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Abstract

We simulate the dynamics of paramagnetic colloidal particles that are placed above a
magnetic hexagonal pattern and exposed to an external field periodically changing its
direction along a control loop. The conformation of three colloidal particles above one
unit cell adiabatically responds with half the frequency of the external field creating a
time crystal at arbitrary low frequency. The adiabatic time crystal occurs because of
the non-trivial topology of the stationary manifold. When coupling colloidal particles
in different unit cells, many body effects cause the formation of topologically isolated
time crystals and dynamical phase transitions between different adiabatic reversible and
non-adiabatic irreversible space-time-crystallographic arrangements.
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1 Introduction

1.1 Time Crystals

Time crystals [1,2] are non-equilibrium [3] periodically driven quantum [4,5] or classical [6,7]
systems with subharmonic response [8,9]. Discrete time crystals [10–14] are systems coupled
to a power supply with a driving frequency that is a higher harmonic of the intrinsic frequency
of the isolated few body system. The eldest scientific report of such subharmonic response are
the parametric oscillations observed by Michael Faraday in the crispations of a singing wine
glass [15]. Such parametric resonance phenomena have been well described with Mathieu’s
differential equation. Later on discrete time crystals have been realized with phase modulated
atomic de Broglie waves or cold atoms [16–23]. Time crystals are also found in an interacting
spin chain of trapped atomic ions [5], in a disordered ensemble of about one million dipolar
spin impurities in diamond at room temperature [24], in molecular spin systems [25], in an
ordered spatial crystal [8], and in a superfluid quantum gas [26]. Recently the possibility of
continuous time crystals has been also reconsidered [27,28]. Here we report on a dissipative
classical system [29] that lacks an intrinsic frequency such that the driving can be with arbitrary
low frequency and the response is always at half the driving frequency:

ωresponse =ωdrive/2 . (1)

As we show, the reason for such behavior lies in the non-trivial topology of the stationary
manifold. In previous work, we have used such non-trivial topology for mesoscopic magnetic
colloidal systems [30–35] and macroscopic magnetic systems [36, 37] to transport magnetic
particles across a periodic pattern. This shows that the topological discrete time crystals shown
in this work are intimately connected to other classical [38–44] and quantum mechanical
[45,46] topological transport phenomena.

2 Adiabatic response

2.1 Action-, control-, and product-space, and the stationary manifold

The generalized coordinates HC of the drive vary in control space C, while the generalized
coordinates xA of the few body system vary in what we call the action spaceA (see Fig. 1a) and
c). The coordinates HC in control space (in the colloidal example of section 3 the direction of
an external magnetic field) can be manipulated externally and the coordinates in action space
xA (in section 3 the positions of the colloidal particles) respond to the external modulation.
We impose a periodic variation of the coordinates in control space with its trajectory forming a
loop LC . For nonzero response, the potential energy U(x)must couple the driving coordinates
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Figure 1: a) Control space C, with fence points FC (blue) and a trivial (cyan) and
non-trivial (yellow/magenta) driving control loopLC . b) The stationary manifoldM
in our example is a two dimensional manifold in a three dimensional curved space
C ⊗A. We can visualize the stationary manifold only by deforming it in a way that
preserves its topology such that it fits into Euclidian space. Such deformed version is
shown in b). Because of the symmetry SA to each (bright and dark green) region in C
there are two corresponding regions of minima with the same color on the stationary
manifoldM in C⊗A and two regions of red color that are maxima. Minima (green)
together formingM0 and maxima (red) formingM1 of the stationary manifold are
separated by fence lines FM (blue). Staying on M0 it is not possible to reach the
lower bright green region from the upper without passing through one of the two
dark green regions. A trivial loop LC in C causes a trivial loop LM (cyan) in M
that does not leave the bright green region. The two symmetric paths γ (magenta)
and SAγ (yellow) that connect the two different bright green regions of M via a
dark green region are concatenated to form a non-trivial closed loop LM, that is
projected into LC2 in control space and LA in action space. c) Action space A is a
non simply connected space and the loop LA circulates around a hole of A. Points
on opposite sites of action space share the same potential U(HC ,xA) = U(HC , SAxA).
The yellow/pink non-trivial loopLM in b) can neither be continuously deformed into
a point nor into the cyan trivial loop but can be continuously deformed into one of
the fences FM.

to the coordinates in action space. The pair of both coordinates x= (HC ,xA) therefore varies in
the product space C⊗A1. For a fixed value of the driving coordinate dHC/d t = 0, i.e. vanishing
frequency of the driving modulationωdrive = 0, the action coordinates remain stationary when
residing on the stationary manifoldM = {x ∈ C ⊗A|∇AU(x) = 0} ⊂ C ⊗A. The stationary
manifold is the set of coordinates x for which all forces in action space vanish. The gradient
∇A denotes the partial derivative with respect to xA. Here we show that for quasistatic driving
(ωdrive→ 0) it is the topology of the stationary manifold that determines the subharmonicity
(equ. 1) of the response in A.

2.2 Dissection of the stationary manifold

We call FM = {x ∈M|eigenvalue[∇A∇AU(x)] = 0} ⊂M the fence onM. The fence dis-
sects M into regions Mi , i = 0,1... dimA of different index of the Hessian of the potential,
∇A∇AU(x). The index i counts the number of linearly independent directions that are unsta-
ble. In the stable stationary manifold, M0, the index is zero and all forces in the vicinity of

1The product space C ⊗A is defined as the set of coordinates {x= (HC ,xA)|HC ∈ C and xA ∈A}
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the stable manifold drive the action coordinates back to the stable stationary manifold. In Fig.
1b the stable manifoldM0 is colored in green, while the unstable manifoldM1 is colored in
red. In the adiabatic limit ωdrive → 0 kinetic energy terms and dissipative loss terms become
negligible and the response of the system follows a path on the stable stationary manifoldM0
that is independent of the speed of driving as long as we do not hit the fence. When staying
insideM0 the response of a system to periodic driving is solely determined by the topology
of the stable stationary manifold. If we drive the system across the fence, the action coordi-
nates become unstable. Irreversible processes independent of the driving coordinates HC then
let the action coordinates xA leave the stationary manifold and relax back via C ⊗A into the
interior of the stable stationary manifoldM0.

2.3 Projection of paths on the stable manifold into loops in control space

Let πC : C ⊗ A → C with πC(HC ,xA) = HC denote the projection from product space into
control space and πA : C ⊗A→A with πA(HC ,xA) = xA denote the projection from product
space into action space. Suppose there is a two fold fix point free symmetry operation SA
(S2

A = 1) acting on the coordinates in the action space such that U(HC ,xA) = U(HC , SAxA)
and SAxA 6= xA for all points xA ∈A, then the potential is invariant under the symmetry op-
eration. If the stationary manifoldM0 is path-connected we can choose a path γ ⊂M0 from
any point (HC ,xA) ∈M0 to its symmetry partner point (HC , SAxA) ∈M0 and concatenate
it with its symmetry partner path SAγ to form a loop (a closed path) LM = (SAγ) ∗ γ ⊂M0
(here ∗ denotes the concatenation of two paths see Fig. 1b). We note that γ is a path but not a
loop (magenta in Fig. 1b). Because of the symmetry SA in contrast to the path γ its projection
LC = πC(γ) = πC(SAγ) into control space C is a loop. The projection L2

C = LC ∗LC = πC(LM)
is a loop circulating twice along the same path in C and causing a closed loop response
LA = πA(LM) that closes only after the second circulation of LC . The requirement that
there is no fixed point x∗A for which SAx∗A = x∗A may be only fulfilled if A is not a simply
connected space (in the example of Fig. 1c A is a circle). The loop LA thus circulates around
a hole of A. For this reason also its preimage LM must circulate around a hole inM0. If C is
a simply connected space (in Fig. 1a C is the surface of a sphere and thus simply connected)
then L2

C = πC(LM) must circulate around something other than a hole. In fact LC must cir-
culate around the cusps BC of the fence FC = πC(FM). The cusps BC (bifurcation points) of
the fence FC are points in C where the components of tangent vector t = (tC , tA) = (0, tA) to
the fence FM in the tangent control space vanishes. The punctured control space C/BC is no
longer simply connected and any loop LC ⊂ C/BC with non vanishing winding number around
one of the cusps HB

C ∈ BC ⊂ FC ⊂ C of the fence, causes a half frequency adiabatic response
loop LA in action space.

In Fig. 1, we depict the three spaces C, a deformed version of C ⊗A with a deformed but
topologically equivalent version of the stationary manifoldM, and A. We draw the different
loops and paths in the three spaces to visualize the arguments made in this section. We use
these arguments in section 3 to construct a colloidal adiabatic time crystal.

3 Mesoscopic system

3.1 The colloidal model

Let us use the knowledge from section 2 to suggest an example of a classical adiabatic discrete
time crystal. Our model system consists of a two-dimensional mesoscopic hexagonal magnetic
pattern made of up- and down-magnetized domains, see Fig. 2. Such patterns can be pro-
duced experimentally using e.g. exchange bias films [47, 48]. The pattern, that is covered
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Figure 2: Scheme of the control space C that is the set of possible orientations of the
external magnetic field HC that we parametrize with the spherical coordinates ϑC
and ϕC measured with respect to the north direction perpendicular to the magnetic
film. Within C we periodically and adiabatically apply a loop LC that we either apply
to an ensemble of 3 paramagnetic colloidal particles in one unit cell (red colloids,
here shown for a flower shaped domain in the a-conformation) or to 3 paramagnetic
colloidal particles per unit cell (blue colloids, here shown for flower shaped domains
in the Q-conformation). In both cases the particles are placed on a spacer above a
periodic hexagonal magnetic pattern with primitive unit vectors a1 and a2 consist-
ing of flower shaped annular up magnetized domains within a counter magnetized
surroundings. The equilibrium conformation of the colloids in the flower shaped
domains for an external field perpendicular to the magnetic film is an equilateral
triangle that can take on two different orientations with corners centered in direc-
tion of the lobes of the flower. A time crystalline phase where the colloids respond
in a subharmonic way by switching the two orientations after each driving period
requires a topologically non-trivial control loop LC .

with a spacer, creates a two-dimensional magnetic potential that acts on an ensemble of para-
magnetic colloidal particles. The colloidal particles sediment due to gravity onto the spacer.
An electrostatic levitation from this spacer by roughly the Debye length ensures the mobility
of the colloidal particles in action space A. The potential is a function of the positions xA ∈A
of the particles in action space A, which is the plane parallel to the pattern in which the para-
magnetic particles are located. We treat the paramagnetic colloidal particles as being confined
to action space. A uniform time dependent external magnetic field HC(t) ∈ C is also applied to
the system. Hence, the total potential depends parametrically on the direction of the superim-
posed external magnetic field. Our control space C is a sphere parametrized with coordinates
ϑC and ϕC . In practice we only use the northern polar region of C where the second Legendre
polynomial P2(sinϑC)< 0 of the tilt angle of the field is negative and thus lateral dipole-dipole
interactions are always repulsive. The paramagnetic particles move in action space A when
we adiabatically modulate the total potential by changing the direction of the uniform external
field in control space.

Our two dimensional magnetic hexagonal lattice with primitive unit vectors a1 and a2 is
built from an arrangement of up and down magnetized domains of a magnetic film. The prim-
itive unit cell of the lattice is a six fold symmetric C6 hexagon containing a down magnetized
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matrix that is interrupted by a flower shaped annular up magnetized domain, see Fig. 2. The
flower shaped annular domain respects the C6 symmetry of the Wigner Seitz cell, but breaks
the continuous rotation symmetry around the central down magnetized domain. We use two
different orientations of the flower shaped annulus, that are related by rotating the flower by
2π/12, while keeping the unit cell fixed. In the a-conformation the lobes of the flower are
located in direction of the primitive unit vectors of the lattice, whereas in the Q-conformation
the lobes of the flower are located in direction of the primitive reciprocal unit vectors of the
reciprocal lattice.

The total magnetic field is the sum of the pattern Hp and the external HC contributions.
The potential energy of one paramagnetic particle in the total magnetic field H = Hp + HC
assumes the form U ∝ −HC(t) ·Hp(xA, z) [30] if we apply an external field larger than the
pattern field HC(t)� Hp(xA, z). For elevations of the particles above the pattern larger than
the modulus a of the primitive unit vector, i.e. z > a, the potential assumes a universal shape
independent of the elevation and independent of the shape of the up magnetized domain.
The purpose of the spacer (Fig. 2) is thus to render the potential close to universal such
that only the symmetry and not the fine details of the pattern are important. We therefore
distinguish thick spacers that render the potential universal from thinner spacers. The case
of the flower shaped domain for thinner spacers in the Q-conformation topologically deviates
from the universal high elevation case. The behavior in the Q-conformation thus is more subtle
and will be discussed in subsection 5.3.

3.2 Brownian dynamics simulations

We use Brownian dynamics to simulate the dynamics of paramagnetic colloidal particles. The
particles are subject to the single particle potential U from the interference of the external
magnetic field with that of the magnetic pattern and they are coupled via dipolar interactions
with a pair potential with magnetic moments enslaved to the external magnetic field HC (for
quantitative details see appendix A). We use inertia free over-damped equations of motion
that include a friction force proportional to the particle velocity together with a random force
that fulfills the fluctuation dissipation theorem. The particles are confined to the two dimen-
sional action space and the integration of the equations of motion is done using a simple Euler
algorithm.

4 Breaking the time translational symmetry

4.1 Conformations of three particles in a unit cell

In the simulations we place three paramagnetic particles on top of the spacer above the flower
shaped annulus domain. The paramagnetic particles are coupled via strong repulsive dipolar
interactions. We then switch on a time dependent homogeneous external field HC(t).

When the external field points north HC = HCez the single particle potential has a six fold
symmetry. The competition of the single particle potential with the repulsive dipolar inter-
actions lets the paramagnetic particles position themselves in form of an equilateral triangle
with corners in the direction of every second lobe of the flower shaped domain (see Fig. 3a).
Because of the C6-symmetry of the pattern there are two conformational choices for the ori-
entation of the equilateral triangle. One stable conformation is obtained from the other by a
C6-rotation operation. Hence the symmetry operation in action space introduced in section 2
for the particular model of section 3 takes on the form of a SA = C6-rotation. The conforma-
tions obtained by a C12-rotation of the stable conformation results in another stationary but
unstable conformation in which the particles occupy a saddle point of the total energy.
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Figure 3: The competition of the single particle pattern potential and the dipole-
dipole interaction can lock the orientation of the three particle conformation to the
lobes of the single particle pattern potential a), or lock the edge of the triangle of
three spheres that experience a reduced dipolar interaction (yellow) to the orienta-
tion of the lateral component of the external field b). For both forms of locking there
are two possible conformations. One conformation is converted to the other via an
inversion operation at the center of the domain. c) The third form of locking is with
the triangle corner opposite to the lateral component of the external field HC . This
single conformation has no symmetry partner conformation and it is favored for high
tilt angles of the field and for weak dipolar interactions.

4.2 Different ways of locking the orientation of three particles

The dipolar interaction between paramagnetic particles is highly anisotropic. This becomes
apparent in Fig. 3b when we redirect the external field HC by tilting it slightly from the north
pole. The repulsion between paramagnetic particles is then reduced when two interacting
paramagnetic particles of the triangle are separated in a direction of the in plane component
of HC . The three paramagnetic particles thus must find a compromise conformation that is
either a preference to orient themselves with respect to the single particle potential as shown
in Fig. 3a, or to orient two of the three colloidal particles with respect to the in plane external
field direction, see Fig. 3b. The preference for the single particle potential becomes stronger
when the tilt of the field is small. In such situation the triangle orientation remains locked to
the single particle potential as we turn the azimuth of the external magnetic field. Contrary to
this, for high tilt angles one edge of the triangle remains locked to the in plane external field
direction as we turn the azimuth of the magnetic field. We thus find two topologically distinct
classes (cyan respectively yellow/magenta) of loops in control space as shown in Fig. 1a. Both
classes of loops consist of starting with an external magnetic field direction at the north pole,
tilting the field at constant azimuth, then rotating the azimuth at fixed tilt and returning to
the north pole by reducing the tilt at fixed azimuth. The determination to which class the
loop belongs is made by the winding numbers of the loop around the six bifurcation points
HB
C ∈ BC = FC ⊂ C that for strong dipolar interaction are identical to the fences in control

space and thus are a Goldstone mode. The position of the bifurcation points changes with the
dipolar interaction strength and with the elevation.
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Figure 4: Color-coded equilibrium orientation of the triangle of paramagnetic col-
loids in action space as a function of the external field orientation in C. Circulating
the (blue) fence point FC twice with a purple and yellow loop LC2 causes the sub-
harmonic time crystalline loop LA = γA∗C6γA in action spaceA shown in the lower
part of the figure together with the three particle conformation. Highlighted particle
configurations are stationary for a magnetic field pointing north. Those at the begin-
ning and at the end of γA or C6γA are stable for the magnetic field pointing north.
Those stable at the magnetic field of the cut would be unstable for the magnetic field
pointing north. Two video clips of the trivial and non-trivial dynamics are provided
with the videos adFig4trivial and adFig4nontrivial.

The continuous symmetry of the Goldstone mode becomes broken when dipolar interac-
tions are much weaker than the single particle potential. The potential has a C6 symmetry only
for the external field HC pointing north. For weak dipolar interactions the symmetry broken
parts of the single particle potential at finite tilt of the external field HC dominate near the bi-
furcation point. What has been a fence point develops into a fence line surrounding the region
around the bifurcation point in control space. Inside the fence it is energetically advantageous
to orient the triangle with a corner antiparallel to the external field, see Fig. 3c. In contrast to
the former conformations there is no symmetry partner conformation to this third conforma-
tion. Entering such a fenced region kills all attempts to construct a time crystal. The dipolar
interaction therefore must be sufficiently strong to enable us constructing a time crystal.

4.3 Topologically trivial and non-trivial loops

For the rest of section 4 we assume that the dipolar interaction is strong. A loop not winding
around a bifurcation point is a trivial loop causing the conformation to respond with the same
period as the driving loop. In contrast a loop winding around a bifurcation point adiabatically
connects one stable triangle conformation to the distinct orientation rotated by 2π/6 and the
conformation of the paramagnetic particles responds with half the frequency of the frequency
in control space.
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4.4 A three body time crystal

In Figure 4 we show the color coded equilibrium orientation ϕA(ϕC ,ϑC) of the triangle of
the paramagnetic colloids in action space A as a function of the external field orientation,
expressed with the spherical angular coordinates (ϕC ,ϑC) in control space. We define the
orientation angle ϕA =

�

arccos a1·(2r3−r2−r1)
a|2r3−r2−r1|

mod 2π/3
�

as the angle modulo 2π/3 between
the vector from the triangle center to the corner r3 farthest from the triangle center and the
primitive unit vector a1 of the periodic lattice. The corners closer to the triangle center are r1
and r2. The parameters of the simulations are as listed in table 1 of appendix A. The triangle
orientation ϕA(ϕC ,ϑC) is a double valued function and there are two leaflets of orientations.
Both leaflets are glued together at the light/dark green cuts where the orientation is continuous
when switching the leaflet at the cut. The non-trivial purple loop LC starts on the first blue
leaflet and switches onto the second brown leaflet where it returns to the original external field
orientation while the orientation ϕA follows the open path γA to a different orientation than
at the beginning of LC , the second yellow revolution of LC concatenates the path γA inA with
C6γA such that the concatenation LA = γA ∗ C6γA is a subharmonic loop causing a discrete
time crystalline response. The non-trivial behavior occurs whenever one circulates around the
fence FC in control space. For trivial control loops with vanishing winding numbers around
each of the six fence points, the response in action space remains trivial, causing no time
crystalline behavior. On the arxiv we provide two videos (adFig4trivial and adFig4nontrivial 2)
of Brownian dynamics simulations of trivial and non-trivial control loops together with their
trivial and non-trivial response. Albeit being stored on the arXiv these videos are an integral
part of this work.

An external field that points into the direction of a bifurcation point may be viewed as a
loop of infinitesimal radius around the bifurcation point, for which each possible orientation is
taken. The orientational degree of freedom becomes a Goldstone mode [49] at the bifurcation
point, where it obeys a generalized statistical mechanics Noether theorem [50]. As already
mentioned the continuous symmetry of the Goldstone mode becomes broken when dipolar
interactions are much weaker than the single particle potential.

5 Breaking the space and time translational symmetry

The control loops of the homogeneous external field in control space of section 4 had a discrete
time translational symmetry that was broken by the dynamics of the paramagnetic particles.
If we arrange several magnetic annular domains into a periodic pattern, the magnetic field of
the potential has a discrete translational symmetry in space. In this section we use Brownian
dynamics simulations to show that there are ways to break or not break some or all of the
discrete symmetries, once we fill some of the neighboring flower shaped annular domains
with three paramagnetic particles in a periodic manner. We use two different orientations of
the flower shaped annulus, that are related by rotating the flower by 2π/12, while keeping
the unit cell fixed (see Fig. 5). In the a-conformation the lobes of the flower are located in
direction of the primitive unit vectors of the lattice, in the Q-conformation the lobes of the
flower are located in direction of the primitive reciprocal unit vectors of the reciprocal lattice.
The dipolar interaction is long range and anisotropic and there are intercellular interactions
between the paramagnetic particles of neighboring annular domains. We have to distinguish
the behavior of flowers in the a- and in the Q-conformation, if working at lower than universal
elevations. Note that the differences between both patterns become irrelevant at universal

2supplementary videos, are provided in the ancillary directory https://arxiv.org/src/2203.04063/anc. These
videos are essential for understanding the dynamics of our time crystals.
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a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

cc

bc cb
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trans
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E

Figure 5: The two configurations of paramagnetic particles in red and blue within
a unit cell for an external magnetic field HC pointing north (normal) to the pattern
in the a-conformation and in the Q-conformation. Intercellular dipolar interactions
lead to a splitting of the energy. We distinguish cc, cb, bc, and bb bonds in the a-
conformation and t rans and cis bonds in the Q-conformation. The energy splittings
cause many body interactions that induce various kinds of spatio-temporal order.

elevations. We can continuously move from the a- toward the Q-conformation by joining
both conformations at a universal height. In subsections 5.2 and 5.3 we will show that the
a-conformation suppresses the space-time crystalline behavior in the bulk, but not the time
crystalline response at the spatial edge of the crystal, while the Q-conformation supports a
bulk-space-time crystalline response.

5.1 Space-time crystalline order

The magnetic pattern has primitive unit vectors a and primitive reciprocal unit vectors Q. To-
gether with the period T = 2π/ωdrive of the external magnetic field loop in control space, we
can define 4-vectors r4 = (t, r) and primitive unit vectors a4 in space-time. A trivial response
of the paramagnetic particles is when the reciprocal (angular frequency, wave vector) lattice of
the response is the same as the reciprocal lattice of the drive (ωresponse,Qresponse) = (ωdrive,Qdrive).
Depending on the strength of the intra- and inter-cellular dipolar interactions, on the confor-
mation of the flower shape annular domain, and on the elevation of the paramagnetic particles
above the pattern we find different disordered phases. For example we find orientation dis-
ordered time crystalline phases, for which the orientation order parameter O = cos(3ϕA)
between neighboring unit cells is completely uncorrelated 〈O(r4+a4)O(r4)〉= 0 for any prim-
itive unit vector a4 of the space-time lattice. Here ϕA denotes the orientation angle of one
of the three particles in a unit cell. We find frozen disordered phases, for which the orienta-
tion order parameter between neighboring unit cells is uncorrelated 〈O(r4+a4

D)O(r
4)〉= 0 for

the disordered primitive unit vector a4
D direction but completely correlated (anticorrelated)

〈O(r4 + a4
F )O(r

4)〉 = ±1 along the frozen lattice direction a4
F of the space-time lattice. The

time translational symmetry of those frozen disordrered phases is not broken if all primitive
unit vectors, having a non-vanishing time component, are positively correlated frozen prim-
itive unit vectors. These phases thus are not discrete time crystalline phases. In any other
case the order is either a disordered time crystalline frozen space or a disordered space sub
harmonic time crystalline order.

We also find completely ordered phases that are correlated (anticorrelated) in any of the
space-time lattice directions. If the primitive unit vectors can be separated into primitive unit
vectors along time and primitive unit vectors along space, we find non time crystals for which
the order parameter correlation along the time direction is positive. Depending on the correla-
tion in space we find positively correlated order of neighboring cells in which case the order is
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ferromagnetic and neither the time nor the space translational symmetry is broken, or we find
at least one anticorrelated space direction in which case the order is antiferromagnetic and the
space translational symmetry is broken with an ordered primitive unit cell twice the size of a
primitive unit cell of the driving lattice. If the order is antiferromagnetic in the direction of
time we get a time crystal again with a unit cell twice the size of the primitive unit cell of the
driving lattice. For a spatially ferromagnetic time crystal the primitive time unit vector of the
order is double the primitive time unit vector of the drive. For a spatially antiferromagnetic
time crystal the primitive unit vectors of the lattice are no longer separable into spatial and
time-like unit vectors but they point along the diagonals between space and time similar to a
sodium chloride structure in a spatial crystal.

Given the multitude of crystalline structures in space it should not surprise us that we also
find a multitude of different more or less complex space-time structures. Next, we will show
how to attain some of those structures in our colloidal model system.

5.2 Topologically isolating time crystals

The dipolar interaction is long range and anisotropic. Hence we can change the time crystalline
behavior by filling unit cells of the pattern in an anisotropic way. We must avoid weak dipo-
lar interaction because under such circumstance the regions where the unique conformation
shown in Fig. 3c is adopted connects all bifurcation points and can no longer be circulated.
When the dipolar interaction is moderate the inter-cellular interactions do not matter and
the colloidal particles in one cell respond independently of those in the other cell. We hence
find a time crystal with frozen spatial disorder. For the a-conformation at stronger dipolar
interactions the degeneracy of the two distinct triangular conformations is broken and we can
distinguish three types of bonds between neighboring cells (see Fig. 5). A cc-bond with two
corners of neighboring triangles facing each other has a higher energy than the lowest en-
ergy bb-bond where two triangular bases face each other. A bc-bond has intermediate energy.
Strong dipolar interactions can therefore also destroy the subharmonic response in ensembles
of filled cells. The a-conformation is therefore not a good conformation for time crystals if all
the flower shaped domains are occupied.

We consider fillings of cells such each filled cell has only bonds to filled neighboring cells
where the bonds form an angle of 2π/3 or 4π/3. Filled cells form a Kagome lattice (see Fig. 6)
consisting of Kagome Wigner Seitz cells built from two filled (green and yellow) unit cells and
one empty (gray) unit cell of the magnetic pattern. Under these conditions each filled cell is ei-
ther a b-bonding or c-bonding cell exposing the same type of bond toward each of its occupied
neighbor cells. When the splitting of bond energies due to intercellular dipole interactions are
pronounced, a bb-bond cannot be converted into any other bond. This domination occurs for
external fields that point in the surroundings of the single cell fence points in control space,
where the symmetry of the continuously degenerate Goldstone mode can be easily broken by
the intercellular dipole interactions. The inter-cellular dipole interaction perturbed fences in
control space thus no longer coincide with the single cell unperturbed fence points but form
closed curves FC

i(zi), that contain bifurcation points and that depend on the type i = 1,2 of
the filled cell in the Kagome lattice as well as the number zi of filled neighboring cells. Inside
the fence of one cell only one minimum, namely the b-bond orientation of the triangles of the
cell, exists and whenever crossing inside to this unique region the space-time crystal no longer
responds with half the driving frequency.

For intermediate intercellular dipolar interaction strength, the same loop can enter the
interior of the fence for one unit cell but not for another unit cell. In such cases one still finds
a triangle in one cell responding with half the driving frequency and the triangle in the other
cell responding with a trivial loop. The dynamics of the trivial responding cell is no longer
adiabatic: When a c-bonding triangle is driven inside the unique b-bonding fenced region an
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Figure 6: A complex topologically isolated space-time crystal in the a-conformation:
a) A counterclockwise (clockwise) loop LC in control space C circulates the solid
yellow FC-edge fences, but cuts through the solid green FC edge-fences as well as
through all dashed bulk fences. b) Snapshot of a space-time crystal of a hexagonal
pattern with a Kagome-lattice of filled cells including the spatial edge of the lattice
at the time when the loop is at the north pole. The space-Wigner-Seitz-cell of the
Kagome lattice consists of two (green and yellow) filled cells and one empty (gray)
cell. At the spatial edge (there is no edge in the direction of time) of the Kagome-
ribbon, filled cells have a reduced z = 2 configuration number. The bulk cells as well
as the green edge cells relax into a spatial antiferromagnetic order of only b-bonding
cells when the loop returns to the north-pole. The response of the yellow edge cells
is subharmonic in time and the spatial disorder is frozen repeating in time with every
second loop. We have depicted one edge-space-time Wigner-Seitz-cell and one bulk-
space-time Wigner-Seitz-cell onto the Kagome lattice to show the dynamics of the
triangle conformation. The sequence of conformations in the yellow edge cell is time
reversal invariant, while the sequence of conformations in all other cells are not time
reversal invariant. Two space-time-Wigner-Seitz edge cells can be packed side by side
in space or with a symmorphic translation by one lattice vector in space and half a
primitive vector in time creating the frozen disordered topological time crystalline
edge wave in a). On the arXiv two video clips of the dynamics are provided with the
videos adFig6clockwise and adFig6counterclockwise.

irreversible ratchet jump of the triangle from the no longer stable c-bonding toward the b-
bonding orientation occurs. The jump cannot be undone by backing up on the loop across the
fence into the twofold orientation region outside the fenced region.

The response of the conformation of three colloidal particles in a particular unit cell i then
depends on the configuration number zi , i.e. the number of neighboring cells being also filled
with three colloidal particles. The time crystalline topological response is robust for small
configuration numbers z < 2. However the response changes for colloidal particles sitting
in a bulk cell z = 3 or at an arm-chair edge cell z = 2 of a Kagome lattice. For intermediate
dipolar interaction strength bb-bonds are converted to bb-, bc-, and cb-bonds rather than into
cc-bonds, because only one of the edge cells responds as a subharmonic time crystal, while all
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bulk cells and the other edge cell show trivial harmonic responses. Note that at the edge of
a Kagome lattice the translation symmetry normal to the edge is explicitly broken, while the
translation symmetry in time parallel to the edge is only broken due to the time crystalline
response of the colloids inside the lattice. Within the bulk of the filled Kagome-lattice we
distinguish 2 different filled (z = 3) unit cells depending on the two possible directions of the
neighboring cell triple. At an arm-chair edge of the Kagome lattice the configuration number
of the outermost two cells reduces to z = 2. Each of these two cells have a somewhat different
fence in control space for each of their possible configuration number. A triangle subject to a
magnetic field HC tilted into a certain direction is displaced from the center of a flower in the
same direction. If the tilt is toward a neighboring filled cell, then the unique b-bonding fenced
region is larger than when the tilt is pointing away from the filled cell. For the same region
in control space therefore the unique fenced region alternates in size as we move from one to
a neighboring cell that has its bonds into the opposite directions. It is then easy to create a
time crystal where e.g. only one of the edge cells has subharmonic response while the other
cells respond in a trivial irreversible way. We can use these results to form an irreversible, i.e
non-time reversal invariant, non-time bulk crystal, with time-crystalline edge states where the
response in time and in space is quite complex.

In Fig. 6 we show the response of Kagome-lattice ribbon of two filled (green and yellow)
cells and one empty (gray) cell to a control loop LC that consist of three sections. The control
loop starts at the north pole (position 1) and moves at constant azimuth ϕi

C (measured with
respect to the a1 direction) toward the tilt angle ϑmax

C (position 2) where it turns to the final

azimuth ϕ f
C (position 3) before it returns to position 1 (the north pole). The values of ϕi

C ,

ϕ
f
C , and ϑmax

C are chosen (simulation parameters see table 1 in appendix A) such that the loop
circulates around the (yellow) numerically computed FC-edge-fences, but cutting through the
green FC- edge-fences with the 12, and 31-sections of the loop. The loop also cuts through all
the bulk fences but avoids unique regions inside the yellow edge-fences causing the adiabatic
subharmonic response of the yellow edge cells, The triangles of paramagnetic particles in all
bulk cells and in the green edge cells, however, perform a ratchet jump from a c-orientation
toward a b-orientation whenever the particles in these cells are in the unstable c-orientation
prior to the fence passing segment resulting in a trivial harmonic response to the loop. The
irreversibility of the dynamics in the bulk cells and in the green edge cells becomes appar-
ent when we reverse the driving loop causing the irreversible triangles of the time crystal
to follow a sequence of orientations that is not the reversed sequence of the forward loop
LA(LC−2) 6= (LA(LC2))−1. Adiabatic response is time reversal invariant, while irreversible
non-adiabatic motion is not. On the arXiv we show with the videos adFig6clockwise and ad-
Fig6counterclockwise the full dynamics of the topological insulating time crystal shown in Fig.
6 for the counterclockwise LC as well as for the clockwise LC−1 driving loops.

The behavior of the irreversible cells is synchronized for all cells. Bulk cells and the green
edge cells are all b-bonding when the loop returns to the north pole. The adiabatic (yellow)
edge cells follow a subharmonic response whatever the initial order of the adiabatic cells were
in the beginning. The adiabatic cells therefore are generically spatially disordered but time
crystalline frozen as a function of time. The trivial edge cells and all bulk cells are spatially
ordered in an antiferromagnetic order. It is an antiferromagnetic crystal with topologically
protected time crystalline edge states.

5.3 Time crystalline phase transitions

In the Q-conformation at lower than universal elevation paramagnetic colloidal particles in
neighboring unit cells can be arranged in either the trans-conformation (bond direction cross-
ing the primitive unit vector connecting the neighboring cells) or in the cis-configuration (bond
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t

x

ferromagnetic
time crystal

antiferromagnetic
time crystal

domain wall

= =

Figure 7: Stroboscopic development of a chain of honeycomb cells filled with three
colloidal particles each. The initially ferromagnetic ordered time crystal undergoes a
topological transition towards an antiferromagnetic time crystal. Space-time Wigner
Seitz cells of the various orders are shown at the bottom. The spatial order in each
cell is abbreviated by a blue or red arrow as indicated. A video clip of the dynamics
is provided with the video adFig7

.

parallel to the cell connecting primitive unit vector) see Fig. 5. The trans-conformation has a
lower energy than the cis-conformation. Hence, an antiferromagnetic ordering of the triangles
along a row of unit cells is preferred. Neither a ferromagnetic nor an antiferromagnetic order-
ing suppress the time crystalline subharmonic behavior since in contrast to the behavior in the
previous section, intercellular bonds between colloidal particles before and after an adiabatic
driving cycle remain equivalent. In Fig. 7 we show the evolution of a ferromagnetic time
crystal at time zero towards an antiferromagnetic time crystal for the simulation parameters
listed in table 1 of appendix A. One row of neighboring cells along the a1-direction are filled
with three particles each. The originally ferromagnetic time crystal remains in the ferromag-
netic time crystalline order for a typical correlation time until a few antiferromagnetic time
crystalline nuclei are formed. These nuclei grow and two more stable antiferromagnetic time
crystalline ordered phases (of the same order but connected via a non-symmorphic translation
that is part of the unbroken but not of the broken symmetry) separated by space like domain
walls appear. They thus replace the old order with the new antiferromagnetic time crystalline
order. The transition from the ferromagnetic towards the antiferromagnetic ordering is irre-
versible. In contrast to the time crystalline order in the a-conformation the space-time-bulk of
the antiferromagnetic time crystal shows fully adiabatic response, and a forward or backward
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loop LC or LC−1 results in a sequence of orientations that are the time reversed version of the
other. A video clip of the full dynamics is shown in the video adFig7.

The dipolar interaction couples the particles and broadens the one dimensional fence FC
to a two dimensional object of control space. Here the intercellular dipolar interactions are
strong enough to destroy the path connection of the ferromagnetic and antiferromagnetic con-
formations onM0. We can hence distinguish the fences FMa, f

0
of the antiferromagnetic and

the ferromagnetic stable conformations and the path disconnected subsetsMa, f
0 of the stable

stationary manifolds enclosed by those fences. The only way to dynamically move from the
ferromagnetic region M f

0 toward the antiferromagnetic region Ma
0 is by driving the system

toward the ferromagnetic fence FC
f = πC(FM f

0
) where a ratchet jump from FM f

0
via C ⊗A

into the lower potential subsectionMa
0 occurs. In our simulations the control loop LC circles

around the ferromagnetic fence FC
f by almost touching it such that the thermal fluctuation

forces eventually drive the system across the fence. The persistence time of the ferromagnetic
phase therefore sensitively depends on the proximity of the loop to the ferromagnetic fence as
well as on the never truly adiabatic speed in passing this sensitive section of the loop. Once
in the antiferromagnetic time crystalline phase one cannot return to the ferromagnetic con-
formation because there is no point of the antiferromagnetic fence that has a higher potential
than the corresponding point of the ferromagnetic stable manifoldM f

0 . The antiferromagnetic
phase therefore persists.

6 Conclusion

We have shown that the topology of the stationary manifold embedded in the product space
of the external control variables and the quasistatic response variables determines whether
a time crystalline driving is possible or not. Small thermal or quantum fluctuations will not
change the topological phenomena since these are robust against weak perturbations. As
long as transition or tunneling rates between the distinct minima are tiny, the time crystalline
behavior will prevail also for a quantized version of the model. The essential requirement for
the adiabatic time crystal to work is the non-ergodicity, i.e. the population of only one of the
well separated minima. For these type of topological time crystals the quantum respectively
classical nature of the phenomenon seems to be of minor importance. On a mesoscopic scale,
proper cooling, necessary for any motor, whether in a quasi-equilibrated reversible cycle or
driven far from thermal equilibrium is not a problem such that over heating [51–56] of the
time crystal can be prevented. A rich variety of topologically induced non-time crystalline and
time crystalline phases can be found both in the bulk or at the edge when playing with the
competition of intra- and intercellular dipolar interactions between the paramagnetic colloidal
particles of the many body ensemble.
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A Numerical details and parameters

The pattern magnetic field at the elevation z above the pattern reads

Hp(xA, z) =

∫

(xA + zez − x′A)

4π((xA − x′A)
2 + z2)3/2

Mz(x
′
A)d

2x′A , (2)

where

Mz(xA)ez =



























+Msez if |xA − a− rM êi|< rK
for one lattice vector a

and one normed primitive
lattice vector êi (i = 1..6)

−Msez else



























, (3)

is the magnetization of the thin magnetic film with Ms the saturation magnetization, rM = 0.2a,
rK = 0.19a, and êi = ai/a (Qi/Q) are normed vectors in the direction of the primitive unit
vectors of the direct (reciprocal) lattice for the flower domains in the a-conformation (Q-
conformation).

The single particle potential is

U = −µ0Hp(xA, z) ·m , (4)

with m = χe f f VHC the magnetic moment of the paramagnetic particle with volume V and
effective magnetic susceptibility χe f f . The dipolar interaction reads

Udipol =
µ0

4π

(xA − x′A)
2m2 − 3((xA − x′A) ·m)

2

|xA − x′A|5
. (5)

We use dimensionless units of length normalized to the lattice constant a, of the mag-
netic field normalized to the effectively attenuated magnetization Me f f = γ(Q1)Mse

−Qz

of a fictive universal pattern at elevation z with Ms the saturation magnetization of the
real pattern, Q = 4π/

p
3a the modulus of the primitive reciprocal unit vectors, and

γ(Q1) =
∫

W Z eiQ1·xA Mz(xA)d2xA/Ms

p
3

2 a2 ≈ 0.3 the leading reciprocal lattice Fourier coef-
ficient of both patterns, where the Fourier integral is taken over the Wigner Seitz cell W Z
of each pattern. Units of energy are normalized to µ0M2

s a3 and non dimensional effective
magnetic susceptibilities χe f f V/a3. Our control loops start a the north pole and move at con-
stant azimuth ϕi

C (measured with respect to the a1 direction) toward the tilt angle ϑmax
C where

they turn to the final azimuth ϕ f
C before they return to the north pole. In table 1 we list the

parameters used to compute the time crystals shown in Figs. 4, 6, and 7.

Table 1: Simulation parameters

HCχe f f Ve4πz/
p

3a

γ(Q1)Msa3 z/a ϕi
C ϕ

f
C ϑmax

C conformation

Figure 4 1.6410−1 universal −90◦ −30◦ 23◦ a, single cell
Figure 6 1.0910−2 universal −37◦ 37◦ 20◦ a
Figure 7 6.5 10−1 1/3 71.7◦ 124◦ 33.2◦ Q

All integrations were performed numerically using an Euler algorithm. Loops were fol-
lowed adiabatically by reducing the speed of modulation to values that do no longer affect the
outcome.
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