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Abstract

We study the dissipative dynamics of a periodically driven inhomogeneous critical lattice
model in one dimension. The closed system dynamics starting from pure initial states is
well-described by a driven Conformal Field Theory (CFT), which predicts the existence of
both heating and non-heating phases in such systems. Heating is inhomogeneous and is
manifested via the emergence of black-hole like horizons in the system. The robustness
of this CFT phenomenology when considering thermal initial states and open systems
remains elusive. First, we present analytical results for the Floquet CFT time evolution
for thermal initial states. Moreover, using exact calculations of the time evolution of
the lattice density matrix, we demonstrate that for short and intermediate times, the
closed system phase diagram comprising heating and non-heating phases, persists for
thermal initial states on the lattice. Secondly, in the fully open system with boundary
dissipators, we show that the nontrivial spatial structure of the heating phase survives
particle-conserving and non-conserving dissipations through clear signatures in mutual
information and energy density evolution.
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1 Introduction

Recent years have seen much progress in the understanding of out of equilibrium properties of
many-body quantum systems. Two broad categories which have been explored extensively are
(i) the dissipative dynamics of open-systems [1] and (ii) the dynamics of periodically driven
systems [2–4]. Dissipation, in general, engenders an irreversible non-unitary evolution of the
quantum system towards a steady state. The interplay between unitary Hamiltonian evolu-
tion and dissipation can lead to dissipative phase transitions via nonanalyticities in the steady
state [5]. Understanding the role of dissipation is especially relevant for quantum simulation
platforms which permit the realization of a multitude of theoretical phenomena and out of
equilibrium phases not accessible in standard solid state systems [6–8]. Tailored dissipation
can also be used as a resource for quantum state engineering of many-body phases [9–18].

In parallel, there has been enormous progress in harnessing the potential of periodic driv-
ing to generate new classes of out of equilibrium phenomena [4,19,20]. Well-known examples
include discrete time crystals [21–23], anomalous Floquet-Anderson insulators [24], synthetic
dimensions [25], synthetic gauge fields [26] to name a few. However, a fundamental issue
underpins the potential success of such quantum engineering endeavours. In the absence of
a fundamental energy conservation law in a driven system, an important question concerns
whether the system can in principle absorb energy from the periodic drive and heat up. Past
work seemed to indicate that non-integrable and interacting systems tend to heat up to a fea-
tureless infinite temperature state [27], when subject to a drive, whereas integrable systems,
by virtue of their many conserved quantities do not heat up but tend to an asymptotic state
governed by a periodic Gibbs ensemble [28, 29]. Exceptions to this paradigm include some
integrable disordered systems [30] as well as many-body localized systems [31] which evade
heating. The dynamics of heating has been recently explored experimentally in Bose-Einstein
condensates (BECs) in driven optical lattices [32].

Recently, this interplay between integrability and interactions and its relevance for non-
equilibrium dynamics was explored in a generic class of critical quantum systems in one spatial
dimension. The underlying quantum critical system is described by a conformal field theory
(CFT) in the long wavelength limit. A particularly interesting class of driving protocols in-
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Figure 1: (a) Two Hamiltonians used to construct the Floquet drive: homogeneous
Hamiltonian H0 and sine-square deformed Hamiltonian H1 on a free fermion chain
of length L, with dissipators placed at the boundaries of the chain and characterised
by dissipation rates Γ±L/R. (b) Illustration of the two step drive H(t) between H0 and
H1. (c) Sketch of the emergent spatial structure in the energy density E(x , t) in the
heating phase, with two hotspots x∗ and L − x∗, interpreted as emergent horizons
in a stroboscopic curved space-time [39]. At each Floquet cycle entangled pairs of
quasiparticles are created, which accumulate at each of the two peaks, leading to
a linear growth of mutual information I(A; B) between the two horizons. We want
to understand the robustness of this phenomenology to the introduction of dissipa-
tion and thermal initial states. (d) Phase diagram between heating and non-heating
phases in the case without dissipation at zero temperature.

volve switching between a uniform Hamiltonian and a spatially modulated Hamiltonian whose
modulation is a Sine-Square Deformation (SSD) (see Refs. [33–36] for discussions about SSD
systems). A remarkable aspect of this setup is that the dynamics is exactly solvable within the
framework of conformal field theory [37]. An exploration of the non-equilibrium dynamics
revealed a rich universal phenomenology, where heating and non-heating phases alternate
as function of the driving parameters, with universal critical exponents delineating the two
phases. Interesting dynamical signatures in observables such as the entanglement entropy,
energy density, Loschmidt echo, and dynamical two-point functions were obtained analyti-
cally [38,39]. An indepth exploration of the non-ergodic heating regimes unearthed a complex
spatial structure: energy evolution was found to be extremely inhomogeneous in space, with
two emergent hotspots where energy accumulated with time. Such hotspots were found to
share growing entanglement, and were interpreted as black hole horizons in an effective stro-
boscopic curved space-time [39]. Different extensions of these drives were then investigated,
such as quasi-periodic drives [40,41], random drives [42], non-Hermitian drives [43], contin-
uous drives [44], and general inhomogeneous deformations [45, 46]. An important question
is whether such phenomenology survives the onset of dissipation and whether dissipation suf-
fices to eliminate this “integrable heating", as opposed to usual ergodic heating.

In this paper we focus on the driven-dissipative dynamics of a critical free fermion chain
that is periodically driven following the SSD drive protocol and can exchange particles with
an external bath. We start with a brief review of the dynamics of periodically driven CFTs with
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spatially modulated profiles in Sec. 2, and summarise the main notions that will be used in
the rest of the paper to compare with our numerical findings. In Sec. 3 we introduce the setup
studied in our paper, and write down the main equations that are numerically integrated to ob-
tain the full stroboscopic dynamics of the correlation matrix in the presence of different types
of dissipation. We then introduce initial thermal states in Sec. 4, for which we compute the
stroboscopic time evolution of energy analytically using CFT, and then compute numerically
the time evolution of the correlation matrix, from which we infer energy density evolution as
well as entanglement entropy evolution. We explicitly compare predictions from periodically
driven CFTs at finite temperature to results on the fermionic chain, and find that remarkably
the CFT predictions about the existence of heating and non-heating phases, as well as the pre-
cise scaling across the transition, are still valid for relatively large initial temperatures. The
spatial structure inherent to the heating phase of this Floquet drive at zero temperature is also
present at finite temperatures, and can be observed both as signatures in energy density and
entanglement entropy. We then study the effect of dissipation in Sec. 5, by putting two dis-
sipators at the end of the chain, which can exchange particles with an external bath or that
can act as a source of dephasing. In these two driven-dissipative scenarios, energy as well as
entanglement increase rapidly, but clear signatures of the emergent horizons are observed in
the high-frequency regime, where particles entering the system from the bath get stuck at the
first horizon they encounter. Away from the high-frequency limit, though signatures of the
horizons are not as easily observable in the energy/particle density, the specific kink struc-
ture of the mutual information between the two horizons survives a wide range of dissipation
strengths.

2 Review of Floquet CFT

The non-equilibrium dynamics of interacting lattice models is in general a hard problem to
solve. In this paper we exclusively consider the case of critical one-dimensional lattice models,
i.e., those whose long wavelength theory have emergent conformal invariance, and are well-
described by a CFT. While their driven lattice counterparts are in general not integrable, here
we focus on a class of solvable periodically driven CFTs. To set the stage for the main goals
of our work, we first review the physics of periodically driven inhomogeneous CFTs followed
by a direct comparison between the analytic predictions of the CFT and numerical results
on a driven critical one dimensional lattice model. We consider a (1+1)-dimensional CFT of
length L describing gapless excitations of the critical system governed by the inhomogeneous
Hamiltonian

H =
∫ L

0

v(x)T00(x) , (1)

where v(x) is a smooth and positive deformation profile, and T00(x) is the energy density
of the CFT, with v(x) ≡ v being the case of the homogeneous Hamiltonian. Using the tools
developed in Ref. [47–50], such an inhomogeneous CFT can be transformed to a homogeneous
one via a change of coordinates:

f (x) =

∫ x

0

dx ′
ṽ

v(x ′)
,

1
ṽ
=

1
L

∫ L

0

dx ′

v(x ′)
. (2)

Consequently, the Heisenberg time evolution of any primary field is implemented by the change
of coordinate f (x). In the rest of the manuscript, we will set the velocity of gapless quasipar-
ticles v to 1, as well as ħh= 1.

To study the Floquet dynamics of these generically deformed CFTs, we consider a 2-step
drive alternating between an inhomogeneous Hamiltonian H0 with deformation v0(x) applied
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for time T0 and another inhomogeneous Hamiltonian H1 with deformation v1(x) applied for
time T1 [45,46]. The Floquet unitary is then given by

UF = e−iH0T0 e−iH1T1 . (3)

It is possible to explicitly derive a change of coordinates encoding the 1-cycle time evolution
of any primary field φ(x , t) = U†

Fφ(x)UF of conformal weight (h, h̄) [45]. Using this in con-
junction with the transformation law of primary fields under a conformal transformation, one
obtains the following Floquet time evolution in Heisenberg picture:

φ(x , t) =

�

∂ x̃−n (x)

∂ x

�h �
∂ x̃+n (x)

∂ x

�h̄

φ( x̃−n (x), x̃+n (x)) , (4)

where
x̃∓n (x) = f±( x̃

∓
n−1(x)) , x̃∓0 (x) = x , (5)

and the transformations f± are defined by

f±(x) = f −1
1

�

f1

�

f −1
0

�

f0(x)∓
T0

L

��

∓
T1

L

�

, (6)

where f0 and f1 are the quantities specified in (2) for the two Hamiltonians H0 and H1.
The full stroboscopic time evolution of any (quasi)-primary field after n Floquet cycles

is therefore given by a composition of n 1-cycle maps (6). In general it is not possible to
write down a closed form expression for such a composition. However it turns out that
the Floquet dynamics is completely encoded by fixed points of f n

± = f± ◦ . . . ◦ f±: the en-
ergy oscillates in a bounded manner if there are no unstable fixed points; if the n-cycle map
admits any unstable fixed points, f n

± (x
∓
∗ ) = x∓∗ and f n′

± (x
∓
∗ ) > 1, all correlation functions

will increase exponentially at such a point, leading to an exponential growth of total energy
E(t = nT ) =

∫ L
0 dx〈T00(x)〉, where 〈...〉 denotes average with respect to the time-evolved state

(UF )
n |ψ0〉. The associated heating rate is simply given by 1

2(T0+T1)n
log( f ′n± (x

∓
∗ )), where x∓∗ is

the most unstable fixed point of f n
± . This increase of total energy is extremely inhomogeneous

in space, and restricted to the spatial positions given by the set of unstable fixed points of f n
± .

The energy decreases exponentially at all other spatial locations. The phase transition between
non-heating and heating phases corresponds to stable and unstable fixed points merging into
a single tangent point, f ′n± (x

∓
∗ ) = 1. In general, one can also have Lifhshitz-like transitions

between phases with differing number of unstable fixed points which manifest as a change
in the kink structure of the entanglement entropy [45]. We note that the phase diagram in
the general case can only be obtained iteratively, as it involves finding fixed points of f n

± for
any n ∈ N. The phase transitions as well as boundaries delineating heating phases are closely
linked to parametric resonance and Arnold tongues [51].

For general deformations of the Hamiltonian density one expects to have mostly heating
in the infinite time limit, with non-extended non-heating “phases". In contrast, considering a
deformation that involves a single Fourier mode leads to an exact extended non-heating phase.
We summarize the results for the particular case where the Hamiltonian deformations v0(x)
and v1(x) only consist of a single Fourier mode, i.e.,

vi(x) = αi + βi cos
�

2πx
L

�

+ γi sin
�

2πx
L

�

, i ∈ {0,1} . (7)

These two deformed Hamiltonians belong to the sl(2) subalgebra of the infinite dimensional Vi-
rasoro algebra, spanned by the Virasoro generators {L1, L−1, L0, L1, L−1, L0}. This particularly
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simple algebraic structure implies that on the complex plane z = e2πi x/L the coordinate trans-
formation encoding the 1-cycle evolution, z̃, is an invertible Möbius transformation [52, 53]

z̃ = e
2πi f+(x)

L =
az + b
cz + d

, ¯̃z = e
2πi f−(x)

L =
az̄ + b
cz̄ + d

. (8)

This fact greatly simplifies the Floquet dynamics compared to the generic case involving the
full Virasoro algebra described above, as the composition of Möbius transformations has a
SL(2,C) group structure, and just amounts to matrix multiplication. The n-cycle map is then
given by

z̃n = e
2πi f n

+(x)
L =

anz + bn

cnz + dn
, ¯̃zn = e

2πi f n
− (x)
L =

anz̄ + bn

cnz̄ + dn
, (9)

where

�

an bn
cn dn

�

=

�

a b
c d

�n

. The Floquet dynamics is then fully classified by the sign of

∆= (a+ d)2 − 4 :

1. ∆> 0: Elliptic Möbius transformation corresponding to a non-heating phase.

2. ∆< 0: Hyperbolic Möbius transformation corresponding to a heating phase.

3. ∆= 0: Parabolic Möbius transformation corresponding to the phase transition.

We note that elliptic transformations have no fixed points, while the hyperbolic classes have
one stable and one unstable fixed point, that we denote in the complex plane by γ1 and γ2,
given explicitly by







γ1 =
a−d−
p
(a−d)2+4bc
2c ,

γ2 =
a−d+
p
(a−d)2+4bc
2c .

(10)

Assuming γ2 is the unstable fixed point, then energy density 〈T00(x)〉 will concentrate expo-
nentially at x∗ =

L
2πi log(γ2) and L − x∗ = −

L
2πi log(γ2), and decay exponentially in time at

any other point.
For concreteness we consider a 2-step drive between the homogeneous Hamiltonian H0

and the SSD Hamiltonian H1, given by the deformation v(x) = 1− cos
�2πx

L

�

= 2 sin2
�

πx
L

�

, as
first studied in Ref. [37]. In this case, the 1-cycle transformation reads

z̃ =

�

1+ iπT1
L

�

e
iπT0

L z − iπT1
L e−

iπT0
L

iπT1
L e

iπT0
L z +

�

1− iπT1
L

�

e−
iπT0

L

. (11)

Correspondingly,

∆=

�

1−
�

πT1

L

�2
�

sin2
�

πT0

L

�

+
πT1

L
sin
�

2πT0

L

�

, (12)

and we see that the phase diagram is now fixed by the sign of∆, see Fig. 1(d). Specifically, for
the initial state |ψ0〉 (the ground state of H0) and open boundary conditions, the total energy
is given by [38,39]

E(t = nT ) =

∫ L

0

dx〈T00(x)〉=
2π
L

c
16

andn + bncn

andn − bncn
, (13)
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where c is the central charge of the theory. E(t) oscillates in the non-heating phase while it
grows exponentially in the heating phase. The parameter which describes both the periodicity
in the non-heating phase and the heating rate in the heating phase is

η=
a+ d +

p

(a− d)2 + 4bc

a+ d −
p

(a− d)2 + 4bc
, (14)

such that the periodicity is simply TE =
T0+T1

2π| log(η)| , while in the heating phase, the heating rate

is given by T−1
E . We note that η is on the unit circle in the non-heating phase, |η| = 1, while

it is a positive real number in the heating phase, which leads to the two different stroboscopic
time evolutions of both phases. For an initial primary state |Φ〉 of conformal weight ∆ and
periodic boundary conditions, one can show that the prefactor c

16 in Eq. (13) gets replaced by
2∆ [44]. The stroboscopic effective Hamiltonian can be shown to be HF = aL0 + bL−1 + cL1,
wherein the phase boundaries are delineated by the sign of the quadratic Casimir invariant
of sl(2), c(2) = a2 − 4bc, as shown in Ref. [39]. Interestingly, the propagation of gapless
quasiparticles in an inhomogeneous CFT can be understood as light-like geodesics in a curved
space-time [54] specified by the metric ds2 = dx2 − v(x)2dt2. Consequently, the stroboscopic
propagation of quasiparticles under the SSD drive can be viewed as a propagation in a curved
space-time containing two black hole horizons at the afore-mentioned positions x∗ and L− x∗,
corresponding to the unstable fixed points where energy and quasiparticles accumulate.

The entanglement entropy SA(t) can also be computed starting from |ψ0〉with open bound-
ary conditions [55]. In the non-heating phase, it simply oscillates with a periodicity TE , while
in the heating phase, as long as the block A contains one and only one of the two horizons
x∗ and L − x∗, SA(t) grows linearly in time (with a universal part ∼ − c

6 n log(η) where ∼
denotes only up to non-universal terms). From a quasiparticle perspective, at each Floquet
cycle entangled pairs of quasiparticles are created and accumulate at one horizon each. As a
consequence, the growth of entanglement must be shared only between the two horizons, as
illustrated on Fig. 1(c). This is quantified by the mutual information I(A; B) = SA+ SB − SAB,
which grows linearly with the number of cycles only if x∗ ∈ A and L − x∗ ∈ B or vice versa,
I(A; B)∼ − c

3 n log(η) [38]. Hence, from the curved space-time viewpoint, the inhomogeneous
heating phase at stroboscopic times manifests two entangled black hole horizons absorbing all
energy.

To summarise, this class of exactly solvable periodically driven CFTs provides us with a set
of exact results characterized solely by the central charge c of the theory for the stroboscopic
time evolution of a multitude of physical observables. These predictions were found to be
in remarkable agreement with numerical results obtained in one-dimensional critical lattice
models [39]. It is important to note that as the CFT is a continuum theory, it has an infinite
number of degrees of freedom leading to unbounded growth of energy and entanglement
entropy in the heating phase. On the other hand, in a finite size lattice system due to the finite
dimensionality of the Hilbert space, CFT predictions are typically valid only up to to a cutoff
timescale, for example, 10 − 20 Floquet cycles in the heating phase [38], while in the non-
heating phase the CFT results remain valid for much larger timescales as the entanglement
entropy and energy time evolutions remain bounded in the CFT description.

3 Dissipative dynamics

In the previous section, we discussed how heating in a generic class of critical driven closed
systems emerges via with formation of entangled energy hotspots. We now explore whether
this rich phenomenology survives in an open system setting, a situation of great relevance to
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experiments where dissipation is ubiquitous. Typically, the study of a dissipative and driven
interacting lattice model at criticality requires highly complex computational tools which might
be poorly convergent in the long time limit. However, here we can harness the fact that the
main physical features are universal and solely characterized by the central charge of the
critical lattice model to simplify our task of the study of the dissipative system. Hence, in
this section, as a representative example, we consider a system of free fermions hopping on
a one-dimensional lattice of length L at half-filling, whose low energy theory is a c = 1 free
boson CFT. This model permits an exact derivation of the time evolution of the system in the
presence of both dissipation and drive. The Hamiltonians corresponding to the two-step drive
in Eq. (3) are given by

H0 =
1
2

L−1
∑

i=1

c†
i ci+1 + h.c. ,

H1 =
L−1
∑

i=1

sin2
�

πi
L

�

c†
i ci+1 + h.c.

(15)

The dynamics of the system density matrix ρ is governed by the Gorini-Kossakowski-
Sudarshan-Lindblad master equation [56–61]

∂ ρ

∂ t
= −i[H(t),ρ] +

∑

µ

�

2LµρL†
µ − {L

†
µLµ,ρ}

�

. (16)

For the situation where the Hamiltonian H(t) and the bath operators Lµ are respectively
quadratic and linear in the fermionic operators (c and c†), a general solution can be exactly
obtained [62].

We first map the fermionic operators to Hermitian Majorana operators

w2m−1 = c†
m + cm , w2m = i(cm − c†

m) , (17)

which satisfy the anti-commutation relations

{w j , wk}= 2δ j,k . (18)

In the Majorana representation, the Hamiltonian and the bath operators can be expressed as

H =
∑

lm

wl Hlmwm ,

Lµ =
∑

n

lµ,nwn ,
(19)

where Hlm is a 2L by 2L anti-symmetric matrix. In this work, we consider the following bath
operators attached at the two ends of the chain as shown in Fig. 1(a):

LL/R = Γ
L/R
+ c†

L/R + Γ
L/R
− cL/R , (20)

where L (R) refers to the site on the left (right) edge of the chain. For this work, we fix Γ L = Γ R

and define
Γ+ = γ, Γ− =Rγ . (21)

In a non-interacting system, all observables can be obtained from the correlation matrix

Clm = tr(wl wmρ) . (22)
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Using the anti-commutativity of the Majorana operators (18) and the Lindblad equation (16),
it can be shown that the correlation matrix obeys [63]

dC
d t
= −4C(t)

�

iH(t) + iH(t)T +Mr +M T
r

�

− 8iMi , (23)

where Mr (Mi) is the real (imaginary) part of the the matrix Mi j =
∑

µ lµ,i l
∗
µ, j . We now use

the fact that the Floquet Hamiltonian H(t) is piecewise constant in time, such that Eq. (23)
is a Lyapunov matrix ordinary differential equation of the form Ċ = −X C(t)− C(t)X T − iY ,
whose explicit solution takes the closed form [64]

Cil(t) =
∑

j,k

Vi j

�

�

et(α j+βk)
� �

V−1C(t0)(W
†)−1

�

jk +

�

∫ t

t0

dse(t−s)(α j+βk)

�

�

V−1(−iY )(W †)−1
�

jk

�

W †
kl , (24)

where C(t0) is the initial correlation matrix, V and W are the unitaries diagonalizing −X
and −X T , and αi , βi are their respective eigenvalues. The full stroboscopic time evolution
C(n(T0 + T1)) can be obtained numerically via a sequential evolution by resetting the initial
condition to C(nT1 + (n− 1)T0).

This analysis can be extended to include dissipation quadratic in fermion operators, such
as on-site dephasing, for which Lµ =

p

γµc†
µcµ. By taking expectation values of Eq. (16) one

finds the evolution equation for the (now complex) correlation matrix Γi j(t) = Tr{ρ(t)c†
i c j}

to be of the form

∂tΓi j(t) = i
�

hT (t), Γ (t)
�

i j +
∑

µ

γµ(2δi jδµi −δµi −δµ j)Γi j(t) , (25)

where h(t) is defined by H =
∑

i j hi j(t)c
†
i c j . Closed equations similar to Eq. (25) can be easily

integrated numerically, and hold for generic dephasing terms as long as the jump operators
are hermitian. As before, the correlation matrix contains enough information to compute
quantities such as the energy density. However, in contrast to single particle loss and gain, the
resulting density matrix is in general non-gaussian, which prevents us from directly computing
entanglement entropies [65].

Dephasing is also often generated by unitary evolution in the presence of white noise [66],
or in quantum state diffusion models [65]. Here we take the former approach by adding an
additional Hamiltonian term Vi = ξi(t)ni , where ξi(t) is gaussian white noise whose variance
is fixed by the dephasing strength via ξi(t)ξi(t ′) = δ(t − t ′)γi . After averaging over different
noise realizations the unitary dynamics is equivalent to Eq. (16) with Lµ =

p

γµc†
µcµ, which

can be seen by averaging over the trotterized equations of motion for the density matrix. This
endows the dephasing with a physical interpretation and allows us to study the entanglement
dynamics within each noise realization. The average dynamics of the entanglement entropy
SA(t) = −TrρA logρA 6= −TrρA logρA generally differs from the entanglement of the average
density matrix, and can exhibit more interesting features such as entanglement phase transi-
tions [67]. In the following we will focus on the dynamics of SA(t) and the energy density for
boundary noise where

LL,R =
p

γL,Rc†
L,RcL,R = L†

L,R . (26)

4 Thermal Initial States

Before investigating the impact of dissipation on the driven lattice, we first address whether
the heating and non-heating phases studied in [37–39,45] are robust to thermal initial states
instead of pure initial states, both within the CFT description and on the lattice.
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4.1 Thermal Floquet CFT

In this section we provide an analytical expression for the stroboscopic time evolution of the
total energy E(t) after n-cycles of the SSD Floquet drive (see Sec. 2), starting from an initial
thermal state at temperature β−1. This entails the computation of the following:

E(t) =
2π
L

Tr(e−βH0(Un
F )

†(L0 + L̄0)U
n
F ) , (27)

where UF = e−iH0T0 e−iH1T1 . We provide two alternative routes to compute E(t). The first
approach makes use of the underlying su(1,1) algebra spanned by {L0, L−1, L1}, while the
second approach relies on diffeomorphisms of the circle.

We first evaluate the stroboscopic time evolution operator

(Un
F )

† L0Un
F = ein(T0+T1)HF L0e−in(T0+T1)HF , (28)

with the Floquet Hamiltonian assuming the form

HF = [aL0 + bL−1 + cL1] + anti-holomorphic part . (29)

The coefficients a,b, c were evaluated explicitly in Ref. [39]. Concretely, for the SSD drive
protocol, the effective Hamiltonian reads

HF =
i

T0 + T1

logη
(γ1 + γ2)γ1 − γ2

�

L0 −
1
2
(γ1γ2 + 1)(L1 + L−1)−

1
2
(γ1γ2 − 1)(L−1 − L1)

�

+
i

T0 + T1

logη
(γ1 + γ2)γ1 − γ2

�

L̄0 −
1
2
(γ1γ2 + 1)(L̄1 + L̄−1) +

1
2
(γ1γ2 − 1)(L̄−1 − L̄1)

�

.
(30)

where the fixed points γ1, γ2 and the multiplier η are given by (10) and (14) respectively. The
time evolution of the operator L0 in the Heisenberg picture takes the form

ein(T0+T1)HF L0e−in(T0+T1)HF = θ1 L0 + θ2 L1 + θ3 L−1 . (31)

Using the fact that only L0 has a non-zero expectation in a thermal state, we obtain

Tr[(L0 + L1 + L−1)e
−βH0] = Tr[L0e−βH0] . (32)

Note that the non-zero modes of the stress tensor do not contribute since L±1 acting on the ket
(or bra) creates a descendant state of a different level, which is orthogonal to the bra (or ket).
From this argument, it is clear that 〈L1〉β = 〈L−1〉β = 0, thus we simply need to evaluate θ1
in (31). To do so, we make use of the non-unitary 2×2 representation of the su(1, 1) algebra,
given by

L0

�

�

�

2×2
=

�

−1/2 0
0 1/2

�

, L−1

�

�

�

2×2
=

�

0 0
−1 0

�

, L1

�

�

�

2×2
=

�

0 1
0 0

�

. (33)

We thus deduce that

〈eiHF t L0e−iHF t〉β = θ1〈L0〉β =

�

a2 − 4bc cos
�p

a2 − 4bc2πt
L

�

a2 − 4bc

�

〈L0〉β , (34)

The remaining thermal expectation value is a time-independent equilibrium one, thus the full
stroboscopic time evolution is encoded in θ1. Restricting to the c = 1 free boson CFT we can
use the following standard result on the torus for a Luttinger liquid at K = 1,

〈L0〉β = −
L

4π
∂ logΘ(β/L)

∂ β
+
∑

m>0

m
e2πmβ/L − 1

, (35)
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where Θ is the Siegel theta function, explicitly defined as

Θ =
∑

m,ω∈Z
exp

�

−
πβ

L

�

m2

2
+ 2ω2

��

. (36)

Using the above results in (30), we obtain the following general result for the stroboscopic
energy evolution after n cycles,

E(n) =
γ1γ2 − 4cosh

�

logη
p
γ1γ2
p
γ1γ2−4

γ1−γ2
n
�

γ1γ2 − 4

�

−
L

4π
∂ logΘ(β/L)

∂ β
+
∑

m>0

m
e2πmβ/L − 1

�

. (37)

The principal effect of temperature manifests via an overall temperature dependent pref-
actor stemming from the equilibrium thermal expectation value 〈L0〉β . Consequently, both
the periodicitiy of the energy oscillations and the heating rate remain unaltered. Though this
factor depends on the specific theory at hand, temperature effectively decreases the energy
amplitudes in both phases. The universal critical exponent characterising the non-heating-to-
heating phase transition is still 1

2 , as the order parameters (the periodicity and the heating
rate) are identical with respect to the zero temperature case.

We note that the above derivation only holds for deformation profiles that belong to the
sl(2) subalgebra of the full Virasoro algebra. We can also derive the finite-temperature evolu-
tion of the energy-momentum tensor after the 2-step Floquet drive for generic deformations
based on the geometric approach from Ref. [49]. In this case, the evolution of the holomorphic
part of the stress tensor is given by

〈T (x , t)〉β =
�

∂ x̃−n
∂ x

�2

〈T ( x̃−n (x))〉β −
c

24π
{ x̃−n , x} , (38)

where x̃−n (x) is given by (5), and { x̃−n , x} is the Schwarzian derivative of x−n (x). Combining
the holomorphic and anti-holomorphic parts of the stress tensor, we conclude that the energy
density is

E(x , t) =

�

�

∂ x̃−n
∂ x

�2

+

�

∂ x̃+n
∂ x

�2�

〈T 〉β −
c

24π
[{ x̃−n , x}+ { x̃+n , x}] . (39)

We can then use the fact that the equilibrium one-point function of the stress tensor
〈T ( x̃−n (x))〉β = 〈T̄ ( x̃

+
n (x))〉β = 〈T 〉β is independent of x , and is simply given by the derivative

of the partition function on the torus with respect to β . For a c = 1 CFT corresponding to the
K = 1 Luttinger liquid, we find

〈T 〉β = 〈T̄ 〉β = −
∂ log Z
∂ β

, (40)

with the partition function of the free boson at K = 1 given by

Z(β) =
1

|η(iβ/L)|2
∑

m,w∈Z
exp

�

−π
β

L

�

m2

2
+ 2w2

��

=
Θ(β/L)
|η(iβ/L)|2

, (41)

where η is the Dedekind eta function. This formula enables one (by integrating over space)
to obtain E(t),

E(t) =

∫ L

0

E(x , t)dx . (42)
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For the case of the SSD drive, the 1-cycle diffeomorphisms (6) are given by

f±(x) = f −1( f (x)∓ T0)∓ T1 =
L
π

arctan
�

tan
�πx

L

�

∓ 2π
T0

L

�

∓
T1

L
. (43)

This approach thus leads to the stroboscopic evolution of energy density and total energy after
n-cycles for general deformation profiles. However, the result does not have a closed form and
must be iterated for each Floquet cycle. In the rest of the work, we concentrate on the SSD
drive protocol for which we have a closed form expression for (37).

4.2 Thermal initial states on the lattice

We now turn to lattice calculations at finite temperature. We consider the following initial
thermal correlation matrix

Ci j =
1

tr(e−βH0)
tr(c†

i c je
−βH0) , (44)

where H0 is the uniform chain defined in Eq. (15). This expression reduces to evaluating

Ci j =
∑

k

U∗kiUk j〈nk〉 , (45)

where U is the unitary diagonalizing the matrix h0. In the large N =
∑

k〈nk〉 limit, we can use
the Fermi-Dirac distribution

〈nk〉=
1

eβ(εk−µ) + 1
. (46)

The time evolution of the correlation matrix is then obtained by solving Eq. (23) numerically
for zero dissipation, which then reduces to the Heisenberg equation.

We extended previous CFT results at β−1 = 0 at thermal initial states in Sec. 4.1, in the case
of a c = 1 compactified free boson CFT on a radius R= 2 (or equivalently with a the Luttinger
parameter K = 1), which describes the low-energy dynamics of our lattice model. We conclude
that the physical behaviour predicted by thermal Floquet CFT in the heating and non-heating
phases does not depend crucially on the choice of (pure) initial state, which simply changes
the amplitude of the total energy evolution, c.f. (37). In order to verify the CFT predictions,
we revert to the lattice model and compute the energy, E(t) =

∑

i〈c
†
i+1ci〉+ h.c. Our results

for different temperatures and a comparison with the CFT predictions are shown in Fig. 2. In
the heating phase, an exponential growth of energy with higher energy absorption at finite
temperature is seen, as predicted by the finite temperature CFT predictions, that agree for a
few Floquet cycles with the lattice calculations. Surprisingly, the actual heating rate on the
lattice compared to the one predicted by CFT, 2π

T0+T1
| log(η)|, slightly decreases with increasing

temperature. The non-heating phase persists: the periodicity, formally defined as the inverse
of the heating rate of the heating phase, TE =

T0+T1
2π| log(η)| , grows with temperature in the same

way that the heating rate decreases with temperature in the heating phase, while the amplitude
of the oscillations gets larger, as predicted from CFT. From a CFT perspective, the change in
periodicity and heating rate cannot be explained by the introduction of finite temperature, as
seen explicitly from (37). This effect is a consequence of the full cosine dispersion of the lattice
Hamiltonian, as taking higher initial temperatures will imply access to high-energy states away
from the linearized regime around the Fermi points. We finally note that at long times on
the lattice in the non-heating phase, the energy oscillations eventually decay, as shown in
Fig. 2(c-d), while CFT predicts persistent oscillations up to infinite times. The speed of such a
decay depends non-universally on the initial temperature β−1 as well as the choice of driving
parameters (T0/L, T1/L). However it does not depend on the choice of system size L, for fixed
T0/L and T1/L.
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(a)

(c)

(b)

(d)

Figure 2: Energy change E(t) − E(0) in heating phase (a) and non-heating phase
(b), for different initial temperatures, for a one dimensional chain of length L = 1000
with periodic boundary conditions and |T0/L|= |T1/L|= 0.05. Comparison with the
CFT time evolution at finite temperature is shown (dashed lines). The long time limit
of the energy evolution is shown in the non-heating phase on the lattice (orange),
compared to the CFT predictions (blue), both at initial temperature β−1 = 0.02 (c)
and β−1 = 0.05 (d).

To study the robustness of the phase diagram to temperature, we plot E(t = 10T ) as a
function of the driving parameters T0 and T1, as shown in Fig. 3. At zero temperature, this
approximates well the analytically obtained phase diagram of the CFT. At β−1 = 0.1 (to be
compared with the cosine bandwidth of 2), the phase diagram remains unaffected and the
transition between oscillating and exponentially growing total energy is still clear. This ob-
servation is consistent with the expectations from the CFT: in principle, the long time Floquet
dynamics should be independent of the initial state as it only involves time evolution of op-
erators in Heisenberg picture, such that both heating and non-heating phases should remain
well-defined. This conclusion is further strengthened by the scaling behaviour of the order
parameter T0+T1

2π| log(η)| , the(pseudo-)periodicity of the energy E(t). For pure states, CFT predicts

a divergence of this order parameter with a critical exponent 1
2 [37] as one approaches the

boundary to the heating phase. In Fig. 4, we plot the scaling behaviour of the periodicity of
the energy as one approaches the heating phase. At zero temperature, the lattice numerics are
well-fitted by the CFT predictions. At finite temperature, though the periodicity is modified
by temperature as we have observed in Fig. 2, the scaling across the phase transition remains
the same and we can still extract a critical exponent of 1

2 [37], as predicted by thermal Flo-
quet CFT. This indicates that the transition is robust to thermal states as long as β−1 < 0.1,
after which broadening effects stemming from the full lattice dispersion become relevant, as
observed on Fig. 3.

The hallmark of the heating phase is the emergence of entangled black-hole horizons,
where the mutual information I(A, B) between the two horizons x∗ and L − x∗ grows linearly
in time, i.e., I(A, B)∼ 1

3 log(η)n, with n the cycle number, provided A and B both contain one of
the two horizons. Using Peschel’s method for non-interacting lattice systems [68], we extract
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(a) (b) (c)

Figure 3: Total energy after 10 cycles as a function of T0 and T1 for L = 200, for
(a) β−1 = 0, (b) β−1 = 0.05, (c) β−1 = 0.1. The phase boundary between heating
and non-heating phases predicted by CFT (at finite and zero temperature) is shown
in red and given by the solution of ∆= 0 in Eq. (12). We note that a higher number
of Floquet cycles leaves the phase diagram qualitatively unchanged, although the
resulting energy deviate from CFT predictions in the heating phase at non-zero initial
temperature.

the entanglement entropy from the correlation matrix Ci j of the lattice problem. The strobo-
scopic evolution of the mutual information for A = [0, x) and B = (x , L] for n = 15 Floquet
cycles with the concomitant energy density E(x , t) are shown in Figs. 5(a) and (b) (heating
phase away from the high-frequency limit). At zero temperature, the mutual information dis-
plays a clear kink structure at x∗ and L − x∗, with a linear growth of mutual information if
x ∈ (x∗, L − x∗), and saturation to a constant otherwise. We find that this spatial structure of
entanglement is robust to the introduction of initial temperatures, as long as β−1 ≈ 0.05, after
which the emergent entanglement structure starts to break down, and the energy horizons
disappear. We note that this regime of driving parameters corresponds to large micromotion
of the order of the system size, such that deviations from the linear dispersion are crucial. We
conclude that the CFT predictions for the phase diagram and the structure characterising the
heating-to-non-heating transition in the driven lattice model are robust to the introduction of
temperatures up to β−1 ∼ 0.05.

5 Effect of Dissipation

Whether coherent non-equilibrium dynamics remains stable to external baths is an interesting
—and in general open— question. The difficulty in open systems stems from the fact that
the system can now exchange energy and information with a dissipative environment, which
can irreversibly alter fragile quantum states. Typically, one can expect that a contact with the
environment acts as a mitigating influence on the energy absorbed by the system from the
drive, thereby stabilising non-heating phases in larger parts of the phase diagram. To test this
heuristic picture, we consider boundary dissipation in the finite chain as described in Sec. 3.
We will not be interested in the steady state reached by the system at large times, but rather
in the robustness of the features of the heating phase to dissipation, as well as the transition
between different phases at short times, of the order of tens of Floquet cycles.

We first consider the case where the driven free fermion chain exchanges particles with an
external bath at its boundaries. As discussed in Sec. 3, all observables can be computed from
the correlation matrix (22). The time dependent correlation matrix for dissipative particle
exchange is explicitly given by Eq. (24), for a piecewise constant Floquet Hamiltonian H(t).
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Figure 4: Scaling of the periodicity of total energy E(t) in the non-heating phase
when approaching phase transition at T0 = T∗, for T1/L = 0.05, and for different
initial states β−1. Explicit comparison with the CFT scaling (which is independent
of temperature) is shown. While the periodicity changes as we increase initial tem-
perature, its scaling near the phase transition agrees with the CFT prediction giving
a critical exponent 1

2 for any initial temperature.

As a first step, we consider the high-frequency regime of the drive, i.e. |T0|+ |T1| � L. For
T0, T1 > 0, this corresponds to the non-heating phase in the dissipationless case, as seen in
Fig. 1(d). Dissipation washes out the oscillating structure of energy and entanglement entropy
of the non-heating phase. We will therefore focus our analysis on the heating phase. Note
that addition of temporal disorder already erases the non-heating phase in the dissipationless
setting [42]. Given the periodicity of the phase diagram along the T0

L axis, we can also explore
a heating phase in the high-frequency limit if T0 < 0. This is equivalent to switching the sign of
the homogeneous Hamiltonian. In this case the quasiparticles propagating with local velocities
v0(x) for time T0 and v1(x) for time T1, change their direction between the two steps of the
drive, and the micro-motion of left (right) movers oscillates around x∗ (L − x∗). This regime
will be particularly resistant to the introduction of dissipation at the two edges of the chain as
due to reduced micromotion, the energy horizons survive not only at stroboscopic times but all
times. Consequently, no information can propagate from one edge of the system to the other.
Therefore, adding or removing particles (depending on the ratio R between Γ L/R

+ and Γ L/R
− )

at the edges of the chain does not affect the particle density between x∗ and L − x∗, which
remains pinned at 1

2 , as seen in Fig. 6(c–d) .
Energy accumulation is seen in the regions [0, x∗] and [L− x∗, L] for non-zero dissipation

strength, see Fig. 6(b). Although the energy density ultimately becomes larger at the edges of
the chain, the horizons act as an energy blockade, preventing any energy growth in the central
region (x∗, L − x∗). We conclude that in such a regime the dissipative system will not tend to
a steady state with uniform density, where particle density is 1 (0) if R < 1 (R > 1) (see
Eq. (21)) , because of the persistence of the horizons which effectively decouple the system
into three pieces: the left and right edges [0, x∗) and (L − x∗, L] where particles accumulate
or deplete because of the exchange with the bath, and the middle piece (x∗, L− x∗) where the
dynamics is unaffected by the dissipative couplings to the baths. This decoupling is understood
via the quasiparticle picture, where the micromotion of quasiparticles is concentrated around
the horizons, and the system is effectively quenched with a deformed Hamiltonian with a
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Figure 5: (a-c) Scaling of mutual information I([0, x), (x , L]) in the heating
phase, T0/L = 0.95, T1/L = 0.05, L = 200 for different initial temperatures,
β−1 = 0,0.01, 0.1. A kink structure is observed at the position of the two horizons
x∗ ≈ 55 and L− x∗, as predicted by CFT. (d-f) Energy density E(x , t)− E(x , 0) in the
heating phase T0/L = 0.95, T1/L = 0.05, L = 200 for different initial temperatures,
β−1 = 0, 0.01,0.1. We observe at x∗ and L − x∗ two hotspots in energy density that
are building up exponentially in time.

velocity profile veff(x) such that veff(x∗) = veff(L − x∗) = 0, leading to such decoupling [39].
We note that this quenched dynamics is only a good approximation in the high-frequency
limit |T0| + |T1| � L. Besides exponential energy accumulation, horizons also share mutual
information I(A, B) which grows linearly in time, as discussed in Sec. 2. This linear growth of
mutual information is shown in Fig. 7(a). The extent of this linear regime increases with system
size L, as clearly shown in Fig. 7(b). We see that the physics of entangled horizons persist for
a substantial range of dissipation in large enough systems. However, we note that above a
certain dissipation threshold of about γ ∼ 0.1, we lose this linear regime of entanglement
growth in the high-frequency regime.

Away from such a high-frequency limit, micro-motion is not negligible anymore [69] and
quasiparticles can travel through the whole system in a single Floquet period, which makes the
horizon picture only valid at stroboscopic times, and cannot decouple the system completely
at all times. The energy density will ultimately, at long enough times, increase uniformly in
the system instead of being confined to the horizons as we increase dissipation. Our results
for the mutual information for the case Γ L/R

+ = Γ L/R
− =: γ are summarized in Fig. 8. We find

that the mutual information is robust to small enough dissipation γ < 0.005, indicating that
the entangled horizons survive for a range of times, even in cases where |T0|+ |T1| ∼ L. We
stress that such a structure is not observed as clearly in the entanglement entropy, as it does
not integrate out entanglement shared with the bath contrary to mutual information.

An important question concerns whether the transition from the heating to the non-heating
phase is modified or smeared by dissipation. The heating phase is characterised by linearly
growth of mutual information in time, as long as the subsystems A and B contain one of the two
horizons each, while the non-heating phase has an oscillatory mutual information. Therefore
we analyse the scaling of the half-system mutual information I

�

[0, L
2 ), (

L
2 , L]

�

after 10 Floquet
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(a) (b)

(c) (d)

Figure 6: High-frequency regime for the driving parameters, |T0|/L = |T1|/L = 0.05.
(a,b): Energy density time evolution E(x , t)−E(x , 0) in the case without dissipation,
γ= 0, as well as the case with dissipation γ= 0.01. (c) Particle density evolution, for
γ= 0.01, for different number of Floquet cycles, with R= 0.5, leading to an overall
particle gain. (d) Same as (c) but for R= 1.5, leading to an overall particle loss.

cycles across the phase transition predicted by CFT across the T0
L =

T1
L line in Fig. 9(a). In the

non-heating phase mutual information oscillates by varying the driving parameters, while it
suddenly grows as a function of T0

L after T∗
L ≈ 0.415, as predicted by CFT in the non-dissipative

case, and then increases as a function of driving parameters in the heating phase. Although
the critical exponent cannot be extracted clearly in the dissipative case, we still clearly observe
a non-analyticity at T∗

L , signalling the persistence of the phase transition, for values of the
dissipation rate γ smaller than 0.005. After this threshold, dissipation dephases quasi-particles
which makes it impossible to correctly observe entangled pairs of quasiparticles forming at the
two horizons x∗ and L − x∗ at each Floquet cycles, leading to entanglement growth between
left and right regions in the dissipationless case.

We now consider dephasing at the boundaries of the chain instead of letting particle ex-
change with an external bath. In contrast to the previous case, here the dissipation conserves
particle number and the particle density will not show any signature of the horizons. We there-
fore focus on the energy density E(x , t), computed from the correlation matrix, as well as the
mutual information averaged over the Gaussian white noise realizations ξi(t) in the presence
of a boundary potential Vi = ξi(t)ni , as explained in Sec. 3. We show the half-system mu-
tual information after 10 drive cycles in Fig. 9 (b). While dephasing is expected to partially
suppress the generation of entanglement since it drives the system into a trivial mixed state,
we find that the half-chain entanglement entropy grows with increasing dephasing strength
for several driving cycles. This shows that fluctuations induced by our dephasing protocol at
the edges of the system dominate the dynamics on the time scales we are considering. Our
results show that the entanglement dynamics introduced by the dephasing smoothens out the
sharp transition from the heating-to-nonheating phase compared to the previous dissipation
scheme. This growth in entanglement is also connected to the rapid growth of energy density
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(a) (b)

Figure 7: (a) Growth of half-system mutual information I([0, L/2], [L/2, L]) for
|T0/L| = 0.05, T1/L = 0.05, with different dissipations, and system sizes
L = {100,200, 500,800} (circle, cross, triangle, square). (b) Same plot for differ-
ent values of γ.

across the whole system, as shown in Fig. 10. This dynamics of the total energy stems from
the injection of quasiparticle excitations due to the fluctuations at the edges and is generally
found to be exponential in time [65,70].

Although there is no sharp transition between the heating and non-heating phase, the
energy density E(x , t) in the heating phase still forms robust peak structures, similar to the
heating phase in the closed system, see Fig. 10. The horizon structure persists for more than
10 driving cycles, despite dephasing strengths of the order of γ = 0.001. Furthermore, the
horizons remain at the positions x∗ and L− x∗ predicted by the CFT, despite the sizable change
in the total energy, as shown in Fig. 10(b).

We finally note that studying the interplay between dissipation and dephasing could lead to
even richer physics. In systems without any Floquet driving, for example the XXZ chain, it has
been shown that the interplay between edge dissipators and local dephasing terms can indeed
result in varied regimes of heat and spin transport, for instance unidirectional heat flow, or
heat flowing from both edge reservoirs towards the middle. Transitions from a ballistic regime
to diffusive regime can be generated by such dissipators [71]. When coupled with periodic
driving, it is highly likely that interesting regimes of behaviour, especially from a quantum
thermodynamics perspective, might arise. It will be interesting to study in detail these effects.

6 Conclusion

We studied the robustness of the heating-to-non-heating phase transition of a particular class
of driven integrable systems to the addition of temperature and dissipation. In particular we
considered a free fermionic chain, whose low energy physics is described by a c = 1 CFT, pe-
riodically driven out-of-equilibrium using spatially deformed Hamiltonians. In the closed set-
ting, starting from a pure state, the physics of this problem is well-described by an integrable
Floquet CFT problem which is exactly solvable and predicts distinct heating and non-heating
phases. We first analytically generalized this result to thermal initial states, showing that the
Floquet CFT predictions extend to finite temperature up to an overall prefactor in the energy
evolution, leaving the scaling of heating rate and periodicity unchanged. We then studied the
case of a thermal initial state on the lattice, which still leads to distinct phases with an energy
time evolution well-predicted by CFT for a wide range of temperatures, and shows the correct
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Figure 8: Scaling of mutual information in the heating phase T0/L = 0.9, T1/L = 0.1
and L = 200, for different values of dissipation γ= Γ L

+ = Γ
R
+ , with Γ L/R

+ = RΓ L/R
− with

R= 0.1, (a) no dissipation, γ= 0, (b) γ= 0.0001, (c) γ= 0.001, (d) γ= 0.002.
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Figure 9: (a) Half-system mutual information I
�

[0, L
2 ), (

L
2 , L]

�

after 10 Floquet cycles

as a function of T0
L =

T1
L =: T

L for different values of the dissipation γ, and L = 100.
The phase transition in the CFT model occurs at T∗

L = 0.415. We also display the
scaling predicted by the CFT for the mutual information in the dissipationless case.
We observe a kink in the mutual information around T∗

L , signalling the persistence
of the heating and non-heating phases in the entanglement structure of the system,
even for non-zero dissipation. (b) Same figure but with dephasing instead of particle
exchange with the bath.
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Figure 10: Time evolved energy density E(x , t) in the heating phase with driving
parameters T0/L = 0.95, T1/L = 0.05 for the dephasing protocol on the boundaries,
with dephasing strengths (a) γ = 0.0001 and (b) γ = 0.001. The horizon structure
of the heating phase persists in presence of dissipation.

critical exponent of 1
2 of the order parameter at the phase transition. We found new effects

arising on the lattice that are not predicted by CFT, such as temperature-dependent energy
damping in the non-heating phase. We then considered two explicit open setting scenarios for
the dissipation: either by exchange of particles with two external baths placed at the bound-
aries of the chain, or by adding on-site dephasing at the boundaries. While the first case does
not conserve particle number, sharp signatures of the phase transition of the dissipationless
case survive in the entanglement entropy structure of the heating phase, even beyond the high-
frequency limit. On the other hand under the addition of on-site dephasing, that conserves
particle number, the particular spatial structure of the energy density still survives ranges of
boundary dephasing, giving a clear sign of the robustness of the emergent energy peaks that
only depend on the driving parameters. However the physics of these two types of dissipative
effects differs significantly: for dissipative particle loss, in the high-frequency regime of the
heating phase, the horizons blockade both energy and particle flow through the system. In the
low frequency regime, substantial micromotion smears out this blockade. Nonetheless, mu-
tual information still remains sensitive to the creation of these horizons. In the dephasing case
however, the horizons still act as energy hotspots, akin to the closed system. We summarize
our findings in Fig. 11. Fig. 11(a) shows the impact of finite temperature as well as micromo-
tion on the dynamics of entanglement, while Fig. 11(b) shows the impact of dissipation on the
growth of entanglement, in both high and low-frequency driving regimes.

While we focused only on non-interacting lattice models in this work, we expect that our
results should still survive (i) in interacting critical lattice models whose low-energy descrip-
tion is also a CFT (see [39] for a study of the driven XXZ model in the dissipationless setting)
and (ii) to general spatial deformations of the energy density [45,46]. While the current work
focused on one spatial dimension, extensions to higher dimensions are conceivable, as the sine-
square deformation only involves the global conformal group that is present in CFTs of any
dimension. In higher dimensions, we expect the driven dynamics to still exhibit heating and
non-heating phases, however the heating pattern might not only consist of discrete points in
space, leading to richer physics of “integrable heating". Lastly, from a field theory perspective,
the persistence of the heating features in a dissipative setting which is inherently non-unitary,
suggests that this physics might be present in a non-hermitian setting. This naturally paves
the way to generalizations of inhomogeneous and interacting Floquet CFTs to non-unitary
CFTs. Some recent efforts in this direction were initiated in [43]. Such an approach would be
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(a) (b)

Figure 11: (a) Growth of half-system mutual information I([0, L/2], [L/2, L]) for
T0/L = 0.95, T1/L = 0.05 (full lines), T0/L = −0.05, T1/L = 0.05 (dashed lines),
and different initial temperatures. The equilibrium value of half-system mutual infor-
mation in the ground state has been subtracted. (b) Growth of half-system mutual in-
formation I([0, L/2], [L/2, L]), for T0/L = 0.9, T1/L = 0.1 (full lines), T0/L = −0.1,
T1/L = 0.1 (dashed lines), and different dissipations γ.

especially useful to explore the possibility of new classes of dissipative phase transitions cor-
responding to novel fixed point field theories in non-unitary CFTs stemming from a complex
interplay between interactions, drive and dissipation.
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