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Abstract

Particle loss is the ultimate challenge for preparation of strongly correlated many-body
states of photons. An established way to overcome the loss is to employ a stabilization
setup that autonomously injects new photons in place of the lost ones. However, as we
show, the effectiveness of such a stabilization setup is compromised for fractional quan-
tum Hall states. There, a hole formed by a lost photon can separate into several remote
quasiholes none of which can be refilled by injecting a photon locally. By deriving an
exact expression for the steady-state density matrix, we demonstrate that isolated quasi-
holes proliferate in the steady state which damages the quality of the state preparation.
The motion of quasiholes leading to their separation is allowed by a repeated process in
which a photon is first lost and then quickly refilled in the vicinity of the quasihole. We
develop the theory of this dissipative quasihole dynamics and show that it has diffusive
character. Our results demonstrate that fractionalization might present an obstacle for
both creation and stabilization of strongly-correlated states with photons.
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1 Introduction

Since the idea of quantum computing was conceived [1], the possibility of simulating com-
plicated quantum many-body systems was one of the main drives behind the development
of a quantum computer. Although a universal quantum computer has so far remained be-
yond the reach, we are approaching a point at which quantum simulators tailored for specific
problems will be able to produce results that cannot be obtained on modern day classical
computers [2,3].

Simulations of topological correlated phases present an important milestone as the com-
plexity of such systems strongly limits the range of analytical and numerical tools for their
study. Prototypical states that emerge from the interplay of topology and strong interactions
are fractional quantum Hall (FQH) states. Besides bearing a fundamental interest as quantum
fluids, FQH states might be practically useful for fault-tolerant quantum computing as they
host anyonic excitations. Manipulation of these excitations can realize robust operations on
quantum information encoded in a topologically degenerate ground state [4].

A particularly promising direction in simulating bosonic FQH phenomena is quantum sim-
ulation with light [5–9]. Within this approach, the toolbox of quantum optics can be used to
manipulate individual photons and bring them into a desired state. Achieving FQH states of
light requires two cornerstone ingredients: an artificial gauge field, which would simulate the
effect of magnetic field for neutral photons, and strong interaction between individual par-
ticles. These ingredients are achievable in the microwave domain, in the context of circuit
quantum electrodynamics (cQED) [10], and in the optical domain. In a cQED setup, an arti-
ficial gauge field can be realized for photons hopping on a lattice of microwave resonators or
qubits by employing parametric driving [11–14], non-reciprocal circuit elements [15], mag-
netic materials [16–18], or complicated geometry in linear circuits [19,20]. In optical systems,
gauge fields can be achieved by various means in arrays of optical cavities [21,22], silicon ring
resonators [23, 24], and in twisted optical resonators [25]. Strong interactions between the
photons may come from the inherent non-linearity of Josephson junctions in cQED [10] and
from coupling of light to atoms in optical resonators [26–28]. We note in passing that ingre-
dients for creating bosonic FQH states are also available in the domain of cold atoms [29,30].
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Combining gauge fields and interactions with appropriately tuned coherent drives and
pulses in theory allows for the realization of few particle FQH states [21, 31–35]. Experi-
mentally, a chiral correlated state was observed in a three-qubit ring [36] and a two-photon
Laughlin state was realized in a twisted optical resonator [37]. The main challenge in scal-
ing these schemes to a large particle number comes from inevitable loss of photons into the
environment. A promising way around this issue is to use engineered dissipation to stabilize
the desired many-body state [38–45]. Recently, this approach was used to stabilize a Mott-
insulator state of eight photons in a one-dimensional qubit array [46].

In the context of FQH effect a setup for stabilization of bosonic Laughlin state at ν = 1/2
was proposed in Ref. [47] for a two-dimensional lattice of qubits (along with more complicated
FQH states). The idea is to apply a coherent two-photon drive that puts one photon into the
system and one into an auxiliary lossy mode at each site of the array. Such a drive realizes
an irreversible process of photon injection: it adds photons into the system but is practically
incapable of taking them away as this would require the presence of photons in (cold) lossy
modes. If the frequency of the drive is tuned to the resonance with the lowest Landau level
(LLL), the photons are pumped into the system as long as less than a half of the states in the
LLL are occupied. At half-filling, it is impossible to add an extra photon to the LLL without pay-
ing energy associated with the interaction between particles. Thus photon-adding transitions
become detuned from the resonance and the system stays in the ν = 1/2 state. If a photon
is lost somewhere in the system, a hole forms in the Laughlin state but as long as the drive is
active this hole is quickly refilled. Overall the system is stabilized in the Laughlin state. The
first step for experimentally realizing this stabilization setup was made in a recent work [18]
where a Harper-Hofstadter lattice of microwave resonators was coupled to a single transmon
qubit. Stabilization setup conceptually similar to that of Ref. [47] was proposed for twisted
optical cavities [48].

Although the proof-of-principle works on dissipative stabilization of bosonic FQH states
[47–49] have demonstrated the viability of the stabilization setup for small particle numbers,
they did not investigate in detail an important challenge for scaling up — fractionalization of
holes in FQH states into remote anyons. In the Laughlin state at ν= 1/2, a hole created by the
photon loss can be separated in space into two remote quasiholes each of which corresponds
to the absence of one half of a photon. The transition refilling a single quasihole is off-resonant
as it results in a quasi-particle state with a finite interaction energy; the drive is thus incapable
of refilling a quasihole. Consequently, spatially separated quasiholes have a detrimental effect
on the quality of preparation of the Laughlin state. This effect was mentioned in Ref. [47],
however the probability of formation of isolated quasiholes was estimated to be small and the

Figure 1: Conceptual picture for the stabilization of the photonic Laughlin state at
half-filling. Full hole in the Laughlin state is refilled by adding a photon locally. At the
same time two remote quasiholes – which also correspond to the absence of a single
photon – cannot be refilled by the stabilization setup. This is because a real (i.e.
“bare”) photon cannot break into two pieces, in contrast to a hole in the fractional
quantum Hall state that can break into two anyons.
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Figure 2: Dissipative dynamics of quasiholes in the stabilized photonic Laughlin state
at half-filling. (a) Diffusion of a single quasihole. A photon is first lost in the vicinity
of the quasihole and then quickly refilled by the stabilization setup at a different
location. As a result the position of the quasihole is shifted in a random direction.
(b) A full hole breaks into two stable quasiholes. Again, this requires loss of an
additional photon in the vicinity of the initial hole that is followed by a subsequent
refilling at a different location.

influence of unpaired quasiholes was neglected.
We demonstrate that unpaired anyons proliferate in the dissipatively stabilized photonic

Laughlin state despite the fact that probability of holes to break apart into remote quasiholes
is small. In fact, most of the photons missing from the Laughlin state correspond to isolated
quasiholes. As a result, the steady state particle number – that should approach half-filling in
the ideal case but is generally smaller due to the loss processes – deviates from its target value
in a parametrically stronger way than in stabilized correlated states with no fractionalization
(such as Mott insulator state [42,46]). We show this by deriving a closed-form expression for
the steady state density matrix which allows us to exactly compute the average particle number.
We argue that unpaired quasiholes form even if the system is initialized in a pristine Laughlin
state and despite the fact that the photons are dissipated and injected locally one by one (as
in the model considered in Ref. [47]). This is surprising because only full single-photon holes
appear due to loss processes whereas the quasiholes do not posses a Hamiltonian-mediated
coherent dynamics (as long as the Landau levels are flat). How then do the holes break apart
into the remote quasiholes? We show that dissipation itself makes it possible by endowing
the quasiholes with dynamics. Qualitatively, the motion of a quasihole is allowed by a process
in which a photon is first lost nearby and then another photon is refilled at a displaced loca-
tion (see Figure 2). Repeated many times this process leads to a diffusion of a quasihole. We
verified this dissipative picture of quasihole mobility analytically and numerically and demon-
strated that the diffusion coefficient is proportional to the loss rate.

As a result of hole fractionalization, the preparation of the Laughlin state from vacuum
takes a much longer time than the naively expected inverse photon injection rate. Indeed,
the stabilization setup pumps photons into the system at random locations. This leads to an
abundance of unpaired quasiholes formed during the initialization stage. Abundant quasiholes
need to recombine before the steady state is reached. However, this recombination relies
on slow diffusive motion of quasiholes mediated by the rare loss processes (loss rate has to
be much smaller than the photon injection rate for the stabilization setup to be effective).
Therefore, the relaxation of the system is governed by the loss rate as opposed to photon
injection rate. As we demonstrate, in a finite size system this behavior is associated with the
existence of dark states that cannot be refilled by the stabilization setup. This shows that,
counterintuitively, photon loss might be essential for the preparation of the Laughlin state
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through engineered dissipation as long as other quasihole motion mechanisms are absent.
Our results demonstrate that fractionalization of holes into quasiholes presents an addi-

tional hurdle in preparing the FQH states of light. Although this hurdle does not critically
undermine the effort to dissipatively stabilize the FQH states, it raises a question of whether
quasihole formation might be suppressed in order to improve the quality of the stabilized state.
This would require the development of special protocols that would purge the system of abun-
dant quasiholes. Such protocols might rely either on active manipulation of quasiholes or on
the addition of quasihole-trapping potentials. Further research is needed to fully understand
how the fractionalization of holes can be suppressed.

The outline of the manuscript is as follows. In Section 2 we describe the model for the
stabilization setup. First, we outline the relevant single-particle (see Section 2.1.1) and many-
body states (see Section 2.1.2). Then, in Section 2.2 we present the master equation that
accounts for loss processes as well as refilling processes induced by the stabilization setup.
Starting from Section 3 we present main results of our work. In Section 3 we derive the
steady state of the master equation and show that the quality of Laughlin state preparation is
diminished due to the fractionalization. In Section 4 we describe two aspects of the dynamics
of the system. In Section 4.1 we describe the dissipative dynamics of a single quasihole and in
Section 4.2 we consider the dynamics of creating the Laughlin state from the vacuum. Finally,
we conclude in Section 5 with an extensive discussion of nuances (such as disorder) that might
appear in realistic systems and possible directions for further research.

2 Model

Our model for the stabilized photonic Laughlin state consists of two main components. The
first is the many-body Hamiltonian that describes the motion of the photons in the artificial
magnetic field and their repulsive interaction (see Section 2.1). The second component is the
Lindbladian which describes the photon dissipation to the environment as well as the action
of the stabilization setup that counteracts this dissipation (see Section 2.2).

2.1 Hamiltonian of the system

Many of the proposed realizations of quantum Hall physics with photons require the presence
of the lattice (e.g. of qubits or resonators). However, lattice effects greatly complicate the
analytical description of the problem [50]. To avoid this complication we assume that the
continuum description of the problem is allowed. Such a description is fair for large lattices
with small magnetic flux per plaquette or with long-ranged hopping [51].

The purpose of our work is to investigate the effects of hole fractionalization in the bulk
of the system. Edge states that are present in a finite planar quantum Hall samples are a
natural obstacle towards this goal. Their influence is especially strong on small systems, and
only such systems can be treated by our numerics. To eliminate the influence of the edge we
consider the problem on a sphere instead of the plane [52]. Rotational invariance present in
this approach is an additional useful asset for analytic and numeric investigation. We believe
that qualitatively our results remain correct for a large planar sample away from the edge.

All in all, the many-body Hamiltonian that we consider is given by

H =

∫

d2r
�

ψ†(r )T̂ψ(r ) + g
�

ψ†(r )ψ(r )
�2�

. (1)

Here, the integration runs over the surface of the sphere which we assume to have radius R.
ψ†(r ) and ψ(r ) are bosonic creation and annihilation operators, respectively. They satisfy
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the standard bosonic commutation relations [ψ(r ),ψ†(r ′)] = δ(r − r ′), [ψ(r ),ψ(r ′)] = 0.
Single-particle kinetic energy operator is given by T̂ = m(r × v)2/2R2, with m the effective
mass of photons1. The velocity operator is given by v = (−iħh∇− A)/m where A is the vector
potential describing the uniform artificial magnetic field B =∇×A piercing the surface of the
sphere (we choose an unconventional dimensionality of the magnetic field since the photons
are chargeless). As follows from the Dirac monopole quantization condition [54], the problem
is well defined only if the total flux of the magnetic field equals an integer number Nφ of
flux quanta, 4πR2nφ = Nφ , where nφ = B/h is the density of flux quanta (here h = 2πħh).
Following Ref. [52] we work in a gauge with a cylindrical symmetry,

A=
hnφR2

r
cotθϕ̂ . (2)

Here θ and ϕ are polar and azimuthal angles, ϕ̂ is the unit vector in the azimuthal direction,
and r is the radial distance. Note that vector potential diverges at the poles despite the mag-
netic field being uniform. These divergences have no physical consequences. Finally, in Eq. (1)
constant g > 0 is the strength of interaction between the photons. We assume the interaction
to be point-like which is analog in the case of a lattice to photons interacting only when at the
same site.

In the next two subsections we review the known [52] single-particle and many-body
eigenstates of the Hamiltonian (1) that belong to the lowest Landau level (LLL). Such a de-
tailed exposition is prompted by an unusual spherical geometry which we adopt. The discussed
eigenstates provide a framework for understanding the analytical results of Secs. 3 and 4.

2.1.1 Single-particle states

First, we describe the eigenstates of a single-particle Hamiltonian T̂ that belong to the lowest
Landau level. Due to the rotational invariance present in the spherical geometry the eigen-
states can be characterized by the total angular momentum S and the projection of angular
momentum on the z-axis, Sz . The LLL corresponds to S = Nφ/2 (in units of ħh) and is thus
Nφ + 1 times degenerate2. All states in the LLL have energy ħhωc/2 with ωc = B/m the cy-
clotron frequency. Explicitly, the wave-function of a state with Sz = m is given by

ψm(u, v) = Cm uNφ/2+mvNφ/2−m , (3)

where u and v parametrize the position on a sphere, u= cos (θ/2)ei ϕ2 , v = sin (θ/2)e−i ϕ2 . The
normalization factor reads

Cm =

√

√

√ 1
4π

(Nφ + 1)!

(Nφ/2+m)!(Nφ/2−m)!
. (4)

Pictorially, the probability density in stateψm has a form of a ring-shaped peak centered around
θ = 2arctan

Æ

(Nφ/2−m)/(Nφ/2+m). As usual, states with different projection of angular
momentum are related to each other by action of ladder operators; in terms of variables u and
v these operators are given by

S+ = u∂v , S− = v∂u . (5)

Operator Sz can also be represented trivially in terms of u and v:

Sz = (u∂u − v∂v)/2 . (6)
1In context of cQED the effective mass for photons might arise from coherent hopping between the resonators

within the 2D lattice. In twisted optical resonators mass appears naturally due to the curvature of the mirrors and
cavity length [25,53].

2Notice that the number of states within the LLL on a sphere is larger than its value on a plane – Nφ – by unity.
This discrepancy is known as Wen-Zee shift and its presence results from non-zero curvature of the sphere [55].
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2.1.2 Many-body states

In this section, we review the many-body states that belong to the LLL and have zero interaction
energy. Such states with the different particle numbers are the key ingredients in the dissipative
stabilization setup of Ref. [47] on which we focus. We assume that the number Nφ of flux
quanta piercing the sphere is even. Under this condition the Hamiltonian (1) has a unique
ground state at half-filling, the Laughlin state (this is not the case for odd Nφ as we discuss
later in Section 4.1).

The non-interacting states within the LLL should simultaneously satisfy three conditions:
(i) the wave function has to be symmetric with respect to the permutation of photons due to
their bosonic statistics, (ii) the wave function should vanish when particles are at the same
position to avoid contact interaction of Eq. (1), (iii) the wave function has to be a polynomial
of degree 2S in the coordinates u and v of each particle (and not their conjugates). The latter
condition guarantees that all particles belong to the LLL in the considered state. Conditions
(i)–(iii) can be simultaneously met only below half-filling of the LLL3, N ≤ N1/2, where

N1/2 = Nφ/2+ 1 . (7)

For N > N1/2 all states either have components in higher Landau levels or non-zero interaction
energy. Precisely at half-filling, N = N1/2, there is a unique state within the LLL with zero
interaction energy, namely the bosonic Laughlin state,

ΨLS =
∏

i< j

�

ui v j − u j vi

�2
, (8)

(we omit the normalization constants in the description of the many-body states). The indices
i and j label different particles, 1≤ i, j ≤ N1/2.

Let us briefly review the physical properties of the Laughlin state given by Eq. (8). First
of all, the uniqueness of the Laughlin state requires it to be rotationally symmetric, SΨLS = 0,
where S =

∑N1/2

i=1 Si is the total angular momentum of all particles. This implies that the den-
sity of the photon liquid in the Laughlin state is uniform across the surface of the sphere.
Second, the Laughlin state is gapped, i.e. all other states with N = N1/2 that belong to the
LLL have interaction energy of order of Eg = g/nφ . Finally, the Laughlin state is also incom-
pressible: it impossible to add one more particle to the Laughlin state without paying energy
∼min(Eg ,ħhωc) in addition to ħhωc/2 associated with the LLL kinetic energy.

At any particle number below half-filling, N < N1/2, there are multiple many-body states
with zero interaction energy that belong to the LLL. These states correspond to configurations
in which Nqh = 2(N1/2 − N) quasiholes are present in the Laughlin state. The factor of two in
the latter equation means that for every particle missing from the Laughlin state two quasiholes
appear. This is a manifestation of charge fractionalization inherent for the FQH states. For a
particular realization of quasihole positions the wave-function is given by

ΨN
qh =

∏

i< j

�

ui v j − u j vi

�2 ×
N
∏

l=1

Nqh
∏

k=1

(ulηk − vlξk) , (9)

with 1≤ i, j ≤ N and (u, v) = (ξk,ηk) the positions of the quasiholes. The first multiplier here
is similar to that in the Laughlin state; it guarantees that photons do not interact with each
other. The second multiplier in Eq. (9) shows that the wave function vanishes whenever one

3To see this formally, note that conditions (i), (ii) imply that the wave-function has to contain a multiplier
∏

i< j

�

ui v j − u j vi

�2
(with i, j labeling different particles). However, at N > N1/2 such a multiplier by itself would

have a higher degree than 2S and which violates condition (iii).
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of the photons approaches a quasihole. Such dips in the photon density correspond to a net
deficit of one half of a photon in each quasihole.

We note that Eq. (9) defines an over-complete basis of quasihole states for a given particle
number N . To determine the number of linearly independent states we note that any function
of the type

ΨN
qh =

∏

i< j

�

ui v j − u j vi

�2
P (u1, v1, ..., uN , vN ) , (10)

where P is a symmetric polynomial of the degree Nqh, is a valid N -particle wave function
satisfying conditions (i)–(iii) above. Then, to compute the number of independent quasihole
states it is sufficient to count the number of independent polynomials P. The result is [56]

dM =
�

N1/2 + Nqh/2
Nqh

�

, (11)

(notice that Nqh is an even number). Note that d0 = d2N1/2
= 1, i.e. the Laughlin state and the

state with no photons are non-degenerate. In the limit N1/2� 1 for fixed Nqh, expression (11)
reduces to

dNqh
≈

N
Nqh

1/2

Nqh!
. (12)

This expression has a form of a statistical weight of Nqh bosons placed in N1/2 degenerate
single-particle states. The fact that the effective number of states is two times smaller than
that for full photons in the LLL, N1/2 ≈ Nφ/2, is due to the artificial charge of quasiholes being
one half instead of one.

2.2 Stabilization setup

In order to prepare the Laughlin state and preserve it from photon loss, the system is coupled
to a stabilization setup based on engineered dissipation (such as the one in Refs. [47, 48]).
We describe the evolution of the photon density matrix in the presence of such a setup by the
following Lindblad master equation:

dρ
d t
= −i[H,ρ] +Lκρ +LΓρ . (13)

Here, ρ is the density matrix of the system and H is its Hamiltonian (1). The superoperator
Lκ describes the loss of photons due to the dissipation,

Lκρ = κ
∫

d2r
�

ψ(r )ρψ†(r )−
1
2
{ρ,ψ†(r )ψ(r )}

�

, (14)

where κ is the photon decay rate. In Eq. (14) we assume that the dissipation of photons
happens uniformly across the system in a local way. The superoperator LΓ describes the action
of the stabilization setup that refills the lost photons,

LΓρ = Γ
∫

d2r
�

ψ̃†(r )ρψ̃(r )−
1
2
{ρ, ψ̃(r )ψ̃†(r )}

�

. (15)

Here, Γ is the rate at which the photons are injected into the system (also assumed to be
spatially uniform). ψ̃(r ) = Pψ(r )P is the annihilation operator projected on the subspace
of the LLL states with zero interaction energy, i.e., the quasihole states of the form (10) with
different particle numbers (including N = 0 and N = N1/2); P is the corresponding projection
operator. We note that [H,P] = 0 because the quasihole states are eigenstates of H.

8

https://scipost.org
https://scipost.org/SciPostPhys.13.5.107


SciPost Phys. 13, 107 (2022)

The stabilization setup described by Eq. (15) works in the following way. It injects photons
into the LLL for as long as they avoid interacting with one another. Once the Laughlin state
is reached, injection of photons ceases. This is highlighted by the presence of projectors in
Eq. (15) which do not contain states with more photons than in the Laughlin state. If a full
hole is formed in the Laughlin state due to the loss process, photon injection becomes allowed
again and the hole is refilled. Thus, for large enough Γ the system is stabilized in a state very
close to the Laughlin state (we always assume Γ > κ which is required to make stabilization
effective). Physically, selective pumping required for the operation of the stabilization setup
might be realized by driving the system incoherently in resonance with the LLL [47]. In this
case, processes of photon addition that result in a state with non-zero interaction energy or
with components in higher Landau levels are forbidden since they are off-resonant. Impor-
tantly, the stabilization setup cannot add photons even for N < N1/2 if such a photon-adding
process leads to a non-zero interaction energy or finite occupation of higher Ladnau levels4.

Below we assume that the system starts its evolution in the subspace of the LLL states with
zero interaction energy, i.e., that its initial density matrix ρ0 satisfies Pρ0P = ρ0. The latter
condition guarantees that the system stays within this subspace at later times, Pρ(t)P = ρ(t).
Indeed, the discussed subspace is evidently invariant under the action ofLΓ due to the presence
of projector operators P in Eq. (15). It is also invariant under the action of Lκ since the photon
loss cannot transfer the system to a state with non-zero interaction energy or with components
in higher Landau levels. Therefore, Eqs. (13)–(15) provide a self-contained description of the
system within the subspace defined by the projector P . We note that the model is not suited for
capturing the behaviour of the system outside of this subspace in physically realistic settings.
There, one has to resort to full microscopic models of the stabilization setup [47, 48]. We
qualitatively describe some of the effects associated with states that have finite interaction
energy (quasiparticle states) in Section 5.1.

We note that Eq. (13) can be obtained from the master equation of Ref. [47] by taking the
continuous limit and disregarding all states that have components in higher Landau levels or
finite interaction energy. This is justified if the bandwidth of the incoherent driving responsible
for the refilling of lost photons is centered around the single-photon LLL energy and is narrow
compared to Landau level spacing and interaction energy (in this case the Lorenzian tails of
the incoherent photon injection process can be neglected).

Finally, we note that Eq. (13) essentially describes the system coupled to a thermal bath in
a Markovian way. The chemical potential µ and the inverse temperature β of this thermal bath
satisfy e−β(ħhωc/2−µ) = Γ/κ and e−βEg , e−βħhωc � 1. The latter condition is required to confine
the system to the subspace defined by the projector P .

3 Steady state

The stabilization setup is designed to prepare and preserve the Laughlin state (8). However,
due to the processes of photon loss the actual steady state ρst of master equation (13) – which
is defined by the dynamic equilibrium between photon dissipation and injection – deviates
from the pure Laughlin state. To find this steady state it is convenient to exchange ψ(r) and
ψ†(r) in equation (14) with ψ̃(r) and ψ̃†(r), respectively. This is justified since the system
remains in the subspace defined by projector P at all times (assuming that it was initialized in

4To be precise, for a realistic setup of Ref. [47] this statement relies on the presence of the gap above the
degenerate quasihole manifold at each particular N . To our knowledge, whether such a gap is present in the
thermodynamic limit or not is an open question, with recent works claiming that the gap is indeed present [57].
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this subspace). Then a direct check shows that

ρst =
1
ZP (Γ/κ)N̂ P , (16)

where N̂ is the particle number operator and is the exact steady state of master equation (13).
Here Z is a normalization factor that ensures Trρ = 1.

The steady state ρst has a set of notable features. First of all, due to the presence of
projectors P in Eq. (16), the only states that appear in ρst are the quasihole states. The
probability of a given state depends only on the particle number and for Γ > κ increases with
it. The Laughlin state is thus most probable. The probabilities of individual many-body states
with lower particle numbers are smaller. However, these states are degenerate and have a
higher statistical weight than the Laughlin state. This leads to a non-trivial interplay between
loss and refilling which we elucidate below. Notably, steady state (16) is of the Gibbs form
since master equation (13) effectively describes the coupling to a thermal bath.

What metric can be used to quantify the closeness of the steady state (16) to the Laughlin
state? An obvious choice of such a metric could be the state infidelity defined as 1−F , where
F = 〈ΨLS|ρst|ΨLS〉. However, in our case this metric is deficient, as it does not directly translate
to the physical properties of the system. Indeed, even the loss of a single photon from the
Laughlin state leads to the maximal possible value of infidelity 1−F = 1 because the states
now have a different particle numbers. However, far from the point where the photon was
lost all observable properties (such as the correlation functions) remain virtually the same as
in the Laughlin state.

For our system, a more physically transparent metric for the quality of the state prepara-
tion is the relative deviation of the particle number from its target value, ∆N/N1/2, where
∆N = N1/2 − 〈N〉 (〈N〉 is the average number of particles). Indeed, in our model ∆N = 0
unambiguously identifies the Laughlin state5. At 0<∆N/N1/2� 1 some photons are missing
but the observable properties are still relatively close to that of a Laughlin state.

We now compute ∆N/N1/2 for the steady state (16). Using (16) we find

∆N
N1/2

=
1

N1/2

∑N1/2

n=0 n d2n (κ/Γ )
n

∑N1/2

n=0 d2n (κ/Γ )
n

, (17)

where the degeneracy factors d2n are given by Eq. (11). For each of n lost photons two quasi-
holes appear, as indicated by 2n in d2n. An expression similar to Eq. (17) was previously
derived in a recent work [49] where the authors exactly computed the Laughlin state proba-
bility in a similar setting. For our purposes, we note that the sums in Eq. (17) can be calculated
for a large system with ∆N � 1:

∆N
N1/2

≈
1
2

s

κ

Γ
. (18)

At the first glance, Eq. (18) seems to contradict simple detailed balance considerations. In-
deed, a naive reasoning could run as follows. According to Eq. (13) single photons dissipate
from the Laughlin state with rate∝ κ. A lost photon leaves behind a hole at the correspond-
ing position. If Γ � κ, the hole gets quickly refilled by the stabilization setup over the time
interval∝ 1/Γ . Thus ∆N/N1/2 ∼ κ/Γ might be expected [47]. However, this simplistic ex-
pectation is not consistent with Eq. (18) which predicts a parametrically larger deviation of
the particle number from the Laughlin state. The discrepancy arises because the simplified
detailed balance consideration above is oblivious to the effects of the hole fractionalization. In
fact, in addition to ephemeral full holes appearing in the Laughlin state there might also exist

5Because we neglect the presence of high-energy quasiparticle excitations or photons in higher Landau levels.
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stable isolated quasiholes. These quasiholes cannot be efficiently refilled by the stabilization
setup since it injects photons one-by-one locally [see Eq. (15)] while each quasihole is the
absence of only a half of a photon. The fact that the actual relative deviation of the particle
number (18) is parametrically larger then the deviation ∼ κ/Γ due to the transient full holes
indicates that most of the missing particles in the steady state correspond to separated quasi-
holes. The abundance of isolated quasiholes in the steady state and the resulting damage to
the stabilization setup are the central results of our work.

The proliferation of spatially separated quasiholes in the dissipatively stabilized FQH state
of photons should be contrasted with the behaviour of other dissipatively stabilized incom-
pressible phases, which do not exhibit fractionalization of physical properties. A prototypical
example of such a phase is the Mott insulator state of photons [46]. There, the effects of
hole fractionalization are absent and analysis similar to that leading to Eq. (16) demonstrates
∆N/Ntarget ∼ κ/Γ [42]. Here, Ntarget is the target particle number for the stabilization setup.
Formally, the difference between the cases with and without fractionalization stems from dif-
ferent behavior of the degeneracies of subspaces with a given number of particles: fraction-
alization strongly increases the degeneracy. For example, the state with one lost photon has
the degeneracy ∼ Ntarget for Mott insulator and ∼ N2

target/2! for the Laughlin state (the target
particle number for the latter is Ntarget = N1/2).

Although the fractionalization increases the deviation of N from its target value,∆N/Ntarget
remains a power-law function of κ/Γ . This implies that the dissipative stabilization of the
Laughlin state should in principle be experimentally achievable. This conclusion is in line
with the previous works [47–49].

From the discussion of the steady state above it might appear that the effects of fractional-
ization of holes become unimportant for small κ. Indeed, for κ/Γ → 0 the deviation from the
Laughlin state vanishes. However, this will prove to be incorrect as fractionalization strongly
impacts the dynamics described by Eq. (13), especially so when the loss rate is small. Namely,
in the latter case fractionalization of holes renders the relaxation dynamics of the system slow.

4 Dynamics

Let us now assume that the system is prepared initially in a pure Laughlin state with ν= 1/2.
In the course of evolution it should eventually reach steady state (16), in which there is a finite
concentration of isolated quasiholes ∝

p

κ/Γ (where κ is the loss rate and Γ is the refilling
rate). How can this happen given that the photons are dissipated and injected locally one-by-
one while each quasihole corresponds to the absence of a half of a photon? To reach ρst the
full holes should be able to break apart into separate quasiholes, which would then be able to
move on their own. This motion cannot be provided by Hamiltonian (1) since the quasiholes
are its eigenstates.

The goal of the present section is to show that the motion of quasiholes is induced by the
stabilization setup in spite of its local character. Such a dissipative dynamics results from the
repeated loss and refilling of a full photon in the vicinity of a quasihole, as was touched upon
in the introduction [see Fig. 2]. When κ� Γ , the loss process is a bottleneck in this sequence
of processes. Therefore, the quasihole dynamics is governed by the loss rate κ.

In Section 4.1 we show that the motion of a single quasihole bears a diffusive character.
To this end we utilize a peculiar parity effect of a ν = 1/2 FQH state on a sphere, where for
odd Nφ there is an unpaired quasihole at half-filling that cannot be refilled by the stabiliza-
tion setup. This allows us to map the problem of quasihole motion onto the problem of spin
diffusion. Then, in Section 4.2 we describe how the stabilization setup prepares the Laughlin
state starting from the vacuum. This experimentally relevant problem involves the dynamics
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of many quasiholes. Since the quasihole diffusion is controlled by the rate of loss processes, the
preparation time of the Laughlin state turns out to be much longer than the naively expected
inverse refilling rate.

4.1 Diffusion of single quasihole

In order to investigate the motion of quasiholes we consider a sphere pierced by an odd number
of magnetic flux quanta. In that case the number of quasiholes can only be odd too. In
particular, at half-filling (N = Nodd

1/2 = [Nφ + 1]/2) there is a single quasihole. The presence
of an isolated quasihole renders the state at half-filling degenerate, as the quasihole can have
arbitrary spatial location on a sphere. By studying the dynamics within this degenerate single-
quasihole manifold it is possible to gain general insights about the motion of quasiholes in our
system.

4.1.1 Wavefunction of a single-quasihole state

We start the discussion by describing the wave-functions of states with a single quasihole. To
formally construct these states for odd Nφ we can start with ΨLS at Nφ −1 flux quanta (which
is an even number) and then increase magnetic flux through the surface of the sphere by one
quantum by multiplying this wave function by a quasihole factor,

Ψodd
1/2 [u0, v0] =

Nodd
1/2
∏

i=1

(ui v0 − u0vi)ΨLS . (19)

State (19) corresponds to the presence of a single quasihole at position (u, v) = (u0, v0). For
any particle i the power of the polynomial in Eq. (19) is higher by one than that in ΨLS. Thus,
state (19) indeed corresponds to Nφ flux quanta [cf. Eq. (3)]. States of the form (19) with all
possible values of u0 and v0 form an over-complete basis in the subspace of single-quasihole
states. To construct an orthonormal basis in this subspace we note that the quasihole states
possess definite total angular momentum:

S2Ψodd
1/2 [u0, v0] = S̃(S̃ + 1)Ψodd

1/2 [u0, v0] , (20)

with S̃ = Nodd
1/2 /2 = (Nφ + 1)/4. This can be verified by noting that ΨLS commutes with S2

and computing the action of S2 on the quasihole prefactor
∏

i(ui v0 − u0vi) directly. From
equation (20) it follows that the orthonormal basis of single-quasihole states consists of states
with different projections of angular momentum on a given (e.g., z) axis, m = S̃, . . . ,−S̃. No-
tably, many-body states with one quasihole resemble the single-particle LLL states for a particle
with half the charge of the opposite sign. Since the sign is opposite, the state with Sz = S̃
corresponds to the presence of a quasihole on the south pole of the sphere (in contrast to a
single-particle state with the highest Sz which is located close to the north pole):

|S̃〉 ∝ Ψodd
1/2 [0, 1] = u1...uNodd

1/2
ΨLS , Sz|S̃〉= S̃|S̃〉 . (21)

As usual, the state |m〉 with Sz = m can be obtained from |S̃〉 by acting on it with a many-body
version of S− operator S̃ −m times. Since S−ΨLS = 0 it is enough to compute the action of S−
on the prefactor near ΨLS in Eq. (21). In this way we find

|m〉 ∝ (u1...um+S̃ vm+S̃+1...vNodd
1/2
+ permutations)ΨLS . (22)

Qualitatively, state |m〉 describes a ring-shaped dip in photon concentration around

θ = 2 arctan

√

√ S̃ +m

S̃ −m
,
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(where θ is a polar angle on a sphere). Such a dip in concentration totals to a deficit of a half
of a photon (as compared to the uniform Laughlin state).

4.1.2 Relaxation rates for the quasihole dynamics

The dynamics of the system with odd Nφ is described by a master equation (13), similarly to
the case of even Nφ . The steady state density matrix ρst is again given by Eq. (16) (although
now the operator P projects on the subspace of states with an odd number of quasiholes).
Thus in the steady state the probabilities of states |m〉 with a single quasihole are the same for
all m. This is a manifestation of rotational invariance of the problem.

To single out the dynamics of one quasihole, we focus on a limit of a very strong refilling

κ/Γ � (Nodd
1/2 )

−2 , (23)

in which the probability of having more than one quasihole in the steady state is small [as
can be directly verified by using Eq. (16)]. In this regime, if the system is initialized in a state
with a single quasihole, its subsequent evolution boils down to the motion of this quasihole
(up to small corrections to the density matrix). This observation, together with the rotational
symmetry of the problem, makes it possible to draw analytical conclusions about the evolution
of the density matrix.

First, we qualitatively describe the mechanism of motion that allows the quasihole to reach
the steady state in which it is distributed uniformly across the sphere. To begin with, we note
that the refilling part of the Lindbladian [see Eq. (15)] cannot induce the quasihole dynamics
by itself. This is because the photon addition event would lead to a state with a finite inter-
action energy forbidden within our model. Therefore, a loss process has to happen for the
quasihole to move. If the loss happens in the vicinity of the original quasihole position, after
the subsequent refilling the quasihole might be displaced [see Fig. 2]. Overall, although the
states with a lost photon are ephemeral and the system spends the overwhelming majority of
time in a state with a single quasihole, it is the photon loss that governs the motion of the
quasihole.

To analyze the motion of a single quasihole we note that under the condition (23), the
density matrix can be approximated as

ρ(t) =
∑

m,m′
ρm,m′(t)|m〉〈m′| . (24)

This is due to the fact that the excursions into the manifold with more than one quasihole
are short. For the same reason the evolution of the density matrix in Eq. (24) is Markovian.
Therefore, ρ(t) can be decomposed in terms of the relaxation eigenmodes ρλ

6

ρ(t) = ρst +
∑

λ

αλe−λtρλ , λ > 0 , (25)

where ρst and ρλ are (2S̃ + 1) × (2S̃ + 1) matrices in the subspace of states with a single
quasihole; αλ correspond to the decomposition coefficients of the density matrix at t = 0
into the relaxation eigenmodes. As we explain below, the rotational invariance allows us to
determine the structure of eigenmodes ρλ exactly. A combination of analytical and numerical
calculations allows us to analyze the relaxation rates λ.

We start by deriving the relaxation eigenmodes ρλ. To this end we note that the space
formed by operators |m〉〈m′| featured in Eq. (24) can be viewed as a direct product of two

6Decomposition (25) assumes that the steady state is unique which we verify numerically later.
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spins S̃ [58]. Then, from the rotational invariance it follows that the eigenmodes can be clas-
sified by the sum of angular momenta of the two spins, L = 0, 1, . . . , 2S̃, and its projection,
M = −L, . . . , L. Thus, in what follows we label the relaxation modes by these two quantum
numbers, ρλ = ρM

L . The relaxation rates λ = ΛL only depend on L which is another conse-
quence of rotational invariance.

The relaxation eigenmodes ρM
L are determined by their commutation relations with the

spin-S̃ operators S̃i (where i = ±, z):
�

S̃z ,ρM
L

�

= MρM
L , (26)

�

S̃±,ρM
L

�

=
Æ

L(L + 1)−M(M ± 1)ρM±1
L . (27)

In particular, the steady state is given by ρst ≡ ρ0
0 =

1
2S̃+1

∑S̃
m=−S̃ |m〉〈m|; it corresponds to

Λ0 = 0. To explicitly determine eigenmodes ρM
L with higher angular momenta L > 0 it is

convenient to start with ρ−L
L . A direct substitution in Eq. (26) shows that ρ−L

L ∝ S̃L
− (see

Appendix A). Then the remaining modes ρM
L with M > −L can be obtained by applying the

raising operator S̃+ via the commutation relation given in Eq. (27). For example, in this way
we find modes with L = 1:

ρ1
1 = −S̃+ , ρ0

1 =
p

2S̃z , ρ−1
1 = S̃− . (28)

Next, we establish how eigenvalues ΛL with L ≥ 1 depend on the system size and L. We
will show below that ΛL ∝ L(L + 1) as expected for a diffusive process on a sphere. The
main idea of the calculation is to relate the relaxation rates ΛL to a certain combination of
classical transition rates which describe how quickly the system goes from a state |m〉 to a state
|n〉. This relation, together with the rotational invariance and a series of physically justified
assumptions, is sufficient to determine how ΛL depends on L.

To introduce the classical transition rates, let us note that the density matrix preserves
its diagonal form, ρ(t) =

∑

m pm(t)|m〉〈m|, if it is diagonal initially. This is a consequence
of rotational invariance: the coherences between states with different projections of angular
momentum do not appear if they are absent initially. Then equation (13) boils down to a
classical Markovian rate equation for the probabilities pm of finding the system in a state |m〉:

dpm

d t
=

S̃
∑

n=−S̃

pnWn→m − pm

S̃
∑

n=−S̃

Wm→n . (29)

Here Wn→m is a positive real matrix that determines the transition rate from state |n〉 to state
|m〉. From the rotational invariance it follows that this matrix is symmetric, Wn→m = Wm→n.
The matrix elements Wn→m are precisely the aforementioned classical transition rates; we can
estimate Wn→m∝ κ. In general, it is not possible to compute Wn→m analytically. Nonetheless,
they will prove useful since all low-lying relaxation rates of the system ΛL are determined by
a single linear combination of Wn→m.

We start by deriving an expression for Λ1. From the rotational symmetry we know that
ρ0

1 ∝ S̃z . Thus, from Eq. (29) we obtain

−Λ1m=
S̃
∑

n=−S̃

nWn→m −m
S̃
∑

n=−S̃

Wm→n . (30)

Substituting m= S̃ and using the fact that the matrix W is symmetric we find

Λ1 =
1

S̃
γ1 , γ1 =

2S̃
∑

k=0

kWS̃→S̃−k , (31)
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where the rates WS̃→S̃−k describe the spreading of the quasihole starting from the south pole
of the sphere [see Fig. 3(a)]. Equation (31) shows that the rate Λ1 is determined by the square
of the typical hopping length for the quasihole. Indeed, factor of k in the sum is proportional
to r2

qh, where rqh is the radius of a quasihole wave function with angular momentum S̃ − k
(this can be understood by using an analogy with single-particle wave functions of the LLL
on a plane). Moreover, Λ1 is inversely proportional to the system area A since S̃∝ Nφ ∝ A.
Overall, Λ1 ·τjump∝ (∆r)2/A, where∆r is the hopping length, A is the area of the system, and
τjump ∼ 1/κ is the time between subsequent jumps. Therefore, the behavior of Λ1 is consistent
with a diffusive process.

To further verify the diffusive character of quasihole motion we compute the relaxation
eigenvalues with L > 1 in a limit of a large system, S̃� 1. To this end, we make two physically
justified assumptions. First, we assume that for S̃ � 1 the rates WS̃→S̃−k saturate to a certain
thermodynamic limit that corresponds to the case of a stabilized Laughlin state on an infinite
plane7. Second, we assume that in the thermodynamic limit, the constants WS̃→S̃−k quickly
decay with k. The decay of WS̃→S̃−k is expected because in order for the quasihole at the south
pole to hop a large distance, first a full hole should be formed via a loss process far away from
the pole. Then a single photon should be injected into the system, refilling the quasihole at
the pole and half of the distant full hole. This process is exponentially suppressed, because
the refilling in the stabilization setup is local in space. Under the presented assumptions for
S̃� 1 we find (see Appendix B for derivation)

ΛL ≈
L(L + 1)

2S̃
γ1 , (32)

where the corrections are suppressed by an additional factor of 1/S̃. Thus, the relaxation
eigenvaluesΛL scale with L and S̃ in the same way as the relaxation eigenvalues of the diffusion
equation ∂t n = D∆n on a sphere. The structure of the eigenmodes ρM

L also parallels that of
the spherical harmonics YLM . We conclude that the motion of a single quasihole is indeed
diffusive on large spatial scales. The diffusion constant is given by

D =
1

2πnφ
γ1 . (33)

Qualitatively, the dynamics of a quasihole represents a sequence of jumps on a length of order
of the 1/

p

nφ . The jump length can be related to the diffusion coefficient as (∆r)2 = 4D/γ0

where γ0 =
∑

k WS̃→S̃−k is the total jumping rate.
To back up our assumptions regarding the behavior of WS̃→S̃−k as a function of k and S,

we find these coefficients numerically in the finite size system (up to Nodd
1/2 = 11). To do this,

we solve master equation (13) in the angular momentum representation. This representa-
tion is obtained by decomposing the annihilation operators ψ(r ) in Eqs. (14) and (15) as
ψ(r ) =

∑

mψm(r )am, where operator am with m ∈ {−Nφ/2, . . . , Nφ/2} destroys a photon in
the single particle state ψm(r ) [see Eq. (3)]. This leads to

Lκρ = κ
S
∑

m=−S

�

amρa†
m −

1
2
{a†

mam,ρ}
�

, (34)

LΓρ = Γ
S
∑

m=−S

�

ã†
mρãm −

1
2
{ãmã†

m,ρ}
�

, (35)

7Note that if κ remains fixed upon the increase of the system size then Γ should also increase to ensure that only
one quasihole is present in the system (as is evident from Eq. (23)). If the inequality in Eq. (23) is violated then
in a large enough system the diffusion of a single quasihole will be obscured by the presence of other quasiholes.
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Figure 3: Dynamics of a single quasihole in a stabilized Laughlin state on a sphere
(ν= 1/2). The sphere is pierced by an odd number of magnetic flux quanta, Nφ , such
that the quasihole is unpaired and cannot be refilled by the stabilization setup. The
Hilbert space for the quasihole is formally equivalent to that of a spin S̃ = (Nφ+1)/4.
(a) Due to rotational invariance, the motion of a quasihole is fully characterized by
classical hopping rates WS̃→S̃−k from the south pole, state |S̃〉, to a state with smaller
projection of angular momentum, |S̃− k〉. (b) Hopping rate WS̃→S̃−k as a function of
k for different number of photons in a Laughlin state Nodd

1/2 = (Nφ + 1)/2. The plot
is obtained with the use of master equation (13) (see details in the main text and in
Appendix C). The rate WS̃→S̃−k rapidly decays with the increase of k for k > 3. For a
fixed k, WS̃→S̃−k tends to saturate to a certain limit as system size is increased. The
last two statements are consistent with quasihole dynamics being diffusive in a large
system. In the inset we show the behavior of γ1 =

∑

k kWS̃→S̃−k with increasing Nodd
1/2 .

At large Nodd
1/2 this quantity should saturate to the diffusion constant for a quasihole

(see Eq. (33)). Although for numerically available particle numbers the saturation is
incomplete the curve clearly bends down.

where ãm = PamP . This representation allows us to substantially reduce the computational
complexity in comparison with using the real-space master equation. Assuming that in the
initial state there are no coherences between the states with different z-projection of the an-
gular momentum we can disregard them at later times, effectively reducing the size of the
Hilbert space. The same is true for coherences between states with different particle numbers
N . Finally, since we are interested in the motion of a single quasihole, we can truncate the
Hilbert space to particle numbers N = N1/2

odd − 1 and N1/2
odd assuming that the loss rate is very

small, i.e. that condition (23) is well fulfilled. The details of our numeric scheme are outlined
in Appendix C.

The result of our numerical procedure is shown in Fig. 3. The figure demonstrates that for
each particular k the coefficients WS̃→S̃−k quickly saturate to a thermodynamic limit upon the
increase of the system size Nodd

1/2 , as was conjectured previously. Moreover, for all considered

particle numbers WS̃→S̃−k decays rapidly8 with k for k > 3. Quantity γ1 – directly related
to the diffusion coefficient, see Eq. (33) – should also saturate to a thermodynamic limit.
Although this saturation is not fully pronounced for particle numbers that we could access, the
dependence of γ1 on Nodd

1/2 clearly starts to bend down. We believe that this, combined with
the exponential decay of WS̃→S̃−k justifies our claim about the diffusive character of quasihole
motion.

8In fact, for each of the numerically accessible particle numbers WS̃→S̃−k decays with k quicker than exponentially.
However, we believe this to be a finite-size effect and expect exponential decay in the thermodynamic limit.
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4.2 Relaxation to the Laughlin state

In this section, we show that the fractionalization of holes renders the relaxation towards the
Laughlin state slow. This affects the time it takes to prepare the Laughlin state via the stabi-
lization setup starting from vacuum. To investigate the relaxation, we assume that Nφ is even
so that there are no extra quasiholes at half-filling (in contrast to the previous section). We
shall demonstrate that in a small system the relaxation rate scales proportionally to the loss
rate, 1/trel∝ κ. At the same time, one could naively expect that if the system was initialized
in the vacuum state it would quickly reach the steady state over the time interval related to
the refilling rate, trel ∝ 1/Γ � 1/κ. However, such a naive estimate does not hold because
upon approaching the Laughlin state the system gets stuck in dark states. These states are
characterized by the presence of separated quasiholes that cannot be refilled efficiently by the
stabilization setup. To escape a dark state, the system has to wait for a loss process to hap-
pen leading to 1/trel ∝ κ. Surprisingly, there are exact dark states in our model: the matrix
element for refilling of such states is not just numerically small (e.g., because the quasiholes
are spatially separated) but is rather zero identically. Qualitatively, the escape from a dark
state corresponds to two remote quasiholes coming together through the motion mechanism
discussed in Section 4.1. This makes a process of photon injection that refills the hole pos-
sible. At the end of the section, we comment on the relaxation rate in a thermodynamically
large system and show that it becomes parametrically slower than that in a small system,
1/trel ∝ κ3/2/Γ 1/2. These results imply that fractionalization might make the preparation of
the Laughlin state through dissipative stabilization challenging.

We start by discussing the origin of dark states in a finite size system. To do that, we inves-
tigate the properties of the refilling superoperator LΓ [see Eq. (35) for the angular momentum
representation of the latter9]. Considered separately from the loss term of the Lindbladian,
this superoperator has the Laughlin state as one of its steady states. In other words, |ΨLS〉
vanishes under the action of all jump operators in LΓ , ã†

m|ΨLS〉 = 0. However, there are other
states with a similar property that correspond to a smaller particle number, N = N1/2 − 1, as
we now demonstrate. To see the existence of such dark states it is convenient to classify states
with N = N1/2−1 (i.e., the states with two quasiholes) by the z-projection of angular momen-
tum. We thus label them as |M , iM 〉, where M denotes the projection of angular momentum
and iM = 1, . . . , nM labels different states with the same value of M . The possibility of having
nM > 1 is a consequence of fractionalization. Roughly speaking, such a degeneracy might be
present because it is often possible to simultaneously increase the angular momentum of one
quasihole and lower the angular momentum of the another quasihole preserving the angular
momentum. The concrete values of nM for different N1/2 and M can be found by properly
counting symmetric polynomials in Eq. (10).

Now we show that among nM states with a given M , nM − 1 states are dark and only one
state is bright, i.e., can be refilled to the Laughlin state. First we note that there exists a unique
jump operator in LΓ that can connect |M , iM 〉 to the Laughlin state: ã†

−M = Pa†
−MP . Upon

acting with this operator on the Laughlin state, ã−M |ΨLS〉, we get a linear superposition of states
|M , iM 〉 since it is a two-quasihole state with a correct value of M . Then we can rotate the set
|M , iM 〉 in such a way that |M , 1〉 is proportional to ã−M |ΨLS〉 and the remaining nM −1 states
are orthogonal to it. The orthogonal states cannot be refilled by any of the jump operators and
are thus dark. Therefore, for a given M only one bright state exists. Qualitatively, in this bright
state the two qusaiholes have the same angular momentum such that they form a full hole.
In contrast, the dark states correspond to remote quasiholes with different angular momenta
that sum up to a total of M .

The considerations presented above allow us to count the number of bright states Nbright

9In contrast to Section 4.1 here P is the projector on the subspace of quasihole states with even Nφ .
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among d2 = (N1/2 + 1)N1/2/2 states with N1/2 − 1 particles. We find

Nbright = 2N1/2 − 1= Nφ , (36)

consistently with our qualitative interpretation that the bright states are the full holes in the
Laughlin state (since the number of the latter is roughly equal to the number of single-particle
states in the LLL). These considerations imply that the vast majority of states with N1/2 − 1
particles are dark and only a small fraction of states Nbright/d2 ∼ 1/N1/2 are bright.

We note that there are no evident exact selection rules like that for N < N1/2−1. We believe
that the refilling of fractionalized quasihole configurations in this case is actually allowed by
LΓ [as can be seen from numerical solution of Eq. (13)] but is suppressed exponentially in the
distance between the quasiholes. However, the detailed investigation of the refilling of states
with N < N1/2 − 1 in a large system exceeds the capabilities of our numeric solution. At the
end of this section, we qualitatively study the relaxation process in the limit of a large system.
In this case, we expect that the approximate dark states with exponentially suppressed refilling
dominate the relaxation.

We mention that the selection rule that is responsible for the existence of the exact dark
states with N = N1/2 − 1 is different from other known selection rules for FQH states, such as
the one presented in Ref. [59]. Importantly, the selection rule that we described is not specific
for spherical geometry and is thus also applicable to a plane geometry if angular momentum
cutoff is assumed. It also applies to a certain lattice models in which Landau levels are flat [51].
It would be interesting to study whether exact selection rules exist in torus geometry [47]. It is
also important to mention that the dark states on a sphere (or plane) are robust to the absence
of rotational symmetry and they stay intact if the refilling is spatially non-uniform.

Now we focus on the behaviour of system with a moderately small particle numbers in
which dark states at N = N1/2 − 1 have a dominant influence on the relaxation proper-
ties. We consider a situation in which both refilling and loss are present and assume that
κ/Γ � (N1/2)−2. In this case the steady state (16) is very close to the Laughlin state, i.e., in
the steady state the probability pLS of finding the system in ΨLS is close to unity, 1− pLS� 1.
We argue that in this case the rate of relaxation to the steady state is∝ κ� Γ instead of Γ .

To illustrate this, let us consider the system initialized in the vacuum state, N = 0, and
qualitatively describe its evolution. First, over time ∝ 1/Γ the system reaches one of the
steady states of LΓ . Because the number of dark states with N1/2 − 1 is much larger than that
of the bright states, most likely the system gets stuck in one of the dark states. After that the
system has to wait for a time ∝ 1/κ until it goes back to the manifold with N = N1/2 − 2
due to the loss process. Such a loss process is followed by a quick refilling process which
can potentially bring the system into a bright state with N1/2 − 1 particles. This allows the
system to go to the Laughlin state after an additional successive refilling process. The outlined
dynamics of loss and refilling processes is depicted in Figure 4(a). The overall relaxation rate
is determined by a bottleneck in the described chain of transitions, which is a slow loss process
from N = N1/2 − 1 to N = N1/2 − 2. This leads to the relaxation rate∝ κ.

We note that the described way in which the system escapes from the dark states can be
interpreted as a fine-size effect of quasihole diffusion, see Sec. 4.1. For N1/2 ∼ 1 two separated
quasiholes present in the dark state can come together in a single diffusion step. This takes time
∝ 1/κ. The resulting bright state contains a full hole that is quickly refilled to the Laughlin
state.

To additionally reinforce this qualitative picture of the long relaxation we solve master
equation (13) numerically for N = 7 and vacuum initial condition. The resulting dependence
of 〈N〉 on time is illustrated in Figure 4(b). The figure demonstrates that after quickly arriv-
ing to N = N1/2 − 1 over time interval ∆t ∝ 1/Γ the system gets stuck in a dark state for
∆t∝ 1/κ. Only after that it can reach the steady state which is close to the Laughlin state.
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To conclude this section, we study the relaxation of the system in the thermodynamic
limit, N1/2�∆N � 1 (we recall that ∆N is the average number of photons missing from the
Laughlin state). According to the results of Sections 4.1 and 4.2, the dynamics of the system
for Γ � κ has the following character. Quasiholes slowly diffuse across the system due to
the dissipative dynamics introduced by the stabilization setup. The diffusion coefficient for
this motion is proportional to κ, cf. Eq. (33). The quasiholes are generated from ephemeral
full holes breaking apart [see Fig. 2 (b)]. The full holes appear through the loss processes.
Whenever two quasiholes come together they might turn into a full hole and thus recombine,
i.e., be refilled. The balance between the generation of the quasiholes by the loss processes
and the refilling of holes results in a steady state with a relatively large number of quasiholes.
In a large system when Γ � κ such dynamics can be phenomenologically captured by a two-
component reaction-diffusion model in which one component corresponds to the full holes
and another to the isolated quasiholes. The respective system of equation reads

¨

∂t nh =
1
2κ− Γnh −

1
2 cκnh + cκn2

qh ,

∂t nqh = D∇2nqh + cκnh − 2cκn2
qh .

(37)

Here, nh and nqh are the concentrations of full holes and quasiholes, respectively, measured
in units of nφ; c is a numeric coefficient of order of unity, and D is the diffusion coefficient
for the quasiholes [see Eq. (33)]. In Eq. (37) term κ/2 describes the generation of full holes
due to loss processes and Γnh describes their refilling. The term∝ κnh describes the ability
of full holes to break apart into two quasiholes due to their slow diffusion. The term∝ κn2

qh
corresponds to merging of two quasiholes which creates a full hole. The numeric coefficients in
Eq. (37) are chosen to ensure that the concentration of quasiholes is consistent with Eq. (18),
see below.

To analyze Eq. (37) we first find the steady state of the system. We obtain the steady-state
concentration of quasiholes nqh,st =

1
2

p

κ/Γ consistently with Eq. (18). The steady-state con-
centration of full holes is nh,st = κ/(2Γ )� nqh,st. Linearizing the system (37) around the steady
state and assuming a spatially uniform solution we find the relaxation rate 1/trel∝ κ3/2/Γ 1/2.
This shows that in a large system the relaxation rate is even smaller than that∝ κ (as found
in a small system). The relaxation timescale trel corresponds to the time required for a single
quasihole to find a partner in course of its diffusion and recombine.

Unfortunately, it is impossible to quantitatively compare the reaction-diffusion model (37)
to our numerical results. This is because the system size is comparable to the size of the quasi-
hole for numerically accessible particle numbers while Eq. (37) assumes that fractionalized
quasiholes are well-separated. Still, we believe these equations provide a faithful description
of the dynamics of a large system.

We note that diffusion-annihilation dynamics of anyons in an open system was also recently
studied in one-dimensional Majorana chains [60].

5 Discussion and conclusions

To conclude, we investigated the effects of hole fractionalization on the ν= 1/2 Laughlin state
of light stabilized against the photon loss. Using the expression for the steady state density
matrix which we derived, cf. Eq. (16), we demonstrated that photon number deviates from its
target value in a parametrically stronger way than in stabilized many-body states in which the
fractionalization is absent. For the Laughlin state the relative deviation of the particle number
is∝

p

κ/Γ , where κ is the photon loss rate and Γ > κ is the photon refilling rate, cf. Eq. (18).
In a dissipatively stabilized Mott insulator of photons — a prototypical correlated bosonic state
with no fractionalization — this deviation is only ∝ κ/Γ [42, 46] and is thus much smaller.
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Figure 4: Preparation of the bosonic Laughlin state with a filling factor ν = 1/2.
Even number Nφ of flux quanta pierces the surface of the sphere rendering the
Laughlin state non-degenerate. (a) Before reaching the Laughlin state at half filling,
N = N1/2, the system might get stuck in a dark state with two remote quasiholes (at
N = N1/2 − 1). A loss and a subsequent refilling are needed for the system to escape
the dark state and get a chance to be refilled to the Laughlin state. Such a sequence
of processes corresponds to two quasiholes coming together due to the dissipative
motion mechanism outlined in Fig. 2. (b) Deviation from the Laughlin state, ∆N/N ,
as a function of t for a small system with N1/2 = 7 initialized in the vacuum state.
After quickly refilling to N ≈ 6 over time∝ 1/Γ (where κ/Γ = 4 · 10−3) the system
gets stuck in a configuration with two remote quasiholes for a time ∝ 1/κ. Only
after that time quasiholes recombine and the system approaches the Laughlin state.
The plot is obtained by solving master equation (13) numerically (see Appendix C
for details).

The difference results from the accumulation of separated quasiholes in the stabilized Laughlin
state which cannot be effectively refilled by the stabilization setup. The unpaired quasiholes
form when full single-photon holes – that appear due to photon loss – break apart. This process
is mediated by the dissipative dynamics which is introduced by the stabilization setup, see
Fig. 2. We investigated different facets of the dissipative dynamics of quasiholes analytically
and numerically. In particular, we showed that the motion of the individual quasiholes is
diffusive, with the diffusion coefficient proportional to the photon loss rate κ, cf. Eq. (33). As
a consequence of that, the relaxation rate of the system is much smaller than the refilling rate Γ
at which photons are injected into the LLL. These results demonstrate that the fractionalization
of holes presents an additional challenge for the preparation of fractional quantum Hall states
in a bosonic quantum simulator. Below we comment on several important points not discussed
in the main text of the manuscript.

5.1 Off-resonant injection of photons and optimal value of the refilling rate

First, we discuss a very important nuance behind our model of the stabilization setup which is
related to the possibility of the off-resonant photon injection. According to Eq. (18) the average
number of lost photons in the steady state decreases with the increase of the photon injection
rate Γ . Thus, it appears that the Laughlin state can be reached with any given precision by
making Γ sufficiently large. However, this is an oversimplification of our model in which we
assume that the stabilization setup can by no means inject photons if the injection requires
extra energy either due to the photon repulsion or due to excitation into high Landau levels.
In realistic setups there is always a residual rate of adding such high-energy photons. Focusing
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on a setup considered in Ref. [47] this rate can be estimated as γ∼ Γχ2/δ2 (a similar estimate
was given in Ref. [49]), where χ is the band-width of the drive and δ ∼ min (Eg ,ħhωc) is the
extra energy cost of photon addition (recall that Eg is the typical interaction energy). Thus, if
Γ is too large – such that γ exceeds the loss rate κ – a lot of high-energy photons accumulate in
the system ruining the effectiveness of the stabilization setup. We conclude that to approach
the Laughlin state the refilling rate Γ can be neither too small nor too large which implies that
there should exist an optimal value Γopt. Here we present an estimate for Γopt assuming that κ
and δ are given. Trivially, the bandwidth of the drive, χ, should be kept as small as possible.
In a realistic setting [47] the bandwidth cannot be smaller than Γ and thus in what follows
we take χ ∼ Γ which results in γ ∼ Γ 3/δ2. Overall, we assume the following hierarchy of the
energy scales, γ� κ� Γ ∼ χ � δ.

In a large system, there are two clearly distinct types of defects that make the steady state
different from the Laughlin state: fractionalized quasiholes and high-energy photons. The
number of quasiholes can be estimated as Nqh ∼ N1/2

p

κ/Γ [see Eq. (18) and the related
discussion]. The number of high-energy photons, Nhe, is determined by the balance between
their injection and photon loss which results in10 Nhe ∼ N1/2γ/κ. We expect that the observable
properties of the steady state (such as the correlation functions) resemble those of the Laughlin
state if, roughly speaking, the total number of defects, Ndef = Nqh + Nhe, is small enough. The
minimization of Ndef as a function of Γ yields the optimal refilling rate

Γopt ∼ κ3/7δ4/7 . (38)

At the optimal refilling rate we obtain

Ndef ∼ Nqh ∼ Nhe ∼ N1/2

�κ

δ

�2/7
. (39)

This can be contrasted with dissipatively stabilized Mott insulator phase of photons [42]. For
the latter the optimal concentration of defects scales as Ndef/N1/2 ∼ (κ/δ)1/2 and is thus
parametrically smaller than that for the stabilized Laughlin state. The increased number of
defects in the Laughlin state for Γ = Γopt is a direct consequence of hole fractionalization
which is absent in the Mott insulator.

5.2 Hamiltonian-induced dynamics of quasiholes

Within our model, the only mechanism of quasihole motion is the loss-mediated dissipative
dynamics. Thus, the loss processes are not only a hindrance but also an essential ingredient of
the stabilization setup that allows the system to approach the Laughlin state. Without them the
system would become stuck indefinitely in states containing remote quasiholes, i.e., the dark
states. We note however that in realistic setups, dissipative dynamics is not the only mechanism
for quasiholes mobility. Perturbations to the Hamiltonian such as disorder, lattice effects, or
long-range interaction between the photons might also lead to the motion of quasiholes thus
providing an alternative mechanism by which the system can escape the dark states. We focus
on the influence of disorder to demonstrate how the Hamiltonian-mediated dynamics can assist
the system in reaching the Laughlin state. We model the disorder potential by a collection of
randomly positioned impurities of similar strength,

V = v0

Nimp
∑

i=1

ψ†(ri)ψ(ri) . (40)

10Note that high-energy photons do not fractionalize into remote quasiparticles. Thus, the square root associated
with fractionalization does not appear in the estimate for their number. The quasiparticles do not fractionalize
because they are converted into quasiholes with the same rate ∼ κ as full high-energy photons are destroyed.
Therefore, fractionalized quasiparticles do not have additional stability compared to full high-energy photons (as
was the case for the quasiholes).
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Figure 5: Rate of the relaxation to the Laughlin state, 1/trel, as a function of the refill-
ing rate Γ in a small disordered system with no loss, κ= 0. Due to the latter condition
the dissipative dynamics of quasiholes is absent. The plot is produced for N1/2 = 5
and Nimp = 100 assuming that Eimp � ħhωc (where Eimp is the disorder-induced
broadening of the LLL andωc is the cyclotron frequency). At Γ ® Eimp the relaxation
rate is proportional to the refilling rate. In this regime, the quasiholes quickly move
due to the disorder and can efficiently recombine; the relaxation rate behaves as if
the fractionalization was absent, t−1

rel ∝ Γ . This trend breaks at Γ ∼ Eimp. At higher
refilling rates, Γ ¦ Eimp, the dynamics becomes Zeno-blocked and the relaxation rate
decreases with increasing refilling rate. Note that if κ = Eimp = 0 the system would
be stuck in dark states indefinitely never reaching the Laughlin state, 1/trel = 0.

Here, v0 is a strength of an individual impurity and Nimp is the total number of impurities. We
assume that the positions of impurities are distributed randomly in Poissonian way across the
surface of the sphere. If v0 and the concentration nimp of impurities are small enough, V can
be projected on the subspace of quasihole states via the projector P [see the discussion after
Eq. (15) for the definition of P].

As an illustrative idealization, we first assume that the photon loss is absent completely,
κ = 0. We then solve master equation (13) numerically for N1/2 = 5 in the presence of
disorder. The numeric calculation shows that the system reaches the Laughlin state without
getting stuck in the dark states even though the loss-mediated dissipative dynamics is turned
off. This confirms that in a small system the disorder potential provides a mechanism by
which two remote quasiholes can come together to be subsequently refilled. To investigate
the disorder-assisted relaxation further, we study the dependence of the relaxation rate on the
ratio between the refilling rate Γ and the strength of the disorder potential [see Figure 5]. We
characterize the latter by energy scale Eimp = v0

p

nimpnφ proportional to the disorder-induced
broadening of the LLL. When Eimp � Γ the relaxation rate is ∝ Γ . This linear scaling can
be explained qualitatively in the following way. For Eimp � Γ quasiholes quickly move in the
disorder potential. In a small system, pairs of quasiholes come together at a high a rate∝ Eimp.
Upon every such encounter they have a small chance∝ Γ/Eimp to be refilled. Combining the
estimates for encounter rate and for the refilling probability we conclude that the relaxation
rate indeed scales linearly with Γ . Interestingly, the linear trend breaks down at Γ ∼ Eimp, and
for Γ ¦ Eimp the relaxation rate decreases with Γ [see Fig. 5]. In this regime, the decoherence
induced by the stabilization setup suppresses the coherent dynamics of quasiholes through
Zeno blocking. The relaxation rate corresponding to slow incoherent dynamics of quasiholes
in a small system can be estimated as11 ∼ E2

imp/Γ , consistent with Fig. 5. We note that for

11In the regime Γ � Eimp the relaxation rate is determined by the inverse time it takes for the system to escape
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finite loss rate κ the relaxation rate ultimately saturates at a value ∼ κ upon the increase of Γ
which corresponds to the dissipative dynamics considered in our work.

In a large system, N1/2� 1, the effect of disorder on the relaxation may differ significantly
from the considered case N1/2 ∼ 1 due to Anderson localization. Although, a complete lo-
calization is destroyed by the decoherence associated with the stabilization setup, localization
physics can still strongly affect the relaxation of the system. A systematic study of the dynamics
in the simultaneous presence of localization and engineered dissipation is beyond the scope
of the present work.

5.3 Stabilization of states with stronger fractionalization

The ability of individual full holes to break apart into several quasiholes becomes even more
detrimental for dissipative stabilization of states showing a higher degree of fractionalization.
To demonstrate this, we consider the driven-dissipative stabilization of the Laughlin state with
the filling fraction ν = 1/2n. The main conceptual difference of this setup with respect to
the case ν = 1/2 is that for ν = 1/2n a full hole can fractionalize into 2n quasiholes. Such
a system can be described with a master equation similar to (13) although with a different
projector P . Now, the latter should project onto the subspace of quasihole states in which the
relative angular momentum of each two photons is greater or equal to 2n. Similarly to how it
was done in Section 3, we find the steady-state deviation of the photon number ∆N from its
value in the Laughlin state, Nν,

∆N
Nν
∼
�κ

Γ

�
1

2n
. (41)

This expression indicates that for a fixed ratio κ/Γ the difference between the steady-state and
the desired Laughlin state becomes parametrically larger upon the increase of n. Furthermore,
the relaxation to the steady state slows down when n is increased. By doing a reaction-diffusion
calculation in the spirit of Section 4.2 we obtain the estimate

1
trel
∼ κ

�κ

Γ

�1−1/2n
, (42)

which shows that the relaxation rate indeed becomes smaller for large n. We believe that
Eqs. (41) and (42) reflect the general trend that fractionalization makes the stabilization of
correlated many-body states inherently challenging. It would be interesting to study how this
trend manifests in the dissipative stabilization of non-Abelian FQH states of light, where the
quasiholes are associated with additional degrees of freedom. This, however, is beyond the
scope of our study.

We note that in practice, the stabilization of Laughlin states with filling fractions ν= 1/2n
would require very precise engineering of interaction between photons. As was mentioned
above, to achieve the state with ν= 1/2n, only states in which photons have relative angular
momentum larger or equal to 2n should be populated by the stabilization setup. This can be
achieved by ensuring that first 2n− 1 Haldane pseudo-potentials of the interaction between
photons are non-zero and higher pseudo-potentials vanish. Engineering of Haldane pseusdo-
potentials in lattice settings (such as FQH state in a lattice of qubits) is discussed in Ref. [61].

from a dark state. Physically, such an escape corresponds to two separated quasiholes coming together. For large
Γ , the coherent motion of quasiholes is suppressed and, therefore, two quasiholes can come close only via an
incoherent transition process. The rate of this process can be calculated with the help of Fermi Golden rule as
∼ E2

imp/Γ (if the system is small enough). Here, E2
imp is proportional to the squared transition matrix element and

factor 1/Γ originates from decoherence-induced level broadening.
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5.4 Fractionalization in the stabilized Bose-Hubbard chain

We note that the effects of defect fractionaliztion in driven-dissipative systems are not neces-
sarily unique to topological states such as FQH states. To illustrate that, consider the following
extension of the usual Bose-Hubbard model. Suppose there is a lattice of dimension d in which
photons can hop between the neighbouring sites. Photons interact with one another via a spe-
cial type of on-site repulsion that is present only when more than two photons occupy the
same site [62, 63]. We assume that such a repulsion is strong enough so that the possibility
of having more than two photons per site can be neglected. We also assume that two-photon
loss can happen at each site with a rate κ [39,64–66]. Next, there is a stabilization setup that
is intended to keep the system in a state in which there are two photons at each site of the
lattice. To this end, the scheme attempts to inject pairs of photons at each site with a rate Γ .
Due to the interaction, such an injection is possible only when the site is empty. The presence
of a single photon at a given site blocks both the injection and the loss.

In many qualitative aspects, this model resembles the dissipatively stabilized Laughlin state
with the filling fraction ν = 1/2. Empty sites can be associated with full holes in the Laugh-
lin state, since the stabilization setup can easily inject photons at them. Sites with a single
photon present resemble isolated quasiholes – they too cannot be refilled. To emphasize the
similarity, we find the steady-state deviation of the photon number, ∆N , from its target value,
Ntarget (the latter is equal to twice the number of sites). Similarly to the FQH state, we obtain
∆N ∝ Ntarget

p

κ/Γ , cf. Eq. (18). The square root behavior indicates that most of the missing
particles in the steady state correspond to sites with a single photon. In the same way, most of
the particles missing from the Laughlin state are isolated quasiholes.

We emphasize that the fractionalization in a Bose-Hubbard lattice is facilitated by the co-
herent inter-site hopping, which allows pairs of photons to separate. It would be interesting
to analyze the dynamics of the hopping-mediated fractionalization in detail. This, however, is
beyond the scope of our work.

We note that in a fermionic case the dynamics of a Hubbard model with a two-body loss
was studied in a recent work [67].

5.5 Toric geometry

We mention one more avenue for further research. Namely, it would be interesting to study the
dissipatively stabilized FQH states on manifolds with topology different from that of a sphere,
e.g., on a torus. The toric geometry was considered in Ref. [47] though the effects of hole
fractionalization – which are in the focus of our study – were not systematically investigated.

In the context of our work, the main difference between the torus and the sphere is asso-
ciated with the topological degeneracy of the Laughlin state in the former case. For ν = 1/2
the Laughlin state on a torus is doubly degenerate. The degenerate states are topologically
protected, i.e., they cannot be coupled by local perturbations. Thus, for example, if a photon
is lost from the Laughlin state and then quickly refilled by the stabilization setup at the same
position, the system does not transition between the degenerate states. Such a transition re-
quires a highly non-local process the simplest example of which is the following. First, a pair
of quasiholes should form due to the loss of a photon. Then, the two quasiholes have to sepa-
rate, make a non-contractible loop around the torus, and come back together. Only then, upon
a subsequent refilling of the quasiholes, does the system end up in a state orthogonal to the
initial one. This suggests that the relaxation rate decreases with increasing system size. How-
ever, at finite concentration of quasiholes the above picture might be significantly different.
For example, for a two-dimensional toric code coupled to a thermal bath – another model with
a topological degeneracy and dynamic, deconfined anyons – is known to be independent of the
system size in a thermodynamic limit [68]. It would thus be interesting to determine how the
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relaxation rate between topologically degenerate Laughlin states scales with the system size
and loss rate within our model, where the motion of quasiholes is mediated by subsequent loss
and refilling processes.
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A Relaxation eigenmodes for a single quasihole

In this appendix, we find the structure of the relaxation eigenmode ρM
L describing the motion

of a single quasihole on a sphere. To start with, we show that ρ−L
L = S̃L

−. This can be done by
verifying two relations [58]:

[S̃−,ρ−L
L ] = 0 , [S̃z ,ρ−L

L ] = −Lρ−L
L . (43)

The first equation is evidently true for ρ−L
L = SL

−. The second equation can be checked directly
by using [S̃z , S̃−] = −S̃−. Indeed, by applying this commutator L times we find SzSL

− = −LSL
−Sz

and thus
[S̃z , S̃L

−] = −LS̃L
− . (44)

The eigenmode with arbitrary M can be obtained by sequentially applying the raising operator:

ρM
L ∝ [S̃+, ...[S̃+, [S̃+

︸ ︷︷ ︸

L +M times

, S̃L
−]]...] . (45)

B Relaxation eigenvalues for a single quasihole

In this appendix, we derive Eq. (32) for the relaxation rates ΛL that characterize the motion
of a single quasihole on a sphere. This equation — together with the structure of the modes
ρM

L — demonstrates that the motion of a quasihole is diffusive in a large enough system.
For the sake of deriving Eq. (32), it is useful to first consider the mode with M = 0. This

mode is purely diagonal in the S̃z basis. Indeed, expression (45) for M = 0 contains an equal
number of lowering and raising operators and thusρ0

L conserves the z-projection of the angular
momentum. The fact that the mode is diagonal allows us to apply the classical master equation
(29), leading to the relation between ΛL and the classical hopping rates. The example of this
procedure for ρ0

1 was demonstrated in Section 4.1 of the main text. The explicit substitution
of ρ0

L into master equation (29) yields

−ΛLρ
0
L,mm =

S̃
∑

n=−S̃

ρ0
L,nnWn→m −ρ0

L,mm

S̃
∑

n=−S̃

Wm→n , (46)
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where ρ0
L,mm is the m-th diagonal matrix element of ρ0

L and

ρ0
L ∝ [S̃+, ...[S̃+, [S̃+

︸ ︷︷ ︸

L times

, S̃L
−]]...] . (47)

To proceed, we note that the relaxation mode (47) can be expanded around the south pole of
the sphere (m= S̃) as

ρ0
L,(S̃−n)(S̃−n)

∝ 1−αL
n

S̃
+O

�

n2

S̃2

�

, (48)

where αL is related to the logarithmic derivative of ρ0
L ,

αL = S̃
ρ0

L,S̃S̃
−ρ0

L,(S̃−1)(S̃−1)

ρ0
L,S̃S̃

. (49)

We note that the matrix element ρ0
L,(S̃−1)(S̃−1)

here can be rewritten as

ρ0
L,(S̃−1)(S̃−1) = 〈S̃−1| [S̃+, ...[S̃+, [S̃+

︸ ︷︷ ︸

L times

, S̃L
−]]...]|S̃−1〉

= 〈S̃−1|S̃L
+S̃L
−|S̃−1〉 − L〈S̃−1|S̃L−1

+ S̃L
−S+|S̃−1〉=

1

2S̃
〈S̃|S̃L+1

+ S̃L+1
− |S̃〉 − L〈S̃|S̃L

+S̃L
−|S̃〉

=
�

1

2S̃
〈S̃−L|S̃+S̃−|S̃−L〉 − L

�

〈S̃|S̃L
+S̃L
−|S̃〉=

�

1−
L(L + 1)

2S̃

�

ρ0
L,S̃S̃

, (50)

(here we chose the proportionality coefficient in Eq. (47) to be 1; the particular choice of the
coefficient does not affect the result for αL). We thus find

αL =
L(L + 1)

2
. (51)

Then, substituting Eq. (48) into Eq. (46) and using the fact that matrix Wn→m is symmetric we
obtain

ΛL =
L(L + 1)

2S̃

2S̃
∑

k=0

kWS̃→S̃−k +O
�

1

S̃2

�

. (52)

Here we implicitly assumed quick decay of coefficients WS̃→S̃−k with k. Neglecting the correc-
tions of order of 1/S̃2 we arrive to Eq. (32) of the main text.

C Numerical procedure

Here we provide the details of the numerical procedure used to solve master equation (13)
and produce the plots presented in Fig. 3 and Fig. 4.

Generally, the problem of driven-dissipative dynamics of interacting particles in the mag-
netic field is tremendously complicated computation-wise. To simplify it, we make two as-
sumptions justified within the scope of our work. First of all, in our numerical calculations
we assume that the population of states with finite interaction energy or with components in
higher Landau levels can be neglected. In that case, the density matrix of the system is com-
posed only of quasihole states (10) with different particle numbers N (which is equivalent to
PρP = ρ). The number of quasihole many-body states is small relatively to the full size of
the Hilbert space of the problem. Thus, the computational cost is greatly diminished.

To further reduce the complexity, we work with the master equation in the angular mo-
mentum representation [see Eq. (34) and Eq. (35)]. The rotational invariance evident in this
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representation effectively reduces the number of non-zero components of the density matrix
thus substantially cutting down the computation cost. To demonstrate how this works, we
classify all basis states by z-projection of angular momentum, Sz . From Eqs. (34) and (35)
it follows that the coherences between subspaces with different Sz are not generated. Thus,
if we assume that these coherences are zero initially then the dimensionality of the problem
is reduced. Similar conclusion holds for coherences between states with different N . For ex-
ample, if we throw away the coherences between states with different Sz and N for Nφ = 12
(N1/2 = 7) the number of relevant components of the density matrix reduces from 372100 to
5530, i.e., by a factor of ≈ 70.

Next, two crucial steps have to be made to solve the master equation. First of all, we
need to construct an orthonormal basis of quasihole states with different particle number N
and angular momentum Sz . Second, we need to compute the matrix elements of annihila-
tion operators am between these states. We address both of these tasks using the formalism
of Jack polynomials [69]. This formalism allows us to find the basis of quasihole states and
expresses the corresponding basis vectors as superpositions of Fock states with different occu-
pations of orbitals ψm [defined in Eq. (3)]. Using the representation through Fock states it is
straightforward to compute the matrix elements of the annihilation operators.

To introduce Jack polynomials we fix the number of flux quanta piercing the surface of the
sphere, Nφ , and the number of particles, N . At a given Nφ and N , the general form of the
quasihole wave function [defined in Eq. (10)] can be equivalently rewritten as

Ψqh =

�

∏

i

v
Nφ
i

�

P̃(z1, ..., zN ) , (53)

where zi = ui/vi and P̃(z1, ..., zN ) is an arbitrary polynomial of degree no higher than Nφ in
each coordinate that is (i) symmetric under permutations of zi , (ii) vanishes for zi = z j , i 6= j.

Jack polynomials (Jacks) J−1/2
λ

provide a convenient set of linearly-independent polynomials
P̃ that can thus be used to construct a basis of quasihole states (here −1/2 is an index spec-
ifying a particular type of Jacks). Different Jacks J−1/2

λ
are labeled by the so-called (2, 2, N)-

admissible partitions λ. A (2, 2, N)-admissible partition is an ordered set λ = (q1, q2, ...,qN )
with 0 ≤ qi ≤ Nφ and qi > qi+1 + 1. By calculating the total number of such partitions – and
thus of Jacks – we can reproduce the number of quasihole states with fixed Nφ and N [see
Eq. (11)]. Notably, each Jack has a definite value of angular momentum,

SzJ−1/2
λ
(z1, ..., zN ) =

N
∑

i=1

qiJ
−1/2
λ
(z1, ..., zN ) , (54)

where Sz =
∑N

i=1 S i
z with S i

z defined in Eq. (6). Therefore, since the prefactor in Eq. (53)

possesses a well-defined angular momentum, [Sz ,
∏

i v
Nφ
i ] = −NNφ/2, the classification of

quasihole wave-functions by Sz is equivalent to that of the corresponding Jacks (up to an
offset of −NNφ/2). Wave-functions given by Eq. (53) that correspond to Jacks with different
Sz are orthogonal to each other. However, two independent Jacks with the same N and Sz , in
general, give rise to linearly dependent wave-functions. Thus, quasihole wave-functions with
a given N generated by Jacks with the same Sz need to be orthogonalized.

The main property that makes Jack polynomials convenient for our purposes is that they
have a known recursive expansion in terms of the monomials. Monomials are symmetric
polynomials which are also labeled by partitions (though not necessary (2, 2, N)-admissible).
They are defined as

Mλ = zq1
1 ...zqN

N + permutations , (55)

where 0 ≤ qi ≤ Nφ , qi ≥ qi+1, and λ denotes the partition λ = (q1, q2, ...,qN ). Similarly to
Jacks, monomials possess definite angular momentum Sz =

∑

i qi . However, unlike Jacks, the
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Table 1: List of (2,2, N)-admissible partitions λ for Nφ = 4. These root partitions
give rise to Jack polynomials with the corresponding value of Sz , see Eq. (54). Wave-
function Eq. (53) where P̃ is a given Jack has angular momentum Sz − NNφ/2 (in
particular, this implies that Laughlin state, N = 3, has vanishing angular momen-
tum). The resulting wave-functions can be used to construct the basis of quasihole
states with different N for a given Nφ . As a sanity check, we note that the total num-
ber of (2,2, N)-partitions for a fixed N is precisely equal to the number of quasihole
states given by Eq. (11).

N , particle number Sz of a Jack J−1/2
λ

λ, partition
3 6 (4, 2,0)

2

6 (4,2)
5 (4,1)
4 (4, 0), (3, 1)
3 (3,0)
2 (2,0)

1

4 (4)
3 (3)
2 (2)
1 (1)
0 (0)

monomials are trivially related to Fock states with different occupancies of orbitals ψm [see
Eq. (3)]. Indeed, let us consider a combination

Ψ[Mλ] =

�

∏

i

v
Nφ
i

�

Mλ(z1, ..., zN ) , (56)

which is featured in the expansion of wave function (53) into the monomials. In terms of the
Fock states we represent

| jNφ/2, ..., j−Nφ/2〉=
1
p

N !

�

∏

m

C jm
m

p

jm!

�

Ψ[Mλ] , (57)

where Cm is defined in Eq. (4), jm is the number of times m+Nφ/2 is featured in the partition
λ (i.e., how many times an orbital with angular momentum m is occupied), and the product
runs over all m = −Nφ/2, . . . , Nφ/2. Relation (57) allows us to rewrite the quasihole wave
function in terms of Fock states and normalize it when the expansion of the corresponding Jack
into the monomials is known. The expansion of wave functions into Fock states also allows
us to perform easily the orthogonalization of degenerate subspaces of quasihole states with
the same angular momentum and compute the matrix elements of the creation/annihilation
operators between the quasihole states.

Now we describe how to expand a given Jack polynomial J−1/2
λ

into a sum of monomi-
als. The core operation to this end is the squeezing of partitions [69]. Squeezing changes
the partition from µ = (q1, . . . , qi , . . . , q j , . . . , qN ) to µ′ = (q1, . . . , qi − t, . . . , q j + t, . . . , qN ),
where t is an integer number satisfying 0 < t ≤ |qi − q j|/2. Note that by definition the par-
tition is a non-growing set of numbers. Therefore, after the squeezing the partition might
have to be reordered. Importantly, the squeezing does not change the angular momentum
corresponding to the partition (since the latter is given by

∑

i qi). The operation inverse
to squeezing is the unsqueezing of the partition. It maps µ = (q1, . . . , qi , . . . , q j , . . . , qN ) to
µ′ = (q1, . . . , qi + t, . . . , q j − t, . . . , qN ) (with a proper reordering).
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Figure 6: Directed graph formed by subsequent squeezing of a root partition
λ = (4,2, 0). The resulting partitions determine which monomials are featured in
Jack J−1/2

(4,2,0).

Next, there are two important mathematical statements that we will use, see, e.g., [69].
First of all, the only monomials µ that are featured in the expansion of J−1/2

λ
are the ones

that correspond to partitions obtained from the root partition λ by a sequence of squeezing
operations. While λ has to be (2, 2, N)-admissible (i.e., satisfy qi > qi+1 + 1), this is not the
case for partitions µ [since squeezing operation can make the partition fall from the (2,2, N)-
admissible class]. This implies that the partitions involved in the expansion of a given Jack
J−1/2
λ

into the monomials form a tree-like structure (see Fig. 6 for an example). Specifically,
the expansion of Jacks into the monomials can be written as [69]

J−1/2
λ
(z1, ..., zN ) =

∑

µ≤λ

cλµMµ(z1, ..., zN ) , (58)

where µ ≤ λ indicates that µ can be obtained from λ by applying multiple squeezing opera-
tions. By definition cλλ = 1.

The next important statement is that the coefficients can be calculated recursively [70,71]:

cλµ =
4

lµ − lλ

∑

µ<ζ≤λ

�

(qi + t)− (q j − t)
�

cλζ . (59)

Here, ζ = (. . . , qi + t, . . . , q j − t, . . . ) denotes partitions that can be directly unsqueezed from
µ = (q1, . . . , qN ) and at the same time can be obtained by a sequence of squeezings from λ.
Function lµ can be found as

lµ =
N
∑

i=1

qi(qi − 1+ 4(i − 1)) , (60)

(and similarly for lλ). Eqs. (57), (58), (59), and (60) allow to find the expansion of wave
functions into monomials explicitly.

Overall, our algorithm for solving master equation (13) can be summarized as follows:

1. Choose Nφ and the set of relevant particle numbers for which quasihole states are to
be found. To simulate full dynamics we need to consider N = 0, ..., N1/2 for even Nφ
[where N1/2 = Nφ/2+ 1] and N = 0, ..., Nodd

1/2 for odd Nφ [where Nodd
1/2 = (Nφ + 1)/2].

To study the dynamics of a single quasihole (see Section 4.1) we restrict attention to
N = Nodd

1/2 − 1, Nodd
1/2 .

2. For each N from the chosen set determine all possible (2,2, N)-admissible partitions.
Resulting partitions are root partitions for Jacks corresponding to different quasihole
states. Notably, the root partitions fully determine the angular momentum of the state
(see Table 1 for an example).
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3. For all root partitions, expand wave functions (53) corresponding to all Jacks into the
Fock states. To do that, use Eqs. (58), (59), and (60) to first expand into the monomials
and Eq. (57) to convert from monomials to Fock states.

4. Resulting states with different Sz or N are by default orthogonal. States with the same Sz
and N need to be orthogonalized since Jacks with same Sz and N generally give rise to
non-orthogonal wave functions. When this is done a basis of quasihole states is formed.

5. Compute matrix elements of creation and annihilation operators am and a†
m correspond-

ing to different orbitals ψm between the quasihole states. Notably, there is a simple se-
lection rule 〈N , Sz|am|N ′S′z〉 ∝ δN+1,N ′δSz+m,S′z

(where |N , Mz〉 denotes any of the states
with a given N and Sz).

6. Solve the master equation (13) assuming that initially there are no coherences between
states with different Sz or N . The latter is to cut the computational cost. In principle,
this assumption can be relaxed.
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