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Abstract

Large black holes in anti-de Sitter space have positive specific heat and do not evaporate.
In order to mimic the behavior of evaporating black holes, one may couple the system to
an external bath. In this paper we explore a rich family of such models, namely ones ob-
tained by coupling two holographic CFTs along a shared interface (ICFTs). We focus on
the limit where the bulk solution is characterized by a thin brane separating the two indi-
vidual duals. These systems may be interpreted in a double holographic way, where one
integrates out the bath and ends up with a lower-dimensional gravitational braneworld
dual to the interface degrees of freedom. Our setup has the advantage that all observ-
ables can be defined and calculated by only relying on standard rules of AdS/CFT. We
exploit this to establish a number of general results, relying on a detailed analysis of
the geodesics in the bulk. Firstly, we prove that the entropy of Hawking radiation in
the braneworld is obtained by extremizing the generalized entropy, and moreover that
at late times a so-called ‘island saddle’ gives the dominant contribution. We also derive
Takayanagi’s prescription for calculating entanglement entropies in BCFTs as a limit of
our ICFT results.
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1 Introduction and summary

The AdS/CFT correspondence offers a well-controlled theoretical laboratory to study quantum
gravity. Some of the most interesting issues concern the evaporation dynamics of black holes.
However, in trying to address this within the framework of holography we need to confront
the technical obstacle that (large) black holes in asymptotically Anti de Sitter spaces coexist in
equilibrium with their Hawking radiation and consequently do not evaporate [1]. In order to
have access to the evaporation dynamics one therefore needs to couple the black hole system to
a bath and understand their combined dynamics (see e.g. [2,3] for an early exposition). More
recently, such setups have been reconsidered, leading to a new semiclassical understanding
of the evaporation dynamics of black holes, which are notably brought in accord with unitary
expectations [4,5] due to the appearance of a new semiclassical saddle at late times that acts
to unitarize the radiation, [6,7].

However, just like the original Euclidean path-integral approach of black-hole entropy due
to Gibbons and Hawking [8] does not capture the underlying microstates, the revised semi-
classical approach does not provide a microscopic understanding of the evaporation dynamics.
In order to make progress in this direction one needs to understand the interplay of systems
and bath degrees of freedom at a more fine-grained level. One class of candidate systems in
which such a study can be performed are boundary conformal field theories, [9–15]. Here we
would like to interpret the boundary degrees of freedom as ‘the system’, while the bulk con-
formal field theory (CFT)1 takes on the role of ‘the bath’. In particular, the authors of [14,15]

1We should at this point make a comment on terminology: in this work there are (at least) two types of bound-
aries we need to refer to. There is the conformal boundary of the asymptotically AdS space, and there is the
boundary/interface of the holographically dual CFT. Which one is meant should be clear from the context. Fur-
thermore, there is the interior of the AdS space, to be distinguished from the bulk of the CFTs, the latter denoting
everything that is not either the boundary of the interface between the CFTs we consider.
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extended this setup by considering degrees of freedom supported on a defect which splits
the bulk CFT into two distinct parts, rather than bounding it at the edge, and they highlighted
some conceptual advantages of this approach. In this work we add a much larger class of well-
controlled systems by instead engineering boundary (‘system’) degrees of freedom located at
the interface between two different CFTs, and use the bulk of both CFTs together as the ‘bath
degrees of freedom’. We thus study a class of interface CFTs (ICFTs), focussing in particular
on those with holographic duals.2 We first establish a number of general results on corre-
lation functions in ICFTs before presenting a number of applications, including to studying
Page curves of evaporating black holes, where we establish that the ‘island’ prescription in the
ICFT setup arises naturally from considering standard AdS/CFT rules for the computation of
entanglement entropies. Furthermore, we also describe how, by varying the difference of cen-
tral charges across the interface, many results on boundary CFT (BCFT) arise as natural limits
of our more general setup, giving derivations of previous results while relying only on stan-
dard tools and techniques for computing correlations functions and entanglement entropies
in AdS/CFT.

We now outline some further aspects of our ICFT systems, which can be interpreted in a
number of different ways. As illustrated in Figure 1, the double holographic setup consists of
three descriptions of the same system. The ICFT and its holographic dual are UV complete and
stand on equal footing. The gravitational description contains a brane—an end-of-the-world
(EOW) brane in the special case of a BCFT [17,18]—which is forced to end on the interface.
In the semi-classical approximation, a third description of the system emerges. The brane
itself can be interpreted as a weakly gravitating universe, coupled to the bulk CFT through
the interface. This effective theory provides the ‘system+bath’ setup mentioned above. Recent
progress in understanding black-hole evaporation came from computing the same observable
in either of the three descriptions [10, 11, 13, 14, 19, 20]. The subject of lower-dimensional
AdS-branes within AdS and their induced braneworld gravity has a long history, going back
to [21,22].

One set of results of the present paper demonstrates the advantages of this perspective in
concrete examples. We now give a preview of the intuition one can gain from taking a careful
look at what quantities can be matched on the three sides. Consider a two dimensional BCFT,
and compute the entanglement entropy in the vacuum of an interval which includes the defect
and part of the bath. The Takayanagi prescription in AdS/BCFT instructs us to compute the
length of the minimal geodesic which stretches between the entangling surface and a point
on the brane. The result matches the CFT computation, and can be derived as a consequence
of the ordinary Ryu-Takayanagi formula, as we elucidate in section 5. But what is the rule in
the two dimensional ‘system+bath’ description? One might think that the full gravitational
region must be traced over, as was the boundary point in the CFT computation. This intuition
would be wrong, as it becomes clear in the large tension limit. The EOW brane is pushed out-
wards and reconstructs the missing piece of the conformal boundary of AdS3. Therefore, the
dynamics of matter on the brane becomes conformal in this limit. The Takayanagi prescription
for the entanglement entropy in a BFCT now reduces to the Ryu-Takayanagi rule for the ‘sys-
tem+bath’. We are led to conclude that the correct result is reproduced by the entanglement
entropy of an interval which includes only part of the weakly gravitating region. How is this
second end-point determined from the point of view of the two-dimensional observer? Since
Takayanagi’s formula included a minimization step, we show that one is automatically lead to
the celebrated island rule.3 We see that even when gravity is arbitrarily weakly coupled, it still

2Such an ICFT setup with applications to entanglement islands, composed of free fermions, was considered
in [16].

3One might ask why the minimization does not lead to an arbitrarily short interval. The reason is that the
gravitating region hosts a conformal field theory on an AdS2 background, where the AdS boundary coincides with
the defect: the large curvature close to the boundary is responsible for the non-trivial minimum.
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Figure 1: Three different perspectives on the same double holographic system. Left:
the 3D bulk perspective, in which the two AdS spaces are the holographic duals of
the CFTs and the thin brane is the holographic dual of the quantum dot. Center: the
intermediate perspective, in which we see the brane as a gravitational system coupled
to two non–gravitating baths, the CFTs. The gravitational theory on the brane, with
action Ibrane[hi j], is the dual of the quantum dot, and it is obtained by integrating
out the AdS3 bulk degrees of freedom. Right: the boundary perspective, in which
we consider only the two CFTs and the quantum mechanical system which couples
them.

has an order one effect on the structure of entanglement: a striking fact, which is remarkably
within the reach of standard AdS/CFT.

The remainder of this paper is structured as follows. In section 2 we introduce the setup of
our system, and describe in detail how holographic interface CFTs constitute a well-controlled
‘doubly holographic’ scenario. In section 3 we embark on a detailed study of the geometry
of geodesics in the bulk dual of holographic ICFT setups, which in turn help us to determine
a range of correlations functions and entanglement entropies of interest. What follows in
section 4 is one of the main sets of results of this paper: by computing the entanglement
entropy of early and late radiation from various different perspectives, we provide a derivation
of the quantum-extremal surface prescription in our case. Section 5 is dedicated to a detailed
derivation of the rules of AdS/BCFT by approaching these as a limit of AdS/ICFT (where the
standard AdS/CFT dictionary applies). We conclude in section 6 and discuss some open issues.

Note: as this paper was nearing completion, the preprint [23] appeared on the arXiv, which
overlaps with some of our results, particularly regarding the correspondence between holographic
BCFTs and the island formula in braneworld holography. Our paper focuses on holographic ICFTs,
which include BCFTs as a limiting case, as we explain in section 5. A preliminary comparison
suggests that the BCFT limit of our results are in agreement with those of [23] .

2 Double holography for Interface CFTs

2.1 Review of ICFTs

Physical systems at criticality are the realm of conformal field theory. We can probe these sys-
tems by measuring their response to local excitations. Alternatively, we can turn on couplings
along extended submanifolds, and measure their effect on observables. A natural possibility
is to couple two different critical systems along a mutual boundary. If the latter is conformal
invariant, the combined system is known as an interface conformal field theory (ICFT), and
has been the subject of many papers over the years, both in condensed matter [24–35], and
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in holography [22, 36–44]. Semi-transparent interfaces can be engineered in various ways.
An obvious possibility is to first pick conformal boundary conditions for two d-dimensional
CFTs—always denoted as CFTI and CFTII in the following. A conformal boundary condition,
or BCFT, is defined by the property that observables are constrained by the subgroup of the
conformal symmetry which preserves the (flat) boundary. If there are two boundary operators
ÒOI and ÒOII respectively, such that their scaling dimensions obey Ò∆I + Ò∆II < d − 1, then one
can turn on the coupling

λ

ˆ
boundary

ÒOI
ÒOII . (2.1)

Generically, we expect observables at large distances to be again constrained by conformal
symmetry. However, rather than a tensor product of boundary conditions, the interface might
be permeable and show non-vanishing correlations between the two sides.

The simple example (2.1) could be complicated in various ways: one can couple CFTI and
CFTII indirectly, via lower dimensional matter localized on the interface, or consider multi-
parameter flows. If the two CFTs coincide, one can construct defects by integrating bulk local
operators on a codimension one surface [27]. It is also possible to tune a marginal coupling
to different values on two half-spaces, or flow via a relevant deformation on half of the space,
thus constructing Janus [36,45] and renormalization group (RG) [33] interfaces.

In this paper, we shall mostly consider the case of two dimensional CFTs, although the
qualitative picture easily generalizes, and we expect many specific results to be the same.
The CFTs on either side of the interface are characterized by central charges cI and cII. We
will be interested in the case where both CFTs are holographic, so in particular cI/II � 1 and
both theories have a sparse spectrum. The holographic dual of this setup will consist of two
asymptotically AdS3 spacetimes with the AdS radii determined by the central charges of the
two CFTs:

cI,II =
3LI,II

2G(3)
. (2.2)

The full bulk spacetime interpolates between these two AdS3’s as we move along a spatial
direction, and we will work in the approximation that the region connecting these geometries
is simply a thin brane, as in [17, 39, 41, 43, 44, 46]. This setup readily generalizes the BCFT
setup of [17,47]. The precise geometry will be reviewed in subsection 2.3.

When the ratio cI/cII is generic, the brane allows the trasmission of energy across the
interface [31, 35,42]. However, in the limit cI � cII, it becomes impossible for generic waves
built from the CFTII degrees of freedom to scatter into the CFTI. Thus, by this simple reasoning
we obtain the physics of BCFT as a limit of ICFT. This will guide our story.

2.2 Changing faces of two-faced geometries

As announced, our setup consists of two AdS regions glued together at the location of a brane,
as shown in the first panel of figure 1. The three interpretations of the system were referred
to in the introduction and are explained in the caption of the same figure. This doubly holo-
graphic interface allows us to explore a variety of physical questions [39, 42–44], some of
which we shall consider in detail in the rest of the paper.

One of the main reasons of interest is the same highlighted in the recent literature [9,
10, 14, 15, 48]. The quantum dot which separates the two CFTs has finite, albeit possibly
large, entropy. If the system is put in a generic time dependent state, energy and entropy will
be exchanged with the baths, until equilibrium is reached, see figure 2. The time evolution
of the entanglement between the dot and the baths must be compatible with the finiteness
of the Hilbert space of the defect, a fact which is the cornerstone of the Page curve [4, 5].
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Quantum
dot

BathIIBathI

CFTI CFTII

Figure 2: A possible physical interpretation of the system: a quantum dot coupled to
two baths. The quantum dot has finite entropy, the boundary entropy of the defect,
and if we put the system in the thermofield double state the dot can be seen as an
eternal black hole coupled to two reservoirs.

While this does not imply a paradox yet, one can choose a state—the thermofield double—
and a Hamiltonian—the difference of the global time translations on the two sides—such that
stationary observers see a horizon on the brane, in the intermediate description of figure 1.
What is more tantalizing, the system is under analytic control in the large N limit, and the
Page curve can be computed via the Ryu-Takayanagi formula. In section 4 we will expand on
this topic.

Of course, ICFTs are interesting in their own right, and the possibility of exact computa-
tions at strong coupling extends beyond the thermofield double, where the black-hole arises,
and also beyond entanglement entropy altogether. General two-point functions of single-trace
heavy operators can be computed via the geodesic approximation. They are not fixed by sym-
metry, and they do not decouple from the interface. In the conformal bootstrap language,
they exchange an infinite number of conformal blocks, despite being fixed by a single geodesic
stretching between two boundary points. In section 3, we describe in detail how to compute
these geodesics, and illustrate a variety of scenarios depending on the tension of the parame-
ters of the ICFT and the position of the local operators. The resulting structure is quite rich. In
particular, when the operators are thought of as twist fields, the results express the entangle-
ment of subregions of the two CFTs. Via entanglement wedge reconstruction, they could shed
light on the way a local bulk is encoded in the boundary, when the state is strongly perturbed
away from the vacuum.

2.3 Bottom-up model

Our focus in this paper will be on interface CFTs dual to semiclassical gravity in AdS3, par-
ticularly a geometry described by a thin brane separating two locally AdS3 geometries with
respective curvatures scales LI/II coupled through a permeable membrane. The Euclidean
gravity action describing our system on MI and MII is:

SEH = −
1

16πG(3)

�ˆ
MI

d3 x
p

gI

�

RI +
2

L2
I

�

+
ˆ
MII

d3 x
p

gII

�

RII +
2

L2
II

�

+ 2
ˆ
S

d2 y
p

h (KI − KII)− 2T
ˆ
S

d2 y
p

h

�

+ corner and counterterms , (2.3)

where T represents the tension of the brane, hab is the induced metric along it, and the extrinsic
curvatures KI,II are computed with outward normal pointing from I→II in both cases. For
details on the corner term and counterterms see for instance appendix A of [44].
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Figure 3: The bulk geometry for a linear defect in AdS3/CFT2. The two dark blue
lines represent the brane, and the two spaces are glued with the Israel–Lanczos
matching conditions.

The location of the brane between the two spacetimes S ≡ ∂MI ∩ ∂MII is determined by
the two Israel–Lanczos matching conditions [49,50]. These matching conditions follow from
the equations of motion of the action (2.3), and the saddle point approximation instructs us
that they represent a reliable approximation of the position of the brane in the limit

T L2
I,II

G(3)
� 1 . (2.4)

This is satisfied in the usual regime cI,II ∼ LI,II/G(3) � 1, and assuming T LI,II an order one
number. The solution of the equations of motion will suggest that the latter is generally re-
spected, since it will enforce the constraint (2.30).

If xI(y) is the embedding of the brane in MI and xII(y) is its embedding in MII, the first
matching condition imposes equality of hab, as viewed from either spacetime:

hab ≡
∂ xµI
∂ ya

∂ xνI
∂ y b

g I
µν =

∂ xµII
∂ ya

∂ xνII
∂ y b

g II
µν . (2.5)

The second matching condition involves the two extrinsic curvatures Ki,ab, and requires that
their discontinuity across the brane be proportional to the tension T . In terms of

∆Kab ≡ KI,ab − KII,ab , (2.6)

the second matching condition is

∆Kab − hab∆K = − T hab . (2.7)

Using the trace of (2.7), we can simplify the above expression in three dimensions4 to:

∆Kab = Thab . (2.8)

2.4 Bulk geometry and coordinates

On either side of the brane, the spacetime will be locally AdS3. Everything about the geometry
of (Euclidean-)AdS3 can be surmised by thinking of it as a hyperboloid

−
�

X 0
�2
+
�

X 3
�2
+

2
∑

i=1

�

X i
�2
= −L2 , (2.9)

4The brane is a codimension one surface, so in three dimensions habhab = 2.
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embedded in four-dimensional flat Minkowski spacetime:

GµνdXµdX ν = −
�

dX 0
�2
+
�

dX 3
�2
+

2
∑

i=1

�

dX i
�2

. (2.10)

The metric of AdS3 can be obtained by finding a set of coordinates that ‘solve’ (2.9). One such
set are the global coordinates,

X 0 = L

√

√

√

1+
r2

g

L2
cosh

�τg

L

�

, X 1 = rg cosθ ,

X 3 = L

√

√

√

1+
r2

g

L2
sinh

�τg

L

�

, X 2 = rg sinθ . (2.11)

In this coordinates we have the local form of the metric

ds2 =

�

1+
r2

g

L2

�

dτ2
g +

dr2
g

�

1+
r2

g

L2

� + r2
g dθ2 . (2.12)

The spatial boundary of AdS3 is the location where
�

X 1
�2
+
�

X 2
�2→∞, and in these coordi-

nates:
�

X 1
�2
+
�

X 2
�2
= r2

g . (2.13)

Thus we conclude that the spatial boundary coincides with rg →∞, as expected.
An alternative set of coordinates, one that is particularly useful set for solving the junction

conditions described above, is the AdS2 slicing of AdS3:

X 0 =
L2 +τ2 + y2

2y
cosh

�ρ

L

�

, X 1 = L sinh
�ρ

L

�

,

X 3 =
Lτ
y

cosh
�ρ

L

�

, X 2 =
L2 −τ2 − y2

2y
cosh

�ρ

L

�

, (2.14)

where −∞< ρ <∞ and y ≥ 0 . This gives rise to the local form of the metric

ds2 = dρ2 + L2 cosh2
�ρ

L

�

�

dτ2 + dy2

y2

�

, (2.15)

which is related to the standard Poincaré slicing of AdS3 through the following coordinate
transformation

z =
y

cosh
�ρ

L

� , x = y tanh
�ρ

L

�

, (2.16)

with metric

ds2 = L2 dτ2 + dx2 + dz2

z2
. (2.17)

Either by looking at the embedding space coordinates
�

X 1
�2
+
�

X 2
�2

or the Poincaré coordi-
nates, we note that the boundary of AdS3 at z = 0 can be reached either by taking |ρ| →∞
or y → 0. Although not immediatly obvious, ρ actually parametrizes an angular coordinate.
Defining:

tanh
�ρ

L

�

≡ sinχ , (2.18)

then the Poincaré coordinates are simply:

z = y cosχ , x = y sinχ, (2.19)
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thus y is a radial coordinate in the xz-plane. The asymptotic boundary can then be thought
of as the locus χ = ±π/2 and y then becomes the coordinate along the boundary.

Finally, AdS3 is special because there exists a parametrization that induces a black hole
horizon on the hyperboloid. These coordinates are

X 0 = L
rb

rH
cosh

� rH

L
θ
�

, X 1 = L

√

√

√
r2

b

r2
H

− 1 cos
� rHτb

L2

�

,

X 3 = L

√

√

√
r2

b

r2
H

− 1 sin
� rHτb

L2

�

, X 2 = L
rb

rH
sinh

� rH

L
θ
�

, (2.20)

leading to the following metric for the BTZ black hole:

ds2 =

�

r2
b − r2

H

L2

�

dτ2
b +

�

r2
b − r2

H

L2

�−1

dr2
b + r2

bdθ2 . (2.21)

It is evident from (2.20) that regularity of the Euclidean-BTZ metric will require τb to be
periodic with periodicity τb ∼ τb +

2πL2

rH
. Moreover, choosing rH = i L gives us back a double

analytic continuation of (2.11), with the roles of X 0 and X 1 swapped.
It is possible to go from Poincaré slicing (2.15) to global coordinates (2.12) via the coor-

dinate transformation:
ρ=Lsinh−1�rgLcosθ�,τ=Lsinh�τgL�r1+r2gL2cosh�τgL�r1+r2gL2−rgLsinθ,y=Lr1+r2gL2cos2θcosh�τgL�r1+r2gL2−rgLsinθ, (2.22)

and similarly, we can obtain the black hole metric (2.21) from Poincaré slicing using:

ρ = L sinh−1



cos
� rHτb

L2

�

√

√

√
r2

b

r2
H

− 1



 ,

τ= e
rH
L θ sin

� rHτb

L2

�

√

√

√

1−
r2

H

r2
b

, y = e
rH
L θ

√

√

√

1−
�

1−
r2

H

r2
b

�

sin2
� rHτb

L2

�

. (2.23)

Note that this crucially means that a solution to the junction conditions in one set of coordi-
nates can be brought into a solution in another set of coordinates via a coordinate transfor-
mation. Having set out some geometric basics and defined a number of convenient systems of
coordinates we will now move on to actually solving the junction conditions.

2.5 Solving the junction conditions

The simplest way to solve the junction conditions is to work with the coordinates (2.15), that
is we will take the coordinates on each side of the brane to be

ds2
Mi
= dρ2

i + L2
i cosh2

�

ρi

Li

�

�

dy2
i + dτ2

i

y2
i

�

(2.24)

for i = {I, II}. From here on, we work in Euclidean signature, although there is no obstruction
to continuing back to Lorentzian signature. We would like to consider a static junction in these
coordinates, meaning that our brane is located at ρi = ρ∗i in each spacetime patch. In each
patch of spacetime Mi the coordinates ρi will range from −∞< ρ < ρ∗i . The induced metric
on the brane is therefore

d2ŝ ≡ habd x̂ad x̂ b = L2
I cosh2

�

ρ∗I
LI

��

dy2
I + dτ2

I

y2
I

�

= L2
II cosh2

�

ρ∗II
LII

��

dy2
II + dτ2

II

y2
II

�

, (2.25)

9

https://scipost.org
https://scipost.org/SciPostPhys.13.3.075


SciPost Phys. 13, 075 (2022)

CFTI ρI →−∞
χI →−π/2

CFTIIρII →−∞
χII →−π/2

ρ∗IIρ∗I
MIIMI

ψIIψI

Figure 4: The definition of the coordinates ψI and ψII as the geometric angles be-
tween the brane and the normal direction of the conformal boundaries.

and the first junction condition enforces the relation

yI = yII , τI = τII , LI cosh

�

ρ∗I
LI

�

= LII cosh

�

ρ∗II
LII

�

. (2.26)

The extrinsic curvatures can be readily computed

KI,ab =
1
2
∂ hab

∂ ρI

�

�

�

�

ρI=ρ∗I

=
1
LI

tanh

�

ρ∗I
LI

�

hab ,

KII,ab = −
1
2
∂ hab

∂ ρII

�

�

�

�

ρII=ρ∗II

= −
1
LII

tanh

�

ρ∗II
LII

�

hab , (2.27)

where the sign difference comes from the fact that the outward normals on either side point
in opposite directions. The second junction condition therefore takes the form

1
LI

tanh

�

ρ∗I
LI

�

+
1
LII

tanh

�

ρ∗II
LII

�

= T . (2.28)

These two conditions are solved by

tanh

�

ρ∗I
LI

�

=
LI

2T

�

T2 +
1

L2
I

−
1

L2
II

�

, tanh

�

ρ∗II
LII

�

=
LII

2T

�

T2 +
1

L2
II

−
1

L2
I

�

. (2.29)

Since −1< tanh(x)< 1, one obtains a consistency constraint on the tension, namely

Tmin =

�

�

�

�

1
LI
−

1
LII

�

�

�

�

< T <
1
LI
+

1
LII
= Tmax . (2.30)

In the following it will be useful to parametrize the location of the brane by its angle with
respect to the perpendicular to the conformal boundaries in each patch. These angles are
defined as follows:

sin(ψI,II) = tanh

�

ρ∗I,II

LI,II

�

, or ψI,II = χ
∗
I,II , (2.31)

and shown in Figure 4.
In later sections we will consider the large tension limit, meaning

T → Tmax =
1
LI
+

1
LII

. (2.32)
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To understand the geometry in this regime it is useful write

T2 =
1

L2
I

+
1

L2
II

+
2−δ2

LI LII
(2.33)

and expand for δ→ 0. In this limit

sin(ψI) = tanh

�

ρ∗I
LI

�

= 1−
L2

I

2(LI + LII)2
δ2 +O(δ4) ,

sin(ψII) = tanh

�

ρ∗II
LII

�

= 1−
L2

II

2(LI + LII)2
δ2 +O(δ4) . (2.34)

Geometrically, this means that

ψI =
π

2
−

LI

LI + LII
δ+O(δ2) , ψII =

π

2
−

LII

LI + LII
δ+O(δ2) , (2.35)

and thus in the large tension limit both AdSI
3 and AdSII

3 are reconstructed, since the brane
approaches the conformal boundary. This fact will be important in section 4, in order to derive
the island formula from the RT prescription.

2.6 The BCFT limit

It is sometimes useful to consider the limiting situation in which one of the two radii, let’s say
LII for concreteness, is much larger than the other. To gain intuition about this scenario, let us
think of the limit LI→ 0 first [51], although the latter lies well outside the semi-classical gravi-
tational regime. If we just apply the Brown-Henneaux relation for AdS3/CFT2—eq. (2.2)—we
find that the central charge of one of the two CFTs vanishes in this limit. Given that the central
charge measures the number of degrees of freedom of a conformal field theory, the limit of
cI → 0 eliminates all degrees of freedom of the CFTI. No excitation can be transmitted from
CFTII through the interface, which therefore acts as a boundary. In other words, the ICFT
reduces to a BCFT. This argument can be made precise by using unitarity and its consequences
on Cardy gluing conditions [35, 52]: the vanishing of the transmission coefficient is a neces-
sary and sufficient condition for a conformal interface to be factorizing. We can now go back
to the limit

LI

LII
→ 0 , (2.36)

which allow us to keep both LI and LII large in Planck units. It is intuitive, and also rigorously
true due to unitarity [35, 52], that the transmission coefficient vanishes in the strict limit.
Hence, eq. (2.36) corresponds to a BCFT limit which we can take without abandoning the
classical regime.

Accordingly, one also expects the bulk brane to effectively become an EOW brane. We shall
confirm this expectation in section 5, where the limit (2.36) will be performed on results found
in previous sections for AdS/ICFT, and the BCFT expectations met. From this point of view, we
would like to regard the AdS/BCFT framework as a subset of AdS/ICFT. The interest around
this idea is that the bulk dual to an ICFT has the same topology as the asymptotically AdS
spaces familiar from AdS/CFT. This allows us to easily extend some of the entries of the usual
AdS/CFT dictionary. Taking the BCFT limit at the end, one derives the corresponding rules for
AdS/BCFT, which are then justified and do not need to be separately conjectured. An example
is the famous Takayanagi prescription to compute entanglement entropies in AdS/BCFT [17,
47], where the RT geodesics are allowed also to end on the EOW brane. Such a rule arises
naturally from the interpolation CFT→ ICFT→ BCFT, as we will show in section 5.1.
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It is interesting to note that, while the BCFT limit works perfectly in classical gravity, ac-
counting for 1/c corrections might be subtle and require modifications. Indeed, since
LI/LII = cI/cII, we cannot disregard transmission effects across the thin brane while keeping
1/cII contributions.

3 Correlation functions of heavy operators in ICFT

This section will provide a detailed review of the geodesic approximation [53] for bulk scalar
field correlation functions (e.g. 〈φ(x)φ(y)〉) and boundary ICFT correlators (e.g.
〈O(x)O(y)〉). In particular, we derive below that, absent scalar field interactions localized
at the brane between AdSI and AdSII, the two-point function is computed by the geodesic
in the large mass limit. Some of the relevant geodesics cross the brane: we point out that
they are continuous and once differentiable in the coordinate system which makes the metric
continuous, due to the Israel–Lanczos conditions. Upon taking the BCFT limit, smoothness
of the geodesics will be responsible for Takayanagi’s prescription for computing entanglement
entropy in simple holographic BCFT setups [17].

3.1 Geodesic approximation

Primary operators O with ∆� 1, are dual to scalar fields of mass mL ≈∆, meaning they are
heavy in AdS units. The two point correlation function can thus be estimated using the geodesic
approximation. In the holographic dual of ICFT described above (see figure 1), some geodesics
will inevitably intersect the brane, especially if we are considering correlation functions such
as 〈OI(x)OII(y)〉. We therefore need to understand the geodesic approximation applied to
this case.

Let us begin by briefly reviewing the geodesic approximation in the absence of a brane.
Consider a free scalar field φ of mass m, with Euclidean action

S[φ] =
ˆ

d3 x
p

g
�

1
2

gµν∂µφ∂νφ +
1
2

m2φ2
�

, (3.1)

where gµν is the metric on (Euclidean) AdS3. The two point function is simply the propagator,

〈φ(x1)φ(x2)〉=
ˆ

Dφ(x)φ(x1)φ(x2) e−S[φ] , (3.2)

which can be expressed in the worldline formalism as

〈φ(x1)φ(x2)〉=
ˆ

u(1)= x2
u(0)= x1

Du(τ)De(τ)
Vol(Gauge)

e−S[u(τ),e(τ)] ≡ 〈x2|x1〉 , (3.3)

(see e.g. [54,55]). In the equation above

S[u(τ), e(τ)] =
ˆ 1

0
dτ

�

u̇2

2e
+

m2e
2

�

(3.4)

is the worldline action,
u̇2 = gµν(u)u̇

µu̇ν (3.5)

and e(τ) is an einbein along the wordline. One way to see that this functional integral is
designed to give us the propagator is to look at the constraint equation that arises from varying
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S with respect to e(τ):5

H ≡ gµν(u)pµpν +m2 = 0 , pµ ≡ i
∂ L
∂ u̇µ

. (3.6)

Upon canonically quantizing the theory, H will be promoted to an operator, and the above
constraint tells us that

〈x2|H|x1〉= Ĥ〈x2|x1〉= 0 , (3.7)

where Ĥ is a differential operator. Determining the form of Ĥ by canonically quantizing the
classical expression (3.6) will generally suffer from ordering ambiguities due to the coordinate
dependence in the background metric gµν. Luckily, braver souls have attempted this before
us [56,57]. Moreover we expect by general covariance that:

Ĥ = −�x1,2
+m2 , (3.8)

where � is the Laplacian for the metric gµν and the coordinate it acts on depends on if it is
taken to act to the right or to the left in (3.7). Taken together this means our worldline path
integral is a generally covariant expression for a propagator from x1 to x2 on the background
gµν.

6

Alternatively, we can integrate out the einbein entirely, leaving us with the standard
Nambu-Goto action along the worldline, meaning our two-point function can be expressed
as:

〈φ(x1)φ(x2)〉=
ˆ

u(1)= x2
u(0)= x1

Du(τ) e−m
´ 1

0 dτ
p

u̇2
. (3.9)

This latter expression admits a saddle point approximation in the limit of large mass:

〈φ(x1)φ(x2)〉 ∼
∑

P
e−mdP (x1,x2) , (3.10)

where P is the set of geodesic paths connecting x1 and x2 and dP(x1, x2) is the length of
the trajectory. To connect this calculation to that of a CFT two-point function for a primary
operator of dimension ∆, we identify

m2 L2 =∆(∆− 2)≈∆2 (3.11)

and

〈O(x1)O(x2)〉= lim
z1,z2→0

1

z∆1 z∆2
〈φ(x1)φ(x2)〉 , (3.12)

where we have used the notation x1 ≡ (z1, ~x1) and similarly for x2 in the Poincaré coordinates
of (2.17).

3.2 Scalar field on a thin-brane background

The case we are interested in deals with a scalar field on a background that has a thin brane
between MI and MII. Let us denote the scalar field as φI(x) if x ∈MI and φII(x) if x ∈MII.
The Euclidean action for the scalar field can now be written as:

S[φ] =
ˆ
MI

d3 x
p

g
�

1
2

gµν∂µφI∂νφI +
1
2

m2φ2
I

�

+
ˆ
MII

d3 x
p

g
�

1
2

gµν∂µφII∂νφII +
1
2

m2φ2
II

�

. (3.13)

5The extra factor of i in the definition of pµ stems from our choice of a Euclidean target space.
6The correct delta function at coincident points is also accounted for by eq. (3.3), as can be seen for instance

by going to a locally inertial frame when the two insertions are close, and comparing to the flat space version of
the world-line path integral. The latter explicitly gives the expected (p2 +m2)−1.
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Varying the above action produces the following boundary term at the brane:

δS[φ] =
ˆ

d2 y
p

h (δφI∂nφI −δφII∂nφII) , (3.14)

where y parameterizes the coordinates along the brane, hµν is the induced metric on the brane,
and nµ a unit normal to the brane (such that ∂n ≡ nµ∂yµ). This contribution vanishes if we
set, for example, decoupled Dirichlet or Neumann boundary conditions. However, we want
to identify the scalar field across the brane, meaning we impose that the field configuration is
continuous across the surface, thus we cannot independently vary φI and φII along the brane.
Vanishing of (3.14) therefore requires that the normal derivatives also be equal. In formulas:

φI(y) = φII(y) , ∂nφI(y) = ∂nφII(y) . (3.15)

With these boundary conditions we can reconsider the discussion above for the scalar field in
AdS3. Since the dynamics of a scalar field in each space is given by a second order (partial)
differential equation, (3.15) implies that φI(x) and φII(x) can naturally be extended to a
global scalar field φ(x) defined on the spacetime MI ∪MII, with:

φ(x)
�

�

�

x∈AdSI

= φI(x) , φ(x)
�

�

�

x∈AdSII

= φII(x) . (3.16)

Moreover, based on the general arguments above, the propagator of this global field φ(x) can
again be computed in the worldline formalism:

〈φ(x1)φ(x2)〉 ∼
∑

P ′
e−mdP′ (x1,x2) , (3.17)

whereP ′ is a path in MI∪MII that can, in principle, cross the brane many times. Indeed, away
from the brane, the same argument as in the previous subsection ensures that eq. (3.17) solves
the Klein-Gordon equation. At the location of the brane, we only have to check the boundary
conditions (3.15): we will show in the next subsection that geodesics across the interface
precisely obey them. However, since the AdS scale jumps across the brane, we deduce that
this scalar field is dual to operators of different conformal dimensions in the CFTI,II, namely:

m2 L2
I,II =∆I,II(∆I,II − 2) . (3.18)

Taking this into account, the correlation function of, for instance, operators placed on either
side of the boundary can be read off from the bulk formula using:

〈OI(x1)OII(x2)〉= lim
z1,z2→0

1

z∆I
1 z∆II

2

〈φI(x1)φII(x2)〉 . (3.19)

Analogously to the rules familiar from the usual AdS/CFT dictionary, the setup can be
generalised beyond the simple gluing condition (3.15). We could have considered adding
scalar field self-interactions localized on the brane, as was considered in [58]. For instance,
we could add to the effective action for the field φ a polynomial term of the formˆ

S
d2 y

p

h V
�

φ,∇φ
�

⊂ Sbrane , (3.20)

then the interactions present in V (φ) will affect the correlation functions. For example, a
tadpole in V (φ) would generate non–trivial correlation functions between φ(x) on the con-
formal boundary and on the brane. Or similarly, if V (φ) includes a φn interaction, then one
would need to include the appropriate n-point vertices on the brane and fix their positions by
minimizing the length of the incident geodesics. We do not analyze these cases in this paper,
especially because we will be ultimately interested in the application of the formalism to the
computation of entanglement entropy, where the need for computing geodesics arises from
the Ryu-Takayanagi prescription, rather than from a specific form of the scalar potential.
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3.3 Continuity and smoothness of the geodesic crossing the brane

Let us try and understand the implications these considerations have when the geodesic ap-
proximation is valid. We will now show that the Israel–Lanczos conditions imply that the
geodesics are continuous and once differentiable across the brane (and hence in the class C1).
As discussed in the previous subsection, these are the only saddles contributing in the worldine
formalism, as long as eq. (3.15) holds, and in the absence of localized couplings along the
brane.

Taking inspiration from [59], let us introduce a system of coordinates in a neighborhood
of the interface S such that the local topology of spacetime is R×S in MI ∪MII. Specifically,
this parametrization can be constructed using the set of geodesics labeled by a function λ(xµ)
such that the locus λ= 0 lies on the surface S. Moreover, these geodesics will be constructed
and such that their first derivative is normal to S. Thus the function λ(xµ), appropriately
normalized, defines the proper distance (with sign) of the point xµ from the surface S. The
unit normal to the brane, up to a normalization, is then

nα = ∂αλ
�

�

�

λ=0
. (3.21)

Using the Heaviside θ–function, the metric on MI ∪MII in the vicinity of S can then be
conveniently written as

gαβ = θ (λ)g
I
αβ + θ (−λ)g

II
αβ , (3.22)

where we remind the reader that g I,II
αβ

are the metrics on either side of the brane. The derivative
of the metric is then

∂γgαβ = θ (λ)∂γg I
αβ + ∂γθ (λ)g

I
αβ + θ (−λ)∂γg II

αβ + ∂γθ (−λ)g
II
αβ

= θ (λ)∂γg I
αβ + θ (−λ)∂γg II

αβ +δ(λ)(g
I
αβ − g II

αβ)nγ . (3.23)

The first Israel–Lanczos condition,

g I
αβ − g II

αβ

�

�

�

λ=0
= 0 , (3.24)

removes the δ–discontinuity from (3.23), leaving only step–like ones. Consequently, the con-
nection

Γµνρ =
1
2

gµα(∂νgαρ + ∂ρ gαν − ∂αgνρ) , (3.25)

is at most step-wise discontinuous, while the Riemann curvature

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓµνρ + ΓµραΓανσ − ΓµσαΓανρ , (3.26)

has a δ–like discontinuity, required to satisfy the Einstein equations (since the stress–energy
tensor has itself aδ–discontinuity at the brane). However, we can deduce from the the geodesic
equation,

d2 xµ

dλ2
+ Γµνρ

dxν

dλ
dxρ

dλ
= 0 , (3.27)

that the absence of a δ–like discontinuity in the connection implies that both the geodesic and
its derivative must be continuous. The upshot of this discussion, as we will show, is that since
boundary-anchored geodesics are continuous and smooth, they satisfy very simple geometric
conditions. In the next section we will show how to solve the simple geometrical problems
associated with finding various different boundary-anchored geodesics.
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3.4 A panoply of geodesics

Let us begin with a few facts about geodesics in locally AdS spacetimes. In Poincaré coordi-
nates, geodesics minimize the action functional

ˆ
ds

L
z(s)

√

√

√

�

dτ
ds

�2

+
�

d x
ds

�2

+
�

dz
ds

�2

, (3.28)

and it is straightforward to show that constant-τ geodesics trace out circular arcs:

�

x −
σ1 +σ2

2

�2
+ z2 =

�σ1 −σ2

2

�2
, (3.29)

parametrized by their endpoints on the cutoff surface boundary at x = σ1,2 and z = 0. Impor-
tantly these circles are centered along the conformal boundary at z = 0.

3.4.1 Brane-crossing geodesics at equal-time

We now have everything in place to compute the geodesic distance between points on either
side of the defect. For simplicity we will first take them to lie at equal time τ= τ′ = 0, but will
generalize to arbitrary times later. The distance of the two points from the interface on the
conformal boundary is denoted as σI and σII respectively. A pictorial representation of such a
geodesic is shown in figure 5. This case was considered before, see [60,61].

Our task is to find a continuous and smooth geodesic that lands on the boundary at partic-
ular marked points. But we have just argued that geodesics in AdS3 are circles centered along
the conformal boundary. Therefore, finding the length of the geodesic in figure 5 is equivalent
to finding two circular arcs that smoothly connect the boundary endpoints through the brane.

ψII

ψI

P

Q

θ
ϕ

B

A

S

O
σII

σI

Figure 5: The smooth geodesic through the brane that connects two points on differ-
ent CFTs which are respectively σI and σII away from the defect.

Let us denote by A and B the centers of the two circular arcs along their respective bound-
aries, as shown in figure 5. We will work this out specifically for the case where σI ≤ σII, but
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the result (3.48) is independent of this choice, as required by conformal invariance. Recall
that these boundaries intersect at an angle along their common interface. The smoothness
condition imposes that these circular arcs meet at a point S on the brane that lies along a line
that goes through both A and B. To compute the length of the arcs we then need to compute
the angles θ and ϕ which subtend these arcs, and the radii of the circles AP and BQ. First
notice that

ÕAOB =ψI +ψII . (3.30)

Then, considering the angles of the triangle 4AOB we get

ϕ = π+ψI +ψII − θ . (3.31)

The law of cosines applied to this triangle gives

OB
2
= OA

2
+ AB

2
+ 2 ·OA · AB · cos(θ ) , (3.32)

while the law of sines leads to:

OB · sin(ψI +ψII) = AB · sin(θ ) . (3.33)

On the other hand, looking at the triangle 4OBS, the law of sines yields

OS cos(ϕ −ψI) = OB sin(ϕ) , (3.34)

while the law of cosines applied to this triangle gives:

OS
2
= OB

2
+ BS

2
− 2 ·OB · BS · cos(ϕ) . (3.35)

We denote by r the radius of the arc in AdSI (blue region) and by R the radius of the arc in the
green AdSII (green region). Thus:

AP = AS = R , and BQ = BS = r . (3.36)

We also note the relations

OA= σII − R , OB = r −σI , AB = R− r . (3.37)

Recall that in our notation σI,II are positive quantities denoting distances along the boundary
from the interface at O. Using (3.31) along with the two relations (3.33)-(3.34), we can write

R= r+(r−σI) sin(ψI+ψII) csc(θ ) , OS = (r−σI) sin(ψI+ψII−θ ) sec(θ −ψII) . (3.38)

Plugging these into the remaining two equations gives

(r −σI) [(r −σI) sin(ψI +ψII) + (r −σII) sin(ψI +ψII)] sin(ψI +ψII)

= (σI +σII − 2r)(σI −σII) cos2
�

θ

2

�

, (3.39)

and

r2 + (r −σI)
�

(r −σI) cos(ψI) cos(2θ −ψI − 2ψII) sec2(θ −ψII) + 2r cos(θ −ψI −ψII)
�

= 0 . (3.40)

We now have two equations in the remaining two unknowns (r,θ ). Being quadratic equations
in r, it is important that we keep certain limits in mind when selecting the correct solution
branch. Namely, when ψI =ψII = 0, we expect:

r = R=
σI +σII

2
, cos(θ ) =

σI −σII

σI +σII
, ψI,ψII→ 0 . (3.41)
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The solutions to (3.39) and (3.40) that satisfy (3.41) are:

r =
1
2

csc
�ϕ

2

�

sec
�

ψI +ψII

2

�

�

σII cos
�

θ

2

�

−σI cos
�

θ

2
+ϕ

�

�

, (3.42)

R=
1
2

csc
�

θ

2

�

sec
�

ψI +ψII

2

�

�

σI cos
�ϕ

2

�

−σII cos
�ϕ

2
+ θ

�

�

. (3.43)

Setting (3.42) equal to (3.43) (recalling that ϕ = π + ψI + ψII − θ) along with a healthy
amount of massaging gives us the following equation for θ :

σI cos
�

θ −
ψI + 3ψII

2

�

+σII cos
�

θ +
ψI −ψII

2

�

= (σI −σII) cos
�

ψI −ψII

2

�

. (3.44)

Taking σI = σII, one sees that the solution is θ =ψII+
π
2 . More generally, the above equation

can be rewritten as a quadratic equation in cos(θ ), with solution:

cos(θ ) =
cos

�

ψI−ψII
2

�

σ2
I +σ

2
II + 2σIσII cos(ψI +ψII)

×
§

−σ2
II cos

�

ψI −ψII

2

�

+σ2
I cos

�

ψI + 3ψII

2

�

+ 2σIσII sin(ψII) sin
�

ψI +ψII

2

�

−
�

σI sin
�

ψI + 3ψII

2

�

−σII sin
�

ψI −ψII

2

��ª

×

×

√

√

√

√

√





(σI +σII)2 − (σI −σII)2 cos(ψI −ψII) + 4σIσII cos(ψI +ψII)

2 cos2
�

ψI−ψII
2

�



 , (3.45)

and the branch of the square root in (3.45) is selected such that cosθ = − sinψII in the limit
σI = σII.

To convert this data into a geodesic length, recall that, as reviewed in section 2.4, any two
points xµ and x ′µ in AdS3 can be labeled by their embedding coordinates on the hyperboloid:
X A and X ′A where A= 0, . . . 3. The geodesic distance d between any two points is therefore
determined by

−GµνXµX ′ν = L2 cosh
�

d
L

�

. (3.46)

In the Poincaré coordinates of (2.17), we thus have

d = L cosh−1

�

(τ−τ′)2 + (x − x ′)2 + z2 + z′2

2z z′

�

. (3.47)

For the section of the geodesic in AdSI, we can treat the point B as the origin of our coordi-
nates. Thus we want to compute the distance betwen a point at (x , z) = (−r,εI) and the point
(x ′, z′) = (−r cosϕ, r sinϕ), while in the AdSII we want to compute the distance betwen a
point at (x , z) = (R,εII) and the point (x ′, z′) = (R cosθ , R sinθ ), both with τ = τ′. In this
expression we are allowing for the distinct possibility that the CFT duals have different UV
cutoffs. The leading order result as εI,II→ 0 is:

d(σI,σII) = LI log
�

2r
εI

tan
�ϕ

2

�

�

+ LII log
�

2R
εII

tan
�

θ

2

��

, (3.48)

where we remind the reader of the relation (3.31) between θ and ϕ. Notice that when
σII = σI = σ, the geodesic length simplifies to

R= r = σ, ϕ =ψI +
π

2
, θ =ψII +

π

2
, (3.49)

18

https://scipost.org
https://scipost.org/SciPostPhys.13.3.075


SciPost Phys. 13, 075 (2022)

so that

d(σ,σ) = LI log
�

2σ
εI

tan
�

ψI

2
+
π

4

��

+ LII log
�

2σ
εII

tan
�

ψII

2
+
π

4

��

. (3.50)

This is expected, since in this case A and B meet at the origin O in figure 5. Using (2.31), we
can rewrite this as:

d(σ,σ) = ρ∗I +ρ
∗
II + LI log

�

2σ
εI

�

+ LII log
�

2σ
εII

�

. (3.51)

The dramatic simplification of this formula is easy to understand from the point of view of the
dual field theory. Recall that the exponential of the distance computes a correlation function
in the ICFT. When the points are in mirroring positions with respect of the interface, like in eq.
(3.51), the conformal group acts on the correlator in the same way as on a one-point function
in a BCFT. This can be easily seen, for instance, via the folding trick—see e.g. [36]. In turn,
the dependence on the coordinates of a one-point function is completely fixed by symmetry,
and this yields eq. (3.51).

3.4.2 Points on different sides at generic positions and conformal properties

The result of the previous section allows us also to compute the geodesic length between two
points with τ1 6= τ2. Indeed, we can take advantage of the invariance of the geodesic distance
under the isometries. Our main interest lies in the dual CFT, so let us think about the points
on the conformal boundary. It is easy to show [62,63] that knowledge of a two-point function
on the line τ1 = τ2 is sufficient to reconstruct the correlator everywhere. Indeed, there is only
one cross ratio for two points with a flat boundary:

ξ=
(σI −σII)2 + (τI −τII)2

4σIσII
. (3.52)

ξ is positive and vanishes when the operators are in the mirroring position discussed above,
and diverges as one point is brought close to the interface. Specifically, the two-point function
of our scalar primary must take the form

〈O(xI)O(xII)〉=
1

σ
∆I
I σ

∆II
II

g̃(ξ) , (3.53)

with g̃ a function which is not fixed by symmetry. Comparing this equation with eq. (3.17)
and with the extrapolate dictionary (3.19), we see that the geodesic distance (3.48) must take
the form

d(σI,σII) = L1 log
σI

εI
+ L2 log

σII

εII
+ g(ξ) , (3.54)

where

g(ξ) = LI log
�

2r
σI

tan
�ϕ

2

�

�

+ LII log
�

2R
σII

tan
�

θ

2

��

. (3.55)

Consistently, g(ξ) only depends on the ratio σI/σII. Eq. (3.54) encodes the dependence of
the distance, and therefore of the correlator, from generic positions of the endpoints.7 Indeed,
one can invert eq. (3.52) in the τI = τII case, and obtain

σI

σII
= 1+ 2ξ± 2

Æ

ξ(ξ+ 1) . (3.56)

7We are keeping the cutoffs εI and εII fixed. This is the correct procedure to obtain physical correlators in the
CFT. Of course, if one was to apply an AdS isometry to the endpoints of the geodesic, including their Poincaré
coordinate distance from the conformal boundary, the length would stay the same.
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Plugging eq. (3.56) into eq. (3.55), one gets the explicit expression as a function of the cross
ratio. It’s a nice check of eq. (3.48) that the result does not depend on the branch chosen for
the square root. Indeed, swapping branches corresponds to sending σI/σII → σII/σI. This
is a conformal transformation (for instance, an inversion), and is the only invariance which
is not explicit in eq. (3.48). We checked this fact numerically: it would be nice to simplify
eq. (3.48) further to write it as a simple function of ξ. Finally, the correlator (3.53) can be
computed in any configuration by simply evaluating ξ in eq. (3.52) at the desired position.

For completeness, we report the explicit form of a conformal Killing vector which produces
the generic configuration from the τI = τII case. The subgroup of the isometries of AdS which
preserves the position of the brane is simply the one which fixes ρ in the parametrization
(2.15). This is the isometry group of AdS2, which acts on the complex coordinate w = τ+ i y
via the sl(2,R) transformation

w→
aw+ b
cw+ d

, ad − bc 6= 0 , a, b, c, d ∈ R . (3.57)

If c 6= 0, the transformation includes a special conformal transformation on each slice (includ-
ing the conformal boundary). It is easy to check that this isometry will do the job. For instance,
the choice a = d = 1, b = −c = λ generates circular orbits in the (τ, y) plane, as a function of
λ, which leave invariant the point (0,1), as well as the the boundary y = 0.8 Clearly, placing
one operator at σI = 1 and varying the position of the other on the τ = 0 line, we obtain
any configuration, up to a translation and a dilatation. One can easily map the transformation
(3.57) to Poincaré coordinates, if needed, via eq. (2.19). For instance, the special conformal
a = d = 1, b = 0 c ∈ R becomes

x →
x

1+ 2cτ+ c2(τ2 + x2 + z2)
, z→

z
1+ 2cτ+ c2(τ2 + x2 + z2)

, τ→
τ+ c (τ2 + x2 + z2)

1+ 2cτ+ c2(τ2 + x2 + z2)
, (3.58)

which is nothing but a special conformal transformation for the full AdS3 with parameter along
the τ direction.

3.4.3 Points on the same side at τ= 0

In this section we will be interested in CFT two-point functions with operator insertions re-
stricted to one side of the interface. Recall that we have chosen to parametrize our CFTs such
that cI < cII, without loss of generality. This has implications for correlation functions of op-
erators placed in the CFTII region, such as 〈OII(x1)OII(x2)〉. This is because, when LI < LII,
there exist boundary-anchored geodesics such as the one depicted in figure 6, that probe the
geometry behind the brane. However no such geodesic exists for e.g. 〈OI(x1)OI(x2)〉 when
LI < LII.

Proving the existence of such geodesics follows the same logic as before: given points P
and Q, we want to show that there exist continuous and smooth geodesics that can be built
piecewise out of circular arcs centered on the AdS boundary (or its continuation through the
brane). We will instead ask a related question: for each (allowable) choice of the point C and
the angle α defined in figure 6, how many give geodesics that end on the pair of points P and
Q?

Considering figure 6, by simple geometric reasoning we note that (recall that ÕAOB =
ψI +ψII)

ÕBSO = γ−ψII −
π

2
, (3.59)

8The action of this conformal Killing vector is just a rotation of the half sphere obtained as a stereographic
projection of the upper half plane
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OC

B

S

V

A

γ

α

Q

P

σQ
II

σP
II

Figure 6: Geometric construction to find geodesics that explore the space behind the
brane. The point O refers to the origin where the defects lies, not one of the boundary
points of the geodesic.

while
ÕBVS =

π

2
−α+ψII . (3.60)

Since the points S and V lie along a circular arc in the AdSI region, the triangle 4BSV is
isosceles and therefore ÕBSO =ÕBVS, implying that the angles α and γ are related:

γ= π+ 2ψII −α . (3.61)

Moreover, defining:
OQ = σQ

II , OP = σP
II , OC = λ , (3.62)

we note that the point A is entirely determined in terms of λ and α:

OA=
λ sin(α) sin(α+ψI −ψII)

sin(α− 2ψII) sin(ψI +ψII −α)
, (3.63)

and, using elementary geometry, we readily compute the location of the endpoints P and Q
along the boundary in terms of λ and α as well:

σQ
II = λ

�

cos(ψII)
cos(α−ψII)

− 1
�

, σP
II = λ

sin(α) sin(α+ψI −ψII)[cos(ψII) + cos(α−ψII)]
sin(α− 2ψII) sin(ψI +ψII −α) cos(α−ψII)

. (3.64)

Given the external data {σQ
II ,σ

P
II}, we would like to determine the allowed set of λ and α that

satsify (3.64). Going forward, it will be convenient to parametrize α as :

α=ψII + cos−1
�

cos(ψII)
1+ s

�

, (3.65)
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Figure 7: The solutions s∗1,2 for ψI = 1.5 and ψII = 0.5. Recall that Θ ≡ σP
II

σQ
II
≥ 1.

For Θ large enough there are always two geodesics that connects them of the kind of
figure 6.

for s > −1+ cos(ψII). The geometric interpretation of s is clear plugging this parametrization
into the first equation in (3.64), which gives λ = σQ

II/s. Notice that λ > 0 must hold for
ψII ∈ [0,π/2], thus our parameter s is valued in:

s >

¨

0 , ψII ∈ [0,π/2] ,
−1+ cos(ψII) , ψII ∈ [−π/2, 0] .

(3.66)

Substituting this into the second equation in (3.64) we obtain

Θ ≡
σP

II

σQ
II

= −
(s+ 2)

s
(1+ 2s(s+ 2)) cos(ψI)− cos(ψI + 2ψII) + 2sin(ψI +ψII)

p

(1+ s)2 − cos2(ψII)

(1+ 2s(s+ 2)) cos(ψI)− cos(ψI + 2ψII)− 2sin(ψI +ψII)
p

(1+ s)2 − cos2(ψII)
. (3.67)

In figure 7, we plot a contour in the Θ − s plane that satisfies (3.67) for given ψI,II. We note
that for Θ sufficiently large, there are two branches of solutions, which we denote by by s∗1 and
s∗2, meaning that there exists either two geodesics of the type depicted in figure 6 for a given
set of endpoints, or none.

Since we have taken LI < LII we expect paths of the type in figure 6 to exist by virtue of
trying to take a shortcut through the spacetime that is more highly curved. Interestingly, no
solutions to (3.67) exist if we take ψII > ψI, meaning that the above analysis above actually
shows that no such geodesics exist for LI > LII.

The geodesics found in this section also have a natural interpretation in the BCFT limit of
our setup, which we explore in Section 5.3. Recall that this limit consists of taking LI/LII→ 0,
thus these saddles should, in principle, exist. Indeed, in holographic BCFT setups one of-
ten finds disconnected geodesics (as well as reflecting ones) which contribute to correlation
functions, as has been noted in [58]. In Section 5.3 we reinterpret such connected and dis-
connected contributions as a limit of the ICFT geodesics that cross the brane. The reader may
consult Appendix A for a computation of the length of these geodesics.

Saddles with more brane crossings: We have only touched on the possibility of geodesics
that cross the brane at most twice. One may also consider paths that cross the brane more
times. However, their existence is not general, and they may appear only for specific regions
of the parameter space. Moreover, the length of these geodesics is always bigger than the
saddles found above. We can prove this formally. Let I be the set of points in which the path
P crosses the brane. If the cardinality card(I) ≥ 3, there is always a pair of points in I that
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are connected by an arc that lies in the AdS with smaller curvature. However, there always is
another geodesic stretching between the same two points and lying in the other AdS. The new
path P ′, obtained by performing this replacement, is shorter.9 This means that such paths
do not contribute to the computation of entanglement entropies or correlation functions at
leading order.

4 Entanglement entropy and the island formula

In this section, we compute the entanglement entropies of various subsystems of the baths de-
picted in figure 2, and their time evolutions according to different choices of the Hamiltonian.
We shall analyze in detail the cases of two semi-infinite subsystems in the vacuum—subsection
4.1—and in the thermofield double state—subsection 4.2.

By repeating the computation in the intermediate perspective of figure 1, we will show that
the island formula of [6,64] coincides with the Ryu–Takayanagi prescription, in the limit when
the tension is large and gravity on the brane is weakly coupled. This idea is not new [9, 14],
but the present context allows to exhibit it quantitatively. In particular, rather than just finding
agreement between the two sides in the leading cutoff dependent term, we find a detailed
match, including cases where the dependence on the position of the entangling surface is not
fixed by symmetry. Furthermore, the RT and the island formulas agree at the level of universal,
physical quantities. Our main example is the Page time, which is independent of the infinite
entanglement entropy of the QFT vacuum.

At the technical level, we perform the computations by putting to good use the formalism
developed in section 3. While for the correlation functions the geodesic approximation relies
on the operators being heavy, the RT prescription in AdS3 precisely instructs us to compute
geodesics homologous to the entangling surface, which consists of two points.10 Let us also
emphasize that the standard RT prescription is invoked here, where both endpoints of the
geodesic are on the boundary. This is a nice conceptual gift of the ICFT setup: the island
formula follows from a rigorously proven tool [65], rather than from its well established by
still conjectural extension [17] to BCFT. Nevertheless, in section 5 we shall partly bridge this
gap by recovering the BCFT rule as a limit of the ICFT one.

4.1 Semi-infinite intervals in the vacuum

Let us start by asking the following question. What is the von Neumann entropy of the density
matrix obtained from the vacuum state of the system in figure 2 by tracing over the conformal
interface and a part of the two baths? Specifically, we choose the entangling surface to be
composed of two points at distances σI and σII from the defect respectively, as depicted on
the left panel of figure 8.

The answer in the large c limit is given by the RT formula [66]:

SσI ,σII
=

d(σI,σII)
4G(3)

, (4.1)

where d(σI,σII) is the length of the geodesic depicted in figure 8. Using eq. (3.48), one finds

SσI ,σII
=

cI

6
log

�

2r
ε

tan
�ϕ

2

�

�

+
cII

6
log

�

2R
ε

tan
�

θ

2

��

, (4.2)

9Although in general P ′ is not an extremizer because it’s not C1.
10See also the discussion at the end of subsection 5.1.
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y∗
Island

AdS2

y∗

σI

CFTI

CFTII

σII

Figure 8: In the spirit of double holography we can interpret the geodesic of Figure
5 in a a two dimensional perspective. In particular we can integrate out the bulk
degrees of freedom and consider the induced effective action on the brane. Then, the
bulk geodesic can be interpreted as the island in the intermediate two dimensional
picture. In particular, for large values of the tension, one can prove that the point
where the geodesic of Figure 5 crosses the brane is the position where the island
appears minimizing the 2d generalized entropy.

where the dependence on σI and σII is through r, R, θ and ϕ. The explicit expressions can
be found in eqs. (3.31,3.42,3.43,3.45), while the geometric meanings of these parameters are
clear from figure 5, where r = BQ and R= AP.

Eq. (4.2) is complicated in general, but it becomes transparent if we take σI = σII = σ. In
this case, as remarked in subsection 3.4, conformal symmetry is more constraining, and forces
the σ dependence to simplify—see eq. (3.50):

Sσ =
cI

6
log

2σ
ε
+

cII

6
log

2σ
ε
+
ρ∗I +ρ

∗
II

4G(3)
. (4.3)

Subtracting the bulk contribution off, we read the interface entropy

Sint =
ρ∗I +ρ

∗
II

4G(3)
. (4.4)

Let us now reinterpret eq. (4.2) from the point of view of the ‘brane+baths’ system. As
advocated in the introduction, we should expect a simple picture to emerge in the large tension
limit of eq. (2.32):

T → Tmax . (4.5)

The brane is pushed towards the boundary—see eq. (2.35)—and the isometries of AdS3 act as
conformal transformations on points of the brane. In other words, the theory on the brane is
now a CFT coupled to a (weakly) fluctuating metric, deformed by a UV cutoff which behaves
locally like the standard cutoff of Poincaré AdS. The nature of the CFT on the brane also follows
from the geometry. Integrating out the bulk on either side, we end up, by symmetry, with two
copies of the Polyakov action with central charges cI and cII. All in all, we have two holographic
CFTs, each defined on the whole real line. On half of the line, the CFTs are decoupled and
live on a frozen conformally flat metric. On the other half, the CFTs still interact through the
common metric, as it is clear from the fact that the transmission coefficient does not vanish
even when the tension is the maximal one [42]. It would be interesting to compute energy
transmission and reflection in the ‘brane+baths’ picture.

24

https://scipost.org
https://scipost.org/SciPostPhys.13.3.075


SciPost Phys. 13, 075 (2022)

With this in mind, it is easy to realize what the geodesic in the left panel of figure 8 com-
putes. The arc on either side is an RT surface for CFTI and CFTII respectively. It computes the
entanglement entropy of two intervals stretching between σI/II respectively and y∗. Also, re-
call that the value y∗ can be obtained by minimizing the length of all the curves which join σI
to σII, are piecewise geodesics, and pass through a point y on the brane. These entropies can
be computed via the universal CFT formula [67]. However, it pays off to be careful with the
role of the cutoff. At the points σI/II, we should of course maintain the uniform cutoff ε used
so far. On the brane, the cutoff, chosen again as the coordinate distance from the boundary of
AdS in Poincaré coordinates, is point dependent, and easily seen to be εbrane(y) = y cosψ.11

Explicitly, we expect to find

SσIσII
∼min

y

�

cI

6
log

�

(y +σI)2

y ε
1

cos(ψI)

�

+
cII

6
log

�

(y +σII)2

y ε
1

cos(ψII)

��

≡ Sisland , T → Tmax . (4.6)

This is, remarkably, the island formula [6, 9, 68–70]. Indeed, the quantity to minimize is a
special case of the generalized entropy:

Sgen =
A(∂ I)
4GN

+ SvN(I ∪ R) , Sisland =min
y

Sgen , (4.7)

where I is the island and R the region of the bath whose entanglement entropy we want to
compute. In the present case, the island is the region highlighted in blue in figure 8, and the
area term is missing because there is no Hilbert-Einstein term, nor a dilaton, on the brane.

Eq. (4.6) can be verified explicitly, also making precise how many terms in an expansion
in (T → Tmax) can be matched. The equation

∂ySgen = 0 ⇒
2cI

y +σI
−

cI

y
+

2cII

y +σII
−

cII

y
= 0 , (4.8)

implies that the minimum, i.e. the position of the quantum extremal surface (QES), is at

y∗ =
(cI − cII)(σI −σII) +

p

(cI − cII)2(σI −σII)2 + 4σIσII(cII + cII)2

2(cI + cII)
. (4.9)

Notice that the second solution of the quadratic related to (4.8) is always negative and y∗ must
be positive, so we disregard it. In the limit T → Tmax, it can be checked that the position of the
island y∗ approaches the point where the geodesic in the bulk crosses the brane. Moreover,
the equality (4.6) is verified. Ideed, writing the tension of the brane as in eq. (2.33):

T2 =
1

L2
I

+
1

L2
II

+
2−δ2

LI LII
, (4.10)

in the δ→ 0 limit one finds

cos(ψI) =
LI

LI + LII
δ+O(δ2) , cos(ψII) =

LII

LI + LII
δ+O(δ2) , (4.11)

and the minimum of the generalized entropy can be expanded as

Sisland = −
cI + cII

6
log(δ) +

cI

6
log

�

(y∗ +σI)2

y∗ ε

�

LI + LII

LI

�

�

+
cII

6
log

�

(y∗ +σII)2

y∗ ε

�

LI + LII

LII

�

�

+O(δ) . (4.12)

The 3d bulk computation (4.2) agrees with this result up to terms which vanish as δ → 0.
This agreement is quite remarkable—we have matched a nontrivial formula (not fixed by
symmetry) in ICFT using the QES prescription in the 2d braneworld, giving strong evidence
of the validity of this formula in the setting of 2d gravity.

11Alternatively, one can think of the theory on the brane to live in AdS2, and keep into account the appropriate
Weyl factor, but, for consistency, no additional cutoff.
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CFTI CFTII

(4.14) CFTI

CFTII

(4.13)

Figure 9: Series of transformations which map the ICFT from the plane to the cylin-
der. The thermofield double state is obtained by cutting open the Euclidean path
integral in the last picture along a vertical plane passing through the origin.

4.2 Black hole evaporation in double holography and AdS/ICFT

The same ideas can be applied in the context of the black hole information paradox in which the
radiation is collected in semi–infinite intervals [6,9,68–70], or in finite subregions [71]. The
simplest setup consists of the thermofield double state, which is connected to the vacuum by a
conformal transformation, as it is shown in figure 9. This approach was originally presented in
[10] in the case of AdS/BCFT, using the RT prescription. Here we will extend this computation
to the case of AdS/ICFT,12 and we will complement it with the two dimensional computation
in the intermediate picture. Again, this will allow us to derive the island formula from the
RT prescription. The agreement between the two perspectives, in this case, is all the more
relevant, because it implies that a UV finite quantity, the Page time, can be matched exactly.

Let us review the basic idea. On the conformal boundary, the thermofield double state
is prepared by the Euclidean path integral on half of the infinite cylinder, with the defect
running along the circle—see figure 10. The initial condition for the Lorentzian evolution
consists therefore of two copies of the system in figure 2, whose state is entangled. Tracing
over one of the copies, we get a thermal state for the other. The holographic dual to this state
contains an eternal black string in AdS3 [73], which crosses the brane and induces a horizon
on it as well. The Lorentzian geometry is sketched in figure 11.

It is important to emphasize that Lorentzian time evolution on the two boundaries is ob-
tained by Wick rotating the generator of the rotation on the circle, as appropriate for a finite
temperature system. In figure 11, the corresponding Killing vector moves time ‘upward’ in the
left asymptotic region and ‘downward’ in the right one.

The simplest quantum-information theoretic quantity to compute in this system is the en-
tanglement entropy of the density matrix obtained tracing over both copies of the quantum
dot. In the ‘brane+bath’ perspective, this is the entropy of the Hawking radiation deposited
in the baths by the AdS2 black hole. In this case we have four twist operators and not two,
since we have doubled the system: they are marked with red dots in figures 10, 11 and 12.
For simplicity, we choose them to lie all at the same distance from the quantum dots.13 The
time evolution we are interested in evolves ‘upward’ in both copies of the system. This is not a
symmetry, and the entanglement entropy is time dependent. In particular, since the quantum

12In the recent paper [72] a related construction is used. In that case, the compact spatial direction in the two
copies of the bath forces the two CFTs to be the same.

13The symmetries of the problem are then the same as in the BCFT case treated in [10], and the 3d computation
is expected to match. Furthermore, the comparison to the island formula was presented for this case in [15].
However, using formulas from section 3, one can extend the result to the asymmetric case. In particular, the island
phase is technically identical to the computation presented in subsection 4.1. Hence, the match to the island
formula is guaranteed in the most general case.
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q2
IIq2

I

u0−u0

q1
IIq1

I

β

Figure 10: Thermofield double state of the system considered. The red dots are the
twist operators. To obtain the Lorentzian evolution, one has to cut the cylinder at
vE = 0 and vE =

iβ
2 , and then perform the Wick rotation vE = iv.

dot has finite thermodynamic entropy, the radiation cannot increase the entropy in the baths
indefinitely.

As promised, we will compute such entropy in two ways: both using RT surfaces in three
dimensions and using the island prescription in two dimensions, as it is sketched in figure 11.
As in the previous section, we expect the two entropies to match in the limit of large tension,
and that an island in two dimensions forms when the two RT saddles exchange dominance
(the Page time tP). Moreover, the points where the blue geodesics in figure 11 cross the brane
are the boundaries of the island in two dimensions.

It is also useful to conformally map the CFTs from the cylinder to flat space. The Euclidean
path integral now is done with the defect placed on a circle of length l, which is an arbitrary
scale. Later it will only appear in a dimensionless combination with the UV cutoff ε, and cancel
out from universal quantities like the Page time. The transformation is

p = l e
2π
β q , (4.13)

where p = x̃ + iτ̃ is the complex coordinate on the plane and q = u+ ivE is the complex coor-
dinate on the cylinder, such that vE ' vE + β , as depicted in figure 10. Later we will consider
only the Lorentzian evolution obtained by the Wick rotation vE = iv. Correlation functions
in the planar geometry can be computed by conformally mapping the circle to a straight line
and using the results of section 3. The analytic continuation to real time described above now
turns the defect into a hyperbola, and stationary observers in the thermofield double state lie
on hyperbolic trajectories on the plane. This coordinate system is depicted in the left panel of
figure 12. In details, we can connect the geometry of the previous section (coordinates x and
t) with the one of this section (coordinates x̃ , t̃ in Lorentzian) with the AdS isometry which
acts on the boundary by turning the flat interface into a circle. Explicitly,

x̃ i =
x i −

x2
i + z2

i − t2
i

2l

1−
x i

l
+

x2
i + z2

i − t2
i

4l2

+ l ,

z̃i =
zi

1−
x i

l
+

x2
i + z2

i − t2
i

4l2

, t̃ i =
t i

1−
x i

l
+

x2
i + z2

i − t2
i

4l2

. (4.14)

Notice that we are already in Lorentzian signature. In these coordinates the brane is the locus
of points

x̃2
I − t̃2

I + (z̃I − l tan(ψI))
2 =

l2

cos2(ψI)
, (4.15)
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on side I of the brane, and

x̃2
II − t̃2

II + (z̃II + l tan(ψII))
2 =

l2

cos2(ψII)
, (4.16)

on side II. The brane ends on the conformal boundary along the hyperbola depicted in figure
12. As announced above, we take the twist operators at the same distance −u1,2

I = u1,2
II = u0

in the cylinder geometry of figure 10. Their Lorentzian trajectories in the planar geometry are

x̃I(q
1
I ) = le−

2π
β u0 cosh

�2π
β

v
�

, t̃I(q
1
I ) = le−

2π
β u0 sinh

�2π
β

v
�

, (4.17)

x̃II(q
1
II) = le

2π
β u0 cosh

�2π
β

v
�

, t̃II(q
1
II) = le

2π
β u0 sinh

�2π
β

v
�

, (4.18)

x̃I(q
2
I ) = −le−

2π
β u0 cosh

�2π
β

v
�

, t̃I(q
2
I ) = le−

2π
β u0 sinh

�2π
β

v
�

, (4.19)

x̃II(q
2
II) = −le

2π
β u0 cosh

�2π
β

v
�

, t̃II(q
2
II) = le

2π
β u0 sinh

�2π
β

v
�

. (4.20)

The length of the orange geodesics in figure 11 and 12 grows with v as

Splane
early =

cI

3
log

�

2l
ε

e−
2π
β u0 cosh

�2π
β

v
�

�

+
cII

3
log

�

2l
ε

e
2π
β u0 cosh

�2π
β

v
�

�

∼
cI + cII

3
2π
β

v , (4.21)

thus linearly in time after a short transient. To express this result in the coordinates of the
cylinder, we have to take into account that the transformation (4.13) generates a Weyl factor
between the metric on the plane and on the cylinder, namely

ds2
plane = dp dp̄ = l2

�

2π
β

�2

e
2π
β (q+q̄) dq dq̄ = Ω2(q, q̄)ds2

cyl . (4.22)

Taking this into account, the entropy in the cylinder geometry reads

Scyl
early =

cI + cII

3
log

�

β

πε
cosh

�

2π
β

v
��

∼
cI + cII

3
2π
β

v , (4.23)

This saddle dominates at early time, and does not cross the brane: eq. (4.23) is independent
of the tension T . In terms of the conformal block decomposition of the correlator of twist
operators, it is obtained by only keeping the identity operator in the fusion of each pair on
either side of the interface. Notice moreover that the dependence on the position of the twist
operators (namely u0) drops from the final form. This is due to the fact that this saddle is in-
sensitive to the presence of the defect, which is the only source of breaking of the translational
symmetry of the cylinder.

On the other hand, the island saddle can be obtained by appropriately transforming the
one obtained in the vacuum in the previous subsection. Applying the transformation (4.14)
on eq. (4.3), accounting for the second pair of twist operators and appropriately transforming
the cutoffs, we get for the entropy of the blue geodesics

Splane
late =

cI

3
log

�

l
ε

e
4π
β u0 − 1

e
4π
β u0

�

+
cII

3
log

�

l
ε

�

e
4π
β u0 − 1

�

�

+
ρ∗I +ρ

∗
II

2G(3)
. (4.24)

Taking into account the same Weyl transformation (4.22), we get

Scyl
late =

cI + cII

3
log

�

β

πε
sinh

�

2π
β

u0

��

+
ρ∗I +ρ

∗
II

2G(3)
. (4.25)
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Figure 11: The information paradox for the thermofield double state. Left: the com-
putation of the entanglement entropy of the radiation region using RT surfaces. The
orange lines are the RT saddles that dominate at early times, in which the entropy
increases linearly in time. The blue lines are the RT saddles that cross the brane, and
are constant in time, thus saturate the entanglement entropy. The gray line is the
island. Right: the same computation in the two dimensional perspective using the
generalized entropy formula. The blue dots represent the QES, and the blue line is
the island.

This saddle is constant in v and dominates at late times. The result depends on the boundary
entropy and on the position of the twist operators, as expected. Moreover, since we are con-
sidering a doubled system, the saturation is close to twice the interface entropy, provided we
place the twist operators sufficiently close to the defect. In this case the interface entropy can
thus be interpreted as twice the black hole entropy.

The Page curve is shown in Figure 12 (right), in which we can distinguish an early rising
phase and a saturation phase. The exchange of dominances is at the Page time, defined as

Scyl
early(vP) = Scyl

late , (4.26)

and this is a renormalization scheme independent quantity, as it can be checked by the fact
that the cutoff ε drops out when equating eqs. (4.23) and (4.25). Explicitly we find

vP =
β

2π
cosh−1

�

sinh
�

2π
β

u0

�

exp
�

6Sint

cI + cII

��

, (4.27)

where we remind the reader that

6Sint

cI + cII
=
ρ∗I +ρ

∗
II

LI + LII
. (4.28)

In the limit of large boundary degrees of freedom, Sint� cI + cII, for a fixed u0 this becomes

vP =
β

2π
cosh−1

�

sinh
�

2π
β

u0

��

+
3β
π

Sint

cI + cII
, (4.29)

in which we notice that the page time depends linearly on the ratio between Sint and cI + cII.
Thus in this limit, which is the one in where we will be able to match the 2D picture, the Page
time is long with respect to the parameter β . Moreover, in the limit where u0 ¦ β this further
simplify into

vP = u0 +
3β
π

Sint

cI + cII
. (4.30)
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x̃

t̃

∼ 2Sint ≡ 2SBHLorentzian

Euclidean

10 20 30 40 50 60
v0

20

40

60

80
S

Figure 12: Left: the system in the planar thermofield double state (in Lorentzian
signature). The brane (dark blue) becomes an hyperboloid, and the red dots during
the dynamics follow hyperbolic trajectories. The orange RT surfaces are dominant at
early times, and the entropy increases linearly. The blue RT surfaces are dominant at
late times, and the entropy is constant. Such geodesics are the corresponding island
saddle in the two dimensional perspective. Right: the dynamics of the entanglement
entropies in time corresponding to the different RT surfaces (orange and blue), in
the cylinder coordinates. The total entanglement entropy is always the smaller be-
tween (4.23) and (4.25), thus it increases (approximately) linearly until it saturates
at (approximately) twice of the interface entropy. In this plot we have chosen cI = 6,

cII = 12, β = 2π, u0 = 1, ε = 1 and
ρ∗I +ρ

∗
II

2G(3)
= 50.

The linear dependence on u0, as emphasized in [10], is due to the flying time it takes the
radiation to reach the twist operators.

The same computation can be done in the two dimensional perspective—see the right panel
of figure 11. The reasoning is exactly the same as in subsection 4.1. In particular, since the
early time contribution is only sensitive to the degrees of freedom in the baths, it automatically
matches in the two perspectives, so we don’t have to compute it again. On the other hand, for
the island contribution we first notice that in the static coordinate system at t = 0, the twist
operators q1

I,II are at position

xI(q
1
I ) = −2l tanh

�

πu0

β

�

, xII(q
1
II) = 2l tanh

�

πu0

β

�

. (4.31)

Then, the generalized entropy we must minimize in the static coordinate system is (for only
one pair of twist)

Sstatic
gen =

cI

6
log

�

( ỹ + 2l tanh(πu0/β))
2

ỹ ε
1

cos(ψI)

�

+
cII

6
log

�

( ỹ + 2l tanh(πu0/β))
2

ỹ ε
1

cos(ψII)

�

. (4.32)

In the planar p-coordinates, accounting for both pairs and transforming as usual the cutoffs,
this becomes

Splane
gen =

cI

3
log





( ỹ + 2l tanh(πu0/β))
2

ỹ ε

�

e
2π
β u0 + 1

�2

4e
4π
β u0 cos(ψI)





+
cII

3
log





( ỹ + 2l tanh(πu0/β))2

ỹ ε

�

e
2π
β u0 + 1

�2

4cos(ψII)



 , (4.33)
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and finally on the cylinder

Scyl
gen =

cI + cII

3
log





�

β

2πl

�

( ỹ + 2l tanh(πu0/β))
2

ỹ ε

�

e
2π
β u0 + 1

�2

4e
2π
β u0 cos(ψI)



 . (4.34)

The minimum of (4.34) is at

ỹ∗ = 2l tanh
�

πu0

β

�

, (4.35)

and plugging this into (4.34), we obtain

Scyl
gen =

cI + cII

3
log

�

β

πε
sinh

�

2π
β

u0

��

+
cI

3
log

�

2
cos(ψI)

�

+
cII

3
log

�

2
cos(ψII)

�

. (4.36)

It is not hard to see that, in the large tension limit, the two-dimensional entropy (4.36) agrees
with its three-dimensional counterpart (4.25), recalling the relation (2.31). While this result
is only one conformal transformation away from the computation of subsection 4.1, it has a
different relevance in this context. Indeed, the agreement obtained both at early and late times
implies that the Page time matches in the two description. This is a well-defined quantity, free
from any subtleties related to the choice of UV cutoffs. In the CFT, it can be expressed in
terms of CFT data: the central charges and the defect entropy. It is remarkable that the island
formula reproduces it exactly.

5 Seafaring from AdS/ICFT to AdS/BCFT

In this section, we take advantage of the BCFT limit defined in subsection 2.6 to show that
virtually all the observables associated to the end-of-the-world (EOW) brane described in [17]
can be obtained as limits of specific ICFT counterparts. We illustrate this fact by reproducing
the geodesic approximation for correlators in a BCFT [17,58], as well as proving the prescrip-
tion for computing the entanglement entropy of a semi-infinite interval [17].

5.1 Geodesics and entanglement entropy in BCFT from ICFT

To obtain the physics of BCFT from ICFT, we must tune the AdS lengths such that one becomes
much smaller than the other, i.e.

ν≡
LI

LII
→ 0 . (5.1)

This ensures that cII� cI, meaning that the interface becomes impermeable to the transmission
of excitations, as the CFTI has comparatively too few degrees of freedom per unit volume to
acommodate a generic excitation coming in from the right.

How do we extract the vacuum geometry in this limit? First recall that the tension T is
constrained to lie between Tmin and Tmax as defined in (2.30). We can parametrize the range
of possible T via

T2 =
1

L2
I

+
1

L2
II

+
2η

LI LII
, (5.2)

where the constraint is now translated into −1 < η < 1. Let us rewrite (2.29), in terms of of
these parameters:

sin(ψI) =
1+ην

p

1+ 2ην+ ν2
, sin(ψII) =

η+ ν
p

1+ 2ην+ ν2
. (5.3)
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ψII

σII

σI

Figure 13: The geodesic for the two point function in the BCFT limit proposed in
(2.36). In such regime the angle ψI goes to π/2, the length doesn’t depend on σI
anymore and the geodesic approaches the brane at a right angle, as proposed by
Takayanagi in [17].

In the limit ν→ 0, this means

sin(ψI)→ 1 , sin(ψII) = η . (5.4)

Meaning that ψI → π/2 and the geometry becomes that of figure 13, where we have also
displayed a geodesic between two boundary points across the interface, as studied in section
3.4.1. Eq. (5.4) can be used to relate η to the tension of the EOW brane.

Let us return to the types of geodesics shown in figure 13. We see clearly that in the limit
ν→ 0, the angle ϕ as shown in figure 5 is tending to π, meaning that, according to (3.31),

θ →
π

2
+ψII . (5.5)

For this configuration, r and R given in (3.42) and (3.43) tend to σI+σII
2 and σII respectively.

We can obtain the length of the geodesic connecting these two points by taking LI = νLII in
(3.48), yielding

d(σI,σII) =
ν→0

LII log
�

2σII

εII
tan

�

ψII

2
+
π

4

��

= ρ∗II + LII log
�

2σII

εII

�

, (5.6)

where the dependence on σI has dropped out entirely, and we have thus reproduced the result
in [17].

Some interpretation is in order. A geodesic connecting two boundary points is usually
associated with a two-point function. However, in sending ν→ 0 we are sending the ratio of
dimensions ∆I/∆II to zero as well, effectively producing the correlation function of OII with
the identity. Thus in the ν→ 0 limit, the ICFT two point function effectively becomes a BCFT
one point function, whose universal form is

〈OII(σII)〉=
aO

(2σII)∆II
, (5.7)
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as can be seen by exponentiating (5.6) using the geodesic approximation. In [17], this result
was obtained by minimizing over the length of all curves ending on the EOW brane. That
procedure yields a geodesic which arrives on the brane at a right angle. In figure 13, we see
how this condition arises in the ν → 0 limit of the smooth geodesics considered in the ICFT
construction: the geodesic in the AdSI region becomes a complete semi-circle.

What about entanglement entropies? RT surfaces that compute EEs are codimension-2, so
in the specific case of AdS3/CFT2, they would correspond to geodesics, but not so in higher
dimensions. Furthermore, the emergence of minimal surfaces in both three and higher di-
mensions does not stem from the worldline path integral of a massive particle, so we need
an alternative argument to convince us that we should expect minimal surfaces to compute
entanglement entropies in ICFT, and that their BCFT limits give rise to Takayanagi’s prescrip-
tion. Luckily the reasoning of [65] still holds in our holographic interface setup (even gen-
eralized to higher dimensions) since the crux of their argument relied on the Zn symmetry
of the n−replicated entangling region at the locally-asymptotically-AdS boundary—which one
must consider when calculating the entanglement entropy using the standard replica trick. In
this construction, the minimality of the RT surface stems from the leading order effects of the
codimension-2 locus in the bulk left invariant under the action of this Zn, even as we take
n → 1. At the asymptotic boundary in ICFT we will still specify boundary conditions at the
entangling surface, and will therefore have a Zn symmetry in the replicated geometry, even
if the entangling surface crosses the interface. Since the bulk metric is continuous due to the
Israel-Lanczos conditions, there will again be a Zn-invariant codimension-2 surface that will
ultimately be responsible for the minimal RT surfaces in ICFT whose effect will survive the
n → 1 limit. Having established that minimal RT surfaces compute EEs in AdS geometries
with a thin brane, the remaining step is to take the BCFT limit.

5.2 Quantum Extremal Surfaces for BCFTs

As in section 4.1, we can now try to interpret the BCFT limit of the three-dimensional geodesic
as a QES in the “intermediate” 2d braneworld picture in the large-T limit. This section mirrors
4.1 very closely, so we will be brief. We will also take

cII = c , σII = σ , εII = ε , (5.8)

for notational convenience. As before, we view the effective action on the brane as resulting
from integrating out bulk degrees of freedom up to the brane [74] (similar ideas have been
discussed in [14, 15, 48, 75, 76]), and the generalized entropy is the entropy of this weakly
gravitating two-dimensional conformal theory, where we take the UV cutoff along the brane
insertion to be y dependent εbrane(y) = y cosψII given the angle the brane makes with the
boundary at z = 0. We find

Sgen(y) =
c
6

log

�

(σ+ y)2

yε
1

cos(ψII)

�

. (5.9)

The effect of gravity on the brane is accounted for by requiring that the quantum extremal
surface be an extremum over all possible island locations y in (5.9). Thus

∂ySgen = 0 ⇒ y∗ = σ . (5.10)

Notice that the position of the QES matches exactly the point where Takayanagi’s geodesic
meets the EOW brane [17, 47]. The entropy of the island saddle in the intermediate picture
then reads

Sisland =
c
6

log
�

2σ
ε

2
cos(ψII)

�

. (5.11)
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2

1
3

Figure 14: The various geodesic saddles in BCFT, recovered from the ν→ 0 limit of
ICFT.

We can compare this result with the one obtained using Takayanagi’s prescription in three
dimensions,

S3D
RT =

c
6

log
�

2σ
ε

tan
�

ψII

2
+
π

4

��

. (5.12)

To see that these match in the large-tension limit, recall that Tmax is reached by taking η→ 1
in (5.2)14. Parametrizing η = 1 − δ2/2, this translates to ψII =

π
2 − δ +O(δ3) as δ → 0.

Plugging this into the above formulas, we find

Sisland = −
c
6

log(δ) +
c
6

log
�

4σ
ε

�

+O
�

δ2
�

, (5.13)

S3D
RT = −

c
6

log(δ) +
c
6

log
�

4σ
ε

�

+O
�

δ2
�

, (5.14)

where we find a mismatch between these formulas only at O
�

δ2
�

. The match between the QES
formula and the RT calculation is somewhat cleaner in the BCFT limit as compared to ICFT,
since the location of the island agrees for any value of the tension, although the entropies still
only match in the limit of T → Tmax.

It is curious to remark that a different choice of position dependent cutoff, namely

εbrane(y) =
2y

tan
�

ψII
2 +

π
4

� , (5.15)

would have resulted in an exact match between the island prescription and the three-
dimensional RT formula, valid for all values of the tension T . While this would be appeal-
ing, we have no geometric interpretation of such a formula and moreover do not expect the
theory on the brane to be locally conformal away from the large-T limit. We thus cannot justify
using the CFT entropy formula when computing the generalized entropy for arbitrary T .

5.3 BCFT two-point functions

Let us now analyze the BCFT limit of geodesics connecting two points on the same CFT (figure
6), where we take the insertions on the side whose central charge we are keeping finite. We
readily see that our limit gives the structure of geodesics in AdS/BCFT studied in [58]. We
label the possible RT geodesics by (1), (2) and (3) in figure 14, where (1) is the standard

14The numerical bootstrap might be able to put bounds on η: see [77] for a proof of concept.
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“connected” RT surface whereas (2) and (3) are “disconnected” surfaces that can end on the
EOW brane. Based on our ICFT setup, we expect (2) and (3) to be related to the two solution
branches labeled s∗1 and s∗2 in section 3.4.3.

What happens as ν → 0 in the ICFT setup is that surfaces of type (3) probe the region
behind the brane less as ν is decreased, and ultimately reflect off the EOW brane. This is
precisely the structure described in [58]. Let us return to (3.67) in the BCFT limit. Now we
must solve:

Θ =
σP

II

σQ
II

=
s(s+ 2) + 2 sin(ψII)

�

sin(ψII) +
Æ

s(s+ 2) + sin2(ψII)
�

s2
. (5.16)

The solutions that describe geodesics of type (2) are given by s∗2 →∞. Indeed in the ν→ 0
limit, the red curve of figure 7 is pushed upwards towards infinity. The solutions that describe
curves of type (3) on the other hand are given by

s∗1 =
2
Θ− 1

�

1+ sin(ψII)
p
Θ
�

, (5.17)

however this only satisfies (5.16) for

sin(ψII)> −
2
p
Θ

1+Θ
. (5.18)

We also remind the reader that

s >

¨

0 , ψII ∈ [0,π/2] ,
−1+ cos(ψII) , ψII ∈ [−π/2, 0] .

(5.19)

We see that, for negative tension, i.e. ψII < 0, when Θ is greater than some critical value set
by ψII, reflecting geodesics of type (3) cease to exist. In this case geodesics of type (1) also
do not exist and we are left with the “disconnected” geodesics of type (2). Thus, in a rather
intuitive way, starting from ICFT, we have recovered some of the results in [58].

6 Conclusions

In this paper we have established three interrelated goals. We established in detail how dou-
ble holographic setups, and in particular ones of interest in black hole evaporation scenarios,
can be constructed starting from holographic interface conformal field theories. For this con-
struction one needs to adopt several – ultimately equivalent – points of view. A major advan-
tage of our approach is that it operates squarely within the confines of the standard rules of
AdSd+1/CFTd , making computations very transparent. From this perspective our holographic
boundary system consists of two (potentially different) CFTs, which are coupled via a shared
interface along a common hypersurface of one lower spatial dimension than each of the two
constituent CFTd . However, as we explained, the conformal interface itself hosts degrees of
freedom, which interact with both of the adjacent CFTd . The combined system, by assumption,
has a holographic bulk dual of dimension d + 1, which encodes the kinematics and dynamics
of the ICFTd on the boundary. In this paper we used a thin-brane approximation in order to
extend the interface into the holographic bulk, and it would clearly be interesting to under-
stand the consequences of relaxing this assumption in future work—see e.g. [78] for some
steps in this direction. Indeed, explicit top down models of interface CFTs often underline the
necessity of relaxing the thin-brane setup [79–83], while models closer to the setup considered
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here might be possible [84,85], but fine-tuned [86]. The point of view most directly related to
black hole evaporation is the double holographic one, where we actually think of the interface
degrees of freedom as its own boundary theory, Id−1, with a d−dimensional gravitational bulk
confined to the world-volume of the brane separating the holographic duals of both boundary
CFTd . The interactions between the interface and the CFTd are now reinterpreted as coupling
the interface to a bath (see figure 2 as a reminder), the conceptual key to enabling the evap-
oration of black holes that may exist in the the gravitational dual of the interface degrees of
freedom. In other words, we have a holographic dual of an open quantum system, which may
host evaporating black hole configurations. While our setup in principle can be realized for
general d, for the most part our results are in d = 2, where further simplifications arise for ex-
ample in computing entanglement entropies via twist operators. It would clearly be of interest
to generalize these results to higher dimensions. However, it is important to remark that our
results indicate that qualitative features will likely remain the same, as it was found, for exam-
ple, in [11]. In higher dimensions, tracing out the interface and part of the baths will demand
a holographic computation of the area of an entangling surface that crosses the brane. What
remains to show is that there exists an “intermediate” weakly gravitating description localized
at the brane whose generalized entropy matches that of the brane-crossing RT surface, and
that the location of the island matches the crossing region of this RT surface.

Exploiting this straightforward realization of holographic system + bath setups, we com-
puted the entanglement entropy of the Hawking radiation in terms of a conventional descrip-
tion. This means that we rely only on the d + 1 dimensional holographic dual, and employ
a standard (H)RT computation of the entanglement entropy, [65, 66, 87] between the inter-
face degrees of freedom and (a part of) the bath. The structure of this computation parallels
the semiclassical ‘Hawking’ and ‘replica’ saddle pattern [6, 9, 69], identifying the transition
between the two as a more familiar phase transition between different minimizers of the RT
surface in the AdSd+1 setup. This realization, however, allows us to go further, and in particu-
lar we proved that this same phase transition, as seen from the double-holographic perspective
is precisely the phase transition seen in the generalized entropy formula applied to the two-
dimensional black hole on the bulk brane(-world). Given that the entire argument follows
from standard (H)RT rules, one may regard this as a proof of the island formula, at least
in double holography. This further allowed us to take the BCFT limit (either cI/cII → 0 or
cII/cI→ 0 as explained in section 5) of our results and to give a derivation of the holographic
BCFT prescription to calculate entanglement entropy. Put together with our arguments in the
original ICFT setup, this implies that the recent work on islands from the BCFT perspective
follows from a proven tool in holography [65].

However, interesting points on consistency of islands in theories with long-range gravity
have been raised in [13, 88]. In particular, it has been argued that in general dimensions d
the gravitons on the brane are massive. The case explicitly worked out in this paper (d = 2)
does not have gravitons on the brane, but the point still holds: the coupling of the theory on
the brane with the baths implies that the stress–energy tensor on the brane is not conserved,
which breaks gauge invariance. This can also be seen from a purely boundary perspective:
for conformal boundary conditions the boundary spectrum of a CFT does not have a spin-2
primary with dimension d − 1. For d = 2 the story is slightly different (see [35] for instance),
but the outcome is similar: the boundary theory cannot have a well-defined stress tensor. In
this respect the present work does not bring any advances to the understanding of these issues.
A related extension of our setup might instead be possible and interesting: while we cannot
couple the system to a bath and maintain a conserved stress tensor, it is at least possible to
devise couplings where the interface can store energy. These non-conformal interfaces allow
for long-lived bound states possibly dual to a more realistic evaporating black hole.

We conclude this paper by giving an outlook as well as mentioning some open ends we
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would like to come back to in the future. Firstly, the geodesic approximation for correlation
functions in the holographic bulk of ICFTs we determined here should have interesting detailed
implications for the (boundary) OPE of its holographic dual. It would be interesting to carry
out this expansion in future work, and to potentially use it to constrain the properties that
distinguish holographic ICFTs from their generic relatives. Recently, [86] derived constraints
for the applicability of a thin-brane description in holographic ICFT, along the lines of the bullk-
point approach initiated in [89, 90], and it would be interesting to see what can be learned
from comparing to the correlation functions we have derived here.

In this paper we have for the most part investigated the case where the boundary ICFT
is prepared in the thermofield double state. As we argued, this means that the 2D bulk
braneworld blackhole is an eternal (two-sided) geometry (see figure 11). It would be very
interesting to also consider the case of one-sided black holes which form from collapse (see
e.g. [91–94]). It is tempting to speculate that such scenarios can be engineered by considering
the solutions of [44] away from equilibrium.
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A Length of the geodesic with points on the same side

In this section we compute the length of the geodesic in figure 6, using the notation of section
3.4.3. Here we assume that values of the parameters allow for the existence of a geodesic.
The geodesic is divided into three arcs, so the length can be expressed as:

d(σQ
II ,σ

P
II) = d(Q, V ) + d(V, S) + d(S, P) . (A.1)

We will compute all the three pieces independently. Taking inspiration from (3.48), it’s not
hard to conclude that

d(Q, V ) = LII log

�

2 CQ
εQ

tan
�α

2

�

�

, (A.2)

and

d(S, P) = LII log

�

2 AP
εP

tan
�γ

2

�

�

, (A.3)

where εQ, εP are (possibly different) cutoffs at Q and P. On the other hand d(V, S) is cutoff
independent, since we can express it as the difference of two circular arcs that start at the
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same point on the (continuation behind the interface of the) conformal boundary I, thus:

d(V, S) = LI log





tan
�

ÕOBS
2

�

tan
�

ÕOBC
2

�



 . (A.4)

All we need are the various angles subtended by the arcs. Looking at triangle 4OBC and
recalling ÕAOB =ψI +ψII, we find

ÕOBC =ψI +ψII −α . (A.5)

On the other hand, looking at triangle 4SBV (and using (3.60)) we obtain

ÕSBV = 2(α−ψII) , (A.6)

meaning
ÕOBS =ÕSBV +ÕOBC = α−ψII +ψI , (A.7)

thus

d(V, S) = LI log





tan
�

α−ψII+ψI
2

�

tan
�

ψI+ψII−α
2

�



 . (A.8)

Now considering equations (3.64, 3.63) we obtain

CQ = σQ
II +λ = CV = λ

cos(ψII)
cos(α−ψII)

, (A.9)

AP = σP
II − AO = AS = λ

cos(ψII) sin(α) sin(α+ψI −ψII)
sin(α− 2ψII) sin(ψI +ψII −α) cos(α−ψII)

. (A.10)

Then, using the relation (3.61) between γ and α and putting everything together, we obtain

d(σQ
II ,σ

P
II) = LII log

�

2 CQ
εQ

tan
�α

2

�

�

+ LII log

�

2 AP
εP

cot
�

α− 2ψII

2

�

�

+ LI log
�

tan
�

α−ψII +ψI

2

�

cot
�

ψI +ψII −α
2

��

. (A.11)

What remains is to invert (3.64) to obtain λ(σQ
II ,σ

P
II) and α(σQ

II ,σ
P
II) using the strategy outlined

in section 3.4.3.
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