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Abstract

Motivated by the experimental progress in controlling the properties of the energy bands
in superconductors, significant theoretical efforts have been devoted to study the effect
of the quantum geometry and the flatness of the dispersion on the superfluid weight. In
conventional superconductors, where the energy bands are wide and the Fermi energy
is large, the contribution due to the quantum geometry is negligible, but in the opposite
limit of flat-band superconductors the superfluid weight originates purely from the quan-
tum geometry of Bloch wave functions. Here, we study how the energy band dispersion
and the quantum geometry affect the disorder-induced suppression of the superfluid
weight. In particular, we consider non-magnetic disorder and s -wave superconductivity.
Surprisingly, we find that the disorder-dependence of the superfluid weight is universal
across a variety of models, and independent of the quantum geometry and the flatness
of the dispersion. Our results suggest that a flat-band superconductor is as resilient to
disorder as a conventional superconductor.
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1 Introduction

The superfluid weight Ds defines superconductivity, since it captures the ability of a material to
sustain a nondissipative current and it becomes nonzero below the critical temperature of the
superconductive transition, thereby characterizing the Meissner effect [1–4]. For conventional
superconductors originating from the metallic state given by a partially-filled, isolated, and
approximately parabolic band, one has the well-known result [1] Ds = e2n/m∗, where n is
the electronic density and m∗ the effective mass. Thus, for conventional superconductors the
knowledge of the effective mass or, more generally, the band dispersion is sufficient to estimate
the superfluid weight.

The observations of superconductivity in twisted bilayer graphene [5–9] and other
graphene multilayer systems [10–14] have intensified the theoretical interest in the study of
systems with flat energy bands and superconductivity [15–23]. In a flat band the effective
mass m∗ diverges and one would expect the superfluid weight to vanish. On the contrary, it
has been found that, besides the band dispersion, also the quantum geometry of the Bloch
wave functions contributes to the superfluid weight [24–33]. In particular, in the case of a
well isolated flat band the superfluid weight originates purely from the quantum geometry
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and can be written as

Dµνs =
8e2

ħh2 ∆
Æ

ν̄(1− ν̄)
∫

dd k
(2π)d

gµν(k) , (1)

where ∆ is the superconducting order parameter, ν̄ the band filling, d the dimension, and k
the momentum of the electronic state. The quantum metric gµν(k) is given by the real part of
the quantum geometric tensor Bµν(k) =




∂µunk

�

�

�

1− |unk〉〈unk|
�

|∂νunk〉, where |unk〉 are the
Bloch wave functions, n is the band index of the flat band, and ∂µ ≡ ∂kµ . The imaginary part
of Bµν(k) is proportional to the Berry curvature Bµν. Because Bµν(k) is positive semidefinite,
tr gµν ≥ |B12| and 1

2 tr
�∫

d2k gµν(k)
�

≥ π|C |, where C = 1
2π

∫

d2k B12(k) is the Chern number.
This inequality readily translates into a lower bound for the superfluid weight through Eq. (1).
Similar lower bounds can be obtained when the bands are characterized by other topological
invariants [29,34].

According to the Anderson theorem, s-wave superconductors are robust against perturba-
tions obeying time-reversal symmetry [35]. Therefore, the superconducting ground state can
have phase coherence, off-diagonal long-range order, and non-zero superfluid weight even
though the underlying single-particle states (and quasiparticle states) are localized due to
the disorder [36]. However, by increasing the disorder strength the superconducting order
parameter becomes spatially inhomogeneous, its magnitude is suppressed, and finally the sys-
tem breaks up into superconducting islands separated by regions where the pairing amplitude
approximately vanishes [36–38]. As a consequence, the superfluid weight decreases and even-
tually goes to zero due to quantum phase fluctuations, leading to a superconductor-insulator
transition at a critical disorder strength [37–39].

So far these disorder effects have been considered in superconductors where the effect of
the quantum geometry is negligible, and the inequalities discussed above between superfluid
weight, quantum metric, and Chern number suggest that the disorder effects might be different
in flat band systems where the superfluid weight originates from the quantum geometry. In
fact, the Chern number is quantized even in the presence of disorder [40], and thus one might
expect that the geometric contribution is robust against disorder. On the other hand, the
superfluid weight is also affected by the magnitude of the superconducting order parameter,
the bandwidth, and the band gap, which all depend on the disorder strength.

In this study, we calculate the disorder-induced suppression of the superfluid weight Ds
for a generalization of the Kane-Mele model [41], for which the low energy bands’ topology
and flatness can be easily tuned by varying the values of the model’s parameters, and for a
simple single band model. Our main results are shown in Fig. 1, where the ensemble averages
〈∆̄〉/∆0, 〈Ds〉/Ds,0 of the spatially averaged pairing potential ∆̄ and the superfluid weight Ds
are shown as a function of the disorder strength W/W0. ∆0, Ds,0 are the pairing potential and
the superfluid weight, respectively, in the clean limit. W0 is defined as the value of W for which
〈∆̄〉/∆0 = 1/2. For W ≈ W0 the superconductor breaks up into superconducting islands. In
all models the disorder dependence of 〈∆̄〉 and 〈Ds〉 is the same after rescaling, pointing to an
unexpected universal behavior. 1

1For the results shown in Figs. 1 and 2(b), we used cluster sizes N = 128 for the Kane-Mele models and
N = 121 for the single-band models. We calculated the ensemble averages over 30 disorder realizations. For
the decomposition of the superfluid weight into conventional and geometric part, shown in Figs. 2(e,f) and 3(b),
we used N = 50 for the Kane-Mele models and N = 49 for the single-band models. We calculated the ensemble
averages over 40 disorder realizations.
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Figure 1: Universality of the disorder-induced suppression of the pairing amplitude
and the superfluid weight across a variety of lattice models: (i)-(v) topological and
trivial extended Kane-Mele models, (vi)-(viii) trivial single-band models (see text and
Appendices C and G). The ensemble averages of (a) the spatial average of the pairing
amplitude ∆̄ and (b) the superfluid weight Ds are shown as a function of the disorder
strength W/W0.

2 Self-consistent mean field theory and the superfluid weight
in disordered superconductors

We consider a variety of tight-binding Hamiltonians H0 with disorder potentials Vd supple-
mented by the pairing interaction Hint, so that the full Hamiltonian is H = H0 +Hint + Vd . We
assume that H0 obeys U(1) spin-rotation symmetry, Vd is represented by uncorrelated on-site
energies uniformly distributed in the interval [−W, W ], and Hint describes a local attraction
of strength U between the electrons that leads to a time-reversal invariant singlet supercon-
ducting state described by a real-valued pairing potential ∆(r). We neglect the frequency
dependence of U and the renormalization of U due to the localization, because we are inter-
ested in the comparison of the models instead of seeking for a quantitative description of a
particular system.

To model the disorder potential, we consider a large cluster of N sites repeated in space N
times with periodic boundary conditions. The full set of superconducting mean-field equations
for such a system is given by

∆α =
1
N

∑

i

U〈ciα↑ciα,↓〉, ν̄=
1

NN

∑

i,α,σ

〈c†
iασciασ〉 , (2)

withα= 1, . . . N , U > 0, and the filling per lattice site ν̄ ∈ [0, 2] associated with both spin chan-
nels σ =↑,↓ (see Appendix A). The operators c†

iασ (ciασ) create (annihilate) an electron with
spinσ at site rα in the i-th cluster. This is a large set of N+1 equations, which we have to solve
self-consistently for the chemical potential µ and for the spatial profile of the superconducting
order parameter∆α at a given temperature T and interaction strength U . Therefore, to reduce
the computational cost of the calculation of ∆(T, rα), we assume that the spatial profile is ap-
proximately independent of temperature. With this assumption, we obtain the (normalized)
spatial profile ∆̂(rα) from the linearized self-consistency equations, which are valid close to
the critical temperature, and the overall amplitude ‖∆(T )‖ ≡ [

∑

α |∆(T, rα)|2]1/2 and ν̄ from
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the nonlinear self-consistency equations (see Appendix A) to obtain ∆(T, rα)=‖∆(T )‖∆̂(rα).
We find that this approximation leads to an underestimation of 〈∆̄〉 that, being very similar
for all the models (see Appendix F), does not affect the relative comparison of the models.

Given a specific disorder realization, we compute the corresponding superconducting order
parameter ∆α and the chemical potential self-consistently employing the reduced mean-field
equations, and diagonalize the associated Bogoliubov-de Gennes Hamiltonian HBdG to deter-
mine its excitation energies Ei(k) and eigenstatesψi(k), where k is the superlattice momentum
arising due to the cluster periodicity and i is the band index. The full superfluid weight Ds of
the superconductor is given by

Dµνs =
e2

ħh2

∑

k,i j

n(E j)− n(Ei)

Ei − E j

�

〈∂µHBdG〉i j 〈∂νHBdG〉 ji − 〈∂µHBdGγ
z〉i j 〈γz∂νHBdG〉 ji

�

, (3)

where 〈·〉i j ≡ 〈ψi| · |ψ j〉, n(Ei) is the Fermi function, and γz = σz ⊗ 1N×N with σz being a
Pauli matrix in particle-hole space (see Appendix B). We further decompose the full superfluid
weight into a conventional contribution Ds,conv and a geometric contribution Ds,geom. The
conventional contribution involves only intraband matrix elements containing derivatives of
the normal-state Hamiltonian’s energies εkmσ,

Dµνs,conv =
∑

k,mp

Cmm
pp

�

∂µεkm↑ ∂νε−k,p,↓ +µ↔ ν
�

, (4)

with coefficients Cmm
pp given in Appendix B. The geometric contribution, Ds,geom, comprises in-

terband matrix elements with derivatives of the normal-state Hamiltonian’s Bloch states (see
Appendix B) and can be obtained as the difference between Ds and Ds,conv. In the limits of a
trivial parabolic band and an ideal flat band without disorder, this decomposition reproduces
the conventional result Ds = e2n/m∗, and Eq. (1), respectively. The considered disorder pre-
serves the symmetries of the respective clean systems on average. In particular, on average
it preserves the C3 symmetry of the Kane-Mele models and the C4 symmetry of the single-
band models. Consequently, the disorder-averaged superfluid weight tensors of our models
are proportional to the identity matrix and we have Dx x

s = D y y
s ≡ Ds.

3 Universal superfluid weight in extended Kane-Mele model

We first consider an extended Kane-Mele model on a honeycomb lattice given by a Haldane
model [42] for each spin channel and additional hoppings between 3rd- (t3) and 4th-nearest
neighbors (t4):

H = t
∑

σ,〈i, j〉1

c†
jσciσ + t2

∑

σ,〈i, j〉2

eiσϕi j c†
jσciσ + t3

∑

σ,〈i, j〉3

c†
jσciσ + t4

∑

σ,〈i, j〉4

c†
jσciσ +

∑

σ,i

�

(−1)i M −µ
�

c†
iσciσ . (5)

Here, 〈i, j〉n denotes pairs of n-th neighbors, σ = ±1 ≡ ↑,↓ is the spin index of the particles,
M is a staggered on-site potential, µ is the chemical potential, and ϕi j = ±ϕ is a next-nearest-
neighbor (NNN) hopping phase whose sign depends on the hopping direction and on the spin
(see Appendix C). The spin-dependence of the NNN hopping phase is chosen in such a way that
the full non-interacting Hamiltonian is time-reversal symmetric. We call the model in Eq. (5)
the extended Kane-Mele model because in the limit t3 = t4 = 0 and ϕ = π/2 it reduces to the
model introduced by Kane and Mele in Ref. [41].

Importantly, our model is well-suited for the study of topological flat bands: By taking
t2 = 0.349t, t3 = −0.264t, t4 = 0.026t, ϕ = 1.377, and M = 0 [model (i) in Fig. 1], the low-
est spin-degenerate bands are almost flat and have Chern numbers C = ±1 [see Fig. 2(a), (c)].
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Figure 2: Disorder-induced suppression of the superfluid weight in the extended
Kane-Mele model. (a) Evolution of the energy gap and the bandwidth of the lower
band as a function of M . C is the Chern number of the lower spin-up band. (b) Ds
as a function of M for different values of W/W0 and ν̄ = 1/2. The vertical dotted
black line indicates the topological transition in the clean system. (c), (d) Energy
bands of the clean systems along high-symmetry lines of the Brillouin zone for M
values corresponding to topologically distinct cases. The dotted black lines indicate
the Fermi level corresponding to ν̄ = 1/2. (e), (f) 〈Ds〉 as a function of W/W0 for
ν̄= 1/2.

Therefore the superfluid weight is almost entirely geometric in the clean limit, i.e., Ds ' Ds,geom

satisfying Eq. (1) with ∆ ≈ U
p

ν̄(1− ν̄)/2. Fig. 2(e) shows the disorder-averaged superfluid
weight 〈Ds〉 for ν̄ = 1/2, U = 3t and T = 0 2 displaying the behavior already presented in
Fig. 1(b), but here we have decomposed it into geometric and conventional contributions 3.
The superfluid weight associated with a flat band is almost entirely geometric for all values of
the disorder strength.

2In the numerics, the T = 0 limit is approximated by T ≤ Tc/100
3Since we use a smaller cluster size to obtain the data shown in Fig. 2(e) and (f), the superfluid weight for strong

disorder (W/W0 > 2) is on average larger compared to Fig. 1(b). Finite-size effects are discussed in Appendix E.
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By increasing M the previously flat band becomes more dispersive and the bulk energy
gap closes around M = 1.75t, so that after the reopening of the bulk gap both energy bands
are trivial (C = 0) [Fig. 2(a)]. Thus, as we increase the parameter M , the superfluid weight
acquires a finite conventional contribution due to the growing dispersion of the lower band.
The fraction of the geometric contribution decreases, so that deep inside the trivial phase the
geometric contribution practically vanishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture changes with increasing disorder, as we
show in Fig. 2(f). First, we observe that the conventional contribution is linearly suppressed in
the low-disorder regime, whereas the suppression is quadratic for the full superfluid weight. In
contrast, the geometric contribution is enhanced for small disorder until it reaches a turning
point. At this point the conventional contribution is nearly zero and the superfluid weight
becomes entirely geometric, even though the underlying bands are topologically trivial.

Importantly, although the geometric and conventional contributions are remarkably dif-
ferent depending on M , surprisingly the disorder induced suppression of the scaled superfluid
weight 〈Ds〉/D0 as a function of the scaled disorder strength W/W0 is completely independent
of the value of M [see Fig. 2(b)]. We find essentially the same results also when other pa-
rameters are varied, such as the NNN hopping phase ϕ [see Appendix C and model (iv) in
Fig. 1].

4 Single-band superconductor

It is instructive to compare the extended Kane-Mele model with a nearest-neighbor tight-
binding model on the square lattice given by the Hamiltonian

H = −t
∑

σ,〈i, j〉

c†
jσciσ −µ

∑

σ,i

c†
iσciσ . (6)

The energy spectrum consists of only one band with the dispersion relation E(kk, ky) =
−2t(cos kx + cos ky) visualized in Fig. 3(a). The filling is set at ν̄ = 1/5. In the clean limit,
the Berry curvature, the Chern number, and the geometric contribution are identically zero,
and Ds = Ds,conv ≈ e2n/m∗ = 2e2ν̄t/ħh2. However, with the onset of disorder the geomet-
ric contribution is again enhanced while the conventional contribution is linearly suppressed
[Fig. 3(b)]. In particular, Ds is entirely geometric in the strong disorder regime, even though
the considered model in the clean limit has no geometric structure.

A possible explanation for this counter-intuitive behavior lies in the nature of the decom-
position of the superfluid weight. By definition, the geometric part contains only interband
matrix elements (see Appendix B). Hence, it is identically zero for a single-band model in the
clean limit. By adding disorder to the system, this band fans out into several subbands in the
superlattice mini Brillouin zone arising from the cluster periodicity. As a consequence, states
previously separated in momentum space may now couple giving rise to nonzero interband
matrix elements. Moreover, avoided crossings in the superlattice Brillouin zone can act as hot-
spots of quantum metric. In the thermodynamic limit (N → ∞), the superlattice Brillouin
zone collapses to a single point allowing all states of the single band to couple. Consequently,
the superfluid weight now originates entirely from interband terms so that only the geometric
contribution of the superfluid weight remains non-zero.

Evidently, the meaning of the geometric and conventional contributions is obscured in
the case of dirty superconductors. To understand this better it is important to compare the
disorder-induced suppression of the total superfluid weight in the cases of the extended Kane-
Mele models (Fig. 2) and the single-band model (Fig. 3). As shown in Fig. 1, the scaled
superfluid weight 〈Ds〉/D0 as a function of the scaled disorder strength W/W0 behaves the
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Figure 3: Disorder-induced suppression of 〈Ds〉 in a single-band model. (a) Energy
band dispersion of the clean system along high-symmetry lines of the Brillouin zone.
The dotted line indicates the Fermi level at ν̄= 1/5. (b) 〈Ds〉, 〈Ds,conv〉 and 〈Ds,geom〉
as a function of W at ν̄= 1/5.

same way in all models. This finding is independent of the concrete decomposition of the
superfluid weight into conventional and geometric contributions. In particular, it would still
hold even if there existed a different decomposition for disordered systems. Thus, our results
imply that the microscopic mechanism underlying the superfluid weight becomes unimportant
in dirty superconductors.

5 Conclusion

To summarize, we have demonstrated that the disorder-induced suppression of the superfluid
weight is universal across a variety of theoretical models independently of the quantum ge-
ometry and the flatness of the dispersion. Thus, flat-band superconductors are as resilient to
disorder as conventional superconductors. We have mainly concentrated on the disorder-
induced suppression of the ensemble averages of the pairing potential and the superfluid
weight. However, the universality across the models remains true also for the statistical fluc-
tuations. Namely, we find that apart from the transition regime W ≈ W0, also the standard
deviations σ(∆̄)/∆0 and σ(Ds)/Ds,0 as a function of W/W0 behave the same way in all models
(see Appendix D). In our calculation there is no critical value of W above which Ds vanishes.
This is due to the fact that in our approach relative phase fluctuations of ∆ between different
superconducting regions (islands) of the inhomogenous landscape induced by the disorder are
not taken into account [37–39]. The interplay of such fluctuations and the quantum metric is
an interesting direction for future research.

Graphene-based heterostructures are an ideal platform to experimentally study the uni-
versality of the disorder-induced suppression of the superfluid weight. These systems are in-
trinsically very clean, disorder can be introduced in a controlled way, and it is possible to tune
the dispersion and the different contributions of the superfluid weight through the twist an-
gle, pressure, and electric field [5,6,10,11,28,30]. Recent experiments indicate that in some
graphene-based systems it might be possible to realize unconventional superconducting order
parameters [12–14]. Therefore, it is an interesting direction for future research to find out if
the disorder-induced suppression of superfluid weight remains independent of the quantum
geometry beyond the time-reversal invariant s-wave superconductors considered in this work.
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Appendix

A Self-consistent mean-field equations

We start from the generic form of a Hamiltonian for a singlet s-wave superconductor with
time-reversal symmetry,

HBdG =
∑

i j

Hi j c†
i↑c j↑ −

∑

i j

Hi j ci↓c
†
j↓ +

∑

i

[∆i c†
i↑c

†
i↓ + h.c.] , (7)

where we have used that H↑ = HT
↓ ≡ H because of time-reversal symmetry. The doubling of

degrees of freedom in the BdG formalism has been removed by making use of the relation
between spin-up electrons and spin-down holes due to time-reversal symmetry and U(1) spin
rotation symmetry. In general, the indices i, j may include all degrees of freedom except the
spin. Here, we focus on models with only a site degree of freedom, i.e., one orbital per site.
Hence, the operator c†

iσ creates a particle with spin σ at site ri .
Let us assume the system is periodic in space with N sites per unit cell. For a lattice site at

position r, we then write r = Ri + rα, where Ri points to the origin of the i-th unit cell and rα
is the position of the lattice site inside that unit cell. The index α now enumerates the lattice
sites within a unit cell. With this, we rewrite the BdG Hamiltonian as follows

HBdG =
∑

i j

∑

α,β

Hiα, jβ c†
iα↑c jβ↑ −

∑

i j

∑

αβ

Hiα, jβ ciα↓c
†
jβ↓ +

∑

i,α

[∆α c†
iα↑c

†
iα↓ + h.c.] , (8)

where we have assumed that the superconducting pairing amplitude has the same translational
symmetry as the normal-state Hamiltonian, i.e., ∆iα ≡ ∆α∀i. Making use of the periodicity,
we apply a Fourier transformation of the following form

c†
iασ =

1
p
N

∑

k

eik(Ri+rα)c†
kασ , (9)

where N is the total number of unit cells in the system, and obtain

HBdG =
∑

k

∑

αβ

Hαβ(k) c
†
kα↑ckβ↑ −

∑

k

∑

αβ

Hαβ(k) c−k,α,↓c
†
−k,β ,↓ +

∑

k,α

[∆α c†
kα↑c

†
−k,α↓ + h.c.] , (10)
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where the components of the normal-state Bloch Hamiltonian are defined as

Hαβ(k) =
∑

δ

tαβ(δ)e
ik(Rδ+rα−rβ ), with tαβ(δ)≡ Hi+δ,α;iβ ∀i . (11)

We assume that superconductivity originates from an attractive on-site interaction, such
that the mean-field equations can be written as

∆α =
1
N

∑

i

∆iα =
1
N

∑

i

U〈ciα↑ciα,↓〉=
U
N

∑

k

〈ckα↑c−k,α,↓〉 , (12)

with the paring interaction U > 0.

A.1 Full set of mean-field equations

We introduce the Nambu-space vector C†
k = [c

†
k,1,↑, . . . , c†

k,N ,↑, c−k,1,↓, . . . , c−k,N ,↓] and write the
BdG Hamiltonian as follows

HBdG =
∑

k

�

C†
k H0(k)Ck + C†

k H1(k)Ck

�

, (13)

with

H0(k) =

�

h0(k) 0
0 −h0(k)

�

, (14)

and

H1(k) = H1 =

�

0 diag (∆1, . . . ,∆N )
diag

�

∆∗1, . . . ,∆∗N
�

0

�

, (15)

where h0(k) is the normal-state Bloch Hamiltonian with components given by Hαβ(k) from
Eq. (11). We introduce new creation operators defined by

d†
ak =

∑

α

�

Ψaα,+(k) c
†
kα↑ +Ψaα,−(k) c−k,α,↓

�

, (16)

or, equivalently,

c†
kα↑ =

∑

a

Ψ∗aα,+(k) d
†
ak , (17)

c−k,α,↓ =
∑

a

Ψ∗aα,−(k) d
†
ak . (18)

Here, we have a = 1, . . . , 2N and
�

Ψa,+(k),Ψa,−(k)
�T

are eigenvectors of H0(k) + H1(k) with
energy Ea(k). We have introduced subscripts ± to distinguish matrix elements associated with
operators c†

kα↑ (+) and c−kα↓ (−) of the Nambu-space vector. With this, the BdG Hamiltonian
becomes

HBdG =
∑

a,k

Ea(k) d
†
akdak . (19)

Similarly, we get

〈ckα↑c−k,α,↓〉=
∑

a

Ψaα,+(k)Ψ
∗
aα,−(k)〈dakd†

ak〉=
∑

a

Ψaα,+(k)Ψ
∗
aα,−(k){1− nF [Ea(k)]} . (20)

Hence, the self-consistency equation from Eq. (12) becomes,

∆α =
U
N

∑

k,a

Ψaα,+(k)Ψ
∗
aα,−(k){1− nF [Ea(k)]} , (21)
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with the Fermi function nF (E) = (eβE+1)−1. This is a set of N equations for (∆1, . . . ,∆N ) and
the chemical potential µ, which have to be solved self-consistently together with the density
constraint

ν̄=
1
M

∑

k,α

�

〈c†
kα↑ckα↑〉+ 〈c

†
−k,α,↓c−k,α,↓〉

�

= 1−
1
M

∑

k,a

nF [Ea(k)]
∑

α

�

|Ψaα,−(k)|2 − |Ψaα,+(k)|2
�

, (22)

where we have introduced the total number of states M = NN and ν̄ is the filling factor
taking into account both spin-up and spin-down electrons (ν̄= 0 . . . 2).

A.2 Linear-response theory close to Tc

We may use the full set of self-consistency equations to determine the pairing amplitude ∆α
at any given T . Close to the critical temperature Tc , however, we can alternatively use linear-
response theory, which we derive in the following.

We start again from the BdG Hamiltonian in Eq. (10). This time, we change to the basis
of Bloch eigenstates of the normal-state Hamiltonian obtained from solving

∑

β

Hαβ(k)ψnβ(k) = ξn(k)ψnα(k) , (23)

where ψn(k) is the coordinate vector of the n-th eigenstate with energy ξn(k) relative to the
chemical potential µ. The quantities ψn(k) and ξn(k) are typically the result of a numeri-
cal diagonalization of the Bloch Hamiltonan matrix H(k). The eigenstates are normalized as
∑

α |ψnα(k)|2 = 1. We define new creation and annihilation operators by

c†
nk↑ =

∑

α

ψnα(k) c
†
kα↑ =

1
p
N

∑

iα

ψnα(k) e
−ik(Ri+rα) c†

iα↑ , (24)

and by

cn,−k,↓ =
∑

α

ψnα(k) c−k,α,↓ =
1
p
N

∑

iα

ψnα(k) e
−ik(Ri+rα) ciα↓ . (25)

Using these definitions, the BdG Hamiltonian becomes

HBdG =
∑

k,n

ξn(k)(c
†
nk↑cnk↑ − cn,−k,↓c

†
n,−k,↓) +

∑

k,n,m

[∆nm(k) c
†
nk↑c

†
m,−k,↓ + h.c.] , (26)

with
∆nm(k) =

∑

α

∆αψ
∗
nα(k)ψmα(k) . (27)

Similarly, the self-consistency equation Eq. (12) transforms to

∆α =
U
N

∑

k,n,m

ψnα(k)ψ
∗
mα(k) 〈cnk↑cm,−k,↓〉 . (28)

Introducing the alternative Nambu-space vector C̃†
k = [c

†
1,k,↑, . . . , c†

N ,k,↑, c1,−k,↓, . . . , cN ,−k,↓],
we write the BdG Hamiltonian as

HBdG =
∑

k

�

C̃†
k H̃0(k) C̃k + C̃†

k H̃1(k) C̃k

�

, (29)

with
H̃0(k) = diag [ξ1(k), . . . ,ξN (k),−ξ1(k), . . . ,−ξN (k)] , (30)
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and

H̃1(k) =

�

0 ∆(k)
∆†(k) 0

�

. (31)

Next, we define an operator

Anm(k) = cnk↑ cm,−k,↓ = C̃†
k A

nm C̃k , (32)

A =

�

0 0
Qnm 0

�

, Qnm
i j = −δimδ jn . (33)

We can now calculate 〈Anm(k)〉 using linear response theory, which yields

〈Anm(k)〉=
∑

i 6= j

1
εi(k)− ε j(k)

H1
i j(k)A

nm
ji {nF [εi(k)]− nF [ε j(k)]} , (34)

where εi(k) = H0
ii(k). Using the matrices above, this expression can be simplified to

〈Anm(k)〉=
1− nF [ξn(k)]− nF [ξm(k)]

ξn(k) + ξm(k)
∆nm(k) . (35)

Finally, by using Eqs. (27), (28), (32), and (35) we obtain the linearized self-consistency equa-
tions

∆α =
∑

β

χαβ ∆β , (36)

with the pair susceptibility

χαβ =
U
N

∑

k

∑

n,m

1− nF [ξn(k)]− nF [ξm(k)]
ξn(k) + ξm(k)

ψnα(k)ψ
∗
mα(k)ψ

∗
nβ(k)ψmβ(k) . (37)

Here, n, m = 1, . . . , N and also α,β = 1, . . . , N , where N is the number of sites per unit cell.
We may determine the critical temperature Tc from diagonalizing the pair susceptibility χαβ :
the critical temperature is reached when the largest eigenvalue of χαβ is equal to 1. The corre-
sponding eigenvector corresponds to the normalized spatial profile δα of the superconducting
pairing amplitude at the critical temperature, i.e.,

∑

α |δα|
2 = 1.

For completeness, the chemical potential is determined from

ν̄

2
=

1
M

∑

k,n

〈c†
nk↑cnk↑〉 . (38)

Using a linear-response formula for the expectation value similar to Eq. (34), we find that the
linear-order term is zero. Therefore, we can express the expectation value directly in terms of
the normal-state Fermi function (zeroth-order term), namely

ν̄

2
=

1
M

∑

k,n

nF [ξn(k)] . (39)

A.3 Nonlinear self-consistent equations for the magnitude of the order param-
eter

Determining the exact pairing amplitude ∆α at a given temperature T < Tc requires self-
consistently solving a set of N + 1 equations with N + 1 unknown parameters [see Eqs. (21)
and (22)], where N is the number of atoms per unit cell. Numerically, this can be done by
employing a minimization algorithm. However, as the parameter space grows with N such an
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algorithm takes long to find solutions for systems with a large number of atoms per unit cell.
Since we want to study systems with large N , we will make use of an approximation which
allows us to speed up the computations considerably.

For that purpose, we write the pairing amplitude as ∆α = ‖∆‖ ∆̂α, where ‖∆‖ is the
magnitude of the vector (∆α) and ∆̂α is the normalized spatial profile of the pairing amplitude,
that is

∑

α |∆̂α|
2 = 1. We assume that for the systems considered the spatial profile of the order

parameter is only weakly temperature-dependent such that we can write

∆α(T )≈ ‖∆(T )‖ ∆̂α , (40)

i.e., the temperature dependence of the pairing amplitude is fully given by the magnitude
‖∆(T )‖. We have checked this expectation for the extended Kane-Mele model with periodic
onsite disorder (see Fig. 10). We obtain a good agreement at small disorder, while the devia-
tions are generally larger for sizeable disorder.

This motivates us to extract the spatial profile ∆̂α by diagonalizing the pair susceptibility
at Tc as obtained from linear-response theory [see Eq. (37)]. This allows us to reduce the set
of N +1 self-consistency equations for N +1 unknown variables to a set of only two equations
for ‖∆‖ and µ. Using Eq. (21), we obtain

‖∆‖2 =
∑

α

|∆α|2 =
U2

N 2

∑

α

�∑

k,a

Ψaα,+(k)Ψ
∗
aα,−(k){1− nF [Ea(k)]}

�2
, (41)

ν̄ = 1−
1
M

∑

k,a

nF [Ea(k)]
∑

α

�

|Ψaα,−(k)|2 − |Ψaα,+(k)|2
�

. (42)

B Superfluid weight

B.1 Reduced BdG Hamiltonian

We consider a system with N sites per unit cell, one orbital per site, periodic boundary condi-
tions, and spin-rotation symmetry around the z axis, such that the electronic part of the Bloch
Hamiltonian can be block-diagonalized

H(k) =
�

h↑(k)−µ 0
0 h↓(k)−µ

�

, (43)

where hσ(k) is the Fourier-transformed N ×N hopping Hamiltonian of the electrons with spin
σ, and µ is the chemical potential. Using the Nambu basis {cαk↑, cαk↓, c†

α,−k↑, c†
α,−k↓}, the full

BdG Hamiltonian of the system takes the following general form

HBdG(k) =









h↑(k)−µ 0 ∆↑↑ ∆↑↓
0 h↓(k)−µ ∆↓↑ ∆↓↓
∆†
↑↑ ∆†

↓↑ −h∗↑(−k) +µ 0

∆†
↑↓ ∆†

↓↓ 0 −h∗↓(−k) +µ









, (44)

with the N × N order-parameter matrices ∆σσ′ , which can generally depend on k. Here, we
consider on-site interactions and assume that the pairing obeys the translation symmetry of the
Hamiltonian such that the components of the order-parameter matrices are constants. The BdG
Hamiltonian is particle-hole antisymmetric with the anti-unitary operator τx ⊗ s0 ⊗ 1N×N K ,
k → −k, where K is complex conjugation. This imposes the restriction ∆ = −∆T implying
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∆↓↓ = ∆↑↑ = 0 and ∆↑↓ = −∆T
↓↑ ≡ ∆. Therefore, the BdG Hamiltonian becomes block-

diagonal after a basis transformation,

H̃BdG(k) =









h↑(k)−µ ∆ 0 0
∆† −h∗↓(−k) +µ 0 0
0 0 h↓(k)−µ −∆T

0 0 −∆∗ −h∗↑(−k) +µ









≡
�

HBdG,↑(k) 0
0 HBdG,↓(k)

�

, (45)

where HBdG,σ(k) are the reduced BdG Hamiltonians associated with the spin-σ blocks of elec-
trons in the full Bloch Hamiltonian. In this basis, the particle-hole operator is sx⊗τx⊗1N×N K .
This implies that the two blocks are connected via

HBdG,↑(k) = −τxH∗BdG,↓(−k)τx . (46)

This reflects the redundancy of the BdG formalism, which is why it is sufficient to focus entirely
on one block, say HBdG,↑(k). Hence, from now on we will simply write HBdG(k)when referring
to a reduced BdG Hamiltonian.

Moreover, if also time-reversal symmetry is preserved, we have h↑(k) = h∗↓(−k) and ∆ can
be chosen to be real. ∆ is also diagonal, because we assumed one orbital per site and on-site
interactions. Therefore, we further have ∆† =∆T =∆. Hence, the reduced BdG Hamiltonian
becomes

HBdG,↑(k) =

�

h↑(k)−µ ∆
∆ −[h↑(k)−µ]

�

, (47)

i.e., only information from one of the spin channels enters in each BdG Hamiltonian, which
allows us to effectively drop the spin index.

B.2 Decomposition of the superfluid weight

The full superfluid weight of a superconductor with spin-rotation symmetry, time-reversal sym-
metry, and momentum-independent ∆ can be written as,

Ds
µν =

e2

ħh2

∑

k,i j

n(E j)− n(Ei)

Ei − E j

�

〈ψi|∂kµHBdG|ψ j〉〈ψ j|∂kνHBdG|ψi〉 − 〈ψi|∂kµHBdGγ
z|ψ j〉〈ψ j|γz∂kνHBdG|ψi〉

�

, (48)

where |ψi(k)〉 is the i-th eigenstate of the reduced BdG Hamiltonian with energy Ei(k), n(Ei)
is the Fermi function, and γz = τz ⊗ 1N×N . For E j = Ei = E the prefactor is set to −∂E n(E).

It is worth expressing the superfluid weight in terms of the eigenstates of the normal-state
Bloch Hamiltonian hσ(k). For this purpose, we decompose the BdG eigenstates as

|ψi〉=
N
∑

m=1

�

w+,im|m〉↑ ⊗ |+〉+w−,im|m∗−〉↓ ⊗ |−〉
�

, (49)

where |m〉↑ is the eigenvector of h↑(k) with eigenvalue ε↑,m(k), |m∗−〉↓ is the eigenvector of
h∗↓(−k) with eigenvalue ε↓,m(−k), and |±〉 is the eigenvector of σz with eigenvalue ±1. With
this, the expression for the superfluid weight from Eq. (48) becomes

Ds
µν = −2

∑

k,i j

n(E j)− n(Ei)

Ei − E j

∑

m,n

∑

p,q

�

w∗+,imw+, jnw∗−, jpw−,iq ↑〈m|∂kµh↑(k)|n〉↑ ↓〈p
∗
−|∂kνh

∗
↓(−k)|q∗−〉↓

+ w∗−,imw−, jnw∗+, jpw+,iq ↓〈m∗−|∂kµh
∗
↓(−k)|n∗−〉↓ ↑〈p|∂kνh↑(k)|q〉↑

�

. (50)

By defining the current operator

[ jµ,σ(k)]mn = σ〈m|∂kµhσ(k)|n〉σ = ∂kµεσ,mδmn + (εσ,m − εσ,n)σ〈∂kµm|n〉σ , (51)
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we can write the full superfluid weight as

Ds
µν =

∑

k

N
∑

m,n

N
∑

p,q

Cmn
pq

�

[ jµ,↑(k)]mn[ jν,↓(−k)]qp + [ jν,↑(k)]mn[ jµ,↓(−k)]qp

�

, (52)

with

Cmn
pq = −2

2N
∑

i, j

n(E j)− n(Ei)

Ei − E j
w∗+,imw+, jnw∗−, jpw−,iq . (53)

The current operator in Eq. (51) contains two qualitatively different kinds of terms: the
diagonal terms depend on the derivative of the band dispersions whereas the off-diagonal
terms contain derivatives of the Bloch states. The latter, therefore, encode information about
the quantum geometry of states. Accordingly, the full superfluid weight can be decomposed
into a conventional and a geometric part,

Ds
µν = Ds

conv,µν + Ds
geom,µν , (54)

where the geometric part Ds
geom collects all contributions to the superfluid weight Ds containing

off-diagonal elements of the current operator, while the conventional part Ds
conv contains only

diagonal elements of the current operator. The conventional part can also be written as

Ds
conv,µν =

∑

k

N
∑

mp

Cmm
pp

�

∂kµε↑,m(k)∂kνε↓,p(−k) + ∂kνε↑,m(k)∂kµε↓,p(−k)
�

. (55)

In this work, we compute the full superfluid weight using the general formula in Eq. (48)
and the conventional contribution to the superfluid weight based on Eq. (55). We then com-
pute the geometric part as the difference of the two.

C Extended Kane-Mele models

The Kane-Mele model [41] is prototypical for the realization of a quantum spin Hall insulator

Figure 4: Illustration of the extended Kane-Mele model on the honeycomb lattice
with nearest-neighbor hopping t, i-th neighbor hopping amplitudes t i , and staggered
on-site potential M . Hopping processes between second neighbors acquire a phase
e±iσϕ depending on the spin σ = ±1≡ ↑,↓ of the involved particles, on the hopping
direction, and on the sublattice A, B. Red arrows indicate a selection of hopping
processes. Other hopping processes can be inferred by symmetry.
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on a lattice. It is a tight-binding model on the 2D honeycomb lattice, which is defined as

H0 =
∑

i,σ

�

(−1)i M −µ
�

c†
iσciσ + t

∑

σ

∑

〈i, j〉1

c†
jσciσ + t2

∑

〈i, j〉2

�

eiϕi j c†
j↑ci↑ + e−iϕi j c†

j↓ci↓

�

, (56)

where the operators c†
iσ (ciσ) create (annihilate) an electron with spin σ =↑,↓ at site i, 〈i, j〉n

denotes pairs of n-th neighbors, M is a staggered on-site potential also known as mass term,
µ is the chemical potential, and ϕi j = ±ϕ is a next-nearest-neighbor (NNN) hopping phase
whose sign depends on the hopping direction, on the spin, and on the sublattice as shown in
Fig. 4. Note that the phase is ϕ = π/2 in the original Kane-Mele model.

We have used the lattice vectors a1 = (3a/2,−a
p

3/2) and a2 = (0, a
p

3). The coordinates
of the two basis atoms A and B are rA = (0,0) and rA = (a/2, a

p
3/2), respectively, where

a is the distance between the two atoms. The corresponding reciprocal lattice vectors are
b1 = (4π/3a, 0) and b2 = (2π/3a, 2π/

p
3a).

The model is time-reversal symmetric and block-diagonal in spin space. In particular, the
two spin blocks are mapped onto each other under time reversal. Furthermore, each spin
block realizes a Haldane model [42], which is a model prototypical for the realization of a
Chern insulator on a lattice. The spin blocks have opposite Chern numbers C↑ = −C↓ = C ,
which are related to the Z2 topological invariant ν of the corresponding Kane-Mele model as
ν = C mod2. For a system with spin-rotation symmetry, the latter (without mod2) is also
known as the spin Chern number. In the main text and in the following, we therefore use the
Chern number C of the spin-up block to specify the topology of the system.

Due to its sublattice structure and spin symmetry, the model has two spin-degenerate en-
ergy bands. At half-filling, it realizes a topological insulator with C = ±1 in certain regimes
of the parameter space spanned by (t, t2, M ,φ). In particular, if M = 0 and t, t2 > 0 we have
C = +1 for −π < ϕ < 0 and C = −1 for 0 < ϕ < π. On the other hand, tuning M generally
leads to a phase transition to a trivial insulator with C = 0.

By optimizing the parameters of the model, it is possible to make one of the bands quasi-
flat, even in the topological phase. As a measure of the band flatness, we use the ratio of
bandwidth to energy gap,

r =
∆Ebandwidth

∆Egap
. (57)

For the Kane-Mele model defined above, at M = 0 the flatness r of the lower band is minimal
for cosϕ = t/4t2 = 3

p

3/43. Its minimum value is about rmin = 0.29.

C.1 Kane-Mele model with optimized flatness

We can make the flatness of the lower band arbitrarily small by adding further-neighbor hop-
ping to the Kane-Mele model. Here, we go up to fourth-neighbor hopping and optimize the
model parameters to minimize the flatness r. Our extended Kane-Mele model reads,

H = H0 + t3

∑

σ

∑

〈i, j〉3

c†
j,σci,σ + t4

∑

σ

∑

〈i, j〉4

c†
j,σci,σ . (58)

For M = 0, the flatness of its lower band is minimal for the parameters t2 = 0.349t,
t3 = −0.264t, t4 = 0.026t, and ϕ = 1.377. The minimum flatness is approximately
rmin = 0.006, which is about two orders of magnitude smaller than the minimum flatness
of the 2nd-neigbor Kane-Mele model discussed above. In the following, we will refer to this
version of the model as the “flat” Kane-Mele model.
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C.2 Models presented in the main text

In this subsection, we provide details on the extended Kane-Mele models presented in Fig. 1
of the main text. The cluster size of the Kane-Mele models is 8 × 8 clean unit cells, which
is equal to 128 sites for each disordered cluster. Moreover, we used the interaction strength
U = 3t, the filling fraction ν̄ = 1/2, and the temperature T = Tc,0/100, where Tc,0 is the
critical temperature in the clean limit. The hopping parameters are fixed at the values in the
flat limit.

The other parameters are as follows:

(i) topological Kane-Mele model in the flat limit: M = 0, ϕ = 1.377≡ ϕopt,

(ii) topological Kane-Mele model with dispersing bands: M = t and ϕ = ϕopt,

(iii) topological Kane-Mele model with dispersing bands: M = 0 and ϕ = 1.0,

(iv) semi-metallic Kane-Mele model close to the topological phase transition: M = 1.75t and
ϕ = ϕopt,

(v) trivial Kane-Mele model with dispersing bands: M = 3.2t and ϕ = ϕopt.

For the decomposition of the superfluid weight into conventional and geometric contribu-
tions as shown in Fig. 2 of the main text, we have used smaller clusters of size 5 × 5 corre-
sponding to 50 sites within each disordered cluster.

To generate all the tight-binding Hamiltonians with disorder we have used the software
package Kwant [44].

C.3 Flat Kane-Mele model with disorder

We study flat Kane-Mele models with random onsite disorder and periodic boundary condi-
tions. The random onsite potentials are drawn from a uniform distribution on the interval
[−W, W ] with the disorder strength W . For the Kane-Mele models considered here, unless
stated otherwise, the disordered cluster has a size of 8×8 unit cells of the clean system, which
amounts to 128 sites.

Generally, we find that the pairing amplitude ∆ is suppressed by disorder. We use this
observation to define a disorder scale W0 through 〈∆̄〉(W0) =∆0/2, where ·̄ denotes a sample
average and 〈·〉 a disorder average. ∆0 is the sample average of the pairing amplitude in the
clean limit. Numerically, we determine W0 by linear interpolation based on the set of disorder
strengths W considered. For instance, for 8×8 clusters of the flat Kane-Mele model we obtain
W0 = 1.52t, while we get W0 = 1.85t for smaller clusters of size 5× 5.

In Fig. 5, we present various properties of the flat Kane-Mele model as a function of the
disorder strength W . Figure 5(a) shows disorder-averaged spectral properties. We observe
that the band gap between the lower and the upper band decreases linearly with disorder and
closes around W = 2W0. Beyond this value, the gap slowly opens again. On the contrary, the
bandwidth of the previously flat lower band increases linearly.

We further find, see Fig. 5(b) that the disorder-averaged superfluid weight 〈Ds〉 is pro-
portional to the disorder- and sample-averaged pairing amplitude 〈∆̄〉 in the small-disorder
regime W �W0, i.e.,

〈Ds〉=
Ds,0

∆0
〈∆̄〉 , (59)

where the proportionality constant is given by the ratio of the respective values in the clean
limit, Ds,0 and ∆0.
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Figure 5: Disordered Kane-Mele model with optimized flatness: (a) Evolution of the
band gap and the bandwidth of the lower band as a function of disorder W . (b)
Relation between full superfluid weight Ds and sample-averaged superconducting
order parameter ∆̄. (c) Disorder scale W0 as a function of the staggered on-site
potential M for two different system sizes N . The dotted black line indicates the
topological transition in the clean system. (d) Evolution of the Chern number of the
lower spin-up band. (e) Evolution of the trace of the quantum metric of the lower
spin-up band integrated over the Brillouin zone. The dotted black line indicates the
evolution of the lower bound on this integral given by the Chern number C . (f)
Localization length as a function of the disorder parameter W for the flat (M = 0)
and for a trivial (M = 3.2t) Kane-Mele model for two different system sizes N . The
localization length is given in units of the sublattice separation a of the honeycomb
lattice.

In Fig. 5(c), we show the disorder scale W0 as a function of the staggered on-site potential
for the two system sizes considered in this work, namely N = 50 (5× 5 cluster) and N = 128
(8× 8 cluster).

In the clean limit, the spin -up flat band of the considered model has Chern number C = −1.
As expected, the value of the Chern number is robust as long as the energy gap remains open,
as we show in Fig. 5(d). Once the disorder-averaged gap becomes close to zero, more and
more realizations within the disorder ensemble undergo a transition to a trivial phase. Hence,
the absolute value of the disorder-averaged Chern number decreases until it reaches 〈C〉= 0.
At this point, the gap is large enough such that all realizations have undergone the transition
from topological to trivial.

We have also computed the quantum metric of the model adopting the essence of a method
for calculating the Berry curvature in a discretized Brillouin zone [45] to efficiently compute
the quantum geometric tensor Bi j . In Fig. 5(e), we show the evolution of the trace of the
disorder-averaged quantum metric gµν integrated over the Brillouin zone. In the main text,
we stated that this quantity is bounded from below by 2π|C | in the clean limit, where C is the
Chern number of the involved band. Here, we find that this bound also applies to the averages
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in the disordered model.
In Fig. 5(f), we relate the disorder strength W to the localization length Lloc of the system.

For this purpose, we compute the average two-terminal conductance G for a ribbon of fixed
width as a function of its length L for different disorder W using periodically repeating clusters
of size 8 × 8. For disorder strengths W > 0.1t, we find that the conductance shows a clear
exponential suppression with a saturation G∞:

G(L) = Ce−L/Lloc + G∞ . (60)

By fitting our numerical results to this expression, we extract the localization length Lloc(W ).
In Fig. 5(f), we present our results for the flat topological Kane-Mele model (M = 0) and for
a trivial Kane-Mele model (M = 3.2t) for two different system sizes N .

C.4 Kane-Mele models with different staggered on-site potential M

Figure 6: Properties of the extended Kane-Mele model as a function of the staggered
onsite potential M for U = 3t, T = Tc,0/100, and ν̄ = 1/2: (a) Evolution of the en-
ergy gap and the bandwidth of the lower band. We also indicate the Chern number
of the lower spin-up band on the two sides of the topological transition. Full super-
fluid weight (b), conventional contribution (c), and geometric contribution (d) as a
function of disorder W for various values of M . The inset in (b) shows the disorder
scale W0 as a function M .

By changing the staggered on-site potential M , we can tune the system from the topological
to the trivial phase. In the following, we discuss how the change of topology affects the full,
the conventional, and the geometric superfluid weight as disorder is increased. Since the
decomposition of the superfluid weight into its two contributions is numerically more involved,
we here present results for smaller clusters of size 5× 5 clean unit cells amounting to 50 sites
per cluster. All other model parameters are the same as in the flat Kane-Mele model.

In Fig. 6(a), we first show how the bandwidth of the lower band and its gap to the upper
band changes as a function of M in the clean system. The band gap decreases linearly, closes
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at about M = 1.78t, and then increases again linearly. In the process, the Chern number of the
lower spin-up band changes from C = −1 to C = 0 indicating a transition from a topological
to a trivial insulator. In contrast, the bandwidth grows linearly until the gap closing point and
remains constant after that.

Figure 6(b) shows the full superfluid weight as a function of disorder for different M . We
study the system at filling ν̄= 1/2 and interaction parameter U = 3t. Comparing to Fig. 6(a),
we find that the suppression of the superfluid weight is independent of the topology of the
underlying band. It follows a universal behavior as discussed in the main text.

In contrast to that, the conventional and geometric contributions presented in Figs. 6(c)
and (d), respectively, show a clear dependence on the parameter M . In the flat limit (M = 0),
the conventional contribution approximately vanishes independent of disorder, such that the
superfluid weight remains entirely geometric. With increasing M , the fraction of the conven-
tional contribution grows in the small disorder regime W �W0, while the fraction of the ge-
ometric contribution is suppressed. This is attributed to the increasing bandwidth. Moreover,
once the band acquires a finite dispersion the geometric contribution shows a non-monotonic
behavior in the small disorder regime with a maximum shifting to larger disorder values with
increasing M . However, in the large disorder regime W � W0 the conventional contribution
vanishes and the superfluid weight becomes again entirely geometric.

C.5 Kane-Mele models with different NNN hopping phases ϕ

Figure 7: Properties of the extended Kane-Mele model as a function of the NNN
hopping phase ϕ for U = 3t, T = Tc,0/100, and ν̄ = 1/2: (a) Evolution of the
energy gap and the bandwidth of the lower band. The band has optimal flatness
at ϕopt = 1.377. We also indicate the Chern number of the lower spin-up band
where the gap is nonzero. Full superfluid weight (b), conventional contribution (c),
and geometric contribution (d) as a function of disorder W for various fixed NNN
hopping phases ϕ. The inset in (b) shows the disorder scale W0 as a function of ϕ.

Next, we discuss how a change of the NNN hopping phase affects the behavior of the
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superfluid weight and its two contributions under disorder. Again, for numerical reasons we
present results for a smaller cluster of size 5× 5. All other parameters are the same as in the
flat Kane-Mele model.

First of all, starting from the flat limit with M = 0, we note that a change of the NNN
hopping phase cannot push the clean system into the trivial phase. As we show in Fig. 7(a),
the energy gap closes close to ϕ = 0 and close to ϕ = π. Under time reversal, we have that
ϕ→−ϕ and C →−C . Hence, tuning ϕ into the interval [−π, 0] the energy gap opens again
and the Chern number of the lower spin-up band changes from C = −1 to C = 1. The system
remains a topological insulator. As expected, the bandwidth increases away from the flat limit
with ϕopt = 1.377.

Turning to the behavior of the superfluid weight, we make the similar observations as in
the case of varying the M parameter. Again, we study the system at filling ν̄= 1/2 with inter-
action parameter U = 3t. The full superfluid weight shows a universal behavior independent
of the value of the NNN hopping phase [see Fig. 7(b)]. On the contrary, the conventional
and geometric contributions show a clear parameter dependence in the small disorder regime
W � W0 [see Fig. 7(c) and (d)]. In particular, as the bandwidth of the underlying band be-
comes sizeable the conventional contribution is enhanced whereas the geometric contribution
is suppressed in this regime. For large disorder, the superfluid becomes entirely geometric
independent of the NNN hopping phase.

In contrast to what we observe for the variation of M , we find that the disorder scale W0
increases approximately linearly as we tune the system from the flat limit to the band closing
point close to ϕ = 0, see inset of Fig. 7(b).

D Standard deviations and formation of superconducting islands

Figure 8: Ensemble standard deviations σ of (a) the pairing amplitude ∆̄ (spatial
average) and (b) the superfluid weight Ds as a function of W/W0 for the models
considered in Fig. 1 of the main text: (i)-(v) topological and trivial extended Kane-
Mele models, (vi)-(viii) trivial single-band models. (c) Spatial profile∆α of the pair-
ing amplitude for single disorder realizations of the flat Kane-Mele model [model
(i)] at different disorder strengths W/W0. White corresponds to a vanishing pairing
amplitude, whereas darker colors signify a larger values. Around W = W0, the su-
perconductor breaks up into isolated superconducting islands accompanied by large
fluctuations of ∆̄ and Ds.

In the main text, we pinned down a universal suppression of the pairing amplitude ∆
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and of the superfluid weight Ds reflected in the ensemble averages across various models. In
this section, we show that this universality applies widely also to the fluctuations around the
average. For this purpose, we analyze the standard deviations, σ(A) =

p

〈A2〉 − 〈A〉2, of the
respective quantities for the models discussed in Fig. 1 of the main text.

Figures 8(a) and (b) show our results for the spatial average of the pairing amplitude
and for the superfluid weight, respectively. We find that fluctuations reach a maximum at
W ' W0, where W0 is the disorder scale introduced in the main text. Quantitatively, we
observe that the behavior at small and large disorder is model-independent, which is in line
with the universality of the ensemble averages. On the contrary, the height of the fluctuation
peaks at W 'W0 is found to be model dependent, but we are not able to identify any systematic
signature originating from the topology of the models as both the flat Kane-Mele model [model
(i)] and the trivial single-band model [model (viii)] can have comparable peak fluctuations.

A closer inspection of the spatial profile of the pairing amplitude for single disorder realiza-
tions reveals that the the fluctuations are maximal (W 'W0) when the superconductor starts
to break up into superconducting islands [see Fig. 8(c)]. For W/W0 > 1 the superconducting
order parameter∆α vanishes in large parts of the sample except inside small, isolated clusters.
We observe the breaking of the superconductor into superconducting island around W ' W0
in all the models considered, providing a concrete physical interpretation for the disorder scale
W0.

E Size scaling of universal suppression

Figure 9: Disorder-induced suppression of the pairing amplitude and the superfluid
weight for different cluster sizes. We show results for the extended Kane-Mele model
with flat lower band and U = 3t, T = Tc,0/100, and ν̄= 1/2.

In the main text, we found that the superfluid weight shows a universal and model- inde-
pendent suppression by disorder. In this section, we show how this universal behavior evolves
as a function of the cluster size. Due to the universality, we restrict our analysis to a specific
model, namely the extended Kane-Mele model with a flat lower band.

Figure 9 shows our results for samples with different numbers of sites N in the disordered
supercell. Both the sample-averaged pairing amplitude [Fig. 9(a)] and the superfluid weight
[Fig. 9(b)] show a saturation at large disorder strengths W/W0. This value is finite for small
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cluster sizes but approaches zero as the cluster size is increased. In the small-disorder regime,
the considered quantities are slightly enhanced as the cluster size is increased but approach
a common functional behavior once the cluster size is sufficiently large. Overall, we find that
the functional form of the disorder-induced suppression does not change considerably beyond
cluster sizes of N = 128 for the considered model. In general, we expect that the required
cluster size that approximates well the N →∞ behavior depends on the details of the system.

F Pairing amplitude obtained from full mean-field equations

Figure 10: Comparison between full (orange) and reduced (blue) mean-field ap-
proach for the superconducting order parameter∆ in the extended Kane-Mele model
with U = 3t, T = Tc,0/100, and ν̄= 1/2: (a) topological phase and (b) trivial phase.
We show results of single disorder realizations (thin lines) and their ensemble aver-
ages (bold lines).

So far, we have used a reduced set of mean-field equations to self-consistently determine
the real-space structure of the pairing amplitude [see Eqs. (42) and (42)]. In this section,
we also look at the solutions of the full mean-field equations (21) and (22) for the extended
Kane-Mele model with disorder in the zero-temperature limit.

For that purpose, we generate several disorder realizations for a disordered cluster of size
N = 50 for different disorder strengths W . We then solve both the reduced and the full mean-
field equations self-consistently. We use the solutions of the reduced mean-field equations as
initial guesses for the solver algorithm searching for solutions of the full mean-field equations.
Figure 10 shows the spatial averages of the different realizations and also their ensemble
averages. For both the trivial and topological phase of the model, we find a good agreement
between both approaches at small disorder. At larger disorder, the discrepancies become more
enhanced with the solutions of the reduced mean-field equations tending to overestimate the
suppression of the pairing amplitude. Nevertheless, the differences in the ensemble averages
remain small thereby justifying our approximation. Most importantly, the qualitative behavior
of the suppression is the same in both approaches. In particular, also the solutions of the full
mean-field equations do not show any significant difference between the topological and the
trivial phase.

We note that the solutions of the full mean-field equations obtained here are not necessarily
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the solutions with the lowest free energy. We find that the obtained solutions are sensitive
to the initial conditions used for the solver, which indicates a highly complex structure of
the corresponding free-energy landscape with many local minimums. Therefore, finding a
global minimum based on the full mean-field equations is computationally very expensive.
Due to their significantly smaller parameter space, the reduced mean-field equations provide
a computationally more efficient and more robust approach to finding suitable solutions. The
analysis in this section, as well as additional calculations with different initial conditions, leads
us to the expectation that this does not affect the results qualitatively. Therefore, we have used
the reduced mean-field equations in the rest of the text.

G Trivial single-band models

In the main text we compare our results obtained for the extended Kane-Mele model to a trivial
single-band model defined on a 2D square lattice. The model has one orbital per site and is
described by the Hamiltonian

H = −t
∑

σ

∑

<i, j>

c†
jσciσ −µ

∑

σ,i

c†
iσciσ . (61)

It has a single spin-degenerate energy band with dispersion E = −2t(cos kx + cos ky). Each
spin band is entirely trivial, i.e., all components of the quantum geometric tensor are zero in
the whole Brillouin zone. Hence, their quantum metric, Berry curvature, and Chern number
are zero as well.

To make this single-band model comparable to the flat Kane-Mele model, we use the full
superfluid weight of the latter in the clean limit, Ds,0 = 0.2245 tKM where tKM is the nearest-
neighbor hopping amplitude of the flat Kane-Mele model, as a common energy scale. We then
generate a set of models with different hopping parameters t, interaction strengths U , and
fillings ν̄, such that, in the clean limit, they all have the same superfluid weight Ds,0.

For the trivial single-band models in Fig. 1 of the main text, we have used clusters of size
11 × 11, which is equal to 121 sites per disordered cluster. Moreover, the presented models
have the following parameters:

(vi) U = 13.4 Ds,0, ν̄= 1, and t = 2.0 Ds,0 ,

(vii) U = 8.9 Ds,0, ν̄= 1, and t = 1.7 Ds,0 ,

(viii) U = 13.4 Ds,0, ν̄= 1/5, and t = 3.3 Ds,0 .

For the decomposition of the superfluid weight into conventional and geometric contribu-
tions as shown in Fig. 3 of the main text, we have used smaller clusters of size 7 × 7 corre-
sponding to 49 sites within each disordered cluster.

To generate the tight-binding Hamiltonians with disorder we have used the software pack-
age Kwant [44].

H Superfluid weight for clean systems

For a conventional superconductor originating from a metallic state given by a partially-filled,
isolated, and approximately parabolic band, the superfluid weight is purely conventional and
can be expressed as

Ds = e2 n
m∗

, (62)
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Figure 11: Comparison with analytical formulas for the clean systems in the zero-
temperature limit: (a) superfluid weight Ds and (b) superconducting order parame-
ter ∆ of the flat Kane-Mele model for different coupling constants U as a function of
the filling ν̄. Solid lines represent the respective quantities as obtained directly from
numerics, dashed lines show the results computed using Eqs. (63) and (64), respec-
tively. (c) Superfluid weight of the single-band model for different U at small fillings
close to the band bottom. Solid lines are the numerical results while the dashed black
line represents the analytical result using Eq. (62) assuming a parabolic band.

with the electron density n and the effective mass m∗. On the other hand, for a superconductor
originating from a metallic state given by a partially-filled and isolated flat band, the superfluid
weight is entirely geometric and is related to the quantum geometry of the electronic states as

[Ds]µν =
8e2

ħh2 ∆
Æ

ν̄(1− ν̄)
∫

dd k
(2π)d

gµν(k) , (63)

where ∆ is the superconducting order parameter, ν̄ the band filling, d the dimensions, and
gµν(k) is the quantum metric. The latter is obtained as the real part of the quantum geometric
tensor Bµν(k) =




∂µunk

�

�

�

1− |unk〉〈unk|
�

|∂νunk〉, with |unk〉 the Bloch functions of the flat band.
The superconducting order parameter further satisfies

∆=
U
2

Æ

ν̄(1− ν̄) . (64)

Importantly, the flat-band formulas are expected to hold for coupling constants U much smaller
than the excitation energy to the other bands and much larger than the bandwidth of the flat
band. In the following, we apply the analytical formulas above to the models considered in
this paper in the clean limit.

We first look at the extended Kane-Mele model in the flat limit. The flat lower band has a
bandwidth of 0.02t and is separated from the upper band by an energy gap of 3.5t, where t is
the first-neighbor hopping defining the energy scale of the model. In Fig. 11(a) we show the
superfluid weight of the model (solid lines) as a function of the filling ν̄ for different coupling
constants U . We further compare this to the results of Eq. (63) (dashed lines). For the latter,
we have computed the quantum metric of the model numerically adopting the essence of a
method for calculating the Berry curvature in a discretized Brillouin zone [45] to efficiently
compute the quantum geometric tensor Bµν. At larger coupling constants U , we observe that
the numerically obtained curve for the superfluid weight is skewed with respect to the analyti-
cal result. However, with decreasing U the agreement improves. Around U = t, the two curves
are nearly on top of each other. This is in agreement with the validity regime of Eq. (63).

We have also checked the superconducting order parameter of this model as a function of
U [see Fig. 11(b)]. Also here we observe deviations from the analytical formula in Eq. (64) at
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larger U , but the agreement improves as the coupling constant is decreased to be considerably
smaller than the energy gap of the model.

Finally, we look at the superfluid weight of the single-band model. Close to the band
bottom at Γ , the model has an approximately parabolic dispersion with an associated effective
mass of m∗ = ħh2/2ta2, where a is the lattice constant and t the nearest-neighbor hopping. We
further have n = ν̄/a2 for the electron density. Hence, Eq. (62) evaluates to Ds = 2e2ν̄t/ħh2

for our specific model, which is plotted in Fig. 11(c) for small band fillings ν̄ (dashed line).
We also plot the numerically obtained superfluid weight for different coupling strengths U
(solid lines). We find that, as U decreases, the superfluid weight of the model approaches the
analytical result at small band fillings.

Figure 12: Disorder-induced suppression of the pairing amplitude and the superfluid
weight across a variety of lattice models corresponding to Fig. 1 of the main text: (i)-
(v) topological and trivial extended Kane-Mele models, (vi)-(viii) trivial single-band
models. The ensemble averages of (a) the spatial average of the pairing amplitude
∆̄ and (b) the superfluid weight Ds are shown as a function of the disorder strength
W . In contrast to Fig. 1 of the main text, we here show the unscaled quantities in
units of the nearest-neighbor hopping amplitude t of the respective model.

I Unscaled superfluid weight and unscaled pairing amplitude

In the main text, we established that the superfluid weight and the pairing amplitude show a
universal suppression when plotted in units of their values in the clean limit, Ds,0 and ∆0, as
a function of the disorder strength in units of the disorder scale W0. In general, the quanti-
ties Ds,0, ∆0, and W0 vary from model to model. In Fig. 12 we show the suppression of the
superfluid weight and of the pairing amplitude without rescaling. We observe that our mod-
els describe a variety of moderate and strong coupling superconductors, highlighting that the
universal behavior of the rescaled quantities Ds,0, ∆0, and W0 is expected to occur in micro-
scopically very different physical systems.
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