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Abstract

We present the three-body decay of the Higgs boson into two leptons and a photon to
dimension-eight in the Standard Model Effective Field Theory (SMEFT). In order to ob-
tain this result we interfere the full one-loop Standard Model result with the tree-level
result in the SMEFT. This is the first calculation of the partial width of the Higgs boson
into two leptons and a photon in the SMEFT to incorporate the full one-loop depen-
dence for the Standard Model as well as the full tree level dimension-eight dependence
in the SMEFT. We find that this channel can aid in distinguishing strongly interacting and
weakly interacting UV completions of the SMEFT under standard assumptions. We also
find that this channel presents the opportunity to distinguish different operator Classes
within the SMEFT, potentially including contact H ¯̀`γ operators which are first generated
only at dimension-eight in the SMEFT.
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1 Introduction

The coupling of the Higgs boson to two photons or a Z–boson and photon in the Standard
Model (SM) were developed in [1–3]. The decay H → ¯̀`γ in the SM has more recently been
considered in [4–12]. In the case of the decay H → Zγ the narrow width approximation is
typically employed for the Z boson. Relaxing this assumption is expected to have a negligible
effect on the overall prediction for the Higgs boson decay to two leptons and a photon.

The Standard Model Effective Field Theory (SMEFT) is a useful tool for studying the effects
of heavy New Physics (NP) in a generally model independent fashion. The primary assump-
tions of this methodology are that the NP is too heavy to produce directly at the energies
considered and that the Higgs boson belongs to an SU(2)L doublet. Under these assumptions
the SMEFT is formed as a tower of operators suppressed by the mass scale of the heavy new
physics Λ:

LSMEFT = LSM +
∞
∑

i

∑

j

1
Λi

Q(4+i)
j . (1)

Operators of dimension (4+ i) are suppressed by the heavy scale Λi and generally, therefore,
higher dimension operators are treated as higher order corrections in the SMEFT approach.
The sum over j is over all operator forms at a given order i. For LHC studies odd-dimension
operators are generally negligible as they are B and/or L violating and therefore expected to
be strongly suppressed. The SMEFT at dimension-six has been a major area of investigation,
particularly since the discovery of the Higgs boson. Recently much interest has been generated
around how dimension-eight operators impact studies of the SMEFT [13–19] and how they
change our understanding of truncation error in the SMEFT [20–23].

In the context of the SMEFT the present work is the first work to have studied the effect
of interfering the non-resonant SM contribution for H → ¯̀`γ with the SMEFT contributions.
The SMEFT tree-level interference with the resonant SM contributions have been used across
the field when performing global fits. One-loop studies with on-shell γ and Z were made
in [24,25] for HZγ and [26–29] for Hγγ.

In [30], the authors calculate H → 4ψ in the SMEFT and found the many novel couplings
generated in the SMEFT could allow for larger corrections to the typically employed narrow
width calculation than anticipated. Indeed, couplings of the Higgs which do not occur in the
SM at tree level, like Hγγ, H g g, and Hψ̄ψγ result in contributions to the partial width that
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are entirely neglected in the narrow width approximation. Taking from this, this work seeks
to analyze the implications of allowing for off-shell Z or γ in the decay of the Higgs boson to
two fermions and a photon.

This article is organized as follows: In Section 2 we lay out our notation and in Sec. 3
we discuss the SM tree-level and one-loop contributions to the process H → ¯̀`γ. In Sec. 4
we derive the contributions in the SMEFT up to and including 1/Λ4 effects, this includes the
consistent calculation of dimension-six-squared contributions as well as contributions from
dimension-eight operators. In this section we also look at different cuts in the invariant mass of
the dilepton system and how they can be used to potentially distinguish operators generated by
tree- and loop- processes in the UV, as well as distinguish between different classes of operators
in the SMEFT. In the conclusions, Section 5, we summarize this work and briefly mention future
perspectives.

Included are many appendices: the first, App. A lays out the Feynman rules for the terms
in the one-loop effective action in the SMEFT that contribute to the partial width, App. B lays
out the necessary Feynman rules in the SMEFT for deriving H → ¯̀`γ up to 1

Λ4 , App. C outlines
and briefly discusses results of matching onto the one-loop effective action in the SM, and
App. D contains results from the main text in the MW input parameter scheme. Appendix E
discusses the approximately vanishing contribution from the tree-loop interference in the SM
while App. F discusses the often neglect dipole operator contribution.

Also included in the ancillary files are Mathematica notebooks which derive the one-loop
contributions to the SM process, including demonstrating how the one-loop effective action
can be derived and employed in performing calculations of this sort.

2 Notation

In this article we follow the notation laid out in [31–34]. The geoSMEFT [32] methodology is
used to obtain most of the relevant vertices in the SMEFT power counting to order 1

Λ4 . Certain
operators at dimension eight have not yet been written in the geoSMEFT, here we use those
laid out in [35]. An alternative source of the dimension-eight operator basis can be found
in [36]. We only lay out the conventions relevant to this work, further details can be found in
the works cited above.

The couplings to the fermions coming from the covariant derivative are written:

Lψ = ψ̄γµ
�

∂µ + i ḡ3GA
µTA+ i

ḡ2p
2
(W+

µ T+ +W−
µ T−) + i ḡZ(T3 − s2

z Qψ)Zµ + iQψ ēAµ
�

ψ . (2)

All fields appearing in the above equations are mass eigenstate fields. T±, T3 are the generators
of SU(2)L written in the charged basis and Qψ is the charge of the fermion. The barred
quantities include corrections from the SMEFT and are defined to all orders in the SMEFT
in [32]. Barred quantities such as ḡ2 can be expanded in terms of Wilson coefficients and the
unbarred gauge couplings as:

ḡ2 = g2

�

1+ 2cHW v2 +
1
2

c(8)HW v4 +
3
2

c2
HW v4

�

. (3)

The expression for ḡZ is too cumbersome to write to dimension eight in text. In this arti-
cle v is the vacuum expectation value that minimizes the Higgs potential in the SMEFT (fre-
quently written as v̄T in the literature). The ancillary files contain an updated version of the
Feynrules model defined in [33] and can be used to derive the full expression. To dimension
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six ḡZ is given by:

ḡZ =
g2

1 + g2
2

q

g2
1 + g2

2

�

1+
1

g2
1 + g2

2

�

g2
1 cHB v2 + g2

2 cHW v2 + g1 g2cHW B v2
�

�

, (4)

The quantity ḡ3 is not relevant to this work and so we do not define it. The new mixing angle,
sz , takes into account new mixing effects at dimension-eight. It is equivalent to the barred
Weinberg angle at dimension six:

s̄2
W =

g2
1

g2
1 + g2

2

�

1+
1

g2
1 + g2

2

�

2g2
2 cHB v2 − 2g2

2 cHW v2 +
g2

g1
(g2

2 − g2
1)cHW B v2

�

�

. (5)

The dimension-eight contributions to sz and s̄W are also too cumbersome to fit neatly in print
form, but can be derived using the Feynrules package [33] or can be looked up in the extensive
Appendix of [13].

The coupling of the Higgs boson to fermions is given by:

LYukawa =
�

−H[Yψ]
† +H

�

c(6)
ψH H†H + c(8)

ψH(H
†H)2

��

ΨLψR , (6)

ΨL represents a fermionic left-handed doublet andψR a fermionic right-handed SU(2)L singlet.
Neglecting goldstone bosons for simplicity we can express the doublet in terms of the Higgs
mass eigenstate h as:

H =

�

0 ,
v+cH,kinh
p

2

�

(7)

cH,kin = 1+
1
4
(cHD − 4cH�)v

2 −
1

32
(4c(8)HD + 4c(8)HD,2 − 3[cHD − 4cH�]

2)v4 . (8)

Expanding Eq. 6 defines the tree-level masses of the fermions and their relation to the SM
masses:

m̂ψ =
v
p

2

�

Yψ −
v2

2
cψH −

v4

4
c(8)
ψH

�

. (9)

In the next section we perform calculations to one-loop in the SM. As such we only include
the SM dependence. Again we neglect goldstone bosons in this discussion. The one-loop calcu-
lations below are in general Rξ gauge and therefore do include goldstone boson dependence.
The coupling of the Higgs boson to gauge bosons and the relevant triple gauge couplings come
from the Higgs gauge kinetic term and the gauge boson kinetic terms of the SM:

LHV V = (DµH)†(DµH)−
1
4

W A,µνW A
µν −

1
4

BµνBµν . (10)

Where W A,µν and Bµν are the field strength tensors of the SU(2)L and hypercharge gauge
fields respectively.

3 Higgs decays to two leptons and a photon in the SM

3.1 Tree level decay

In the Standard Model the Higgs boson decays to two leptons via the Yukawa coupling, relative
to the mass scale of the Higgs this is typically a very small coupling, but can be relevant for
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the µ and τ. Taking the lepton mass to be zero, but keeping the Yukawa coupling nonzero,
the decay width of a Higgs boson to two leptons and a photon at tree level is given by:

Γ
(0)
h→¯̀`γ

=
8π2

64m̄3
H(2π)5

∫

ds1ds2Θ(G[s1, s2, m̄2
H , m̂2

` , 0, m̂2
`]≤ 0)

4ē2m̂2
`

v2

�

s2
2 + m̄4

H

�

s1(s1 + s2 − m̄2
H)

, (11)

where Θ denotes the unit step function, the superscript “(0)” indicates this is the tree level
result, and G = 0 defines the boundary of integration and is given by [37]:

G[x , y, z, u, v, w] = −
1
2

�

�

�

�

�

�

�

�

�

�

0 1 1 1 1
1 0 v x z
1 v 0 u y
1 x u 0 w
1 z y w 0

�

�

�

�

�

�

�

�

�

�

. (12)

The kinematic invariants are defined as s1 = (kψ + kγ)2 and s2 = (kψ + kψ̄)
2. This integral

contains an IR divergence which we regulate by requiring the photon energy be above 5 GeV
following the approach of [5]. Furthermore we apply a cut on the angle between the photon
and each of the leptons requiring cosθ > 0.8. This is different from the approach in [11],
where an arbitrary beam axis is chosen in order to define a pseudo rapidity for each of the
particles. This choice was made in order maintain the Lorentz invariance of our results. This
is discussed in more detail in App. G. Adopting the input parameters given in Table 1 we find
the tree level results:

Γ
(0)
h→e+e−γ = 5.36 · 10−13 GeV (5.22 · 10−13 GeV) ,

Γ
(0)
h→µ+µ−γ = 2.29 · 10−8 GeV (2.23 · 10−8 GeV) ,

Γ
(0)
h→τ+τ−γ = 6.39 · 10−6 GeV (6.23 · 10−6 GeV) ,

(13)

where the first result denotes the use of the α̂ input parameter scheme and the result in paren-
thesis corresponds to the m̂W scheme [38,39]. Hatted quantities correspond to input param-
eters while barred quantities are the Lagrangian parameters. Therefore, for example, m̄W is
determined from α̂ in the α̂ scheme, while it corresponds to m̂W in the m̂W scheme. These
results include the full lepton mass dependence. However, the full mass dependence makes a
very small difference in the final results. The error in the phase-space integrations is approx-
imately per mil. Phase space integrations were performed using the Vegas routine from the
Cuba library [40].

3.2 One loop decay

As a result of the smallness of the lepton masses compared with the Higgs boson mass scale
we expect the chirally suppressed tree level terms to be of the same order or smaller than the
one-loop contributions. The leading term in the interference of the tree amplitude with the
loop amplitude is proportional to m2

`
/(16π2), because of the smallness of the lepton mass we

assume:

m2
`

16π2
→ 0 . (14)

This is further justified in App. E.
In order to perform the relevant SM loop calculations we employ the background field

method (BFM) [46], and use the conventions and Feynman rules presented in [33]. This
choice is convenient as it reduces the number of diagrams contributing to each process as well
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Table 1: Input parameter values used in this work, the last two lines are mW as
predicted in the α scheme and∆α as predicted in the mW scheme. The Z widths are
for the SM using the values given above. Table taken from [20], where further details
can be found. Note that the fermion mass is always used as the input parameter.

Input parameters Value Ref.
m̂Z [GeV] 91.1876(21) [41]
m̂W [GeV] 80.387(16) [42]
m̂h [GeV] 125.10(14) [41]
m̂t [GeV] 172.4(7) [41]
m̂e [MeV] 0.51099895000(15) [41]
m̂µ [MeV] 105.6583745(24) [41]
m̂τ [GeV] 1.77686(12) [43]

ĜF [GeV−2] 1.1663787 ·10−5 [43,44]
α̂EW 1/137.035999084(21) [41]
∆α 0.0590± 0.0005 [45]

mα̂W [GeV] 80.36± 0.01 –
∆αm̂W 0.0576± 0.0008 –
Γ α̂Z 2494.4± 0.7 MeV –
Γ

m̂W
Z 2495.7± 1.0 MeV –

as preserving the naive Ward identities [46,47], thereby greatly simplifying many expressions.
In the BFM the bosonic fields are doubled as φ → φ + φ̂, but only the quantum gauge fields
(corresponding to the unhatted fields) are gauge fixed. As fermionic fields are not a part of the
gauge fixing procedure their fields are not doubled, as such the Feynman rules involving the
fermions are the same in the BFM and in traditional gauge fixing. In what follows the hatted
fields, φ̂, correspond to background fields. One-loop contributions to the effective action are
formed of loops with external background fields and internal quantum fields. It can be shown
that the effective action in the BFM is equivalent to that in the traditional gauge fixing [48].
The effective action is the generating functional of one-particle irreducible diagrams, once
derived the background fields can be gauge fixed independent of the choice of gauge fixing
for the quantum fields and the S-matrix elements can be derived. Using unitary gauge for
the background fields has the added benefit of removing goldstone boson contributions from
one-particle reducible diagrams formed from the effective action.

In adopting the BFM we first construct the relevant contributions to the one-loop effective
action which contribute to the one-loop couplings ĥγ̂γ̂ and ĥẐ γ̂. We then form the one-particle
reducible diagrams contributing to the process ĥ→ ¯̀`γ̂. For simplicity we do not match the
one-loop diagrams involving external fermions to the effective action, this is possible as the
Feynman rules involving fermions are the same in the background field method as in standard
Rξ gauge fixing. The relevant diagrams contributing to the effective action at one loop are
shown in Fig. 1. Figure 2 shows diagrams which do not contribute in the background field
method – both diagrams vanish identically as a result of the Ward identities [46,47]1.

These diagrams can be matched onto the one-loop effective action given by:

L1−loop = f (1)Hγγ(k1, k2)ĥF̂µν F̂µν + f (2)Hγγ(k1, k2)ĥ(∂
µ F̂µν)(∂σ F̂σν)

+ f (1)HZγ(k1, k2)ĥF̂µν Ẑµν + f (2)HZγ(k1, k2)ĥ(∂
µ F̂µν)∂σ∂

ν Ẑσ (15)

+ f (3)HZγ(k1, k2)ĥF̂µν�Ẑν ,

1In the case of the Ẑ γ̂ mixing, this diagram vanishes only for on-shell photon.
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(a) (b) (c)

Figure 1: Standard Model diagrams contributing to Higgs boson decays to two pho-
tons and a Z boson and photon. In (a) and (b) the solid line represents the contribu-
tion of either W–bosons, the charged goldstone bosons, charged ghosts, or fermions.
In the case of the HZγ coupling loops can be composed of one goldstone boson and
two W–bosons or two goldstone bosons and one W . This is illustrated in Figure (c)
where the solid line may represent W–bosons while the dotted line represents gold-
stone bosons, or vice versa.

φ̂0 γ̂

(a)

Ẑ γ̂

(b)

Figure 2: Standard Model diagrams contributing to Higgs boson decays to two pho-
tons which vanish identically. These diagrams, if nonzero, would contribute to one-
particle reducible diagrams where the φ̂0 or Ẑ are contracted with a Ĥφ̂0 Ẑ or Ĥ Ẑ Ẑ
vertex.

where F̂µν and Ẑµν are the field strength of the photon and Z-boson respectively. We note
that, as we are matching below electroweak symmetry breaking (EWSB), the appearance of
the massive gauge boson Z is not restricted by gauge symmetry. As such the operator form
corresponding to f (2)Hγγ is split between two ĥẐ γ̂ operators. The f are form factors coming
from matching the one-loop calculations in the background field method onto the effective
action. The f (k1, k2) indicates that these form factors depend on the momenta of the external
bosons, which by conservation of momentum can be chosen to be the momenta of the photons
or photon and Z-boson.

The Feynman rules for these effective operators are given in Appendix A. We note that
in both cases the operators corresponding to the form factors f (2) and f (3) give vanishing
contributions when one-particle reducible diagrams are formed and the lepton masses are
taken to be zero.

Employing the Feynman rules of [33] and using Package-X [49], we have derived the form
factors of Eq. 15. We have confirmed that the f (1) are gauge invariant and the f (2) vanish iden-
tically for on-shell external particles. The analytic results for the form factors are reproduced
in simplifying limits in Appendix C: The Hγγ operators are reproduced for on-shell Higgs mo-
menta and in the limit of small photon off-shell momenta and arbitrary gauge parameter. This
serves two purposes: the first is to demonstrate that the gauge parameter dependence vanishes
identically in the limit the photon momenta vanishes as well as to show the leading off-shell
dependence of the form factors. It should be noted that for the calculation of the process
H → ¯̀`γ the off-shell photon is allowed to have a momentum-squared up to the Higgs mass,
and the limit in the Appendix is not relevant. In the case of the coupling HZγ we have set
ξ = 1 in order to have more compact expressions. In this case we again find that the results
are gauge parameter invariant for on-shell external particles. In what follows we use the full
momentum dependence in order to allow intermediate particles to go arbitrarily off shell.
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(a) (b) (c)

Figure 3: Diagrams contributing to the process H → ¯̀`γ. In (a) the square vertex
represents an insertion of the one-loop effective action coupling to two photons or
a Z and photon. In (b) and (c) the Higgs boson decays to two fermions via a loop
containing two W s or two Zs, a photon is then either radiated by an external or the
internal fermion line.

In order to form the amplitude for H → ¯̀` we must decay the off-shell photon and Z to
two leptons. Gauge invariance also demands we add the box diagrams and one-loop decays
of the Higgs boson to two fermions where one fermion radiates a photon. These diagrams can
be found in Figure 3. We assume that lepton Yukawa couplings as well as masses are zero in
the loop diagrams, this removes the contribution of goldstone bosons in the loops as well as
the loops where the lepton couples directly to the Higgs boson.

The one-loop amplitudes can be parameterized as:

iM = (c1Lη
µν + c2Lkµ2 kν1 + c′2Lkµ3 kν1) ūk2

γνPL vk3
ε∗µ(k1)

+(c1Rη
µν + c2Rkµ2 kν1 + c′2Rkµ3 kν1) ūk2

γνPRvk3
ε∗µ(k1) , (16)

where the ci parameterize the loop contributions, ūk2
is the barred on-shell spinor for the

lepton with momentum k2, vk3
is the on-shell spinor for the anti-lepton with momentum k3,

and ε∗µ(k1) is the on-shell polarization vector for the photon with momentum k1. The diagrams
of Fig. 3 generate all ci when an intermediate photon or Z boson is involved. Diagrams (b) and
(c) for intermediate W s only generate the left handed ci . We find that the sum of diagrams
(b) and (c) for intermediate Z bosons are gauge invariant on their own. As the W s don’t
generate right-handed couplings this also implies the right-handed components of the sum of
the diagrams of (a), when including both the intermediate Z and photon, are gauge invariant.
The left handed components of the triangle diagrams require the addition of diagrams (b) and
(c) with intermediate W s to be gauge invariant.

After obtaining the squared amplitudes corresponding to the one-loop results we find the
following partial widths (although the one-loop process does not contain an IR divergence2 we
maintain the requirement that the photon energy be greater than 5 GeV and that cosθ < 0.8
for the angle between the photon and each lepton):

Γ
(1)
h→e+e−γ = 5.36 · 10−7 GeV (5.06 · 10−7 GeV) ,

Γ
(1)
h→µ+µ−γ = 3.54 · 10−7 GeV (3.38 · 10−7 GeV) ,

Γ
(1)
h→τ+τ−γ = 2.57 · 10−7 GeV (2.50 · 10−7 GeV) ,

(17)

where the superscript “(1)” indicates these are one-loop results. In order to efficiently integrate
the phase space for these processes we employed the CollierLink library for Package X

[49] which links the Passarino-Veltman functions of Package X with the Collier library [50–
53]. Phase space integrations were performed using gauge parameter ξ = 1 as well as ξ = 2
to confirm gauge invariance of the results. The differences between different flavors of leptons
is due to the reduced phase space for increasing fermion mass: in integrating the phase space

2See the discussion in [11] below Eq. 2.8.
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0 m̄2
H

0

m̄2
H

m̄2
Z

s1

s 2

SM Tree

0 m̄2
Hs1

SM Loop

10−18

10−16

10−14

10−12

Figure 4: Dalitz plots comparing the tree (Left) and one-loop (Right) contributions
to the process H → µ̄µγ in the SM. The dotted line shows where s2, the invariant
mass of the di-muon system, crosses the Z-pole. Units are [GeV]−3. Cuts on the angle
between the photon and two leptons are not included in these Dalitz Plots.

we have neglected m̂` in the matrix element, but the mass is still used in the integration region
as defined by G in Eq. 12.

Dalitz plots of the tree and one-loop partial widths are shown in Figure 4 for the muon
case. This is the most interesting comparison as the two contributions differ by less than an
order of magnitude. The diagrams are qualitatively the same for the cases of electrons and
taus. Qualitatively we can identify that the large s2 region is favorable for isolating the tree-
level contribution, s2 ∼ m̄2

Z isolates the pole region corresponding to H → γZ(→ ¯̀`), while
the low s2 region favors the conversion of an off-shell photon to the two leptons. In [8], the
authors studied cuts isolating various regions of the phase space for the SM. In the next section
we study how the presence of the SMEFT impacts this decay process and seek to identify how
to isolate regions of phase space that can emphasize the SMEFT effects.

4 SMEFT contributions

We have so far discussed the tree-level and one-loop contributions to the process H → ¯̀`γ
within the SM. In this context, the assumption of Eq. 14 removed the possibility of interfer-
ence between the tree and loop processes. As such the observable corresponding to the one-
loop amplitude corresponds to a two-loop observable, or symbolically comes with a 1/(16π2)2

suppression. In the presence of the SMEFT, however, there are new opportunities to generate
tree-level amplitudes contributing to the process H → ¯̀`γwhich, when interfered with the SM
loops, will not be chirally suppressed.

Following recent interest in the dimension-eight contributions in the SMEFT we include
the relevant dimension-eight operators. The inclusion of dimension-eight terms is particu-
larly interesting as the H → ¯̀`γ process can be generated by a single contact interaction – at
dimension-six there is no four-vertex which couples two leptons of the same chirality, a Higgs
boson, and a photon. The relevant diagrams are shown in Fig. 5 where a circle represents an
effective vertex.

The operators which shift the Higgs Yukawa couplings are given by the “Class 5” operators:
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(a) (b) (c)

Figure 5: Diagrams contributing to the process H → ¯̀` in the SMEFT. The solid circle
represents an insertion of an effective vertex. There is also the possibility that both
the HV V and V ¯̀` vertex correspond to insertions of dimension-six operators giving
an overall dimension-eight contribution. Diagram (a) is generated at orders 1/Λ2

and 1/Λ4, (b) requires the insertion of two dimension-six operators and is therefore
O(1/Λ4), and the four-point vertex of diagram (c) occurs first at dimension eight in
the SMEFT. We do not consider diagrams with a single operator insertion at the V ¯̀`
vertex as this occurs only at one-loop.

Lcl5 = c(6)eH (H
†H)(l̄ eRH) + c(8)eH (H

†H)2(l̄ eRH) . (18)

Those which shift gauge-lepton couplings are the Class 7 operators:

Lcl7 = c(6),1Hl (H
†i
←→
D µH)(l̄γµl) + c(8),1Hl (H

†H)(H†i
←→
D µH)(l̄γµl)

+c(6),3Hl (H
†i
←→
D I
µH)(l̄σIγµl) + c(8),3Hl (H

†H)(H†i
←→
D I
µH)(l̄σIγµl)

+c(6),1He (H
†i
←→
D µH)(ēRγ

µeR) + c(8),1He (H
†H)(H†i

←→
D µH)(ēRγ

µeR)

+c(8),2Hl (H
†σaH)(H†i

←→
D µH)(l̄γµσa l) , (19)

where we have used:

(H†←→D µH) = H†iDµH − (iDµH†)H , (20)

(H†←→D I
µH) = H†iτI DµH − (iDµτI H†)H . (21)

While the dimension-eight contributions proportional to c(8),1Hl and c(8),3Hl represent re-scalings

of their dimension-six operators by (H†H) that corresponding to c(8),2Hl represents a new form
of operator in Class 7 which does not exist at dimension-six. The last remaining operator
corresponding to c(8),εHl does not contribute (see [32] for the full operator form). As can be
seen in App. B where the Feynman Rules for the SMEFT are collected, these operators only
result in a shift in the ¯̀`Z coupling and do not shift the coupling of leptons to the photon.
This can be understood from the operator form as well, where the covariant derivative acts on
the Higgs doublet. As the Higgs, h, is chargeless there is no coupling to the photon induced
by these operators.

Class 4 operators result in anomalous Hγγ and HZγ couplings, they are:

Lcl4 = c(6)HB(H
†H)BµνBµν + c(8)HB(H

†H)2BµνBµν

+c(6)HW (H
†H)Wµν

a Wa,µν + c(8)HW (H
†H)2Wµν

a Wa,µν (22)

+c(6)HW B(H
†σaH)Wµν

a Bµν + c(8)HW B(H
†H)(H†σaH)Wµν

a Bµν

+c(8)HW,2(H
†σaH)(H†σbH)Wµν

a Wb,µν .

As in the case of the Class 7 operators there is one entirely new operator form which occurs
first at dimension-eight. These operators generate a new momentum-dependent coupling of
the Higgs boson to two vectors which is not present at tree level in the SM.
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Table 2: Novel operator forms occuring first at dimension-eight which contribute to
H → ¯̀`γ. The parenthesis in D(µDν) indicate symmetrization in the Lorentz indices.
l is the left handed lepton SU(2)L doublet, while eR is the right handed leptonic
singlet. Operators such as (l̄γνl)(H†←→D µH)Bµν do not contribute as the relative sign
in the derivative removes the terms with a single Higgs. These operator forms are
not yet implemented into the geoSMEFT framework.

Class 11: ψ2H2D3

Q(8),1l2H2D3 i(l̄γµDνl)(D(µDν)H
†H)

Q(8),2l2H2D3 i(l̄γµDνl)(H†D(µDν)H)
Q(8),3l2H2D3 i(l̄γµτI Dνl)(D(µDν)H

†τI H)
Q(8),4l2H2D3 i(l̄γµτI Dνl)(H†τI D(µDν)H)
Q(8),1e2H2D3 i(ēRγ

µDνeR)(D(µDν)H
†H)

Q(8),2e2H2D3 i(ēRγ
µDνeR)(H†D(µDν)H)

Class 15: ψ2X H2D

Q(8),1e2W H2D (ēRγ
νeR)Dµ(H†τI H)W I

µν

Q(8),1e2BH2D (ēRγ
νeR)Dµ(H†H)Bµν

Q(8),1l2W H2D (l̄γνl)Dµ(H†τI H)W I
µν

Q(8),5l2W H2D (l̄γντI l)Dµ(H†H)W I
µν

Q(8),9l2W H2D εI JK(l̄γντI l)Dµ(H†τJ H)W K
µν

Q(8),1l2BH2D (l̄γντI l)Dµ(H†τI H)Bµν
Q(8),5l2BH2D (l̄γνl)Dµ(H†H)Bµν

In addition to these operators, there exist operators which shift the HγZ coupling without
affecting the Hγγ3:

Lcl8 = c(8),1W H4D2(H
†H)(DµH†τI DνH)W I

µν + c(8),1BH4D2(H
†H)(DµH†DνH)Bµν . (23)

Finally, we can generate shifts in the coupling of the leptons to the Z boson as well as
a contact four-point interaction via the operators in Tab. 2. These operators as well as the
Class 7 operators are implemented in an updated version of the Feynman Rules presented
in [33], the updated package is available in the Feynrules model database as well as in the
ancillary files to this publication. The Class 11 operators are not included in this update as the
additional derivatives of the Higgs doublet take an excessive amount of time to compute, they
are available upon request.

All SM and dimension-six contributions receive corrections from the Class 3 operators
which shift couplings related to the Higgs boson. The Class 4 operators mentioned above
also shift all SM and dimension-six couplings of the vector bosons. These shifts occur due to
finite field and mass renormalizations. These operators are:

Lcl3 = c(6)H�(H
†H)�(H†H) + c(6)HD(H

†DµH)∗(H†DµH) (24)

+c(8)HD(H
†H)2(DµH†)(DµH) + c(8)HD,2(H

†H)(H†σaH)(DµH†)σa(DµH) .

With the above, we have identified all operator forms contributing the process H → ¯̀`γ,
without inducing chiral flips, at tree level in the SMEFT up to and including 1/Λ4 effects.

Below we discuss the potential of the decay H → ττγ may allow distinguishing operators
which shift the SM tree coupling from the other operators effects. This discussion must be un-
derstood as having the potentially strong caveat that operators inducing chiral flips, have been
neglected. As an estimate of the importance of such effects, we have included the Yukawa-like
operators and the dimension-six dipole operators in the main text. In App F we discuss the size
of the dipole contributions. We find that the interference of the dipole operators with other
contributions is small compared with the dimension-six squared dipole contributions. We use
this result as an argument to neglect the dimension-eight operators which induce chiral flips

3These are referred to in [35] and this work as “Class 8” operators. They are not to be confused with the
four-fermion operators called Class 8 in the usual dimension-six literature, which are not relevant to this work.
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from our analysis. A more careful study of the viability of measurement in the tau decay-
channel should be performed before such contributions are explored. The dipole operators we
consider are given by:

Lcl6 = c(6)eW (l̄σ
µνe)τI HW I

µν + c(6)eB (l̄σ
µνe)HBµν + h.c. (25)

We assume real Wilson coefficients for the dipole operators as their CP-violating parts are
strongly constrained by low energy measurements [54].

In all cases of operators involving fermions we have assumed the flavor dependence is
diagonal without invoking symmetry arguments or spurions. Since each decay channel has a
separate flavor we choose to be agnostic about the universality of such couplings.

4.1 SMEFT amplitudes and Dalitz plots

With the full set of SMEFT Feynman rules in Appendix B we can identify all amplitudes with
novel kinematics from those in the SM. We make the assumption that at amplitude level:

1
16π2

c(6)i → 0 . (26)

This assumption “allows” us to neglect to include SMEFT 1
Λ2 contributions in the loop. Ul-

timately these contributions should be included, but are beyond the scope of this work. We
emphasize that these terms are neglected at the amplitude level as they are still allowed to
interfere with the SM loops. This neglects potential contributions from the Class 3 and 4 oper-
ators at one loop which could interfere with the tree level SMEFT amplitudes as in Figure 5(a).
Such contributions are beyond the scope of this work and are left for future studies. While
this affects our final numerical results, the contributions should be of the same magnitude as
those included and therefore are not expected to greatly affect the qualitative discussions of
Section 4.2.

The novel SMEFT kinematic forms can be categorized into the following cases:

1. gHγγ: Direct couplings of the Higgs boson to two photons as defined in Eq. B.3 due to
Class 4 operators. These include the SM and shifts to the SM-like coupling of the photon
to two leptons as defined in Eq. A.7 (implicit in the definition of ē). We note that gHγγ

mimics the one-loop coupling of f (1)Hγγ without the full momentum dependence.

2. gHZγ× [(gL + g ′L)PL +(gR+ g ′R)PR]: Direct couplings of the Higgs boson to a Z and γ as
defined in Eqs. B.3 and B.4 due to Class 4 operators. These include the SM and shifts to
the SM-like coupling of the Z to two leptons as defined in Eqs. A.7 and A.8. As above,
gHZγ mimics the one-loop coupling of f (1)HZγ.

3. Contact (A′11PL + B′11PR): the direct coupling H¯̀`γ generated by Class 11 operators as
in Eq. B.20.

4. Contact (A15PL + B15PR): the direct coupling H¯̀`γ generated by Class 15 operators as
in Eq. B.20.

5. Shifted Yukawa couplings: The Yukawa couplings of the SM are shifted by the Class 5
operators.

6. Contact cDP : direct coupling of H¯̀`γ generated by the dipole operators
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In what follows we refer to these cases as, for example, “Case 1” and “C1” in context.
The above cases generate novel kinematic forms for the amplitudes contributing to the

decay of the Higgs boson to two leptons and a photon. Defining,

Πµν =
�

kν1(k2 + k3)
µ − k1 · (k2 + k3)η

µν
�

, (27)

we can write the corresponding amplitudes as follows4:

iMC1 = −i
ēQ`gHAAv

s2
Πµν(ūk2

γνvk3
)ε∗µ(k1) , (28)

iMC2 ≡ ML
C2 +MR

C2 , (29)

iML
C2 = −i

gHAZ ḡZ(gL + g ′L)v

4(s2 − m̄2
Z + im̄ZΓZ)

Πµν(ūk2
γνPL vk3

)ε∗µ(k1) ,

iMR
C2 = −i

gHAZ ḡZ(gR + g ′R)v

4(s2 − m̄2
Z + im̄ZΓZ)

Πµν(ūk2
γνPRvk3

)ε∗µ(k1) ,

iMC3 ≡ ML
C3 +MR

C3 , (30)

iML
C3 =

iA′11 ēQ`v

2
kν1(k2 + k3)

µ(ūk2
γνPL vk3

)ε∗µ(k1) ,

iMR
C3 =

iB′11 ēQ`v

2
kν1(k2 + k3)

µ(ūk2
γνPRvk3

)ε∗µ(k1) ,

iMC4 ≡ ML
C4 +MR

C4 , (31)

iML
C4 = iA15vΠµν(ūk2

γνPL vk3
)ε∗µ(k1) ,

iMR
C4 = iB15vΠµν(ūk2

γνPRvk3
)ε∗µ(k1) .

In addition to the above there are the contributions with operators which induce chiral flips:

iMC5 =
ēm̂`

v

�

1+∆H¯̀`

�

ūk2
γµ/k1 v̄k3

ε∗µ(k1)
�

1
s1
−

1
s3

�

, (32)

iMC6 = cDP ūk2
σµνvk3

kν1ε
∗
µ(k1) . (33)

where ∆H¯̀` is defined in Eq. B.2 of App B. We have also defined:

s3 = (kγ + kψ̄)
2 = m̄2

H − s1 − s2 . (34)

Of these cases of amplitudes, only Cases 1, 2, 5, and 6 can generate results independent of
the SM loop. For cases 1 and 2, this is because they can be generated at dimension-six, Cases
3 and 4 are first generated at O(1/Λ4). For cases 5 and 6 this is because they can interfere
with the SM tree amplitude. In Tables 6–7 we present Dalitz-like plots for the squares of the
tree-level SMEFT contributions as well as the loop-tree interference between the SMEFT and
the SM loops. These Dalitz plots are the ratio of the SMEFT contribution to the sum of the SM
tree- and loop- contributions:

R(0)Ci =
|MCi|2

|M(0)
SM +M(1)

SM|2
,

R(0)CiC j∗ =
2Re[MCiM∗

C j]

|M(0)
SM +M(1)

SM|2
, (35)

R(1)Ci =
2Re[M(1)

SMM∗
Ci]

|M(0)
SM +M(1)

SM|2
.

4Here for convenience we take kγ = k1, kψ = k2, and kψ̄ = k3.
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These plots are specifically for the case of the muon, but hold qualitatively for the other charged
lepton flavors. The normalization of the plots is arbitrary as we have pulled out the dependence
on the Wilson coefficients from the expressions (as indicated by the titles). Quantities such as
ḡZ and ē are set to their SM values for simplicity.

The most striking feature of these plots is that in certain regions the overall sign of the ratio
R can flip. This sign flip is shown in the figures with a solid black line across the plot, the top
most region is always chosen to have to a positive value (e.g. the plot of R(1)C1 has an explicit
minus sign in its title to ensure the top region is +). These sign flips occur as these interference
terms can generally have an arbitrary sign, as s2 changes different SM-loop contributions are
emphasized and can result in an overall sign change. While this theoretically could be used
to define cuts in s2 which emphasize the effects of these SMEFT contributions, in general one
region’s contribution is much larger than that in another. We do, however, explore this option
in the analysis below.

These plots show separately the left and right-handed components as they can behave
differently due to their interference with the left- and right-handed SM loops which differ (as
discussed above). The most stark difference can be seen in the plots for R(1)C3 and R(1)C4 where the
contribution from left handed leptons flips signs twice while for the right handed case there is
only one sign flip.

4.2 Parameterized partial widths

Including all SMEFT corrections to the partial width of the Higgs boson decay to ¯̀`γ we have
the following expression for the amplitude squared truncated at order 1/Λ4:

|M|2 = |M(0)
SM|

2(1+ 2∆H¯̀` + [∆
(6)
H¯̀`
]2) + |MC1 +MC2 +MC6|2

+
1

16π2
2Re

�

M(1)
SM

�

MC1 +MC2 +MC3 +MC4 +MC5 +MC6

�∗�
(36)

+
1

(16π2)2
|M(1)

SM|
2 ,

where ∆(6)
H¯̀`

is the dimension-six part of ∆H¯̀` defined in B.2. Truncation at order 1/Λ4 of
the square of the sum of amplitudes is implied. Writing the amplitude squared in this way
emphasizes the enhancement of the SMEFT terms over the SM loops – we have explicitly
written 1/(16π2) to demonstrate that the SMEFT contributes to the amplitude-squared at
tree- and one-loop level, where the SM has the chirally suppressed tree level contribution and
the two-loop (one-loop squared) contribution.

In [8], the authors identify regions focused on optimizing sensitivity to the SM contribu-
tions. For example, from Fig. 4 we can see that the large s2 region is dominated, for muons, by
the tree-level contribution, cutting s2 around the Z-pole region will isolate the resonant loop
contributions, while cutting for lower s2 will isolate the non-resonant loop contributions. The
Dalitz-like plots of Figs. 6 and 7 show no obvious regions for isolating the SMEFT contributions
due to novel kinematics not present in the SM. RC1 and RC2 mimic the effects of the resonant
loops in the SM, and so can be isolated by looking in the corresponding SM kinematic re-
gions for excesses. However, the sign changes coming from the interference with the SM loops
present an interesting opportunity for combining different regions to emphasize the effects of
the SMEFT. In Table 3 we define possible choices of cuts on s2 and combinations of regions in
s2 to emphasize contributions in the SMEFT. The last column gives the approximate number of
decays H → µµγ expected for a SM Higgs at the HL-LHC given 3/ab of integrated luminosity.
The number of decays is determines as the production cross section multiplied by the decay
width (in the SM) multiplied by the integrated luminosity, σpp→h×BRSM(h→ ¯̀`γ)×3/ab. In
the first four regions the number is well over 1,000. In the case of Regions 5 and 6 the number
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Figure 6: Dalitz-like plots showing the ratios defined in Eq. 35. Normalization is
arbitrary as prefactors related to the Wilson coefficients have been pulled out of the
ratios. In some cases a sign has been pulled out of the ratio as well. “±” is used when
both the left and right hand parts are equal up to the normalizations factored out in
the plot (as indicated by the title). Solid black lines show where the ratio flips signs,
the top-most region is always positive. Cuts on the angle between the photon and
two leptons are not included in these Dalitz plots.
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Figure 7: Dalitz-like plots as described in Figure 6.
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Table 3: Regions in s2 chosen to emphasize various SMEFT effects. All regions should
be understood to be limited to the physical phase space region, for example m̄2

H may
be outside the physical region and instead s2 is integrated to the maximum value.
The combined regions 5 and 6 are understood as the sum or difference between the
integrated regions in s2. s1 is always integrated from the lowest to highest physical
values. The first four regions approximately correspond to those proposed in [8]. The
column labeled “# SM” is the approximate number of SM decays H → µµγ expected
at HL-LHC with 3/ab integrated luminosity. The negative sign for the number of
events in region 5 simply indicates that more decays occur in one region of the phase
space than the other and we are taking the difference.

# Region [GeV]2 Purpose # SM

1 (0≤ s2 ≤ m̄2
H) Full phase space/general 17 · 103

2 (102 ≤ s2 ≤ 402) SM nonresonant & R(0,1)
C1 2.5 · 103

3 (702 ≤ s2 ≤ 1002) SM resonant & R(0,1)
C2 & R(1)C3 11 · 103

4 (1002 ≤ s2 ≤ m̄2
H) SM tree & R(0)C5 6.5 · 103

5 (452 ≤ s2 ≤ 502)− (652 ≤ s2 ≤ 802) R(1),LC3 & R(1),LC4 “−”900

6 (452 ≤ s2 ≤ 502) + (652 ≤ s2 ≤ 802) control for R(1),LC3 & R(1),LC4 1500

is lower which could be problematic statistically – although the presence of SMEFT corrections
could result in a higher number of events and be a strong indicator of NP.

To simplify the following expressions we adopt the following convention:

c̃(6)i = v̂2c(6)i , (37)

c̃(8)i = v̂4c(8)i , (38)

v̂2 =
1

p
2ĜF

. (39)

We also define the ratio of the SMEFT partial width to that of the SM in input parameter
scheme S over Region Ri as defined in Table 3 as:

∆
Ri
S =

Γ SMEFT
H→µ̄µγ

Γ SM
H→µ̄µγ

�

�

�

�

�

Ri

S

− 1 . (40)

The relations between the various Lagrangian parameters and the two input parameter schemes
can be derived from the Appendices of [34]. We emphasize that in determining the∆s we have
used the full dependence of Γ and not the qualitative normalization-independent quantities
used to derive the Dalitz-like plots. These cuts are very simple and purely phenomenologically
motivated. Future studies should be extended to include kinematic limitations of the experi-
ments (e.g. photon isolation requirements, thresholds for various kinematic measurements).
We have further neglected the experimental efficiency for muon detection in the total number
of events in the # SM column of Table 3, the efficiencies for electrons and taus has also been
neglected in the discussion below.

Beginning with the fully integrated region (i.e. Region 1 of Tab. 3), we find the ratio of
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the partial width in the presence of the SMEFT to the SM value is:

∆R1
α =+0.12c̃(6)H� − 0.03c̃(6)HD − 0.015c̃(8)HD − 0.015c̃(8)HD,2 + 0.24[c̃(6)H�]

2 − 0.12c̃(6)H� c̃(6)HD + 0.015[c̃(6)HD]
2

−0.13
v̂

m̄µ

c̃(6)eH + 0.068
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.064

v̂
m̄µ

c̃(8)eH − 0.13
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.032
v̂

m̄µ

c̃(6)eH c̃(6)HD (41)

+0.00099c̃(6)H�
δGF

ĜF

− 0.00025c̃(6)HD
δGF

ĜF

− 0.0016
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 2.4 · 10−9δGF

ĜF

+104
�

+7.4[c̃(6)HB]
2 + 2.6c̃(6)HB c̃(6)HW + 1.3[c̃(6)HW ]

2 − 6.4c̃(6)HB c̃(6)HW B − 3.1c̃(6)HW c̃(6)HW B + 2.3[c̃(6)HW B]
2
�

+1011
�

+3.3[c̃(6)eB ]
2 − 3.6c̃(6)eB c̃(6)eW + 0.98[c̃(6)eW ]

2
�

−350.
�

c̃(6)HB + c̃(8)HB

�

− 100.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 190.
�

c̃(6)HW B + c̃(8)HW B

�

−700.
�

c̃(6)HB

�2
− 200.

�

c̃(6)HW

�2
+ 19.

�

c̃(6)HW B

�2
+ 750.c̃(6)HB c̃(6)HW B + 1.9c̃(6)HW c̃(6)HW B

−350.c̃(6)HB c̃(6)H� + 170.c̃(6)HB c̃(6)HD − 100.c̃(6)HW c̃(6)H� − 54.c̃(6)HW c̃(6)HD + 190.c̃(6)HW B c̃(6)H� + 4.5c̃(6)HW B c̃(6)HD

−6.9c̃(6)HB c̃(6)He − 9.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 6.9c̃(6)HW c̃(6)He + 9.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 4.4c̃(6)HW B c̃(6)He

−5.7c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+0.000021c̃(6)HB
δGF

ĜF

− 0.000021c̃(6)HW
δGF

ĜF

+ 0.000014c̃(6)HW B
δGF

ĜF

−0.079c̃(8),1BH4 D2 + 0.022c̃(8),1W H4 D2

−1.6c̃(8),1e2BH2 D − 0.3
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 0.87c̃(8),1e2W H2 D − 0.17
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.031
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.016
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 0.094
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

.

The lines of this expression are organized as follows: the first through third lines are the
contribution from ∆H¯̀`, the fourth and fifth come from the square of the tree-level SMEFT
contributions, and the subsequent lines are the interference of the SMEFT with the SM loops.
All contributions are written only to two digits accuracy. Immediately we can see that the
contribution from the square of the SMEFT tree contributions is by far the most dominant (note
the factor of 104, and 1011 pulled out from the expression). Interestingly, the dipole operators
are dominant by several orders of magnitude and are generally neglected in the literature,
including articles discussing NLO in the SMEFT expansion. From a purely bottom-up EFT
interpretation we might argue all other terms are negligible, however making a flavor U(3)5

assumption is sufficient for removing them (see, for example, the discussion of U(3)5 symmetry
in [38]). For the remainder of the text we will make this assumption, the dipole operator
dependence is maintained in the full expressions in Appendix D and further dependence on
the dipole operators which may be relevant to taus is discussed in App. F.

Further, the contributions coming from the shift in the definition of the fermi constant,

v2 =
1

p
2ĜF

+
δGF

ĜF
, (42)

are strongly suppressed compared to other contributions. For this reason we drop them in the
remainder of the main text, they are also written in Appendix D. δGF at leading order is given
by [55]:

δGF =
p

2c̃(6),3Hl −
c̃(6)l lp

2
. (43)
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Where c(6)l l is the four fermion operator affecting muon decay, (L̄ L)2. It can be found to
dimension-eight using the system of equations in the appendices of [34].

In the case of the contributions from c(d)eH we could be concerned that these explode for the
lighter generations as v

m̂ will be large, however constraints on these Wilson coefficients (See
e.g. [56]) constrain them for the muon and tau to be,

− 14
[TeV]2 ≤ c(6)µH

v
m̂µ
≤ 12
[TeV]2 , − 2.5

[TeV]2 ≤ c(6)τH
v

m̂τ
≤ 4.2
[TeV]2 , (44)

as such we will neglect them in the following discussion, they are reproduced in Appendix D.
Constraints on the Class 3 and 4 operators can also be found in the literature, however since
H → γγ and H → Zγ are used in inferring these constraints, they cannot be applied to this anal-
ysis. The couplings c(6)eH can be constrained from the Higgs decays to two leptons independent
of other channels. The coupling to the electron is not (directly) constrained by experiment,
however we will still neglect the possibility of large changes to the electron yukawa due to c(6)eH
in the following discussion.

If we make no assumptions about the size of these Wilson coefficients the discussion above
seemingly implies a unique opportunity to directly study the 1

Λ4 contributions from the SMEFT
while the leading contributions at 1

Λ2 are strongly loop or chirally suppressed. We see that the
contribution of the SMEFT at one loop and O(1/Λ2) interfering with a tree level SMEFT ampli-
tude would have a negligible effect compared to the tree-level squared SMEFT contributions
in the fourth line above. This holds throughout the discussions below.

However, perturbativity in the SMEFT requires that, generally, higher order terms in 1/Λ2

should have smaller contributions to observables than the leading order terms. Here we un-
derstand the reason for the larger impact of the tree-level terms of the fourth and fifth lines
is the loop suppression of the subsequent lines and the chiral suppression of the first lines.
However, we can consider some scenarios in which the perturbativity of the expansion is more
manifest:

1. NP Scale Assumption: Restoring the NP scale and the vev, i.e. c̃(4+n)
i → v̂n

Λn c(4+n)
i , we can

assume that the ci are order 1 and infer a scale at which the terms of the sixth line of
Eq. 41 (i.e. linear in Class 4 operators) become larger than those of the fourth (quadratic
in Class 4 operators, we neglect the dipole operators). Generally the contributions from
the sixth line exceed those of the fourth before any other line under this assumption.

2. Loop Assumption: For weakly interacting new physics the Wilson coefficients c(6)HB, c(6)HW ,

and c(6)HW B are generally expected to be generated at one loop in the UV [57]5. These
arguments do not hold for the Class 3 and contact operators, so we can use this assump-
tion to infer if, for weakly interacting NP, the terms on the fourth line of Eq. 41 remain
dominant. In this assumption all the ci are taken to be order 1 except for the class 4
operators which are taken to be order 1/(16π2).

3. Combined Assumption: We can combine the above two assumptions to infer a scale at
which the Class 3 or contact operators become dominant. Generally with modest NP
scales the Class 3 operators will dominate. Changing from muon final states to elec-
trons can drive down the Class 3 operator contribution resulting in the dominance of
the contact operators. The combined assumption leaves a significant amount of free-
dom to manipulate the outcome that it is arguably too model dependent for discussion.
While we generally do not discuss it below, we do occasionally invoke flavor as a way to
discriminate the contributions of different operator classes.

5It should be noted, however, that the logic typically used to categorize these Class 4 operators as loop generated
[58] does not necessarily apply at dimension-eight [34].
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The above assumptions are very much model dependent. However, as noted above, if we make
no assumptions the squares and interference of the tree level amplitudes of Eqs. 28 and 29
(Cases 1 and 2) dominate regardless of regions considered from Table 3.

For Region 1, under the NP scale assumption, for a NP scale of Λ ∼ 1 TeV, the squares
of the tree level C1 and C2 amplitudes are still dominant. This holds for Λ up to around
3.5 TeV. Under the Loop Assumption the [c(6)HB]

2 term of the fourth line become roughly order

6 ·104/(16π2)2 ∼ 2 while those linear in c(6)HB are roughly 270/(16π2)∼ 1.7 so these terms are
of roughly the same order. Class 4 operators still dominate the decay width. Considering the
case of taus would, however, push the contributions from the first line beyond loop suppressed
Class 4 operators. Considering both loop suppression and assuming a scale of NP the Class 4
operators cease to be dominant below an assumed scale of 1 TeV.

Region 2 is chosen to enhance the non-resonant SM loop contributions as well as the Case 1
amplitude’s interference with the SM loop. We find the dominance of the tree-level SMEFT
contributions is enhanced by at most a factor of 3. The contact operators have a larger impact
as well as their contributions are concentrated in the low s2 area of phase space. The full
expression can be found in Appendix D, instead of giving the full expression for ∆Ri

α from
this point in the text we will give the expressions under the UV assumptions presented above,
keeping only the leading and subleading contributions for clarity.

If we again assume a scale associated with new physics as described above, we find that
Class 4 operator contributions at order 1

Λ2 begin to dominate over these tree-level SMEFT
contributions again at a scale of around Λ∼ 3.5 TeV:

∆R2
α =+3.5[c̃(6)HB]

2 + 2.1c̃(6)HB c̃(6)HW + 0.32[c̃(6)HW ]
2 − 3.8c̃(6)HB c̃(6)HW B − 1.1c̃(6)HW c̃(6)HW B + 1.1[c̃(6)HW B]

2

−3.7c̃(6)HB − 1.1c̃(6)HW + 2.0c̃(6)HW B . (45)

If we retained the dipole operators, the scale at which the dimension-six operators would
begin to be larger than the squares of the dipole contribution is over 100 TeV. Taking the loop
assumption the contributions from the contact operators of Classes 11 and 15 are of greater
importance than in the previous region, Class 4 operators are still dominant:

∆R2
α =+5.8[c̃(6)HB]

2 + 3.4c̃(6)HB c̃(6)HW + 0.52[c̃(6)HW ]
2 − 6.3c̃(6)HB c̃(6)HW B − 1.9c̃(6)HW c̃(6)HW B + 1.7[c̃(6)HW B]

2

−4.7
�

c̃(6)HB + c̃(8)HB

�

− 1.4
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 2.6
�

c̃(6)HW B + c̃(8)HW B

�

−3.2c̃(8),1e2BH2 D . (46)

The enhancement from considering final state taus changes this such that class 3 operators
are dominant.

Region 3 is chosen to enhance the resonant SM contributions as well as Case 2. However,
we find this region seemingly counterintuitively, results in a drop in the tree-level SMEFT
contributions of Cases 1 and 2. This is because in Regions 1 and 2 the phase space integral
corresponding to the square of Case 1 (and the interference of C1 and C2) are two orders of
magnitude larger than the contribution of Case 2. Region 3 successfully cuts out the dominant
low energy part of the phase space integral dropping the contribution of the squares of the
tree-level yukawa-like SMEFT contributions by an order of magnitude. As the interference of
C1 and C2 has the opposite sign of the square of C1 some cancellation results in only a single
order of magnitude drop.

For R3, assuming a scale of new physics, the 1
Λ2 contributions begin to dominate over the

tree level 1
Λ4 class 4 operator contributions for a scale of Λ∼ 8 TeV:

∆R3
α =+0.014[c̃(6)HB]

2 − 0.024c̃(6)HB c̃(6)HW + 0.012[c̃(6)HW ]
2 + 0.014c̃(6)HB c̃(6)HW B − 0.016c̃(6)HW c̃(6)HW B

+0.0053[c̃(6)HW B]
2 − 0.016c̃(6)HB + 0.0085c̃(6)HW − 0.0035c̃(6)HW B . (47)
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If we again consider the possibility the Class 4 operators are loop generated then we find the
contact operators become competitive with the class 4 operators:

∆R3
α =+0.62[c̃(6)HB]

2 − 1.1c̃(6)HB c̃(6)HW + 0.55[c̃(6)HW ]
2 + 0.64c̃(6)HB c̃(6)HW B − 0.72c̃(6)HW c̃(6)HW B + 0.24[c̃(6)HW B]

2

−1.2c̃(8),1e2BH2 D − 0.23
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 0.64c̃(8),1e2W H2 D + 0.59
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+0.11
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.057
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 0.32
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

. (48)

Region 4 is chosen to enhance the SM tree contributions and the corresponding shifts
from ∆H¯̀`. In this region we fould that the SMEFT C1 and C2 tree contributions are strongly
suppressed, but still largely dominant. Making assumptions about the scale of new physics as
above, the linear terms in Class 4 operators begin to dominate for Λ∼ 2.5 TeV:

∆R4
α =+0.2[c̃(6)HB]

2 − 0.24c̃(6)HB c̃(6)HW + 0.16[c̃(6)HW ]
2 + 0.11c̃(6)HB c̃(6)HW B − 0.22c̃(6)HW c̃(6)HW B + 0.087[c̃(6)HW B]

2

+0.2c̃(6)HB − 0.26c̃(6)HW + 0.18c̃(6)HW B . (49)

Further, should the Class 4 operators be loop suppressed this is the first region in which the
Class 3 operators of Eq. 24 become dominant for the muon:

∆R4
α =+1.8c̃(6)H� − 0.44c̃(6)HD − 0.22c̃(8)HD − 0.22c̃(8)HD,2 + 3.6[c̃(6)H�]

2 − 1.8c̃(6)H� c̃(6)HD + 0.22[c̃(6)HD]
2 (50)

+0.22c̃(8),1e2BH2 D − 0.12c̃(8),1e2W H2 D − 0.42
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+ 0.23
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

+0.99c̃(8),1e2BH2 D − 1.8
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+ 1.0
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

.

While a subset of the contact operators are competitive with the class 3 operators. The en-
hancement of the Class 3 operators will be improved by a factor of m2

τ/m
2
µ for the tau, and

heavily suppressed for the electron in which case the contact operators become dominant.
Region 5 is chosen such that the phase space integral for the first subregion, 452 ≤ s2 ≤ 502,

approximately cancels that of the second region, 652 ≤ s2 ≤ 802, for the tree level SMEFT
contributions from Case 1. This has the effect of reducing the contributions from the Class 4
operators while enhancing the contribution from the left-handed contact operators (see Fig. 7).

Unfortunately the region only suppresses the tree-level Class 4 operator contributions by
a factor of about 10. This is because for Cases 1, 2, and their interference, the regions cannot
be chosen to simultaneously cancel all contributions. A very careful analysis could outper-
form the regions chosen here, but are beyond the scope of this article as they should also take
into account detector effects, such as the detector’s ability resolve different flavors of charged
leptons in these particular regions of phase space. While this region was defined with the in-
tention of emphasizing the left-handed contact operators we also find enhanced contributions
from the right-handed contact operators. This is simply because the dominant area of phase
space for these operators is the low s2 region.

The terms linear in Class 4 operators begin to dominate under an assumption of a new
physics scale of about 3.0 TeV:

∆R5
α = 0.42[c̃(6)HB]

2 − 1.3c̃(6)HB c̃(6)HW + 0.48[c̃(6)HW ]
2 + 0.93c̃(6)HB c̃(6)HW B − 0.53c̃(6)HW c̃(6)HW B + 0.12[c̃(6)HW B]

2

+1.7c̃(6)HB − 1.2c̃(6)HW + 0.67c̃(6)HW B . (51)

Under the assumption Class 4 operators are loop suppressed, the contact operators are dom-
inant for final state electrons and muons:

∆R5
α = 0.37[c̃(6)HB]

2 − 1.1c̃(6)HB c̃(6)HW + 0.43[c̃(6)HW ]
2 + 0.82c̃(6)HB c̃(6)HW B − 0.47c̃(6)HW c̃(6)HW B + 0.1[c̃(6)HW B]

2 (52)

−15.c̃(8),1e2BH2 D − 3.
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 8.1c̃(8),1e2W H2 D + 10.
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+1.9
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.97
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 5.5
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�
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Table 4: Summary of the dominant operator contributions under the assumption the
Class 4 operators are generated at one loop. Di indicates this operator class domi-
nates for flavor i, D indicates for all flavors. Ci indicates that there is no dominant
contribution and that the marked classes are of comparable sizes.

Cl4 operators Class 3 operators Class 11 & 15 operators Λ

R1 D – – 3.5 TeV
R2 Dµ,e Dτ – 3.5 TeV
R3 Cµ,e Cµ, Dτ Cµ,e 8 TeV
R4 – Dτ,Cµ Cµ,De 2.5 TeV
R5 – Dτ De,µ 3.0 TeV

Comparing the Region 5 result with Region 6, which is just the sum of the two regions
used for Region 5, we find that the tree-level contributions from Class 4 operators are as much
as a factor of 6 times larger than in the previously considered region. The calculation of the
difference between regions in R5 could mean the difference between resolving the impact of
contact operators or only seeing the Class 4 operator contributions.

We have found that, invoking U(3)5 symmetry, the Class 4 operator contributions are dom-
inant in all defined regions unless we make certain assumptions. Assuming a scale associated
with the NP allows us to infer a scale at which the 1

Λ2 contributions dominate over the contri-
butions from the squares of Class 4 operators, the lowest scale for which this occurs is 2.5 TeV.
This indicates (under the NP scale assumption) that the H → ``γ decay channel presents an
excellent opportunity to directly study the (1/Λ2)2 terms in the SMEFT. Table 4 summarizes
which Class of operator is dominant for a given region under the loop assumption for Class 4
operators. By considering the electron and muon flavors, these different regions present the
opportunity to separately study the effects of operator Classes 3, 4, and the contact operators
(Classes 11 and 15). Adding in the tau allows for clearer distinguishing in Region 3, but may
be less promising when the instability of, and ability to resolve, taus is taken into account. In
this way, Table 4 shows that this decay channel of the Higgs boson supplemented by various
cuts provides an excellent opportunity to study the interplay between different operator classes
as well as different orders in the SMEFT power counting. It is important to note that these
statements all rely heavily on assumptions about the UV physics, and while these assumptions
may be motivated, they may be misleading. By taking a more general approach, improving
the quality of our predictions, and continuing to perform high quality global fits we will allow
the physics to speak for itself and lead us to the correct conclusions.

5 Conclusions

After laying out our conventions we derived both the SM tree and loop contributions to
H → ¯̀`γ. We then derived the tree level results in the SMEFT up to and including terms
of order 1/Λ4. Interfering the SMEFT results with the SM we created Dalitz-like plots demon-
strating the behavior of these SMEFT contributions over the full phase space. By considering
different regions of this phase space we were able to deduce regions in which various SMEFT
contributions would be emphasized. The interference of SMEFT amplitudes with the SM were
found to sometimes switch signs due to the different terms in the SM loops, which presented
an interesting opportunity to sum regions of phase space in such a manner that the dominant
contributions from the tree-level SMEFT amplitudes squared would be suppressed. In all cases,
however, we found that these dominant terms prevailed.
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If we make the assumption that the UV physics which generates the SMEFT in the IR is
weakly interacting it is generally believed that the Class 4 operators (at dimension-six) will
be suppressed by a factor of 1

16π2 . In this case we have identified that the process H → ¯̀`γ,
when different flavors of lepton are considered, can discriminate Class 4 operators from Class
3, and the contact operators of Classes 11 and 15. Given a measured deviation from the SM
in this channel, this provides an opportunity to attempt to infer whether or not the UV physics
is strongly or weakly interacting (i.e. the strength of the Class 4 operator contributions6) as
well as to phenomenologically study the size of the 1

Λ4 terms.
The nature of the three body phase space makes three body decays an excellent opportunity

for studying the novel kinematics of the SMEFT. The only other three body decays of the Higgs
involve quarks, as such they present a challenge to precision measurements7. Another key
aspect of this study was that the interplay between the tree and one-loop processes in the SM
which cannot interfere. This combined with the fact the tree level contributions vary over
many orders of magnitude depending on the flavor of the final state leptons gives a very broad
phenomenology presenting many different ways to study the contributions from the SMEFT.

In performing this analysis we neglected the dimension-six one-loop terms and potential
issues with detector resolution of the leptons and photon. As a result our quantitative results
of Appendix D have room for improvement before and during the run of the HL-LHC. Our
qualitative results are expected to approximately hold and therefore the conclusions of the
ability of this channel to distinguish between different UV physics as well as to provide an
opportunity to look for interesting flavor phenomenology remain.
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A Feynman rules for the effective action

The Lagrangian corresponding to the effective action is given by Eq. 15, it is reproduced here:

L1−loop = f (1)Hγγ(k1, k2)ĥF̂µν F̂µν + f (2)Hγγ(k1, k2)ĥ(∂
µ F̂µν)(∂σ F̂σν)

+ f (1)HZγ(k1, k2)ĥF̂µν Ẑµν + f (2)HZγ(k1, k2)ĥ(∂
µ F̂µν)∂σ∂

ν Ẑσ

+ f (3)HZγ(k1, k2)ĥF̂µν�Ẑν , (A.1)

The rules follow FeynRules formatting, e.g. a field “φ” with subscript “1” has corresponding
four-momenta k1 and if relevant Lorentz index µ1. The rule corresponding to the form factor
f (1)Hγγ is:





ĥ
Â1

Â2



 = 4i f (1)Hγγ(k1, k2)
�

kµ2
1 kµ1

2 − k1 · k2η
µ1,µ2

�

. (A.2)

6It is important to note that if the Class 4 operators have small Wilson coefficients this does not necessarily
preclude new physics which is strongly interacting, but is consistent with weakly interacting new physics.

7We neglect the narrow width approximation of, e.g. H →WW and H → Z Z in this statement [30].
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The rule corresponding to the form factor f (2)Hγγ is:





ĥ
Â1

Â2



 = 2i f (2)Hγγ(k1, k2)
�

k1 · k2 kµ1
1 kµ2

2 − k2
1 kµ1

2 kµ2
2 − k2

2 kµ1
1 kµ2

1 + k2
1 k2

2 η
µ1,µ2

�

. (A.3)

For the operators corresponding to the ĥẐ γ̂ operators we have:




ĥ
Â1

Ẑ2



 = 2i f (1)HZγ(k1, k2)
�

kµ2
1 kµ1

2 − k1 · k2η
µ1µ2

�

. (A.4)

The Lorentz forms corresponding to f (2)Hγγ are split between f (2)HZγ and f (3)HZγ:





ĥ
Â1

Ẑ2



 = i f (2)HZγ(k1, k2)
�

k1 · k2 kµ1
1 kµ2

2 − k2
1 kµ1

2 kµ2
2

�

. (A.5)





ĥ
Â1

Ẑ2



 = i f (3)HZγ(k1, k2)
�

k2
2 kµ1

1 kµ2
1 − k2

1 k2
2 η

µ1,µ2
�

. (A.6)

The following tree level Feynman rules are need to generate the process H → ``γ from the
effective action:





¯̀

`

Â1



 = −i ēQ`γ
µ1 , (A.7)





¯̀

`

Ẑ1



 = i
ḡZ

2
γµ1

�

(1+ 2Q`s
2
Z)PL + 2Q`s

2
Z PR

�

≡ i
ḡZ

2
γµ1(gL PL + gRPR) . (A.8)

B Feynman rules in the SMEFT

This appendix follows the conventions set out in App. A. Note that there is implicit dependence
on the Wilson coefficients of the SMEFT in Eqs. A.7 and A.8 (i.e. in ē and ḡZ) which needs
to be considered in addition to the rules outlined below. Shifts in the coupling of the Higgs
boson to two fermions are given by:





H
¯̀

`



 = −i
m̂`
v
(1+∆H¯̀`) , (B.1)

∆H¯̀` = v2

�

c(6)H� −
1
4

c(6)HD −
v2

8
(c(8)HD + c(8)HD,2) +

3v2

32
(c(6)HD − 4c(6)H�)

2

�

−
3v3

2
p

2m̂`

�

c(6)eH +
v2

2
c(8)eH

�

. (B.2)

We note in the above, and what follows v is not rewritten in terms of the input parameter ĜF
and so the shift defined in Eq. 42 is implicit in these expressions. The direct coupling of the
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Higgs boson to Zγ and γγ is given by:




H
A1
A2



 = i gHAAv(kµ2
1 kµ1

2 − k1 · k2η
µ1µ2) , (B.3)





H
A1
Z2



 = −
i gHAZ v

2
(kµ2

1 kµ1
2 − k1 · k2η

µ1µ2) . (B.4)

Where we have defined:

gHAZ =
�

8(c(6)HB − c(6)HW )c̄W s̄W + 4c(6)HW B(c̄
2
W − s̄2

W )
�

(1+∆HAZ v2)

+v2
�

8(c(8)HB − c(8)HW − c(8)HW,2)c̄W s̄W + 4c(8)HW B(c̄
2
W − s̄2

W )
�

+
ē(2c(8),1BH4D2 c̄W − c(8),1W H4D2 s̄W )

8c̄W s̄W
v2 , (B.5)

∆HAZ = 2c(6)HB + 2c(6)HW + c(6)H� −
1
4

c(6)HD , (B.6)

gHAA = 4
�

c(6)HB c̄2
W + c(6)HW s̄2

W − s̄W c̄W c(6)HW B

�

+v2 c̄2
W

�

c(6)HB(8c(6)HB + 4c(6)H� − c(6)HD) + 2(c̄(6)HW B)
2
�

+v2s̄2
W

�

c(6)HW (8c(6)HW + 4c(6)H� − c(6)HD) + 2(c̄(6)HW B)
2
�

(B.7)

−v2 c̄W s̄W c(6)HW B

�

8c(6)HB + 4c(6)H� − c(6)HD + 8c(6)HW

�

+4v2
�

c(8)HB c̄2
W + (c

(8)
HW + c(8)HW,2)s̄

2
W − s̄W c̄W c(8)HW B

�

.

In addition to the implicit SMEFT shifts in Eq. A.8, the Z coupling to leptons is shifted by the
Class 7 operators:





¯̀

`

Ẑ1



 = i
ḡZ

2
γµ1

�

g ′L PL + g ′RPR

�

, (B.8)

g ′L = v2
�

c(6),1Hl + c(6),3Hl

�

(1+∆Z``) +
v4

2

�

c(8),1Hl + c(8),2Hl + c(8),3Hl

�

, (B.9)

g ′R = v2c(6)He (1+∆Z``) +
v4

2
c(8)He , (B.10)

∆Z`` =
v2

2

�

2c̄W g2c(6)HW + 2s̄W g1 c̄(6)HB + (g2s̄W + g1 c̄W )c
(6)
HW B

�

. (B.11)

The Z coupling is also shifted by the Class 11 operators:




¯̀

`1

Ẑ2



 = i
ḡZ

8
v2
�

A11(k1 · k2γ
µ2 + kµ2

1 /k2)PL + B11(k1 · k2γ
µ2 + kµ2

1 /k2)PR

�

, (B.12)

A11 = 2c(8),1l2H2D3 − 2c(8),2l2H2D3 + c(8),3l2H2D3 − c(8),4l2H2D3 , (B.13)

B11 = 2c(8),1e2H2D3 − 2c(8),2e2H2D3 . (B.14)

However, these terms make no contribution to our a calculations as they occur at dimension-
eight and no tree level coupling HAZ exists in the SM.
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For dipole operators we have the following rules:








¯̀

`

Â1

Ĥ2









= −icDPσ
µ1νpν3 , (B.15)





¯̀

`

Â1



 = −ic′DPvσµ1νpν1 , (B.16)





¯̀

`

Ẑ1



 = −ic′DP2vσµ1νpν1 , (B.17)

cDP = c′DP =
c̄W ceB,` − s̄W ceW,`

2
, (B.18)

c′DP2 =
s̄W ceB,` + c̄W ceW,`

2
. (B.19)

Finally, at dimension eight both Class 11 and Class 15 operators can generate the four-point
contact interaction:









¯̀

`

Â1

Ĥ2









= i Q` ēv
2 kµ1

2 /k2(A′11PL + B′11PR)

−iv
�

A15(k1 · k2γ
µ1 − kµ1

2 /k1)PL + B15(k1 · k2γ
µ1 − kµ1

2 /k1)PR

�

,

(B.20)

A′11 = 2c(8),1l2H2D3 + 2c(8),2l2H2D3 + c(8),3l2H2D3 + c(8),4l2H2D3 , (B.21)

B′11 = 2c(8),1e2H2D3 + 2c(8),2e2H2D3 , (B.22)

A15 = c̄W (c
(8),1
l2BH2D + c(8),5l2BH2D)− s̄W (c

(8),1
l2W H2D + c(8),5l2W H2D) , (B.23)

B15 = c̄W c(8),1e2BH2D − s̄W c(8),1e2W H2D . (B.24)

C Matching to the effective action

Here we reproduce the matching expressions in the small off-shell momenta limit. Discussions
in the main text generally use the full result where momenta are allowed to be arbitrarily off
shell as appropriate to the process. The Higgs boson is taken on shell, and the momenta of
photons, k2

i are taken to be small. We separate the bosonic (i.e. W±, φ±, inclusive of ghosts
u±) contribution from the top contribution. Further, we expand in an appropriate small ratio
of masses for comparison with [38, 39, 59] and to demonstrate the agreement between our
and their expressions.

We leave the gauge parameter arbitrary, and note that the term of order (k2
i )

0 terms are
gauge invariant, as they must be, as they correspond to physical processes. Certain short
hands are used for more complicated functions, such as the scalar Passarino-Veltman function
CS

0 , these can be found after the full set of expressions. For the bosonic (including ghosts)
contribution we find:

f ( j)i =
�

f ( j)i

�

�

�

B
+
�

f ( j)i

�

�

�

t
, (C.1)

f (1)Hγγ

�

�

�

B
= −

ē2m̄4
W

16π2m̄4
H v

�

m̄2
H(m̄

2
H + 6m̄2

W )
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−3m̄2
W (m̄

2
H − 2m̄2

W ) log
�

1+
m̄H(

q

m̄2
H − 4m̄2

W − m̄H)

2m̄2
W

�2
�

−
ē2m̄4

W

64π2m̄6
H v
(k2

1 + k2
2)

�

2(m̄4
H + 6m̄2

H m̄2
W )Disc[m̄2

H , m̄W , m̄W ]

+(m̄4
H − 6m̄2

H m̄2
W + 24m̄4

W ) log
�

1+
m̄H(

q

m̄2
H − 4m̄2

W − m̄H)

2m̄2
W

�2

−m̄2
H

 

48m̄2
W − ξ(m̄

2
H − 2m̄2

Wξ) log
�

1+
m̄H(

q

m̄2
H − 4m̄2

W − m̄H)

2m̄2
W

�2
!

+2m̄2
H

�

[m̄2
H + m̄2

W (ξ− 1)]CS
0 [0, 0, m̄2

H ,
p

ξm̄W , m̄W , m̄W ]
�

(C.2)

+(m̄2
W [ξ− 1]− m̄2

H)ξCS
0 [0, 0, m̄2

H ,
p

ξm̄W ,
p

ξm̄W , m̄W ]

�

+O(k4
i )

=
ē2

8π2v

�

−
7
4
−

11
30

a−
19
105

a2 −
58
525

a3 − · · ·
�

+O(k2
i ) , a ≡

m̄2
H

4m̄2
W

. (C.3)

In the case of the operator corresponding to f (2)Hγγ the gauge dependence does not vanish for
the leading term, this is because this term only contributes for off-shell photons. This can be
understood from Eq. A.3 where the first three terms are proportional to kµi

i which vanishes
when contracted with the on-shell polarization vector, while the ηµ1,µ2 term is preceded by k2

i
which vanishes for on-shell photons.

f (2)Hγγ

�

�

�

B
=

ē2

16π2m̄6
H v

�

−40m̄2
H(m̄

2
H + 6m̄2

W ) + m̄2
H

�

m̄2
W (ξ− 9)(ξ− 1)2

−2m̄2
H[ξ(ξ− 5)− 4]

�

log
�

1
ξ

�

+

�

2m̄4
H −

m̄6
H

m̄2
W

− 20m̄2
H m̄2

W − 48m̄4
W

�

log

 

1+
m̄H(

q

m̄2
H − 4m̄2

W − m̄H)

2m̄2
W

!

+
1

m̄2
W

�

m̄6
H(ξ− 1) + 2m̄4

H m̄2
W (ξ− 9)− 96m̄2

H m̄4
W

�

Disc[m̄2
H , m̄W , m̄W ]

+
m̄4

H

m̄2
W

(ξ− 1)
�

(m̄2
H − 2m̄2

Wξ)Disc[m̄2
H ,
p

ξm̄W ,
p

ξm̄W ]

−2(m̄2
H + (ξ− 1)m̄2

W )Disc[m̄2
H , m̄W ,

p

ξm̄W ]
�

+m̄4
H

�

2m̄2
W (ξ− 1)2 + m̄2

H(ξ+ 1)2
�

CS
0 [0,0m̄2

H , m̄W ,
p

ξm̄W , m̄W ]

+
4m̄2

H

m̄2
W

�

m̄6
H + 2m̄6

W (ξ− 1)3 − m̄4
H m̄2

W (ξ+ 1)

+m̄2
H m̄4

W (1+ (2− 3ξ)ξ)
�

CS
0 [0,0m̄2

H ,
p

ξm̄W , m̄W , m̄W ]

−
m̄4

H

m̄2
W

(2m̄2
H + m̄2

W (ξ− 1)2)(m̄2
H − 2m̄2

Wξ)C
S
0 [0,0, m̄2

H ,
p

ξm̄W , m̄W ,
p

ξm̄W ]

+4m̄2
H[m̄

2
H + 2m̄2

W (ξ− 1)][m̄2
W (ξ− 1)2

−m̄2
H(ξ+ 1)]CS

0 [0,0, m̄2
H ,
p

ξm̄W ,
p

ξm̄W , m̄W ]
�

+O(k2
i ) . (C.4)
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While for the top quark contributions we have:

f (1)Hγγ

�

�

�

t
=

Q2
u ē2Nc

4π2m̄4
H v



4m̄2
t m̄2

H − (m̄
2
H m̄2

t − 4m̄4
t ) log

 

2m̄2
t − m̄2

H +
q

m̄4
H − 4m̄2

H m̄2
t

2m̄2
t

!2

−
k2

1 + k2
2

m̄2
H

�

(m̄4
H − 16m̄2

H m̄2
t − 4m̄2

H m̄2
t Disc[m̄2

H , mt , mt]

+m̄2
t (m̄

2
H − 8m̄2

t ) log





2m̄2
t − m̄2

H +
q

m̄4
H − 4m̄2

H m̄2
t

2m̄2
t





2







+O(k4
i ) (C.5)

=
Q2

u ē2Nc

8π2v

�

1
3
+

7
90

a+ · · ·
�

+O(k2
i ) , a ≡

m̄2
H

4m̄2
t

, (C.6)

f (2)Hγγ

�

�

�

t
=

Q2
u ē2Nc

2π2m̄6
H v

�

20m̄2
H m̄2

t + 8m̄2
t m̄2

HDisc[m̄2
H , m̄t , m̄t]

+ m̄2
t (m̄

2
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t ) log

 

2m̄2
t − m̄2

H +
q

m̄4
H − 4m̄2

H m̄2
t

2m̄2
t

!2

(C.7)

+
k2

1 + k2
2

3m̄2
H

�

m̄4
H + 204m̄2

H m̄2
t + 84m̄2

t m̄2
HDisc[m̄2

H , m̄t , m̄t]

+12(m̄2
t m̄2

H + 3m̄4
t ) log




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t − m̄2

H +
q

m̄4
h − 4m̄2

H m̄2
t

2m̄2
t











 .

The form factors for the ĥẐ γ̂ couplings are again expanded in terms of small off-shell momenta,
in this case we take the gauge parameter ξ→ 1 and expand in small off-shell momenta. For
the Z we take k2

2 → m̄2
Z +µ

2, where µ2 represents the small perturbation from an on-shell Z:

N1 =−
2ē2 tW

16π2(m̄2
H − m̄2

Z)2(m̄
2
Z − m̄2

W )v
(C.8)

f (1)HZγ

�

�

�

B
=N1






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H − m̄2
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�
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W (m̄

2
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W )− (m̄
2
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W )m̄
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�

+m̄2
Z

�
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2
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2
H + 2m̄2

W )m̄
2
Z

�

Disc[m̄2
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W )m̄
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W (m̄
2
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Disc[m̄2
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+ m̄2
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�
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+O(k2
i ,µ2) , a ≡

m̄2
H

4m̄2
W

, b ≡
m̄2

Z

4m̄2
W

. (C.10)

In the above, the overall normalization was chosen to match that of [39].

N2 =
ē2

16π2(m̄H − m̄Z)3(m̄H + m̄Z)3
q

m̄2
W (m̄

2
Z − m̄2
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, (C.11)

f (2)HZγ
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N3 =
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, (C.13)

f (3)HZγ
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(C.14)

For the top quark contribution we have:

N4 =
ē ḡZ(g t

L + g t
R)m̄

2
t NcQu

32π2v(m̄2
H − m̄2

Z)2
, g t

L = (1− 2Qus2
z ) , g t

R = −2Qus2
Z , (C.15)
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a ≡
m̄2

H

4m̄2
t

, b ≡
m̄2

Z

4m̄2
t

. (C.17)

Below are the special functions used in the above expressions. Not all CS
0 functions are

listed as the expressions become complicated and depend on the relation between b and c
which is generally a function of the gauge parameter ξ. The unlisted CS

0 functions can be
obtained from Package-X [49].
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log

�
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p
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, (C.18)

λ[a2, b2, c2] = a4 + b4 + c4 − 2a2 b2 − 2a2c2 − 2b2c2 , (C.19)
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(C.20)
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= CS
0 [0,0, a2, c, c, b] , (C.21)

D Full Parameterized partial widths

D.1 Full α–scheme results

∆R1
α =+0.12c̃(6)H� − 0.03c̃(6)HD − 0.015c̃(8)HD − 0.015c̃(8)HD,2 + 0.24[c̃(6)H�]

2 − 0.12c̃(6)H� c̃(6)HD + 0.015[c̃(6)HD]
2

−0.13
v̂

m̄µ

c̃(6)eH + 0.068
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.064

v̂
m̄µ

c̃(8)eH − 0.13
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.032
v̂

m̄µ

c̃(6)eH c̃(6)HD (D.1)

+0.00099c̃(6)H�
δGF

ĜF

− 0.00025c̃(6)HD
δGF

ĜF

− 0.0016
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 2.4 · 10−9δGF

ĜF

+104
�

+7.4[c̃(6)HB]
2 + 2.6c̃(6)HB c̃(6)HW + 1.3[c̃(6)HW ]

2 − 6.4c̃(6)HB c̃(6)HW B − 3.1c̃(6)HW c̃(6)HW B + 2.3[c̃(6)HW B]
2
�

+1011
�

+3.3[c̃(6)eB ]
2 − 3.6c̃(6)eB c̃(6)eW + 0.98[c̃(6)eW ]

2
�

−350.
�

c̃(6)HB + c̃(8)HB

�

− 100.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 190.
�

c̃(6)HW B + c̃(8)HW B

�

−700.
�

c̃(6)HB

�2
− 200.

�

c̃(6)HW

�2
+ 19.

�

c̃(6)HW B

�2
+ 750.c̃(6)HB c̃(6)HW B + 1.9c̃(6)HW c̃(6)HW B

−350.c̃(6)HB c̃(6)H� + 170.c̃(6)HB c̃(6)HD − 100.c̃(6)HW c̃(6)H� − 54.c̃(6)HW c̃(6)HD + 190.c̃(6)HW B c̃(6)H� + 4.5c̃(6)HW B c̃(6)HD
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−6.9c̃(6)HB c̃(6)He − 9.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 6.9c̃(6)HW c̃(6)He + 9.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 4.4c̃(6)HW B c̃(6)He

−5.7c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+0.000021c̃(6)HB
δGF

ĜF

− 0.000021c̃(6)HW
δGF

ĜF

+ 0.000014c̃(6)HW B
δGF

ĜF

−0.079c̃(8),1BH4 D2 + 0.022c̃(8),1W H4 D2

−1.6c̃(8),1e2BH2 D − 0.3
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 0.87c̃(8),1e2W H2 D − 0.17
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.031
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.016
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 0.094
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆R2
α =+0.056c̃(6)H� − 0.014c̃(6)HD − 0.007c̃(8)HD − 0.007c̃(8)HD,2 + 0.11[c̃(6)H�]

2 − 0.056c̃(6)H� c̃(6)HD + 0.007[c̃(6)HD]
2

−0.06
v̂

m̄µ

c̃(6)eH + 0.032
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.03

v̂
m̄µ

c̃(8)eH − 0.06
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.015
v̂

m̄µ

c̃(6)eH c̃(6)HD (D.2)

+0.00046c̃(6)H�
δGF

ĜF

− 0.00011c̃(6)HD
δGF

ĜF

− 0.00073
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 1.1 · 10−9δGF

ĜF

+104
�

+14.[c̃(6)HB]
2 + 8.6c̃(6)HB c̃(6)HW + 1.3[c̃(6)HW ]

2 − 16.c̃(6)HB c̃(6)HW B − 4.7c̃(6)HW c̃(6)HW B + 4.3[c̃(6)HW B]
2
�

+1011
�

+3.3[c̃(6)eB ]
2 − 3.6c̃(6)eB c̃(6)eW + 0.98[c̃(6)eW ]

2
�

−740.
�

c̃(6)HB + c̃(8)HB

�

− 220.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 410.
�

c̃(6)HW B + c̃(8)HW B

�

−1500.
�

c̃(6)HB

�2
− 450.

�

c̃(6)HW

�2
+ 30.

�

c̃(6)HW B

�2
+ 1600.c̃(6)HB c̃(6)HW B + 7.c̃(6)HW c̃(6)HW B

−740.c̃(6)HB c̃(6)H� + 360.c̃(6)HB c̃(6)HD − 220.c̃(6)HW c̃(6)H� − 110.c̃(6)HW c̃(6)HD + 410.c̃(6)HW B c̃(6)H� + 6.1c̃(6)HW B c̃(6)HD

−18.c̃(6)HB c̃(6)He − 14.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 18.c̃(6)HW c̃(6)He + 14.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 12.c̃(6)HW B c̃(6)He

−8.9c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+0.000046c̃(6)HB
δGF

ĜF

− 0.000046c̃(6)HW
δGF

ĜF

+ 0.000029c̃(6)HW B
δGF

ĜF

+0.05c̃(8),1BH4 D2 − 0.014c̃(8),1W H4 D2

−3.2c̃(8),1e2BH2 D − 0.58
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 1.7c̃(8),1e2W H2 D − 2.4
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.44
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.22
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 1.3
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆R3
α =+0.058c̃(6)H� − 0.014c̃(6)HD − 0.0072c̃(8)HD − 0.0072c̃(8)HD,2 + 0.12[c̃(6)H�]

2 − 0.058c̃(6)H� c̃(6)HD + 0.0072[c̃(6)HD]
2

−0.061
v̂

m̄µ

c̃(6)eH + 0.032
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.031

v̂
m̄µ

c̃(8)eH − 0.061
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.015
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.00047c̃(6)H�
δGF

ĜF

− 0.00012c̃(6)HD
δGF

ĜF

− 0.00074
v̂

m̄µ

c̃(6)eH
δGF

ĜF

− 9+ 1.1 · 10−9δGF

ĜF

+104
�

+1.5[c̃(6)HB]
2 − 2.7c̃(6)HB c̃(6)HW + 1.4[c̃(6)HW ]

2 + 1.6c̃(6)HB c̃(6)HW B − 1.8c̃(6)HW c̃(6)HW B + 0.6[c̃(6)HW B]
2
�

+1011
�

+1.4[c̃(6)eB ]
2 − 1.5c̃(6)eB c̃(6)eW + 0.41[c̃(6)eW ]

2
�
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−17.
�

c̃(6)HB + c̃(8)HB

�

+ 9.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

− 3.7
�

c̃(6)HW B + c̃(8)HW B

�

−33.
�

c̃(6)HB

�2
+ 18.

�

c̃(6)HW

�2
+ 33.

�

c̃(6)HW B

�2
+ 5.7c̃(6)HB c̃(6)HW B − 20.c̃(6)HW c̃(6)HW B

−17.c̃(6)HB c̃(6)H� + 9.6c̃(6)HB c̃(6)HD + 9.c̃(6)HW c̃(6)H� − 7.7c̃(6)HW c̃(6)HD − 3.7c̃(6)HW B c̃(6)H� + 10.c̃(6)HW B c̃(6)HD

+3.9c̃(6)HB c̃(6)He − 17.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

− 3.9c̃(6)HW c̃(6)He + 17.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 2.5c̃(6)HW B c̃(6)He

−11.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+1.5 · 10−6 c̃(6)HB
δGF

ĜF

− 1.5 · 10−6 c̃(6)HW
δGF

ĜF

+ 2.5 · 10−6 c̃(6)HW B
δGF

ĜF

−0.52c̃(8),1BH4 D2 + 0.14c̃(8),1W H4 D2

−1.2c̃(8),1e2BH2 D − 0.23
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 0.64c̃(8),1e2W H2 D + 0.59
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+0.11
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.057
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 0.32
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

, (D.3)

∆R4
α =+1.8c̃(6)H� − 0.44c̃(6)HD − 0.22c̃(8)HD − 0.22c̃(8)HD,2 + 3.6[c̃(6)H�]

2 − 1.8c̃(6)H� c̃(6)HD + 0.22[c̃(6)HD]
2 (D.4)

−1.9
v̂

m̄µ

c̃(6)eH + 1.
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.94

v̂
m̄µ

c̃(8)eH − 1.9
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.47
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.014c̃(6)H�
δGF

ĜF

− 0.0036c̃(6)HD
δGF

ĜF

− 0.023
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 3.5 · 10−8δGF

ĜF

+103
�

+2.2[c̃(6)HB]
2 − 2.6c̃(6)HB c̃(6)HW + 1.7[c̃(6)HW ]

2 + 1.2c̃(6)HB c̃(6)HW B − 2.4c̃(6)HW c̃(6)HW B + 0.93[c̃(6)HW B]
2
�

+1011
�

+1.3[c̃(6)eB ]
2 − 1.4c̃(6)eB c̃(6)eW + 0.39[c̃(6)eW ]

2
�

+20.
�

c̃(6)HB + c̃(8)HB

�

− 27.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 19.
�

c̃(6)HW B + c̃(8)HW B

�

+40.
�

c̃(6)HB

�2
− 54.

�

c̃(6)HW

�2
− 61.

�

c̃(6)HW B

�2
+ 51.c̃(6)HB c̃(6)HW B + 25.c̃(6)HW c̃(6)HW B

+20.c̃(6)HB c̃(6)H� − 8.7c̃(6)HB c̃(6)HD − 27.c̃(6)HW c̃(6)H� + 10.c̃(6)HW c̃(6)HD + 19.c̃(6)HW B c̃(6)H� − 21.c̃(6)HW B c̃(6)HD

−18.c̃(6)HB c̃(6)He + 32.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 18.c̃(6)HW c̃(6)He − 32.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 11.c̃(6)HW B c̃(6)He

+20.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

−9.7 · 10−7 c̃(6)HB
δGF

ĜF

+ 9.7 · 10−7 c̃(6)HW
δGF

ĜF

− 4.4 · 10−7 c̃(6)HW B
δGF

ĜF

+1.2c̃(8),1BH4 D2 − 0.33c̃(8),1W H4 D2

+0.99c̃(8),1e2BH2 D + 0.21
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

− 0.54c̃(8),1e2W H2 D − 1.8
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.4
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.2
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 1.
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆R5
α =+0.93c̃(6)H� − 0.23c̃(6)HD − 0.12c̃(8)HD − 0.12c̃(8)HD,2 + 1.9[c̃(6)H�]

2 − 0.93c̃(6)H� c̃(6)HD + 0.12[c̃(6)HD]
2 (D.5)

−0.99
v̂

m̂µ

c̃(6)eH + 0.52
v̂2

m̂2
µ

[c̃(6)eH ]
2 − 0.49

v̂
m̂µ

c̃(8)eH − 0.99
v̂

m̂µ

c̃(6)eH c̃(6)H� + 0.25
v̂

m̂µ

c̃(6)eH c̃(6)HD

+0.0076c̃(6)H�
δGF

ĜF

− 0.0019c̃(6)HD
δGF

ĜF

− 0.012
v̂

m̂µ

c̃(6)eH
δGF

ĜF

+ 1.9 · 10−8δGF

ĜF
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+103
�

+7.4[c̃(6)HB]
2 − 17.c̃(6)HB c̃(6)HW + 6.9[c̃(6)HW ]

2 + 11.c̃(6)HB c̃(6)HW B − 8.c̃(6)HW c̃(6)HW B + 2.1[c̃(6)HW B]
2
�

+1011
�

+7.7[c̃(6)eB ]
2 − 8.5c̃(6)eB c̃(6)eW + 2.3[c̃(6)eW ]

2
�

+150.
�

c̃(6)HB + c̃(8)HB

�

− 120.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 68.
�

c̃(6)HW B + c̃(8)HW B

�

+300.
�

c̃(6)HB

�2
− 240.

�

c̃(6)HW

�2
− 160.

�

c̃(6)HW B

�2
+ 380.c̃(6)HB c̃(6)HW B − 110.c̃(6)HW c̃(6)HW B

+150.c̃(6)HB c̃(6)H� − 18.c̃(6)HB c̃(6)HD − 120.c̃(6)HW c̃(6)H� + 10.c̃(6)HW c̃(6)HD + 68.c̃(6)HW B c̃(6)H� − 74.c̃(6)HW B c̃(6)HD

−170.c̃(6)HB c̃(6)He + 92.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 170.c̃(6)HW c̃(6)He − 92.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 110.c̃(6)HW B c̃(6)He

+59.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+5.2 · 10−6 c̃(6)HB
δGF

ĜF

− 5.2 · 10−6 c̃(6)HW
δGF

ĜF

− 0.000015c̃(6)HW B
δGF

ĜF

+6.1c̃(8),1BH4 D2 − 1.7c̃(8),1W H4 D2

−9.6c̃(8),1e2BH2 D − 1.7
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 5.3c̃(8),1e2W H2 D + 6.4
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+1.1
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.56
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 3.5
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆R6
α =+0.82c̃(6)H� − 0.2c̃(6)HD − 0.1c̃(8)HD − 0.1c̃(8)HD,2 + 1.6[c̃(6)H�]

2 − 0.82c̃(6)H� c̃(6)HD + 0.1[c̃(6)HD]
2 (D.6)

−0.87
v̂

m̂µ

c̃(6)eH + 0.46
v̂2

m̂2
µ

[c̃(6)eH ]
2 − 0.43

v̂
m̂µ

c̃(8)eH − 0.87
v̂

m̂µ

c̃(6)eH c̃(6)H� + 0.22
v̂

m̂µ

c̃(6)eH c̃(6)HD

+0.0066c̃(6)H�
δGF

ĜF

− 0.0017c̃(6)HD
δGF

ĜF

− 0.011
v̂

m̂µ

c̃(6)eH
δGF

ĜF

− 8+ 1.6 ∗ 10
δGF

ĜF

+104
�

+3.8[c̃(6)HB]
2 + 0.66c̃(6)HB c̃(6)HW + 0.78[c̃(6)HW ]

2 − 2.7c̃(6)HB c̃(6)HW B − 1.6c̃(6)HW c̃(6)HW B + 1.1[c̃(6)HW B]
2
�

+1012
�

+1.4[c̃(6)eB ]
2 − 1.6c̃(6)eB c̃(6)eW + 0.43[c̃(6)eW ]

2
�

−50.
�

c̃(6)HB + c̃(8)HB

�

− 130.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 140.
�

c̃(6)HW B + c̃(8)HW B

�

−100.
�

c̃(6)HB

�2
− 270.

�

c̃(6)HW

�2
− 82.

�

c̃(6)HW B

�2
+ 660.c̃(6)HB c̃(6)HW B − 120.c̃(6)HW c̃(6)HW B

−50.c̃(6)HB c̃(6)H� + 72.c̃(6)HB c̃(6)HD − 130.c̃(6)HW c̃(6)H� − 26.c̃(6)HW c̃(6)HD + 140.c̃(6)HW B c̃(6)H� − 47.c̃(6)HW B c̃(6)HD

−140.c̃(6)HB c̃(6)He + 51.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 140.c̃(6)HW c̃(6)He − 51.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 88.c̃(6)HW B c̃(6)He

+33.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+0.000016c̃(6)HB
δGF

ĜF

− 0.000016c̃(6)HW
δGF

ĜF

− 3.4 · 10−6 c̃(6)HW B
δGF

ĜF

+4.4c̃(8),1BH4 D2 − 1.2c̃(8),1W H4 D2

−10.c̃(8),1e2BH2 D − 1.8
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 5.6c̃(8),1e2W H2 D + 2.8
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+0.48
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.24
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 1.5
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

.
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D.2 MW scheme results

The parameterized partial widths in the MW input parameter scheme for each region defined in
the main text are given below. When solving for s̄W in terms of the input parameters we obtain

terms proportional to
Ç

[c(6)HW B]2 = |c
(6)
HW B|. This is not mentioned explicitly in the Appendix

of [13] where equations useful for solving barred quantities for input parameters are found.
The authors of [13] have found a work around, but this was not apparent to the authors of this
article. Note that in the M̂W scheme Case 5 has corrections from the Class 4 operators which
shift the definition of the α, in the α̂ scheme this is not the case as α is an input parameter.

∆
R1
MW
=0.12c̃(6)H� − 0.031c̃(6)HD − 0.015c̃(8)HD − 0.015c̃(8)HD,2 + 0.25[c̃(6)H�]

2 − 0.33c̃(6)H� c̃(6)HD + 0.066[c̃(6)HD]
2 (D.7)

−0.13
v̂

m̄µ

c̃(6)eH + 0.07
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.066

v̂
m̄µ

c̃(8)eH − 0.13
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.25
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.001c̃(6)H�
δGF

ĜF

− 0.00025c̃(6)HD
δGF

ĜF

− 0.0016
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 2.5 · 10−9δGF

ĜF

−0.22c̃(6)H�|c̃
(6)
HW B|+ 0.054c̃(6)HD|c̃

(6)
HW B|+ 0.23

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

−0.68c̃(6)H�|c̃
(6)
HW B|+ 0.17c̃(6)HD|c̃

(6)
HW B|+ 0.72

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

+104
�

+7.7[c̃(6)HB]
2 + 2.5c̃(6)HB c̃(6)HW + 1.3[c̃(6)HW ]

2 − 6.5c̃(6)HB c̃(6)HW B − 3.1c̃(6)HW c̃(6)HW B + 2.3[c̃(6)HW B]
2
�

+1011
�

+3.4[c̃(6)eB ]
2 − 3.7c̃(6)eB c̃(6)eW + 0.99[c̃(6)eW ]

2
�

−350.
�

c̃(6)HB + c̃(8)HB

�

− 97.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 180.
�

c̃(6)HW B + c̃(8)HW B

�

−690.
�

c̃(6)HB

�2
− 190.

�

c̃(6)HW

�2
− 370.

�

c̃(6)HW B

�2
+ 650.c̃(6)HB c̃(6)HW B + 450.c̃(6)HW c̃(6)HW B

−350.c̃(6)HB c̃(6)H� + 170.c̃(6)HB c̃(6)HD − 97.c̃(6)HW c̃(6)H� + 280.c̃(6)HW c̃(6)HD + 180.c̃(6)HW B c̃(6)H� − 310.c̃(6)HW B c̃(6)HD

−6.8c̃(6)HB c̃(6)He − 9.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 6.8c̃(6)HW c̃(6)He + 9.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 4.5c̃(6)HW B c̃(6)He

−6.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+0.00002c̃(6)HB
δGF

ĜF

+ 5.7 · 10−6 c̃(6)HW
δGF

ĜF

− 0.000011c̃(6)HW B
δGF

ĜF

−0.095c̃(8),1BH4 D2 + 0.026c̃(8),1W H4 D2

−1.6c̃(8),1e2BH2 D − 0.3
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 0.86c̃(8),1e2W H2 D − 0.13
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.022
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.011
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 0.067
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆
R2
MW
=0.06c̃(6)H� − 0.015c̃(6)HD − 0.0075c̃(8)HD − 0.0075c̃(8)HD,2 + 0.12[c̃(6)H�]

2 − 0.16c̃(6)H� c̃(6)HD + 0.033[c̃(6)HD]
2 (D.8)

−0.063
v̂

m̄µ

c̃(6)eH + 0.034
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.032

v̂
m̄µ

c̃(8)eH − 0.063
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.12
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.00049c̃(6)H�
δGF

ĜF

− 0.00012c̃(6)HD
δGF

ĜF

− 0.00077
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 1.2 · 10−9δGF

ĜF

−0.11c̃(6)H�|c̃
(6)
HW B|+ 0.027c̃(6)HD|c̃

(6)
HW B|+ 0.12

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

+105
�

+1.6[c̃(6)HB]
2 + 0.89c̃(6)HB c̃(6)HW + 0.13[c̃(6)HW ]

2 − 1.7c̃(6)HB c̃(6)HW B − 0.48c̃(6)HW c̃(6)HW B + 0.44[c̃(6)HW B]
2
�
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+1012
�

+1.[c̃(6)eB ]
2 − 1.1c̃(6)eB c̃(6)eW + 0.29[c̃(6)eW ]

2
�

−770.
�

c̃(6)HB + c̃(8)HB

�

− 220.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 410.
�

c̃(6)HW B + c̃(8)HW B

�

−1500.
�

c̃(6)HB

�2
− 440.

�

c̃(6)HW

�2
− 860.

�

c̃(6)HW B

�2
+ 1500.c̃(6)HB c̃(6)HW B + 1000.c̃(6)HW c̃(6)HW B

−770.c̃(6)HB c̃(6)H� + 410.c̃(6)HB c̃(6)HD − 220.c̃(6)HW c̃(6)H� + 650.c̃(6)HW c̃(6)HD + 410.c̃(6)HW B c̃(6)H� − 720.c̃(6)HW B c̃(6)HD

−19.c̃(6)HB c̃(6)He − 14.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 19.c̃(6)HW c̃(6)He + 14.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 13.c̃(6)HW B c̃(6)He

−9.5c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+0.000049c̃(6)HB
δGF

ĜF

+ 0.000014c̃(6)HW
δGF

ĜF

− 0.000026c̃(6)HW B
δGF

ĜF

+0.03c̃(8),1BH4 D2 − 0.0081c̃(8),1W H4 D2

−3.4c̃(8),1e2BH2 D − 0.6
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 1.8c̃(8),1e2W H2 D − 2.5
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.45
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.22
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 1.4
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆
R3
MW
=+0.057c̃(6)H� − 0.014c̃(6)HD − 0.0071c̃(8)HD − 0.0071c̃(8)HD,2 + 0.11[c̃(6)H�]

2 − 0.15c̃(6)H� c̃(6)HD + 0.031[c̃(6)HD]
2

−0.06
v̂

m̄µ

c̃(6)eH + 0.032
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.03

v̂
m̄µ

c̃(8)eH − 0.06
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.12
v̂

m̄µ

c̃(6)eH c̃(6)HD (D.9)

+0.00046c̃(6)H�
δGF

ĜF

− 0.00011c̃(6)HD
δGF

ĜF

− 0.00073
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 1.1 · 10−9δGF

ĜF

−0.1c̃(6)H�|c̃
(6)
HW B|+ 0.026c̃(6)HD|c̃

(6)
HW B|+ 0.11

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

−0.11c̃(6)H�|c̃
(6)
HW B|+ 0.027c̃(6)HD|c̃

(6)
HW B|+ 0.12

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

+104
�

+1.5[c̃(6)HB]
2 − 2.6c̃(6)HB c̃(6)HW + 1.4[c̃(6)HW ]

2 + 1.6c̃(6)HB c̃(6)HW B − 1.8c̃(6)HW c̃(6)HW B + 0.63[c̃(6)HW B]
2
�

+1011
�

+1.4[c̃(6)eB ]
2 − 1.5c̃(6)eB c̃(6)eW + 0.4[c̃(6)eW ]

2
�

−16.
�

c̃(6)HB + c̃(8)HB

�

+ 9.5
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

− 4.6
�

c̃(6)HW B + c̃(8)HW B

�

−32.
�

c̃(6)HB

�2
+ 19.

�

c̃(6)HW

�2
− 4.8

�

c̃(6)HW B

�2
− 3.9c̃(6)HB c̃(6)HW B − 8.9c̃(6)HW c̃(6)HW B

−16.c̃(6)HB c̃(6)H� + 4.5c̃(6)HB c̃(6)HD + 9.5c̃(6)HW c̃(6)H� + 2.3c̃(6)HW c̃(6)HD − 4.6c̃(6)HW B c̃(6)H� − 18.c̃(6)HW B c̃(6)HD

+3.7c̃(6)HB c̃(6)He − 17.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

− 3.7c̃(6)HW c̃(6)He + 17.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 2.5c̃(6)HW B c̃(6)He

−11.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+1. · 10−6 c̃(6)HB
δGF

ĜF

− 6. · 10−7 c̃(6)HW
δGF

ĜF

+ 2.9 · 10−7 c̃(6)HW B
δGF

ĜF

−0.53c̃(8),1BH4 D2 + 0.14c̃(8),1W H4 D2

−1.1c̃(8),1e2BH2 D − 0.22
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 0.61c̃(8),1e2W H2 D + 0.63
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+0.12
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.06
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 0.34
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆
R4
MW
=+1.8c̃(6)H� − 0.44c̃(6)HD − 0.22c̃(8)HD − 0.22c̃(8)HD,2 + 3.5[c̃(6)H�]

2 − 2.1c̃(6)H� c̃(6)HD + 0.31[c̃(6)HD]
2 (D.10)
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−1.9
v̂

m̄µ

c̃(6)eH + 1.
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.94

v̂
m̄µ

c̃(8)eH − 1.9
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.84
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.014c̃(6)H�
δGF

ĜF

− 0.0036c̃(6)HD
δGF

ĜF

− 0.023
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 3.5 · 10−8δGF

ĜF

−0.38c̃(6)H�|c̃
(6)
HW B|+ 0.094c̃(6)HD|c̃

(6)
HW B|+ 0.4

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

+103
�

+2.1[c̃(6)HB]
2 − 2.5c̃(6)HB c̃(6)HW + 1.7[c̃(6)HW ]

2 + 1.2c̃(6)HB c̃(6)HW B − 2.5c̃(6)HW c̃(6)HW B + 1.[c̃(6)HW B]
2
�

+1011
�

+1.3[c̃(6)eB ]
2 − 1.4c̃(6)eB c̃(6)eW + 0.39[c̃(6)eW ]

2
�

+20.
�

c̃(6)HB + c̃(8)HB

�

− 27.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 20.
�

c̃(6)HW B + c̃(8)HW B

�

+40.
�

c̃(6)HB

�2
− 55.

�

c̃(6)HW

�2
+ 26.

�

c̃(6)HW B

�2
+ 77.c̃(6)HB c̃(6)HW B − 1.6c̃(6)HW c̃(6)HW B

+20.c̃(6)HB c̃(6)H� + 18.c̃(6)HB c̃(6)HD − 27.c̃(6)HW c̃(6)H� − 21.c̃(6)HW c̃(6)HD + 20.c̃(6)HW B c̃(6)H� + 49.c̃(6)HW B c̃(6)HD

−17.c̃(6)HB c̃(6)He + 33.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 17.c̃(6)HW c̃(6)He − 33.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 11.c̃(6)HW B c̃(6)He

+22.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+1. · 10−6 c̃(6)HB
δGF

ĜF

− 1.4 · 10−6 c̃(6)HW
δGF

ĜF

+ 1. · 10−6 c̃(6)HW B
δGF

ĜF

+1.3c̃(8),1BH4 D2 − 0.34c̃(8),1W H4 D2

+0.98c̃(8),1e2BH2 D + 0.21
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

− 0.52c̃(8),1e2W H2 D − 1.9
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

−0.41
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

− 0.2
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

+ 1.
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆
R5
MW
= 0.36c̃(6)H� − 0.091c̃(6)HD − 0.045c̃(8)HD − 0.045c̃(8)HD,2 + 0.73[c̃(6)H�]

2 − 0.88c̃(6)H� c̃(6)HD + 0.17[c̃(6)HD]
2 (D.11)

−0.39
v̂

m̄µ

c̃(6)eH + 0.2
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.19

v̂
m̄µ

c̃(8)eH − 0.39
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.65
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.0029c̃(6)H�
δGF

ĜF

− 0.00074c̃(6)HD
δGF

ĜF

− 0.0047
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 7.2 · 10−9δGF

ĜF

−0.55c̃(6)H�|c̃
(6)
HW B|+ 0.14c̃(6)HD|c̃

(6)
HW B|+ 0.59

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

+104
�

+1.[c̃(6)HB]
2 − 2.9c̃(6)HB c̃(6)HW + 1.[c̃(6)HW ]

2 + 2.1c̃(6)HB c̃(6)HW B − 1.2c̃(6)HW c̃(6)HW B + 0.27[c̃(6)HW B]
2
�

+1012
�

+1.4[c̃(6)eB ]
2 − 1.5c̃(6)eB c̃(6)eW + 0.4[c̃(6)eW ]

2
�

+260.
�

c̃(6)HB + c̃(8)HB

�

− 180.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 100.
�

c̃(6)HW B + c̃(8)HW B

�

+510.
�

c̃(6)HB

�2
− 360.

�

c̃(6)HW

�2
+ 110.

�

c̃(6)HW B

�2
+ 250.c̃(6)HB c̃(6)HW B + 110.c̃(6)HW c̃(6)HW B

+260.c̃(6)HB c̃(6)H� − 250.c̃(6)HB c̃(6)HD − 180.c̃(6)HW c̃(6)H� + 190.c̃(6)HW c̃(6)HD + 100.c̃(6)HW B c̃(6)H� + 150.c̃(6)HW B c̃(6)HD

−250.c̃(6)HB c̃(6)He + 150.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 250.c̃(6)HW c̃(6)He − 150.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 170.c̃(6)HW B c̃(6)He

+100.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

−0.000011c̃(6)HB
δGF

ĜF

+ 7.8 · 10−6 c̃(6)HW
δGF

ĜF

− 4.3 · 10−6 c̃(6)HW B
δGF

ĜF
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+9.7c̃(8),1BH4 D2 − 2.6c̃(8),1W H4 D2

−15.c̃(8),1e2BH2 D − 2.9
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 7.9c̃(8),1e2W H2 D + 11.
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+2.1
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 1.
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 5.8
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

,

∆
R6
MW
=+0.33c̃(6)H� − 0.082c̃(6)HD − 0.041c̃(8)HD − 0.041c̃(8)HD,2 + 0.65[c̃(6)H�]

2 − 0.8c̃(6)H� c̃(6)HD + 0.16[c̃(6)HD]
2 (D.12)

−0.35
v̂

m̄µ

c̃(6)eH + 0.18
v̂2

m̄2
µ

[c̃(6)eH ]
2 − 0.17

v̂
m̄µ

c̃(8)eH − 0.35
v̂

m̄µ

c̃(6)eH c̃(6)H� + 0.59
v̂

m̄µ

c̃(6)eH c̃(6)HD

+0.0026c̃(6)H�
δGF

ĜF

− 0.00066c̃(6)HD
δGF

ĜF

− 0.0042
v̂

m̄µ

c̃(6)eH
δGF

ĜF

+ 6.5 · 10−9δGF

ĜF

−0.51c̃(6)H�|c̃
(6)
HW B|+ 0.13c̃(6)HD|c̃

(6)
HW B|+ 0.54

v̂
m̄µ

c̃(6)eH |c̃
(6)
HW B|

+104
�

+5.8[c̃(6)HB]
2 + 0.9c̃(6)HB c̃(6)HW + 1.1[c̃(6)HW ]

2 − 4.c̃(6)HB c̃(6)HW B − 2.3c̃(6)HW c̃(6)HW B + 1.6[c̃(6)HW B]
2
�

+1012
�

+2.4[c̃(6)eB ]
2 − 2.5c̃(6)eB c̃(6)eW + 0.68[c̃(6)eW ]

2
�

−69.
�

c̃(6)HB + c̃(8)HB

�

− 190.
�

c̃(6)HW + c̃(8)HW + c̃(8)HW,2

�

+ 190.
�

c̃(6)HW B + c̃(8)HW B

�

−140.
�

c̃(6)HB

�2
− 380.

�

c̃(6)HW

�2
− 160.

�

c̃(6)HW B

�2
+ 570.c̃(6)HB c̃(6)HW B + 370.c̃(6)HW c̃(6)HW B

−69.c̃(6)HB c̃(6)H� − 130.c̃(6)HB c̃(6)HD − 190.c̃(6)HW c̃(6)H� + 350.c̃(6)HW c̃(6)HD + 190.c̃(6)HW B c̃(6)H� − 110.c̃(6)HW B c̃(6)HD

−200.c̃(6)HB c̃(6)He + 80.c̃(6)HB

�

c̃(6),1Hl + c̃(6),3Hl

�

+ 200.c̃(6)HW c̃(6)He − 80.c̃(6)HW

�

c̃(6),1Hl + c̃(6),3Hl

�

− 130.c̃(6)HW B c̃(6)He

+53.c̃(6)HW B

�

c̃(6),1Hl + c̃(6),3Hl

�

+3.1 · 10−6 c̃(6)HB
δGF

ĜF

+ 8.5 · 10−6 c̃(6)HW
δGF

ĜF

− 8.8 · 10−6 c̃(6)HW B
δGF

ĜF

+6.4c̃(8),1BH4 D2 − 1.7c̃(8),1W H4 D2

−15.c̃(8),1e2BH2 D − 2.8
�

c̃(8),1e2H2 D3 + c̃(8),2e2H2 D3

�

+ 8.c̃(8),1e2W H2 D + 4.5
�

c̃(8),1L2BH2 D + c̃(8),5L2BH2 D

�

+0.87
�

c̃(8),1l2H2 D3 + c̃(8),2l2H2 D3

�

+ 0.43
�

c̃(8),3l2H2 D3 + c̃(8),4l2H2 D3

�

− 2.4
�

c̃(8),1l2W H2 D + c̃(8),5l2H2 D3

�

.

E Discussion on the tree-loop interference in the SM

Comparing the size of the tree level contributions discussed in Sec 3.1 and the loop contribu-
tions of Sec 3.2 one may be concerned, particularly in the case of the tau, that the tree-loop
interference could be large or even dominant.

To achieve a more precise understanding of the size of this contribution we have esti-
mated it by considering the interference between the one-loop triangle diagrams contributing
to h → γγ and h → Zγ, i.e. those of Figure 1 or equivalently Figure 3a, and the tree level
diagrams. This is convenient as we are able to obtain the full m` dependence of this interfer-
ence as the loops contain no m` dependence. It comes with the caveat that these diagrams
are not gauge-invariant on their own. We have performed the calculation in the Feynman
Gauge, ξ → 1, where we have tested that the triangle diagrams make a larger contribution
than the box diagrams (this is also noted in e.g. [5]). Table 5 shows the size of the contribution
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Figure 8: Dalitz plot showing the interference between the one-loop and tree-level
SM amplitudes for the case m` = mτ.

from diagrams with only top and EW contributions, only diagrams containing internal lepton
lines, and the full contribution for the squared-loop contribution to the partial width of the
Higgs boson to two taus and a photon. The reason for this simplification is that evaluation of
the Passarino Veltman functions corresponding to diagrams with internal fermions and their
corresponding mass dependence is well beyond the scope of this work.

Figure 8 shows the Dalitz plot for the tree-loop interference described above for m` = mτ.
We note the distinct lines where the amplitude squared drops off, as with the diagrams of
Figure 6, these lines correspond to changes in overall sign. They roughly correspond to the
following two lines,

s2 = m̄2
Z , (E.1)

s2 = m̄2
H − 2s1 . (E.2)

Note that above, s2 = m̄2
Z actually corresponds to two lines close together just below the Z-

threshold. We define four regions of integration as follows:

R1 = {s2 < M̄2
Z & s2 < m̄2

H − 2s1} ,

R2 = {s2 < M̄2
Z & s2 > m̄2

H − 2s1} ,

R3 = {s2 > M̄2
Z & s2 < m̄2

H − 2s1} ,

R4 = {s2 > M̄2
Z & s2 > m̄2

H − 2s1} .

(E.3)

Table 5: Comparison between the purely top+electroweak contributions, strictly di-
agrams with internal leptonic lines, and the full calculation of the one-loop squared
contribution to H → ττγ. Errors are approximately per mil.

ξ= 1 ξ= 2 ξ= 3
top+EW: 2.84 · 10−7 2.83 · 10−7 2.83 · 10−7

leptonic internal lines: 6.08 · 10−10 2.17 · 10−10 1.17 · 10−10

full result: 2.84 · 10−7 2.84 · 10−7 2.84 · 10−7
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Integrating over the phase space for each of these regions we find:

Γ (R1) = −1.439 · 10−7 ,

Γ (R2) = +1.439 · 10−7 ,

Γ (R3) = −1.383 · 10−8 ,

Γ (R4) = +1.384 · 10−8 .

(E.4)

The error in these integrations is per mil. We see that, within errors, Regions 1 and 2 cancel
as do 3 and 4, giving an overall vanishing contribution from the tree-loop interference. This
cancellation is the reason for the need to separate the integration into regions – the Vegas
algorithm was unable to converge integrating over the full phase space. Given the seemingly
exact cancellation between these well defined regions it seems likely there is a kinematic or
symmetry argument for the cancellation. We have not, however, explored this possibility in
detail.

The above indicates the leading contributions to the tree-loop interference comes from the
box diagrams. As concerns about the tree-loop interference being important hinges on the
overall size of the one-loop squared contribution, for which the diagrams with fermions in the
loop are subdominant, we conclude the tree-loop interference is negligible. Alternatively we
can argue that, because the size of the Γ (Ri) given above are at least two orders of magnitude
smaller than the tree-level contribution for the taus the tree-loop interference is negligible.
Note that in the discussions of Sec. 4.2 flavor is invoked only as a means of testing if the impact
of the Class 3 operators (corresponding to SM tree-like kinematics) can be elevated above the
other contributions. If there is a kinematic or symmetry argument for the cancellation this
will also carry partially to the contributions from the box diagrams corresponding to the chiral
structures of Eq. 16. The box diagrams, however, contain lepton mass insertions and therefore
will generate the chiral structures:

ūk2P±vk3
,

ūk2σµνvk3
.

(E.5)

These structures will correspond to tree-loop interference terms suppressed by
m4
`

16π2 and are
expected to be negligible.

We reiterate that the above argument is a gauge dependent statement as gauge-independence
is only obtained after inclusion of the diagrams with leptons in the loops. Our results indicate
that for gauge choices ξ = 1,2, 3 that the diagrams with internal lepton lines contribute at a
level nearly 3 orders of magnitude smaller than the pure electroweak and top contributions.

F Dipole operators

Here we discuss the impact of the dipole operators on our analysis. This is to get a better
understanding of the potential size of including operators which induce chiral flips has on
our analysis. We note that, in the case of dimension-eight operators, they must contribute
proportional to m` as their chiral structure can only interfere with the SM tree-level ampli-
tude (see discussion in App. E for more details on the interference of the SM-tree and loop
contributions).

The dimension-six dipole operators relevant to our analysis are given by:

QeW = (l̄σµνe)τI HW I
µν ,

QeB = (l̄σµνe)HBµν .
(F.1)
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Table 6: Combinations of the dipole couplings and other couplings contributing to
the partial width of the Higgs boson to two leptons and a photon, their leading con-
tribution in the m` expansion, and the size of the corresponding phase-space integral
for the case of the tau and muon. The phase space integrations include the full mass
dependence and are only expressed to two significant digits. Y is the Yukawa cou-
plings proportional to the mass of the lepton, this lepton mass dependence is included
in the phase space integral as is the ē dependence. Entries for mass expansion of “0”
indicate the amplitude squared is identically 0 (the two contributing amplitudes do
not interfere).

O(1/Λi) O(mi) PS Integral τ PS Integral µ

cDP ⊗ cDP
1
Λ4 1 6.4 · 105 6.4 · 105

Y ē⊗ gHAAc′DP
1
Λ4 m̂` 2.3 · 104 1300

Y ē⊗ gHAZ c′DP
1
Λ4 m̂` −1600 −100

Y ē⊗ cDP
1
Λ2 m̂` 1.1 6.6 · 10−2

Y c′DP ⊗ Y c′DP
1
Λ4 m̂2

`
1000 3.6

Y ē⊗ Y c′DP
1
Λ2 0

Y c′DP ⊗ cDP
1
Λ4 0

Note these operators are not hermitian, and therefore their Wilson coefficients are in general
complex. We treat them as real, invoking stringent constraints from low energy CP measure-
ments as a reason for treating the imaginary parts as negligible [54]. These operators can
contribute to the H → ``γ process at tree level in many ways. They generate a four-point
contact interaction and a dipole interaction of the leptons with the photon. The latter allows
for both dipole-like corrections to the SM-like topology as well as to the SMEFT coupling HVγ
where V = {γ, Z}. The amplitudes resulting from these contributions are given by:

Mcontact = cDP ūk2
σµνvk3

kν1ε
∗
µ(k1) , (F.2)

MYukawa = m̂`
v
(1+∆H¯̀`)c

′
DP

�

ūk2
σµν(/k1 + /k2 + m̂`)vk3

(k1 + k2)2 − m̂2
`

+
ūk2
(−/k1 − /k3 + m̂`)σµνvk3

(k1 + k3)2 − m̂2
`

�

ε∗µ(k1)k
ν
1 , (F.3)

MV V = gHV V vc′DPΠ
µνūk2

σµνvk3

(k2 + k3)ν

(k2 + k3)2 − m̄2
V

ε∗µ(k1) . (F.4)

Note we have retained fermion masses in the propagators as these interactions can induce
chiral flips and we wish to estimate their relevant to the decay into tau leptons.
|Mcontact|2 gives a mass independent contribution and so is relevant for all lepton flavors.

Table 6 lists the possible contributions from dipole operators to the process H → γ``, their
leading order in the expansion in m`, and the size of this contributions. Excluded combinations
occur only at order 1/Λ6 or higher.

Table 6 demonstrates that the dominant contributions of the dipole operators come from
the tree level interference of two dimension-six two amplitudes. Subleading is the contribution
from the interference of the SM with the contact interactions HV V and the dipole operator
in the same amplitude. The terms occurring at 1

Λ2 are strongly suppressed relative to these
contributions. In simplifying our analysis we use this observation to drop the contribution
of all dimension-eight operators with a chiral flip, as they can only interfere with the SM
amplitude. There are 7 additional dimension-eight operators which induce chiral flips, some
examples of these include:

Q(2)leW H3 = (l̄σµνeR)H(H
†τI H)W I

µν , (F.5)
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Q(1)leW HD2 = (l̄σµνDρeR)τ
I(DνH)W I

ρµ . (F.6)

G On the choice of kinematic labels

In order to regulate the collinear divergences it is common for hadron collider studies to define
an angular separation with respect to the pseudo-rapidity and azimuthal angle such as:

∆R=
Æ

∆η2 +∆φ2 , (G.1)

where η is the pseudo-rapidity of a given particle, and ∆η is the rapidity difference between
two particles. In our case, in order to remove the collinear divergences we would want ∆R
greater than some value in order to enforce a sufficient distance or angular separation between
the massless photons and the fermions. In the case of [11] a value of ∆R > 0.4 is chosen. In
order to achieve this an arbitrary axis is chosen to correspond to the beam axis in a hadronic
collider environment.

The choice of beam axis is arbitrary, but different choices can affect the resulting pseudo-
rapidity. For example, if we choose the photon to lie on the beam axis the ∆η will always be
infinite as the photons pseudorapidity is infinite, and all points in phase space will be accepted.
Setting the direction of the fourth component of the four-momenta as the beam axis this choice
could correspond to (for an at rest Higgs boson, lepton masses set to zero for simplicity of
presentation) [37]:

pγ =











m̄2
H−s2

2m̄H

0
0

m̄2
H−s2

2m̄H











, p` =













s1+s2
2m̄H

q

s2s2(m̄2
H−s2−s1)

m̄2
H−s2

0
m̄2

H (s2−s1)−s2(s1+s2)
2m̄H (m̄2

H−s2)













, p¯̀ =















m̄2
H−s1

2m̄H

−
q

s1s2(m̄2
H−s1−s2)

m̄2
H−s2

0
m̄2

H (s1+s2)+s1s2−m̄4
H

2m̄H (m̄2
H−s2)















. (G.2)

Note that this choice renders φ zero as we have chosen a frame where the third components of
all momenta are vanishing. From here we can apply a Lorentz rotation to find a frame where
all pseudo-rapidities are finite. Each choice corresponds to different cuts in the s1 × s2 phase
space. Such a Lorentz rotation could be one that rotates between the 2 and 4 components of
the four vectors:

Λ=







1 0 0 0
0 cosθ 0 − sinθ
0 0 1 0
0 sinθ 0 cosθ






. (G.3)

The differences that can be found between different frames is a result of the fact that pseudo
rapidity is not a Lorentz invariant quantity. If we instead use the angle between the photon
and the two leptons, we can define this in terms of invariants (again in the Higgs rest frame
and massless limit for simplicity) [37]:

cosθγ` =
(m̄2

H − s2)(m̄2
H − s3)− 2m̄2

Hs1

(m̄2
H − s2)(m̄2

H − s3)
, (G.4)

cosθγ¯̀ =
(m̄2

H − s2)(m̄2
H − s1)− 2m̄2

Hs3

(m̄2
H − s2)(m̄2

H − s1)
, (G.5)

where we have used s3 = m̄2
H − s1 − s2.

As mentioned in the main text we have used cosθ < 0.8. In previous versions of this
manuscript we found that the NLO chiral corrections to the tree level process did not scale
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with m̄2
`
/m̄2

H as is expected naively. This was in fact due to the collinear divergences. The
choice of cosθ < 0.8 corresponds to a conservative value well away from the threshold at
which the collinear divergences affect this scaling. This was determined by comparing the
integration of the full expressions for Γh→γ¯̀` for all three flavors of leptons and requiring that:

Γh→γ¯̀i`i

Γh→γ¯̀ j` j

m̄2
j

m̄2
i

= 1±O
�

m̄2
j

m̄2
i

�

, (G.6)

Where i and j can be τ, µ or e. In the case of the ratio of the tau to muon, this is an order
3.5 per-mil correction. The actual correction is found to be 1% which is consistent with this
power counting argument. In the case of the ratio of electron to muon masses this is a 2
in 105 correction. Our phase space integration is not good enough to achieve the necessary
statistics for comparing µ and e in a reasonable time. As such we require the ratio above be
consistent with 1 within the errors in the phase space integration. The ratios for e to τ were
not considered.

We note that, performing the cut on cosθ removes the low s1 (for θγ`) or low s3 (θγ¯̀)
region of phase space, but does not affect other areas of the phase space. Cutting on the
pseudorapidity also removes a certain region in high s2 (for θγ`) and high s3 (θγ¯̀). This
difference could have an impact on the phenomenological results of this study. Ultimately,
because of the differences between the two approaches discussed in the appendix, a more
careful study needs to be performed in a hadronic collider environment where the pseudo
rapidity is well defined. This is potentially an issue in all such approaches to calculating Higgs
partial widths, but the issue is exacerbated in this study due to the collinear divergences and
the need to regulate them. Qualitatively cutting cosθγi < 0.8 is similar to the low s1 and s3
cuts resulting from ∆R> 0.4 for a rotation angle of θ ∼ π/2 in Eq. G.3.
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