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Relative cluster entropy for power-law correlated sequences
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Abstract

We propose an information-theoretical measure, the relative cluster entropy DC[P‖Q],
to discriminate among cluster partitions characterised by probability distribution func-
tions P and Q. The measure is illustrated with the clusters generated by pairs of frac-
tional Brownian motions with Hurst exponents H1 and H2 respectively. For subdiffusive,
normal and superdiffusive sequences, the relative entropy sensibly depends on the dif-
ference between H1 and H2. By using the minimum relative entropy principle, cluster
sequences characterized by different correlation degrees are distinguished and the opti-
mal Hurst exponent is selected. As a case study, real-world cluster partitions of market
price series are compared to those obtained from fully uncorrelated sequences (simple
Browniam motions) assumed as a model. The minimum relative cluster entropy yields
optimal Hurst exponents H1 = 0.55, H1 = 0.57, and H1 = 0.63 respectively for the prices
of DJIA, S&P500, NASDAQ: a clear indication of non-markovianity. Finally, we derive the
analytical expression of the relative cluster entropy and the outcomes are discussed for
arbitrary pairs of power-laws probability distribution functions of continuous random
variables.
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1 Introduction

Flow of information in complex systems with interacting components can be quantified via
entropy measures [1–7]. In this context, discriminating between empirical data and models in
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terms of information content is interesting from several viewpoints. Consider an experiment
with the outcomes obeying the probability distribution P whereas the distribution Q is a model
for the same experiment. Quantifying the error of the wrong assumption of the model com-
pared to the empirical information content is relevant to a broad class of phenomena [8, 9].
Such information-theoretical concepts bring also together the thermodynamic implications
intrisically related to the evolution of the system under investigation. The dynamic of the
information transferred along subsequent transformative states of a complex system can be
described in terms of divergence of the probability distributions P at time t and P ′ at a sub-
sequent time t ′. Hence, information-theoretical tools find applications in fields as diverse as
climate, turbulence, neurology, biology and economics [10–13] and are increasingly adopted
in unsupervised learning of unlabelled data where similarity/dissimilarity measures are con-
cerned with dynamic rather than static features of the clustered data [14–16].

A recently proposed information measure, with the ability to quantify heterogeneity and
dynamics of long-range correlated processes in a broad range of application areas, is the clus-
ter entropy SC[P] [17–20]. The measure has been defined as a Shannon functional with P
the power-law probability distribution of the clusters formed in a long-range correlated data
sets. If P is a distribution concentrated on a single cluster value, SC[P] = 0 corresponds to
the minimum uncertainty on the outcome of the cluster size, the random variable of interest.
If P is a fully developed power-law distribution, SC[P] = ln N corresponds to the maximum
uncertainty obtained as the power-law distribution spreads over a broad range of cluster val-
ues. Thus, according to the Shannon interpretation, SC[P] can be understood as a measure
of uncertainty of all the possible cluster outcomes. By extending the definition to continuous
variables, the differential cluster entropy SC[P] added clues to the approach by clarifying the
interplay of the different terms entering the cluster entropy and thus the origin of the excess
randomness.

In this work, we go beyond the simple measure of uncertainty of the random variable out-
comes provided by SC[P]. An inference method for hypothesis testing of a general class of
models underlying a relevant stochastic process is developed. We put forward the relative clus-
ter entropy or cluster divergence DC[P‖Q] with the first argument P the empirical distribution
and the second argument Q a model within a broad class of probability distributions. DC[P‖Q]
is a metric on the space of probability distributions, interpreted as a divergence rather than as a
distance since it does not obey symmetry and triangle inequality. The asymmetry of the relative
entropy reflects the asymmetry between data and models, hence it can be used for inference
purposes on the model underlying a given distribution. If DC[P‖Q] >> 0, the hypothesis
likelihood is very low and, unless the quality of the empirical data should be questioned, the
model distribution Q must be rejected. The higher DC[P‖Q], the lower the likelihood of the
hypothesis. If the hypothesis on the model were true, P should fluctuate around its expected
value Q, with fluctuations of limited amplitude and occurrence probability greater than the
significance level, resulting in the acceptance of the model Q.

The cluster entropy SC[P] and the relative cluster entropy DC[P‖Q] can be interpreted
as information measures over partitions generated by a coarse-grained mapping of the two-
dimensional phase-space spanned by a particle, e.g. a simple Brownian path described by the
random variable {x t}. According to Gibbs’ original idea at the core of the information entropy
concept, a coarse grained description is defined by smoothing out fine details and increasing
the observer’s ignorance about the exact microstate of the system. As the structure description
becomes blurrier, randomness and entropy increase. A coarse-grained description is obtained
by performing a local average over the phase-space cells with increasing size. In the infor-
mation clustering approach adopted here, the coarse grained description of the particle path
{x t} is obtained by a local average {ex t,n} over the phase-space cells with the parameter n
defining the cell sizes. The regression x t = ex t,n + εt,n yields the errors εt,n = x t − ex t,n which
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ultimately generate a finite partition {C}=
�

Cn,1, Cn,2, . . . , Cn, j

	

for each n. The partition pro-
cess generates regions, named as clusters, bounded between the values of t when εt,n = 0,
which correspond to complete information with minimum entropy. The probability distribu-
tion functions of the random variables defined by εt,n univoquely quantify the loss of structure
and information of the coarse grained representation. As already noted, the cluster entropy
SC[P] is bounded, involves integrating over cell components, ranges from the minimum to
the maximum value as the description ranges from the finest-grained (corresponding to the
smallest clusters) to the coarsest-grained partition (corresponding to the largest clusters). The
relative cluster entropy DC[P‖Q] is also bounded, involves integration over cells, ranges be-
tween a maximum value, depending on the two distributions, and the minimum value 0 for
P =Q.

The ability of the cluster divergence DC[P‖Q] to select an optimal distribution could be
relevant in several contexts. In particular, complex phenomena obeying power-law distribu-
tions are still raising concerns regarding accuracy and veracity of the estimation of the power
law exponent [21]. To illustrate how the relative cluster entropy operates, synthetic and real-
world data featuring power-law distribution behavior are considered. First, the approach is
implemented on pairs of synthetic fractional Brownian motions (fBms) with given Hurst ex-
ponent. A systematic dependence of DC[P‖Q] on the Hurst exponents of the pair is found.
The minimum relative entropy principle is then implemented as a selection criterion to extract
the optimal correlation exponent of the sequence. Second, as a real-world case, we study the
divergence DC[P‖Q] of financial price series. The probability distribution P is obtained by
ranking the clusters generated in each price time series and compared to the distribution Q
drawn from synthetic fBms data adopted as model. The minimum relative entropy principle
yields the best estimate of the correlation exponents of the financial series and quantifies the
deviation of the price series from the assumed model.

The manuscript is organized as follows. In Section 2 the main computational steps of the
relative cluster entropy method are described for discrete variables. The approach is illustrated
for synthetic (fractional Brownian motions) and real-world (market price series) data. In
Section 3 the relative cluster entropy is extended to continuous random variables, conclusions
and suggestions for further developments are drawn.

2 Methods and Results

In this section, the main steps of the relative cluster entropy approach are described. The inter-
est is towards the development of a divergence measure able to evaluate the situation where a
model probability distribution Q is defined in parallel to the true probability distribution func-
tion P of the cluster partition. Before illustrating how the proposed cluster divergence works,
a few definitions are recalled.

Consider the time series {x t} of length N and the local average ex t,n =
1
n

∑n−1
n′=0 x(t − n′)

of length N − n with n ∈ (1, N). For each n, a partition {C} of non-overlapping clusters is
generated between consecutive intersections of {x t} and {ex t,n} defined by the time instances
which make the error εt,n = x t − ex t,n equal to zero. Hence, each cluster j is characterized by
the random variable τ j ≡ ‖t j − t j−1‖, with the instances t j−1 and t j referring to subsequent
intersection pairs. The random variable τ j is named as the cluster duration. The empirical
distribution of the cluster duration frequencies P(τ j , n) can be obtained by ranking the number
of clusters N (τ1, n),N (τ2, n), ...,N (τ j , n) according to their duration τ1,τ2, ...,τ j for each n
as:

P(τ j , n) =
N (τ j , n)

NC(n)
, (1)

3

https://scipost.org
https://scipost.org/SciPostPhys.13.3.076


SciPost Phys. 13, 076 (2022)

Figure 1: Plot of the quantity D j,n, defined by Eq. (4), as a function of the cluster
duration τ j for pairs of fBm with Hurst exponent H1 and H2. The cluster frequency
P(τ j , n) is obtained by counting the occurrences of the clusters with duration τ j
in fractional Brownian motions with Hurst exponent H1. A simple Brownian mo-
tion, i.e. a f Bm with H2 = 0.50, has been taken to obtain the cluster partition
and the model probability Q(τ j , n). In the above figures, H1 varies respectively
from 0.20 (top-left) to 0.80 (bottom-right). The length of the series is equal to
N = 500000 for all the graphs. Different curves in each graph refer to different
n values (n = 50,100, 1000,2000) as indicated by the arrow. At large values of the
parameter n, the curves tend to the asymptotic value D j,n = 0, expected at large τ j ,
whereas the curves exhibit a diverging behavior at small values of τ j . Conversely, at
small values of the parameter n, the curves tend to the theoretical value expected at
small values of τ j , whereas the curves diverge at large τ j . The properties of D j,n are
discussed in Section 3 on the basis of the analytical expression derived for continuous
random variables.

with NC(n) =
∑k(n)

j=1 N (τ j , n) the number of clusters generated by the partition for each n,

k =
∑N

n=1 NC(n) the total number of clusters for all the possible values of n, and the normal-
ization condition holding as usual:

N
∑

n=1

NC (n)
∑

j=1

P(τ j , n) = 1 . (2)

The cluster entropy is defined as:

SC[P] = −
∑

j,n

P(τ j , n) log P(τ j , n) , (3)

which is obtained by introducing the cluster frequency P(τ j , n) in the Shannon functional.
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Figure 2: Plot of the quantity D j,n, defined by Eq. (4), vs. cluster duration τ j . The
cluster frequency P(τ j , n) has been estimated on the clusters generated by the prices
of the DJIA, S&P500, NASDAQ indexes. The model probability Q(τ j , n) has been
estimated on the clusters generated by a f Bm with Hurst exponent H2 ranging from
0.50 to 0.70 and length N = 492023 equal to the length of the sampled indexes
data. Different curves in each graph refer to different values of the parameter n
(respectively n= 50 blue; n= 100 orange; n= 1000 yellow).

In this work, the relative cluster entropy or cluster divergence DC[P‖Q] is proposed to quan-
tify the wrong information yield when a model probability distribution Q is assumed in place
of the empirical probability distribution P. A measure of distinguishability between two prob-
ability distributions P and Q is the Kullback-Leibler divergence, defined for discrete variables as
DKL[P‖Q] =

∑

j Pj log
�

Pj/Q j

�

, with the conditions supp(P) ⊆ supp(Q) and DKL[P‖Q] ≥ 0,
with DKL[P‖Q] = 0 for P = Q . Then, the minimum relative entropy principle can be adopted
as optimization criterion for model selection and statistical inference.

The quantity D j,n[P||Q] is defined for each macrostate in terms of the cluster durations τ j
as follows:

D j,n[P||Q] = P(τ j , n) log
P(τ j , n)

Q(τ j , n)
, (4)

where the index j refers to the set of clusters with duration τ j generated by the partition for a
given n. The cluster frequencies P(τ j , n) and Q(τ j , n) satisfy the condition supp(P) ⊆ supp(Q).
By using Eq. (4) and summing D j,n[P||Q] over all the accessible cell states , the relative cluster
entropy is written as:

DC[P||Q] =
N
∑

n=1

NC (n)
∑

j=1

P(τ j , n) log
P(τ j , n)

Q(τ j , n)
, (5)

where the index j runs over the clusters obtained by each partition with size n, which in turn
runs over the allowed set of time window values, n ∈ (1, N).
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Figure 3: Plot of the quantity DC[P||Q], defined by Eq. (5), vs. cluster duration τ j .
The curves are obtained by summing the quantities D j,n[P||Q], as those shown in
Fig. 2, over the parameter n for the prices of DJIA, S&P500, NASDAQ. Each curve
in the figures corresponds to the cluster divergence with the probability P(τ j , n) re-
ferred to the market price series pt and the model probability Q(τ j , n) referred to
fBms with Hurst exponent H2 ranging from 0.50 to 0.70 with step 0.1 as indicated
by the arrow.

To exemplify how the relative cluster entropy could be applied in practice, pairs of artifi-
cially generated fractional Brownian motions (fBms) are analysed in terms of the relative cluster
entropy defined by Eqs. (4-5). Fractional Brownian motions (fBms) xH

t with t ¾ 0 are power-
law correlated stochastic processes, defined by a centered Gaussian process with stationary
increments and covariance given by < xH

s xH
t >=

1
2

�

t2H + s2H − |t − s|2H
�

with H ∈ (0, 1) the
Hurst exponent. Power-law behaviour of the correlation function implies slow memory decay
and non-Markovianity. Synthetic fBm sequences have been generated with assigned Hurst ex-
ponent H and length N by using the FRACLAB code [22]. The cluster frequencies P(τ j , n)
and Q(τ j , n) have been estimated by counting the number of clusters with duration τ j and
window n for each f Bm.

Fig. 1 shows a few examples of plots of the quantity D j,n, defined by Eq. (4). D j,n is es-
timated for cluster frequency P, obtained from clusters generated in f Bms with H1 varying
from 0.20 (top-left) to 0.80 (bottom-right) with step 0.05, and model distribution Q obtained
from uncorrelated Brownian paths, i.e. f Bms with H2 = 0.50. The values of the Hurst expo-
nents correspond respectively to correlation exponents α1 = 2−H1 ranging from 1.80 to 1.20,
whereas α2 = 2− H2 is kept constant and equal to 1.50. The quantity D j,n shows character-
istic deviations with respect to the null hypothesis corresponding to a fully random process
with H2 = 0.5. In particular, at small values of the cluster duration τ j , the quantity D j,n takes
positive and negative values respectively for fBms with 0.5< H1 < 1 and 0< H1 < 0.5. As the
cluster duration τ j increases, D j,n tends to reach the horizontal axis implying that the diver-
gence between the distributions become negligible for very large clusters. Note in particular
the three panels of the middle row in Fig. 1 showing the results obtained for fractional Brow-
nian motions with H1 = 0.45, H1 = 0.50 and H1 = 0.55 with respect to the simple Brownian
path, i.e. the f Bm with H2 = 0.50, taken as the model. Thus, fBm pairs with close values of H1
and H2 correspond to more realistic experimental conditions. Inference problems with data
sequences featuring correlation exponents statistically close to each other and small deviations
from the model distribution should be reasonably expected in the cases of practical interest.

To further illustrate how the proposed method operates with real-world data, price series
{pt} of Dow Jones Industrial Average (DJIA), Standard and Poor 500 (S&P500), National As-
sociation of Securities Dealers Automated Quotations Composite (NASDAQ), are considered.
Data include tick-by-tick prices from January to December 2018. Details (Ticker; Extended
name; Country; Currency; Members; Length) provided by Bloomberg [23]. Raw data prices
{pt} have different lengths (NDIJA = 5749145, NS&P500 = 6142443, NNASDAQ = 6982017). To
perform the relative cluster entropy analysis over comparable data sets, raw data prices are
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Figure 4: Plot of the quantity σ2
DC

defined by Eq. (6) for the relative cluster en-
tropy curves plotted in Fig. 3 vs. the Hurst exponent H2 of the model distribution
Q(τ j , n). The quantity σ2

DC
is the variance of DC with respect to 0 (the null hypothe-

sis for P = Q) over the cluster lifetime interval 1 < τ j < 20. Each point is evaluated
by using the definition given in Eq. (6) for each market and for each f Bm with as-
signed Hurst exponent H2. The Hurst exponent H2 of the model distribution Q(τ j , n)
ranges between 0.50 and 0.70 with step 0.01. The minimum value of the variance is
obtained for H1 = 0.55 (DJIA), H1 = 0.57 (S&P500) and H1 = 0.63 (NASDAQ).

sampled to yield equally spaced data sequences with equal length N . The cluster frequency
P(τ j , n) is estimated by counting the clusters generated in the market price series. Q(τ j , n)
is estimated by counting the clusters generated in synthetic stochastic processes assumed as a
model. In this analysis, the divergence between each price series, with unknown correlation
exponent, and artificially generated samples of fractional Brownian motions fBms with as-
signed Hurst exponent H2, is considered. Results of the analysis are plotted in Fig. 2, showing
the relative cluster entropy for the three markets. Several samples of the divergence obtained
for different values of the parameter n, shown in Fig. 2, have been summed over the parameter
n, with same interval of cluster duration τ j . Fig. 3 shows the relative cluster entropy DC[P||Q]
for the data shown in Fig. 2.

To infer the optimal probability distribution P, the minimum relative entropy principle is
implemented non-parametrically on the values plotted in Fig. 3. To this purpose, the variance
σ2
DC

of DC[P||Q] around the value DC[Q||Q] (the null hypothesis for P = Q) is written as
follows:

σ2
DC
≡

1
k− 1

k
∑

j=1

[DC[P||Q]−DC[Q||Q]]
2 , (6)

where the sum runs over the total number of clusters obtained by the partition process. By
using the value DC[Q||Q] = 0, Eq. (6) writes:

σ2
DC
=

1
k− 1

k
∑

j=1

[DC[P||Q]]
2 . (7)

The quantity σ2
DC

corresponds to the mean square value of the area of the region between
the curve DC[P||Q] and the horizontal axis (DC[Q||Q] = 0). Given the linearity of the rela-
tive cluster entropy operator, σ2

DC
exhibits a quadratic behaviour with the typical asymmetry

of the Kullback-Leibler entropy. The quadratic functional can be easily used to estimate the
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Figure 5: Plot of the quantity DC[P||Q], defined by Eq. (11), vs. the cluster dura-
tion τ. Blue curves correspond to a power law probability distribution P(τ) with α1
ranging between 1.55÷1.80. The model probability distribution Q(τ) is a power law
with correlation exponent α2 = 1.50, the same for all the curves plotted here. Red
curves correspond to a power law probability distribution with α1 ranging between
1.20÷1.45. The black line corresponds to the null hypothesis DC[P||P] = 0 obtained
with α1 = 1.50 and α2 = 1.50.

minimum. The minimization criterion provided by Eq. (6) has been applied to the data shown
in Fig. 3 to yield the best estimate of the correlation degree of the market prices. The value
of the Hurst exponent for the series of the prices {pt} has been deduced from the value of H2
for which σ2

DC
takes its minimum, implying H1 = H2. By using this rule, H1 = H2 = 0.55,

H1 = H2 = 0.57, and H1 = H2 = 0.63 have been found respectively for DJIA, S&P500 and
NASDAQ. The minimization outcomes are plotted in Fig. 4 for the markets shown in Fig. 3.

3 Discussion and Conclusion

In this Section, the relative cluster entropy is extended to continuous random variables. For
NC(n) → ∞, the characteristic size of generated clusters C behaves as continuous random
variables τ ∈ [1,∞] with probability distribution function P(τ) varying as a power-law [17,
18]. By taking the limits P(τ j) → P(τ)dτ and Q(τ j) → Q(τ)dτ, Eq. (5) can be written for
continuous random variables in the form of an integral:

DC[P(τ)||Q(τ)] =
∫

P(τ) log
P (τ)
Q (τ)

dτ , (8)

with τ ∈ [1,∞]. We are interested in the situations where the probability distributions are
power-law functions, i.e. for P(τ) and Q(τ) respectively in the form:

P(τ) = (α1 − 1)τ−α1 Q(τ) = (α2 − 1)τ−α2 , (9)

where α1 and α2 are the correlation exponents, α1 − 1 and α2 − 1 are the normalization
constants for τ ∈ [1,∞]. By using Eqs. (9), Eq. (8) writes:

DC[P(τ)||Q(τ)] =
∫

(α1 − 1)τ−α1 log
(α1 − 1)τ−α1

(α2 − 1)τ−α2
dτ , (10)
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that after integration becomes:

DC[P(τ)||Q(τ)] = τ1−α1

�

log
α1 − 1
α2 − 1

+
�

logτ(α1−α2) +
α1 −α2

1−α1

��

+ constant , (11)

where the integration constant is equal to zero by setting DC[P||P] = 0. By estimating the
definite integral over the interval [1,∞], one obtains:

DC[P||Q] = log
α1 − 1
α2 − 1

+
α1 −α2

1−α1
, (12)

that for α1 = α2 , i.e. for the distribution P coincident with the model distribution Q, provides
DC[P||Q] = 0.

DC[P||Q] quantifies the divergence between P(τ) and Q(τ), respectively true and model
distribution, as a function of the cluster lifetime τ in terms of the pair of correlation exponents
α1 and α2. Eq. (11) is plotted as a function of τ for different values of the exponents α1 and
α2 in Fig. 5. At small values of the cluster duration (τ→ 1), DC[P||Q] is strongly dependent
on the difference of the power-law exponent α1 with respect to the exponent α2 of the model
distribution. Conversely, as the cluster duration increases (τ >> 1), DC[P||Q] becomes neg-
ligible. The decay can be understood by considering that as τ increases the cluster becomes
disordered as a consequence of the spread of the distribution and the onset of finite-size effect.
The correlation vanishes as the process becomes almost fully uncorrelated. The behaviour of
the cluster distribution divergence obtained by using continuous variables is consistent with
the empirical tests performed on discrete data sets. In particular, the behaviour shown by the
fractional Brownian motions with different correlation exponents discussed in the Section II
is reproduced by the curves shown in Fig. 5, ensuring that the approach is sound and robust.

The relative cluster entropy can be therefore exploited to estimate the deviation of the power
law exponent corresponding respectively to experimental and model probability distributions.

Long-range correlated processes obeying power-law distributions occur frequently in com-
plex system data related to several natural and man-made phenomena. Due to their ubiquity,
the extent of long-range correlation and the scaling exponents are relevant to many disciplines,
though several difficulties are met for their estimation which require suitable computational
procedures to be carefully implemented [21]. A random variable x obeys a power law if it is
drawn from a probability distribution p(x)∝ x−α with α > 1 the correlation exponent. Em-
pirical real-world data barely follow a power-law for all the values of x . Due to normalization
requirements and finite-size effects, ideal power-law behaviour usually holds at values greater
than some minimum xmin up to a maximum xmax. An exponential cut-off is often artificially
introduced to account for the deviation from the ideal power-law behaviour x−αe−λx .

The non-parametric minimization of the relative entropy has some advantages compared to
the parametric approaches, whose implementation requires normality of the random variables
and knowledge of the first two moments of the distribution for the calculation of the Lagrange
multipliers. The proposed relative cluster entropy approach yields the optimal value of the
correlation exponent α without relying on the estimate of the slope in a log-log plot and thus
is robust against computational biases which usually affect least-squares estimates.
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