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Abstract

Motivated by the experiments on double monolayer graphene that observe a variety of
fractional quantum Hall states [Liu et al., Nat. Phys. 15, 893 (2019); Li et al., Nat. Phys.
15, 898 (2019)], we study the special setting in which two monolayers have different
areas. It has not been considered before and allows us to construct a class of exotic
topological states. The elementary excitations of these states do not carry fractional
charges but obey fractional statistics. This is in sharp contrast to all previously studied
cases, where the two properties are intimately connected and serve as hallmarks of frac-
tional quantum Hall states. Numerical calculations are performed to demonstrate that
some states can be realized with realistic parameters.
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1 Introduction

Quantum Hall states are prototypical examples of topological states in two dimensions [1,2].
The longitudinal conductance is exponentially suppressed as temperature decreases due to the
energy gap in the bulk and the transverse Hall conductance is precisely quantized to certain
rational values (in units of e2/h). For integer quantum Hall (IQH) states, a free fermion picture
relying on the topological Chern invariant [3] is adequate for most purposes. The states with
fractional Hall conductance are much more difficult to understand as they only arise if strong
electron-electron interactions are present. Based on very general principles, it can be shown
that fractional Hall conductance leads to elementary excitations with fractional charges and
obey fractional statistics [4, 5]. The reverse deduction is false because fractional charge can
also appear in a system with integral Hall conductance. The existence of fractionalization
underlies the concept of topological order as they imply that topological structure of the system
affect some global properties [6].

The synthesis of graphene and other 2D materials significantly advance the studies on
quantum Hall physics [7–27]. Because of their intrinsic 2D nature, one can access electrons
directly in such systems and measure certain quantities besides electric transports. An intricate
pattern of FQH states have been observed which reflects the interplay of spin, valley, and layer
degree of freedoms. This work is primarily motivated by Refs. 25,26 that investigated double
monolayer graphene. The two monolayers are separated by hexagonal boron nitride (hBN)
so direct tunneling is forbidden but interlayer Coulomb repulsion persists. Although similar
structures have been made using conventional semiconductors [28–31], many new states have
been observed in graphene. This system has also been studied in other recent theoretical
works [32,33].

The single-particle states of two-dimensional electrons in a perpendicular magnetic field
are discrete Landau levels (LLs). If one LL is partially occupied by free electrons, there is a huge
degeneracy associated with putting electrons into the single-particle states. It is remarkable
that interactions would generate gapped FQH states at certain rational filling factors (i.e., the
number of electrons divided by the number of states in each LL). A large number of them can
be explained using the composite fermion theory [34]. The essence of this theory is to map
strongly correlated states of electrons to uncorrelated states of emergent particle-flux bound
states called composite fermions. After the flux attachment process, the effective magnetic
field experienced by the composite fermions is different from the actual magnetic field. Many-
body states of composite fermions can be constructed easily because they can be treated as
non-interacting to a very good approximation. If they form an IQH state, the corresponding
state of electrons would be an FQH state. It is also possible that the composite fermions form
a Fermi liquid (when the effective magnetic field for them vanishes), which results in a non-
Fermi liquid state of electrons [35,36]. FQH states in monolayer graphene have been studied
using the composite fermion theory and quantitative comparisons with experiments have been
performed [37,38].

The states observed in double monolayer graphene can be accounted for by a flux attache-
ment pattern in which one electron in a particular monolayer is dressed with two fluxes from
the same monolayer and one flux from the other monolayer [25,26]. In this paper, we consider
the special setting in which the two monolayers have different areas. To the best of our knowl-
edge, this has not been considered before. We propose a class of topological states for which
the elementary excitations have no fractional charge but still obey fractional statistics. This is
quite surprising because fractional charge and fractional statistics are generally believed to be
concomitant in FQH states. In some cases, the fact that elementary excitations carry fractional
charges can even be used to prove that they obey fractional statistics [39,40].
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Figure 1: Schematic of the double monolayer graphene system with different areas.
The number of electrons in the top (bottom) monolayer is N t

e (N b
e ). One electron in

a specific monolayer is attached with two fluxes from the same monolayer and one
flux from the other monolayer.

2 Models

The system of interest to us is depicted in Fig. 1. It contains two graphene monolayers in the
x-y plane that we call top and bottom. The symbols t or b are attached to physical quantities
to indicate that they are associated with the respective monolayers. Their areas depend on the
topological state that one hopes to realize and will be explained in detail later. An external
magnetic field is applied in the vertical z direction and we focus on the zeroth LL. In spite of
the spinor nature of graphene, the wave functions in the zeroth LL have only one nonzero com-
ponent that are exactly the same as those in the non-relativistic lowest LL. For the planar disk
in the symmetric gauge, the explicit solutions (without normalization) are ∼ zm exp(−|z|2/4),
where z = (x + i y)/`B is the holomorphic coordinate and `B =

p

ħhc/(eB) is the magnetic
length. It is assumed the electrons are spin and valley polarized in both layers. This is the case
in many previous experiments and a reasonable starting point for our investigation. One can
expect to observe other interesting states if this constraint is relaxed.

Let us denote the number of electrons in the two monolayers as N t
e and N b

e , which are
taken to be the same in the ground states. This is a convenient but not essential choice. It is
expected that the states to be discussed can also be realized in unbalanced monolayers. The
kinetic energy is a constant that may be neglected. The electrons interact with each other
through the Coulomb potential

Vστ(r1 − r2) =
e2

ε [|r1 − r2|2 + (1−δστ)D2]1/2
, (1)

where σ,τ= t, b refer to the monolayers, D is the separation between the monolayers, and ε
is the dielectric constant. The energy is measured in units of e2/(ε`B). The dielectric constants
of graphene and hBN are different, but it is sufficient to use a single parameter ε for our current
purpose. If comparison with experiments is desired, one can simply rescale D to account for
the difference. In numerical calculations, the system is placed on the sphere [41] to mitigate
finite-size edge effects. A magnetic field along the radial direction of the sphere is generated
by a magnetic monopole at its center [42]. For the special setting that we shall explore, it is
necessary to define separate magnetic fluxes for the top and bottom monolayer as N t

φ
and N b

φ
,

respectively. The number of electrons and the number of fluxes are related by N t
φ
= N t

e /ν
t−S t

and N b
φ
= N b

e /ν
b − Sb, where νt ,νb are filling factors in the thermodynamic limit and S t , Sb

are O(1) numbers called shift. In the second quantized notation, the many-body Hamiltonian
is

1
2

∑

στ

∑

{mi}

Fσττσm1m2m4m3
C†
σ,m1

C†
τ,m2

Cτ,m4
Cσ,m3

, (2)
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(c)   top quasiparticle

(a)    ground state

bottom

(e)   bottom quasiparticle (f)   bottom quasihole

(b)  neutral excitation

(d)   top quasihole

top

- +

Figure 2: Schematics of the composite fermion configurations of the Ψ221
−1,2 ground

state and elementary excitations. The electrons in the top and bottom monolayers are
converted to their respective composite fermions. One species experiences negative
effective magnetic field and the other experiences positive effective magnetic field.

where C†
σ,m (Cσ,m) is the creation (annihilation) operator for the single-particle state indexed

by m in theσmonolayer. The coefficients Fσττσm1m2m4m3
can be evaluated using the single-particle

wave functions on the sphere and the potential Vστ(r1 − r2) as explained in the Appendix.
Exact diagonalization (ED) and density matrix renormalization group (DMRG) are employed
to compute the low-lying eigenstates of the system. If the Hilbert space dimension is not
too large (∼ 109), sparse matrix diagonalization can be carried out to obtain a few low-energy
eigenstates. DMRG is a vartional algorithm that searches for the ground state of a Hamiltonian
within the class of matrix product states [43,44]. Its utility in studying quantum Hall physics
has been demonstrated in previous works [45–53]. The long-range Coulomb interaction is
handled using the method of Ref. 54.

3 Results

The flux attachment pattern observed in experiments [25,26] motivates the topological states
to be discussed here. There are two types of composite fermions moving in two effective
magnetic fields. If the two monolayers have different areas, the total number of fluxes in the
two monlayers would be different. It is possible to adjust the system parameters such that
the effective magnetic fields in the two monolayers have opposite directions. In particular,
the number of fluxes in the top monolayer would be fixed at N t

e + N b
e and that in the bottom

monolayer is varied to produce a class of states. After performing flux attachment, the effective
magnetic fluxes for the composite fermions in the top (bottom) monolayer is eN t

φ
(eN b
φ

). For the

top monolayer, the total number of fluxes attached to the electrons are 2N t
e + N b

e so we have
eN t
φ
= −N t

e , and the composite fermions form an IQH state. If the composite fermions in the
bottom monolayer also form an IQH state, the corresponding state of electrons are expected
to be a gapped topological state.

To analyze the properties of these states, it is very helpful to write down explicit wave
functions on the plane, which can be converted to the sphere in a straightforward manner if
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needed [41]. The ground states are captured by

Ψ221
−1,n ∼

�

Φt
−1({z

t
j })Φ

b
n({z

b
j })
�∏

j<k

(z t
j − z t

k)
2
∏

j<k

(zb
j − zb

k )
2
∏

j,k

(z t
j − zb

k ) , (3)

where Φt
−1({z

t
j }) is the ν= 1 IQH state of composite fermions in the top monolayer, Φb

n({z
b
j })

is the ν= n IQH state of composite fermions in the bottom monolayer, and the product factors
implement the flux attachment. The case with n = 2 is illustrated in Fig. 2 (a). The ∼ sign is
used because the Gaussian factor and the zeroth LL projection are omitted. The filling factors
are νt = 1/2,νb = n/(3n+ 1) and the shifts are S t = 1, Sb = n+ 2. It has been verified that
Eq. (3) with n= 1, 2 provides excellent approximations to the ground states obtained by exact
diagonalization in many cases [see Fig. 3 (a) and Fig. 4 (a)]. For N t

e = N b
e = 6 and D = 0.7, the

overlap between the trial wave function and the exact eigenstate is 0.9958 (0.9897) at n = 1
(n= 2). As one would expect from the flux attachment picture, the overlap first increases and
then decreases with D as shown in Fig. 3 (b) and Fig. 4 (b).

The scope of Eq. (3) can be extended to include low-energy excitations. One simply creates
low-energy excitations in the composite fermion factors Φt

−1({z
t
j }) and Φb

n({z
b
j }) but leaves the

flux attachement factors untouched. If one composite fermion is excited from an occupied
to an empty orbital in Φt

−1({z
t
j }) or Φb

n({z
b
j }), the resulting wave functions describe neutral

excitations since no additional charge is introduced. In Fig. 3 (a) and Fig. 4 (a), these neutral
excitations form a dispersive band, which are well captured by the trial wave functions as
one can see from the favorable energy values and overlaps. While one naively expects that
both Φt

−1({z
t
j }) and Φb

n({z
b
j }) contribute to the electronic spectrum, the reality is that only the

excitations in Φb
n({z

b
j }) manifest themselves as neutral excitations of the electrons [see Fig. 2

(b)]. This theoretical prediction can be checked in inelastic light scattering experiments [55,
56]. It is crucial to prove that a system is gapped to ascertain its topological nature. This is
done by analyzing the neutral gap defined as the separation between the lowest excited state
and the ground state. The evolution of the neutral gap in Fig. 3 (c) and Fig. 4 (c) shows similar
trend as the overlaps. Finite-size scaling results in Fig. 3 (d) and Fig. 4 (d) at D = 0.7 strongly
suggest that the neutral gap saturates to finite values. To have enough data points here, DMRG
is employed to compute the gap for several systems that are beyond the reach of ED.

The most surprising feature of the states represented by Eq. (3) is that their charged ex-
citations do not possess fractional charges but obey fractional statistics. This claim implicitly
assumes that the total electric charge is conserved, which is important for our discussion but
not necessary from the perspective of topological order. To create such entities, we simply add
or remove one composite fermion as shown in Fig. 2. For example, if one composite fermion
is added to the lowest empty level above the Φt

−1({z
t
j }) state, the resulting excitation is called

a top quasiparticle. The top quasihole, bottom quasiparticle, and bottom quasihole can be
defined similarly. The charges carried by them are denoted as Qt

p, Qt
h, Qb

p, and Qb
h. It is help-

ful to study the consequences of adding or removing one electron when the magnetic fluxes
are fixed. This process also changes the effective magnetic fluxes for the composite fermions
because flux attachment depends on the number of electrons. If one electron is added to the
top monolayer, eN t

φ
decreases by two units and eN b

φ
decreases by one unit, so one top quasihole

and n bottom quasiparticles are created. If one electron is added to the bottom monolayer, eN t
φ

decreases by one unit and eN b
φ

decreases by two units, so one top quasihole and 2n+1 bottom
quasiparticles are created. It is easy to see that

Qt
h + nQb

p = −e , Qt
h + (2n+ 1)Qb

p = −e , (4)

which yield Qt
h = −e and Qb

p = 0 for all n. By studying the consequences of removing one

electron, we find that Qt
p = e and Qb

h = 0 for all n. Fractional charge is commonly viewed as
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Figure 3: Numerical results about the Ψ221
−1,1 state. The system parameters are

N t
e = 6, N b

e = 6, N t
φ
= 11, N b

φ
= 21 in panels (a-c). (a) The energy spectrum at

D = 0.7. The exact eigenstates are represented by lines, the trial states are rep-
resented by dots, and their overlaps are displayed as numbers. (b) The overlaps
between the exact ground state and the trial state at different D. (c) The neutral
gaps at different D. (d) Finite size scaling of the neutral gap versus the total number
of electrons Ne = N t

e + N b
e at D = 0.7.
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Figure 4: Numerical results about the Ψ221
−1,2 state. The system parameters are

N t
e = 6, N b

e = 6, N t
φ
= 11, N b

φ
= 17 in panels (a-c). (a) The energy spectrum at

D = 0.7. The symbols are the same as in Fig. 3. (b) The overlaps between the ex-
act ground state and the trial state at different D. (c) The neutral gaps at different
D. (d) Finite size scaling of the neutral gap versus the total number of electrons
Ne = N t

e + N b
e at D = 0.7.
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a hallmark of FQH states, and ingenious experimental methods have been designed to verify
theoretical predictions [57–60]. It should be possible to demonstrate the absence of fractional
charge in the Ψ221

−1,n states once they are realized.
The information about the charged excitations can be used to derive the Hall conductance

of the system using the Laughlin flux insertion argument. For the double monolayer system,
two types of measurements have been performed [25, 26]. The first one is the usual Hall
conductance σx y when the current passes through both monolayers. The Laughlin argument
for this quantity considers the process in which one magnetic flux is adiabatically inserted at
the center of both monolayers, which creates one top quasiparticle and n bottom quasihole.
The total charge pushed to the boundary of the system is −e so we have σx y = e2/h. Another
one is the Hall conductance matrix

�

σdrive
t,x y σ

drag
x y

σ
drag
x y σdrive

b,x y

�

, (5)

when the current passes through only one monolayer. Its diagonal elements are the drive con-
ductance of the monolayer with current and off-diagonal elements are the drag conductance
of the monolayer without current. Their values can be extracted if one considers the process
in which one magnetic flux is inserted in only one monolayer. To this end, Eqs. 4 should be
refined to be

Qt
h + nQb

p = −e↑ , Qt
h + (2n+ 1)Qb

p = −e↓ , (6)

and similarly for Qt
p and Qb

h. The subscripts ↑ and ↓ are appended to track the orgin of the
electron in the sense that the solutions

Qt
p =
(2n+ 1)e↑ − ne↓

n+ 1
, Qb

p =
e↑ − e↓
n+ 1

,

Qt
h =
−(2n+ 1)e↑ + ne↓

n+ 1
, Qb

h =
−e↑ + e↓

n+ 1
(7)

can tell us the “composition" of a charged excitation in terms of the electrons. If one magnetic
flux is inserted at the center of the top monolayer, one top quasiparticle is created, which
means that (2n + 1)e/(n + 1) charge is pushed to the boundary in the top monolayer and
−ne/(n+ 1) charge is pushed to the boundary in the bottom monolayer. If one magnetic flux
is inserted at the center of the bottom monolayer, n bottom quasihole is created, which means
that −ne/(n+1) charge is pushed to the boundary in the top monolayer and ne/(n+1) charge
is pushed to the boundary in the bottom monolayer. This analysis yields the Hall conductance
matrix

e2

h

�

2n+1
n+1 − n

n+1
− n

n+1
n

n+1

�

, (8)

and its inverse is the Hall resistance matrix.
The topological properties of Eq. (3) can be described succinctly using the Chern-Simons

theory with Lagrangian L= 1
4πε

λµνKI J aI
λ
∂µaJ

ν−aI
λ

j I
λ
, where aI is an emergent gauge field and

j I is the quasiparticle current [61]. The K matrix is the central object in this formalism, which
can be motivated in the following manner. If we have two decoupled monolayers with wave
functionsΦt

−1({z
t
j }) andΦb

n({z
b
j }), its effective theory has a diagonal K matrix with one element

being −1 and n elements being 1. The flux attachment is achieved by adding another matrix
which has 1 in its first row and first column (associated with the interlayer flux attachement)
and 2 in other places (associated with the intralayer flux attachment). This yields

K =

�

1 1
1 3

�

, (9)
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for n= 1 and

K =





1 1 1
1 3 2
1 2 3



 , (10)

for n = 2. Each excitation of the system is associated with an integer vector l. The charges
of the excitations can be probed using a U(1) gauge field Aµ that couples to the excitation
current. This results in an additional term L2 =

e
2πħhε

λµν t IAλ∂µaIν in the Lagrangian density
with t called the charge vector. The U(1) charge of an excitation l is −etT K−1l. The Hall
conductance with respect to Aµ is σx y = e2tT K−1t/h. The Chern-Simons theory predicts that
the self-statistics angle of the excitation l is θ = πlT K−1l. In contrast to fractional charge, ex-
perimental confirmation of fractional braid statistics is much more challenging, but important
progresses along this direction have been reported in the past year [62, 63]. For the n = 1
case, l is (∓1,0)T for the top quasiparticle/quasihole and is (0,±1)T for the bottom quasipar-
ticle/quasihole. For the n = 2 case, l is (∓1,0, 0)T for the top quasiparticle/quasihole and is
(0, 0,±1)T for the bottom quasiparticle/quasihole. The charges of these excitations and the
Hall conductance of the system are reproduced in the field theory formalism. One also con-
cludes that the elementary excitations have fractional braid statistics. The self-statistics angles
are 3π/2,π/2 for n= 1 and 5π/3, 2π/3 for n= 2.

4 Conclusions

In summary, we have studied double monolayer graphene with unequal areas. A class of topo-
logical states are proposed and their experimental relevance is investigated. The properties of
ground states and elementary excitations are analyzed using numerical calculations, compos-
ite fermion theory, and Chern-Simons field theory. The emergence of these states break away
from the well-established paradigm that fractional charge and fractional statistics coexist in
FQH systems. In addition to the n = 1, 2 cases studied above, we believe that the n = +∞
case would also be very interesting. The precise meaning of n= +∞ is that the effective mag-
netic fluxes for the composite fermions in the bottom monolayer vanish. The simplest state for
fermions in zero magnetic field is a Fermi sea, which leads to a non-Fermi liquid of electrons
in one-component systems at half filling [35, 36]. One can reasonably expect that the same
scenario occurs in the two-component Ψ221

−1,+∞ state. This paper relies on the existence of elec-
tric charge conservation. In general, the interplay between symmetry and topological order is
an important topic that is still under investigation [64, 65]. The numerical calculations were
performed on the sphere, but actual systems have open boundary. It is natural to ask if the
difference between the monolayer areas has significant effects. This question calls for a careful
analysis of the electron density inhomogeneity and the confinement potential. The answer is
likely to depend on the ratio N t

e /N
b
e and is left for furture studies. We hope that this work

would motivate further experiments on double monolayer graphene and related systems.
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A Hamiltonian Matrix Elements

This Appendix gives the coefficients Fσττσm1m2m4m3
in the second quantized many-body Hamilto-

nian. The particles on a sphere experience a radial magnetic field generated by a magnetic
monopole at the center. If the magnetic flux through the sphere is Nσ

φ
, the LLL single-particle

wave functions are [42]

ψ
Nσ
φ

m (θ ,φ) =





Nσ
φ
+ 1

4π

� Nσ
φ

Nσ
φ
−m

�





1
2

uNσ
φ
/2+mvNσ

φ
/2−m , (11)

where θ and φ are the azimuthal and radial angles in the spherical coordinate system,
u = cos(θ/2)eiφ/2, v = sin(θ/2)e−iφ/2 are spinor coordinates, and m is the z component
of the angular momentum. The magnetic length is related to the radius of the sphere by
Rt = `B

q

N t
φ
/2 and Rb = `B

Ç

N b
φ
/2. The product of two wave functions can be expanded as

ψ
Nσ
φ

m1
ψ

Nτ
φ

m2
= (−1)N

σ
φ
−Nτ

φ

�

(Nσ
φ
+ 1)(Nτ

φ
+ 1)

4π(Nσ
φ
+ Nτ

φ
+ 1)

�1/2

×

®

Nσ
φ

2
,−m1;

Nτ
φ

2
,−m2

�

�

�

�

Nσ
φ

2
+

Nτ
φ

2
,−m1 −m2

¸

ψ
Nσ
φ
+Nτ

φ

m1+m2
. (12)

The Coulomb potential can be expressed using spherical harmonics as

1

(|r1 − r2|2 + D2)1/2
=

1

[(Rt)2 + (Rb)2 − 2RtRb
br1 ·br2 + D2]1/2

(13)

=
4π
p

RtRb

+∞
∑

L=0

L
∑

M=−L

X L+1/2

2L + 1

�

ψ0
LM (θ1,φ1)

�∗
ψ0

LM (θ2,φ2) , (14)

where X is the small solution to

X 2 −
�

(Rt)2 + (Rb)2 + D2

RtRb

�

X + 1= 0 . (15)

These relations help us to obtain

Fσττσm1m2m4m3
= δm1+m2,m3+m4

4πe2

ε
p

RtRb

min(Nσ
φ

,Nτ
φ
)

∑

L=0

X L+1/2

2L + 1
(−1)

Nσ
φ
+Nτ
φ

2 −m1−m4S1
LS2

L , (16)

where the two coefficients S1,2
L are defined by

h

ψ
Nσ
φ

m1

i∗
�

ψ0
LM

�∗
ψ

Nσ
φ

m3
=

Nσ
φ
∑

L1=0

(−1)
Nσ
φ
2 −m1S1

L1

�

ψ0
LM

�∗
ψ0

L1,m3−m1
, (17)

h

ψ
Nτ
φ

m2

i∗
ψ0

LMψ
Nτ
φ

m4
=

Nτ
φ
∑

L2=0

(−1)
Nτ
φ
2 −m4S2

L2

�

ψ0
L2,m2−m4

�∗
ψ0

LM . (18)
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