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Abstract

A novel method for finding allowed regions in the space of CFT-data, coined navigator
method, was recently proposed in [1]. Its efficacy was demonstrated in the simplest
example possible, i.e. that of the mixed-correlator study of the 3D Ising Model. In this
paper, we would like to show that the navigator method may also be applied to the study
of the family of d-dimensional O(N) models. We will aim to follow these models in the
(d, N) plane. We will see that the “sailing” from island to island can be understood in the
context of the navigator as a parametric optimization problem, and we will exploit this
fact to implement a simple and effective path-following algorithm. By sailing with the
navigator through the (d, N) plane, we will provide estimates of the scaling dimensions
(∆φ,∆s ,∆t ) in the entire range (d, N) ∈ [3, 4]× [1, 3]. We will show that to our level of
precision, we cannot see the non-unitary nature of the O(N)models due to the fractional
values of d [2] or N [3] in this range. We will also study the limit N −→ 1, and see that
we cannot find any solution to the unitary mixed-correlator crossing equations below
N = 1.
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1 Introduction

In many cases, the numerical conformal bootstrap in d > 2 has shown that the combination of
crossing symmetry and unitarity is often sufficient in isolating theories in finite regions, or “is-
lands”, inside of the space of CFT-data (see e.g. [4–10]). Crucially, the shape and size, or even
existence of these islands depend upon the assumptions one makes on the spectrum of the
theory he/she is trying to isolate. These assumptions are usually extrapolated from a certain
perturbative regime (ε-expansion, large-N, etc.). Their validity in the non-perturbative regime
is sometimes up in the air, and one usually has to play around with these assumptions. It is
therefore natural to want to solve these theories directly in the perturbative regime, where the
gap assumptions can be made robustly, and flow towards the non-perturbative regime, adjust-
ing the gap assumptions as necessary. One might also be interested in following a CFT through
some external parameter space because he/she expects something interesting to happen, for
example a collision of two fixed points, at a critical value pc of the external parameter(s) p.
Such an enterprise raises certain concerns:

• Performing a scan of the search space for each external parameter value is often times
prohibitively expensive, even more so if there are many external parameters. One would
benefit greatly if there was a way that both the flow in the external parameter space and
in the search space could be made more efficient.

• For certain ranges of external parameters, like fractional spacetime dimensions, CFTs are
expected to be non-unitary [2], although the bootstrap of the Ising Model was shown to
be insensitive to this [11] (see [12–16] for other unitary bootstrap studies of non-unitary
CFTs).

The goal of this paper is thus twofold: firstly, we would like to study the consequences
of the non-unitary nature of another prototypical CFT, the d-dimensional O(N) model, due
to fractional values of d [2] and N [3]. In the process, we will present estimates of scaling
dimensions, both from the bootstrap and from the resummation of six loop 4− ε expansions
[17, 18], for the range (d, N) ∈ [3,4]× [1,3]. We will show that above N = 1, the bootstrap
seems insensitive, to our degree of precision, to the non-unitarity due to fractional values of d
or N . N = 1 will represent for our analysis the absolute lower bound for N , since we will be
unable to find a solution to the mixed-correlator crossing equations below it.

The main goal of this paper will be to lay out a method that aims to address the first con-
cern. To follow the O(N) islands through the (d, N) plane, we will invoke the newly-developed
navigator method of [1] (see also [19–21] for recent works using the navigator method). If
x denotes the set of parameters to scan over in a certain bootstrap setup, a navigator func-
tion N (x) is a function which is positive oustide of the allowed regions for x , and negative
inside. One can thus flow to the allowed region(s) by minimizing the navigator function. It
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was shown in [1] that such a navigator can be constructed in general, and that in the example
considered it correctly reproduced the 3D Ising Island. The minimum xmin was shown to give
a good estimate of the location of the true CFT. We will show that this general construction
also defines a valid navigator for the case of the O(N) model. Here, the navigator will also
depend on some external parameters: N := N (x; p), where p=(d, N). To follow the islands
through d and N , we will trace out the curve xmin(p). We will see that a simple formula relates
derivative information at p = p0 to the location of xmin(p0 + δp), and use this to help us sail
through the O(N) archipelago [4].

The paper goes as follows: the O(N)model and its ε-expansion are introduced in Section 2,
with the description of the procedure used to resum the ε-expansion postponed to Appendix A.
Section 3 then describes in generality the setup that will be used to bootstrap this model, and
gives a first example computation. Many details about the numerical implementation are left
to Appendix B. We will present in Section 4 a simple way to move through the (d, N) plane.
The O(N) model is then studied for fractional values of d and N respectively in Section 5 and
Section 6, with the limit N −→ 1 being considered in Section 6.1. We conclude in Section 7.
Finally, Appendix C presents more calculations which confirm the usefulness of the navigator
method supplemented with the pathfollowing prescription of Section 4, and Appendix D gives
many details on the nature of the navigator computation at N = 1. Those less interested in all
the details of the navigator method may skip Appendices B to D.

2 Theory

We will aim to study the O(N) model for 3 ≤ d ≤ 4, starting from the perturbative regime
ε = 4− d � 1. In this regime, the O(N) model may be viewed as the weakly-coupled fixed
point of the lagrangian

L (φ) = (∂ φ)2 +mφ2 +λ
�

φ2
�2

, (1)

for the N -component field φi . The critical exponents associated to this fixed point may be
given as series-expansions in the expansion parameter ε. These can in turn be related to the
scaling dimensions of certain operators in the corresponding CFT. Some operators of inter-
est to us will be φ, the two lowest-dimensional O(N) singlets s = φ2 and s′ = (φ2)2, and
the two lowest-dimensional two-index symmetric-traceless tensors t = φiφ j −

1
N δi jφ

2 and
t ′ = φ2(φiφ j −

1
N δi jφ

2). To the lowest non-trivial order, their dimensions are [17,18,22]

∆φ =
d − 2

2
+
η(ε)

2
= 1−

ε

2
+

N + 2

4 (N + 8)2
ε2 +O(ε3) ,

∆s = d − ν−1(ε) = 2−
6

N + 8
ε+O(ε2) ,

∆t = d − d f (ε) = 2−
N + 6
N + 8

ε+O(ε2) ,

∆s′ = d +ω(ε) = 4+O(ε2) ,

∆t ′ = d − y4,2(ε) = 4−
N

N + 8
ε+O(ε2) .

(2)

6-loop expansions for the critical exponents η(ε), ν−1(ε) and the correction-to-scaling expo-
nentω(ε) can be found in [18] (η(ε) is actually known to 8-loops [23], and ν−1(ε) to 7 [24]).
The fractal dimension d f (ε) is also known to 6-loops [17], while the RG dimension y4,2(ε)
is known to only 5-loops [22]. A collection of all known ε-expansion CFT data was recently
given in [25], and we will refer to it for data not listed in eq. (2).
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We will want to compare bootstrap results to the epsilon expansions presented above. The
epsilon expansion for critical exponents is well-known to give divergent series. A resumma-
tion procedure is necessary in order to give meaningful results at finite ε. We will resum these
series using the algorithm of Borel-Leroy transform with conformal mapping laid out in Sec-
tion V of [18]. A summary of this resummation procedure is given in Appendix A; for a more
thorough account, see the original full description in [18]. The algorithm is quite elaborate,
and involves many parameters. We use the same values for these parameters as those cited
in [18]: we verified that we always reproduce the results of [18] for the quantities the authors
had computed (i.e. critical exponents at integer values of N).

Something, although much less than for scaling dimensions, is also known about OPE
coefficients in the ε-expansion. A quantity we will need in the future is the ratio of OPE
coefficients θ (ε) = arctan λsss(ε)

λφφs(ε)
, which is known to O(ε) [25–27] 1:

θ (ε) = arctan 2−
2(N + 2)
5(N + 8)

ε+O(ε2) . (3)

3 Setup and first example

We will be considering in this work the crossing equation arising from the 4-point functions
〈φφφφ〉, 〈φφss〉 and 〈ssss〉. This equation was first derived in [4]; it reads

∑

O∈S

�

λφφO λssO

�

~VS,∆,`

 

λφφO

λssO

!

+
∑

R∈{A,T}

∑

O∈R

λ2
φφO

~VR,∆,` +
∑

O∈V

λ2
φsO

~VV,∆,` = 0 , (4)

with the various crossing vectors ~VR given in Appendix B. We will make some assumptions on
the spectrum of operators present in the various exchanged representations R, and look for
solutions to crossing. We will do so with the help of the navigator function. [1] describes a
simple recipe to define a GFF navigator function N GFF (x) (we will omit the superscript GFF
in the rest of the paper) which is positive when our assumptions, encoded in a vector x , are
disallowed by crossing and negative when x is allowed. The GFF navigator function was
constructed for the bootstrap of the Ising model in [1], but it easily generalizes to the O(N)
case. See Appendix B for its construction.

For the majority of the paper, we will take the parameters on which the navigator depends
to be x =

�

∆φ ,∆s,∆t

�

. We will assume the existence of a spin-1 conserved current Jµ in the
2-index antisymmetric representation with dimension∆Jµ = d−1, and the existence of a spin-
2, dimension d singlet operator corresponding to the stress-energy tensor Tµν. We will assume
some gaps above φ, s, t, Jµ and Tµν, and impose that the rest of the spectrum respects the so-
called unitarity bounds. Finally, we will impose a twist gap τ = 10−10 above the unitarity
bounds to try to forbid solutions where spurious operators would sit exactly at the unitarity
bounds. This setup is summarized in Appendix B. It is well known by now that a bootstrap
such as the computation of the navigator function can be recast in the form of a semidefinite
program (SDP), which we solve with SDPB 2.4.0 [28,29]. The numerical parameter which
governs the size of allowed regions is the derivative order Λ: see Appendix B for its definition.
Unless otherwise stated, we will use Λ= 19.

We expect that the assumptions laid out above with judicious choices of gaps
~∆∗ = (∆∗

φ
,∆∗s ,∆∗t ,∆

∗
Jµ

,∆∗Tµν) should lead to small isolated islands of negative navigator in
the three-dimensional parameter space where x lives for every value of (d, N) we will con-
sider. Starting from an initial guess x0, we will sail to these isolated islands by minimizing

1We thank Johan Henriksson for pointing us to the result for λsss(ε).
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the navigator function using the quasi-Newton BFGS algorithm laid out in Section 5.2 of [1].
As discussed in [1], the GFF navigator function is generically concave far enough away from
allowed regions, and asymptotes to a constant Nmax . In our numerical implementation, we
will, just as in [1], decide to work with the transformed navigator

f (x) =
N (x)

Nmax −N (x)
. (5)

We had found in [1] that this improves the efficacy of the navigator method far away from the
allowed regions. As defined here, f (x) is positive if and only if the actual navigator N (x) is
positive. Many more details about the BFGS algorithm may be found in Appendix B for the
interested reader.

In the following example, we will use the navigator to sail into the d = 3 O(2) island.
We will use as our starting point x0 = (0.519,1.5051, 1.2358), which corresponds to the
resummed values of the six-loop expansions of the dimensions expanded to lower order in
eq. (2). We will set ~∆∗ = (3, 3,3, 2.5,3.5). The first three gaps are those used in [4], and
amount to stating thatφ, s and t are respectively the only relevant vector, singlet and traceless-
symmetric scalars in the theory. We use a very conservative gap of 1

2 above the conserved cur-
rent and stress-energy tensor. We present in fig. 1 the results of this example BFGS run. It took
34 total function calls and 24 BFGS iterations (which are function calls accepted in the line
searches done by BFGS) to reach the minimum of the transformed navigator. The minimum is
reached at xmin = (0.518899,1.50739, 1.23446). Because our assumptions were very close to
those of [4], it is no surprise that this allowed value is consistent with the 3D allowed region
of Fig. 4 of [4].

We may also know the size of the island by computing the maximal and minimal allowed
values for each coordinate in x with the “Constrained BFGS” algorithm of Section 6 of [1]. This
algorithm attempts to extremize x along some given direction by performing a sequence of line
searches whose directions are informed by an approximate quadratic model of the navigator
N (x) which is updated after every line search. The bounds resulting from maximizing and
minimizing all three variables in x are

xallowed ∈ [0.518344 . . . , 0.520557 . . . ]× [1.49996 . . . , 1.51978 . . . ]× [1.23091 . . . , 1.24189 . . . ] . (6)

Comparison to Figure 4 of [4] (for which the assumptions, bar the existence of a stress-tensor
and conserved current, were the same as those used here) suggests that the region of negative
O(N) navigator does reproduce the actual allowed region, as was the case for the Ising model
[1,19] (see also [21] for another application of the navigator method, this time to the N = 1
super-Ising model). It is interesting to note, by comparing to Figure 3 of [4], that the addition
of the assumptions of a single relevant traceless-symmetric scalar, of a stress-tensor and of a
conserved current seemed only to carve out a small portion at the upper-right of the island in
the (∆φ ,∆s) plane (such a behaviour was already discussed in [30] for only the addition of
the stress-tensor).

We have therefore showed in this section that the GFF navigator construction may be ap-
plied successfully, as expected, to the case of the O(N) model, showing agreement between
allowed regions obtained with the navigator method and allowed regions obtained with the
usual “binary” allowed/disallowed bootstrap. With the help of a small trick described in the
following section, we will use this construction in Sections 5 and 6 to sail through the (d, N)
plane.
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Figure 1: Top: BFGS run for the example described in Section 3 at derivative order
Λ = 19. Points are numbered, starting from 0, by their function call number (and
not the BFGS step number). Allowed points are marked as blue diamonds, and disal-
lowed as red dots. Bottom left: Value of the navigator function at every function call.
We can see it takes 5 function calls to reach the island. Bottom right: Maximum norm
of the gradient, in the coordinates of eq. (24), of the transformed function eq. (5).
BFGS terminates once the norm goes below gtol= 10−8.

4 Simple pathfollowing

We will, in the following sections, attempt to follow the O(N) models through the space of
our external parameters p = (d, N). As argued in Section 3, we will do so by following the
minimum xmin(p) of the GFF navigator function. To move as fast as possible in the external
parameter space, we need to establish a way to use the knowledge of a solution at a certain
p to sail to a solution at a nearby parameter p + δp. Because each xmin(p) is the solution
to a minimization problem, the problem we are faced with is referred to in the optimization
literature as “parameteric optimization”, and what we are trying to do, as “pathfollowing”
(see [31, 32] for pedagological references on this subject). We will implement the following
simple pathfollowing method. Say we know the minimum x0 for some p = p0. Then, under
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certain conditions on the function being minimized, xmin is given in some neighbourhood of
x0 as a function of p: xmin = x̃ (p)with x̃(p0) = x0, and the first order variation of the position
of the minimum is given (in Cartesian coordinates) at x0 by (see [31], Theorem 4.1)

∂ x̃ i

∂ pn
(p0) = −

�

B−1
f (x0; p0)

�

i j

∂ 2 f
∂ x̃ j∂ pn

(x0; p0) , (7)

with f the function from eq. (5) which we minimize, and the Hessian given by
�

Bf (x , p)
�

i j =
∂ 2 f
∂ x̃ i∂ x̃ j (x; p). This of course suggests the following: somehow sail to the first

desired minimum (e.g. we will see in Section 5 that this can be done quite efficiently in a
perturbative regime starting from known field-theory results). At this minimum, the Hessian
and the mixed second derivative may be computed either by finite differences or by using the
quadratic variation formula of Appendix C of [1] (we have found that the approximate Hessian
obtained at the end of the previous BFGS run is not precise enough, hence why we advise to
compute it independently). Then take steps δp1 ,δp2 , . . . in the external parameter space small
enough so that the first order variation (7) repeatedly gives good estimates of the location of
the minimum of the rescaled navigator at the new parameter values p+δp1 , p+δp1+δp2 , . . .
If these steps are indeed taken small enough, we should hope that the BFGS runs for the sec-
ond, third, etc. parameter values would be much shorter than the first. Because we desire to
compare specific external parameter values to results obtained from other methods, we will
decide to choose the step sizes by hand. If one wanted to trace out the minimum curve as
efficiently as possible, the choice of step size could be optimized: see [33], Chap. 6.

Let us see how this works in practice. We will start from the solution
x0 = xmin(d = 3, N = 2) obtained in the example of Section 3, and attempt to reach solu-
tions in d = 3 at nearby values of N . Figure 2 shows that the gradient of the position of
the minimum is indeed reproduced by eq. (7). Using the minima predicted by Equation (7)
leads to an appreciable speedup of subsequent BFGS runs. Starting the N = 1.9 run at the
extrapolated minimum, using the Hessian at the N = 2 minimum as the initial guess for the
Hessian for the N = 1.9 run, it only takes 8 function calls to reach the true minimum. For
comparison, it took 45 function calls to reach the same minimum starting from the N = 2
minimum. This amounts to a more than fivefold speedup. As stated in the previous para-
graph, there should always exist some “optimal” step size if one wants to draw the solution
curve as efficiently as possible. We have not explored ways of choosing this step automatically,
but we can comment that in the example considered here, δN = 0.1 is a reasonable value as
smaller step sizes don’t seem to lead to an increase in efficiency that offsets the need for more
steps. Indeed, this can be observed in Figure 3, where we present the amount of function calls
taken to reach the minimum for the different steps taken in Figure 2 (for clarity, these steps
are δN ∈ {±0.01,±0.025,±0.05,±0.1}). Now armed with this pathfollowing prescription, we
should be in a good position to use the navigator to sail through the (d, N) plane.

5 Sailing through d: from the perturbative to the non-perturbative
regime

We would now like to use the navigator construction laid out in Sections 3 and 4 to follow the
O(N)models above d = 3, and in particular to look for signs of non-unitarity in the fractional-
d bootstrap solutions. Our goal will be to start from rough estimates in the perturbative regime
ε= 4− d � 1, and iteratively decrease d, following the islands from d = 4 to d = 3 using the
path-following prescription of section 4 (here with the varying external parameter p being the
dimension d). The case of N = 1 for 2< d < 4 was already considered in [11] (see also [34]).
It was found that the family of kinks in the Z2-symmetric single-correlator (∆σ,∆ε)-bound
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Figure 2: Comparison of the first-order prediction (7) for the location of the minima
nearby the (d = 3, N = 2) minimum to their actual value. Upper left: Comparison
for ∆φ . Upper right: Comparison for ∆s. Lower middle: Comparison for ∆t .

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
N

4

5

6

7

8

9

10

11

12

13

14

# 
of

 st
ep

s

Figure 3: Number of function calls until BFGS terminates, for the step sizes consid-
ered in Figure 2 with initial point given by eq. (7).

8

https://scipost.org
https://scipost.org/SciPostPhys.13.4.081


SciPost Phys. 13, 081 (2022)

predicted by the 4−ε expansion survived all the way to d = 2, and that the scaling dimensions
extracted from this family of kinks were in accord with those computed with the ε-expansion
in [35]. This established that the effects of the non-unitarity of the Ising model in fractional
dimensions [2] were small enough to be inconsequential to the numerical bootstrap (we will
come back to this point in Section 6). In this section, we would like to elaborate on this
result, and show that the numerical bootstrap appears insensitive, to our degree of precision,
to the non-unitary nature of the fractional-d O(N) models for N = 2,3. Critical exponents for
the fractional-d O(N) models have previously been estimated using the functional RG [36]
and field-theory [37–39]. Because most of the field-theory results are quite old, as stated
in section 2, we will when needed resum the ε-expansions of [17, 18] with the algorithm
of [18] to use as a basis to compare bootstrap results. We use throughout this chapter as gap
assumptions ~∆∗ = (d, d, d, d−0.5, d+0.5), again looking for solutions with only one relevant
scalar O(N) vector, singlet and traceless-symmetric operator. We of course have to make sure
that these assumptions are never violated, which we will do at the end of this section.

The outcome of the full path-following for N = 2,3 is presented in table 1. For greater
clarity, we also plot these results for each of the 3 parameters in fig. 4. We observe clear agree-
ment between the bootstrap and ε-expansion results. The scaling dimensions corresponding
to the minimum of the transformed navigator function follow the epsilon-expansion curves
especially well, confirming the hypothesis of [1] that it provides a better estimate of the true
scaling dimensions than a generic allowed point. Of course the error bars on the bootstrap
results should be taken with a grain of salt, since there is no systematic way to account for the
non-unitarity of the fractional-d solution to crossing. We can only comment that, just like in
the case of the Ising model in fractional dimensions [11], these non-unitary effects seem in-
significant (at our level of precision), since the agreement with the ε-expansion stays excellent
for all values of d.

A crucial step in following a bootstrap solution is to verify that there are no low-lying op-
erators that dangerously approach the gaps we impose (if there were, modifications to our
gap assumptions would have to be made). We show in Figures 5 and 6 the dimensions of the
subleading operators φ′, t ′, J ′µ and T ′µν as determined by the Extremal Functional Method
(EFM) [40] at each navigator minimum 2. Most of the operators stay well above the gap
assumptions made, as expected from the ε-expansion (here we show the unresummed expan-
sions given in the recent review article [25] 3). Only t ′ near d = 4 has a dimension close to
the gap assumed, but from the top right of fig. 5 it is clear that the gap assumption is never
violated.

Something strange happens in the spin-0 S sector. We observe that when the spectrum is
extracted at the navigator minimum, the expected operator s′ appears lower than predicted
by the ε-expansion for most points, with s′ and s′′ then respectively just below and just above
the prediction of the ε-expansion. We show this behaviour for the N = 2 case in fig. 7. As
presented in the bottom plot of fig. 7, this behaviour happens when we are close enough
to the GFF minimum for the test point (d, N) = (3.4,2), with allowed points further away
from the GFF minimum being in much better agreement with the ε-expansion. It would be

2Throughout this paper, unless otherwise stated, we maximize the stress-tensor OPE (after eliminating one of
(λφφTµν ,λssTµν) using Ward identities) in order to extract the spectrum. Even though Ward identities were not
imposed in our setup, the navigator minima were deep enough in the allowed region that they were still allowed
after imposing Ward identities.

3T ′
µν

is compared to the second subleading operator of [25] (in their notation, Op[S,2,3]); the EFM in this
channel missed the true subleading operator Op[S,2,2] at both N = 2 and N = 3, most likely because it is close
in dimension to the second subleading operator (both are of the form ∂µ∂νφ

4
S in the ε-expansion) and its OPE

coefficients are small in comparison. From the ancillary file of [25], we have for example the ratios of their two

OPE coefficients at (d = 4, N = 2) given by
λφφOp[S,2,2]
λφφOp[S,2,3]

d−→4
−−−→ 0.12 and

λssOp[S,2,2]
λssOp[S,2,3]

≈ 0.41. We thank J. Henriksson

for pointing this out.
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Table 1: Comparison of bootstrap and ε-expansion results for the anomalous dimen-
sions of the first scalar O(N) vector, scalar singlet and scalar traceless-symmetric
2-index tensor, for N = 2,3 and d ∈ [3,4]. Bootstrap results are given as the values
at the transformed navigator minimum, with uncertainties given by the distance to
the maximal and minimal values determined by the Constrained BFGS algorithm.
Cited values are taken from Fig. 2 of [17] or deduced from the ancillary file “resum-
mation.pdf” of [18].

Bootstrap Resummed 4− ε expansion

d γφ γs γt γφ γs γt

N = 2

3.8 0.000471
+0.000003

−0.000010
0.0848

+0.0003

−0.0010
0.04196

+0.00013

−0.00047

0.00047209

±0.00000007

0.084937

±0.000002

0.0420064

±0.0000005

3.7 0.001135
+0.000015

−0.000028
0.1304

+0.0007

−0.0017
0.0641

+0.0003

−0.0008

0.0011403

±0.0000007

0.13067

±0.00002

0.064231

±0.000003

3.6 0.00215
+0.00004

−0.00005
0.1777

+0.0014

−0.0022
0.0868

+0.0007

−0.0011

0.002165

±0.000003

0.17839

±0.00006

0.087120

±0.000009

3.5 0.00357
+0.00009

−0.00008
0.227

+0.002

−0.003
0.1101

+0.0012

−0.0013

0.003601

±0.000009

0.22802

±0.00014

0.11061

±0.00002

3.4 0.00545
+0.00018

−0.00013
0.278

+0.003

−0.003
0.1339

+0.0017

−0.0016

0.00550

±0.00002

0.2796

±0.0003

0.13465

±0.00005

3.3 0.00785
+0.00031

−0.00018
0.332

+0.005

−0.004
0.158

+0.002

−0.002

0.00793

±0.00005

0.3330

±0.0006

0.15921

±0.00009

3.2 0.0108
+0.0005

−0.0003
0.388

+0.007

−0.005
0.183

+0.003

−0.002

0.01094

±0.00010

0.3884

±0.0010

0.18427

±0.00014

3.1 0.0145
+0.0009

−0.0004
0.446

+0.009

−0.006
0.209

+0.005

−0.003

0.01460

±0.00018

0.4457

±0.0015

0.2098

±0.0002

3 0.0189
+0.0017

−0.0006
0.507

+0.012

−0.007
0.234

+0.007

−0.004

0.0190

±0.0003
[18]

0.505

±0.002
[18]

0.2358

±0.0003
[17]

N = 3

3.8 0.000482
+0.000003

−0.000013
0.0964

+0.0003

−0.0013
0.03798

+0.00012

−0.00051

0.00048301

±0.00000006

0.096536

±0.000004

0.0380293

±0.0000004

3.7 0.001155
+0.000017

−0.000034
0.1482

+0.0009

−0.0023
0.0579

+0.0003

−0.0009

0.0011621

±0.0000006

0.14865

±0.00002

0.058046

±0.000002

3.6 0.00218
+0.00005

−0.00006
0.202

+0.002

−0.003
0.0782

+0.0008

−0.0012

0.002199

±0.000003

0.20318

±0.00009

0.078591

±0.000008

3.5 0.00360
+0.00011

−0.00011
0.259

+0.003

−0.004
0.0990

+0.0013

−0.0016

0.003644

±0.000008

0.2601

±0.0002

0.09960

±0.00002

3.4 0.00547
+0.00023

−0.00017
0.318

+0.005

−0.005
0.120

+0.002

−0.002

0.005549

±0.000019

0.3195

±0.0005

0.12103

±0.00005

3.3 0.0079
+0.0004

−0.0003
0.380

+0.007

−0.007
0.141

+0.003

−0.002

0.00797

±0.00004

0.3814

±0.0009

0.14284

±0.00009

3.2 0.0108
+0.0008

−0.0004
0.445

+0.010

−0.008
0.163

+0.004

−0.003

0.01096

±0.00008

0.4459

±0.0016

0.16500

±0.00015

3.1 0.0143
+0.0015

−0.0005
0.514

+0.015

−0.010
0.185

+0.007

−0.004

0.01459

±0.00015

0.513

±0.003

0.1875

±0.0002

3 0.0187
+0.0032

−0.0008
0.588

+0.024

−0.014
0.207

+0.013

−0.005

0.0189

±0.0003
[18]

0.583

±0.004
[18]

0.2103

±0.0003
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Figure 4: γφ , γs and γt as functions of d for N = 2,3, as determined by both the con-
formal bootstrap with the help of the navigator function, and from the resummation
of 6-loop ε-expansions.

interesting to see if this effect disappears by increasing the derivative order Λ enough, and if
this is not the case, to understand if and how this splitting is related to the GFF solution, but a
high precision analysis of this question is beyond the scope of this work. Notwithstanding this
strange behaviour in s′, we’ve firmly established that the gap assumptions made in this section
were always consistent with the actual spectrum of the O(2) and O(3) models.
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Figure 5: Subleading operators in 4 of the 5 channels where gap assumptions were
made (continues in fig. 6). Left: Spin-0 V channel. The larger discrepancy with the
ε-expansion (the operators even appear in the opposite order as they do in the ε-
expansion) is not surprising for operators with large twist in a setup with relatively
low Λ. Right: Spin-0 T channel.

6 Sailing through N

We found in the previous section that non-unitarity due to fractional values of d did not in-
fluence the low-lying part of the spectrum of the O(N) models determined by the unitary
bootstrap. This was expected: [2] explains that the sources of the non-unitarity in fractional
d are “evanescent” operators, present in fractional dimensions but which disappear in integer
dimensions. Using as an example the Ising model in 4 − ε dimensions, [2] showed that a
consequence of the violation of unitarity was the presence of operators with complex scaling
dimensions, which the unitary conformal bootstrap should be sensitive to. However, the au-
thors showed in their example that complex scaling dimensions should be expected only very
high in the spectrum, with the first operators with complex scaling dimensions appearing only
at ∆ ≈ 23. Resolving such high-lying operators would require a much higher-precision setup
than the one we used here. The fractional-N O(N)models are also expected to be non-unitary,
with the operators at the source of the non-unitarity also having generically large scaling di-
mensions for large values of N [3]. Still, a previous single-correlator analysis indicated an
impressive match of the unitary bootstrap with RG and Monte Carlo methods right down to
the limit N −→ 0 [41]. It is natural to wonder if we might see signs of non-unitarity for frac-
tional values of N when extending to a mixed-correlator setup. Therefore, using again the
setup (23) with gaps ~∆∗ = (3, 3,3, 2.5,3.5), we repeat an analysis similar to section 5, this
time in d = 3 and exploring the range N ∈ [1,3]. The results are presented in table 2 and
fig. 8. We see that the bootstrap results are always consistent with the ε-expansion. The boot-
strap results have larger error bars, as getting high precision results was never the goal of this
paper, and so the bootstrap setup used here is weaker than the state-of-the-art 4. However, the
agreement is just as good in the limit N −→ 1, where the O(N) islands decrease significantly
in size. The location of the transformed navigator minimum, just like it was the case in Sec-
tion 5, follows the ε-expansion quite closely for all three scaling dimensions. We are therefore
confident in asserting that the bootstrap at this derivative order is insensitive to non-unitarity
in this range of N . We will see shortly that contrary to the results above, non-unitarity will
drastically influence the fate of the O(N) islands below this range.

4The full set of correlation functions involving φ, s and t for the case N = 2 was already investigated in [42]
in 2019, with Λ pushed to 43 compared to our Λ= 19.
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Figure 6: Subleading operators in 4 of the 5 channels where gap assumptions were
made (continued from fig. 5). Top: Spin-1 A channel. Bottom: Spin-2 S channel.

We would like to make one comment before proceeding: we have presented a way to sub-
stantially cut down on the cost of following a bootstrap solution through an external parameter
space with the navigator by using eq. (7). The simple trick of using eq. (7) is just one example
of how one may use the additional information (as compared to the binary information pro-
vided by the usual scanning-based methods) encoded in the continuous navigator function to
speed-up conformal bootstrap calculations. To demonstrate the efficacy of this method and to
obtain the results we were after in this paper, it was enough for us to consider the crossing
equation at a relatively low derivative order Λ = 19. But of course, one could have also been
interested in getting to the navigator minimum at a much higher Λ if he/she wanted to ob-
tain very precise estimates of a certain amount of CFT data, and he/she would have benefited
from eq. (7) just the same. Furthermore, in that case, using a trick presented in Section 5.4
of [1], he/she could decrease his/her computational time by minimizing the navigator at a
relatively low Λ first, and then using the navigator minimum and final Hessian at this low Λ
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Figure 7: Top: Jump in subleading operator s′ in the ` = 0 S channel found by
the EFM at the navigator minimum for N = 2. Bottom: Evolution of s′ extracted
from different points along the BFGS run for (d = 3.4, N = 2), as functions of their
distance to the transformed navigator minimum.

as the starting point for a higher Λ calculation. By iteratively going up in Λ like this, he/she
would cut down on the number of more expensive function calls at the higher Λ’s. For exam-
ple, going to the Λ = 27 minimum at (d, N) = (3,2) using the Λ = 19 minimum and final
Hessian as the initial input only required 13 function calls, confirming the efficiency of the
trick. Of course, in using the navigator method as a substitute for the usual scanning-based
methods, he/she would have to deal with the fact that each navigator evaluation is more ex-
pensive than running SDPB on feasibility mode 5, with the very large-Λ navigator evaluations
possibly becoming quite expensive.

5For example, for one point tested in the Λ = 19 O(N = 1) island, running SDPB on feasibility mode
with the option detectPrimalFeasibleJump was about 3.8 times faster than computing the navigator with
dualityGapThreshold = 10−25 at that point for an otherwise identical setup, with the navigator computation
taking about 20 minutes on 2 32-core nodes of the Caltech HPC cluster.
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Table 2: Same as table 1, for the scaling dimensions instead of the anomalous di-
mensions, for d = 3 and N ∈ [1, 3]. Bootstrap results are given as the values at
the transformed navigator minimum, with uncertainties given by the distance to the
maximal and minimal values determined by the Constrained BFGS algorithm (the
values at the navigator minimum are given with asterisks in cases where uncertain-
ties were not calculated). Cited values are taken from Fig. 2 of [17] or deduced from
the ancillary file “resummation.pdf” of [18].

Bootstrap Resummed 4− ε expansion

N ∆φ ∆s ∆t ∆φ ∆s ∆t

3 0.5187
+0.0032

−0.0008
1.588

+0.024

−0.014
1.207

+0.013

−0.005
0.5189± 0.0003 [18] 1.583± 0.004 [18] 1.2103± 0.0003

2.9 0.5187
+0.0030

−0.0008
1.581

+0.023

−0.013
1.210

+0.012

−0.005
0.5189± 0.0003 1.576± 0.004 1.2127± 0.0003

2.8 0.5188
+0.0029

−0.0008
1.573

+0.021

−0.013
1.212

+0.011

−0.005
0.5190± 0.0003 1.569± 0.004 1.2151± 0.0002

2.7 0.5188
+0.0027

−0.0008
1.565

+0.020

−0.012
1.215

+0.011

−0.005
0.5190± 0.0003 1.561± 0.004 1.2176± 0.0003

2.6 0.5188
+0.0025

−0.0007
1.557

+0.019

−0.011
1.218

+0.010

−0.005
0.5191± 0.0003 1.553± 0.003 1.2201± 0.0003

2.5 0.5189
+0.0024

−0.0007
1.549

+0.018

−0.011
1.220

+0.010

−0.004
0.5191± 0.0003 1.546± 0.003 1.2226± 0.0003

2.4 0.5189
+0.0022

−0.0007
1.541

+0.017

−0.010
1.223

+0.009

−0.004
0.5191± 0.0003 1.538± 0.003 1.2252± 0.0003

2.3 0.5189
+0.0021

−0.0006
1.533

+0.016

−0.009
1.226

+0.009

−0.004
0.5191± 0.0003 1.530± 0.003 1.2278± 0.0003

2.2 0.5189
+0.0019

−0.0006
1.525

+0.015

−0.009
1.229

+0.008

−0.004
0.5190± 0.0003 1.522± 0.003 1.2304± 0.0004

2.1 0.5189
+0.0018

−0.0006
1.516

+0.013

−0.008
1.232

+0.008

−0.004
0.5190± 0.0003 1.513± 0.003 1.2331± 0.0003

2 0.5189
+0.0017

−0.0006
1.507

+0.012

−0.007
1.234

+0.007

−0.004
0.5190± 0.0003 [18] 1.505± 0.002 [18] 1.2358± 0.0003 [17]

1.9 0.5189
+0.0015

−0.0005
1.499

+0.011

−0.007
1.237

+0.007

−0.003
0.5190± 0.0003 1.4965± 0.0024 1.2385± 0.0004

1.8 0.5188
+0.0014

−0.0005
1.490

+0.010

−0.006
1.240

+0.006

−0.003
0.5189± 0.0003 1.487± 0.002 1.2413± 0.0004

1.7 0.5188
+0.0013

−0.0005
1.480

+0.009

−0.006
1.243

+0.006

−0.003
0.5188± 0.0003 1.479± 0.002 1.2441± 0.0005

1.6 0.5188
+0.0011

−0.0004
1.471

+0.008

−0.005
1.246

+0.005

−0.003
0.5188± 0.0003 1.470± 0.002 1.2469± 0.0003

1.5 0.5187
+0.0010

−0.0004
1.462

+0.007

−0.005
1.250

+0.005

−0.003
0.5187± 0.0003 1.460± 0.002 1.2499± 0.0003

1.4 0.5186
+0.0009

−0.0003
1.452

+0.006

−0.004
1.253

+0.004

−0.003
0.5186± 0.0003 1.451± 0.002 1.2527± 0.0006

1.3 0.5185
+0.0007

−0.0003
1.443

+0.005

−0.004
1.256

+0.004

−0.002
0.5185± 0.0003 1.4408± 0.0015 1.2557± 0.0006

1.2 0.5184
+0.0006

−0.0003
1.433

+0.004

−0.003
1.259

+0.003

−0.002
0.5184± 0.0003 1.4311± 0.0014 1.2587± 0.0006

1.1 0.5183
+0.0004

−0.0002
1.423

+0.003

−0.003
1.263

+0.002

−0.002
0.5182± 0.0003 1.4209± 0.0012 1.2617± 0.0005

1 0.518180∗ 1.41296∗ 1.26595∗ 0.5181± 0.0003 [18] 1.4108± 0.0011 [18] 1.2648± 0.0006 [17]
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Figure 8: ∆φ , ∆s and ∆t as functions of N , as determined by both the conformal
bootstrap with the help of the navigator function, and from the resummation of 6-
loop ε-expansions.

6.1 N −→ 1 limit and sinking of the O(N) islands

Table 2 indicates that the mixed-correlator bootstrap correctly captures the limit N −→ 1, and
enables one to determine the dimensions of operators like ∆t which would be invisible in the
bootstrap of the Ising Model. What happens at exactly N = 1 is worth further consideration.
As will be further discussed in Appendix D, the navigator function has many flat plateaux in
∆t at N = 1. Nevertheless, BFGS does in the end manage to converge to the following point:

x?min = (0.518180 . . . , 1.41296 . . . , 1.26595 . . . ) . (8)

We see that the location in ∆t of the minimum found by BFGS matches quite well with
∆t = 1.2648(6) predicted by the epsilon expansion [17].

There is one thing in the navigator computation at N = 1 that is worrying: the actual
minimal value of the transformed navigator f (x). We plot in fig. 9 the value of f (x) at its
minimum near N = 1. Remember that f (x) is positive iff the actual navigator function N (x)
is positive. At N = 1.5, f (xmin) = −0.072910, and f (x) increases as N −→ 1+, reaching
−0.000064 at N = 1. Thus the “most allowed” point according to the navigator construction
gets dangerously close to becoming disallowed as N −→ 1+. This offers a clear sign that the
O(N) islands may disappear somewhere just below N = 1. Although we did not precisely
determine the location of the disappearance, we can say that the islands seem to disappear
for good when going well below N = 1. Indeed, for two values we tested well below N = 1,
BFGS was not able to find an allowed point. For N = 0.9 and N = 0.5, BFGS found minima
that both lie above N (x) = 0 (see fig. 9). We hypothesize that the islands do disappear at
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some critical Nc close to N = 1, and that Nc
Λ−→∞
−−−−→ 1. We will see in the rest of this section

that the O(N) model must actually become very non-unitary below N = 1, which explains the
observed disappearance of the islands.

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
N

0.0
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0.8
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m
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Figure 9: Value of the transformed navigator (5) at its minimum, for N between 0.5
and 1.5.

So why is it that the islands seem to disappear roughly at N = 1? Some non-unitarity
was presumably already present in the high-lying part of the spectrum of the O(N) model at
fractional values of N above N = 1 [3], but the bootstrap showed to be insensitive to this.
Say we determine a unitary spectrum inside of the Λ = 19 O(N) islands with the Extremal
Functional Method as in the end of section 5, and follow this spectrum all the way down to
N = 1. Why could we not just perturb the unitary spectrum we find at N = 1 to obtain a
unitary one that solves the crossing equations just below N = 1? We present in Figures 10
and 11 the fate of two operators which illustrate exactly why. Figure 10 shows the φ × s OPE
coefficient of the lowest-lying ` = 1 V primary vµ in the limit N −→ 1+. This OPE coefficient
clearly goes to zero as N tends to 1. Furthermore, from a fit of all values below N = 1.2, we
find that the OPE coefficient goes to zero roughly as a square root: λφsvµ ∼ (N−1)0.482834. We
then show in Figure 11 the fate of the subleading `= 2 V primary v′µν. We see in the right part
of Figure 11 that the lowest-lying `= 2 V primary vµν continues at N = 1 into the lowest-lying
`= 2 Z2-odd primary σµν of the Ising model, while the third lowest-lying `= 2 V primary v

′′

µν

continues approximately into σ
′

µν (the offset is due here to the lower derivative order used in

comparison to [43]). The dimension of v
′

µν tends as N goes to 1 to a dimension that does not
correspond to any primary in the Ising spectrum. As expected, when we extract the spectrum
at an allowed point in the O(N = 1) island, we find that this primary has disappeared6. We
show in the left part of fig. 11 that this disappearance can be seen in the φ× s OPE coefficient

6We have encountered some problems in extracting the full spectrum exactly at N = 1. If we do so by extrem-
izing some quantity in the channels present in the Ising crossing equation, SDPB looks for functionals ~α such that
~α · ~VT,∆,` = ~α · ~VA,∆,` = 0 identically. Because of this, such an extremization cannot give any information on the A
and T channels. When we instead try to extremize a quantity in one of these channels, e.g. by maximizing λφφ t ,
the solution of the primal problem of SDPB (see [28] for its definition) has a large discontinuous jump when going
from N > 1 to N = 1. Using this primal solution to determine OPE coefficients [43] results in none of the OPE
coefficients we gather at N = 1 in the A and T sectors being sensible. We do not have a definitive explanation for
this behaviour.
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of v
′

µν, which tends to zero as N −→ 1+, again roughly as a square root (a fit of all values

below N = 1.2 gives λφsv′µν
∼ (N −1)0.452306, although the fit is much less stable than that for

vµ). We have therefore presented above two V sector primaries, with relatively small scaling
dimensions, whose φ×s OPE coefficients behave approximately as square roots near N = 1. A
naive continuation to the range N < 1 would require their squared OPE coefficients to become
negative, violating unitarity. Thus, the presence of such primaries seemingly prevents us from
obtaining a unitary solution to crossing at Λ = 19 below N = 1 by perturbing the unitary
solution to crossing we get at N = 1. One may wonder if the problematic primaries are related
to problematic primaries in the free O(N) model, or in the O(N) model in 4− ε dimensions,
where a large amount of CFT data is known analytically [25]. We are going to see shortly that
the answer to this question is yes.

0.0 0.1 0.2 0.3 0.4 0.5
N 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sv

fit 0.867414(N 1)0.482834

Figure 10: Plot of the φ × s OPE coefficient of the lowest-lying spin-1 V primary,
along with a fit of all values excluding those over N = 1.1.

0.0 0.1 0.2 0.3 0.4 0.5
N 1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

s

= v′

= v′′

0.0 0.1 0.2 0.3 0.4 0.5
N 1

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

= v
= v′

= v′′

= (′)(N = 1)

Figure 11: Left: φ × s OPE coefficient of the two subleading spin-2 V primaries.
Right: Scaling dimensions of the three lowest-lying spin-2 V primaries. The straight
lines indicate the dimensions of the two lowest-lying spin-2 Z2-odd primaries in the
Ising Model according to [43].
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Should we believe that the spectrum of the O(N) model varies continuously from the free
theory in d = 4 to the strongly-coupled theory in d = 3 (see [2] for a discussion), we might
hope that the operators observed in d = 3 in Figures 10 and 11 can be associated close to d = 4
to operators with similar behaviours in the limit N −→ 1, and whose behaviours can be easily
interpreted. From what will be presented below, it seems that this picture is valid. The lowest-
lying `= 1 vector primary, which was the first operator discussed in the last paragraph, is given
in the ε-expansion by an operator with three fields and one derivative vµ = ∂µφ3

V according
to Table 21 of [25]. At N = 1, this operator should become φ2∂µφ , which is a descendant of
φ3. Therefore, the primary vµ in d = 3 disappears in the limit N −→ 1+ just like vµ in d = 4−ε
should. Furthermore, the squared OPE coefficient λ2

φφ2 ∂µφ
3
V

is given to O(ε) in the second

entry of Table 4 of [44] as

λ2
φφ2 ∂µφ

3
V
=

2(N − 1)
3N

�

1−
N + 11

3(N + 8)
ε

�

. (9)

Both its free and O(ε) contributions come with a factor of N−1, in agreement with the square
root behaviour observed in Figure 10. Another example of a primary operator becoming a
descendant at N = 1 is the scalar singlet φ2 (∂ φ) · (∂ φ) , which becomes a descendant of φ4

at N = 1 in the free theory as derived in [45]. Unfortunately, we could not really observe the
disappearance of this operator in d = 3 with the bootstrap, most likely because it sits too high
in the spectrum to be observed at Λ= 19.

The limit N −→ 1 also sees many sets of different primary operators with the same classical
dimensions merging into a lower number of primaries at N = 1. This is for example the case
of the two lowest-lying `= 2 V primaries vµν and v

′

µν (where v
′

µν was observed in Figure 11 to
disappear in d = 3). Table 21 of [25] gives these operators in the ε-expansion as two operators
of the form ∂µ∂νφ

3
V . They become one single primary operator σµν = ∂µ∂νφ3 at N = 1 (see

Table 14 of [25]). Another example discussed in [25] in the ε-expansion is that of the two
subleading ` = 2 S primaries, which are of the form ∂µ∂νφ

4
S . They become a single primary

∂µ∂νφ
4 at N = 1. In this case, the φ × φ squared OPE coefficients for both operators are

known to O(ε2), and that of one of the two ( [25] refer to it as O4,2,1) goes smoothly from
positive to negative at N = 1. It is given in (3.15) of [25] as:

λ2
φφO4,2,1

=
N + 2

320N(N + 8)2
−76+ N + 3

p

9N2 − 8N + 624
p

9N2 − 8N + 624
ε2 +O(ε3)

=
�

1
135000

(N − 1) + . . .
�

ε2 +O(ε3) .

(10)

Many other primary operators disappearing at N = 1 because of this mechanism may be
inferred from comparing Tables 8-14 to Tables 19-21 of [25]. In the cases we could find
where data about OPE coefficients were known, disappearing primary operators of this sort
had squared OPE coefficients that were analytic at N = 1, and that became negative below
N = 1, making the O(N) model in d close to 4 very non-unitary. Figure 11 shows that the
problematic operators in d ≈ 4 continue into problematic operators in d = 3.

We have shown above two different mechanisms (primaries becoming descendants and
merging of primaries) which result in severe non-unitarity in the free O(N) model and the
O(N) model in d = 4 − ε below N = 1, as many squared OPE coefficients involving low-
lying primaries which were positive above N = 1 become negative below. We have seen in
Figures 10 and 11 that analogous behaviours could be observed in the spectra solving the d = 3
O(N) crossing equations at Λ = 19 in the limit N −→ 1+. Therefore, to continue the solution
to crossing below N = 1 would require many unitarity-violating contributions from low-lying
operators, which explains the drastic difference between the results of the unitary bootstrap
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for N > 1 and N < 1. Finally, we would like to point out that the problematic operators we
see in the limit N −→ 1 do not seem to be related to those generically at the source of the
non-unitarity of the fractional-N O(N) models according to [3] (see the evanescent operator
(7.82) of [3], first noticed in [46]).

7 Conclusion and outlook

We have shown in this work that the bootstrap of the O(N) model was insensitive to the non-
unitary nature of the model for both fractional d > 3 and fractional N > 1. In the process,
we gave bootstrap and ε-expansion estimates of a substantial amount of CFT-data in the range
(d, N) ∈ [3,4]×[1,3]. We then studied in more detail the limit N −→ 1, and obtained the clear
disappearance of the O(N) islands below N = 1 (see [47] for another case where sizeable
non-unitarities lead to disagreement between bootstrap and field-theory results). We obtained
these results using the newly developed navigator method, and devised a simple pathfollowing
algorithm which enabled us to sail from island to island efficiently. In some cases this led to
an appreciable speedup of subsequent optimization runs, and in others it was shown to be
necessary in finding the next island in the first place.

The disappearance of the O(N) islands at Nc = 1 could be observed with the navigator
method as the minimum of the navigator N (x) went above 0 at roughly Nc . This constitutes
a much clearer signature of the disappearance of the island than could be possible with the
usual binary bootstrap, where one could still wonder if some small island could have evaded
the scan. As was already discussed in [1], we believe that the navigator method could be
helpful in studying other systems where the behavior of some family of CFTs is expected to
change at some critical value(s) of the external parameters. This is the case for example for
the O(N) models near (d, N) = (2,2), where a critical line (dc , Nc) (the “Cardy-Hamber” line)
emerges from (d, N) = (2, 2) along which two fixed points collide [48, 49]. Some other ex-
amples would include the merger and annihilation of the critical and tricritical q-state Potts
model along another critical line (dc , qc) [50,51], and the controversial fate of the O(N)×O(2)
universality class supposedly describing phase transitions in certain classes of frustrated mag-
nets, where there should also exist a critical line (dc , Nc) along which there is the merger and
annihilation of the so-called “chiral” and “antichiral” fixed points [52] (see [6,53] for previous
bootstrap work). In cases like the O(N)×O(2) model, where the crossing equations involve
lots of internal channels, we expect that the navigator will enable us to scan over many more
internal exchanged operators than were considered in the past. Paired with the pathfollowing
prescription laid out in this paper which should help sail in the (d, N) plane more efficiently,
this should lead to a better determination of the critical line (dc , Nc).
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A Resummation algorithm

To determine the value of a critical exponent C∗ in dimension d = 4−ε∗ from its ε-expansion
C(ε) =

∑∞
k=0 ckε

k, one can do the following: first, compute the Borel-Leroy transform of C(ε)

C b
B (t) =

∞
∑

k=0

ck

Γ (k+ b+ 1)
tk . (11)

The gamma function kills the standard factorial growth of the coefficients ck, resulting in a
series with finite radius of convergence. Next, find an analytic continuation fCB(t) of C b

B (t)
defined for all positive t. [18] uses conformal mapping to get such an analytic continuation:
under the change of variables

t(w) =
4w

a(1−w)2
, (12)

with a = 3
N+8 for the O(N) model, the positive real line in t is mapped to the interval (0, 1)

in w. The analytic continuation is simply the re-expansion of the original Borel transform as a
series in the new variable w, which should converge for all |w|< 1. Finally, C∗ is given by the
Borel sum of the analytic continuation:

C∗ =

∫ ∞

0

dt t be−t
fCB(ε

∗ t) . (13)

Since we only have access to coefficients ck up to some kmax , critical exponents are computed
using the approximate analytic continuation

eC b,λ,q
B (t) =

�

at
w(t)

�λ kmax
∑

k=0

Bb,λ
(C ,q),k (w(t))

k , (14)

where coefficients Bb,λ
f ,k for a series f are chosen to reproduce the known series expansion of

f to order kmax . This approximate analytic continuation depends on 3 parameters (b,λ, q). b
is the Leroy parameter of the Borel-Leroy transform Equation (11), and λ governs the growth
of eC b,λ,q

B (t) at large t. The q in the subscript (C , q) indicates that before Borel transform and
conformal mapping, the original series was expanded in terms of a new variable ε′, related to
ε by the so-called homographic transformation ε′ = ε

1−qε first introduced in [54].
The value of a critical exponent which is reported is that for the specific choice of (b,λ, q)

which minimizes the following error, given in (36) of [18]:

ErrC∗
kmax
(b,λ, q) =max{

�

�

�C∗b,λ,q
kmax

− C∗b,λ,q
kmax−1

�

�

� ,
�

�

�C∗b,λ,q
kmax

− C∗b,λ,q
kmax−2

�

�

�} (15)

+max{Varb,∆b

�

C∗b,λ,q
kmax

�

, Varb,∆b

�

C∗b,λ,q
kmax−1

�

} (16)

+Varq,∆q

�

C∗b,λ,q
kmax

�

+ Varλ,∆λ

�

C∗b,λ,q
kmax

�

.

This error quantifies both the stability of the result with respect to the loop order (the first
term) and the stability with respect to a variation of the parameters (the last three terms).
For each parameter p, this last measure of stability, denoted Varp,∆p

, is given by the minimum
spread of C∗ in an interval of size ∆p which includes p. Finally, if we call the minimal error
Eopt, the uncertainty reported is this error, plus two times the standard deviation of all critical
exponent estimates for which the error is at most 3Eopt. This should result in a more realistic
uncertainty in cases where many resummations are close to optimal.
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B Numerical Implementation

The crossing vectors in the crossing equation (4) are given by [4]

~VV,∆,` =































0

0

0

0

Fφs,φs
−,∆,`

(−1)`F sφ,φs
−,∆,`

−(−1)`F sφ,φs
+,∆,`































, ~VT,∆,` =































Fφφ,φφ
−,∆,`

�

1− 2
N

�

Fφφ,φφ
−,∆,`

−
�

1+ 2
N

�

Fφφ,φφ
+,∆,`

0

0

0

0































, ~VA,∆,` =































Fφφ,φφ
−,∆,`

−Fφφ,φφ
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Fφφ,φφ
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0
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0
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
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,

~VS,∆,` =


























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
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








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0 0

0 0

!

 

Fφφ,φφ
−,∆,` 0

0 0

!

 

Fφφ,φφ
+,∆,` 0

0 0

!

 

0 0

0 F ss,ss
−,∆,`

!

 

0 0

0 0

!

 

0 1
2 Fφφ,ss
−,∆,`

1
2 Fφφ,ss
−,∆,` 0

!

 

0 1
2 Fφφ,ss
+,∆,`

1
2 Fφφ,ss
+,∆,` 0

!





































































. (17)

We have suppressed above the dependence of the convolved blocks F i j,kl
±,∆,`(u, v) on the cross-

ratios (u, v). For their exact expression, see e.g. (2.4) of [4]. S, T, A, V refer respectively to the
singlet, two-index traceless-symmetric, two-index antisymmetric and vector representations
of O(N) which are present in either the φi ×φ j OPE (S, T, A), the φi × s OPE (V ) or the s× s
OPE (S).

To construct the GFF navigator function N GFF (x), we can add to eq. (4) a contribution
λ ~MGF F corresponding to the operators whose dimensions are below the gaps we assumed in a
solution where φi is an O(N) generalized free field (GFF) and where s is another independent
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GFF, and minimize λ 7. The OPEs for this O(N) mixed-correlator GFF solution are

φi ×φ j = δi j

∑

`even

∑

n∈Z≥0

λS
φφ(n`)“φk�n∂ `φk ”+

∑

`even

∑

n∈Z≥0

λT
φφ(n`)“φ(i�

n∂ `φ j) ”

+
∑

`odd

∑

n∈Z≥0

λA
φφ(n`)“φ[i�

n∂ `φ j] ” , (18)

φi × s =
∑

`

∑

n∈Z≥0

λV
φs(n`)“φi�n∂ `s ” , (19)

s× s =
∑

`even

∑

n∈Z≥0

λS
ss(n`)“ s�n∂ `s ” ,

where the various dimensions and OPE coefficients are given by [55,56]

∆“A�n∂ `B” =∆A+∆B + 2n+ ` , (20)

�

λT
φφ(n`)

�2
=
�

λA
φφ(n`)

�2
= cn,`

�

∆φ ,∆φ
�

,
�

λS
φφ(n`)

�2
=

2
N

cn,`

�

∆φ ,∆φ
�

,
�

λS
ss(n`)

�2
= 2 cn,` (∆s,∆s) ,

�

λV
φs(n`)

�2
= cn,`

�

∆φ ,∆s

�

,

(21)

cn,` (∆1,∆2) =
2`(∆1 −

d−2
2 )n(∆2 −

d−2
2 )n

`!n!( d−2
2 + `+ 1)n(∆1 +∆2 + n− d + 1)n

×
(∆1)`+n(∆2)`+n

(∆1 +∆2 + 2n+ `− 1)`(∆1 +∆2 + n+ `− d
2 )n

(22)

with (·)x the Pochhammer symbol and the differences between eq. (22) and its equivalents
in [55,56] are due to different conformal block normalizations.

Computing the navigator function with all assumptions given in Section 3 amounts to
solving the following optimization problem:

N (x) =max
~α

�

1 1
�

~α · ~VS,0,0

 

1

1

!

, such that (23)

~α · ~MGF F = −1 ,

~α · (~VS,∆s ,0 + ~VV,∆φ ,0 ⊗

 

1 0

0 0

!

) ¼ 0 ,

~α · ~VT,∆t ,0 ≥ 0 ,

~α · ~VA,d−1,1 ≥ 0 ,

7Another form of navigator function, coined the Σ-navigator, was proposed in [1], which amounts to adding
a different contribution to the crossing equation that still ensures the augmented crossing equation always has a
solution.

23

https://scipost.org
https://scipost.org/SciPostPhys.13.4.081


SciPost Phys. 13, 081 (2022)

~α · ~VS,d,2 ¼ 0 ,

~α · ~VV,∆,` ≥ 0

¨

∆≥∆∗
φ

`= 0

∆≥ d + `− 2+τ ` > 0
,

~α · ~VS,∆,` ¼ 0











∆≥∆∗s `= 0

∆≥∆∗Tµν `= 2

∆≥ d + `− 2+τ ` > 2

,

~α · ~VT,∆,` ≥ 0

¨

∆≥∆∗t `= 0

∆≥ d + `− 2+τ ` > 0
,

~α · ~VA,∆,` ≥ 0

¨

∆≥∆∗Jµ `= 1

∆≥ d + `− 2+τ ` > 1
,

where an example of a valid ~MGF F will be given shortly. As stated in section 3, we
solve this problem with SDPB 2.4.0 [28, 29]. We compute conformal blocks with
scalar_blocks [57], and use simpleboot [58] as our user-interface in setting up the boot-
strap problem. The parameter Λ which was said to govern the size of allowed regions in
Section 3 is simply the order to which we Taylor expand the functionals in ~α.

Minimization of the navigator using the modified BFGS algorithm of [1] enables us
to locate allowed regions. This algorithm uses gradient information. It therefore greatly
benefits from the fact that the gradient of the solution to the SDP associated to eq. (23)
may be computed “for free”, i.e. only knowing the solution of the SDP at the point
where the gradient is demanded, and the variations of the SDP. The exact formula for
this gradient is given in Section 4.2 of [1]. The BFGS algorithm requires a bounding box
B = [∆min

φ
,∆max

φ
] × [∆min

s ,∆max
s ] × [∆min

t ,∆max
t ] inside of which the search will take place.

This bounding box has two purposes: it both prohibits BFGS from flowing into allowed re-
gions which have nothing to do with the O(N) models (referred in the bootstrap jargon as the
“peninsulas”) and provides a scale for the initial hessian B0. Given the bounding box B, we
perform the change of variables x −→ y(x) defined by

x i = x0;i + (∆
max
x i
−∆min

x i
) · r · yi . (24)

Then when an approximate Hessian is not otherwise known, we use

B0 =




∇ f̃ (0)




1 , (25)

where f̃ (y) = f (x), as the initial Hessian. This is completely equivalent to the prescription
for the initial Hessian given in Algortihm 1 of [1]. r of eq. (24) gives the ratio of the bounding
box that we wish to explore in each direction in the first step. It was set to 0.2 in [1]. We
throughout this paper use the smaller r = 0.05 as we usually stay close to the islands we’re
looking for, and don’t need to explore too much of the parameter space. BFGS terminates once
the maximum norm (‖a‖∞ =max(|a1| , |a2| , . . .)) of the gradient of the transformed function
f̃ reaches a cutoff gtol, where we chose gtol = 10−8 8. This is the standard termination criteria
of the SciPy [59] implementation of BFGS we were using. Finally, to actually compute N (x),
we have to define a valid GFF contribution vector ~MGF F . If we defined it at every x as the
contribution from all GFF vectors with dimensions below our gaps ~∆∗, we would run the risk
that it might change as∆φ and∆s vary within a BFGS run, resulting in a discontinuous change

8The change of variables eq. (24) obviously impacts when this termination criterion is reached.
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of the navigator function (remember that the dimensions of those GFF operators are given by
eq. (20)). To make sure that we have at least all the operators we need (and maybe some
superfluous ones) throughout the BFGS run, we choose ~MGF F to be the contribution from the
minimal set of operators required for (∆φ ,∆s) = (∆min

φ
,∆min

s ). For the example of Section 3,
this means we take

~MGF F =
1
2

c0,0

�

∆φ ,∆φ
�

�

1 0
�

~VS,2∆φ ,0

 

1

0

!

+ c0,0 (∆s,∆s)
�

0 1
�

~VS,2∆s ,0

 

0

1

!

+
1
2
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�

∆φ ,∆φ
�

�

1 0
�

~VS,2∆φ+2,2

 

1
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(26)

+
1
2

�

c0,0

�

∆φ ,∆φ
�

~VT,2∆φ ,0 + c0,1

�

∆φ ,∆φ
�

~VA,2∆φ+1,1 + c0,0

�

∆φ ,∆s

�

~VV,∆φ+∆s ,0

�

.

We of course could have multiplied ~MGF F with any positive prefactor. This choice would in-
fluence the value of Nmax , and with the one made here, Nmax = 2.

The “Constrained BFGS” algorithm of the end of Section 3 works in many ways similarly
to the BFGS algorithm described above. However, its line searches are forced to remain close
to the boundary of the island, and the algorithm terminates once |N (x)| or the component of
the gradient of N (x) perpendicular to the extremization direction go below some tolerance
gtol. We chose for the example gtol = 10−10. The algorithm also requires a starting point inside
of the island and an initial guess for the Hessian. We chose for the example in Section 3 the
minimum xmin of the BFGS run in fig. 1 as the starting point and the approximate Hessian
supplied by BFGS at this minimum point as the initial Hessian. fig. 12 shows the path taken
for the minimization of ∆φ , one of the six extremization runs.
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Figure 12: (∆φ ,∆s) projection of the “Constrained BFGS” run for the mini-
mization of ∆φ at Λ = 19. The run terminates on the tip of the arrow at
x f = (0.518344,1.49996, 1.23104). The “Constrained BFGS” algorithm allows for
the probing of disallowed points in its search for extremal allowed values; e.g. point
1 here has a navigator of 1.22824.
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C Further tests of the navigator method

As already noticed in [60] for the case of the Ising model, bootstrap islands tend to decrease
significantly in size as d gets closer to 4. One might fear that the navigator method would
struggle to find such small islands, even more so because good initial guesses for CFT-data
(e.g. ε-expansions to high loop-orders) can be rare, and especially rare for OPE coefficients.
To prove that the navigator method can handle all of these concerns, let us consider a slightly
more constraining setup than (23) : we want our navigator to now also depend on the OPE
angle θ = arctan λsss

λφφs
. This means we are changing the second condition of (23) to

�

cosθ sinθ
�

~α ·

 

~VS,∆s ,0 + ~VV,∆φ ,0 ⊗

 

1 0

0 0

!!  

cosθ

sinθ

!

≥ 0 . (27)

For N = 2 and ε = 0.2, we minimized (5) over the 4-parameter search space
x = (∆φ ,∆s,∆t ,θ ), with the initial guess for θ its free theory value θ = arctan2, and the low-
est non-trivial order estimates of eq. (2) for the dimensions. We found that even with these very
rough starting points, BFGS was eventually able to reach the allowed region, taking 81 function
calls to find the first allowed point x = (0.900470379,1.8847650, 1.8419186,1.0753019). We
show a 3D projection of this BFGS run in fig. 13, where the tiny allowed region on the right
figure lies on the tip of the arrow on the left figure. For the rest of this appendix, including in
fig. 13, we will substitute for the scaling dimensions the more natural anomalous dimensions
(γφ ,γs,γt) = (∆φ ,∆s,∆t)− (

d−2
2 , d − 2, d − 2).
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Figure 13: 3D projection of the BFGS run at Λ= 19 for the 4-parameter setup where
x = (∆φ ,∆s,∆t ,θ ). Red points are disallowed, blue diamonds are allowed. Left:
Full run. The allowed region is located at the tip of the arrow and is barely visible.
Points are labelled by their function call number. Right: Zoom in on the allowed
region.

fig. 13 clearly demonstrates the power of the navigator method: the very tiny island could
be located in a relatively small number of steps, starting from quite a rough estimate (notice
especially the different scales for the θ variable in the two plots: the island in this direction
is roughly two orders-of-magnitude smaller than its distance to the starting point). With the
amount of information used here, a scan would have needed to be extremely fine in the θ
direction to locate an allowed point. A rough estimate gives 10 × 10 × 10 × 100 = 100,000
points needed to be tested in order to find the island.

Let’s now go back to the original setup of (23). At small values of ε, the islands are so small
that using the location of the BFGS minimum at the previous d is not sufficient for the run at
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d − 0.1 to converge to the allowed island. We see in fig. 14 that for N = 2, if one was to start
at d = 3.7 from the minimum obtained at d = 3.8, BFGS would run towards the peninsula
to the right of the island. With the initial guess provided by eq. (7), as evidenced in fig. 15,
the run at d = 3.7 reaches the first allowed point x = (0.00110929, 0.128838,0.0633290) in-
side the O(2) island after 64 function calls. A prescription like that of section 4 was therefore
necessary in making the navigator method viable in this context. However, the initial point
x0 = (0.000975890, 0.129421,0.0637559) resulted in a navigator of N (x0) = 1.99661, indi-
cating that this point was deep in the disallowed region. This is much different to the example
given in Section 3, and the difference is attributable to the small of size of the small-ε islands.
Because of this, we had to make no assumption about the initial Hessian (using the Hessian
at the previous minimum would be a bad guess if the starting point is not close enough to the
next minimum), which partly explains why it took a considerable amount of function calls to
even reach the island.
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Figure 14: BFGS run for N = 2, d = 3.7 at Λ= 19 using as the initial guess the min-
imum of the run at d = 3.8. Red points are disallowed, blue diamonds are allowed.
From the monotonic increase of γφ ,γs and γt to large values, we see that this run
misses the (tiny) island and runs off to the peninsula.

D Further details on the N −→ 1 limit

As already noted in [41], the full system of crossing equations at N = 1 contains the Ising
crossing equations, where the O(N = 1) V and S sectors correspond respectively to the Ising
Z2-odd and Z2-even sectors. Indeed, one concludes from the crossing vectors (17) that the
lines {1+ 2,4, 5,6, 7} in the V and S crossing vectors for N = 1 are simply those of the Ising
mixed-correlator Z2-odd and Z2-even vectors, as given e.g. in (3.12) of [5]. This combina-
tion of lines renders the contribution from the A and T sectors identically zero, completing
the identification to the Ising crossing equations. The fact that the crossing vectors separate
into “Ising + rest” implies a similar separation of the navigator problem. Indeed, our O(N)
navigator problem

min
(∆φ ,∆s ,∆t )

λ |
∑

R∈{V,S,A,T}

∑

O∈R

~λ
ᵀ
OR
· ~VR,∆O ,`O · ~λOR

= −λ ~MGFF , (28)

becomes at N = 1

min
(∆φ ,∆s ,∆t )

λ such that
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Figure 15: BFGS run for N = 2, d = 3.7 at Λ = 19 with the initial guess supplied
by eq. (7). Red points are disallowed, blue diamonds are allowed. This run does
converge to the island.

(

∑

R∈{V,S}
∑

O∈R
~λ
ᵀ
OR
· ~VZ2

R,∆O ,`O
· ~λOR

= −λ ~MZ2
GFF

∑

R∈{V,S,A,T}
∑

O∈R
~λ
ᵀ
OR
· ~̃VR,∆O ,`O · ~λOR

= −λ ~̃MGFF .
(29)

Crossing vectors with a Z2 superscript are 5-component vectors made up of lines
{1+2,4, 5,6, 7} of the full O(N = 1) vectors. Crossing vectors with a tilde are two-component
vectors made up of the rest of the full O(N = 1) vectors (so for example, lines 1 and 3). The first
condition states that the V and S sectors should solve the Ising crossing equation augmented
by a GFF contribution λ ~MZ2

GFF containing all V and S GFF operators below the gap assumptions
of (23). If the first condition was the only condition, the navigator would be independent of
∆t , and equal to the Ising navigator of [1]N Z2(∆σ,∆ε) under the identifications (∆φ ←→∆σ,
∆s ←→ ∆ε) if identical assumptions were made on the equivalent sectors. Because the tilde
vectors are non-zero in the A and T sectors, we expect that the second condition of (29) will
cause the navigator to depend on the assumptions made in these sectors. In particular, we
will have some dependence of the navigator on ∆t if ∆t is to be constrained to a small finite
region of allowed values at N = 1, as suggested by the limit N −→ 1 in Figure 8.

What we observe numerically is that for a given (∆φ ,∆s), there is some range of∆t where
the navigator is flat. As expected, for that range, (29) effectively reduces only to minimization
over the Ising condition. Indeed, in minimizing the transformed navigator at N = 1, the
navigator function was computed at 45 points, some determined to be allowed and some
disallowed, and actually the gradients of the navigator function for all those points were found
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Figure 16: Dependence of the navigator function on ∆t at N = 1 for
(∆φ ,∆s) = (0.518139 . . . , 1.41252 . . . ). The navigator function is constant in a small
region, and equal in that region to the navigator function for the case of a mixed-
correlator Ising setup where identical assumptions were made on the equivalent sec-
tors (V ←→ Z2−odd , S←→ Z2−even).

to be zero (to our numerical precision) in the ∆t direction9. We have checked for a number
of those points that the values of the navigator function match exactly those obtained in the
pure Ising navigator setup of [1] when equivalent assumptions were made between the V and
Z2-odd and the S and Z2-even sectors. One should however not conclude that the navigator
function never depends on ∆t . For example, its dependence on ∆t for a certain (∆φ ,∆s) is
shown in Figure 16. There is some small range where the navigator is constant at its Ising
value, and then it increases once it leaves this region. This picture makes sense: for any given
(∆φ ,∆s,∆t), we have

N (∆φ ,∆s,∆t) = λ
O(N=1)
min ≥ λZ2

min =N Z2(∆φ ,∆s) , (30)

since from (29), every solution of the O(N = 1) augmented crossing equations gives a V
and S sector that solves the Ising augmented crossing equations. Furthermore, the equality
in eq. (30) is reached if and only if there is a solution of the second condition of (29) with
λ = λZ2

min, where the V and S sectors solve the first condition also with λ = λZ2
min. In other

words, the O(N = 1) navigator is equal to the Ising navigator if and only the second condition
of (29) can be solved with λ = λZ2

min for a spectrum with V and S sectors that solve the pure
Ising navigator problem.
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