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Abstract

The cobordism conjecture of the swampland program states that the bordism group of
quantum gravity must be trivial. We investigate this statement in several directions, on
both the mathematical and physical side. We consider the Whitehead tower construction
as a possible organising principle for the topological structures entering the formulation
of the conjecture. We discuss why and how to include geometric structures in bordism
groups, such as higher U(1)-bundles with connection. The inclusion of magnetic defects
is also addressed in some detail. We further elaborate on how the conjecture could pre-
dict Kaluza–Klein monopoles, and we study the gravity decoupling limit in the cobordism
conjecture, with a few observations on NSNS string backgrounds. We end with comments
in relation to T-duality, as well as the finiteness conjecture.
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1 Introduction

The swampland program [1–3] aims at characterising which low-energy effective theories are
consistent with quantum gravity. For this purpose, several criteria have been conjectured and
tested in recent years. They typically encode information on one or more specific properties
of quantum gravity, which a priori are independent of one another. Nevertheless, it has been
realised that several of these conjectures are indeed related, sometimes in a non-trivial and
unexpected manner, thus forming an interesting “web” of conjectures. This fact is expected to
hint at the existence of deeper principles characterising quantum gravity completely.

In this paper, we concentrate on one of the central conjectures in this web, the so-called
cobordism conjecture, proposed in [4]. We investigate several of its aspects, from both the
mathematical and physical side. Indeed, given the speculative nature of some of the swamp-
land conjectures, one might feel that they are neither concrete nor sound on the more formal
side. One of the aims of the present work is to contribute to the integration of concreteness,
generality, and rigour in this context. Accordingly, we will give further evidence that the cobor-
dism conjecture is naturally related to deep and useful mathematical structures, some of which
still call for a physical interpretation.

The swampland cobordism conjecture is about quantum gravity backgrounds in the form
of a (D + k)-dimensional spacetime, with D external directions (including time) and a k-
dimensional compact manifold M (which may carry extra structure such as an orientation, a
Riemannian metric or a G-bundle). These backgrounds appear naturally in string compactifi-
cations, but in the spirit of the swampland program one can also follow a genuinely bottom-up
strategy and concentrate on the effective theory living in D dimensions, and the conjecture can
a priori be considered independently of string theory. One of the main motivations behind the
conjecture is to give a mathematically rigorous formulation to the common expectation that
quantum gravity is unique, in the sense that all quantum gravity compactifications and result-
ing D-dimensional effective theories enjoy a certain equivalence relation. In string theory, it is
natural to have relations between backgrounds, such as dualities, singularity resolutions, geo-
metric transitions and related phenomena. The equivalence relation proposed in [4] is meant
to go further. It turns out that the mathematical language best suited to this purpose may be
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that of bordisms1 and bordism groups (reviewed in Section 2.1). The conjecture postulates
the existence of backgrounds (and thus of compact k-dimensional manifolds) with a (currently
undetermined) “quantum gravity structure” QG, such that the corresponding bordism group
is trivial, ΩQG

k = 0. Given that bordism is an equivalence relation and that the bordism group
is made up of equivalence classes, the conjecture states that in quantum gravity there is only
one single equivalence class, which is the trivial and only element of the group. All of the con-
sistent QG backgrounds are then representatives of this class. In practice, this means that (the
disjoint union of) any two compact k-dimensional manifolds, together with the extra structure
which they have to carry to be relevant in quantum gravity, always form the boundary of a
(k+1)-dimensional manifold, to which the aforementioned extra structure is extended. Such
manifolds are called bordisms, and, crucially, they can allow for topology changes between
the two original k-dimensional manifolds. In [4], bordisms with QG-structure are physically
interpreted as a certain dynamically allowed process connecting them and under which the
physics in the D-dimensional effective theory is not necessarily preserved. Mathematically, the
cobordism conjecture can be seen as a necessary condition on the unknown structure(s) QG;
“solving” the equations ΩQG

k = 0 (where k may take all allowed values) for QG may give in-
sights as to which geometric or “quantum” structures backgrounds allowed in quantum gravity
must have. Note that the cobordism conjecture does not make a statement on whether or not
Ω

QG
k = 0 has more than one solution.

Establishing whether or not any two given compact manifolds are bordant is non-trivial
already at the mathematical level. Therefore, the existence of a process connecting any two
quantum gravity backgrounds is far from obvious too. Indeed, even if the conjecture is quite
recent, already a number of works appeared studying some of its aspects and consequences,
including [5–11]. Bordisms are relevant in several areas in mathematics and physics, a non-
exhaustive list of related works is [12–16] for anomalies, [17, 18] in relation to bubbles of
nothing, [19] for the conjecture in a holographic context, [20] about “Hypothesis H” on charge
quantisation in M-theory. An introduction to some of the mathematical material, in a physical
context, can be found e. g. in [21,22], that appeared prior to [4].

Identifying the unknown QG-structure entering the formulation of the conjecture would
clearly present a major step forward. This is a challenging task, if not out of reach at present,
given that it would imply a much deeper understanding of quantum gravity itself. In the pa-
per [4], a concrete recipe was proposed to get closer to QG. Suppose we start with an “approx-

imative QG-structure” ÝQG such that the associated bordism group is non-trivial, Ω
ÝQG
k 6= 0. One

should then refine the structure ÝQG to another structure QG in such a way that the bordism
group with the new structure is indeed trivial. Such a strategy is successful in the sense that
it led the authors of [4] to recover known objects (defects) in string theory, such as branes,
and to even predict new ones; the structures encountered in [4] are topological tangential
structures like orientations, spin, or string structures.

In the present paper, we first build on the above idea to “refine” spacetime structures and
propose to exploit a mathematical construction known as the Whitehead tower as an organis-
ing principle governing the refinements of the various approximative ÝQG-structures (see Sec-
tion 3). Roughly speaking, the Whitehead tower arranges topological spaces according to their
degree of connectedness. The construction is such that when passing from one level to the next
one, there is a lift of the given tangential structure, which we interpret as the mathematically
precise definition behind the aforementioned refinement. Interestingly, even if it might still
end up being non-trivial, we observe that the bordism groups become systematically smaller
when climbing Whitehead towers of spaces that are related to structures which naturally ap-
pear in string theory. Thus, we believe that Whitehead towers may be of some help in the

1We use the term “bordism” rather than “cobordism” because it is shorter, with the exception of the conjecture’s
name. Both words are commonly used in the literature to describe the same concept.
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identification of the unknown QG-structure.
Since any realistic physical setup contains gauge fields and fluxes (mathematically de-

scribed by connections of higher principal bundles), we extend the original formulation of the
cobordism conjecture in order to include them as well as “geometric structures” in general
(see Section 4). This step requires some additional mathematical concepts, such as simplicial
presheaves and twisted differential cohomology. We give a definition of bordism groups for
any fixed geometric structure, and we observe that in the case of connections including them
does not make a difference in the end. Beyond such examples that form contractible spaces,
we are not aware of any explicit computations of bordism groups with geometric structure,
but we believe that they should be investigated further, given their relevance both for mathe-
matical and physical purposes.2 Since gauge fields are typically sourced by defects, we then
provide an alternative intuitive picture of how to encode the latter into a given bordism, by ap-
propriately cutting out balls. We also point out the problem of how the cobordism conjecture
should be capable of predicting Kaluza–Klein monopoles.

In Section 5, we consider the cobordism conjecture in the limit where gravity is decoupled.
Taking this limit in a specific manner (maintaining compactness and sending the string cou-
pling to zero) reveals a prominent role played by NSNS backgrounds, that we discuss further.
Finally, in Section 6 we provide a summary and an outlook, with related remarks on T-duality
as well as the finiteness conjecture.

2 Bordisms, cobordism conjecture and global symmetry: review

In this section, we first review the notions of bordism and bordism group. We then present
the cobordism conjecture, and finally recall a few points on global symmetries to which the
conjecture is related.

2.1 Bordisms and bordism groups

Two manifolds are bordant if they form the boundary of some other manifold. In this section
we review how to make this precise, how equivalence classes of bordant manifolds give rise
to bordism groups, and how additional topological structures can be incorporated into these
constructions. For more background and details we refer to the textbook [23] and the lecture
notes [24].

Let M and N be closed k-dimensional manifolds. A bordism between them is a compact
(k + 1)-dimensional manifold W together with a diffeomorphism ∂W ∼= M t N between the
boundary of W and the disjoint union of M and N . If there is such a bordism, then M and N
are called bordant. This is an equivalence relation: reflexivity is witnessed by the cylinder
W = [0,1]×M , symmetry follows from the diffeomorphism M t N ∼= N tM , and transitivity
holds because if ∂W ∼= M t N and ∂fW ∼= L t M , then the gluing of W and fW along their
boundary components corresponding to M is a bordism between L and N .

The set of equivalence classes [M] of k-dimensional bordant manifolds is denoted ΩO
k , or

simplyΩk. It has the structure of an abelian group whose addition is induced by disjoint union.
Indeed, if W is a bordism between M and N while W ′ is a bordism between M ′ and N ′, then
W tW ′ is a bordism between M tM ′ and N t N ′. Hence the addition

Ωk ×Ωk −→ Ωk ,
�

[M], [M ′]
�

7−→
�

M tM ′
�

(1)

is well-defined, with respect to which the empty set ∅ (viewed as a k-dimensional manifold)
represents the neutral element, [∅tM] = [M]. By definition, the (unoriented) bordism group

2While bordism groups for topological structures are typically discrete (such as Z), one might expect that
bordism groups for geometric structures are non-discrete (such as U(1)).
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(in dimension k) is Ωk together with the addition (1). Viewing the cylinder [0, 1] × M as a
bordism between ∂ ([0, 1] × M) ∼= M t M and ∅ shows that [M] is its own inverse for all
[M] ∈ Ωk; the following picture illustrates the identity [M tM] = [∅] in Ωk:

M

M

(2)

As a first example, let us consider k = 0 and observe that a closed 0-dimensional manifold
is a finite disjoint union of a single point pt with itself. Two such manifolds M = pttm and
N = pttn with m, n¾ 0 are bordant iff m+n is even, hence Ω0 =Z2. To see this, we note that
the interval [0, 1] with ∂ [0, 1] = {0,1} ∼= pt t pt can be viewed both as a bordism between
pt and pt, or between pt t pt and ∅. In this way all but possibly one of the m + n points in
pttm t pttn can be paired up:

�

pttm t pttn
�

=

¨

[∅] , if m+ n is even,

[pt] , otherwise.
(3)

Similarly one finds that Ω1 = 0. Indeed, every 1-dimensional closed manifold is a finite
disjoint union of circles S1, and S1 bounds the disc B2, hence [S1] = [∅]:

S1

(4)

Another example is Ω2 = Z2. Proving this is standard but less elementary. First of all, the
2-sphere S2 is the boundary of the 3-ball B3, hence [S2] = [∅] in Ω2. Similarly, by cutting a
2-torus T2 out of B3, we obtain a bordism between S2 and T2 and hence [S2] = [T2]:

(5)

In general, every closed surface is a finite disjoint union of orientable surfaces and non-
orientable surfaces. The former are either spheres or tori glued together along the boundaries
of excised discs, i. e. connected sums T2# . . .#T2. Moreover, every connected closed non-
orientable surface is a connected sum RP2# . . .#RP2 of projective planes, and [RP2] turns
out to be the non-trivial element in Ω2.

Elements in the bordism group Ωk are represented by plain manifolds M . We are however
often interested in additional structures such as principal G-bundles over M , for some Lie
group G. To include such structures in our context, we first recall the definition of the refined
bordism groups Ωk(X ) for any space X ; then we describe how this in particular captures the
case of G-bundles (by choosing X to be the classifying space of G as described below).
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Let X be a topological space, and let M , N be k-dimensional closed manifolds. Two con-
tinuous maps f : M −→ X and g : N −→ X are bordant if there is a bordism W between M
and N together with a continuous map F : W −→ X which restricts to f and g at the boundary.
Again, being bordant is an equivalence relation, and we write Ωk(X ) for the set of equivalence
classes [M , f ] of continuous maps f : M −→ X ; taking disjoint union endows Ωk(X ) with the
structure of an abelian group.

In the special case when X = pt is a single point, there is only a single map M −→ pt for
each manifold M . Hence we recover the bordism group Ωk = Ωk(pt). In general one finds
that the operations X 7−→ Ωk(X ) form a generalised homology theory with coefficients in the
abelian groups Ωk.

To make the connection to principal G-bundles (which we usually simply refer to as
G-bundles), recall that for every Lie group G, we have a contractible space EG with a free
action of G, a classifying space BG (unique only up to homotopy), and a universal G-bundle
EG −→ BG. The universality lies in the theorem that isomorphism classes of G-bundles are in
bijection with homotopy classes of continuous maps M −→ BG. Concretely, every G-bundle
P −→ M is isomorphic to the pullback c∗P(EG) for some cP : M −→ BG, which is called the
classifying map of the bundle P −→ M . In particular, for every k-dimensional manifold M
there is a classifying map

cT M : M −→ BO(k) , (6)

which corresponds to the tangent bundle T M −→ M , viewed as an O(k)-bundle. In this case
the classifying space BO(k) can be taken to be the space Grk(R∞) of k-planes in R∞, which
can be thought of as the limit of the Grassmannian spaces Grk(Rn) for n −→ ∞; precisely,
Grk(R∞)' BO(k) is defined as the “colimit” of the inclusions

Grk(R
k) ,−→ Grk(R

k+1) ,−→ Grk(R
k+2) ,−→ . . . , (7)

which to a good approximation we can think of as “limq→∞Grk(Rk+q)”. The connection be-
tween G-bundles and the refined bordism group Ωk(X ) is now obtained by taking X = BG.
We thus find that elements [M , c] of the bordism group Ωk(BG) are equivalently represented
by manifolds M with a G-bundle classified by c : M −→ BG, and [M , c] = [M ′, c′] iff there is a
bordism with G-bundle structure that restricts to that of M and M ′ on the boundary.

In physics, we often need further structures on manifolds in addition to bundles. For ex-
ample, fermions require spacetime to have a spin structure. This is an example of a “tangential
structure” on a manifold, in the sense that it involves additional structure having to do with
the tangent bundle (and the spin group, in the case of spin structures). The bordism groups
Ωk(X ) can be further generalised by taking into account so-called “stable tangential struc-
tures”, as we recall next. To the unfamiliar eye this discussion is rather technical, but we will
see that it in particular allows us to consider oriented, spin or string manifolds on the same
conceptual footing, and intuition for such more familiar structures can be carried over to the
general case. Moreover, we will recall how the simplest tangential structure gives meaning to
the superindex O in Ωk = ΩO

k .
First, a k-dimensional tangential structure is a pointed topological space X (k) together

with a pointed fibration ξk : X (k) −→ BO(k). For example, given a Lie group G and a contin-
uous group homomorphism ϕ : G −→ O(k), we can set X (k) = BG and ξk = Bϕ (using the
fact that “taking classifying spaces” is functorial3, which means that every continuous group
homomorphisms ψ: G −→ G′ is mapped to a continuous map Bψ: BG −→ BG′ between
classifying spaces, and that this mapping is compatible with composition). Then a manifold

3Indeed, there is a functor B from topological groups to topological spaces given by the composition of deloop-
ing, taking the nerve, and taking geometric realisation. For the group O(k), this produces a model of the classifying
space BO(k) different from (but homotopy equivalent to) the colimit of (7).
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with ξk-structure (or: a ξk-manifold) is a k-dimensional manifold M together with a lift of its
classifying map cT M across ξk, i. e. a continuous map cξk

: M −→ X (k) such that

X (k)

M BO(k)

cξk ξk

cT M

(8)

commutes up to homotopy. Clearly, the relation to tangent bundles is provided by the discus-
sion around (6) above.

One finds that the special case of a ξk-structure on M which is induced by a group homo-
morphism G −→ O(k) is equivalent to a choice of principal G-bundle P −→ M together with
an isomorphism of principal O(k)-bundles between the associated bundle P ×G O(k) and the
bundle of orthonormal frames on M . Hence in particular a tangential structure coming from
the inclusion SO(k) ,−→ O(k) is equivalent to an orientation on M , and a tangential struc-
ture coming from the double cover Spin(k) −→ SO(k) post-composed with SO(k) ,−→ O(k)
is equivalent to a spin structure on M . More generally, we refer to a ξk-structure that arises
from a group homomorphism ϕ : G −→ O(k) as a G-structure (leaving ϕ implicit). In physics,
G-structures are particularly important, but for example in Section 3 below we will encounter
other tangential structures that may also play an important role in quantum gravity.

In connection with bordism groups, of particular interest are so-called stable tangential
structures, to which we will restrict the discussions in the present paper. Such structures are
defined in terms of the stable orthogonal group

O≡ O(∞) := colim
�

O(1) ,−→ O(2) ,−→ O(3) ,−→ . . .
�

, (9)

namely as a pointed topological space X together with a pointed fibration ξ: X −→ BO. From
this we obtain an associated k-dimensional tangential structure ξk : X (k) −→ BO(k) as the
pullback

X (k) X

BO(k) BO

ξk ξ , (10)

for any k ¾ 0. Then by definition a (stable) ξ-structure on a k-dimensional manifold (or: a
ξ-manifold) M is a ξk-structure on M .

Orientation and spin are examples of stable tangential structures, namely BSO −→ BO
from the inclusion SO ,−→ O, and BSpin −→ BO from Spin −→ SO ,−→ O, where the stable
groups SO and Spin are defined analogously to O. Two further examples are the stable framing
pt ' EO −→ BO, and the stable tangential structure idBO : BO −→ BO, or equivalently an O-
structure, which (up to homotopy) is really no structure at all.

The familiar notion of the “opposite of an orientation” has a natural generalisation to arbi-
trary stable tangential structures, which we will use below to identify inverses in generalised
bordism groups. Here the basic idea is to use the reflection map x 7−→ −x for real numbers x ,
which in particular reverses a given orientation onR. To discuss the opposites in general, note
that if a (k + 1)-dimensional manifold W has a non-trivial boundary, there are two trivialisa-
tions of the normal bundle leading to TW ∼=R⊕T (∂W ), and hence two ways for a ξ-structure
on W to induce a ξ-structure on ∂W . We use the convention that the ξ-structure on ∂W is
the one obtained using the outward normal, while we denote the boundary endowed with the

7
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other ξ-structure as −∂W . For example, if ξ comes from the inclusion SO ,−→ O, then −∂W
has the opposite orientation.

Having recalled the definition of (opposite) tangential structure, we are now prepared to
consider further refinements of bordism groups. First we will introduce the refined version
for general tangential structures, then we discuss the case of G-structures in more detail. Let
ξ: X −→ BO be a stable tangential structure, and let M , N be k-dimensional ξ-manifolds.
A ξ-bordism from M to N is a (k + 1)-dimensional compact ξ-manifold W together with a
decomposition ∂W ∼=W1tW2 and diffeomorphisms of ξ-manifolds M ∼= −W1 and N ∼=W2. For
example the cylinder W = [0, 1]×M has a natural ξ-structure such that W1 := {0}×M ∼= −M
and W2 := {1} × M ∼= M , making W into a bordism from M to itself. Alternatively, we can
view the same ξ-manifold [0, 1]×M as a bordism from (−M)tM to the empty set, by setting
W1 := M t (−M) and W2 := ∅. Here for a closed ξ-manifold M , we denote by −M the same
underlying manifold with the opposite ξ-structure, namely the one induced on {0} × M by
the bordism [0,1]×M with ξ-structure such that {1} ×M corresponds to the ξ-manifold M .
For k = 1, M = S1 and ξ corresponding to orientation, the two interpretations of the cylinder
[0,1]×M can be illustrated as follows:

S1 S1

� : M −→ M , (11)

S1

S1

: M t (−M) −→∅ .�
(12)

Admitting a ξ-bordism is again an equivalence relation between k-dimensional closed ξ-
manifolds, and again disjoint union provides the set of equivalence classes with the structure
of an abelian group. We denote this ξ-bordism group by Ωξk , or as ΩG

k if ξ comes from a group
homomorphism G −→ O, or as Ωfr

k if ξ is the fibration EO −→ BO. Again [∅] is the neutral

element of Ωξk , and the discussion of the previous paragraph shows that [−M] is inverse to

[M] in Ωξk , because [(−M)tM] = [∅].
In Table 1 we collect a number of examples of ξ-bordism groups, reproduced from [25,26]

and the references given in [4, App. A]. For instance we have ΩSO
2 = 0, as we already saw in

our discussion of the unoriented bordism group Ω2 = Z2, cf. the text around (5). Another
simple example is ΩSO

0 = Z, which is generated by the class of the positively oriented point +
(whose inverse is the class of the negatively oriented point −). To see this it is crucial that
the diffeomorphisms which are part of a ξ-bordism must be compatible with ξ; in the case of
BSO −→ BO this means orientation-preserving, so in particular there is no oriented bordism
between + (corresponding to +1 ∈Z) and − (corresponding to −1 ∈Z).

Given a stable tangential structure ξ: X −→ BO and a topological space Y , one can
straightforwardly combine the constructions of Ωξk and Ωk(Y ) into the definition of a bordism

group Ωξk(Y ). This is however no real synthesis, as one can show that there is a canonical

tangential structure ξY associated to ξ and Y such that Ωξk(Y )
∼= ΩξY

k . Hence every bordism

group we have discussed so far is of the form Ωξk for some tangential structure ξ.4

4For completeness, we should also mention the Pontryagin–Thom construction, which for every stable tangen-
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Table 1: Bordism groups Ωξk for various dimensions k and ξ-structures.

k 0 1 2 3 4 5 6 7 8 9 10

Ωfr
k Z Z2 Z2 Z24 0 0 Z2 Z240 Z2

2 Z3
2 Z6

ΩO
k Z2 0 Z2 0 Z2

2 Z2 Z3
2 Z2 Z5

2 Z3
2 Z8

2

ΩSO
k Z 0 0 0 Z Z2 0 0 Z2 Z2

2 Z2

Ω
Spin
k Z Z2 Z2 0 Z 0 0 0 Z2 Z2

2 Z3
2

Ω
Spinc

k Z 0 Z 0 Z2 0 Z2 0 Z4 0 Z2 ×Z4

ΩPin+
k Z2 0 Z2 Z2 Z16 0 0 0 Z2 ×Z32 0 Z3

2

Ω
String
k Z Z2 Z2 Z24 0 0 Z2 0 Z2 ×Z Z2

2 Z6

As a side remark, let us mention that bordism groups Ωξk are part of the richer structure

of bordism categories Bordξk+1,k. The latter have closed k-dimensional ξ-manifolds as objects
and diffeomorphism classes of ξ-bordisms between them as morphisms. Hence two manifolds
represent the same element inΩξk if and only if there is a morphism between them in Bordξk+1,k.
Put differently, bordism groups are the connected components of bordism categories,

Ω
ξ
k = π0

�

Bordξk+1,k

�

. (13)

Bordism categories are for example relevant in the functorial description of topological quan-
tum field theories, which are certain functors on Bordξk+1,k.

We are now prepared to discuss the cobordism conjecture, which is a statement that relates
the geometric structures relevant in quantum gravity with bordism groups.

2.2 The cobordism conjecture

As part of the swampland program, the framework for the conjecture is the study of effec-
tive theories of quantum gravity in a D-dimensional extended spacetime. More precisely, we
will focus on theories obtained by a compactification (for example of string theory) on a k-
dimensional closed manifold M , i. e. M is compact and ∂M =∅. (In this paper, all manifolds
we consider are assumed to be smooth.) In such a compactification from D+k to D dimensions,
the relevant information is the topology and geometry of M , and potentially further data that
we denote D for convenience. These extra data can for instance be a tangential ξ-structure,
or possible fluxes on M (which we discuss further in Section 4.2 below). As explained in
Section 1, one motivation behind the cobordism conjecture [4] is to claim that all compact-
ifications on (M ,D) and the resulting D-dimensional theories are related to each other, and
this relation is established by the existence of certain bordisms. More precisely, the cobordism
conjecture postulates the existence of a “quantum gravity structure”, denoted QG, and states
that the associated bordism group is trivial:

Ω
QG
k = 0 . (14)

tial structure ξ: X −→ BO produces isomorphisms Ωξk
∼= πk(MX ), where the right-hand side is the k-th stable

homotopy group of the Thom spectrum MX associated to ξ. In the special case of stable framings EO −→ BO,
the Thom spectrum is equivalent to the sphere spectrum S= M1, whose n-th space is the n-sphere Sn. Hence the
bordism groups Ωfr

k are isomorphic to the k-th stable homotopy groups of spheres, Ωfr
k
∼= πk(S) ∼= πk+n(Sn) for all

n> k+ 1.
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This triviality implies that there exists a single QG-bordism equivalence class, and therefore
that all of its representatives (M ,D) are bordant to each other. In this sense, all compactifica-
tions are thus related. Note that the bordism can be along the time direction, in which case
it can be understood as a dynamical process, but this is not necessarily the case. For instance
dualities are typically not viewed as dynamical processes, and may rather be implemented by
spatial bordisms.

The difficulty of the conjecture is that the structure QG is not known explicitly. To verify
whether the statement (14) can hold, what is proposed in [4] is to first study examples, and
identify which ξ-structures allow for a trivialisation of the corresponding bordism group. For
instance, Calabi–Yau 3-folds are known to be valid 6-dimensional closed manifolds for a string
compactification. Those admit a spin structure, and one has ΩSpin

6 = 0. The same goes for

G2-manifolds in M-theory compactifications, and one as ΩSpin
7 = 0. Therefore, a spin structure

might naively be considered as candidate for QG in (14). However, as can be seen in Table 1,
Ω

Spin
k 6= 0 for some k. In the cases where the bordism group does not vanish, the idea is to look

for another ξ-structure that will reduce the order of the bordism group, or even make it trivial;
in this last case, the initial non-trivial bordism group is said to be “killed”. Adapting the ξ-
structure in this manner, one hopes to get closer to QG. Reducing the order of the group means
collecting the allowed (M ,D) in fewer classes, therefore connecting more compactifications
via a bordism, in line with the motivation behind the cobordism conjecture.

Let us give a few examples of this procedure from [4]. Considering a circle, one has for
instance ΩSpin

1 = Z2, which can be killed through ΩPin+
1 = 0: this change of structure occurs

when allowing compactification of type IIA string theory on unoriented manifolds, or equiv-
alently when including orientifold O8-planes. Similarly, one finds that [K3] is a generator of
Ω

Spin
4 = Z. This group can be reduced to ΩPin+

4 = Z16 by compactifying M-theory on unori-
ented manifolds, and it is further decreased by including M-theory orientifolds, MO5-planes.
This inclusion of Op-planes or more generally extended objects, or defects, is a point we will
come back to in Section 4.

To summarise, in order to test (14) but also to determine QG, the procedure consists in
changing the topological or geometric structure, whenever first facing a non-trivial bordism
group in a valid compactification, i. e. a potential counterexample to the conjecture. Such
a modification may amount to a new topological structure like the tangential ξ-structures
discussed in Section 2.1; but it may also lead to geometric structures like Riemannian metrics
or gauge connections, which we will discuss in Section 4.2. Moreover, any change of the
bordism group should however admit a physical interpretation, such as allowing for different
manifolds or including defects with a concrete physical description. Interestingly, when no
obvious physical interpretation is found for the change, enforcing a trivial bordism group can
result in the prediction of new quantum gravity objects or properties [4,14].

Another important aspect of the cobordism conjecture (14), independent of the definition
of QG, is that the single equivalence class is the neutral element, whose representative we
can denote as (∅, 0). The physical interpretation is that any compactification is connected
to the empty set without any physical content (no flux or charge, etc., hence D = 0). Since
the empty set has no point, it is very reminiscent of the physical concept of bubbles of noth-
ing [17, 18, 27–29]. Those can be understood as voids “appearing” in space, and sometimes
“growing” in the sense that the volume of the initial space diminishes, and space ends up
completely disappearing. The cobordism conjecture can be interpreted as saying that any
compactification is related to nothing, i. e. the final state of a growing bubble of nothing. This
may appear physically as dramatic, but one should note that there is no information on the
dynamics of such a process. In particular, bubbles of nothing may need a certain minimal
energy to be activated, or excited as a state, which could be dynamically prohibited by the
theory. Information about dynamics of quantum gravity is absent in the cobordism conjec-

10

https://scipost.org
https://scipost.org/SciPostPhys.13.3.071


SciPost Phys. 13, 071 (2022)

ture, and should rather be searched for in other swampland conjectures [17], or elsewhere.
From this perspective, the cobordism conjecture “only” allows us to characterise all possible
compactifications and quantum gravity ingredients, without each of them being necessarily
reached. Still, such a characterisation can provide interesting constraints on compactification
spaces. For example, combining the cobordism conjecture with other swampland considera-
tions, in [7,14,30] it is shown that not only the rank, but the actual gauge algebra of theories
with 16 supercharges in d > 6 dimensions is highly constrained, and most, if not all, of those
supergravity constructions which are not realised in string theory are in the swampland.

Last but not least, an important motivation for the cobordism conjecture comes from an-
other swampland conjecture: the absence of global symmetry in quantum gravity. We now
turn to the relation between the two, emphasising the role of (∅, 0).

2.3 No global symmetry

2.3.1 Relation to the cobordism conjecture

One expectation of a quantum gravity theory is the absence of global symmetries. This is an old
idea (see [31] and references therein, in particular [32,33]) that has been revisited more rigor-
ously recently in [34–36] with interesting new input e. g. in [37–41]. This statement does not
rule out accidental or emergent global symmetries in low-energy effective field theories; but
those should not be present any more, for instance by being broken or gauged, when reaching
a UV completion within quantum gravity. The original argument against a global symmetry,
that we briefly recall below, has to do with black hole evaporation, hence the connection to
quantum gravity. The cobordism conjecture can be viewed as inspired by this first conjecture,
and in turn implies it, as we will explain in the following as well as in Section 4.

In short, the standard argument with black holes goes as follows. Consider a physical state
charged under a global symmetry, and let it fall into a black hole; the black hole then carries
this global charge. The latter cannot be annihilated through Hawking radiation at the horizon
(see e. g. [42]), so it remains while the black hole evaporates. At the end of this process,
because of the global charge, the black hole cannot completely disappear, otherwise leading
to information loss. This implies that it should eventually turn into a remnant carrying the
global charge. Black hole remnants are however typically undesired in physics, one reason
being that they have not been observed in nature. Assuming their absence, one concludes on
the absence of a global charge, thus of a global symmetry.

That argument can be related to the cobordism conjecture as follows. Let us consider the
ball made of the interior of the black hole and delimited by a spherical horizon: this compact
space is the only part of space that matters in the argument. The complete evaporation of
the black hole without any final remnant physically means that the black hole disappears,
and the ball just defined shrinks to nothing. This dynamical process can be described as a
bordism (along time) between the initial compact space (the ball and the spherical horizon)
and the empty set (nothing). An illustration is the figure in (4) where the circle represents
the spherical horizon. In turn, imposing as in the cobordism conjecture (14) the existence of
a bordism between the initial compact space and the empty set physically implies the absence
of a remnant, thus the impossibility of a global charge and the absence of a global symmetry.
In that sense, the cobordism conjecture disallows global symmetries. We will come back to
this point in Section 4.

Studying the cobordism conjecture, one is lead to consider various numbers nM on com-
pact manifolds M , such as values of characteristic classes (see Section 3) or flux numbers (see
Section 4): let us call those collectively “topological numbers”. Such a number nM is analogous
to a global charge carried by a compact manifold: this analogy allows to mimic the previous
black hole argument. Imposing that M is bordant to the empty set can be problematic because
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the latter cannot carry any non-zero topological number. Such a situation has two possible
outcomes. The first one is to say that the empty set requires to have nM = 0: this argument is
analogous to the absence of a remnant, implying the absence of a global charge. The second
one is to require the presence of something else, e. g. a localised compensating physical object
carrying the same nM , i. e. a charged defect. This would be analogous to a black hole rem-
nant with a global charge, if one would allow for their existence. In the following sections,
we will encounter both outcomes. Interestingly, the existence of most ξ-structures mentioned
above require the vanishing of a characteristic class, and a corresponding vanishing topolog-
ical number. For instance, orientation corresponds to a vanishing first Stiefel–Whitney class
w1(M) = 0, a spin structure requires in addition w2(M) = 0, and a string structure also asks
for a vanishing fractional first Pontryagin class, 1

2 p1(M) = 0. As will be discussed further in
Section 3, those vanishing numbers have in addition interesting physical interpretations in
terms of anomalies in string theory. Finding the appropriate QG structure seems therefore to
cancel the relevant topological numbers, thus going again, at least by analogy, in the direction
of forbidding global charges and global symmetries.

2.3.2 Gauging a global symmetry

We finally provide some further comments on global symmetries, and how to gauge them,
restricting to U(1) for simplicity. In particular, we review here how to interpret dFq = 0,
for a q-form field strength Fq, as the consequence of a global symmetry [39]. On general
grounds, one can associate a conserved Noether current to any continuous global symmetry.
In particular, a generalised (d − k − 1)-form global symmetry (see [43]) admits a conserved
k-form Noether current jk, such that d jk = 0. Therefore, the k-form Fk such that dFk = 0
can be interpreted as a conserved current associated to a (d − k−1)-form global symmetry. A
minimal model realising this would be

S ∼
∫

−
1
2

Fk ∧ ∗Fk , ∗Fk = dÃd−k−1 , (15)

where we choose the fundamental field to be Ãd−k−1. Varying the action S with respect to Ã,
we get

dFk = 0 , (16)

i. e. a conserved current jk = Fk associated to the (d − k− 1)-form global symmetry Ãd−k−1.
We now turn to the gauging. To gauge the global symmetry associated to jk, one couples

the current to a background gauge field Bd−k:

S ∼
∫

�

−
1
2

Hd−k+1 ∧ ∗Hd−k+1 + Bd−k ∧ jk + . . .
�

, (17)

where we also introduced a kinetic term (Hd−k+1 = dBd−k), and eventually one integrates over
Bd−k. Indeed, this action is invariant under a local transformation Bd−k 7−→ Bd−k + dΛd−k−1,
given that d jk = 0. Taking the variation with respect to Bd−k, one now learns that the gauged
current is exact,

jk = (−1)d−k+1 d ∗Hd−k+1 . (18)

In turn, since d ∗ Hd−k+1 6= 0, the would-be global symmetry with current jk−1 = ∗Hd−k+1 is
absent.

The above discussion will be useful in Section 4 to relate once again the cobordism con-
jecture to the absence of global symmetry. Before doing so, we present in the next section an
interesting organisational principle of structures that may appear on the way to QG.
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3 Whitehead tower for the orthogonal group

The cobordism conjecture states that there is a “quantum gravity structure” QG such that
Ω

QG
k = 0 for all compact dimensions k, but it does not tell us what QG is. In this section,

we begin to explore one particular approach that aims to provide ways to systematically ap-
proximate the unidentified structure QG. The main notion in the approach is the “Whitehead
tower” of a given space, which constructs a series of spaces with more and more trivial ho-
motopy groups. Simultaneously, it keeps track of possible obstructions for these spaces to be
tangential structures for a given manifold. The main example we consider is the Whitehead
tower of the orthogonal group O (which coherently organises orientations, spin, string and
fivebrane structures, among other tangential structures), whose application to anomaly can-
cellation in string theory was pioneered in [44]. We will show that all bordism groups for
this example are either of finite order or even trivial when climbing the Whitehead tower far
enough, namely to “fivebrane level” or higher.

3.1 Mathematical background

We begin by summarising the construction for an arbitrary pointed CW complex X ; for further
details we refer e. g. to [45, Ch. 18]. Later, we will discuss the example X = BO more explicitly.
One advantage of leading with the abstract description is that it clarifies how obstructions are
encoded into Whitehead towers.

Recall that for a non-negative integer i, the i-th homotopy group πi(X ) by definition has
homotopy classes of pointed continuous maps S i −→ X as elements, where the homotopies
must be constant on the chosen basepoint of S i . A space whose n-th homotopy group is a given
abelian group A, while all other homotopy groups are trivial, is called an Eilenberg–Mac Lane
space and denoted K(A, n). Hence, by definition

πn

�

K(A, n)
�∼= A , πi

�

K(A, n)
�

= 0 for i 6= n . (19)

For given n and A, Eilenberg–Mac Lane spaces are unique up to homotopy equivalence; one
model is the n-fold delooping,

K(A, n)' BnA . (20)

For example, we have BZ ' K(Z, 1) ' U(1) (since the fundamental group π1(S1) ∼= Z is the
only non-trivial homotopy group of the circle S1 ' U(1)), and hence K(Z, n) ' Bn−1U(1) for
all n¾ 1.

An important property of Eilenberg–Mac Lane spaces is that they form a spectrum rep-
resenting singular cohomology. This means that for every pointed CW complex X , there are
natural isomorphisms,

�

X , K(A, n)
�∼= Hn(X ; A) , (21)

between homotopy classes of maps into K(A, n) and the n-th cohomology with coefficients in A.
The main idea behind Whitehead towers is that for every space X we can construct a

series of spaces Xn whose higher homotopy groups agree with those of X , but whose lower
homotopy groups are all trivial (or “killed off”). In particular, by construction we will find that
if for some n the n-th homotopy group of X is already trivial, πn(X ) = 0, then the spaces Xn
and Xn−1 can be taken to be equal, Xn = Xn−1.

For the precise definition, we assume that X is path-connected, i. e. π0(X ) = 0. Then, the
Whitehead tower of X consists of topological spaces Xn such that

πi(Xn)∼=

¨

0 , if i ¶ n ,

πi(X ) , if i > n ,
(22)
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together with fibrations Xn −→ Xn−1 for all positive integers n whose fibres are the Eilenberg–
Mac Lane spaces K(πn(X ), n− 1),

K
�

πn(X ), n− 1
�

Xn Xn−1
, (23)

where X0 := X . It follows that Xn is an n-connected cover of X . Concretely, these fibrations can
be obtained inductively by first attaching higher cells to Xn−1 in such a way that all homotopy
groups above n vanish, thus constructing a model for K(πn(X ), n) from Xn−1. In the second
step, Xn can be defined as the space of paths from a fixed base point in K(πn(X ), n) whose
endpoints are in Xn−1 ⊂ K(πn(X ), n), leading to (23). From this we also obtain a homotopy
fibration

Xn Xn−1 K
�

πn(X ), n
� (24)

via delooping. Another way of putting this is that post-composing a map f : M −→ Xn−1 with
Xn−1 −→ K(πn(X ), n) gives a homotopically trivial map, i. e. one homotopic to a constant map,
iff f factors through the fibration Xn −→ Xn−1 up to homotopy, i. e. there is a lift ef : M −→ Xn
such that:

Xn

M Xn−1 K
�

πn(X ), n
�

.

ef

f

const.

'�

'�
(25)

In Section 3.2 we will see how this property encodes obstructions to the existence of tangential
structures related to Xn, and discuss its physical and string theoretic interpretations.

We now focus on the case X = BO, the classifying space of the stable orthogonal group (9).
By Bott periodicity, the homotopy groups of the latter are

πi(O)∼=























Z2 , if i ∈ {0,1} ,

0 , if i ∈ {2,4, 5,6} ,

Z , if i ∈ {3,7} ,

πi+8n(O) , for all non-negative integers n ,

(26)

and the homotopy groups of O(n) stabilise to those of O in the sense that πi(O(n)) ∼= πi(O)
for all n> i + 1. Moreover, delooping shifts homotopy groups in the sense that

πi+1(BO)∼= πi(O) . (27)

The first twelve floors of the Whitehead tower of BO are displayed in Figure 1, where we
use the standard notation

BO〈n〉 := (BO)〈n〉 := (BO)n−1 , (28)

where the index n−1 in the last term indicates the level in the Whitehead tower as introduced
above. It follows that BO〈n〉 ' B(O〈n− 1〉) and

πi(BO〈n〉)∼=

¨

0 , if i < n ,

πi(BO)∼= πi−1(O) , if i ¾ n .
(29)

The homotopy groups πn(BO) appearing in the fibrations (23) and (24) in Figure 1 are ob-
tained from (26) and (27), and we used (20) together with K(Z, 1)' U(1) and K(Z2, 1)'RP∞.
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K(Z, 11) BO〈13〉= BNinebrane

K(Z2, 9) BO〈11〉= BO〈12〉 K(Z, 12)' B11U(1)

K(Z2, 8) BO〈10〉 K(Z2, 10)' B9RP∞

K(Z, 7) BO〈9〉= BFivebrane K(Z2, 9)' B8RP∞

K(0, 6) BO〈8〉= BString K(Z, 8)' B7U(1)

K(Z, 3) BO〈5〉= BString K(0, 5)' pt

K(0, 2) BO〈4〉= BSpin K(Z, 4)' B3U(1)

K(Z2, 1) BO〈3〉= BSpin K(0, 3)' pt

K(Z2, 0) BO〈2〉= BSO K(Z2, 2)' BRP∞

BO〈1〉= BO K(Z2, 1)'RP∞

1
240 p3

x10

x9

1
6 p2

1
2 p1

w2

w1

Figure 1: The first twelve floors of the Whitehead tower of BO, including the
Eilenberg–Mac Lane spaces K(πn−1(BO), n − 2) as the fibres of the fibrations
BO〈n + 1〉 −→ BO〈n〉 on the left, and the maps BO〈n〉 −→ K(πn(BO), n) encoding
the obstructions to lifting O〈n− 1〉-structures to O〈n〉-structures on the right.

3.2 Physical interpretation

To discuss the labelled horizontal arrows in Figure 1, let us first consider the one labelled w1,
which is obtained by delooping the first fibration BO〈2〉 = (BO)1 = BSO −→ BO. The associ-
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ated diagram (25) for the classifying map cT M : M −→ BO of some manifold M reads

BSO

M BO K(Z2, 1) .cT M w1

(30)

Hence cT M lifts to BSO, i. e. M is orientable, iff w1◦cT M is homotopically trivial. But according
to (21) we have [M , K(Z2, 1)]∼= H1(M ;Z2), so M is orientable iff the associated cohomology
class is trivial. This class is the first Stiefel–Whitney class w1(T M) ∈ H1(M ;Z2), which is the
obstruction to orientability: M is orientable iff w1(T M) = 0.

Climbing the next few floors of the Whitehead tower, one finds that the second Stiefel–
Whitney class w2(T M) is the obstruction for an oriented manifold M to admit a spin structure,
while the fractional first Pontryagin class 1

2 p1(T M) is the obstruction to lift a spin structure
on M to a string structure. The conditions w2(T M) = 0 or 1

2 p1(T M) = 0 can be interpreted
as anomaly cancellation conditions on M viewed as spacetime for a theory of a spinning par-
ticle or type II string theory without gauge fields, respectively. This is reviewed in [44], where
in addition 1

6 p2(T M) is identified as the obstruction to lifting a string structure on M to an
O〈8〉-structure, which is then interpreted within a generalised Green–Schwarz anomaly can-
cellation mechanism for a theory of fivebranes. To it, a string is an electric source to a B-field,
giving a 3-form H3-field, and the anomaly for the string structure appears as dH3 =

1
2 p1 in the

absence of other gauge fields. Similarly, fivebranes are electric sources to a 7-form H7-field,
and the anomaly on the 6-dimensional brane worldvolume appears in dH7 =

1
6 p2, cf. [44].

Finally, the obstruction to lifting an O〈10〉-structure to an O〈12〉-structure is identified in [46]
as 1

240 p3(T M) and related to anomaly cancellation for ninebranes. Hence O〈8〉- and O〈12〉-
structures are referred to as fivebrane and ninebrane structures, respectively. A physical inter-
pretation for O〈9〉- and O〈10〉-structures, respectively called 2-orientation and 2-spin in [46],
has not yet been fully settled; we discuss a related proposal in Appendix A.

The relation between anomaly cancellation and obstructions to tangential structures that
are encoded in the Whitehead tower of BO, as well as the neat conceptual organising principle
that the tower offers, might induce hope that somewhere up in this tower we might find the
“quantum gravity structure” QG. In the case of BO, we will now see that this idea leads to in-
teresting features, yet ultimately it is too optimistic. This is because we should then determine
the bordism groups related to the tangential O〈n+ 1〉-structures associated to the n-th space
in the Whitehead tower of BO, but as we will show momentarily we have

Ω
O〈n+1〉
k

∼= Ωfr
k , for all k ¶ n . (31)

A look at Table 1 indicates that most framed bordism groups for small values of k are non-
trivial, hence by BO〈n〉 ' B(O〈n − 1〉) and (31), none of the components of the Whitehead
tower for BO can be the thought-after structure QG. This is made more explicit in Table 2
where we collect several bordism groups associated to the Whitehead tower of BO, in part
obtained from the relation (31). Still, it is worth noting that Ωfr

k is only a finite group for all
k > 0 (see e. g. [26, Lem. 1.1.8]). Thanks to (31), we are then guaranteed to reach more
groups of finite order when going up the tower, which are at least closer to trivial than groups
of infinite order such as ΩSpin

4 =Z or ΩString
8 =Z2 ×Z.

To prove the existence of the isomorphisms (31), we first note that by construction
πi(B(O〈n + 1〉)) ∼= πi(BO〈n + 2〉) for all i ¶ n + 1. Hence by the CW approximation theo-
rem, the classification space B(O〈n+ 1〉) is homotopy equivalent to a CW complex that does
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Table 2: Bordism groups ΩO〈n〉
k for various dimensions k; note that ΩO〈2〉

k = ΩO〈3〉
k ,

Ω
O〈4〉
k = ΩO〈5〉

k = ΩO〈6〉
k = ΩO〈7〉

k , and ΩO〈10〉
k = ΩO〈11〉

k by Bott periodicity. We highlight
in blue the realisation of the isomorphism (31).

k 0 1 2 3 4 5 6 7 8 9 10

Ωfr
k Z Z2 Z2 Z24 0 0 Z2 Z240 Z2

2 Z3
2 Z6

ΩO
k Z2 0 Z2 0 Z2

2 Z2 Z3
2 Z2 Z5

2 Z3
2 Z8

2

Ω
O〈1〉
k = ΩSO

k Z 0 0 0 Z Z2 0 0 Z2 Z2
2 Z2

Ω
O〈2〉
k = ΩSpin

k Z Z2 Z2 0 Z 0 0 0 Z2 Z2
2 Z3

2

Ω
O〈4〉
k = ΩString

k Z Z2 Z2 Z24 0 0 Z2 0 Z2 ×Z Z2
2 Z6

Ω
O〈8〉
k = ΩFivebrane

k Z Z2 Z2 Z24 0 0 Z2 Z240 ? ? ?

Ω
O〈9〉
k = Ω2-orientation

k Z Z2 Z2 Z24 0 0 Z2 Z240 Z2
2 ? ?

Ω
O〈10〉
k = Ω2-spin

k Z Z2 Z2 Z24 0 0 Z2 Z240 Z2
2 Z3

2 Z6

Ω
O〈12〉
k = ΩNinebrane

k Z Z2 Z2 Z24 0 0 Z2 Z240 Z2
2 Z3

2 Z6

not have any non-trivial cells of dimension n+ 1 or lower. This in turn implies that any con-
tinuous map W −→ B(O〈n + 1〉) classifying an O〈n + 1〉-structure on a (k + 1)-dimensional
bordism W induces trivial maps πi(W ) −→ πi(B(O〈n + 1〉)) for all i ¶ n + 1. But since the
(k + 1)-dimensional manifold W has no cells of dimension k + 2 or larger, our assumption
k ¶ n implies πi(W ) = 0 for all i > n+1. Thus every map W −→ B(O〈n+1〉) is homotopically
trivial, so an O〈n+ 1〉-structure on W is equivalent to a tangential structure corresponding to
the embedding of the trivial group into O, which in turn corresponds to a stable framing. This
establishes (31).

While the Whitehead tower for BO does not directly produce the unknown structure QG, it
may still play a useful role in the search for it: instead of asking for all obstructions for a man-
ifold to admit an O〈n〉-structure to vanish, one may ask this of only some of the obstructions.
For example, the conditions for a spin structure to exist on a manifold M are w1(T M) = 0 and
w2(T M) = 0. Dropping the latter, we are left the condition for orientability, which corresponds
to an O〈1〉-structure. On the other hand, only demanding w2(T M) = 0 corresponds to a pin+

structure, which does not appear in the Whitehead tower – but it is relevant for orientifolds in
M-theory.

We enlarge the number of potential candidates for QG by dropping some of the “lower”
obstruction trivialisation conditions for any given entry in the Whitehead tower. In particular,
there are up to 24 − 1 such candidates obtained by discarding at least one of the last four
of the vanishing constraints on 1

240 p3(T M), 1
6 p2(T M), 1

2 p1(T M), w2(T M), and w1(T M) for
a ninebrane structure. We do not know the names for these 15 structures, but the above
discussion invites their further study. Such and other spaces may also be chosen as the bases
of other Whitehead towers, which in turn might lead to increasingly good approximations
to QG. That other Whitehead towers could be relevant to identify QG is consistent with the
fact that pin+ structures appear in M-theory. Quite generally, one may expect that potential
anomalies in a theory of quantum gravity are the obstructions encoded in some Whitehead
tower(s), which in this sense would offer another elegant organisational structure.
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4 Fluxes and defects

In this section, we first review and develop in Section 4.1 arguments of [4] showing that the
cobordism conjecture requires, or “predicts”, the existence of magnetic sources charged under
a U(1) gauge symmetry, generally understood as defects. These arguments also show that
the cobordism conjecture implies the completeness hypothesis as well the absence of global
symmetries. Having reviewed these points in Section 4.1.1, we briefly extend the reasoning
to electric sources in Section 4.1.2, allowing to recover otherwise missing branes. We turn in
Section 4.2 to an attempt at reformulating the whole discussion in the language of bordism
groups. Section 4.2.1 focuses on describing higher U(1)-bundles with connection, while Sec-
tion 4.2.2 discusses the inclusion of magnetic defects. We finally turn in Section 4.3 to the
particular case of a Kaluza–Klein monopole, discussing how to predict this extended stringy
object from the cobordism conjecture.

4.1 Electromagnetic defects from the cobordism conjecture

4.1.1 Magnetic defects and completeness hypothesis: review

Building on [4], we consider in the following closed k-dimensional oriented manifolds M
and N . They are taken as boundaries of a spatial bordism W with orientation: we have
∂W ∼= M t (−N). We consider in addition a U(1) gauge symmetry, with an associated flux F .
This flux is a k-form locally given as F = dA, and F is consistently defined on the bordism W
as well as on its boundaries M and N . In mathematical terms, the bordism is the base of a
(higher) principal U(1)-bundle, and the U(1)-flux F on W admits appropriate restrictions on
the boundary. We are interested in the flux number on M , defined as nM =

∫

M F . Since M is
closed and hence compact, F should be quantised, meaning nM ∈ Z. Following the notation
of Section 2.2, we consider the compactification datum (M , nM ), and we want to construct an
equivalence relation and a bordism group for such data, for which the cobordism conjecture
(14) will be satisfied.

We first restrict ourselves to bordisms on which dF = 0: this information is part, together
with the orientation, of the defining information of the bordism. We consider two compactifi-
cations on M and N in the same equivalence class, i. e. connected by a bordism W . We then
have

0=

∫

W
dF =

∫

∂W
F =

∫

M
F +

∫

−N
F =

∫

M
F −

∫

N
F ⇐⇒ nM = nN , (32)

where the minus sign is due to the orientation. This implies that a bordism group for the datum
(M , nM ), with dF = 0, has an infinite number of classes, i. e. one per integer nM , because such
bordisms cannot connect two compactifications with different flux numbers. So it does not
obey the cobordism conjecture. In particular, the trivial class should carry a vanishing flux
number, as being that of the empty set. In other words, to obey the cobordism conjecture with
this datum, one needs to restrict to only nM = 0. We now recall from Section 2.3.2 that dF = 0
can be interpreted as having a global U(1) symmetry. The integer nM can then be understood
as a global charge on M , and the cobordism conjecture enforces this charge to vanish. This
amounts to require the absence of the global symmetry.

The above makes it clear that the flux is preserved in the bordism. One way to cancel it
(for the cobordism conjecture to hold) is then to introduce charged sources or monopoles:
physically, they are the endpoints of flux lines. In other words, the cobordism conjecture
requires the existence of objects, generically called defects, that carry the charge necessary to
cancel the flux. More precisely, given nM , we now consider bordisms where dF = jm, such
that

∫

W jm = nM . The current jm is the (magnetic) source or defect contribution, and nM is
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its charge. As explained in Section 2.3.2, this can also be interpreted as gauging the U(1)-
symmetry. This new bordism provides the desired flux cancellation as follows:

nM =

∫

W
jm =

∫

W
dF = nM − nN ⇐⇒ nN = 0 . (33)

The compactification (M , nM ) is now in the same equivalence class as a compactification with-
out flux. As explained, this is necessary to be bordant to the empty set, so we are now in a
better position to satisfy the cobordism conjecture.

We have to consider bordisms with dF = jm and
∫

W jm ∈ Z. A last step is to span fully Z,
i. e. include at least one jm per integer. In other words, we need defects of all possible integer
charges. Any flux number can then be bordant to any other flux number, and in particular
with 0. This is a necessary condition to obey the cobordism conjecture. We conclude that
the cobordism conjecture implies the need of having defects of all possible charges: this is
precisely the completeness hypothesis [31, 47], i. e. the charged state spectrum is completely
filled with existing objects.

The above was an attempt to devise bordisms and a bordism group that would provide
equivalence relations for the datum (M , nM ), and obey the cobordism conjecture. It raises
however two questions. First, it would be satisfying to capture the information of the U(1)-
bundle, and the related flux numbers, directly in a bordism language. One further step would
be to include as well the information of the defects. It is also not entirely clear how to properly
include sources of all charges at once, allowing to go fromZ to a trivial group. We tackle these
questions in Section 4.2.

Secondly, let us apply the above to type II string theories and their NSNS H-flux and RR
Fq-fluxes. The cobordism conjecture then “predicts” respectively the existence of NS5-branes
and Dp-branes, as well as the corresponding anti-branes of opposite charge. Let us be more
precise on the dimensions: the magnetic source contribution jm is along the source (k + 1)-
dimensional transverse volume, the volume of W , and we do not include the time direction
here. The magnetic source is thus along the remaining extended D − 2 spatial dimensions.
For the H-flux, we have D + k = 10 and k = 3, thus a 5-dimensional magnetic source: the
NS5-brane. For Fq with 0¶ q ¶ 5, we similarly get Dp with p = 8−q, i. e. 3¶ p ¶ 8. The same
reasoning can be applied to M-theory and its G4-flux predicts the existence of M5-branes. This
raises the question of the remaining branes that we know of: how are those predicted? We
now turn to this side question.

4.1.2 Electric defects

We have reviewed in Section 4.1.1 how considering compact manifolds with U(1)-fluxes F ,
and satisfying the cobordism conjecture (14), leads to considering bordisms where dF = jm,
predicting the existence of magnetic sources. We identified in string and M-theory such mag-
netic defects as certain branes, but also noticed that other branes were not predicted this way.
In particular, we are missing in string theory D0, D1, D2, and M2-branes in M-theory. Last but
not least, the F1 fundamental string is also not predicted. The reason for this is simple: those
are rather electric sources for some of the fluxes (and associated gauge fields). Electric sources
should be obtained through the relation

d ∗D+k F = je , (34)

where F should be along the time direction, and je should not. The current je is along the
transverse (space) volume to the source, so it is at most a (D+k−1)-form. This implies that F
is at least a 2-form, i. e. cannot be a 0- or 1-form. The NSNS and RR fluxes are at most 5-forms.
F5 in ten dimensions would electrically be sourced by a D3, already obtained as a magnetic
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source; this is consistent with F5 being anti-self-dual on-shell. So we are left with F being a
2-, 3-, or 4-form. The known fluxes are enough to give rise to the missing electric sources
mentioned above, as one can verify with dimensions: the RR F2,3,4 would give D0,1,2-branes
respectively, the NSNS H-flux the F1 string, and in M-theory, the G4-flux would give M2-branes.
We still need to justify why satisfying the cobordism conjecture would predict these objects, in
particular the need for the equation (34).

To obtain such a prediction, one has to consider a compactification resulting in a U(1)-
flux F , being a D-form along the D-dimensional extended spacetime. This is a different starting
point than for magnetic defects. In particular, since F is now along the time direction,

∫

F is
not on a compact space anymore. However, one can consider the dual flux F̃ = ∗D+kF : this
is a k-form on M . As before, this F̃ then has to be quantised:

∫

M F̃ = ñM ∈ Z. We then
proceed as for magnetic sources: satisfying the cobordism conjecture requires, as a necessary
condition, to have bordisms W on which dF̃ = je, with

∫

W je spanning all integers. This is
needed to build a bordism group for which [(M , ñM )] = 0. We recover in this way the need for
the relation (34). We conclude that the cobordism conjecture predicts the existence of electric
defects, whose contribution is given by je in (34), and one should include all integer charges.
This implies again the completeness hypothesis. We recover in particular the branes missing
in Section 4.1.1 and corresponding to anti-branes.

4.2 Fluxes and defects in bordisms

We now aim at describing the physical setting of Section 4.1.1 in the rigorous language of
bordism groups. Beyond the topological structure (in that case orientation), two new physical
ingredients require a mathematical description: U(1)-fluxes and defects, which we now tackle
in turn. Along the way, we briefly discuss bordism groups for arbitrary geometric structures.

4.2.1 Higher bundles with connection

In Section 4.1.1 we discussed compactifications on k-dimensional manifolds involving k-form
U(1)-fluxes in the context of the cobordism conjecture. Mathematically, this involves connec-
tions on (higher) U(1)-bundles and their curvatures. Such geometric structures are a priori
not included in the traditional study of bordism groups reviewed in Section 2.1, where we
exclusively considered topological structures such as orientations, spin, or G-bundles without
connection. More concretely, to discuss fluxes in the language of bordisms, groups of the form
Ω
ξ
k(B

nU(1)) were used in [17, Sect. 6.3]. This manifestly captures higher U(1)-bundles with-
out connection. The first goal of the present section is to give an independent definition of
bordism groups Ωξk(B

n
∇U(1)) that explicitly also include connections (and hence fluxes), and

then to show that indeed5

Ω
ξ
k

�

Bn
∇U(1)

�∼= Ωξk
�

BnU(1)
�

. (35)

By setting n = k − 1 and ξ = SO, we are in the setting of Section 4.1.1 with jm = 0; the case
of non-zero magnetic currents is discussed in Section 4.2.2.

While bordism groups are not sensitive to connections, this is however not true of geomet-
ric structures S in general, such as (pseudo) Riemannian metrics (possibly with constraints on
Ricci curvature), complex or symplectic structures. We will define the associated general bor-
dism groupsΩS

k in (39) below, which we expect to play a role in connection with the cobordism
conjecture as well. Other than that, in the remainder of the present section we shall explain
the ingredients of the left-hand side of (35) in more detail; some readers may wish to skip
ahead to Section 4.2.2.

5We thank Miguel Montero for helpful discussions on this point.
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First we recall that for a Lie group G, the set of isomorphism classes of G-bundles over a
manifold M is classified up to homotopy by continuous maps M −→ BG. Moreover, for any
positive integer n, it follows from the discussion around (19) and (20) that Bn−1U(1)-bundles
(to which we also refer to as (higher) circle bundles, as U(1) ∼= S1) over a manifold M are
classified by integral cohomology of M :

�

M , BnU(1)
�∼=

�

M , Bn+1Z
�∼=

�

M , K(Z, n+ 1)
�∼= Hn+1(M ;Z) . (36)

Including connections can be described analogously, however at the price of going from the
world of topological spaces to that of stacks, i. e. simplicial sheaves on the site of smooth
manifolds. This is clearly explained e. g. in [48] and [49, Sect. 3], to which we refer for details
as well as for more mathematical background. Examples of stacks are already familiar from
U(1)-connections in Maxwell theory, or Kalb–Ramond fields for U(1)-2-bundles (also known
as bundle gerbes) with connection.

Next we give a brief summary of how stacks describe higher circle bundles with connection.
Recall that every manifold M can be equivalently described in terms of the presheaf FM which
associates to any “test manifold” U the space of smooth maps U −→ M , denoted C∞(U , M).
Since manifolds are glued together from local patches, it suffices to consider only test man-
ifolds U which are diffeomorphic to some Rn. Smooth maps M −→ N then correspond to
natural transformations FM −→ FN . It turns out that FM satisfies a certain gluing property
which makes it a sheaf. In general, from every presheaf one can canonically construct a sheaf
in a process called sheafification (which is left adjoint to the forgetful functor).

Given a Lie group G, one can consider the group C∞(U , G) for every test manifold U , and
turn it into the one-object groupoid ∗//C∞(U , G). Taking the nerve N , we get a simplicial
presheaf U 7−→ N(∗//C∞(U , G)), and by definition the stack BG is its sheafification. The
classification of G-bundles on M via classifying maps naturally lifts to the statement that the
groupoid of G-bundles on M is given by certain maps from M (viewed as a stack) to BG, see
e. g. [49, Sect. 3.2.1]. Similarly, there is a stack of G-bundles with connection B∇G which is
analogously constructed from the action groupoids Ω1(U ,g)//C∞(U , G), where g is the Lie
algebra of G, and Ω1(−,g) is the sheaf of g-valued 1-forms. Indeed, there is an equivalence
of groupoids between G-bundles with connection on M and certain maps from M to B∇G. In
other words, the analogue of the classifying space BG for bundles with connection is given by
the stack B∇G.

If G is an abelian group like U(1), the delooping procedure B can be applied any number
of times, leading to a stack BnU(1) that classifies U(1)-n-bundles (or (n − 1)-gerbes) for all
positive integers n. This is reviewed in explicit detail e. g. in [50, Sect. 2.3]; in particular one
can extract the local data of U(1)-bundles for n= 1, as well as the local data and their cocycle
identities of U(1)-bundle gerbes for n= 2.

Connections on U(1)-bundles similarly generalise to connections on U(1)-n-bundles. They
are classified by a stack Bn

∇U(1) that may be constructed by applying the Dold–Kan correspon-
dence to the Deligne complex

C∞(−, U(1)) Ω1(−,R) · · · Ωn(−,R)
d log d d (37)

of presheaves, see e. g. [49, Sect. 2.3.2]. As reviewed in [50, Sect. 3.3], in terms of local data
(simplex-wise for the simplicial presheaf associated to (37)) this reduces to a description of
Maxwell and Kalb–Ramond fields for n = 1 and n = 2, respectively. In general, unravelling
Bn
∇U(1) in local data reveals that the space of connections on a given U(1)-n-bundle is an affine

space (over differential forms).6

6We are grateful to Domenico Fiorenza for helpful discussions and generous explanations of these matters.
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We can now state that a generalisation of (36) is
¦

isomorphism classes of U(1)-n-bundles with connection on M
©

∼= Ȟn+1(M) , (38)

where the right-hand side is the (n+1)-th ordinary differential cohomology of the manifold M ,
see e. g. the reviews [51, Sect. 2], [52, Sect. 5.1–5.2], or [53, Sect. 6.4.16].

Finally, to define bordism groups for arbitrary topological and/or proper geometric struc-
tures S, recall that at the end of Section 2.1 we noted that the bordism groups Ωξk discussed

there are precisely the connected components π0(Bordξk+1,k) of the bordism categories that ap-
pear in topological quantum field theory of Atiyah–Segal type. To study more general smooth
functorial field theories, in [54, 55] a smooth (∞, k)-category BordS

k is constructed as a cer-
tain presheaf for every stack S. Hence by looping k−1 times (for which the standard notation
is Ωk−1, not to be confused with bordism groups or differential forms), i. e. only considering
trivial objects and trivial 1- up to (k−2)-morphisms, and then taking isomorphism classes, we
obtain a bordism group of k-dimensional manifolds with S-structure,

ΩS
k := π0

�

Ωk−1
�

BordS
k (pt)

�

�

. (39)

We are not aware of any explicit computations of bordism groups with non-trivial geometric
structures that do not form contractible spaces for given underlying topological structures (as
in the case of connections). One might expect that such groups are often non-discrete, as
opposed to bordism groups for topological structures as e. g. in Table 2.

In the case of contractible local moduli spaces of geometric structures S, any two repre-
sentatives of elements of ΩS

k with the same underlying topological structure are connected by
a bordism which topologically is just a cylinder, and whose geometric structure interpolates
between the two boundaries. In particular, if S is some tangential structure ξ together with
Bn
∇U(1), i. e. higher circle bundles with connection on ξ-manifolds, then the moduli space

is an affine space (over the vector space of connections on the trivial higher circle bundle),
hence in particular contractible. This in turn means that any two representatives of elements
of Ωξk(B

n
∇U(1)) with the same underlying higher circle bundle (but possibly different con-

nections) are connected by a bordism which topologically is just a cylinder, and whose con-
nection interpolates between the two boundaries. It follows that there is an isomorphism
Ω
ξ
k(B

n
∇U(1))∼= Ωξk(B

nU(1)) , as in (35).

4.2.2 Including defects

Having identified the bordism group relevant to higher U(1)-bundles with connection as being
Ω
ξ
k

�

Bk−1
∇ U(1)

�

, which by (35) is isomorphic to the group Ωξk
�

Bk−1U(1)
�

without connection,
we now focus on the second physical ingredient that appears in Section 4.1.1: defects. We
would like to show that, once we introduce and describe them in a bordism group, the latter
becomes closer to a trivial one, thus confirming the intuition from Section 4.1.1.

Let us recall some notation. We consider a spatial bordism W which serves as the base
of a higher U(1)-bundle with k-form field strength F . The boundary of W is made of two
k-dimensional oriented compact manifolds M and N , carrying flux integers nM =

∫

M F and
nN =

∫

N F . As argued in Section 4.1.1, having nM 6= nN requires a non-closed F on W , i. e. the
presence of magnetic defects with current dF = jm. In other words, the presence of defects
can be seen through a non-zero jm.

By definition, a connection on a U(1)-(k − 1)-bundle over W gives rise to a closed cur-
vature form F ∈ Ωk(W ), meaning dF = 0. Hence (higher) Maxwell theory with a non-zero
magnetic current jm cannot be described within the framework of Section 4.2.1. As explained
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in [56, Sect. 2–3], it is natural to interpret jm as an element ̌m ∈ Ȟk+1(W ) of differential coho-
mology. Then the twisted Bianchi identity dF = jm can be lifted to a trivialisation of ̌m by the
differential cohomology class F̌ ∈ Ȟk(W ) associated to F . Equivalently, one may think of this
as a U(1)-(k−1)-bundle with connection that is “twisted” by a U(1)-k-bundle with connection,
see e. g. [53, Sect. 1.2.6–1.2.7].

Below we will provide a more lowbrow description that also has a direct physical interpre-
tation. As preparation, we will first focus on the case dF = 0= jm and discuss a few properties
of ΩSO

k (B
k−1U(1)). Here and in the following, we consider ξ = SO since this is the minimal

requirement for our argument to apply.
If dF = 0, the flux number is preserved through the bordism as discussed in Section 4.1.1.

In particular, a manifold M with flux number nM is bordant to itself. Hence (M , nM ) and
(M , nM +1) represent different elements of ΩSO

k (B
k−1U(1)), and there is an infinite number of

elements in ΩSO
k (B

k−1U(1)) classified by integers,7 in other words that

ΩSO
k (B

k−1U(1)) admits Z as a subgroup for all k ¾ 2 . (40)

A more formal proof for (40) is as follows. First recall that the Thom homomorphism
ΩSO
∗ (X ) −→ H∗(X ,Z) is surjective and that the Hurewicz isomorphism gives Hk(X ) ∼= πk(X )

for any (k − 1)-connected space X , with k ¾ 2. Choose now X := Bk−1U(1) ' BkZ. By con-
struction, this is (k − 1)-connected and we have πk(BkZ) = πk(K(Z, k)) = Z. The statement
(40) follows since group homomorphisms preserve subgroups.

Consider now M and N carrying the same flux integers nM = nN . In this case, whether or
not the two compactifications are bordant in ΩSO

k (B
k−1U(1)) seems independent of the gauge

bundle information, and relies only on M and N . One may then ask whether they are in the
same class in ΩSO

k . The latter is however not always trivial (see Table 1). This reasoning could
imply the following equality

ΩSO
k (B

k−1U(1))
?
= ΩSO

k ×Z , for all k ¾ 2 . (41)

We note in particular that for k = 2, ΩSO
2 (BU(1)) =Z, see e. g. [22, Sect. 3.1.4], whileΩSO

2 = 0.
In the discussion below, we will find an interpretation of the quotient ΩSO

k (B
k−1U(1))/Z.

We now turn to the case of magnetic defects, i. e. dF = jm, aiming at formulating it in terms
of a bordism group. For this, let Ω jm

k denote the bordism group whose elements have the same
representatives as ΩSO

k (B
k−1U(1)), but where bordisms W come with U(1)-(k − 1)-bundles

together with k-forms F which satisfy
∫

W dF = n ·n j for a fixed integer n j (that we interpret as
∫

W jm) and an arbitrary integer n. Put differently, n j is the minimal non-zero magnetic charge.

Hence by definition Ω jm
k encodes only the quantised charges n·n j associated to the currents jm,

while it is oblivious to other aspects such as further topological or singularity properties. We
also note that despite the notation Ω jm

k , there is necessarily a different jm for every bordism;
here we choose to consider only the global property which are the associated charges.

We first discuss a property of the bordism group Ω jm
k , similar to the discussion around (40).

For this, we consider a bordism W such that
∫

W dF = n j , and ∂W consists of two copies of some
k-manifold M , each carrying respective flux numbers nM and n′M . As argued in Section 4.1.1,
such a bordism would impose n′M = nM + n j . This can be iterated, leading to the conclusion
that (M , n′M ) is bordant to (M , nM ) for n′M = nM mod n j . In other words, only n j such elements

of Ω jm
k can differ. This argument leads us to propose the claim

Ω
jm
k admits Zn j

as a subgroup for all k ¾ 2 . (42)

7As a side remark, we recall from Section 2.3.2 that dF = 0 can be interpreted as the existence of a global
symmetry. We see then from (40), where the bordism group is not trivial, that it is incompatible with the cobordism
conjecture. This will be (partially) resolved by introducing defects, which precisely break the symmetry.

23

https://scipost.org
https://scipost.org/SciPostPhys.13.3.071


SciPost Phys. 13, 071 (2022)

Physically, this means that introducing n j defects reduces the previousZ subgroup toZn j
. The

two extreme cases are n j = 0 where Z0 = Z and we are back to the case without defect, and
n j = 1 where Z1 = 0, i. e. M with any flux number is bordant to any other and the subgroup
gets trivialised.

To prove the claim (42) and more generally compute the bordism group Ω jm
k correspond-

ing to the case with defects, we could work in the formalism of twisted higher U(1)-bundles
mentioned above. Instead, in the following we will present an alternative, more pedestrian
approach to the relevant bordism groups.

We first consider only F with
∫

W dF = n j , and we now restrict to the common situation of
localised sources: by this we mean that dF (which we think of as jm) only has compact support
in the interior of W , one possibility being that it is proportional to a (sum of) δ-function(s). De-
scribing such sources is not necessarily easy given the possible associated singularities. How-
ever, as noticed e. g. in [4, 17, 56], one may trade this description of a charged defect for a
sphere with certain units of flux thanks to Gauss’ law. By the support condition on jm, it is
non-zero only in a (k+ 1)-ball Bk+1 with ∂ Bk+1 = Sk in the interior of W . We then have

n j =

∫

W
jm =

∫

Bk+1

jm =

∫

Bk+1

dF =

∫

Sk

F , (43)

where the Sk carries units of flux that are equal to the charge n j of jm. We are now going to
make use of this idea to express the presence of a magnetic defect in a bordism language.

We define another bordism where we remove the ball: W ′ =W \Bk+1. One has the same F
everywhere on W ′ as on W , so we use the same symbol F for both. Because jm had support in
the ball, one has dF = 0 on W ′. The bordism W ′ is thus convenient: we have traded the situa-
tion of a bordism with defects for a bordism without any defects, that we described previously.8

The statement is that the bordism W carrying a localised jm is equivalent to another bordism W ′

without jm, but with an additional spherical boundary carrying corresponding units of flux. In
other words, the pairs (M , nM ) and (N , nN ) being bordant in Ω jm

k (with
∫

W dF = n j) is equiva-
lent to (M , nM )t−(N , nN ) being bordant to (Sk, n j) in ΩSO

k (B
k−1U(1)). We can verify directly

on W ′ the compensation of units of flux on its boundary

0=

∫

W ′
dF =

∫

∂W ′
F =

∫

M
F −

∫

N
F −

∫

Sk

F ⇐⇒ n j =

∫

Sk

F = nM − nN , (44)

and we illustrate the equivalent description as follows:

dF = jm

W

M
∫

M F = nM

N
∫

N F = nN

jm

n j =
∫

W jm = nM − nN

←→

dF = 0

W ′

M
∫

M F = nM

N
∫

N F = nN

Sk

n j =
∫

Sk F = nM − nN

(45)

Now, we consider an F such that
∫

W dF = n·n j (i. e. we previously had n= 1). Let us make
a first observation: we argued that manifolds carrying different flux numbers are not bordant

8One might be worried of facing dF = 0 on W ′, that can be viewed as having a global symmetry. But the latter
can be interpreted as an accidental symmetry in an effective description. Indeed, viewing the source as a (fluxed)
sphere is precisely an effective description of it, instead of a UV, fundamental, one. Quantum gravity actually
considers the (localised) source, which rather leads to gauging the symmetry (see Section 2.3.2).
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in ΩSO
k (B

k−1U(1)), so two elements (Sk, n · n j) and (Sk, n′ · n j), n 6= n′, cannot be in the same
class in that group. This means that (Sk, n j) generates a subgroup n jZ in ΩSO

k (B
k−1U(1)). To

match with the first description of defects in terms of Ω jm
k , where multiplying by n does not

change the equivalence class, the previous two elements must be identified in ΩSO
k (B

k−1U(1)).
This corresponds to considering the quotient

ΩSO
k (B

k−1U(1))
�

(n jZ) . (46)

From the perspective of ΩSO
k (B

k−1U(1)), this identification amounts to including all defects
whose charges are multiples of n j at once, in line with the completeness hypothesis and the
cobordism conjecture.

The equivalence described above, illustrated with (45), can now hold in full generality.
This leads us to propose the following isomorphism, followed by a proposed equality from
(41):

Ω
jm
k
∼= ΩSO

k (B
k−1U(1))

�

(n jZ)
?
= ΩSO

k ×Zn j
. (47)

This is consistent with the subgroup Zn j
appearing in (42). In case n j = 1, this includes a

single magnetic defect or the “fundamental” charge, as well as all its multiples. Having n j = 1
could make the quotient (46) trivial since Z1 = 0. Let us emphasise that this is in agreement
with the cobordism conjecture, since including all defects through this quotient (or with the
appropriate Ω jm

k ) trivialises the bordism group. If it is not trivial, this is not due to fluxes and
defects but rather to the geometry of the compact space, as indicated by the factor ΩSO

k in the
right-hand side of (47). We argued that settling whether the quotient is trivial or not amounts
to determining whether the pair (Sk, 1) is a unique generator in ΩSO

k (B
k−1U(1)), or whether

there are more.

4.3 The Kaluza–Klein monopole problem

In previous sections, we discussed how the cobordism conjecture can “predict” the existence
of some branes in string theory. These branes shared the property of sourcing supergravity
RR or NSNS U(1)-fluxes. Here, we are interested in a somewhat different extended object
that exists in 10-dimensional string theory: the Kaluza–Klein monopole, KKm [57, 58]. This
6-dimensional NSNS object is the T-dual to an NS5-brane. Contrary to the latter that (mag-
netically) sources an NSNS H-flux, the KKm has the particularity to be a purely gravitational
solution. Indeed, as a supergravity solution, the KKm is given only in terms of a metric, and
no RR or NSNS gauge field. We provide more details and references below and in Appendix A.

The absence of RR or NSNS U(1)-gauge flux makes it at first sight less obvious how to
apply the reasoning of the previous sections, that would predict a stringy object as a defect
needed to cancel a flux number. In addition, because of the prime role played by the metric
in the KKm, one may consider bordism groups with pseudo Riemannian geometric structure,
mentioned at the end of Section 4.2.1, as relevant to predict these stringy objects. This leads
us to “the Kaluza–Klein monopole problem”:

How does the cobordism conjecture predict the Kaluza–Klein monopole? (48)

In the following, we argue in favour of this answer:

Kaluza–Klein monopoles can serve as defects to kill ΩSO
2 (BU(1)). (49)

As will be explained, viewing the KKm as a 6-dimensional stringy object in a 10-dimensional
spacetime makes manifest the presence of a U(1)-bundle. It will lead us to consider the above
bordism group, making it eventually closer to other branes than initially thought.
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Let us start from the KKm as a 10-dimensional supergravity solution. It is then only given
by the metric (see e. g. [59, (3.42)])

ds2 = ds2
6 + f ds2

3 + f −1 (dx + a dy)2 , where f = eφK −
qK

ρ
, (50)

and ds2
3 = dρ2 +ρ2dϕ2 +ρ2 sin2ϕ dy2 , a = cosϕρ2∂ρ f

ρ > 0
=== qK cosϕ .

The 6-dimensional metric ds2
6 stands for the Minkowski one, and the 3-dimensional metric

ds2
3 is the metric of the Euclidian flat space, expressed here in spherical coordinates {ρ,ϕ, y}.

The warp factor f depends on the constants φK and qK . Finally, the crucial ingredient of the
KKm is the line along dx , which is fibred over the 3-dimensional base with metric ds2

3, via the
connection 1-form a dy . In the following, we will consider this line to be a circle with angle
x , giving us a U(1)-bundle. Physically, the interpretation of this metric is that the KKm is a
6-dimensional extended stringy object (its 7-dimensional world-volume is along the above 6-
dimensional Minkowski space and the circle direction along dx), i. e. a codimension-3 object
with transverse space along {ρ,ϕ, y}.

The connection 1-form a dy of the twisted U(1)-bundle can actually serve as the 1-form
potential of a magnetic field, the latter being related to the gradient of the warp factor f
[58, 60]. The singular locus ρ = 0 then hosts a magnetic monopole. In other words, the
standard Bianchi identity for magnetic monopoles

dF K
2 = jKKm (51)

holds, where F K
2 is the U(1)-field strength 2-form and jKKm is the 3-form current of the mag-

netic source (see also [39, Sect. 5.1]). In the case of the KKm as given in (50), jKKm lives on the
3-dimensional transverse space and is proportional to a δ-function, while the left-hand side
of (51) is proportional to the 3-dimensional Laplacian of f , which is the appropriate Green
function.9

We now consider the same 10-dimensional setting, except for the three transverse dimen-
sions to the KKm which we make compact. More precisely, we consider a 3-dimensional ori-
ented compact bordism W whose boundary is made of two closed 2-dimensional oriented
manifolds M and N . The KKm is localised at a point on W away from this boundary. The
base of the twisted U(1)-bundle is now W , with field strength F K

2 . We then assume that the
Bianchi identity (51) holds on W , even though finding a concrete solution corresponding to
this compact setting remains challenging. This bordism is now equivalent to the one discussed
in Section 4.1.1, and we can draw results from there. It is clear that if

∫

M F K
2 6= 0, this flux num-

ber can be killed by adjusting
∫

W jKKm, as done for instance in (33); we repeat those equalities
below in (52). The number

∫

W jKKm can be interpreted as the charge of KKm, proportional to
the amount of KKm localised on W .

Manifolds connected by bordisms as the one just described represent the same element of
the group ΩSO

2 (BU(1)), as discussed in Section 4.2. The claim is therefore that KKm are the
required defects to kill this group, as mentioned in (49). We note that D6-branes would also
kill this group. The difference is that here, the U(1)-bundle is present in the 10-dimensional
spacetime geometry; this is not the case for D6-branes, which are the magnetic monopoles for
RR F2-fluxes.

Interestingly, one finds the following properties for this bordism group: ΩSO
2 (BU(1)) = Z

and its bordism invariant is the first Chern class c1, see e. g. [22, Sect. 3.1.4], which for any
given U(1)-bundle is represented by the curvature 2-form F2 of some connection. In addition,

9For the interested reader, we add that equivalent expressions of the Bianchi identity (51) have been given, in
terms of the so-called geometric fluxes f a

bc , or in terms of the Riemann tensor and the Riemann–Bianchi identity:
see [59, (1.11) & (3.5) & (3.107)].
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we consider here a 2-dimensional closed manifold M , and have
∫

M F2 ∈Z by U(1)-flux quan-
tisation, and these flux numbers may be identified with the elements of ΩSO

2 (BU(1)) =Z. This
is consistent with having the first Chern class a bordism invariant. We summarise the situation
for two manifolds M , N as follows:

Z 3 nM − nN =

∫

M
F K

2 −
∫

N
F K

2 =

∫

∂W
F K

2 =

∫

W
dF K

2 =

∫

W
jKKm . (52)

Adjusting the number of KKm allows to kill the flux number on the boundary of the bordism,
and equivalently the first Chern class of the U(1)-bundle.

We end with a final comment on T-duality. As recalled in Appendix A, the KKm is T-dual to
the NS5-brane but also to the Q-brane, the latter being a peculiar codimension 2 object. As dis-
cussed in previous sections, the NS5-brane can be the defect that kills the group ΩSO

3 (B
2U(1)).

We have just argued that the KKm would kill the group ΩSO
2 (B

1U(1)), so it is tempting to con-
jecture that the Q-brane would killΩSO

1 (B
0U(1)). Similarly, Dp-branes of various p are T-dual to

each other, and as discussed in previous sections, they can be the defects killingΩSO
k (B

k−1U(1))
for k = 8− p. Based on these comments, it is tempting to think that not only the relevant bor-
dism group is always ΩSO

k (B
k−1U(1)) for an (8 − k)-dimensional object, but in addition that

this group is preserved through T-duality, meaning thatΩSO
k (B

k−1U(1)) = ΩSO
k−1(B

k−2U(1)), etc.
Such equalities are a priori not obvious as discussed in Section 4.2.2. Let us nevertheless dis-
cuss here this possibility for the three NS-branes mentioned. We know that ΩSO

2 (B
1U(1)) =Z,

and also that ΩSO
1 (B

0U(1)) ≡ ΩSO
1 (U(1)) = H1(S1) = Z [61, p. 247]. We do not know

ΩSO
3 (B

2U(1)), but we note from Table 1 that ΩSO
3 = 0. Therefore, following the argument

leading to (41), one would conclude on ΩSO
3 (B

2U(1)) being also Z. The relevant group would
then be preserved under T-duality.

5 Gravity decoupling limit of the cobordism conjecture

Swampland criteria aim at characterising effective field theories of a quantum gravity the-
ory, in a D-dimensional spacetime with D > 2. They indicate in particular whether or not a
given field theory can be coupled consistently to quantum gravity. In some swampland cri-
teria, the coupling to gravity is seen explicitly through a dependence on the D-dimensional
Planck mass MP. When MP → ∞, gravity is decoupled and the constraint becomes either
trivially satisfied, empty of content, or violated.10 This is consistent since swampland criteria
are not meant to constrain field theories without gravity. In this section, we discuss the gravity
decoupling limit in the case of the cobordism conjecture (14).

The formulation of the cobordism conjecture in [4] relies on classical spacetimes that split
into a D-dimensional non-compact external spacetime and a compact k-dimensional Rieman-
nian space M . Compactness is central in the mathematical definition of bordisms and bordism
groups as presented in Section 2.1. Compactness also played an important role when consider-
ing defects in Section 4, for instance in integrals appearing in Section 4.1.1. When considering
a string compactification on such a (D+ k)-dimensional spacetime, the D-dimensional Planck
mass satisfies

M D−2
P ∝

volk
g2

s
, (53)

where volk is the volume of M and gs is the string coupling (see below for a derivation in an
example).11 In a classical regime as considered here, one typically takes gs� 1 (see however

10We thank Miguel Montero for related useful exchanges.
11Formula (53) illustrates that the arguments of this section do not apply to D ¶ 2.
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[5] for less perturbative considerations). If we fix gs to such a value and send volk →∞, we
deduce from (53) that gravity decouples. However, precisely in this limit of infinite volume,
we loose compactness, which was just argued to be necessary to the present formulation of the
cobordism conjecture. In other words, considering compactness with a finite gs amounts to
have a coupling to quantum gravity. Unless the definition of bordisms and bordism groups can
be extended to non-compact spaces, which goes beyond the present framework, the statement
of the cobordism conjecture thus appears empty of content in the decoupling limit volk→∞.

We discuss in the following another possible decoupling limit: we propose to maintain
compactness, i. e. a finite volk, and send gs → 0. What happens to the cobordism conjecture
in this limit? To address such a question, we use the effective description of string theory
in a classical regime provided by a 10-dimensional two-derivatives supergravity. For type II
superstrings, the (bosonic) effective action is schematically given by

S = 1

2κ2
10

∫

dk y
Æ

|gk|
∫

dD x
Æ

|gD|e−2φ
�

LNSNS+ LNSb. + e2φ LRR+ eφ LDBI

�

, (54)

with D+k = 10, and where the dilaton dependence eφ of each contribution (NSNS and RR bulk
supergravity, NS-branes world-volume contributions, Dp-branes and orientifolds DBI contribu-
tions) was made explicit. None of the terms LNSNS, LNSb., LRR, LDBI contain such an exponential
factor.12 To the action (54), one should add the standard topological terms, independent of
the metric and the dilaton, as well as fermionic terms. None of those will play a role in the
following so we disregard them here.

In a compactification to D dimensions, one considers background-valued fields, that we
denote with a superscript 0, and fluctuations around them. One introduces the vacuum ex-
pectation value of the dilaton φ, identified with the string coupling constant eφ

0
= gs, and

eφ = gse
δφ . Similarly, the variation of the k-dimensional volume around its background value

can be introduced, denoted v. Following this procedure (see e. g. [63]), an effective theory
around a background can then be constructed, whose action and Planck mass MP are obtained
from (54) as

M D−2
P =

∫

dk y
q

|g0
k |

κ2
10 g2

s

, (55)

S = M D−2
P

∫

dD x
Æ

|gD|e−2δφv
1
2

�

RD + L̃NSNS+ LNSb. + g2
s L̃RR+ gs L̃DBI

�

,

where L̃NSNS = −RD+LNSNS, L̃RR = e2δφ LRR and L̃DBI = eδφ LDBI. This agrees with the formula
(53) for MP. The fluctuations e−2δφv are then typically absorbed by going to the Einstein frame
and do not play a role here.13 Thanks to this schematic derivation, we see the dependence on
gs in such a regime. We conclude that keeping a finite volume volk =

∫

dk y
q

|g0
k | and sending

gs→ 0, the dominant contribution is that of the NSNS sector alone.

We now speculate that there exists a bordism group Ω
QGgs→0

k , which results from ΩQG
k when

taking the gravity decoupling limit with a compact space and gs → 0. Determining Ω
QGgs→0

k
would settle the fate of the cobordism conjecture in this specific gravity decoupling limit: if the

cobordism conjecture is trivially satisfied, then Ω
QGgs→0

k = 0, while if it is violated, Ω
QGgs→0

k 6= 0.
The previous discussion could help in this purpose. Indeed, the claim is that the representatives

12These terms are schematically given by LNSNS = R10 + . . . , LRR = −
1
2

∑

q |Fq|2 + . . . and LNSb. as well as LDBI

are given by a volume, a current localising the source and its tension depending purely on the string length ls; we
refer to [62, App. A] for complete expressions and conventions.

13Our discussion assumes that we stay within the regime considered, so in particular, that the fluctuations remain
under control.
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of the element(s) of Ω
QGgs→0

k are only classical pure NSNS backgrounds (including contribu-
tions of NS-branes). The structure QGgs→0 would correspond to these backgrounds, and it
should have a mathematical description in terms of a geometric structure: it would include a
pseudo Riemannian structure for the metric, a higher U(1)-bundle for the Kalb-Ramond field,
and further structure corresponding to NS-branes. Computing the bordism group for such a
geometric structure is however challenging. In the remainder of this section, we discuss a
few examples of NSNS backgrounds and how they appear as representatives of elements of

bordism groups, possibly getting this way a hint on Ω
QGgs→0

k .
Among pure NSNS classical backgrounds with a k-dimensional compact space, one ob-

vious subset is that of Ricci-flat backgrounds made of a D-dimensional Minkowski space-
time, together with a k-dimensional Ricci-flat compact manifold. One can then ask whether

all Ricci-flat compact manifolds of dimension k would be bordant in Ω
QGgs→0

k . A partial an-
swer could come from the recent proposal in [64, 65]. The latter claims that Ricci-flat non-
supersymmetric compactifications to Minkowski space are unstable. This was verified for 3-
dimensional Ricci-flat compact spaces, with instabilities related to bubbles of nothing. This
means that 3-dimensional non-supersymmetric Ricci-flat compact manifolds are bordant to
the empty set, within a suitable bordism group.

Another interesting example involving purely NSNS ingredients is the one pointed out
in [17, Footnote 51]: ΩSpin

4 =Z, generated by K3, a Ricci-flat manifold. This could be a poten-
tial counterexample to having all Ricci-flat compact manifolds bordant in a relevant bordism
group. However, an idea is to make this bordism group trivial thanks to some defects [4,17].
And indeed, the gauge field B6, dual to the B-field and electrically sourced by an NS5-brane,
is mentioned in [4, Sect. 4.2.1] to play a role in killing the group ΩSpin

4 in heterotic string the-
ory. Extrapolating from this example, the pure NSNS backgrounds made of Ricci-flat compact
manifolds, dressed up with backreacted NS-branes, could be bordant to the empty set in some
relevant bordism group.

6 Summary and outlook

In this paper, we investigated the cobordism conjecture along several directions, with partic-
ular focus on its mathematical formulation. After reviewing the conjecture itself in Section 2,
together with the necessary mathematical background and some aspects concerning its rela-
tion to the role of global symmetries in quantum gravity, in Section 3 we proposed to use the
Whitehead tower construction as an organising principle for the topological structures entering
the definition of bordism groups. Even if this proposal may not lead to a definite identification
of the unknown QG-structure, we observed that it can still point us in the right direction, as
bordism groups are typically getting smaller when climbing the tower. Furthermore, in the
related Appendix A, we comment briefly on a stringy interpretation of the higher brane struc-
tures O〈9〉 and O〈10〉 appearing in the Whitehead tower. In Section 4, we concentrated then
on the role of fluxes and defects and on how to incorporate them in the language of bordisms.
As for fluxes, after giving an intuitive picture in terms of flux numbers, we provided a math-
ematically rigorous definition of bordism groups of (higher) bundles with connection as well
as more general geometric structures. In the case of bundles with (the geometric structure
given by a) connection the bordism group is isomorphic to the one with the geometric struc-
ture discarded, but this is not expected to be true in general, e. g. in the case of metrics. As
for defects, we gave a prescription on how to describe them within a given bordism by cutting
out spheres in an appropriate manner. We also pointed out an interesting problem, namely
how the cobordism conjecture is capable of predicting Kaluza–Klein monopoles as defects, and
we proposed an answer. Finally, in Section 5 we concentrated on how the information on the
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Planck mass (and thus quantum gravity) is encoded into the conjecture and what happens in
the decoupling limit.

We conclude with an outlook. Among all string theory backgrounds, two that are dual
to one another certainly share a peculiar relation. Is this specificity somehow manifest when
considering bordisms between two such string compactifications? More concretely, one may
consider a standard example of two T-dual backgrounds: the first one includes a 3-torus carry-
ing a non-zero, constant, H-flux, and the second one includes the T-dual configuration made
of a 3-dimensional nilmanifold carrying no H-flux. Details and references can be found e. g.
in [66] or [67, App. B]. One may wonder whether there exists a bordism group in which the
two T-dual compactifications of this example are in the same class, and whether their T-duality
relation is of any relevance in this context.14 Because of the H-flux, the bordism group dis-
cussed in Section 4.2.1 could be of importance here, and help answering the question (see also
the end of Section 4.3). However, one may need to consider extra geometric structure, namely
a pseudo Riemannian metric, because of the role played by it in T-duality, unless only topo-
logical data eventually matter in characterising these T-dual backgrounds. It is not obvious to
us how to construct an explicit 4-dimensional bordism with H-flux that would interpolate be-
tween the two previously mentioned compactifications. What relevant bordism group would
have two T-dual backgrounds as representatives of the same element hence remains unknown.

Let us sketch another idea regarding such a bordism group. Various formalisms have been
developed in the last decade to describe backgrounds which are T- or U-dual: these are gen-
eralised geometry, double field theory, and exceptional versions of those (see e. g. [71, 72]).
In these formalisms, one typically considers double or exceptional spaces. Those are made of
the physical dimensions, together with other extra dimensions, in such a way that the dual-
ity group G provides a G-structure to the space. Since the typical T- or U-duality groups are
O(n, n) or En(n), one could be led to consider bordism groups ΩO(n,n)

k or Ω
En(n)

k , where k would
be the dimension of the double or exceptional space, usually related to the dimension of a rep-
resentation of the duality groups. The notion of bordism itself might need an extension, since
what we used to consider as its boundary may not be smooth manifolds anymore, but rather
these spaces with non-physical dimensions as described by double or exceptional geometries
(for example the T-folds mentioned in Appendix A). Such tentative bordism groups could be
relevant to describe the T-dual compactifications discussed above,15 but also the T-dual branes
mentioned in Appendix A. For those, a unified picture of all branes in the larger exceptional
space can be found for instance in Table 2 of [73].

Next we briefly try to connect the cobordism conjecture to the finiteness conjecture [1]. The
finiteness conjecture is difficult to state in a precise manner, but it is motivated by a collection
of seemingly related ideas. The conjecture is essentially the claim that the number of string
theory vacua, up to moduli deformations, is finite. Instead of trying to make this general
idea more precise, let us mention a few related pieces of the literature. The first one is the
conjecture of [74,75], which states that the number of phenomenologically interesting string
vacua is finite, where “phenomenologically interesting” means similar to our universe, in a
sense given in those papers. Such a criterion allows to avoid possible counterexamples such as
Freund–Rubin solutions. A second, 30-year-old conjecture is that the number of distinct Hodge
diamonds of Calabi–Yau 3-folds (CY3) is finite. This may be extended to CYn for all n, which is

14One could contrast this situation by considering other compactifications that are very similar but not T-dual.
An example is a Minkowski solution with a Ricci-flat (non-nilpotent) solvmanifold, that was shown, from various
perspectives, to be non-T-dual to the above two backgrounds [68–70]. It would also be interesting to study whether
the compact space and flux appearing there can be seen as bordant to the previous compactifications.

15In the previous example of the two T-dual compactifications, adding a single non-physical compact dimension
to the three compact ones is enough to describe the T-duality in a doubled formalism. Then we cannot refrain
from noticing that ΩSO

4 = Z, which might provide an appropriate bordism group: the Z could correspond to the
toroidal H-flux integer.
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known to be true for n ∈ {1, 2}. Some evidence for such a claim is related to the observation,
in large databases of CY3, that most of them admit an elliptic fibration, while in [77] it is
proven that the number of elliptically fibred CY3 is finite. A last line of thought regarding
finiteness consists in finding upper bounds on certain central charges [78] (see also [1, 79]),
or on the rank of the allowed gauge groups [14, 80, 81], thus restricting the possible gauge
groups and field content in quantum gravity effective theories. Finally, recent works on the
topic, including [82–85], have provided further interesting insights and formulations of the
finiteness conjecture.

Finally we consider the combination of the finiteness conjecture and the cobordism con-
jecture, and try to formulate the former in the language of bordisms. For the sake of the
argument, let us assume that we know what the QG-structure is and that we can compute
Ω

QG
k , which will involve information on both topology and geometry. Assuming the cobordism

conjecture to be true, this group is given by the trivial class 0 = [∅] only. Two situations can
now occur: the number of representative of this class may be finite or infinite. In the former
case, the finiteness conjecture follows as the statement that the number of null-bordant QG-
backgrounds is finite. The case in which the number of representatives is infinite is thus less
trivial, since we need to refine our classification criteria and go beyond QG-bordisms. At this
point, several possibilities open up and it is not clear yet what the correct strategy would be, as
one could classify null-QG-bordism representatives up to e. g. diffeomorphisms, QG-preserving
homeomorphisms, QG-symmetries, or other deformations. In other words, one has to define
a refined equivalence relation, which is not easy to identify at this stage. To make progress,
one could concentrate on a subpart of the problem. A precise statement in the literature is
the one on the finiteness of Calabi–Yau manifolds mentioned above, which can be rephrased
as the existence of bounds on the corresponding Hodge numbers. In this case, one is thus led
to state that the number of allowed QG-backgrounds is finite up to deformations, which is a
refinement with respect to QG-bordisms. Arguably, proving this statement (and its extensions)
could be as challenging as proving its counterpart in the finiteness conjecture. To illustrate the
non-trivial nature of the problem we may consider the simple example ΩSO

2 = 0. This group is
trivial, but there are infinitely many (orientation-preserving) diffeomorphism classes of repre-
sentatives of [∅], because oriented closed surfaces are classified by their genus. This clearly
illustrates that one can have in general different ways of refining the equivalence classes of
the null-QG-bordism representatives, in this case for example by diffeomorphism classes or
by orientation-preserving diffeomorphism classes. In summary, to rephrase the finiteness con-
jecture in terms of the cobordism conjecture, one is led to a statement of the following type:
the number of representatives of the single element of ΩQG

k is finite, up to an appropriate
equivalence relation.
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A NS-branes and higher brane structures

In this appendix, we briefly review NS-branes, before discussing their possible relations to
“higher brane structures” introduced in [46] and appearing in the Whitehead tower in Sec-
tion 3. The NS5-brane is a well-known extended object in string theory, S-dual to the type IIB
D5-brane and appearing in the following chain of T-dualities:

NS5-brane ←→ KK-monopole ←→ Q-brane . (56)

It is also a solution of 10-dimensional supergravity, and it serves as the magnetic source to an
H-flux. Its worldvolume is 6-dimensional, so it is a codimension-4 object in ten dimensions.
The meaning of the chain (56) is the following. Considering an NS5-brane and smearing it
along one of its transverse dimensions and T-dualising along that direction, one obtains the
Kaluza–Klein monopole (KKm). As such, the latter is a codimension-3 object in ten dimensions.
Its space dimensions are however special: they split into five dimensions plus one isometry
direction,16 where the latter is fibred over the transverse dimensions. The KKm is also a
supergravity solution, and it admits no H-flux. Rather, it is a purely geometric background, and
it can be viewed as magnetically sourcing “geometric flux”, i. e. metric curvature, as discussed
in Section 4.3. A further smearing of a transverse dimension followed by a T-duality leads
to a last background, which turns out to be a “non-geometry”, more precisely a “T-fold”. On
the latter, tensor fields do not only glue on overlapping patches by diffeomorphisms as on
a differentiable manifold, but also via T-duality transformations (see e. g. [59, Sect. 4.2.2]);
more generally, a non-geometry refers to a background where the gluing is made via stringy
symmetries. The resulting codimension-2 object, along five dimensions plus two isometry
directions, is a first instance of “exotic branes”, which are non-geometric objects obtained by
T- or S-dualities from standard branes of string theory; see e. g. [86, Fig. 1] for an illustration
of such brane duality webs. This non-geometric brane was first identified and named 52

2-brane
in [87, 88]. It was then realised that exotic branes could source non-geometric fluxes, and
the 52

2-brane was identified as the magnetic source of the Q-flux [59, 89], hence renamed as
the Q-brane. We refer to the review [66] for proper references, and to e. g. [59, Sect. 3.2] for
explicit background fields and (magnetically) sourced Bianchi identities.

The paper [46] introduced the “higher brane structures” O〈9〉 and O〈10〉, that appear in
the Whitehead tower discussed in Section 3. One may wonder whether stringy objects can
be associated to those two structures, as is the case for some of the other structures in the
tower. We propose here the following interpretation: we dub O〈9〉 a “Kaluza–Klein monopole”
structure, and O〈10〉 a “Q-brane” structure, referring to the stringy objects just reviewed.17 A
simple justification comes from the following observation. Given an O〈n+ 1〉-structure, one
can find a corresponding stringy object with an (n−1)-dimensional worldvolume; equivalently,
11− n corresponds to its codimension in ten dimensions.18 This is true for String, Fivebrane
and Ninebrane structures. With the above proposal, it would then also be true for the Kaluza–
Klein monopole and the Q-brane, which are as well NSNS objects. Another point in favour of
the proposal is that π10(O) = 0, thus O〈10〉= O〈11〉, so one would not introduce yet another
object for O〈11〉. This is reminiscent of what happens when using conventional Buscher T-
duality rules: due to the absence of more isometry directions, one stops at the Q-brane and
cannot reach through T-duality a further hypothetical object (sometimes referred to as the
non-geometric R-brane).

16As is common in the context of T-duality, the term “isometry direction” refers to a dimension associated to a
coordinate x , on which the background fields do not depend.

17The names “2-orientation” and “2-spin” introduced in [46] for O〈9〉 and O〈10〉 come from Bott periodicity: for
instance, 9= 1+ 8 and O〈1〉= SO. This has a priori no relation to stringy objects.

18Notice that it can happen that O〈n+ 1〉= O〈n+ 2〉= . . . . In this case we are referring to O〈n+ 1〉.
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To put this proposal on solid grounds, one should match the obstructions to these structures
with the anomalies cured by the corresponding stringy object. Consider a structure carrying the
name of a certain object, and take this object as an electric source. One should then study the
Bianchi identity for the corresponding electric field strength [44,46]. One reads from these α′-
corrected Bianchi identities the characteristic classes corresponding to topological obstructions
to that structure. For example, the heterotic Bianchi identity for the H-flux contains p1(ω),
see [44, Eq. (14)]. In this case the electric source is a string, and 1

2 p1 serves as an obstruction
to the string structure. The same goes for the Fivebrane structure and dH7, see [44, Eq. (15)].
What can be said for the Kaluza–Klein monopole and Q-brane? The Bianchi identity for them
as magnetic sources were identified e. g. in [59] (see also (51)), but one would need the
identities for them as electric sources, and we do not know them.

Alternatively, we may consider the magnetic Bianchi identities of the electromagnetic dual
objects. The electromagnetic counterpart of the Kaluza–Klein monopole is a specific pp-wave,
its worldvolume is 1-dimensional. We would need the Bianchi identity magnetically sourced
by that wave, to hopefully read the obstruction to an O〈9〉-structure.19 That Bianchi identity
might be read from [73], though we may need the α′-corrected version. Regarding O〈10〉,
one may consider the electromagnetic counterpart of a codimension-2 object, which is more
difficult to interpret. Interestingly, this difficulty occurs precisely for a non-geometric brane.
We also note that “gauge fields” associated to non-geometric branes are sometimes p-vectors
rather than p-forms. Such tensors and their Bianchi identities may then provide alternative
characterisations of the relevant obstructions. On the mathematical side, we also note that
the obstructions to O〈9〉- and O〈10〉-structures have been identified in [46] but their actual
calculation is non-trivial.
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