admits a gapped
boundary condition — in other words, all (4+1)-dimensional super topological orders
are Morita trivial. As a result, there are no inherently gapless super (3+1)-dimensional
theories. On the other hand, we show that there are infinitely many algebraically Morita-
inequivalent bosonic (4+1)-dimensional topological orders.
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1 Introduction

A physical system described by a Hamiltonian is gapped when the spectrum of eigenvalues for
the Hamiltonian has a gap between the lowest energy state and the vacuum. Such systems

1

https://scipost.org
https://scipost.org/SciPostPhys.13.3.068
mailto:myu@perimeterinstitute.ca
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.13.3.068&amp;domain=pdf&amp;date_stamp=2022-09-27
https://doi.org/10.21468/SciPostPhys.13.3.068


SciPost Phys. 13, 068 (2022)

prevent the existence of particles that are arbitrarily light. A gapped phase is an equivalence
class of gapped systems. Systems that can be continuously deformed into each other without
closing the energy gap are considered to be in the same phase. The low-energy limit of gapped
phases may exhibit topological behaviour. Such is true for some quantum field theories, which
flow in the infrared to topological theories [1]. All of the dynamical degrees of freedom can
be integrated out, leaving only the topological excitations. The study of gapped phases in
various dimensions has led to interest regarding the topological nature of extended objects, or
operators, in these phases. In nontrivial cases, the content of operators and defects, as well as
the algebraic structure of how they interact, compile into a topological order [2].

The classification of topological orders has been an interesting problem that combines the
mathematics of higher category theory with the physics of gapped topological phases. By
now the classification in lower dimensions is understood. In (1+1)-dimensions, topological
orders are classified by their spectrum of point operators together with anomaly information
that manifests as a class in ordinary or supercohomology. Some other well studied situation
are in (2+1)d where topological orders with nondegenerate local ground states are classified
by modular tensor categories [3], and in (3+1)d where topological order with nondegener-
ate local ground states are (modulo a few subtleties) always described by finite group gauge
theories [4–7].

This paper addresses the classification in (4+1)d. We focus on the case of super topological
orders, i.e. topological orders defined over the category SVec of super vector spaces, because
the existence of super fibre functors makes this case technically easier. Following the strategy
of [4,5], the first step is to condense out all of the line operators in the topological order. The
resulting topological order has no line operators, and our first result is a classification of these:

{super (4+1)d topological orders with no lines}= {symplectic finite Abelian groups1}. (1)

By reducing along a Lagrangian subgroup, we furthermore show that every super (4+1)d topo-
logical order can be condensed all the way to the vacuum via a gapped topological boundary:

{super (4+1)d topological orders}/Morita equivalence2 = {1} . (2)

This is to be expected, as it agrees with the cobordism classification proposed by [8]: a Morita-
nontrivial super (4+1)d topological order should have a nontrivial gravitational anomaly de-
tectable on (5+1)d spin manifolds, but every (5+1)d spin manifold is spin-nullcobordant.

By studying a spectral sequence introduced in [6,7], the classification (2) allows us to com-
pute the analogous group for bosonic topological orders. We find that there is an isomorphism:

{bosonic (4+1)d topological orders}/Morita equivalence∼=Z∞2 . (3)

In other words, there are infinitely many pairwise-Morita-inequivalent bosonic (4+1)d topo-
logical orders (and each has a gapped boundary to its time-reversal). This disagrees with the
cobordism prediction: the cobordism group of (5+1)d oriented manifolds is trivial. The origin
of the disagreement, and indeed of the answer (3), is in (2+1)d: the Witt groups W and SW
of Morita equivalence classes of bosonic and super modular tensor categories, studied in [9],
are very large, whereas the cobordism classification would have predicted a classification in
terms of the central charge alone.

The outline of our paper is as follows. Section 2 starts off by explaining how to reduce the
set of operators in a (4+1)d topological order to only the surface operators, and how to see that

1We give the definition of symplectic finite Abelian group at the start of section 3.
2By definition, two topological orders are Morita equivalent if they be separated by a gapped topological inter-

face.
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their monoidality is given by a finite Abelian group. In principle this procedure works for the
bosonic and fermionic case, up to a small caveat that is remarked upon. In that section though,
we give the explanation specifically for super topological orders. We then review some aspects
of fusion and sylleptic 2-categories to understand the nature of how surface operators pair up
given three ambient dimensions. The build up is to see by way of a cohomology calculation
that (4+1)d topological orders are parametrized by a symplectic form carried by the finite
group of surface operators, establishing (1).

Section 3 outlines the method of symplectic reduction and its relation to Morita equiva-
lence. This allows us to prove (2) that (4+1)d super topological orders all admit a gapped
boundary. We furthermore give relationships between the bulk and boundary theories, where
we interpret the bulk (4+1)d theory to be a higher form of “centre" for the boundary theory.
To juxtapose with Section 2, we present a bosonic example of how the centre construction
goes through. Lastly, we address the question of lifting boundary theories into the bulk, and
obstructions in doing so.

Section 4 explains how we recover a bosonic theory from a fermionic theory plus extra in-
formation in “descent data", and computes the group of Morita equivalence of (4+1)d bosonic
topological orders.

In many parts of the paper we will also draw analogies to lower dimensional theories when
instructive.

2 5-dimensional Super Topological Orders

2.1 Condensing out the lines

An (n+1)-dimensional super topological order is defined in [6, 10–12] to be a multifusion
n-supercategory A with trivial centre.3 Triviality of the center is an axiomatization of the
principle of remote detectability. For our purposes we will be considering only the fusion case.
By this, we mean that there are no nontrivial 0-dimensional operators. This is to say that
the ground state of our topological order is nondegenerate [15]. The principle of remote
detectability, along with the fusion condition, implies that all codimension-1 operators arise
as condensation descendants [6, Theorem 4]. In an arbitrary 5d4 topological order given by
the fusion 4-category A, we therefore only need to consider operators of codimension-2 and
higher. We will focus on the super case in which A is enriched over SVec.

We will deem two 5d topological orders as being Morita equivalent if they can be sepa-
rated by a gapped 4d topological interface; this is also known as Witt equivalence. One way
to produce a Morita equivalence is to perform a categorical condensation [16], where the
condensation wall that separates the two phases is gapped and described by its own higher
category of operators.

The first main step in our classification of 5d topological orders is to use the method out-
lined in [4,5] to condense out all the lines in any super 5d topological order. Here is a stream-
lined version of their construction, written in the language of [6,16]:

Within the super fusion 4-category A describing the topological order, there is a sym-
metric super fusion 1-category Ω3A of line operators. Suppose that we choose a functor
F : Ω3A → SVec of symmetric super fusion 1-categories. Such F is called a fibre functor,
and in the super case always exists [17]; since A is assumed to be fusion, F is unique up to
isomorphism, although not up to unique isomorphism.

3All of our “n-categories” are “weak.” For example, a “2-category” is a bicategory. Multifusion 2-categories were
first introduced by [13], and the n-category generalization was developed in [6,14].

4For the remainder of this paper whenever the dimension of an extended object or phase is given without the
time component specified, we will take that dimension to represent the full spacetime dimension.
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This F can be “suspended” to a functor Σ3F : Σ3Ω3A → Σ3SVec, where Σ3Ω3A ⊂ A is
the sub 4-category of operators which arise as condensation descendants from line operators,
and Σ3SVec is the 4-category of operators in the vacuum 5d super topological order. This Σ3F
makes the 4-category Σ3SVec into a module for the fusion 4-category Σ3Ω3A. We may induce
(aka base change) this module along the inclusion Σ3Ω3A ⊂A to produce an A-module

M :=A⊗Σ3Ω3A Σ
3SVec .

We set B := EndA(M) to be the super fusion 4-category of A-linear endomorphisms of M;
then M is a Morita equivalence A ' B5. Because we started with a fibre functor on the full
category of line operators in A, there are no nontrivial line operators in B, i.e. Ω3B = SVec.

Remark. In the case of bosonic topological orders, to condense all the lines would require
choosing a bosonic fibre functor Ω3A→ Vec. Such a functor exists if and only if there are no
emergent fermions [17].

Since Ω3B = SVec, the result of [6, Theorem 5] implies that B = Σ2C, where C := Ω2B
is the (sylleptic) fusion 2-category of surface operators (and junctions between them); the
statement B = Σ2Ω2B means that all three- and four-dimensional “membrane" objects can
be built as condensation descendants of surface operators. But ΩC = Ω3B = SVec, i.e. it is
strongly super fusion:

Definition 2.1 ( [18]). A super fusion 2-category C is strongly super fusion if
ΩC := EndC(1)∼= SVec.

An object in a (super) fusion 2-category is indecomposable if it is nonzero and cannot be
written as a direct sum of nonzero objects; recall from [13] that in a (super) fusion 2-category,
an object is indecomposible iff it is simple. Two indecomposable objects are in the same com-
ponent if they are related by a nonzero morphism; the set of components of a (super) fusion
2-category C is denoted π0C. The second main step in our classification of 5d topological
orders is a classification of strongly fusion 2-categories that we established in [18]:

Theorem 2.2 ( [18, Theorem B]). If C is a (super) fusion 2-category with ΩC ∼= SVec, then
every indecomposable object of C is invertible. The equivalence classes of indecomposable objects
in C form a finite group, which is a central double cover of the group π0C of components of C (in
particular, π0C is a group).

Since an invertible object always has the same endomorphisms as the identity, Theorem 2.2
implies in particular that the endomorphisms of any indecomposable object in C is equivalent
to SVec, a super version of the condition called “endotriviality” in [13].

2.2 Sylleptic and symplectic groups: bosonic case

In any 5d topological order, the surface operators have three ambient dimensions in which
they can compose. Thus the fusion 2-category C is 3-monoidal, aka sylleptic. The definition of
sylleptic monoidal 2-category, which can be found in full in the appendix of [19], simplifies
dramatically in the strongly fusion case.

To warm up, in this section we discuss the case of bosonic strongly fusion 2-categories,
where sylleptic structures are classified by the Eilenberg–MacLane cohomology introduced
in [20]. Indeed, suppose that C is bosonic strongly fusion, meaning that it is a fusion 2-
category with ΩC = Vec. The bosonic case of Theorem 2.2 is [18, Theorem A], which says
that the indecomposable objects in C form a finite group M , equal to the group of components
since C is forced to be endotrivial.

5This construction presently outlined also goes by the name deequivariantization.
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The full data of the monoidal structure on C consists of: a tensor functor ⊗, given by the
group law on M ; an associator αx ,y,z : (x ⊗ y)⊗ z

∼
→ x ⊗ (y ⊗ z); and a pentagonator πx ,y,z,w

(w⊗ x)⊗ (y ⊗ z)

((w⊗ x)⊗ y)⊗ z ⇑ π w⊗ (x ⊗ (y ⊗ z))

(w⊗ (x ⊗ y))⊗ z w⊗ ((x ⊗ y)⊗ z)

αα

α⊗I

α

I⊗α

, (4)

which must satisfy a certain equation that we will not reproduce in full. But by endotriviality,
α is no data: there is up to isomorphism a unique equivalence (x ⊗ y)⊗ z

∼
→ x ⊗ (y ⊗ z) for

every triple of indecomposable object (x , y, z). After trivializing α, the equation for π says
simply that it is a 4-cocycle in ordinary group cohomology with coefficients in C×. We will
henceforth adopt the following notation. Given a group M (Abelian if n ≥ 2), we will write
M[n] for the Eilenberg–Mac Lane space more typically written K(M , n), and Hk(−) without
coefficients always means ordinary cohomology withC× coefficients Hk(−;C×). To summarize
the above discussion, we find that bosonic strongly fusion 2-categories with C with π0C = M
are classified by

[π] ∈ H4
gp(M) := H4(M[1];C×) . (5)

Suppose C is a monoidal 2-category with tensor bifunctor ⊗, associator α, and pentagona-
torπ. A braiding on C consists of a natural (in both variables) equivalence bx |y : x⊗y → y⊗x ,6

together with hexagonators R(x |−,−) and S(−,−|x) that provide the monoidality of b:

(y ⊗ x)⊗ z y ⊗ (x ⊗ z)

(x ⊗ y)⊗ z ⇓ R(x |y,z) y ⊗ (z ⊗ x)

x ⊗ (y ⊗ z) (y ⊗ z)⊗ x

α

bx |z

α

bx |y

bx |yz

α

,

(z ⊗ y)⊗ x x ⊗ (z ⊗ y)

z ⊗ (y ⊗ x) ⇓ S(z,y|x) (x ⊗ z)⊗ y

z ⊗ (x ⊗ y) (z ⊗ x)⊗ y .

bz y|x

α

by|x

α

α

bz|x

(6)
R and S must solve various equations. When α and π are trivial, these equations say first that
for each x , R(x |−,−) and S(−,−|x) are 2-cocycles7, and they furthermore assert:

z ⊗ y ⊗ x

y ⊗ z ⊗ x R(x |z,y)⇐ z ⊗ x ⊗ y

y ⊗ x ⊗ z R−1
(x |y,z)⇒ x ⊗ z ⊗ y

x ⊗ y ⊗ z

(bx |y )−1by|z

bx |z

(bx |y )−1

bx |zbx |z y
bx |yz

∼=

by|z

=

z ⊗ y ⊗ x

y ⊗ z ⊗ x S−1
(y,x |z)⇐ z ⊗ x ⊗ y

y ⊗ x ⊗ z S(x ,y|z)⇒ x ⊗ z ⊗ y

x ⊗ y ⊗ z ,

(bx |y )−1by|z

bx |z

by|x

by x |z
bx |z

∼= bx y|z

by|z

(7)

6We write the braiding as bx |y rather than bx ,y to be consistent with later notation for Eilenberg–Mac Lane
cocycles. Higher Eilenberg–Mac Lane cocycles are like AT&T sales pitch: “More bars in more places.”

7These are 3-cochains if we include the x variable, but not ordinary 3-cocycles.
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w⊗ y ⊗ z ⊗ x

⇑ S

w⊗ x ⊗ y ⊗ z y ⊗ z ⊗w⊗ x

R−1 ⇑

y ⊗w⊗ x ⊗ z

bw|yzbx |yz

bwx |yz

bwx |y bwx |z

=

w⊗ y ⊗ z ⊗ x

⇐ R−1 ⇒ R−1

w⊗ x ⊗ y ⊗ z w⊗ y ⊗ x ⊗ z

∼=

y ⊗w⊗ z ⊗ x y ⊗ z ⊗w⊗ x

⇒ S ⇐ S

y ⊗w⊗ x ⊗ z .

by|w

bw|yz

bx |y

bx |yz

bwx |y

by|x

bw|y

bw|z

bx |z

bwx |z

(8)
The unlabeled isomorphisms are the naturality of b. If b is also trivial, then (7) and (8) simply
say:

R−1
(x |y,z) R(x |z,y) = S−1

(y,x |z) S(x ,y|z) , (9)

R−1
(wx |y,z) S(w,z|yz) = R−1

(x |y,z) R
−1
(w|y,z) S(w,x |y) S(w,x |z) . (10)

Suppose that we are in the bosonic strongly fusion case. Then α and b are automatically
trivial, but π may not be. In this case, the equivalent equations (8) and (10), as well as the
requirements that Rx |−,− and S−,−|x be 2-cocycles, receive corrections by π. (The equivalent
equations (7) and (9) do not require corrections, because π only appears when we need to
coherently tensor four or more objects.) The full result is that (π, R, S) are together the data
of what is sometimes called an “Abelian cocycle,” and what we will call a braided cocycle: they
define a class in the Eilenberg–Mac Lane cohomology

[π, R, S] ∈ H4
br(M ;C×) := H5(M[2];C×) . (11)

Finally, suppose that C is a braided monoidal 2-category. A syllepsis v for C is an isomorphism
vx ||y : bx |y

∼
⇒ b−1

y|x for each x , y such that the diagram

b`|x y b`|x b`|y

b−1
x y|` b−1

x |` b−1
y|`

v`,x y

R(`|x ,y)

v`||x v`||y

S(x ,y|`)

(12)

commutes. In the bosonic strongly fusion case where α and b are trivial, v enhances (π, R, S)
to a sylleptic cocycle, defining a class

[π, R, S, v] ∈ H4
syl(M ;C×) := H6(M[3];C×) . (13)

In general, a theory with (only) grouplike p-spacetime dimensional objects with q-ambient
dimensions (hence p+q total spacetime dimensions) should be classified by degree (p+q+1)
cohomology of M[q]8. The original paper [20] calculates the values of Hp(A[q]; B) for small

8When p is large, the required cohomology theory is not ordinary cohomology. Indeed, any theory will have
k-dimensional operators built by inserting decoupled k-dimensional topological theories, and for large enough k
there are nontrivial invertible k-dimensional topological field theories. For most purposes the presence of these
decoupled operators does not affect the physics. However, these operators can arise as “higher fusion coefficients”
for fusion of lower-dimensional operators. The result of this is that classifications by ordinary cohomology must
be corrected in high dimensions.
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Y

X

••v−1
y||x

vx ||ybx |y

b−1
y|x

Figure 1: The two domed cylinders in red and blue represent two objects X , Y ∈ C
respectively, living in four dimensions. The purple coloured regions show the domes
of the objects. Initially, we can think of one object being above the other. The dashed
lines indicate places where the two sheets pass over each other in the fourth dimen-
sion, with the colour indicating which is above. The two marked points show where
one of the surfaces crosses over the other in the fifth dimension, changing the order
of which surface is above and below. The change in color of the dotted circle repre-
sents the fact that after the syllepsis, the object which was initially on top, is now on
the bottom.

values of p, q and arbitrary Abelian groups A, B. In particular, writing bA := hom(A,C×) and
M2 := hom(Z2, M), sylleptic strongly fusion 2-categories C with π0C = M are classified by

H6(M[3];U(1))∼=ÓM2 ⊕
×

∧2 M ,

where
∧2 M := M⊗M

(m⊗m) denotes the alternating 2-forms on M . We will now explain the meaning

of these two summands ÓM2 and ×
∧2 M . Further discussion can be found in [21, §2.1].

The summandÓM2 measures the following [22]: given an invertible surface operator m ∈ M ,
consider wrapping the surface operator around a Klein bottle. This requires choosing an equiv-
alence m∼= m−1, since the Klein bottle is not orientable. We have such an equivalence exactly
when m ∈ M2, in which case, by endotriviality, the equivalence is unique up to isomorphism.
It also requires choosing a Pin structure on the Klein bottle; let’s choose the nonbounding Pin
structure. Then this Klein bottle wrapped with m ∈ M2 will evaluate to some element of C×.
This gives the map M2 → C×, or in other words the element of ÓM2. Since the Klein bottle
embeds into R4 ⊂R5, this class in ÓM2 depends only on the braiding data and not the sylleptic
form.

The summand ×
∧2 M measures the following. Given surfaces with three ambient dimen-

sions, then to “braid" them means passing them around each other in a two-parameter family,
topologically a two-sphere. This procedure results in a phase factor that depends antisymmet-
rically on the inputs. In terms of the data of a sylleptic 2-category, this antisymmetric pairing
is given byω(x , y) = vx ||y−vy||x , where v is a 2-cocycle and represents the sylleptic data. This
is because v tells how the surfaces go from above to below one another in the four dimension
when we consider the double braiding of two surfaces. At two locations, the surfaces switch
places by going into the fifth dimension. This process is depicted in Figure 1.
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2.3 Sylleptic and symplectic groups: fermionic case

We turn now to the fermionic case, which is the main focus of this paper. As explained in
§2.1, we are specifically interested in sylleptic strongly fusion super 2-categories C. By def-
inition, the line operators in such a 2-category are ΩC = SVec. The simple lines consist
of the identity line 1 and a fermion line f , corresponding to the super vector spaces C1|0

and C0|1 respectively. By Theorem 2.2, the components π0C form a group M . The identity
component, and hence every component, contains two simple objects. This identity com-
ponent is a copy of ΣSVec, equivalent to the 2-category of superalgebras and their super
bimodules. The identity object 1 corresponds to the superalgebra C, and the other simple
object, which following [23] we will call the Cheshire object c, corresponds to the superalge-
bra Cliff(1). It is a fun exercise that the self-braiding c ⊗ c → c ⊗ c is given by the fermion
f [24]. The invertible operators in the identity component form the symmetric monoidal
higher group (ΣSVec)× = C×[2].{1, f }[1].{1, c}[0] where the Postnikov extension data are
given by Sq2 : {1, c} → {1, f } and (−1)Sq2

: {1, f } → C×.
The collection of invertible operators in C is an extension of shape (ΣSVec)×.π0C. As in

§2.2, we will encode that C is sylleptic by placing the (invertible) objects {1, c}.π0C in degree
3. In other words, setting M := π0C, we are interested in extensions of shape:

(ΣSVec)×[3].M[3] . (14)

The classification of arbitrary extensions of this shape is somewhat complicated. But we know
one thing more: the fermion f , and hence also its condensate c, are invisible. This is sometimes
referred to as a local fermion, and any theory with this feature couples to spin structure and
is equipped with a Z2 fermion parity symmetry that induces a grading on the Hilbert space.
In the language of group theory, one can think of this as saying that the extension (14) is a
“central extension,” and so classified by untwisted cohomology (of M[3]) with coefficients in
(ΣSVec)×.

Cohomology with coefficients in (ΣSVec)× is called (extended) supercohomology SH•. The
name is due to [25] given in the context of condensed matter and lattice constructions, but
had appeared in the mathematics literature beforehand as a generalized cohomology theory.
See [24] for a more topological treatment. By the Atiyah-Hirzebruch spectral sequence, SH•

is built out of three “layers" corresponding to the three homotopy groups of (ΣSVec)×. The
bottom (Majorana) layer records whether the group of simple objects {1, c}.M is or is not a split
extension. The second (Gu-Wen) layer records whether the isomorphism given by the braiding
on two objects is even or odd; the fermion in particular braids with itself up to a sign rather than
braiding trivially. The top layer records the associator data, i.e. a bosonic anomaly, of a suitable
bosonic shadow to the fermionic theory [26]. There is a map H•(M[3]; C×) → SH•(M[3])
corresponding to viewing a bosonic theory as a fermionic one.9

Proposition 2.3. For M any arbitrary Abelian group, SH6(M[3])∼=×
∧2 M = hom

�

∧2 M ,C×
�

,
the space of alternating 2-forms.

Proof. We converge to the supercohomology by way of the Atiyah-Hirzebruch spectral se-
quence SH6(M[3]) ⇐ H•(M[3]; SH•(pt)). The entries on the E2 page can be filled in from

9It was predicted in [27] that the classification of fermionic theories with symmetries in d dimensions is given
by (twisted) spin cobordism Ωd+1

Spin(M). The Atiyah-Hirzebruch spectral sequence then allows us to compile the
information in the first three layers to compute an approximation of spin cobordism, this recovers supercohomology.
In low dimensions supercohomology well approximates spin cobordism, but as the dimensions get higher, the
approximation is more crude and more information coming from the deeper layers may be necessary. In our case
however, the supercohomology approximation is exact: while spin cobordism has layers below the Majorana layer,
these layers do not contribute to cohomology of M[3] because of the Hurewicz theorem.
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the formulas in [20,21]. This data assembles as:

E i, j
2 =

j

Z2 hom(M ,Z2) Ext(M ,Z2) hom(M ,Z2) . . .

Z2 hom(M ,Z2) Ext(M ,Z2) hom(M ,Z2) ÒM2 ⊕ hom
�

∧2 M ,Z2

�

C× ÒM 0 hom(M ,Z2) ÒM2 ⊕
×

∧2 M
3 4 5 6 i .

(15)

The entries which include hom and Ext in degree three through five are all isomorphic to ÒM2,
where M2 denotes the 2-torsion of M , and the hat denotes Pontryagin duality. Specifically,
hom(M ,Z2) = (ÒM)2, and Ext(M ,Z2) =ÓM2, which can be seen from the short exact sequence

Z2
(−1)x
−→ C×

x2

−→ C×. The d2 differential are given by:

d2 : E i,2
2 = Hi(M[3] ;Z2)→ E i+2,1

2 = Hi+2(M[3] ;Z2) X 7→ Sq2 X , (16)

d2 : E i,1
2 = Hi(M[3] ;Z2)→ E i+2,0

2 = Hi+2(M[3] ;C×) X 7→ (−1)Sq2 X . (17)

Notice that because we are really looking at Eilenberg-MacLane spaces in degree three, we do
not need to consider the entries in degree lower than three due to the Hurewicz’s theorem:

H•(M[3] ; A) = 0 for •< 3 . (18)

We claim that Sq2 : H3(M[3]; Z2)→ H5(M[3]; Z2) is an isomorphism. To see this, note
first that H3(M[3]; Z2) ∼= hom(M ;Z2) by Hurewicz. Now given µ ∈ H3(M[3]; Z2), we can
construct the pullback µ∗ : H•(Z2[3]; Z2) → H•(M[3]; Z2). The ring H•(Z2[3]; Z2) is a
polynomial ring in the generators T, Sq1 T, Sq2 T, . . . where T has degree 3. In particular,
H3(Z2[3]; Z2) = {0, T}, with µ∗(T ) = µ, and H5(Z2[3]; Z2) = {0,Sq2 T}. Since Sq2 is natu-
ral, we have Sq2(µ∗T ) = µ∗(Sq2 T ), confirming the claim. Thus the d2 differentials E3,1

2 → E5,0
2

and E3,2
2 → E5,1

2 are isomorphisms. The d2 differentials supported in bidegrees (4,1) and (4, 2)
are injections by essentially the same argument. Namely, for each m ∈ M2 = hom(Z2, M),we
can restrict ÒM2 = H4(M[3];Z2) along the map m∗ : H4(Z2[3];Z2)→ H4(M[3];Z2). The only
element in H4(Z2[3];Z2) is Sq1 T , which is not annihilated by Sq2. Again by naturality, the
d2 from E4,1

2 → E6,0
2 and E4,2

2 → E6,1
2 are injections.

All together, the E3 page reads:

E i, j
3 =

j

Z2 0 0 ∗ ∗
Z2 0 0 0 ∗

C× ÒM 0 0 ×

∧2 M
3 4 5 6 i .

(19)

In particular in total degree 6 the spectral sequence stabilizes on page 3, with the only nonzero

entry being ×
∧2 M in bidegree (6,0).

Remark. We note that H6(M[3];C×) 'ÓM2 ⊕
×

∧2 M classifies 5d bosonic topological phases,
but the ÒM2 is killed by a differential in the spectral sequence for supercohomology. Thus a
bosonic sylleptic form contains more information than its superization.

Thus we find:
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Theorem 2.4. The set of fermionic (4+1)d topological orders with no lines is equal to the set of
symplectic Abelian groups.

For the definition of symplectic Abelian group we refer the reader to §3.1.

Proof. The principle of remote detectability for topological orders ensures that there are no
invisible operators (trivial centre). In detail, the “trivial centre" requirement for a sylleptic
fusion 2-category is that its symmetric centre — its full subcategory on those objects x for

which vx ||− = v−1
−||x — should be trivial. As explained at the end of §2.2, the class in ×

∧2 M
precisely records the antisymmetric pairing 〈x , y〉 = vx ||y vy||x . When applied to the group of
surfaces, it means that the symplectic pairing is nondegenerate.

Remark. To make contact with lower dimensions, consider the familiar case of bosonic 3d
topological orders. These are given by modular tensor categories (MTC). In the Abelian case,
with M a group, the braiding data of the MTC data is determined by a class in H4(M[2]). This
is isomorphic to the group of quadratic functions on M . The full braiding of lines is given by
the symmetric pairing

M ⊗M → C× , (20)

a⊗ b 7→
q(a+ b)
q(a)q(b)

,

where q is a quadratic function. In 3d this is a one-parameter family in which the lines pass
around each other in a circle and we get a phase factor because it is a one-dimensional motion,
and one dimension lower than line operator is a phase. Furthermore, this phase depends
symmetrically on the two inputs, and here “nondegenerate" means that the symmetric pairing
is nondegenerate.

If M2 is trivial, then H4(M[2]; U(1)) ∼= Sym2
ÒM by completing the square. In general,

the map H4(M[2]) → Sym2
ÒM has kernel. This is analogous to the kernel ÒM2 of the map

H6(M[2];U(1)) → SH6(M[3]) =×

∧2 M . And indeed a similar analysis as in Proposition 2.3
shows that this kernel dies when going to fermionic theories and SH4(M[2])∼= Sym2

ÒM .

3 5d Topological order from the boundary

3.1 Symplectic Reduction to Isotropic Subspaces

The symplectic form ω on M gives M the structure of a symplectic Abelian group.

Definition 3.1. A symplectic Abelian group is an Abelian group G together with an isomorphism
ω : M → ÒM, with ÒM = hom(M ,C×) such that ω(g, g) = 1 for every g ∈ M.

This definition implies an alternating feature, ω = Òω−1. Recall that by definition
∧2 M = M⊗M

m⊗m , so a map ω : M → ÒM is the same data as a map ω : M ⊗M → U(1). This map
solves ω(g, g) = 1 for all g iff it factors through

∧2 M .

Example. An example of a symplectic Abelian group is when M is a product of groups B × bB
with ω((b1, f1), (b2, f2)) = f1(b2) · f2(b1)−1.

If M is a cyclic group then M does not admit a symplectic form. Call the generator for the
cyclic group t, then ω(t, t) = 1 but ω(ta, t b) = 1ab = 1, and ω is not an isomorphism.

10

https://scipost.org
https://scipost.org/SciPostPhys.13.3.068


SciPost Phys. 13, 068 (2022)

Suppose M is a symplectic Abelian group and N ⊂ M is a subgroup. The symplectic or-
thogonal N⊥ is the subgroup {m ∈ M s.t. ω(m, n) = 1 for all n ∈ N}. It is the subgroup
corresponding to ÖM/N ⊂ ÒM under the isomorphism ω : M ∼= ÒM . From this description, we
see that |M |= |N |×|N |⊥. A subgroup L ⊂ M is Lagrangian if L = L⊥ as subgroups of M . Thus
L is Lagrangian exactly when ω|L is trivial and |L| =

p

|M |. A Lagrangian splitting of M is a
direct sum decomposition M = L ⊕ L′ where both L and L′ are Lagrangian. The symplectic
form on M then identifies L′ ∼= bL.

Proposition 3.2 (Darboux theorem for finite groups). Every symplectic finite Abelian group
admits a Lagrangian splitting.10

The following proof is essentially given in [28, Lemma 5.2].

Proof. Every finite Abelian group canonically factors as a direct sum of subgroups for different
p, and the symplectic form cannot mix different primes. We thus reduce to the case where the
group in consideration M has order pk for some prime p. We give the p = 2 case for clarity,
and the proof generalizes for other primes. Pick an element x ∈ M of maximal order, say
2a. Then x2a−1

is nontrivial and we choose an element y such that the pair ω(x2a−1
, y) 6= 1.

We use the fact that x2a−1
is order 2 and so by inspecting ω(x2a−1

, y) = ω(x , y)2
a−1

, which
is itself also order 2, we see that y has order at least 2a. But a was maximal, so we have
found two subgroups, generated by x and y , both of order 2a. We note that these two groups
are transverse because an alternating form vanishes on a cyclic subgroup. Let N denote the
subgroup generated by x and y . It is a product of cyclic groupsZ2a×Z2a , which are themselves
each Lagrangians in N . The restriction of ω to N is the canonical split pairing ω(x , y), of
x pairing with y . By construction, ω|N is nondegenerate. Thus N and N⊥ are transverse
(N ∩ N⊥ = 0), so M = N ⊕ N⊥. By induction of the previous procedure, N⊥ can be further
split into something Lagrangian, therefore M has a Lagrangian splitting.

3.2 Lagrangian subgroups as boundary theories

We now turn to investigate the boundary (3+1)d theory of a 5d theory which also has only
surfaces, and make some relations with the bulk. The boundary is a braided strongly fusion
2-supercategory L with objects being surfaces that have an L group fusion rule. The braiding
β is a class in SH5(L[2]), which in this case, antisymmetrically pairs objects.11 We can think of
the bulk (4+1)d theory as the sylleptic centre of L denoted by Z(2)(L), where the objects have
fusion rule M with a sylleptic structure ω. Since all 1-morphisms are trivial in the strongly
fusion case, all the data is encoded in R, S and of particular importance is the class in SH5(L[2])
encoding the braiding.

Definition 3.3. Let L be a braided monoidal 2-category. An object in the sylleptic centre Z(2)(L)
is a pair (x , vx ||−). A 1-morphism from (x , vx ||−) to (x ′, vx ′||−) is a one morphism f : x → x ′ in
L such that the following diagram commutes for all y ∈ L:

10While it is true that all such M admit a Lagrangian subgroup, it is not the case that any Lagrangian at all fits
into the sequence bL ,→ M → L, see [28, Example 5.4]

11The analogue of this class for a (1+1)d boundary to a (2+1)d bulk would be a class α ∈ SH3(L[1]) that
provides associator information regarding the lines in the (1+1)d theory.
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x ⊗ y x ⊗ y

⇓ vx ||y

⇒ b f |y y ⊗ x ⇒ by| f

x ′ ⊗ y x ′ ⊗ y

⇓ vx ′||y

y ⊗ x ′

bx |y by|x

bx′|y by|x′

where the 2-morphism on the back face is the identity. The two morphisms are defined in the same
manner as in L.

Lemma 3.4. If L is a strongly fusion braided fusion 2-category, then Z(2)(L) contains no lines.

Proof. Consider the identity object (1, v1||−) of Z(2)(L), where v1||x is the following isomor-
phism:

1⊗ x ⇓ v1||x x ⊗1

b1|x

b−1
x |1

.

A priori, v could be any x-dependent C× number satisfying a 1-cocycle relation i.e. v ∈ bL. But
since 1 is the identity object, b1|x and bx |1 are both trivialized, and the identity object of the
centre is the one such that v is also trivialized, so we take v1||− = 1. Now consider morphisms
of the identity object, which is a morphism from 1→ 1, or id1. Then, we have the following
3-cell filling:

1⊗ x ⇓ v1||x x ⊗1

1⊗ x ⇓ v1||x x ⊗1 ,

b−1
x |1

b1|x

b−1
x |1

b1|x

where the vertical maps are just identity maps. But, because we are in the 2-category, the only
3-cell is the identity.
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Remark. More generally, if B is any braided monoidal 2-category, then ΩZ(2)(B) is a full sub-
1-category of ΩB. However, the analogous statements for Z(1) and for 3-categories fail. For
definiteness, Lemma 3.4 is to spell out the details of the case we care about.

Proposition 3.5. The sylleptic center of a trivially braided fusion 2-category L is bL×L and the
sylleptic form is the canonical one.

Proof. The trivial braiding indicates that [π, R, S] in (11) are trivial. As a consequence, the
diagram in (12) reduces down so that v satisfies the equation v`||x y = v`||x v`||y , thus v`||− is a
homomorphism L→ C×. The object (x , vx ||−) in the sylleptic centre is therefore an element
of (L , bL).

Example. For clarity let us work bosonically in this example instead of using supercategories.
Suppose M admits L as a lagrangian, and take L =Z3. A particularly simple class of braided fu-
sion 2-category is L = 2Vecβ[Z3], where β ∈ H5(Z3[2]). A computation shows that

H5(Z3[2]) =
Ø

∧2
Z3 = 0, which means the only category is 2Vec[Z3] with the sylleptic centre

Z(2)(2Vec[Z3]) = Û2Vec[Z3]× 2Vec[Z3] . (21)

In general, if L was a group such that β 6= 0, then Z(2)(L) = bL .L , a nontrivial extension
of the boundary category. In terms of the groups, (21) implies that M = bL × L, where
bL = M/L⊥ = M/L. Therefore, M fits into the short exact sequence bL ,→ M � L.

Remark. The centre gives the corresponding Djikgraaf-Witten (DW) theory for the boundary,
with anomaly given by a class in SH6(M[3]). The act of going from the sylleptic centre to the
boundary can be done by first “forgetting" the sylleptic structure, and then applying a Dirich-
let boundary condition aka a braided map from a braided monoidal centre to the boundary.
The objects in the kernel of this map are precisely the “Wilson lines" of the DW theory. The
boundary condition contains not only a condensation bL but furthermore a trivialization ofω|

bL ,
which is given by a class in SH5(bL[3]).

We can also ask which boundary theories can be lifted to the bulk; this is the equiva-
lent of finding a splitting of the bulk to boundary map. The objects in the image of the
splitting map are the “ ’t Hooft lines" of the DW theory. A priori there can be an obstruc-
tion to the lifting [21], which means that the lines in the bulk do not split neatly as a direct
sum of “electric" and “magnetic" lines. There exists an obstruction for a braided 4-cocycle
{π(−,−,−,−), R(−|−,−), S(−,−|−)} to have sylleptic structure given by

θ : H5(L[2])→ Ext(L,bL) , (22)

with the kernal of this map precisely given by bL2. The map H6(L[3]) → H5(L[2]) maps be-
tween the two bL2 subgroups, with H6(L[3]) attained from H6(M[3]) via a restriction map.
The subgroup of bL2 in H5(L[2]) contains information regarding the data of π, R, S. The re-
mainder of the group is braiding information that cannot be lifted to being sylleptic. There is

furthermore a map from H6(L[3])→ SH6(L[3]) that surjects onto Ö
∧2 L. This is summarized

in the following diagram:

H6(L[3])' bL2
︸︷︷︸

⊕Ö
∧2 L SH6(L[3])'Ö

∧2 L

H5(L[2]) SH5(L[2]) .
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The map from SH6(L[3]) → SH5(L[2]) is therefore the zero map as composition of the left
vertical map and the horizontal map gives zero; we then have:

Proposition 3.6. Only the fermionic boundary theories with trivial braiding can be extended, in
a way such that multiplication data is consistent with the lift to the bulk, to a sylleptic form.

Remark. It is possible that all surfaces on the boundary can be lifted, but not necessarily
canonically. In the case of a 3d Z3 DW theory with nontrivial anomaly, this has a Dirichlet
boundary condition where the lines obey Z3 fusion rule. The bulk however has lines that obey
Z9 fusion rule. Any line on the boundary can be lifted, but there is no way to do this in a way
that is compatible with the tensor product. The lines on the boundary cube to the trivial line,
but lifting it to the bulk means that the cube is nontrivial.

3.3 Morita trivial 5d phases

If M admits L as a Lagrangian subspace then the corresponding 5d topological order upon
symplectic reduction is Morita equivalent to the trivial theory. More succinctly this is know as
being Morita trivial. This reduction procedure is depicted physically in Figure 2.

L
M M � L := L⊥/L

Figure 2: The wall is braided fusion 2-category with objects in L⊥, separating the
original theory A from the vacuum. Similar to the case of quantum Hamiltonian
reductions, the wall is a bimodule for the two categories on either side.

Example. Consider in (1+1)d the category I given by Vecα=0[Z2], whereα ∈ H3(Z2[1]) is the
trivial associator. Then the (2+1)d bulk theory is T = Z(Vec[Z2]) = Vec[Z2]×Vec[Z2]. Con-
densing out a Z2 subgroup from T amounts to the reduction (Z2 ×Z2)�Z2 =Z⊥2 /Z2 = {∗}.
Physically, this is equivalent to taking the (2+1)d Toric code and condensing out the m or
e particle. The lines left “unscreened" are in Z⊥2 , and another identification by Z2 gives the
trivial theory.

Theorem 2.4 relates 5d theories to symplectic Abelian groups and by Proposition 3.2, we
see that:

Proposition 3.7. All 5d super topological orders are Morita trivial.

A 5d phase which is not Morita trivial has boundary conditions that are necessarily gapless,
an immediate consequence is:

Corollary 3.8. All 4d fermionic boundaries can be gapped.

While there are 4d fermionic gapless theories, by introducing the appropriate interactions
we can introduce a gap and hence there is no robust gapless phase. 12 We now present the

12Our definition of topological order is such that an invertible phase is considered as the trivial topological order.
In concluding Corollary 3.8 we are using the fact that “topological order" means “topological phase up to invertible
phases", and thus for a topological order to have a gapped boundary, this means that the corresponding phase has
a gapped interface to an invertible phase.
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reverse story and the way of reconstructing a theory from the vacuum. We will show that every
fermionic 5d topological order can be built non-canonically by gauging a one-form symmetry
bL[1], and a zero-form symmetry G, both acting on the vacuum. If the set of lines, Ω3A, is
super Tannakian, then G = Aut (F) and Ω3A ∼= SRep(G). The first step of condensing out the
lines can be “undone" by gauging the group G which acts on the group M of surfaces. The
symplectic form associated with M is now a G-equivariant class ω̃ ∈ H6(M[3]/G).

After condensing the lines, there is a similar map C : Ω2A → 2SVec which tells how to
condense surfaces by choosing Lagrangian subspaces. Gauging by the dual group bL which
acts on the vacuum then undoes this procedure. For Abelian group, gauging by a group or
the dual group is always possible by the notion of “electromagnetic-duality". The important
point to stress is that the choice of Lagrangian subgroup L from M was not canonical, and so
doing the gauging by bL is also not canonical. In contrast, the zero-form group G is canonically
determinded based on the lines of A.

Remark. This two step procedure can not necessarily be combined to a one step condensation
by a “2-group" symmetry bL[1].G. We take for example the 5d toric code, with a G =Z3 action
that permutes the three strings. A nontrivial extension of bL[1] by G will spoil the duality
between switching the electic and magnetic lines.

Example. We give an analogous story by considering the (2+1)d Toric code. This is only anal-
ogous because the theory is not a symplectic Abelian group, rather the pairing is symmetric.
We choose the set R= {1, e} to be Tannakian from the set {1, e, m, f } of all the lines. As an R
module, the Toric code is R⊕mR. The map F takes R and condenses it to the vacuum. This
forms a gapped (1+1)d boundary where, as an R module, the lines {1, m} live. The group G
is the group generated by {1, m}, as can be seen when we consider the fact that a zero-form
symmetry in (1+1)d is sourced by lines.

Remark. Since M is a group of surface operators which are codimension-3 it defines a two-
form symmetry. This group has an anomaly that is precisely the symplectic form. For a general
isotropic N ⊂ M we can consider gauging the N -symmetry. The importance of being isotropic
is to ensure that that the symmetry is non-anomalous and can be gauged. By gauging the
symmetry we build a gapped domain wall between the original theory M and a new theory
given by M � N . In the gauging procedure, N screens out those operators in M which do
not commute with N , and so the unscreened operators are N⊥. But also the gauging proce-
dure identifies the operators in N . The result is that the new procedure is described by the
symplectic reduction N⊥/N .13 We note that M � N itself is naturally symplectic by defining
ω([a], [a′]) = ω(a, a′) where [a], [a′] are classes in N⊥/N , i.e. a, a′ ∈ N⊥, and they are de-
fined up to shifting by b, b′ ∈ N . If N = L is Lagrangian, L⊥/L = {∗}, and so we do not have
to assume that L participated in a Lagrangian splitting to show Morita triviality in proposition
3.7.

4 Bosonic 5-dimensional Topological Orders

The passage from bosonic to super topological orders is much like going fromR and extending
to C, its algebraic closure. Consider a time reversal symmetry ZT

2 that acts C-antilinearly and
squares to the identity. Working with an algebra A of operators over the complex numbers
with a ZT

2 symmetry is the same as working over the real numbers. The ZT
2 descends A into

AR, an R algebra, so that A= AR ⊗C. In the same spirit as the 0-categorical case, there is a
way to 1-categorically extend Vec to SVec, where the latter is “algebraically closed" [29].

13For an associative algebra A, gauging by the action of a connected and simply connected Lie group G is also
called quantum Hamiltonian reduction.
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A bosonic topological order A is equipped with an action of the categorified Galois group
Gal(SVec/Vec) =ZF

2 [1], and Galois descent says that the algebra of a bosonic higher category
can be considered as the algebra of a ZF

2 [1]-equivariant higher supercategory. As remarked
in Section 2, the fibre functor F may not allow for complete condensation of the lines if we
are working bosonically. If the lines are Tannakian i.e. Rep(G) then we can condense out
all the lines, the problem then reduces to the analogous problem discussed in the previous
sections, with the symplectic form a class in H6(M[3]). If the lines are Rep(G, z), where z
is a central element of order two, then it is always possible to condense to only {1, f }, i.e.
SVec. Furthermore, in a 5d bosonic theory not only are there surface operators, but there are
nontrivial 3d “membrane” operators. The surfaces operators still form a group under fusion
by [18, Theorem A]; in this dimension the surfaces and lines can always unlink. But now either
of the lines {1, f } can wrap membranes, each detecting the other. This data compiles into a
bosonic 3-category A, with π0A = ZF

2 . The “magnetic membrane" is the unique invertible
object in the nontrivial component that enacts the ZF

2 one-form symmetry and will square to
something in the identity component. The whole 3-category is describable by an extension

C×[5]. Z2
︸︷︷︸

{1, f }

[4].(Z2.M)
︸ ︷︷ ︸

[3]

surfaces

.ZF
2 [2] ; (23)

C×[5]means “four-form C× symmetry" theZ2 in surfaces is given by {1, c}, which are the two
simple objects in ΣSVec as stated before in §2.3, with the caveat that now c2 ∼= c⊕ c. The fibre

C×[5].Z2[4].(Z2.M)[3] = (C×[5].Z2[4].Z2[3]).M[3] (24)

is the 2-category of surfaces, and the base ZF
2 [2] are the two components of the 3-category.

We can make a simplification of the fibre as follows. Any surface in s ∈ M actually corresponds
to two surfaces s1 or s2, being off from each other by the c. But because we have the magnetic
brane, M, we can act with this brane on either of the surfaces. The intersection of M with
s1 or s2 is either the line 1 or f , however we know that M acting on c gives f . Therefore,
it is possible to identify which s1,2 is the one that is also “charged" with c. This gives us the
freedom to always choose the “neutral" line, and so the term Z2[3] can be ignored. Left with
only the surfaces in M , we may condense them all out via the procedure in §3.1. We are left
with only having to understand the ZF

2 [2] objects.
The fermionic Witt group inherits an action by ZF

2 [1] due to the fact that the spectrum 14

SW• =
�

Σn−1SVec
�×

. W• is then the fixed-point spectrum of ZF
2 [1] via categorified Galois

descent [6]. Therefore the cohomology of W•(pt) is given by the twisted SW•-cohomology,
SW•(ZF

2 [2]), of the space ZF
2 [2] = B(ZF

2 [2]) . We compute this twisted cohomology by the
following Atiyah-Hirzebruch spectral sequence:

Hi(ZF
2 [2]; SW j(pt))⇒ SW i+ j(ZF

2 [2]) =W i+ j(pt) . (25)

The homotopy groups of SW•(pt) in low degrees are given by

SW0(pt) = C× , SW1(pt) =Z2 , SW2(pt) =Z2 , (26)

SW3(pt) = 0 , SW4(pt) = SW , SW5(pt) = 0 , SW6(pt) = 0 .

In degree four, SW known as the fermionic Witt group gives the set of (2+1)d super topological
orders modulo gapped interfaces. Another way to think about this group is that it gives the

14Spectrum can be substituted interchangeably with the term “generalized cohomology theory", which was used
in the introduction.
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anomalies for 3d super MTCs 15, and two theories related by a gapped interface have the same
anomaly.

The E2 page is therefore:

E i j
2 =

j

0 0 0 . . .
0 0 0 . . .

SW SW 0 hom(Z2, SW) . . .
0 0 0 0 0 0 0
Z2 Z2 0 Z2 Z2 Z2 Z2

2 Z2
2 . . .

Z2 Z2 0 Z2 Z2 Z2 Z2
2 Z2

2 . . .
C× C× 0 Z2 0 Z4 Z2 Z2 Z2 Z2

0 1 2 3 4 5 6 7 8 i .

(27)

The twisted d2 differentials are:

d2 :E i,2
2 = Hi(ZF

2 [2] ;Z2)→ E i+2,1
2 = Hi+2(ZF

2 [2] ;Z2) X 7→ Sq2 X + T X , (28)

d2 :E i,1
2 = Hi(ZF

2 [2] ;Z2)→ E i+2,0
2 = Hi+2(ZF

2 [2] ;C
×) X 7→ (−1)Sq2 X+T X ,

where T is the generator of H•(ZF
2 [2] ;Z2) in degree two. The E3 page is

E i j
3 =

j

0 0 0 . . .
0 0 0 . . .

SW SW 0 hom(Z2, SW) . . .
0 0 0 0 0 0 0
Z2 0 0 Z2 0 0 Z2 . . .
Z2 0 0 0 Z2 0 0 0 0 . . .
C× C× 0 0 0 Z4 Z2 0 0 0

0 1 2 3 4 5 6 7 8 i .

(29)

Remark. The generators of H5(ZF
2 [2] ;Z2) are Sq2 Sq1 T and T Sq1 T . The d2 differential

annihilates
�

Sq2 Sq1 T + T Sq1 T
�

leaving a Z2 in bidegree (5,2). The Z2’s and Z4 in total
degree four survive on E∞ [6, Remark V.2]. The main result in [22] implies that the Z2 in
bidegree (5,0) survives on E∞.

There is potentially a d3 differential that maps hom(Z2, SW) → E5,2
3 = Z2, after which

the spectral sequence stabilizes in total degree 6. Thus W6(pt) is the kernel of this d3. By [9,
Proposition 5.18] we have

SW = SWpt ⊕ SW2 ⊕ SW∞ , (30)

where SWpt is generated by the Witt classes of Abelian super MTC, SW2 is an elementary
Abelian 2-group, and SW∞ is a free group of countable rank. It was proved in [30, Theorem,
7.2] that SW2 is a group of infinite rank 16, which means that on E∞ the entry in (2,4) will also
have infinite rank even after the d3 differential. As a result, W6(pt) is also a group of infinite
rank. By construction, W6(pt) is the group of Morita equivalence classes of 5d topological
orders, and so we have verified equation (3):

15This is a braided fusion category with trivial centre which is equipped with a “ribbon structure,” which allows
the corresponding (2+1)-dimensional TQFT to be placed on any oriented manifold. The TQFT is said to be isotropic.

16In particular the spin MTC SO(2n+ 1)2n+1, n≥ 1, are pairwise Morita inequivalent.
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Theorem 4.1. There are infinitely many 5d bosonic topological orders which are “chiral” in the
sense that they only admit gapless boundary.

This starkly contrasts our conclusion in section 3.1 for the fermionic case, where SW6(pt)
was trivial. The source of the difference lies in the fact that the magnetic membrane lives in
the bosonic world. If we were to “fermionize" all of the bosonic theories, i.e. couple to spin
structure, then the infinite rank group would trivialize.

To gain a more physical intuition for these ungappable and chiral bosonic objects we com-
ment on their construction in a manner similar to [31], used for SPTs. The main takeaway
for SPTs is that when constructing an SPT, we can place lower-dimensional invertible phases
along homology cycle representatives dual to Stiefel-Whitney classes. This is what was done
for the dual of the generalized double semion model in 5d to show that it is equivalent to a
twisted Dijkgraaf-Witten dual stacked with lower dimensional SPT phases.

This takeaway leads to a construction of the chiral 5d phases gauranteed by Theorem 4.1.
Pick a spin-MTC C representing an order-2 class in SW2 that is in the kernel of the d3 differ-
ential. We place the 3d topological order built from C along a representative of w2, by this we
mean we place C along the homology cycle that is dual to w2 (and away from w2 we can just
flood the phase with the vacuum). The choice of representative for w2 should not change the
theory, the reason for this culminates from the fact that C2 is super-Witt trivial and further-
more C is in the kernel of d3. The fact C is order 2 has to do with protecting our theory under
changes of representatives by a ZF

2 [1]-symmetry. Being in the kernel of d3 is telling us that
changes of triangulation that might lead to higher order anomalies do not show up.

To see why any 4d boundary theory can not be gapped, note that a representative of w2
in the bulk will end along a representative of w2 on the boundary. But C is nontrivial, so that
representative of w2 on the 4d boundary will necessarily carry a 2d chiral theory, namely a
chiral edge mode for C. For instance, suppose C is SO(2n+ 1)2n+1, or some product thereof
that is within the kernel of d3. Then the 4d boundary condition will see chiral WZW modes
supported on a representative of w2.
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