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Abstract

The effective dynamics of a colloidal particle immersed in a complex medium is often
described in terms of an overdamped linear Langevin equation for its velocity with a
memory kernel which determines the effective (time-dependent) friction and the corre-
lations of fluctuations. Recently, it has been shown in experiments and numerical simu-
lations that this memory may depend on the possible optical confinement the particle is
subject to, suggesting that this description does not capture faithfully the actual dynam-
ics of the colloid, even at equilibrium. Here, we propose a different approach in which
we model the medium as a Gaussian field linearly coupled to the colloid. The resulting
effective evolution equation of the colloidal particle features a non-linear memory term
which extends previous models and which explains qualitatively the experimental and
numerical evidence in the presence of confinement. This non-linear term is related to
the correlations of the effective noise via a novel fluctuation-dissipation relation which
we derive.
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1 Introduction

Since the very early days of statistical physics, the motion of a Brownian particle in a simple
fluid solvent has been successfully described by means of a linear Langevin equation for its
velocity v [1]. In particular, the interaction of the mesoscopic particle with the microscopic
molecular constituents of the solvent generates a deterministic friction force — often assumed
to have the linear form −γv — and a stochastic noise, the correlations of which are related
to the friction by a fluctuation-dissipation relation. This relationship encodes the equilibrium
nature of the thermal bath provided by the fluid. When the solvent is more complex or the
phenomenon is studied with a higher temporal resolution, it turns out that the response of
the medium to the velocity of the particle is no longer instantaneous, for instance due to
the hydrodynamic memory [2] or to the possible viscoelasticity of the fluid [3]. In this case,
the solvent is characterised by a retarded response Γ (t) that determines the effective friction
−
∫ t

dt ′Γ (t − t ′)v(t ′). Experimentally, the memory kernel Γ (t) can be inferred from the spec-
trum of the equilibrium fluctuations of the probe particle. Microrheology then uses the relation
between the memory kernel Γ (t) and the viscoelastic shear modulus of the medium to infer
the latter from the observation of the motion of the particle [4]. In recent years, this approach
has been widely used for probing soft matter and its statistical properties [5–7]. Accordingly,
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it is important to understand how the properties of the medium actually affect the static and
dynamic behaviour of the probe.

Although the description of the dynamics outlined above proved to be viable and useful,
it has been recently shown via molecular dynamics simulations of a methane molecule in wa-
ter confined by a harmonic trap that the resulting memory kernel turns out to depend on the
details of the confinement [8]. A similar effect has been also observed for a colloidal particle
immersed in a micellar solution [9]. This means that the memory kernel Γ (t) does no longer
characterise the very interaction between the particle and the medium, as it depends signifi-
cantly on the presence of additional external forces. Here we show, on a relatively simple but
representative case and within a controlled approximation, that this dependence — theoret-
ically expected but practically often forgotten — is actually due to the fact that the effective
dynamics of the probe particle is ruled by a non-linear evolution equation.

In order to rationalise their findings, the experimental data for a colloidal particle im-
mersed in a micellar solution were compared in Ref. [9] with the predictions of a stochastic
Prandtl-Tomlinson model [10, 11], in which the solvent, acting as the environment, is mod-
elled by a fictitious particle attached to the actual colloid via a spring. This simple model thus
contains two parameters: the friction coefficient of the fictitious particle and the stiffness of
the attached spring. While this model indeed predicts a confinement-dependent friction coeffi-
cient for the colloid, the fit to the experimental data leads anyhow to confinement-dependent
parameters of the environment. Accordingly, as the original modelling, it does not actually
yield a well-characterised bath-particle interaction, which should be independent of the ac-
tion of possible additional external forces.

Although the equilibrium and dynamical properties of actual solvents can be quite complex,
here we consider a simple model in which the environment consists of a background solvent
and a fluctuating Gaussian fieldφ with a relaxational and locally conserved dynamics and with
a tunable correlation length ξ, also known as model B [12]. The motion of the colloid is then
described by an overdamped Langevin equation, with an instantaneous friction coefficient
determined by the background solvent and a linear coupling to the Gaussian field [13, 14].
The colloid and the field are both in contact with the background solvent, acting as a thermal
bath. In practice, the possibility to tune the correlation length ξ (and, correspondingly, the
relaxation time of the relevant fluctuations) is offered by fluid solvents thermodynamically
close to critical points, such as binary liquid mixtures, in which ξ diverges upon approaching
the point of their phase diagrams corresponding to the demixing transition [12]. This model
and variations thereof have been used in the literature in order to investigate theoretically
the dynamics of freely diffusing or dragged particles [13,15,16], in the bulk or under spatial
confinement [14] as well as the field-mediated interactions among particles and their phase
behavior [17–19]. Here, instead, we use it in order to rationalise in a simple and natural
setting the possible emergence of the issues mentioned above in interpreting microrheology
data in the presence of correlated media.

The simplified model discussed above allows us to address another relevant and related
question, i.e., how the behaviour of a tracer particle is affected upon approaching a phase tran-
sition of the surrounding medium. Among the aspects which have been investigated theoreti-
cally or experimentally to a certain extent we mention, e.g., the drag and diffusion coefficient
of a colloid in a near-critical binary liquid mixture [20–23] or the dynamics and spatial distri-
bution of a tracer particle under spatial confinement [14]. However, the effective dynamical
behaviour and fluctuations of a tracer particle in contact with a medium near its bulk critical
point is an issue which has not been thoroughly addressed in the literature. The model we
consider here allows us to explore at least some aspects of this question, with the limitation
that we keep only the conservation of the order parameter φ as the distinguishing feature of
the more complex actual dynamics of a critical fluid [12].
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Figure 1: Schematic representation of the model: The colloidal probe particle (dark
red sphere) is in contact with a fluctuating scalar fieldφ(x) and is subject to the force
exerted by a harmonic trap.

Similarly, in some respect, the model considered here provides an extension of the stochas-
tic Prandtl-Tomlinson model in which the colloid has a non-linear interaction with a large
number of otherwise non-interacting fluctuation modes of the field, which play the role of a
collection of fictitious particles.

We show that an effective dynamics can be written for the probe position X , which fea-
tures a time- and X -dependent memory, thereby rendering the resulting dynamics non-linear
and non-Markovian. In particular, as sketched in Fig. 1, we consider a particle which is also
confined in space by a harmonic trap generated, for instance, by an optical tweezer. We
then compute, perturbatively in the particle-field coupling, the two-time correlation function
C(t) = 〈X (0)X (t)〉 in the stationary state. From C(t) we derive the associated effective linear
memory kernel Γ (t). This effective memory turns out to depend on the strength of the confine-
ment qualitatively in the same way as it was reported in the molecular dynamics simulations
and in the experiments mentioned above and this dependence is enhanced upon approaching
the critical point, i.e., upon increasing the spatio-temporal extent of the correlations within
the medium.

In addition, we show that the correlation function C(t) generically features an algebraic
decay at long times, with specific exponents depending on the Gaussian field being poised
at its critical point or not. In particular, we observe that generically, in d spatial dimensions,
C(t)∝ t−(1+d/2) at long times t, due to the coupling to the field, while the decay becomes even
slower, with C(t)∝ t−d/4, when the medium is critical. Correspondingly, the power spectral
density S(ω), which is usually studied experimentally, displays a non-monotonic correction as
a function of ω which is amplified upon approaching the critical point and which results, in
spatial dimensions d < 4, in a leading algebraic singularity of S(ω)∝ ω−1+d/4 for ω→ 0 at
criticality.

The results of numerical simulations are presented in order to demonstrate that the qualita-
tive aspects of our analytical predictions based on a perturbative expansion in the particle-field
interaction actually hold beyond this perturbation theory.

The rest of the presentation is organised as follows: In Sec. 2 we define the model, discuss
its static equilibrium properties and the correlations of the particle position in the absence of
the coupling to the field. In Sec. 3 we discuss the non-linear effective dynamical equation for
the motion of the particle, we introduce the linear memory kernel, we derive the generalised
fluctuation-dissipation relation which relates the non-linear friction to the correlations of the
non-Markovian noise and we work out its consequences. In Sec. 4 we proceed to a perturba-
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tive analysis of the model, expanding the evolution equations at the lowest non-trivial order
in the coupling parameter between the particle and the field. In particular, we determine the
equilibrium correlation function C(t) of the particle position, discuss its long-time behaviour
depending on the field being poised at criticality or not. Then we investigate the consequences
on the spectrum of the dynamic fluctuations, inferring the effective memory kernel and show-
ing that it actually depends on the parameters of the confining potential. We also investigate
the relevant limits of strong and weak trapping. The predictions derived in Sec. 4, based on
a perturbative expansion, are then confirmed in Sec. 5 via numerical simulations of a random
walker interacting with a one-dimensional chain of Rouse polymer. Our conclusions and out-
look are presented in Sec. 6, while a number of details of our analysis are reported in the
Appendices.

2 The Model

2.1 Probe particle coupled to a Gaussian field

We consider a “colloidal” particle in contact with a fluctuating Gaussian field φ(x) in d spatial
dimensions. The particle is additionally trapped in a harmonic potential of strength κ, cen-
tered at the origin of the coordinate system. The total effective Hamiltonian H describing the
combined system is

H[φ(x), X ] =

∫

dd x
§

1
2
[∇φ(x)]2 +

r
2
φ2(x)

ª

+
κ

2
X 2 −λ

∫

dd x φ(x)V (x − X ) , (1)

where the vector X = {X1, X2, · · · , Xd} denotes the position of the colloid, V (z) is the cou-
pling between the medium and the particle, and r > 0 controls the spatial correlation length
ξ = r−1/2 of the fluctuations of the field. For convenience, we introduce also a dimensionless
coupling strength λ which will be useful for ordering the perturbative expansion discussed in
Sec. 4. The field φ(x) undergoes a second-order phase transition at the critical point r = 0
and its spatial correlation length ξ diverges upon approaching it. The interaction between the
particle and the medium is physically expected to occur primarily within the space occupied by
the particle and therefore V (z) in Eq. (1) will be concentrated in a neighbourhood of z = 0 of
linear extension corresponding to its radius R. For example, in a concrete case, we will assume
that V (z) has a Gaussian dependence on |z| (Eq. (52)). Most of the expressions derived below
apply to a generic choice of a V (z) which is isotropic in space, i.e., a function of |z|, having
in mind spherical particles. However, the generalisation to anisotropic interactions (i.e., to
anisotropic particles) is generally straightforward. The choice of a coupling between the par-
ticle and the medium which is linear in φ is motivated by two facts: (i) a colloidal particle
inserted in a near-critical medium generically favours one of the two competing phases of the
system, i.e., values of the order parameter field φ(x , t) with a certain sign, therefore break-
ing the symmetry φ(x , t)↔−φ(x , t) of the unperturbed fluctuations; (ii) A linear coupling
allows a non-perturbative solution of the dynamics of the field in terms of that of the particle
coordinate X (t), which therefore leads to an exact effective dynamics for X (t), as discussed
further below.

The colloidal particle is assumed to move according to an overdamped Langevin dynamics
and we consider the field to represent a conserved medium so that its dynamics follows the
so-called model B of Ref. [12]. The dynamics of the joint colloid-field system then reads [24],

∂tφ(x , t) = D∇2δH[φ(x , t), X (t)]
δφ(x , t)

+η(x , t) , (2)

γ0 Ẋ (t) = −∇XH[φ(x , t), X (t)] + ζ(t) . (3)
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Here ∇ and ∇X indicate the derivatives with respect to the field coordinate x and the probe
position X , respectively. D denotes the mobility of the medium and γ0 is the drag coefficient
of the colloid; these quantities set the relative time scale between the fluctuations of the field
and the motion of the colloid. The noises η(x , t) and ζ(t) are Gaussian, delta-correlated, and
they satisfy the fluctuation-dissipation relation [25], i.e.,

〈ηi(x , t)η j(x
′, t ′)〉= −2DTδi j∇2δd(x − x ′)δ(t − t ′) , (4)

〈ζi(t)ζ j(t
′)〉= 2γ0Tδi jδ(t − t ′) , (5)

where T is the thermal energy of the bath. Here we assume that the bath acts on both the
particle and the field, such that they have the same temperature.

For the specific choice of the Hamiltonian in Eq. (1), the equations of motion (2) and (3)
take the form

∂tφ = D∇2[(r −∇2)φ −λVX ] +η , (6)

γ0Ẋ = −κX +λ f + ζ , (7)

where, for notational brevity, we have suppressed the arguments and denoted
VX (x) = V (x − X ). The force f exerted on the colloid by the field through their coupling
depends on both the colloid position X (t) and the field configuration φ(x , t) and it is given
by

f (X (t),φ(x , t))≡∇X

∫

dd x φ(x , t)V (x − X (t)) . (8)

We note here, for future convenience, that the equations of motion above are invariant
under the transformation

{φ,λ} → {−φ,−λ} . (9)

In this work we will focus primarily on the dynamics of the position X (t) of the colloidal
particle and in particular on the equilibrium two-time correlation

C(t) = 〈X (t) · X (0)〉= d〈X j(t)X j(0)〉 , (10)

for any j ∈ {1, 2, . . . d}, where in the last equality we have used the rotational invariance which
follows by assuming the same invariance for V (x). Below we discuss first the equilibrium
distribution and then the correlation function C(t) in the absence of the coupling to the field.

2.2 Equilibrium distribution

The equilibrium measure of the joint system of the colloid and the field is given by the Gibbs-
Boltzmann distribution:

P[X ,φ(x)]∝ exp
�

−
H[φ(x), X ]

T

�

. (11)

In equilibrium, the position X of the colloid fluctuates around the minimum of the harmonic
trap and the corresponding probability distribution can be obtained as the marginal of the
Gibbs measure in Eq. (11). This marginal distribution P(X ) is actually independent of λ be-
cause the coupling between the colloid and the fluctuating medium is translationally invariant
in space (see Appendix A) and therefore

P(X )∝ exp

�

−
κX 2

2T

�

, (12)

i.e., P(X ) is solely determined by the external harmonic trapping.
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2.3 Correlations in the absence of the field

In Sec. 4 we will express the correlation function C(t) defined in Eq. (10) in a perturbative
series in λ. The zeroth order term C (0)(t) of this expansion is the correlation of the particle in
the absence of coupling to the field, i.e., for λ= 0. In this case, the position X (t) of the colloid
follows an Ornstein-Uhlenbeck process and its two-time correlation is (see, e.g., Ref. [26],
Sec. 7.5, and also Sec. 4.1 below)

C (0)(t) =
dT
κ

e−ω0|t| , (13)

where
ω0 = κ/γ0 (14)

is the relaxation rate of the probe particle in the harmonic trap. Equation (13) shows also that,
as expected, one of the relevant length scales of the system is `T ≡

p

T/κ, which corresponds
to the spatial extent of the typical fluctuations of the position of the center of the colloid in the
harmonic trap, due to the coupling to the bath.

The power spectral density (PSD) S(0)(ω) of the fluctuating position of the particle in
equilibrium, i.e., the Fourier transform of C (0)(t) in Eq. (13), takes the standard Lorenzian
form

S(0)(ω) =
dT
κ

2ω0

ω2
0 +ω2

. (15)

Our goal is to determine the corrections to the two-time correlations C (0)(t) and therefore to
S(0)(ω) due to the coupling λ to the field, given that one-time quantities in equilibrium are
actually independent of it, as discussed above.

3 Effective non-linear dynamics of the probe particle

3.1 Effective dynamics

The dynamics of the field φ in Eq. (6) is linear and therefore it can be integrated and sub-
stituted in the evolution equation for X in Eq. (7), leading to an effective non-Markovian
overdamped dynamics of the probe particle [13,15]

γ0Ẋ (t) = −κX (t) +

∫ t

−∞
dt ′ F(X (t)− X (t ′), t − t ′) +Ξ(X (t), t) , (16)

where the space- and time-dependent memory kernel F is given by

F j(x , t) = iλ2D

∫

ddq
(2π)d

q jq
2|Vq|2eiq·x−αq t . (17)

In this expression,
αq = Dq2(q2 + r) , (18)

is the relaxation rate of the field fluctuations with wavevector q, Vq is the Fourier transform of
V (z), and the noise Ξ(x , t) is Gaussian with vanishing average and correlation function

〈Ξ j(x , t)Ξl(x
′, t ′)〉= 2γ0Tδ jlδ(t − t ′) + T G jl(x − x ′, t − t ′) , (19)

where

G jl(x , t) = λ2

∫

ddq
(2π)d

q jql
|Vq|2

q2 + r
eiq·x−αq|t| . (20)
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In passing we note that if the interaction potential V (x) is invariant under spatial rotations (as
assumed here), then G jl ∝ δ jl .

The equations (16)–(20) describing the effective dynamics of the probe are exact: the in-
teraction with the Gaussian field introduces a space- and time-dependent memory term F(x , t)
and a position and time-dependent (non-Markovian) noise with correlation G(x , t) in addition
to the (Markovian) contribution∝ γ0 in Eq. (19) due to the action of the thermal bath on the
particle. In the next subsections we discuss first the relation between the non-linear memory
F(x , t) in Eq. (16) and the usual linear memory kernel Γ (t) and then the fluctuation-dissipation
relation which connects F j(x , t) to G jl(x , t).

3.2 The linear memory kernel

In order to relate the non-linear memory term∝ F on the r.h.s. of Eq. (16) to the usual linear
memory kernel Γ (t) mentioned in the Introduction, we expand the former to the first order in
the displacement X (t)− X (t ′) and integrate by parts, obtaining

∫ t

−∞
dt ′ F j(X (t)− X (t ′), t − t ′)'

∫ t

−∞
dt ′

�

X l(t)− X l(t
′)
�

∇l F j(0, t − t ′) (21)

=

∫ t

−∞
dt ′Ẋ l(t

′)

∫ ∞

0

dt ′′∇l F j(0, t − t ′ + t ′′) (22)

≡ −
∫ t

−∞
dt ′ Γ (t − t ′)Ẋ j(t

′) . (23)

Here we have used the rotational invariance of V (x) to get F j(0, t) = 0 and ∇l F j(0, t)∝ δl j .
In the last equation we identify the linear memory kernel Γ (t) as given by

∫ ∞

0

dt ′∇l F j(0, t + t ′) = −Γ (t)δ jl . (24)

Conversely, taking a linear function F j(x , t) = Γ̇ (t)x j the expansion above is exact. Similarly,
we also expand the noise correlation in Eq. (19) to the zeroth order in the displacement x− x ′,
and obtain

〈Ξ j(x , t)Ξl(x
′, t ′)〉 ' 2γ0Tδ jlδ(t − t ′) + T G jl(0, t − t ′) . (25)

Using the explicit expression of F(x , t) in Eq. (17) for calculating Γ (t) from Eq. (24) and taking
into account the definition of G(x , t) in Eq. (20), one immediately gets

G jl(0, t) = Γ (|t|)δ jl . (26)

Accordingly, as expected, the total time-dependent friction γ0δ+(t− t ′)+Γ (t− t ′), where δ+(t)
is the normalised delta-distribution on the half line t > 0, is related to the correlation of the
noise in Eq. (25) by the standard fluctuation-dissipation relation involving the thermal energy
T as the constant of proportionality.

3.3 Fluctuation-dissipation relation

As expected, the fluctuation-dissipation relation discussed above for the linear approximation
of the effective memory carries over to the non-linear case, still in a remarkably simple form
which we derive here. In fact, the memory term Fl(x , t) in Eq. (16) and the correlation G jl(x , t)
of the noise in Eq. (19) are related, for t > 0, as

∇ j Fl(x , t) = ∂t G jl(x , t) , (27)
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which is readily verified by using Eqs. (17) and (20). Beyond this specific case, in Appendix B
we prove that the dynamics prescribed by Eqs. (16) and (19) is invariant under time reversal
—and therefore the corresponding stationary distribution is an equilibrium state— if the non-
linear dissipation and the correlation of the fluctuations satisfy Eq. (27).

The effective dynamics in Eq. (16), deriving from the coupling to a Gaussian field, is char-
acterised by the memory kernel F(x , t) which generalises the usual one Γ (t) to the case of a
non-linear dependence on Ẋ (t). In Sec. 4 we calculate the two-time correlation function in
the presence of this non-linear memory kernel for a particle trapped in the harmonic potential
with stiffness κ. Then we show that when the usual effective description of the dynamics of
the particle in terms of a linear memory kernel is extracted from these correlation functions,
this kernel turns out to depend on the stiffness κ, as observed in Refs. [8,9].

4 Perturbative calculation of the correlation functions

4.1 Perturbative expansion

In order to predict the dynamical behaviour of the probe particle, we need to solve the set
of equations (6) and (7), which are made non-linear in {X ,φ} by their coupling∝ λ. These
non-linear equations are not solvable in general and thus we resort to a perturbative expansion
in the coupling strength λ by writing

φ(x , t) =
∞
∑

n=0

λnφ(n)(x , t) , (28)

X (t) =
∞
∑

n=0

λnX (n)(t) , (29)

where φ(0)(x , t) and X (0)(t) are the solutions of Eqs. (6) and (7) for λ = 0, i.e., for the case
in which the medium and the probe are completely decoupled. As usual, these expansions
are inserted into Eqs. (6) and (7), which are required to be satisfied order by order in the ex-
pansion. In Refs. [13,15,16] this perturbative analysis was carried out within a path-integral
formalism of the generating function of the dynamics of the system; below, instead, we present
a direct calculation based on the perturbative analysis of the dynamical equations. We restrict
ourselves to the quadratic order n = 2 of the expansion above and show that this is sufficient
for capturing the non-trivial signatures of criticality as the correlation length ξ of the fluctua-
tions within the medium diverges. The validity of the perturbative approach will be discussed
in Sec. 5, where our analytical predictions are compared with the results of numerical simu-
lations.

As anticipated in Sec. 2.3, the motion of the probe particle in the absence of the coupling
to the field is described by the Ornstein-Uhlenbeck process

γ0Ẋ (0)(t) = −κX (0)(t) + ζ(t) . (30)

Its solution is

X (0)(t) = γ−1
0

∫ t

−∞
ds ζ(s)e−ω0(t−s) , (31)

where ω0 is the relaxation rate of the probe particle in the harmonic trap, introduced in
Eq. (14). Hereafter we focus on the equilibrium behaviour of the colloid and therefore we
assume that its (inconsequential) initial position X (t = t0) = X0 is specified at time t0→−∞.
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The first two perturbative corrections X (1)(t) and X (2)(t) evolve according to the first-order
differential equations

Ẋ (n) = −ω0X (n) + γ−1
0 f (n−1) , with n= 1,2 , (32)

where f (0) = f |λ=0 and f (1) = d f /dλ|λ=0 are obtained from the series expansion of f in
Eq. (8), in which the dependence on λ is brought in implicitly by the expansions of X and φ.

Equations (32) are readily solved by

X (n)(t) = γ−1
0

∫ t

−∞
ds e−ω0(t−s) f (n−1)(s) ; (33)

the forces f (0) and f (1) depend explicitly on the coefficients φ(n)(x , t) of the expansion of the
field φ(x , t) and thus, in order to calculate X (1)(t) and X (2)(t) above we need to know the
time-evolution of the field. The latter is more conveniently worked out for the spatial Fourier
transform

φq(t) =

∫

dd x φ(x , t)eiq·x , (34)

of the field which, transforming Eq. (28), has the expansion

φq(t) =
∞
∑

n=0

λnφ(n)q (t) . (35)

In fact, from Eq. (6), one can write the time evolution

φ̇q = −αqφq +λDq2Vqeiq·X +ηq , (36)

where αq is given in Eq. (18) and, as in Eqs. (17) and (20), Vq is the Fourier transform of the
interaction potential V (x), while ηq is the noise in Fourier space

〈ηq(t)ηq′(t
′)〉= 2DTq2 (2π)dδd(q+ q′)δ(t − t ′) , (37)

which is also delta-correlated in time.
For λ= 0, i.e., when the medium is decoupled from the probe, Eq. (36) is solved by

φ(0)q (t) =

∫ t

−∞
ds ηq(s)e

−αq(t−s) , (38)

where, as we are interested in the equilibrium behaviour, we assume hereafter that the (in-
consequential) initial condition φq(t = t0) = φq,0 is assigned at time t0 → −∞. From this
expression we can compute the two-time correlation function of the field φ(0)q (t):

¬

φ(0)q (t)φ
(0)
q′ (t

′)
¶

= (2π)dδd(q+ q′)Gq(t − t ′) , (39)

where we introduced

Gq(t) =
DTq2

αq
e−αq|t| . (40)

The dynamics of the linear correction φ(1)q can be obtained from Eq. (36), after inserting
Eqs. (29) and (35), by comparing the coefficients of order λ on both sides, finding

φ̇(1)q = −αqφ
(1)
q + Dq2Vq eiq·X (0)(t) , (41)
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which is solved by

φ(1)q (t) = Dq2Vq

∫ t

−∞
ds e−αq(t−s)eiq·X (0)(s) . (42)

Accordingly, φ(1)q (t) depends on X (0)(t) which, in turn, affects X (2)(t). As we will see below,

for calculating the correlation function C(t) of the particle coordinate up to order λ2 it is
sufficient to know the evolution of φ(0)q (t) and φ(1)q (t).

4.2 Two-time correlation function

We now compute perturbatively the two-time correlation C(t) by expanding it in a series in λ.
First, we note that C is expected to be an even function of λ because of the invariance of the
equations of motion under the transformation (9) and thus the correction of order λ vanishes,
leading to

C(t) = C (0)(t) +λ2 C (2)(t) +O
�

λ4
�

, (43)

where C (0) is the auto-correlation of the free colloid reported in Eq. (13).
As detailed in Appendix C, the correction C (2) is given by

C (2)(t) = d
�¬

X (1)j (t)X
(1)
j (0)

¶

+
¬

X (0)j (t)X
(2)
j (0)

¶

+
¬

X (2)j (t)X
(0)
j (0)

¶�

, (44)

for a generic value of j ∈ {1, 2, · · · , d} (we assume rotational symmetry of the problem). Using
Eqs. (31) and (33), one can readily calculate the three contributions above, as reported in
detail in Appendix C. The final result can be expressed as

C (2)(t) =
DT
γ2

0

∫ t

0

du e−ω0(t−u)(t − u)F(u) for t > 0 , (45)

where

F(u) =
∫

ddq
(2π)d

q4

αq
|Vq|2 exp

�

−αqu−
q2T
κ

�

1− e−ω0u
�

�

. (46)

The correlation function C (2)(t) for t < 0 can be obtained from Eq. (45) by using the fact that,
in equilibrium, C (2)(−t) = C (2)(t). Equations (45) and (46) constitute the main predictions of
this analysis. We anticipate here that in Sec. 4.5 we prove that the function F(t) introduced
above is, up to an inconsequential proportionality constant, the correction to the effective
linear memory kernel due to the coupling of the particle to the bath and therefore it encodes
the emergence of a non-Markovian dynamics, as discussed below [see, in particular, Eq. (49)].

The expressions in Eqs. (45) and (46), after a rescaling of time in order to mea-
sure it in units of ω−1

0 , is characterised by the emergence of a dimensionless combination
αq/ω0 = Dq2(q2 + r)/ω0 in the exponential. In turn, the dependence of this factor on q de-
fines, as expected, a length scale r−1/2 — actually corresponding to the correlation length ξ
of the fluctuations of the field — and `D = (D/ω0)1/4 = (Dγ0/κ)1/4. This latter scale corre-
sponds to the typical spatial extent of the fluctuations of the field which relax on the typical
timescale ω−1

0 of the relaxation of the particle in the trap.
The resulting dynamical behavior of the system is therefore characterised by the length-

scales `T (see after Eq. (14)), `D introduced above, ξ, the colloid radius R and by the timescales
associated to them. We shall see below, however, that the complex interplay between these
scales simplifies in some limiting cases in which they become well-separated and universal
expressions emerge.
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4.3 Long-time algebraic behaviours of correlations

The dynamics of the particle coupled to the fluctuating field naturally depends also on the de-
tails of their mutual interaction potential V (x). However, as we shall show below, some aspects
of the dynamics acquire a certain degree of universality, as they become largely independent
of the specific form of V (x). In particular, we focus on the experimentally accessible two-time
correlation function C(t) of the probe position and consider its long-time decay. From Eq. (45)
it can be shown (see Appendix C.3 for details) that, at long times t �ω−1

0 , the leading-order
correction C (2) to the correlation function [see Eq. (43)] in the stationary state, is given by

C (2)(t �ω−1
0 )'

DT
κ2

F(t) , (47)

while C (0)(t), the contribution from the decoupled dynamics, is generically an exponentially
decaying function of t, given by Eq. (13) in the stationary state. For large t, the integral over
q in F [see Eq. (46)] turns out to be dominated by the behaviour of the integrand for q→ 0
and, at the leading order, it can be written as

F(t)' V 2
0

∫

ddq
(2π)d

q4

αq
e−αq t , (48)

where we used the fact that |Vq|2 = V 2
0 + O(q2) and exp [−q2(T/κ)(1− e−ω0 t)] = 1+ O(q2)

for q→ 0. It is then easy to see that Eq. (48) takes the scaling form

F(t) = (V 2
0 /D)(Dt)−d/4G(r

p
Dt) , (49)

with the dimensionless scaling function

G(w) =
Ωd

2(2π)d

∫ ∞

0

dz
zd/2

z +w
e−z(z+w) , (50)

where Ωd = 2πd/2/Γ (d/2) denotes the solid angle in d-dimensions. Clearly, for
w → 0, the scaling function approaches a constant value G(0) = ΩdΓ (d/4)/[4(2π)d] =
Γ (d/4)/[2(4π)d/2Γ (d/2)]. In the opposite limit w � 1, instead, the factor e−zw in the in-
tegrand of Eq. (50) allows us to expand the remaining part of the integrand for z → 0 and
eventually find G(w→∞) = d[Γ (d/2)/Γ (d/4)]G(0)w−(2+d/2)[1+O(w−2)]. Accordingly, the
long-time decay of the correlation function shows two dynamical regimes:

C (2)(t)∝

¨

t−d/4 for Dt � r−2 ,

t−(1+d/2) for Dt � r−2 .
(51)

At the critical point r = 0 of the fluctuating medium, the second regime above cannot be ac-
cessed and only an algebraic decay∝ t−d/4 is observed. For any finite value r > 0, instead,
there is a crossover from the critical-like behaviour∝ t−d/4 to the off-critical and faster decay
∝ t−(1+d/2) as the time t increases beyond the time-scale ∝ r−2/D. The emergence of an
algebraic decay of correlations away from criticality is due to the presence of the local con-
servation law in the dynamics of the field. The time scale at which this crossover occurs is
expected to be given by ∼ ξz where ξ is the correlation length and z = 4 is the dynamical crit-
ical exponent of the Gaussian medium with the conserved dynamics we are considering here.
Remembering that ξ∼ r−ν, with ν= 1/2 in this case, a scaling collapse of the different curves
corresponding to r > 0 is expected when plotted as a function of t/ξz ∼ t r2, as in Eq. (49).
Given that the λ-independent contribution C (0) to the stationary autocorrelation function is
characterised by an exponential decay with typical time scale ω−1

0 , Eq. (51) shows that the
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long-time behaviour of the total correlation function C(t) is actually completely determined
by the slow algebraic decay of λ2 C (2)(t) as soon as t � ω−1

0 and thus the effect of the cou-
pling to the field can be easily revealed from the behaviour of the correlation function at long
times. As we also discuss further below in Sec. 4.6, Eq. (47) implies that C (2)(t) inherits the
algebraic long-time behaviour from F(t), which is solely determined by the dynamics of the
field. In fact, from Eqs. (49) and (47) we see that the actual dynamical properties of the parti-
cle (i.e., its drag coefficient γ0), the form of the interaction potential V , the temperature T of
the bath and the parameter κ of the trapping potential determine only the overall amplitude
of C (2)(t �ω−1

0 ).
Figure 2 shows plots of C (2)(t) evaluated using Eqs. (45) and (46) with a Gaussian-like

interaction potential
V (z) = ε e−z2/(2R2) , (52)

(which can be seen as modelling a colloid of “radius” R and typical interaction energy ε = 1) in
spatial dimension d = 1, 2, and 3, from top to bottom, and for various values of r. Depending
on the value of r we observe the crossover described by Eq. (51), which is highlighted in the
insets showing the data collapse according to Eq. (49).

In summary, the equilibrium correlation 〈X (0) · X (t)〉 of the position X of a particle with
overdamped dynamics, diffusing in a harmonic trap and in contact with a Gaussian field with
conserved dynamics, shows an algebraic decay at long times, which is universal as it is largely
independent of the actual form of the interaction potential and of the trapping strength but
depends only on the spatial dimensionality d. At the leading order in coupling strength λ, one
finds

C(t) = 〈X (0) · X (t)〉 ∝ λ2

�

t−d/4 at r = 0 ,
t−(1+d/2) for r > 0 .

(53)

The exponents of these algebraic laws, as well as those discussed further below, reflect the
mean-field critical exponents which characterise the static and dynamical behavior of the Gaus-
sian field considered here.

4.4 Power spectral density

In the experimental investigation of the dynamics of tracers in various media, one is naturally
lead to consider the power spectral density (PSD) S(ω) of the trajectory X (t), which is defined
as the Fourier transform of the correlation C(t):

S(ω) =

∫ +∞

−∞
dt C(t)eiωt = S(0)(ω) +λ2S(2)(ω) +O(λ4) . (54)

The zeroth-order term, corresponding to the Ornstein-Uhlenbeck process, was discussed above
and is given by Eq. (15). The second-order correction S(2)(ω) can be obtained by Fourier
transforming Eq. (45) (see Appendix C for details), which yields

S(2)(ω) =
2DT

γ2
0(ω

2
0 +ω2)2

∫ +∞

0

du
��

ω2
0 −ω

2
�

cos(ωu)− 2ωω0 sin(ωu)
�

F(u) , (55)

in terms of F(u) given in Eq. (46).
Figure 3 shows the behaviour of the PSD for the Gaussian interaction potential in Eq. (52).

In panel (a) the resulting S(ω) at order λ2 is plotted as a function ofω for various values of r.
The large-ω behavior of S(ω) is essentially determined by S(0)(ω) in Eq. (15) and therefore
it is dominated by the Brownian thermal noise ζ(t) in Eq. (3) with S(ω) ' 2dT/(γ0ω

2)
[see also Eq. (14)]. Heuristically, at sufficiently high frequencies the dynamics of the particle
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Figure 2: Stationary auto-correlation function C (2)(t) of the position of the colloidal
particle, as obtained numerically in spatial dimension (a) d = 1, (b) 2, and (c) 3, for
various values of the parameter r which controls the spatial and temporal extents of
the correlations of the fluctuations within the medium. At the critical point r = 0, the
correlation C (2)(t) decays as t−d/4 at long times, while away from the critical point
C (2)(t)∼ t−(1+d/2). These slow algebraic decays — indicated in the various panels by
the straight lines on the right — determine that of the total auto-correlation function
C(t), as the contribution of order λ0 decays exponentially upon increasing time. At
short times, instead, C (2)(t) turns out to grow linearly upon increasing t, as indicated
by the solid lines on the left of each panel and as discussed, c.f., in Sec. 4.6. The insets
show the scaling collapse of td/4C2(t) when the same data is plotted as a function of
t r2. Here we considered an interaction potential V (z) = e−z2/(2R2) with R = 2 and
D = T = 1 and κ= γ0 = 1.
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Figure 3: (a) Structure factor S(ω) = S(0)(ω) + λ2S(2)(ω) [see Eqs. (15) and (55)]
and (b) leading-order correction S(2)(ω) as functions ofω for a set of values of r and
λ = 0.05 in spatial dimension d = 3. At criticality, (i.e., for r = 0) the correction
S(2)(ω) (and therefore S(ω)) displays the algebraic singularity predicted by Eq. (57)
for ω → 0, which is indicated by the solid line in panel (a). Remarkably, S(2)(ω)
becomes negative upon increasing ω above a certain r-dependent value. Here we
have used a Gaussian interaction potential V (z) = e−z2/(2R2) with R = 2. The other
parameters are γ0 = T = D = 1 with κ= 2.

effectively decouples from the relatively slow dynamics of the fieldφ and therefore its behavior
is independent of λ. Correspondingly, one indeed observes that S(2)(ω) reported in panel (b)
vanishes as ω increases, independently of the specific value of the parameter r, i.e., of the
correlation length ξ of the fluctuating medium. In particular, in Appendix D.2 it is shown that
S(2)(ω)∝ω−4 for largeω and that S(2)(ω) approaches zero from below. On the contrary, the
coupling to the field becomes relevant at lower frequencies and it increases as r → 0, i.e., upon
approaching the critical point of the fluctuating field, as shown in panel (b) of Fig. 3, which
displays the pronounced contribution of S(2)(ω) as ω → 0. This contribution is discussed
in detail in Appendix D by studying the asymptotic behavior of Eq. (55) but it can be easily
understood from the stationary autocorrelation at long times in Eq. (51), from which we can
infer the behaviour of S(2)(ω) asω→ 0, which approaches the generically finite value [where
we used Eq. (14)]

S(2)(ω= 0) =
2DT
κ2

∫ +∞

0

duF(u) . (56)

In particular, by using Eq. (51), we find that S(2)(ω) is actually finite as ω→ 0 for r > 0, i.e.,
away from criticality or generically for d ≥ 4, while

S(2)(ω→ 0)∝ω−1+d/4 for r = 0 and d < 4 . (57)

(See Eq. (139) in Appendix D.2 for the complete expression, including the coefficients of pro-
portionality.)

Correspondingly, given that the zeroth-order contribution S(0)(ω = 0) to S(ω) is finite as
ω→ 0, the power spectral density for a particle in a critical medium develops an integrable
algebraic singularity as ω→ 0 which is entirely due to the coupling to the medium.

Note that, according to the discussion in Sec. 2.2, the equal-time correlation C(0) of the
position of the probe particle is not influenced by its coupling to the field, i.e., it is independent
of λ. In turn, these equal-time fluctuations are given by the integral of S(ω) over ω and
therefore one concludes that the Fourier transform S(n)(ω) of the contributions C (n)(t) of
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order λn in the generalisation of the expansion in Eq. (43), have to satisfy
∫ +∞

0

dωS(n)(ω) = 0 for n 6= 0 . (58)

Accordingly, the integral on the linear scale of the curves in panel (b) of Fig. 3 has to vanish,
implying that the positive contribution at small ω is compensated by the negative contribu-
tion at larger values, which is clearly visible in the plot and which causes a non-monotonic
dependence of S(2)(ω) on ω.

4.5 Effective memory kernel

As we mentioned in the introduction, the most common modelling of the overdamped dynam-
ics of a colloidal particle in a medium is done in terms of a linear evolution equation with an
effective memory kernel of the form (see also the discussion in Sec. 3.3)

∫ t

−∞
dt ′ Γ (t − t ′)Ẋ j(t

′) = f̃ j(t) + ζ̃ j(t) , (59)

where
〈ζ̃ j(t)ζ̃l(t

′)〉= 2T δ jlΓ (|t − t ′|) , (60)

and f̃ represents the forces acting on the colloid in addition to the stochastic noise ζ̃ pro-
vided by the effective equilibrium bath at temperature T , for which the fluctuation-dissipation
relation is assumed to hold. An additional, implicit assumption of the modelling introduced
above is that Γ describes the effect of the fluctuations introduced by the thermal bath, which
are expected to be independent of the external forces f̃ . We shall see below that this is not
generally the case because of the intrinsic non-linear nature of the actual evolution equation.
In the setting we are interested in, the external force f̃ in Eq. (59) is the one provided by
the harmonic trap, i.e., f̃ (t) = −κX (t). In this case, the process is Gaussian and the Laplace
transform Ĉ(p) of the stationary correlation function C(t) is given by [9,27]

Ĉ(p) =
dT Γ̂ (p)

κ[κ+ pΓ̂ (p)]
, (61)

in terms of the Laplace transform Γ̂ (p) of Γ (t). As it is usually done in microrheology [4], we
invert this relation in order to infer the memory kernel from the correlations, i.e.,

Γ̂ (p) =
κĈ(p)

dT/κ− pĈ(p)
. (62)

The perturbative expansion of C(t) in Eq. (43) readily translates into a similar expansion for
the corresponding Laplace transform, i.e.,

Ĉ(p) = Ĉ (0)(p) +λ2Ĉ (2)(p) +O(λ4) , (63)

where the Laplace transform of the correlation for λ = 0 in Eq. (13) and of the correction in
Eq. (45) can be easily calculated:

Ĉ (0)(p) =
dT

κ(p+ω0)
, (64)

Ĉ (2)(p) =
DT
γ2

0

F̂(p)
(p+ω0)2

. (65)
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Inserting the perturbative expansion (63) in Eq. (62) with Ĉ (0)(p) and Ĉ (2)(p) given above,
and using Eq. (14), we obtain the corresponding perturbative expansion for the memory kernel

Γ̂ (p) = Γ̂ (0)(p) +λ2Γ̂ (2)(p) +O(λ4) = γ0 +
λ2D

d
F̂(p) +O(λ4) . (66)

From this expression, after transforming back in the time domain, we naturally find

Γ (t) = Γ (0)(t) +λ2Γ (2)(t) +O(λ2) , (67)

in which we recover the expected memory kernel

Γ (0)(t) = γ0δ+(t) , (68)

in the absence of the interaction with the field — which renders Eq. (30) — and the correction

Γ (2)(t) =
D
d
F(t) , (69)

due to this interaction. This equality provides also a simple physical interpretation of the
function F(t) introduced in Eqs. (45) and (46) as being the contribution to the linear friction
due to the interaction of the particle with the field.

This effective memory Γ (2)(t)∝ F(t) turns out to depend explicitly on the stiffness κ of
the trap, as prescribed by Eq. (46). Contrary to the very same spirit of writing an equation
such as Eq. (59), the effective memory Γ (t) is not solely a property of the fluctuations of the
medium, but it actually turns out to depend on all the parameters which affect the dynamics of
the probe, including the external force f̃ . This dependence is illustrated in Fig. 4 which shows
Γ (2)(t) as a function of time t for various values of the relevant parameters. In particular, the
curves in panel (a) correspond to a fixed value of the parameter r and shows the dependence
of the correction Γ (2)(t) on the trap stiffness κ, while panel (b) shows the dependence on the
distance r from criticality (equivalently, on the spatial range ξ= r−1/2 of the correlation of the
field) for a fixed value of κ. The curves in panel (a) show that, depending on the value of κ, a
crossover occurs between the behaviour at short times — during which the particle does not
displace enough to experience the effects of being confined — corresponding to a weak trap
with κ → 0 and that at long times t � ω−1

0 corresponding to the strong-trap limit κ →∞,
which is further discussed below in Sec. 4.6. In turn, as shown by panel (b), the power of
the algebraic decay of Γ (2)(t) at long times t � ω−1

0 depends on whether the field is critical
(r = 0) or not (r 6= 0). In particular, upon increasing t one observes, after a faster relaxation
at short times controlled, inter alia, by the trap stiffness κ, a crossover between a critical-like
slower algebraic decay and a non-critical faster decay, with the crossover time diverging as
∼ r−2 for r → 0. Taking into account that, at long times t � ω−1

0 , Eqs. (47) and (69) imply
that Γ (2)(t) is proportional to C (2)(t) according to

Γ (2)(t �ω−1
0 ) =

κ2

dT
C (2)(t) , (70)

this crossover is actually the one illustrated in Fig. 2 for C (2)(t) in various spatial dimensions
d.

We emphasise that the long-time behaviour of the correlation Γ (t �ω−1
0 ) of the effective

fluctuating force generated by the near-critical medium (according to Eqs. (59) and (60))
and acting on the probe particle is actually independent of the trapping strength κ and is
characterised by an algebraic decay as a function of time, following from Eqs. (70) and (51).
In particular, in spatial dimension d = 3, this decay is∝ t−3/4 at criticality and∝ t−5/2 for
the non-critical case, with a positive coefficient of proportionality. This correlated effective
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Figure 4: Effective memory kernel Γ (2)(t) in spatial dimension d = 3 obtained from
Eqs. (69) and (46) via a numerical integration. Panel (a) shows Γ (2)(t) for various
values of the trap stiffness κ and fixed r = 0.01 while panel (b) for various values of
r and fixed κ = 0.01. The curves corresponding to the limiting cases κ →∞ and
κ = 0 reported in panel (a) are obtained from Eq. (69) by using the approximate
expressions of F in, c.f., Eqs. (75) and (78), respectively. The algebraic asymptotic
decays indicated in panels (a) and (b), instead, follow from Eq. (70) and Fig. 2 (see
also Eq. (51)). Here we have used the interaction potential V (z) = e−z2/(2R2) with
R= 2, while the other parameters of the model are γ0 = D = T = 1.

force can be compared with the one emerging on a Brownian particle due to hydrodynamic
memory, generated by the fluid medium backflow, which turns out to have also algebraic
correlations, with decay ∝ t−3/2 and a negative coefficient of proportionality, characteristic
of anticorrelations (see, e.g., Ref. [2]). Accordingly, the algebraic decay of the hydrodynamic
memory is faster than that due to the field in the critical case but slower than the one observed
far from criticality. As an important additional qualitative difference between these two kinds
of effective correlated forces, while the long-time anticorrelations due to the hydrodynamic
memory may give rise to resonances in S(ω) [2], this is not the case for the effective force due
to the coupling to the field.

The dependence of the effective memory Γ (2) on the trapping strength κ discussed above
carries over to the friction coefficient

γ=

∫ ∞

0

dt Γ (t) = Γ̂ (p = 0) = γ0 +λ
2γ(2) +O(λ4) , (71)

which is usually measured in experimental and numerical studies [8]. In the last equal-
ity we used Eqs. (67) and (68). Using, instead, Eq. (62) for p → 0 and the relationship
Ĉ(p = 0) = S(ω= 0)/2 between the Laplace and the Fourier transform of the two-time corre-
lation function, one finds the following relationship between γ and S(ω):

γ=
κ2

2dT
S(ω= 0) . (72)

Accordingly, the correction γ(2) to γ in Eq. (71), due to the coupling to the field is, up to a
constant, equivalently given by the integral of Γ (2)(t) in Eq. (69) or by S(2)(ω= 0) in Eq. (56).
In Fig. 5 we show the dependence of γ(2) on the trap stiffness κ, for a representative choice
of the various parameters and upon approaching the critical point (i.e., upon decreasing r)
from bottom to top. In particular, by using Eq. (72) and the results of Appendix D.2 (see, c.f.,
Eqs. (136) and (137)), one finds that, in the limit of weak trapping,

γ(2)(κ→ 0; r → 0)'
γ0|V0|2

T
r−1+d/2 Γ (1− d/2)

d(4π)d/2
for d < 2 , (73)
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Figure 5: Dependence of the correction γ(2) to the friction coefficient γ (see Eqs. (71)
and (72)) on the trap stiffness κ for various values of r, decreasing from top to bot-
tom, in spatial dimension d = 3. The horizontal dashed lines for r = 10−3 and 10−4

correspond to the asymptotic behavior given by Eq. (74). The interaction poten-
tial used for this plot is V (z) = e−z2/(2R2) with R = 2 and the other parameters are
ν= D = T = 1.

grows with an algebraic and universal singularity as a function of r for r → 0 while, for strong
trapping,

γ(2)(κ→∞; r → 0)'
|V0|2

D
r−2+d/2 Γ (2− d/2)

d(4π)d/2
for d < 4 , (74)

grows with a different exponent, with the previous limits being otherwise finite. Accordingly,
for d < 4 one observes generically that the values of γ(2) for κ→ 0 and κ→∞ grow upon
approaching criticality, with the latter growing more than the former, as clearly shown in Fig. 5.
The corresponding increase of the friction coefficient upon increasing the stiffness was already
noted in Ref. [16] for the same model, and resembles the one found in molecular dynamics
simulations of a methane molecule in water (compare with Fig. 4 of Ref. [8]).

4.6 Limits of strong and weak confinement

Here, we specialise the analysis presented above to the strong- and weak-trap limits, formally
corresponding to κ→∞ and κ→ 0, respectively. Note that, while the system cannot reach
an equilibrium state for κ= 0 due to the diffusion of the particle, the limit κ→ 0 of the various
quantities calculated in such a state for κ 6= 0 is well-defined and, as suggested by Fig. 4, it
describes the behaviour of the system at short and intermediate time scales. The strong-trap
limit, instead, captures the behaviour of the particle at times t � ω−1

0 and it corresponds to
a probe that is practically pinned at the origin, with a small displacement that is proportional
to the force exerted on it by the field. In this limit, the timescale ω−1

0 of the relaxation in the
trap [see Eq. (14)] is small compared to all the other timescales. The function F in Eq. (46)
then reduces to

F(t)'
∫

ddq
(2π)d

q4

αq
|Vq|2 exp

�

−αq t
�

. (75)

At long times, this expression behaves as the one Eq. (48), i.e., as in Eqs. (49) and (50).
Equation (75), via Eq. (69), determines also the limiting behaviour of Γ (2)(t) reported in panel
(a) of Fig. 4, which exhibits at long times the crossover predicted by Eq. (49), shown in panel
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(b) of the same figure. Similarly, the correction C (2)(t) to the correlation C(t) is then given
by Eq. (47), i.e.,

C (2)(t)'
DT
κ2

∫

ddq
(2π)d

q4

αq
|Vq|2 exp

�

−αq t
�

, (76)

which, as expected, vanishes as ∝ κ−2 in the limit κ → ∞, corresponding to X ∝ κ−1.
However, this correction reflects the fluctuations of the force f (X ,φ(x)) exerted by the field
on the probe, given by Eq. (8): the particle being practically pinned at X = 0, the correlations
of the force f ' κX/λ are

〈 f (0,φ(x , t)) · f (0,φ(x , 0))〉= κ2C (2)(t) . (77)

Following Sec. 4.3, one can show that the correlations (76) still exhibit an algebraic decay at
long times, as the one of Eq. (48). This means that the long-time algebraic behaviour of the
correlations of the position of the particle is actually a property of the field itself and it does
not come from the interplay between the particle and the field dynamics, although it might
depend on the form of the coupling between the particle and the medium.

In the weak-trap limit κ→ 0 (i.e., ω0→ 0) the function F in Eq. (46) becomes

F(t)'
∫

ddq
(2π)d

q4

αq
|Vq|2 exp

�

−(αq + q2T/γ0)t
�

, (78)

which determines, via Eq. (69), the behavior of Γ (2)(t) in the same limit, shown in panel (a)
of Fig. 4. The exponential in this expression shows the natural emergence of the length scale
` ≡ (Dγ0/T )1/2 influencing the dynamics even at long times, when other length scales such
as R turn out to be irrelevant. This scale can actually be expressed as the only κ-independent
combination of the κ-dependent scales `T,D discussed after Eq. (46), i.e., ` = `2

D/`T . In par-
ticular, at long times and sufficiently close to criticality such that r � `−2, Eq. (78) takes the
scaling form

F(t)' (V 2
0 /D)`

d(Dt)−d/2Gwt(rDt/`2) , (79)

with the dimensionless scaling function

Gwt(w) =
Ωd

2(2π)d

∫ ∞

0

dz
zd/2

z +w
e−z , (80)

where Ωd is the solid angle reported after Eq. (50). For w → 0 the scaling function renders
Gwt(0) = ΩdΓ (d/2)/[2(2π)d] = (4π)−d/2. In the opposite limit w � 1, instead, one has
Gwt(w →∞) = ΩdΓ (d/2 + 1)/[2(2π)d]w−1 = d/[2(4π)d/2]w−1. At sufficiently long times
(but still within the range of validity of the weak-trap approximation), one thus finds that
F(t)∝ t−(1+d/2) for r 6= 0 and F(t)∝ t−d/2 for r = 0. In particular, the algebraic decay
observed for r 6= 0 in this weak-trap limit turns out to be the same as the one observed off
criticality in the strong-trap limit, as also shown in panel (a) of Fig. 4 for Γ (2)(t) ∝ F(t),
where the exponents of the decay of the curves for κ→ 0 and κ→∞ are equal.

In the weak-trap limit, the time ω−1
0 of the relaxation in the trap is much longer than the

timescales appearing in the function F , hence the integral in Eq. (45) which gives C (2)(t) in
terms of F is eventually dominated by u' 0, leading to

C (2)(t)'
DT
γ2

0

te−ω0 t

∫ ∞

0

duF(u) = DT
γ2

0

te−ω0 t

∫

ddq
(2π)d

q4|Vq|2

αq

�

αq + Tq2/γ0

� . (81)

Accordingly, upon increasing t, we expect C (2)(t) to increase linearly at short times with a
proportionality coefficient that is not universal. This is clearly shown in the various plots of
C (2)(t) reported in Fig. 2.
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Figure 6: Schematic representation of the random walker coupled to a Rouse poly-
mer model on a lattice, used for numerical simulations. The dashed red line indicates
the polymer connecting L monomers, represented as circles. The walker (green
square) changes its position X by jumping to one of its nearest neighbouring sites
with a rate that depends on the displacement hi of the monomers within the range
X − R≤ i ≤ X + R.

5 Numerical simulations

In this section we provide numerical evidence to support the predictions formulated in the
previous sections beyond the perturbation theory within which they have been derived. For
the sake of simplicity, we focus on a dynamics occurring in one spatial dimension and consider
a spatially discrete model for the colloid-field system.

The colloidal probe is modelled as a random walker moving on a periodic one-dimensional
lattice of size L and is coupled to a Rouse polymer chain, defined on the same lattice, which
models the field, as sketched in Fig. 6. The modelling of the field as a Rouse chain is inspired
by Ref. [28], where a similar chain is used for describing an Edward-Wilkinson interface. A
continuous degree of freedom hi(t) is associated with each lattice site i = 1,2, . . . L and it can
be thought of as the displacement of the i-th monomer of the polymer, which represents the
fluctuating field. The colloidal probe, with coordinate X ∈ 1,2, · · · , L along the chain interacts
with the field via the coupling potential V (i, X ). In the following, we consider the simple case
V (i, X ) = Θ(R−|i−X |), where Θ(x) is the unit step function, i.e., the colloid interacts with the
field only within the interval [X − R, X + R]. In addition to the interaction with the polymer,
the colloid is also trapped by a harmonic potential κ2 (X − L/2)2, centered at X = L/2, also
defined on the lattice. The Hamiltonian H describing this coupled system is then given by

H =
L
∑

i=1

�

1
2
(∇hi)

2 +
r
2

h2
i

�

+
κ

2

�

X −
L
2

�2

−λ
L
∑

i=1

hiV (i, X ) , (82)

where ∇ denotes the first-order discrete derivative on the lattice. The time evolution of the
field follows the spatially discrete version of Eq. (6), i.e.,

dhi

dt
= D(r∆−∆2)hi −λD∆V (i, X )−∇ηi(t) , (83)

where∆ denotes the discrete Laplacian operator, while ηi are a set of L independent Gaussian
white noises. In defining the discrete operators ∇, ∆, and ∆2 we use the central difference
scheme, i.e., for an arbitrary function gi with i = 1,2, . . .:

∇gi = (gi+1 − gi−1)/2 ,
∆gi = gi+1 + gi−1 − 2gi ,
∆2 gi = gi+2 + gi−2 + 6gi − 4(gi+1 + gi−1) . (84)

In the numerical simulations, the coupled first-order Langevin equations (83) and (84) are
used to simulate the field dynamics.
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Figure 7: Numerical simulation of the colloid and the Rouse polymer model (see
Fig. 6) in spatial dimension d = 1: Stationary auto-correlation function C(t) of the
position of the colloidal probe as a function of the time-difference t at the bulk critical
point r = 0 for various values of the lattice size L. The dashed line indicates the
algebraic decay t−1/4 predicted by the analytical perturbative calculation. Here the
colloid radius R is set to R = 4 and the coupling strength λ = 0.5, with all the
remaining parameters set to one.

As anticipated above, the overdamped diffusive motion of the colloid is modelled as a
random walker moving on the same lattice. From a position X , the walker jumps to one of
its nearest neighbouring site X ′ = X ± 1 with Metropolis rates (T/γ0)min{1, e−∆H/T } where
∆H = κ(X ′2 − X 2)/2+ λ

∑

i hi[V (i, X )− V (i, X ′)] is the change in the energy H in Eq. (82)
due to the proposed jump X 7→ X ′.

The above dynamics ensures that the colloid-Rouse chain coupled system eventually re-
laxes to equilibrium with the Gibbs-Boltzmann measure corresponding to the Hamiltonian
(82). We measure the temporal auto-correlation C(t) = 〈X (0)X (t)〉 of the colloid position X
in this equilibrium state. A plot of C(t) as a function of time t at criticality r = 0 for vari-
ous values of lattice size L is shown in Fig. 7. The expected algebraic decay ∝ t−1/4 of the
long-time tail — predicted by Eq. (51) — becomes clearer as the system size L increases and
this agreement occurs for a generic choice of the system parameters. Accordingly, the data
obtained from the numerical simulations, which is non-perturbative in nature, agrees very
well with the theoretical prediction, providing a strong support to the perturbative approach
presented in the previous sections.

6 Conclusions

This work presented a perturbative analytical study of the effective dynamics of a trapped over-
damped Brownian particle which is linearly and reversibly coupled to a fluctuating Gaussian
field with conserved dynamics (model B) and tunable spatial correlation length ξ.

In particular, in Sec. 3 we showed that the effective dynamics of the coordinate of the
particle is determined by a non-Markovian Langevin equation (see Eq. (16)) characterised
by a non-linear memory kernel determined by the dynamics of the field and by the interac-
tion of the particle with the field. The effective noise in that equation turns out to be col-
ored and spatially correlated in a way that is related to the memory kernel by the generalised
fluctuation-dissipation relation discussed in Sec. 3.3. A possible linear approximation of this
dynamics necessarily produces a linear memory kernel (see Sec. 3.2), which depends also on
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the additional external forces and thus — contrary to the non-linear memory — is not solely
determined by the interaction of the particle with the bath. As heuristically expected, this
dependence becomes more pronounced upon making the dynamics of the field slower, i.e.,
upon approaching its critical point. A similar dependence was reported in numerical and ex-
perimental investigations of simple or viscoelastic fluids [8,9] as well as in theoretical studies
of cartoon non-linear models of actual viscoelastic baths [9].

In Sec. 4 we determine the lowest-order perturbative correction to the equilibrium corre-
lation function C(t) of the particle position and to the associated power spectral density S(ω),
due to the coupling to the field. We highlight the possible emergence of algebraic behaviours
in the time-dependence at long times t of C(t) (see Eq. (53) and Fig. 2) and in the frequency-
dependence at small frequencies ω of S(ω) (see Eq. (57) and Fig. 3), that are completely
determined by the slow dynamics of the field which the particle is coupled to and that depend
on whether the field is critical or not. The corresponding exponents turn out to be universal,
as they are largely independent of the actual form of the interaction potential between the
particle and the field. The effective (linear) memory kernel Γ (t) (see Eq. (69) and Fig. 4)
which can be inferred from the correlation function of the particle and the associated friction
coefficient γ (see Eq. (72) and Fig. 5) turn out to depend sensitively on the stiffness κ of the
external confining potential which the particle is subject to, especially when the field is poised
at its critical point. In fact, correspondingly, fluctuations within the system are enhanced and
the associated “fluctuation renormalisations” [29] of the linear coefficients are expected to be
more relevant.

In Sec. 5 we probe the validity of the perturbative and analytical study of the dynamics
of the particle via numerical simulations, confirming the algebraic decay of the correlations
beyond perturbation theory (see Fig. 7).

In the present study we focused on the case of a Gaussian field with conserved dynamics,
which provides a cartoon of a liquid medium and which is generically slow in the sense that the
field correlation function displays an algebraic behaviour at long times also away from critical-
ity. In the case of non-conserved dynamics (the so-called model A [12]), instead, the algebraic
behaviour of correlations occurs only at criticality. Correspondingly, the non-critical algebraic
decay of C(t) in Eq. (53) is expected to be replaced by an exponential decay controlled by
the field relaxation time τφ∝ r−1 while the algebraic decay at criticality acquires a different
exponent which can be determined based on a power-counting analysis. Some of these aspects
have been recently studied in Ref. [30] together with the non-equilibrium relaxation of a par-
ticle which is released from an initial position away from the centre of the optical trap. Among
the possible extensions of the present work, we mention considering a quadratic coupling of
the particle to the field — which tends to move the probe towards the zeros of the field, —
more general couplings [19], or the case of anisotropic particles having a polarity coupled to
gradients of the fluctuating field. Similarly, it would be interesting to explore additional and
experimentally observable consequences of the emergence of the effective non-linear equa-
tion of motion of the particle beyond the dependence of the linear coefficients on the external
forces. In particular, as opposed to the case in which the evolution equation of the particle
coordinate X is linear, we expect that the statistics of suitably chosen observables should be
non-Gaussian, in spite of the fact that the very stationary distribution of X is Gaussian [31].

As a first step towards modelling colloidal particles in actual correlated fluids, instead,
it would be important to consider more realistic models of dynamics, possibly including the
case of non-Gaussian fields (which are expected to feature the emergence of critical exponents
beyond mean-field), as well as of the interactions between the particle and the field, which
usually take the form of boundary conditions for the latter. This would allow, inter alia, the
investigation of the role of fluctuations in the dynamics of effective interactions among the
particles immersed in the fluctuating medium [21, 32–35], or a finer account of the effect of
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viscoelasticity on the transition between two wells [36,37].
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A Equilibrium distribution of the colloid position

In equilibrium, the distribution which characterises the fluctuations of the colloid position X
is given by

P(X ) =
e−HX /T

∫

Dφ e−Hφ/T

∫

dX
∫

Dφ e−H/T
, (85)

where, for convenience, we have written H =Hφ +HX ; Hφ denotes the field-dependent part
of the Hamiltonian in Eq. (1), including the interaction term between the colloid and the field,
while HX = κX 2/2 denotes the contribution which solely depends on the colloid degree of
freedom. Note that Hφ depends on X through the interaction potential V .

In order to evaluate the functional integration, it is useful to recast Hφ in a bilinear
form: using partial integration, we can formally express Hφ =

∫

dd x (φÂφ/2−λVφ) where
Â= −∇2+ r2. Because of the quadratic nature of Hφ , the functional integration can be exactly
performed and yields

∫

Dφ e−Hφ/T ∝ exp

�

λ2

2T

∫

dd y dd y ′ V (y)Â−1(y − y ′)V (y ′)

�

, (86)

where Â−1 denotes the inverse of the operator Â. Clearly, the right-hand side of Eq. (86) is
independent of the colloid position X and therefore the equilibrium probability distribution
P(X ) of the coordinate X of the particle in Eq. (85) is independent of the coupling to the field
and is determined only by the trap.

B The fluctuation-dissipation relation

In this appendix, we show that a dynamics of the form

γ0Ẋ (t) =

∫ t

−∞
dt ′ F(X (t)− X (t ′), t − t ′) +Ξ(X (t), t) , (87)

where Ξ(x , t) is a Gaussian noise with correlation

〈Ξ j(x , t)Ξl(x
′, t ′)〉= 2γ0Tδ jlδ(t − t ′) + T G jl(x − x ′, t − t ′) , (88)
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is invariant under time reversal if the kernels F(x , t) and G(x , t) are related, for t > 0, as

∇ j Fl(x , t) = ∂t G jl(x , t) . (89)

Equation (87) corresponds to the effective evolution equation for the particle in interaction
with the field, given by Eq. (16), but in the absence of the trap, i.e., for κ= 0. For the sake of
simplicity we consider this case, as the argument presented below readily extends to κ 6= 0.

First, we note that if Eq. (89) is satisfied, we can introduce the potential

Ψ j(x , t) = −
∫ ∞

t
dt ′F j(x , t ′) , (90)

such that

F j(x , t) = ∂tΨ j(x , t) , (91)

G jl(x , t) =∇lΨ j(x , |t|) . (92)

Note that from Eq. (89), one infers that ∇l F j = ∇ j Fl and ∇lΨ j = ∇ jΨl ; also, by symmetry,
F(x , t) and Ψ(x , t) should be odd functions of x . In order to simplify the notations, below we
assume that both F(x , t) and Ψ(x , t) vanish for t < 0, while the integrals over time run over
R, unless specified otherwise.

First, we further simplify Eq. (87) by absorbing the delta correlation in Eq. (88)
in the definition of G(x , t) and the instantaneous friction γ0Ẋ (t) in the kernel F via
F(X , t) 7→ F(X , t) + γ0Xδ′+(t). The dynamics now reads

−
∫

dt ′ F(X (t)− X (t ′), t − t ′) = Ξ(X (t), t) , (93)

〈Ξ j(x , t)Ξl(x
′, t ′)〉= T G jl(x − x ′, t − t ′) . (94)

We introduce now the path-integral representation for this dynamics, following Ref. [13]. The
corresponding Janssen-De Dominicis action is

S[X , P] =i

∫

dt dt ′ Pj(t)F j(X (t)− X (t ′), t − t ′)

+
T
2

∫

dt dt ′ Pj(t)Pl(t
′)G jl(X (t)− X (t ′), t − t ′) ,

(95)

where P(t) is the so-called response field (see, e.g., Sec. 4.1 in Ref. [38]).
In terms of the path-integral description of the process, we can now use the method pre-

sented in Ref. [39] to show that if the conditions expressed in Eqs. (91) and (92) are satisfied,
the resulting (stationary) process is invariant under time-reversal, i.e., it is an equilibrium pro-
cess. In particular, given a trajectory described by {X (t), P(t)} we consider the corresponding
time-reversed trajectory {X̄ (t), P̄(t)} with

X̄ (t) = X (−t) , (96)

P̄(t) = P(−t)−
i
T

Ẋ (−t) . (97)

In equilibrium, one should have S[X̄ , P̄] = S[X , P] and this is what we will check below. The
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action of the reversed trajectory is thus

S[X̄ , P̄] =
T
2

∫

dt dt ′ Pj(t)Pl(t
′)G jl(X (t)− X (t ′), t − t ′) (98)

+ i

∫

dt dt ′ Pj(t)
�

F j(X (t)− X (t ′), t ′ − t)− Ẋ l(t
′)G jl(X (t)− X (t ′), t − t ′)

�

+
1
T

∫

dt dt ′ Ẋ j(t)
�

F j(X (t)− X (t ′), t ′ − t)−
1
2

Ẋ l(t
′)G jl(X (t)− X (t ′), t − t ′)

�

.

The first term coincides with the second one in S[X , P] in Eq. (95). The second and the last
term in S[X , P] can now be rewritten by assuming that Eqs. (91) and (92) hold. For the second
term we have

∫

dt dt ′ Pj(t)
�

F j(X (t)− X (t ′), t ′ − t)− Ẋ l(t
′)G jl(X (t)− X (t ′), t − t ′)

�

=

∫

dt dt ′ Pj(t)
�

∂tΨ j(X (t)− X (t ′), t ′ − t)− Ẋ l(t
′)∇lΨ j(X (t)− X (t ′), |t − t ′|)

�

(99)

=

∫

t ′>t
dt dt ′ Pj(t)

�

∂tΨ j(X (t)− X (t ′), t ′ − t)− Ẋ l(t
′)∇lΨ j(X (t)− X (t ′), t ′ − t)

�

+

∫

t ′<t
dt dt ′ Pj(t)

�

−Ẋ l(t
′)∇lΨ j(X (t)− X (t ′), t − t ′)

�

(100)

= It ′>t + It ′<t . (101)

The first integral vanishes because

It ′>t =

∫

t ′>t
dt dt ′Pj(t)

d
dt ′

�

Ψ j(X (t)− X (t ′), t ′ − t)
�

= 0 . (102)

We have used that Ψ j(x , t →∞) = 0 and Ψ j(0,0) = 0, given that Ψ j(x , t) is an odd function
of x . We use the same trick to integrate by parts in the second integral in Eq. (101) (the
boundary terms cancel):

It ′<t =

∫

t ′<t
dt dt ′ Pj(t)∂tΨ j(X (t)− X (t ′), t − t ′) (103)

=

∫

dt dt ′ Pj(t)F j(X (t)− X (t ′), t − t ′) . (104)

This term coincides with the first one in the action S[X , P] of the forward path in Eq. (95) and
thus, in order to prove that S[X̄ , P̄] = S[X , P], we have to show that the last term in Eq. (98)
actually vanishes.

This contribution can be calculated as above, except that we start by using the parity of
G(x , t) to remove the factor 1/2 and to restrict the integral to t ′ > t:
∫

dt dt ′ Ẋ j(t)
�

F j(X (t)− X (t ′), t ′ − t)−
1
2

Ẋ l(t
′)G jl(X (t)− X (t ′), t − t ′)

�

=

∫

t ′>t
dt dt ′ Ẋ j(t)

�

F j(X (t)− X (t ′), t ′ − t)− Ẋ l(t
′)G jl(X (t)− X (t ′), t − t ′)

�

(105)

=

∫

t ′>t
dt dt ′ Ẋ j(t)

�

∂tΨ j(X (t)− X (t ′), t ′ − t)− Ẋ l(t
′)∇lΨ j(X (t)− X (t ′), t ′ − t)

�

(106)

=

∫

t ′>t
dt dt ′ Ẋ j(t)

d
dt ′

�

Ψ j(X (t)− X (t ′), t ′ − t)
�

= 0 , (107)

which completes the proof.
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C Correlation function of the position of the particle

In this appendix we provide detailed derivation of the O(λ2) correction C (2)(t) to the sta-
tionary state autocorrelation of the colloid, i.e., we derive Eq. (45). In particular, in Sec. C.1
we first derive some identities concerning relevant two- and three-time correlation functions
of the Ornstein-Uhlenbeck process which are needed in Sec. C.2 in order to calculate C (2)(t)
perturbatively. In Sec. C.3, instead, we derive the expression of the long-time behaviour of the
correction C (2)(t) and relate it to F(t).

C.1 Correlations in the Ornstein-Uhlenbeck process

Let us first consider the two-time correlation which we will need, c.f., in Eq. (120):

¬

e−iq·X (0)(s)eiq·X (0)(s′)
¶

=
d
∏

j=1

D

e−iq j X
(0)
j (s1)eiq j X

(0)
j (s2)

E

, (108)

where the statistical average is over the probe trajectories in the stationary state for λ= 0. In
this case, each component of the probe position undergoes an independent Ornstein-Uhlenbeck
(OU) process following Eq. (30). Consequently, it suffices to calculate




e−αx(s1)eαx(s2)
�

= lim
t0→−∞

∫

dx1 dx2 e−αx1 eαx2 P(x2, s2|x1, s1)P(x1, s1|x0, t0) , (109)

where we assumed s2 > s1 (the opposite case can be obtained with α → −α) and where
P(x , t|y, s) denotes the probability that an OU particle, starting from position y at time s will
reach position x at a later time t. The Gaussian white noise ζ(t) driving the dynamics in
Eq. (30) ensures that P(x , t|y, s) is Gaussian and given by

P(x , t|y, s) =
1

p

4πγ(t, s)
exp

¨

−

�

x − ye−ω0(t−s)
�2

4γ(t, s)

«

with γ(t, s) =
T
2κ
[1− e−2ω0(t−s)] . (110)

This expression can now be used in Eq. (109) in order to calculate its l.h.s. via a Gaussian
integration over x1 and x2. As we are interested in the stationary state only, we take t0→−∞,
which leads to




e−αx(s1)eαx(s2)
�

= exp

�

−
α2T
κ

�

1− e−ω0(s2−s1)
�

�

, (111)

where we assumed s2 > s1. Finally, substituting α = iq j , and taking the product over j [see
Eq. (108)], we have

¬

e−iq·X (0)(s)eiq·X (0)(s′)
¶

= exp

�

−
q2T
κ

�

1− e−ω0|s−s′|
�

�

. (112)

In Eq. (124) below we will need an analytic expression for three-time correlation of the form
¬

eiq·X (0)(s1)e−iq·X (0)(s2)X (0)j (s3)
¶

, (113)

which are also computed following the same procedure as above. In particular, in the station-
ary state, one eventually finds

¬

eiq·X (0)(s1)e−iq·X (0)(s2)X (0)j (s3)
¶

=
iq j T

κ

�

e−ω0|s3−s1| − e−ω0|s3−s2|
�

×exp

�

−
q2T
κ

�

1− e−ω0|s2−s1|
�

�

. (114)
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C.2 Perturbative correction

We start with the perturbative solutions for X (n)(t) in Eq. (33). Substituting the explicit ex-
pressions for

f (0)j (t) ≡ f j(t)|λ=0 = −i

∫

ddq
(2π)d

q jV−qφ
(0)
q (t)e

−iq·X (0)(t) , (115)

f (1)j (t) ≡
d f j(t)

dλ
|λ=0 = −i

∫

ddq
(2π)d

q jV−q

�

φ(1)q (t)− iq · X (1)(t)φ(0)q (t)
�

e−iq·X (0)(t) ,

(116)

we get

X (1)j (t) = −iγ−1
0

∫ t

−∞
ds e−ω0(t−s)

∫

ddq
(2π)d

q jV−qφ
(0)
q (s)e

−iq·X (0)(s) , (117)

X (2)j (t) = −iγ−1
0

∫ t

−∞
ds e−ω0(t−s)

∫

ddq
(2π)d

q jV−qe−iq·X (0)(s)
∫ s

−∞
ds′

×
�

Dq2Vqe−αq(s−s′) eiq·X (0)(s′)

− γ−1
0 e−ω0(s−s′)

∫

ddq′

(2π)d
q · q′V−q′ φ

(0)
q′ (s

′)φ(0)q (s) e
−iq′·X (0)(s′)

�

. (118)

Using the above equations we can compute the three different terms appearing in C (2)(t) [see
Eq. (44)]. Let us first compute

C (2)1 (t2 − t1) ≡ 〈X (1)j (t1)X
(1)
j (t2)〉

= −γ−2
0

∫ t1

−∞
ds e−ω0(t1−s)

∫ t2

−∞
ds′ e−ω0(t2−s′)

∫

ddq
(2π)d

q jV−q

×
∫

ddq′

(2π)d
q′jV−q′

¬

φ(0)q (s)φ
(0)
q′ (s

′)
¶¬

e−iq·X (0)(s)e−iq′·X (0)(s′)
¶

, (119)

where 〈·〉 denotes statistical averages over the decoupled Gaussian field and probe trajectories.
Using Eq. (39) for the free Gaussian field correlation and performing the q′ integral, we get

C (2)1 (t2 − t1) =
DT
γ2

0

∫ t1

−∞
ds e−ω0(t1−s)

∫ t2

−∞
ds′ e−ω0(t2−s′)

∫

ddq
(2π)d

q2
j q

2

αq
|Vq|2

×
¬

e−iq·X (0)(s)eiq·X (0)(s′)
¶

.

(120)

The auto-correlation of the probe particle in the last expression has been calculated above in
Eq. (112) and, after a change of variables u= t1 − s′ and v = t1 − s, we get

C (2)1 (t) =
DT
γ2

0

e−ω0 t

∫ ∞

0

dv e−ω0v

∫ ∞

−t
du e−ω0u F j(|u− v|) , (121)

where t = t2 − t1 and we have introduced

F j(z) =

∫

ddq
(2π)d

q2
j q

2

αq
|Vq|2 exp

�

−αqz −
q2T
κ
(1− e−ω0z)

�

. (122)

Performing the v-integral, we arrive at a simpler expression,

C (2)1 (t) =
DT

2κγ0
e−ω0 t

�∫ ∞

0

du e−ω0uF j(u) +

∫ t

0

du eω0uF j(u) + e2ω0 t

∫ ∞

t
du e−ω0uF j(u)

�

.(123)
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Next, we calculate

C (2)2 (t1, t2) = 〈X (0)j (t1)X
(2)
j (t2)〉

= −iγ−1
0 D

∫ t2

−∞
ds e−ω0(t2−s)

∫

ddq
(2π)d

q jq
2

αq
|Vq|2

∫ s

−∞
ds′e−αq(s−s′)

×
�

αq + γ
−1
0 Tq2e−ω0(s−s′)

�¬

eiq·X (0)(s′)e−iq·X (0)(s)X (0)j (t1)
¶

, (124)

where we used Eq. (39). The three-time correlation for the probe trajectory in the previous
expression was determined in Eq. (114) and, after assuming t2 > t1, the variable transforma-
tions u= s− s′ and v = t1 − s lead to

C (2)2 (t) = −
DT
κγ0

e−ω0 t

∫ ∞

−t
dv e−ω0v

∫ ∞

0

du
dF j

du
(e−ω0|u+v| − e−ω0|v|) . (125)

Performing a partial integration over u and the v-integral, we get

C (2)2 (t) =
DT
κγ0

e−ω0 t

�∫ t

0

du eω0u(2ω0(t − u)− 1)F j(u)− e2ω0 t

∫ ∞

t
du e−ω0uF j(u)

�

. (126)

Lastly, we need to determine C (2)3 (t1, t2) = 〈X
(2)
j (t1)X

(0)
j (t2)〉 which is obtained from the ex-

pression of C (2)2 (t1, t2) in Eq. (124) by exchanging t1 with t2. After assuming t2 > t1 and using
the three-time correlation of the probe trajectory determined in Eq. (114) and the change of
variables u= s− s′ and then v = t1 − s, we arrive at

C (2)3 (t1, t2) = −
DT
κγ0

e−ω0 t

∫ ∞

0

dv e−2ω0v

∫ ∞

0

du
dF j

du
(e−ω0u − 1) . (127)

Performing a partial integration over u and the v-integral, we have

C (2)3 (t) = −
DT

2κγ0
e−ω0 t

∫ ∞

0

du e−ω0u F j(u) . (128)

Finally, adding Eqs. (123), (126), and (128), and summing over j, we have a simple ex-
pression for the second-order correction to the auto-correlation, i.e., Eq. (45) in which
F(u) =

∑d
j=1 F j(u), i.e., taking into account Eq. (122), F is given by Eq. (46).

C.3 Long-time behaviour

In order to determine the algebraic behaviour of C (2)(t) at long times, we consider t � ω−1
0

(or, formally, ω0→∞ with fixed t) and note that the factor e−ω0(t−u)(t − u) in the integrand
of Eq. (45) takes its maximal value ∝ ω−1

0 at u ' t −ω−1
0 , quickly vanishing away from it.

Accordingly, upon increasing ω0, this factor provides an approximation of ω−2
0 δ+(t −u). As a

consequence, in the limit t �ω−1
0 , Eq. (45) renders

C (2)(t) =
DT
γ2

0

∫ t

0

du e−ω0(t−u)(t − u)F(u)' DT
γ2

0ω
2
0

F(t) , (129)

i.e., Eq. (47) after taking into account Eq. (14).
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D Power spectral density and its asymptotic behavior

In this Appendix we determine the power spectral density S(ω), i.e., the Fourier transform of
C(t) and discuss its asymptotic behaviours.

D.1 General expression

The correction S(2)(ω) of O(λ2) to the power spectral density S(ω) is obtained by taking the
Fourier transform of Eq. (45) w.r.t. time t, i.e.,

S(2)(ω) =

∫ ∞

0

dt (eiωt + e−iωt)C (2)(t) =
DT
γ2

0

[Z(ω) + Z∗(ω)] , (130)

where we introduced

Z(ω) =

∫ ∞

0

dt eiωt

∫ t

0

du e−ω0(t−u)(t − u)F(u)

=
1

(ω0 − iω)2

∫ ∞

0

du eiωuF(u) ,

(131)

where, in the last line, we used the fact that
∫∞

0 dt
∫ t

0 du =
∫∞

0 du
∫∞

u dt. Inserting this
expression in Eq. (130), with some straightforward algebra, one readily derives Eq. (55).

D.2 Asymptotic behaviors

Here we determine the asymptotic behaviours of S(ω) forω→ 0 and then forω→∞. As the
behavior of S(0)(ω) can be easily derived from Eq. (15), we focus below on the contribution
S(2)(ω) due to the coupling to the field. In particular, the leading asymptotic behavior of
S(2)(ω) in the limit ω→ 0 is obtained from Eq. (55):

S(2)(ω→ 0)'
2DT
κ2

∫ ∞

0

duF(u) cos(ωu) , (132)

with F(u) given in Eq. (46) and displays, for large t, the scaling behaviour highlighted in
Eqs. (49) and (50). Assuming that the interaction Vq regularises the possible divergence of the
integral defining F , such that F(0) is finite, we need to consider the integrand in Eq. (132)
at large u, for which we have that F(u)∝ u−(1+d/2) for r > 0 and F(u)∝ u−d/4 for r = 0.
Accordingly, for r > 0 or d ≥ 4,

∫∞
0 duF(u) is finite and

S(2)(ω= 0) =
2DT
κ2

∫ ∞

0

duF(u) . (133)

For the purpose of understanding the dependence of the effective friction γ (see, c.f., Eq. (72))
on the trap strength κ, we investigate here the behaviour of the integral in Eq. (133) in the
two formal limits κ→ 0 and κ→∞, corresponding to weak and strong trapping, respectively.
Taking into account that ω0∝ κ (see Eq. (14)), these limits can be taken in the integrand of
Eq. (46) and the remaining integrals yield

S(2)(ω= 0;κ→ 0) =
2T
Dκ2

∫

ddq
(2π)d

|Vq|2

(q2 + r)[q2 + r + T/(Dγ0)]
, (134)
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and

S(2)(ω= 0;κ→∞) =
2T
Dκ2

∫

ddq
(2π)d

|Vq|2

(q2 + r)2
. (135)

In particular, upon approaching the critical point with r → 0, these expressions might display
a singular dependence on r, which is essentially determined by the behaviour of the corre-
sponding integrands for q→ 0. In fact, one finds that

S(2)(ω= 0;κ→ 0; r → 0)∼
2γ0

κ2
|V0|2r−1+d/2 Γ (1− d/2)

(4π)d/2
for d < 2 , (136)

and

S(2)(ω= 0;κ→∞; r → 0)∼
2T
Dκ2
|V0|2r−2+d/2 Γ (2− d/2)

(4π)d/2
for d < 4 , (137)

while they tend to finite values otherwise. On the other hand, when r = 0 and d < 4, the
integral in Eq. (133) does not converge but we can use for F(u) in Eq. (132) the approximate
expression at long times given by Eq. (48) with αq = Dq4. After some changes of variables,
one finds

S(2)(ω→ 0; r = 0)∼
2T
κ2

V 2
0

Dd/4
ω−1+d/4 Ωd

(2π)d

∫ ∞

0

dx xd−1

∫ ∞

0

dv e−x4v cos v . (138)

The remaining integrals can be done analytically and yield the finite constant π/[8cos(πd/8)]
and therefore

S(2)(ω→ 0; r = 0)∼
πΩd

4(2π)d cos(πd/8)

T V 2
0

κ2Dd/4
ω−1+d/4 , (139)

which is consistent with Eq. (57) in the main text, obtained by using the late-time behaviour
of the probe auto-correlation.

In order to determine the behaviour of S(2)(ω) for ω → ∞ (physically understood as
taking ω larger than any other frequency scale in the problem) we focus on the expression of
S(2)(ω) in Eqs. (130) and (131) and therefore consider the asymptotic behaviour of

∫ ∞

0

du eiωuF(u) = i
F(0)
ω
−
F ′(0)
ω2

+O(ω−3) . (140)

This expansion is obtained by using the Riemann-Lebesgue lemma and successive integra-
tions by parts, using that F(u), F ′(u) and F ′′(u) are integrable. Inserting this expansion in
Eqs. (131) and (130), one readily finds

S(2)(ω→∞) = −
2DT
γ2

0

2ω0F(0)−F ′(0)
ω4

+O(ω−5) , (141)

where the numerator of the leading behaviour∝ω−4 is a positive quantity given by

2ω0F(0)−F ′(0) =
∫

ddq
(2π)d

q4|Vq|2
�

1+
2κ+ Tq2

γ0αq

�

. (142)
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