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Abstract

Recently, we introduced the “Newman-Penrose map”, a novel correspondence between
a certain class of solutions of Einstein’s equations and self-dual solutions of the vacuum
Maxwell equations, which we showed was closely related to the classical double copy.
Here, we give an alternative definition of this correspondence in terms of quantities
that are defined naturally on twistor space, and a shear-free null geodesic congruence
on Minkowski space whose twistorial character is articulated by the Kerr theorem. The
advantage of this reformulation is that it is purely geometrical in nature, being mani-
festly invariant under both spacetime diffeomorphisms and projective transformations
on twistor space. While the original formulation of the map may be more convenient for
most explicit calculations, the twistorial formulation we present here may be of greater
theoretical utility.
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1 Introduction

Some of our deepest insights into gauge theories and gravity have emerged from the study of
correspondences relating the two. One such promising relationship is the double copy, which
can be summarized schematically by the equation

gravity = gauge ® gauge. (D

This general structure has been revealed in many contexts over the past few decades. The
prehistory of the double copy began in 1986, when Kawai, Lewellen and Tye [1] realized
that there was a close relationship between the tree-level amplitude of a closed string and
the square of the tree-level amplitude of an open string. The subject began in earnest a little
more than twenty years later, when Bern, Carrasco and Johansson [2] observed that a similar
relationship existed between perturbative amplitudes in gauge theories and gravity. Their
results have now been proven at tree-level [3], and a growing body of evidence suggests that
they can be extended beyond tree-level in perturbation theory [4-11]. With such promising
evidence at the amplitude level, it is natural to look for a classical formulation of the double
copy in order to understand how fundamental this relationship between gauge theory and
gravity is.

Although there have been attempts at a Lagrangian formulation [12-14], much recent
success has been found realizing double copies in a classical setting, as maps between ex-
act solutions of gauge theories and gravity. Several such maps have been proposed and ex-
plored [15-40], and many of them share the common feature that null geodesic congruences
play a prominent role. For example, in the Kerr-Schild double copy of [15], the gauge field is
itself the dual of the tangent vector to a geodesic null congruence. The Newman-Penrose map
introduced in [16] also has this flavor, where the gravity solutions one considers are of Kerr-
Schild type, and the Kerr-Schild vector is assumed to be tangent to a shear-free null geodesic
congruence (SNGC) with non-vanishing expansion. In the Weyl double copy of [17], the ex-
istence of an SNGC is guaranteed by virtue of the Goldberg-Sachs theorem for algebraically
special spacetimes [41]. In light of the Kerr Theorem [42-45], which realizes any SNGC in
Minkowski space as the solution of an equation defined by the vanishing of a holomorphic,
homogeneous function of twistor variables, it is perhaps not surprising that the Weyl double
copy was recently given an elegant twistorial formulation [46,47] that can also accommodate
algebraically special linearized solutions of any Petrov type.

One might wonder whether the Newman-Penrose map can also be given a twistorial for-
mulation. The primary purpose of this article is to answer this question in the affirmative:
We provide a twistorial formulation of the Newman-Penrose map that is manifestly invariant
under both spacetime diffeomorphisms and projective transformations on twistor space.

This paper is organized as follows: In Section 2 we review the Newman-Penrose map,
originally defined in [16]. In Section 3 we give an overview of the relevant aspects of the
two-component spinor and twistor formalisms, and in Section 4 we present the twistor space
version of the Newman-Penrose map. Finally, we conclude in Section 5 and discuss the conse-
quences of the choice of SNGC normalization in Appendix A.

2 The Newman-Penrose map

2.1 Kerr-Schild spacetimes

Here we review the salient features of the Newman-Penrose map as defined in [16]. We begin
by recalling some details about Kerr-Schild spacetimes and their construction in the Newman-
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Penrose formalism. A Kerr-Schild solution of Einstein’s equations is one that can be written in
the form

g,u,v:nuv'i'Vlulv: (2)

where 7, is a flat metric, [, is a null vector,! and V is a scalar function. If we assume that
[* is geodesic, shear-free, and expanding (see section 3.2 of [16] for a concise discussion of
shear and expansion) then we can write simple expressions defining a null tetrad for the metric
(2) [48,49]:

~

0, — 93, —J; + ®dJ,,

n = 9,—1vl,
m = 35—‘1’@1,
m = 9 —%9,, (3)

where u, v are real light-cone coordinates, and ¢, { are complex conjugate coordinates related
to the usual Cartesian coordinates (t, x, y,z) by

u=(t—2), v=_(t+2), (=_(x+iy), 4
and ®(u, v, {, ) is a complex scalar. In these coordinates, the flat metric takes the form
nwdx“dxv=2(dudv—dldf). (5)
In terms of the null tetrad (3), we can write the inverse metric as
gt =n"+n"l" —m*m” —m*m” ="’ —VI*TY. (6)

The shear-free and geodesic conditions on [* are equivalent to the following nonlinear partial
differential equations for ®:

b, =0b,, b;=0b,. )

The equations (7) together imply that the complex scalar ® is harmonic with respect to the
flat metric 7),,,, so that
D0q> == Z(q),uv _q)’gg) == 0 . (8)

When the spacetime solves the vacuum Einstein equations, the function V can be solved for
in terms of &, so that any ® satisfying (7) completely specifies the solution up to constants of
integration.

2.2 Newman-Penrose map

The spin-raising operator
Q

21€

k=———(dva,+dl3,) 9
was used in [15,22] to define the self-dual double copy. Here we have included the constants
Q, representing the charge, and €, representing the vacuum permittivity, to directly map to
solutions of Maxwell’s equations. In that work, the authors justified the form of the operator
by observing that it satisfied certain properties that made it analogous to a “momentum-space"
version of the Kerr-Schild vector [#. However, this is not the unique operator possessing those

Note that if l,, is null with respect to either g, or n,,, then it is null with respect to both.
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properties, and the particular choice (9) is not justified over any other similar choice of oper-
ator. In fact, other possible choices of operator can easily be found, e.g., by substituting either
u > v, or { < {, or both, in (9).2

It is not a new observation that spin-raising operators such as the one appearing in (9) map
solutions of the wave equation (often called ‘Hertz-type potentials in this context) to solutions
of Maxwell’s equations. In addition to their appearance in the self-dual double copy [15,22],
spin-raising operators of a very similar form have also appeared in [50], in which scattering
of plane wave solutions was studied in the context of the double copy. Much earlier, a rather
general spinorial version of the spin-raising operators that takes a solution of the zero rest-
mass equations with spin s to a solution of the zero rest-mass equations with spin s + 1/2
was described by Penrose in [51] (see also [52]); in fact, this construction was used to give
a spinorial description of the Newman-Penrose map in appendix B of [16]. It has also been
known for some time that spin-raising and spin-lowering operators that map solutions of the
zero rest-mass equations to solutions with arbitrarily raised or lowered spins can be associated
with a choice of twistor of an appropriate rank and type (see section 6.4 of [53], for example).
While all of these structures are related to the Newman-Penrose map, we emphasize that the
identification of a complex solution of the wave equation associated with a given real solution
of the Einstein equations of Kerr-Schild type, upon which such a spin-raising operator may act
to generate a solution of the vacuum Maxwell equations, is a novel feature of the Newman-
Penrose map. The connection with twistor theory that we present here is similarly novel:
while the twistorial spin-raising operators of [53] depend on an arbitrary choice of twistor,
the construction we present here is defined for a subset of twistors, and is independent of the
choice of twistor within that subset.

In [16] we used this operator to define the Newman-Penrose map as follows: Given a Kerr-
Schild spacetime with an expanding, shear-free Kerr-Schild vector, we can fix the null tetrad
in the form (3), and read off the complex function ®, which satisfies the non-linear partial
differential equations (7) and consequently is harmonic. Then the gauge field defined by

A=kd (10)

is necessarily a self-dual solution of the vacuum Maxwell equations, since we have
A:—&(npgdeudg), (11)
2meg ’

from which we can compute the field strength two-form F = dA:

Q

F=——
27'[60

(@ yedundv—= pdv AdL+ @ dundl + &, dC AdS), (12)
where we used ® ,, =%,z = %DOCD = 0. The field strength in (12) is self-dual with respect to
*0, the Hodge star operator associated with the background metric 7,,,—that is, F satisfies

F =ixyF, (13)
which, together with the fact that F is exact, implies the vacuum flat-space Maxwell equation
d*,F=0. (14)

The primary purpose of this article is to give a purely geometric interpretation of the origin of
the spin-raising operator (9) and ¢ in terms of structures naturally defined on projective twistor

2In [40], it was pointed out that this operator, which they used to study the symmetries of the self-dual sectors of
Yang-Mills theory and gravity, is closely related to the area form on certain two-dimensional (complex) subspaces
of (complex) Minkowski space.
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space. This gives a geometric foundation to the coordinate-dependent description which we
have reviewed in this section, and we hope that it will provide some additional insight on the
self-dual double copy of [15,22], and the recent discovery of the twistorial origins of the Weyl
double copy based on the Penrose transform [46,47].

3 Aspects of twistor theory

Twistors are natural objects for studying null geodesics in complexified Minkowski space CM.
Here we briefly review the relevant aspects of twistor theory, focusing on the relationships
between geometric structures on CM, and the corresponding geometric strucures on twistor
space T. Our discussion follows closely the approach taken in chapter 7 of [54]. See also
[53,55,56] for more background and [57] for a more recent review of twistor theory.

3.1 Spin space

In four spacetime dimensions, Minkowski space—or more generally, the tangent space T,N to
any point p of a pseudo-Riemannian manifold N of signature (3, 1)—is isomorphic to the set
of 2 x 2 Hermitian matrices. One can make this isomorphism explicit by specifying a soldering
form® o  with components aﬁA/, which assigns a Hermitian matrix V= ¢, V* with components
v = aﬁA/V“ to every real spacetime vector V#. Using standard Cartesian coordinates on
Minkowski space, a common choice is o, = (I,0;), where ¢; are the Pauli matrices normalized

so that {0, 0;} = 6;;1. Such a soldering form maps an arbitrary vector V* = (v, V1) to the

Hermitian matrix
1 (V0+V3 V1+iV2)

V="7lvimive vo—ys

with det(V) = %lVlZ. Then for any U € SL(2, C), the Hermitian matrix V' = U'VU, has determi-
nant det(V') = det(V) = %IVIZ, meaning U corresponds to a linear transformation preserving
the norm of vectors on Minkowski space, i.e. a Lorentz transformation.

We define spin space, S, as the space of complex-valued, two-component column vectors
on which the elements U act by left multiplication. A vector a € S is called a spinor, and it’s
components are denoted by a”. Similarly, the complex conjugate space is denoted by S, and
the components of a conjugate spinor are written with primed indices, e.g. ﬂA/.

Given any spinor a”, one can consider the Hermitian matrix with components a?a?, which
has vanishing determinant, so that alra? corresponds to a real, null vector. Thus, a spinor can
be viewed as the “square root of a null vector." More generally, given A € S, u? € §, the
non-Hermitian matrix AAMA/ corresponds to a complex null vector. Spinor indices are raised
and lowered using the antisymmetric, rank two spinor tensor €,5 via

(15)

ag = e, o =eBay, (16)

and every spinor satisfies a,a” = 0. It is often convenient to fix a normalized dyad for spin
space S, i.e. a pair of spinors (0%, %) satisfying 0,t* = 1. A normalized dyad on S naturally
defines a null tetrad on M via

AN A=A AN AZA AN AN
" =0%", ny" =", my" =0%", (17)

where we have decorated the tetrad elements with subscripts to emphasize that this is a tetrad
for flat Minkowski space M, in contrast to the tetrad (3) for the full, Kerr-Schild spacetime.

3For the considerations of the present article, it will suffice to consider a particular soldering form that is adapted
to Minkowski space. Solderings for a general spacetime can be specified by contracting the flat-space soldering
form with an orthonormal frame for the curved spacetime metric, but we will not need such structures here.
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3.2 Twistor space

So far, the discussion has focused only on spinors at a point, but all of these structures can be

generalized to smoothly varying functions of CM, or more general four-dimensional manifolds.

In particular, we may consider spinor fields a’*(x) over CM. The covariant derivative V ,onCM

can be extended to a covariant derivative on spinor fields satisfying V y€pc = 0=V y€p/c/-
A twistor is a spinor field Q4(x) satisfying the twistor equation

v,40P =0. (18)
Over complexified Minkowski space CM, (18) can be solved exactly to give
P =—ixMny,, (19)

where w” and 7, are constant spinors. Thus, the space of solutions to the twistor equation—
i.e., the twistor space, T—is coordinatized by a pair of spinors Z = (w?, 4) and we can regard
T as a four-dimensional complex vector space. Twistor space can be equipped with a natural
Hermitian inner product, and in particular, each twistor Z € T can be assigned a norm

1Z)? := s+ Y Ty (20)

The (squared) norm of a twistor can be positive, negative or zero, so we obtain a decomposition
of the twistor space T = T, U Ty, U T_, where T, is the set of twistors with positive norm, T,
is the set of twistors with zero norm, which are called null twistors, and T_ is the set of twistors
with negative norm. In what follows, we will be particularly interested in null twistors, which
we will see determine real, null geodesics in CM.

In order to understand the relationship between null twistors and real, null geodesics,
consider the subset of CM defined by the zero locus of an arbitrary twistor

2 (x)=0. (21)

The general solution (19) then specifies this subset as the points x™ € CM that satisfy the
incidence relation

W = ix™ T . (22)

Given a particular solution xg‘A/ to (22), the general solution can be written as
XM = x4 28X (23)

where A is an arbitrary spinor. Equation (23) describes a totally null two-plane in CM, called
an a-plane. Every tangent vector to an a-plane is null and orthogonal to every other tangent
vector. Such a plane cannot exist in real Minkowski space, so the points contained in the plane
will generically be complex.

Since (23) is the general solution to (22), the twistor tZ = (tw?, tm, ) defines the same
a-plane as Z for any t € C. The equivalence relation ~ on T, defined by tZ ~ Z for some
t € C, gives rise to the notion of projective twistor space PT := T/ ~. We may then regard the
points of PT as being labeled by a-planes.* The intersection of the a-plane of a null twistor
Z € T, and the real subset M of CM is described by a real, null geodesic, as we illustrate in
Fig. 1 and now show.

We have already observed that the points on an a-plane are generically complex. Suppose
that some twistor Z defines an a-plane that contains at least one real point. Then, without
loss of generality, let us assume xéA/ is real. Contracting (22) with 74 then gives

— . / —
CL)ATL'A = lng TCAT A - (24)

*PT is a 3-dimensional complex manifold and can be realized as an open subset of CP?. The projective space
PT, of null twistors on PT is a five-dimensional real manifold.

6
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g

’ —

{24(2) = 0}

Figure 1: M and an a-plane {Q*(x) = 0} as subsets of CM. Their intersection is a real light ray y.

Since xéA' is real, the right hand side of (24) is clearly imaginary:

coAT_rA =ia, aeR. (25)

Then we immediately find that
1Z]? = i + ¥ my =0. (26)

Thus, whenever the a-plane defined by a twistor Z contains a real point, Z is null. The converse
can be proven as well (see chapter 7 of [54] for details) so Z is null if and only if its a-plane
contains at least one real point. Moreover, if ng/ is real, then the a-plane contains the whole
real null geodesic

xM =x’8A/+r1'TA7rA/, reR, 27)

which establishes that null twistors determine real null geodesics in CM, as claimed. In the
following section we introduce a twistorial definition of the Newman-Penrose map that is
projectively invariant, and so may be defined directly on PT.

4 Newman-Penrose map from twistor space geometry

Consider a null twistor Z = (w?, /) with the property that
ZAA/T_EATEA/ == 1, (28)

where [, is the expanding, null, shear-free and geodesic Kerr-Schild vector. Note that it
is always possible to choose a scale for 14, so that such a twistor exists, and we suppose
that such a scale has been chosen. In fact, as we shall see explicitly below, this condition
defines a 4-dimensional real subspace of T,,. Moreover the condition (28) has a clear geometric
interpretation. The vector At isa tangent vector to the real null geodesic contained in the
a-plane corresponding to Z. This can be extended to all of spacetime via parallel transport
with respect to the flat metric 1,,,. The normalization condition then requires that this tangent
vector be everywhere transverse to 1, and scaled so that their inner product is normalized to
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unity. Kerr’s Theorem [42-45] implies that, without loss of generality, we can write®

Lwdx™ = du+&d{ +&dZ + dddv, (29)

in which case the normalization condition (28) implies that rArd Opw = 9,. It is also possible
to choose the normalization so that the coefficient of dv is equal to one in (29), however we
show in the Appendix that this choice leads to the same field strength we obtain using the
current normalization.

In order to write explicit expressions in terms of w”, and m,, we introduce a constant,

normalized dyad o, = 1 with
Ay =0,, o =0, AT =2,. (30)

Note that the dyad (0%, ¢?) is tied to a tetrad for flat Minkowski space, in contrast to the tetrad
for the full Kerr-Schild spacetime (3). In this basis, the null Kerr-Schild vector (29) can be
written as Ly = 6,0, = (OA—':T)LA) (04 — Ply).

Now we can expand the constant spinors «w?, and 7, as

w? = a0+ B4, Ty =70y + Oy, (31
where a, 3,7,6 € C.° The normalization condition (28) then tells us that
y=0, [6P=1. (32)

Moreover, since Z is null, we have

Wi, =ia, a€R, (33)

which implies that a = —iad. Now our expessions for the spinor components of Z become
wAz—i5a0A+[5LA, Ty = Oly . (34)

In the generic case when a # 0, the a-plane associated with Z can be described by the equation
’ 1 ’ ’
xM =~ + 247t (35)
a

for arbitrary A%, The special case a = 0 requires some care, as it includes both ordinary a-
planes and a-planes that contain real geodesics that are generators of null infinity rather than
geodesics on the interior of Minkowski space. Given these subtleties, we will only consider
twistors for which a # 0 from now on. For reasons that will soon be clear, we expand A? in
terms of the spinor dyad as

AA=5(50A+(u+ 0—@)#‘), (36)

where 1, is a real constant, and u and ¢ vary over all complex values. Using this expansion
for A4, the equation for the a-plane becomes

XM = vooAéA/ +(C+ CO)OAZAI + EOLA(BA/ +(u+ uo)LAEA/ s (37)

where we have identified a = vy, § = —id . This is then the a-plane defined by v = v,
¢ ={,, and the tangent bivector 7 to any such plane satisfies the proportionality

5This corresponds to a shift in the dyad (17) of o, — 6, = 0, — ®1,, as explained in [58] and appendix A.2
of [16].
5These parameters are not the spin coefficients of the tetrad.

8
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Lowering an index with the flat metric leads to

TP, ,dx"3, o< —(d{d, +dvd,) o< k. (39)

The above discussion shows that we are able to motivate the form of the operator k geo-
metrically from twistor space. However, we would like to describe all quantities in the NP map
in terms of objects naturally associated to the null twistor Z and the dual to the Kerr-Schild
SNGC Iy, without reference to any particular coordinate system. For this, we can introduce
the vectors

p =it M = otn?, (40)

which span the tangent space to the a-plane. Now we can take

T =

Aq=—8%3,A0,, 1

and define 0
f(\‘ = — T‘up dxva = —
2meq Mo B 2meq

5%(dvd; +dZa,), (42)

which matches the operator (9) up to an overall, arbitrary phase 52. Next, we need an invari-
ant definition of ®. For this, we note that
1 ;s 5P
U= —— g% =520 + —ﬂ ) (43)
WA, ia

The first term in ¥ differs from & by the constant phase 62, complementary to the phase of X.
The second term is a constant, so it is annihilated by k. Hence, we can define the NP map in
a manifestly invariant manner, depending only on the SNGC [, and the twistor Z by

A=RY. (44)

In particular, note that this definition of A is independent of the phase &, the individual de-
pendence in ¥ and K having canceled, and is equivalent to the original definition in (10). In
fact, if we insist that the normalization condition (28) be preserved under rescalings Z — tZ,
t € C, so that l,, — |t[ 2Ly, then it can be shown that the Newman-Penrose map depends
only on the equivalence class [Z] =[tZ],t € C, and so is projectively invariant.

We end with a comment about the uniqueness of k. In general one may consider other
operators similar to K, as described in Section 2.2, and it isn’t clear why this particular form
of &k is preferred. The twistor space construction of the NP map described here offers some
answers. At the outset, a normalization for [ is made to set one of its coefficients equal to
a constant, but which coefficient to choose is seemingly arbitrary. To keep [, real, the only
choices are to set the coefficient of dv or du equal to a constant. Choosing du leads to the
operator K, through the tangent bivector of the a-plane associated to projective twistor [Z]
described above. If we instead choose dv, the tangent bivector is proportional to J, A 85,
leading to a new differential operator proportional to duJd; +d{ ,. However, the resulting
field strength is the same as the one obtained above, as shown in the Appendix.

5 Discussion

The twistorial formalism we have presented here firmly establishes the geometric founda-
tions of the Newman-Penrose map. Implicit in this construction is the fact that any SNGC on
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Minkowski space can be given a purely twistorial definition in terms of the vanishing set of a ho-
mogeneous and holomorphic function defined on twistor space [42,43]. In particular, for any
Kerr-Schild spacetime with an expanding SNGC, we have defined a coordinate-independent
construction for both the operator k& and the complex scalar ¥ in terms of twistor variables.

These quantities are then used to define the self-dual gauge field in the Newman-Penrose
map, A = k¥, which we showed in previous work [16] coincides with other double copy
prescriptions. The close relationship between twistor theory and the geometry of SNGCs is
at the heart of this construction, and given the distinguished role that shear-free rays play
in several of the approaches to the classical double copy, it is no wonder that twistors are
increasingly being recognized as a useful tool in this setting. The work we presented here
was partially motivated by applications of twistor theory to the Weyl double copy [46, 47],
where the Penrose transform was of central importance; however our investigations seem to
run somewhat orthogonal to those references, and it would be very desirable to understand
more clearly the relationship between the two approaches.

Given the work that has been done on extending the classical double copy on maximally
symmetric backgrounds [20,21], it could also be interesting to consider maximally symmetric
extensions of the twistorial formulation of the Newman-Penrose map. Since (A)dS shares
the same twistor space as flat spacetime [59], and since the property of being an SNGC is
conformally invariant, it seems reasonable to expect that much of the formalism we have
developed here can be adapted to the maximally symmetric case. It would also be interesting
to extend this formalism to arbitrary asymptotically flat spacetimes using the generalized Kerr
Theorem of [60].
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A SNGC Normalization

The point of this Appendix is to show that no loss of generality occurs in normalizing the
coefficient of du in the expression (29) for ZAA/dxAA/ to be equal to one. To show this, we
rescale lAA/dxAA/ so that its coefficient of dv is normalized to one. Next, we show that the
twistorial Newman-Penrose map defined in terms of this rescaled vector gives rise to the same
field-strength as in (12).

After rescaling, we have

Lpdx™ =dv+ & dl +&'dl + (#3) 'du, (45)
where & satisfies (7). Then for a null twistor Z = (w”, 4, the normalization condition
Lyt =1 (46)
implies i dun = 0,. Expanding w” and 7, as in (31), the condition (46) leads to

lyP=1, &§=0. 47)

10
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Since Z is null, w7, = ia implies 3 = iya, giving

o = a0 +iyalh, Ty =7YO0u . (48)

The a-plane associated to Z has the same form as (35), and here is defined by u = u, and
¢ = {,, where we have identified a = uy, a =iy{,. This leads to the tangent bivector

= Aq =728, A 55
TE AR P NETOAN (49)
which in turn leads to 0
K= y2(dZa, + duaé;). (50)
2Te

Once expanded in a coordinate spinor basis, the operator & has a different expression than the
one in (9). One might then expect the resulting field strength F to be different too. However,
the associated scalar ¥ is also modified, and these two effects compensate such that the field
strength is unchanged.

The definition of ¥ (43) in terms of the twistor (48) is

v=—2 14 2L 51)
ia
which gives for the field strength associated with the gauge field A= kP,
F= —2L (@ (dundv+dSAdD) + @ dundl — &, dv AdL), (52)
€y

which is identical to (12).
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