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Reconstructing spectral functions from propagator data is difficult as solving the analytic

continuation problem or applying an inverse integral transformation are ill-conditioned
problems. Recent work has proposed using neural networks to solve this problem and
has shown promising results, either matching or improving upon the performance of
other methods. We generalize this approach by not only reconstructing spectral func-
tions, but also (possible) pairs of complex poles or an infrared (IR) cutoff. We train our
network on physically motivated toy functions, examine the reconstruction accuracy and
check its robustness to noise. Encouraging results are found on both toy functions and
genuine lattice QCD data for the gluon propagator, suggesting that this approach may
lead to significant improvements over current state-of-the-art methods.
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1 Introduction

For non-perturbative approaches to Quantum Field Theory, determining the analytical struc-
ture of Euclidean space correlation functions is difficult. Real physics is happening in
Minkowskian space, but for computational reasons, one is frequently forced to work in Eu-
clidean space, thinking in particular about lattice Monte Carlo simulations which require a
positive weight function [1]. The analytical continuation of these Euclidean functions into the
complex plane towards Minkowskian space becomes a harder problem than for perturbative
approaches, where one can rely on the Wick rotation.

A lattice Monte Carlo Euclidean propagator is only available in a discrete form and it is
well-known that the analytical continuation is only unique when departing from a function
over an open subset of C. For two-point correlation functions, the information we want to
access is encoded in the spectral density p(w), which is linked to the Euclidean propagator by
the Kéllén-Lehmann spectral representation

D(p) =f PL@) ), @

2 2
s wWetp

with p,, the momentum variable and o an IR cutoff, possibly zero. Strictly speaking, the
foregoing spectral representation can be derived on quite general grounds for at least physical
(observable) particles, in which case it necessarily holds that p(w) > 0 [2].

In strongly coupled non-Abelian gauge theories, with Quantum Chromodynamics (QCD) as
the archetypical example realized in nature, one encounters the phenomenon of confinement
[3,4]: the elementary particles are no longer part of the physical spectrum, but appear in
bound states, for example a proton built from 3 quarks. Unfortunately, there is far less known
about the possible spectral properties of these confined particles.

Traditionally, reconstructing spectral functions from propagator data can be done through
e.g. Bayesian inference [5], of which a variant is the Maximum Entropy Method [6]. It reg-
ularizes the inversion by incorporating prior domain knowledge on the shape of the spectral
function, including imposing positivity. Another approach to obtain the Kéllén-Lehmann spec-
tral density is given in Dudal et al. [ 7], which regularizes the problem by implementing a ver-
sion of Tikhonov regularization supplemented with the Morozov discrepancy principle. This
can also cover the case of non-positive p(w), while positivity can be imposed via an appro-
priate constraint minimization [8], see [9] for a concrete application. Another option is to
directly solve, in a approximative fashion, the quantum equations of motion in the complex
momentum plane [10-12].

In this paper we focus on a generalized spectral representation for the propagator, where
pairs of complex conjugate simple poles (Eq. (2)) are also allowed, next to a non-positive
spectral density p(w). Such generalizations have been considered in literature before [13-15]
on theoretical grounds, and are exhibited in e.g. the gluon propagator of the massive Yang-
Mills model [16], which serves as an effective description of the gluon [17]. Other evidence
in favour of such poles can be found in, for example, [11,18,19].

When sets of complex conjugate poles are present, the numerical reconstruction prob-
lem becomes more difficult. Binosi et al. [20] proposed an inversion method using rational
function (Padé) interpolation, see also [21]. Their findings suggest that the presence of the
complex conjugate poles is a characteristic of the gluon 2-point function and they were able
to reconstruct both spectral functions and poles with reasonable accuracy.

Recently, using supervised machine learning and specifically feedforward neural networks
to reconstruct spectral functions from propagator data has seen more attention thanks to its
superior performance. Examples are Fournier et al. [22] and Yoon et al. [23] which both
trained neural networks to perform analytic continuation on normalized sums of Gaussian
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distributions. Kades et al. [24] and Wang et al. [25] used linear combinations of unnormal-
ized Breit-Wigner peaks as their mock spectral functions. In comparison, we propose a more
intricate spectral function and reconstruct not only the spectral function, but also pairs of com-
plex poles and an IR cutoff, generalizing this approach and as such considerably extending its
potential applicability.

The remainder of this paper is structured as follows. In Section 2 the general spectral
representation is given and our method of data generation is illustrated. In Section 3 we
explain the architecture and workings of our neural network. Section 4 examines the quality
of the reconstruction, its robustness to noise and how well our method works on genuine
lattice QCD data. Finally, a conclusion and possible avenues for further research are explored
in Section 5.

2 General spectral representation

We consider a generalized Kéillén-Lehmann spectral representation in the presence of n com-
plex conjugate pairs of simple poles, located at q;, q; (€ C) with residues R;,R} (€ C) (Eq. (2)).
Generally a spectral function can be obtained from the inverse integral transformation or by
analytic continuation of its Euclidean propagator through Eq. (3), where p(w) is the non-
positive definite spectral density function and € — 07 [16]. We will attempt to reconstruct the
spectral function p(w), the poles g;,q;, the residues R;, R} and the potential IR cut-off o from
propagator data D(p?) by training an artificial neural network on toy functions. Concretely,
we will consider

= _plw) R
D(p2)=L s LCRR Z 2+q Zp“q?, )

1

whereby, thanks to Cauchy’s theorem,

p(w)=2Im D(—i(w +i€)). 3

2.1 Data generation

In order to generate toy spectral functions, we used Eq. (4)-(6). We expect p(w) to be com-
posed of positive and negative peaks with certain widths. Thanks to asymptotic freedom

in the ultraviolet', we know that asymptotically, p(w) - ——%5— for w — +00 and
wzln(%)uy

Z >01[7,26,27]. We propose p(w) = pi(w) + py(w), where p,(w) are Breit-Wigner forms
multiplied by a factor which gives the desired asymptotes and p,(w) is a sum of Gaussian
distributions and derivatives of such distributions. Note that the addition of p,(w) will not
change the UV tail for & — +00. For ; and f8; — 0, these are regularized §- and &’-functions.
The latter were considered as possible generalized spectral ingredients in [28].

We then integrate these spectral functions in Eq. (7) and add pairs of complex conjugate
simple poles. The parameters’ values can be found in Eq. (8)-(12), where b ; and dj are non-
negative without loss of generality. These parameter ranges were based on previous works’
estimates [ 19-21] and preliminary experiments which found that larger ranges rarely fit the
imposed constraints. There are namely four constraints (Eq. (13)-(16)): first that the propa-
gator must be positive, then two constraints that prevent a division by zero and a final one that

!Meaning that the coupling constant becomes small at high energies, indicating that perturbation theory be-
comes applicable.
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encodes the asymptotic behavior of the spectral function for small frequencies in the presence
of complex poles [29].

N, 2
p1(w) = ln(%ﬁ(; B.co? f(iz_qu)’ )
Ny (2—a;)? (0?=d;)?
pa(@)=Y e P +ane B %)
i=1
p(w) = pi(w)+ py(w), (6)
O a+ib;  <h il
D(pz)zja w? + p2 d(w™) + Z p2+c; +id; Zm’ @

with (all quantities are expressed in appropriate powers of the unit GeV)

13
Y = 22 and we choose Z =1, m? €[2,5], A2 €[1,4], N; €[1,3], (8)
A; €[-0.5,0.5], {B;,C;} €[-5,5], ©
{NZ)N3} € [15 3]: {Yi: fl} € [_05’05]: {ai: /jbdi: /31} € [1’5]) (10)
o€[0,11, N,€[1,3], q; €[-1,1], b; €[0,1], (11)
¢; €[0.2,0.35], d; €[0.3,0.75], p €[0,8.25], w? €[0.01,10] (12)
and with constraints:
D(p*) >0, (13)
w? + m?
Biw® +(C;i— w?)* #0, (15)
N a.+ib; Nioq.—ib;
lim 8.. D(p?) = —x lim & + lim & AN T
pzl_r>%+ p? ) Ttw1_1>161+ o P() pzl_r>%+ p? (;p2+cj+idj j=Z1p2+Cj_idj
N a.+ib; Ns o q.—ib;
= —x lim J, p(w)— I ] . J (16)
w0+ @ ; (c; +id;)? jZl:(cj—ldj)Z

The latter constraint is a generalization of the one presented in [29] and can be readily proven
along the same lines. Using the residue theorem and following [16], one can also derive yet
another constraint that any suitable spectral function should obey

(os) Ny
J p(w)d(w?)+2) a;=0. (17)
o j:l
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In general, lattice Monte Carlo propagator data needs proper renormalization. Here we
will follow the standard procedure of working in a natural renormalization scheme based on
the asymptotic freedom, where we will set the propagators equal to their tree level value at
u =1 GeV, i.e. we impose the so-called momentum subtraction scheme,

1

pr=y2 = ‘lﬁ . (18)

D(p?)|
The same condition has been imposed on our training data. We chose to uniformly sample each
parameter four times in each of their respective ranges and chose N; = N, = N3 = N, = 3. Note
that we fixed the amount of poles to three but still allow for less poles by allowing their residues
(a; and b;) to be equal to zero. We then took the Cartesian product of all possible parameter
values, removed combinations that did not satisfy the constraints, sampled randomly out of
the resulting combinations (depending on the size of the desired data set), and calculated the
propagator and spectral density function from the chosen parameters. The spectral function
is calculated discretely on 200 uniformly spaced points from w? = 0.01 to w? = 10, while the
propagator is calculated on 100 uniformly spaced points between p = 0 to p = 8.25. 75%
of the data went into the training set, 12.5% went into the validation set, and the last 12.5%
went into the test set. We chose to use two differently sized training data sets, namely one of
size N = 10,000 and one of size N = 30,000 to examine the impact of the size of the training
data on the performance of the neural networks.

3 Neural network approach

As non-perturbative lattice QCD propagator data comes from Monte Carlo sampling, there
is usually noise affecting the measurement which is not (yet) present in our toy functions.
The available experimental samples display a relative error between 10~ and 1072, with an
average of around 0.5 x 1073, Therefore we added Gaussian noise to the raw propagator
values with a standard deviation of 0.5 x 10~ before training our neural network, which is
more realistic than using exact values and makes our network more robust to noise.

3.1 Neural network architecture

Our neural network consists of an input layer, a number of hidden layers and an output layer.
The input layer consists of 100 input neurons (for the 100 propagator sample points), while
the output layer consists of 213 output neurons (200 for the spectral function sample points,
12 for the 3 possible complex poles and their residues, and one for the IR cutoff). We used
batch normalization [30] and Rectified Linear Units (ReLU) [31] between layers in order to
make the network more stable and to allow the network to find a non-linear relation between
the input and output. The Adam optimizer [32] was used together with a dropout rate of
10% in the training process in order to further improve performance [33]. The mean squared
error (MSE) was used as a loss function (Eq. (19)), where the squared difference is calculated
between the reconstructed and actual spectral function, both evaluated at col.z, between the
reconstructed and the actual poles, and between the reconstructed and actual IR cut-off.

MSE =
200 3 B B
D (o@D —pleD)?+ 2 ((a—d)* + (=5 + (¢;— )+ (d;—d)?) +(0—6)2,

i=1 =1
(19)
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Note that other loss functions could also be used, for example by weighting the errors on
the poles more heavily or by reconstructing the propagator through Eq. (7) and comparing this
to the original propagator. This was not explored in this paper but Kades et al. [24] provide a
thorough analysis on three different loss functions, namely spectral function, propagator and
parameter loss. To determine how many hidden layers and how many neurons should be in
each layer, we trained the network on N = 10,000 and N = 30,000 training data entries for
different combinations of hidden layers and amount of neurons and compared the MSE on
the validation set at the end of training. We used a batch size of 100 and trained during 100
and 300 epochs respectively. The results of this analysis can be seen in Fig. 1, where the
network with 6 hidden layers and 600 neurons per layer has the lowest validation MSE for
N = 10,000 and the network with 8 hidden layers and 400 neurons per layer has the lowest
MSE for N = 30,000. As the latter has a higher MSE than the former, this suggests that the
network trained on 30,000 functions is overfitting. Similarly, training the network on less than
10,000 functions reduces performance and underfits the data. We therefore continue the rest
of this paper by using the neural network with the lowest validation MSE, namely the one with
6 hidden layers and 600 neurons per layer, which was trained on 10,000 functions 2. Note that
our neural network has only 2 million parameters, compared to e.g. the networks considered
in [24] which have at least 41 million parameters, showcasing the efficiency of our model.
We used the PyTorch open source machine learning framework [34] to implement our neural
networks and ran all our experiments on an Intel i7-8750H CPU clocked at 2.2 GHz and an
NVIDIA GTX 1050 GPU.

0.0475 A
0.0500 1
0.0450 A
0.0475 4
0.0425 - 0.0450 -
w w
(%2} (%2}
= 0.0400 = 0.0425
= c
2 k)
® 0.0375 ‘@ 0.0400
he) e}
£ 0.0350 £ 0.0375 A
0.0325 - 0.0350 4
0.0325 4
0.0300 A
2 3 4 5 6 7 8 9 10 é é 4‘1 é é % 5‘3 ‘.‘) 1‘0
Amount of hidden layers Amount of hidden layers
(a) N =10,000. (b) N =30,000.

Figure 1: Validation MSE at the end of the training period for different amounts of
hidden layers, neurons per layer and training data size N.

4 Results and discussion

We will now illustrate the performance of our neural network which was trained on a training
set of size N = 10,000 and tested on a testing set of size 1,700. Each test propagator was put
through the neural network and the reconstruction (consisting of a spectral function, poles
and an IR cutoff) was compared to the original values using a normalized variant of the mean
absolute error (MAE). All tested propagators were then sorted according to the error of the
reconstruction and five reconstructions were plotted, namely the best, the 25™ percentile, the

2The used data set, trained neural network and source code is available at
https://github.com/thibaultLe/SpectralANN
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Figure 2: A selection of spectral functions, sorted according to their MAE: the best
(top row), the 25th percentile, the median, the 75th percentile, and the worst (bot-
tom row).

median, the 75™ percentile and the worst reconstruction. The propagator, spectral function,
IR cut-off o, poles and residues are plotted. This can be seen in Fig. 2. As an additional point
of reference, we also plotted the reconstructed propagators, which were calculated by using
Eq. (7) and using the reconstructed spectral functions, poles and IR cutoffs as input, but this
was not used in the calculation of the error ranking.

The first thing we see in Fig. 2 is that the spectral functions are very well approximated
even until the 75th percentile of best reconstructions. The locations of the peaks and troughs
match, but the scale is sometimes over- or underestimated. The poles and residues are almost
all in the right positions and the reconstructed propagators lean very close to the originals. We
can see an interesting facet of the problem in the last (worst) reconstruction: the reconstructed
propagator matches the original almost perfectly, yet the reconstructed spectral function and
poles do not match their ground truth. This is due to the fact that multiple different com-
binations of spectral functions and poles can lead to the same propagator. The number of
reasonable yet different solutions increases when the noise on the propagator increases, so it
is crucial to minimize this noise. Besides comparing the reconstruction to the original function,
there is another way of quantifying the quality of our method. We can also analyze whether
or not the reconstructions of our neural network satisfy the constraints that we imposed on
our training set in Eq. (13), (16) and (17). Of the 1,700 reconstructed propagators, 1644
satisfied constraint (13), only 335 satisfied constraint (16) and 1624 satisfied constraint (17).
In total, 311 reconstructions satisfied all constraints. All functions illustrated in Fig. 2 satisfy
constraints (13) and (17), but only the second to last one satisfies constraint (16). We cannot
conclude that satisfying the constraints is a good predictor of reconstruction accuracy.
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Figure 3: The robustness to noise of the five propagators from the previous figure.

4.1 Robustness to noise

Before testing our network on real data, we need to make sure that it is robust to the noise
inherent to the Monte Carlo sampling of propagator data. In order to test our network’s robust-
ness to this noise, we applied multiplicative Gaussian noise to the raw propagator values from
Fig. 2 with a standard deviation of 1072, 100 separate times. We then calculated and plotted
the mean spectral function reconstruction and the standard deviation around the mean. We did
the same thing for the poles and residues, but plotted all reconstructions in light red instead of
a standard deviation. The results of this analysis can be seen in Fig. 3. Again as an additional
point of reference, we also calculated the propagator for each of these 100 reconstructions and
then plotted the mean and standard deviation of these reconstructed propagators. However,
because the standard deviations were too small to be noticeable on the figure, we multiplied
them by 5.

Fig. 3 shows very promising results, as the mean reconstructions still fit well to the original
functions. The standard deviations are small, but larger in the areas that the difference with the
original function is larger. This is a useful property as it can be used to quantify the uncertainty
of the reconstruction. The poles and residues are also not susceptible to noise because they
stay around the mean, which is close to the original (except for the worst reconstructions).

4.2 Testing on genuine lattice QCD data

We have demonstrated that our neural network is able to reconstruct spectral functions and
poles from our artificially generated dataset, and do so with good robustness to noise. We
can now test our network on gluon propagators generated from Monte Carlo sampling [21].
Two configurations were used, namely one with 64* and 20,000 samples, and one with 80*
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and 18,000 samples. First, linear interpolation was used on the original propagator to match
our input format, which makes sure the sample points are 100 uniformly spaced points be-
tween p = 0 and p = 8.25. Next we reconstructed the spectral function, poles and residues
for all of the samples in each configuration. From this reconstruction, we again calculated the
propagator using Eq. (7). There are no known spectral function, poles or residues for these
samples, so we have to rely on the similarity of the reconstructed and the original propagator
in order to compare the quality of reconstructions. The reconstructions can be seen in Figure
4 and 5 for the 64* and 80* configurations respectively. As there was not a lot of variation in
the reconstructions, only the best, the median, and the worst are illustrated. We see that the
reconstructed propagators fit very well to the original, except in the worst cases. The spec-
tral function, poles and residues cannot be compared to their original values, but show good
robustness to noise in both configurations. Again we can check how well the reconstructions
satisfy the constraints of Eq. (13), (16) and (17). Unlike the artificial test set, all reconstruc-
tions satisfied constraints (13) and (17), while only 0.08% and 7.5% satisfied constraint (16)
for the 64* and 80* configuration respectively. As for the functions shown in Fig. 4 and 5, they
all satisfied constraints (13) and (17), but only the first two in Fig. 5 also satisfied constraint
(16). We note that the estimates for the location of the complex conjugate pole masses are
consistent with those in e.g. [20,21].
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—==- Reconstructed propagator
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Figure 4: A selection of reconstructed spectral functions from 20,000 gluon propa-
gators generated from Monte Carlo sampling (64* configuration), sorted according
to their MAE: the best (top row), the median, and the worst (bottom row).
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Figure 5: A selection of reconstructed spectral functions from 18,000 gluon propa-
gators generated from Monte Carlo sampling (80* configuration), sorted according
to their MAE: the best (top row), the median, and the worst (bottom row).

5 Conclusion

In this paper we have shown that the neural network approach to the analytic continuation
problem can be generalized to not only reconstruct non-positive spectral functions, but also
pairs of complex poles, their residues and IR cutoffs from propagator data. By using physically
motivated toy spectral functions, we generated training data sets and trained a feedforward
neural network on these functions. In contrast to alternative approaches [24,35], our network
assures that the output spectral function will have the correct UV asymptotics, as dictated
by the renormalization group. We examined the performance of different neural network
architectures and illustrated their reconstruction accuracy on our data sets with unseen testing
data. Most reconstructions were very close to the original functions. The robustness to noise on
the propagator was examined and promising results were found. We also applied our network
to genuine lattice QCD data for the gluon propagator [21] to further investigate its behaviour
in the complex momentum plane. Our findings suggest that a neural network, trained on
toy propagators, can recognize if and where pairs of complex poles are present which can
be of great importance to expanding our knowledge of confined gluon 2-point functions. Its
computation speed is also much faster than traditional methods, as highlighted in [35]. Future
work could examine the use of different neural networks (e.g. convolutional neural networks)
or using a different loss function (e.g. weighting the loss function). Increasing the scope of
the study by allowing for a wider parameter range and an even more diverse training set
can also be interesting. Another interesting topic would be to find out if the well-understood
confinement-deconfinement transition in compact QED could be connected to a change of the
associated spectral density of the photon, using the recent data of [36], perhaps in terms of
having, or not, complex conjugate poles. Interesting lattice evidence linking confinement to
violations of spectral positivity was presented very recently in the same model, [37].
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