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Abstract

We introduce a family of 2D dilaton gravity models with state-dependent constant curva-
ture so that dS2 emerges as an excitation of AdS2. Curiously, the strong coupling region
corresponds to the asymptotic region geometrically. Apart from these key differences,
many features resemble the Almheiri–Polchinski model. We discuss perturbative and
non-perturbative thermodynamical stability, bubble nucleation through matter shock-
waves, and semiclassical backreaction effects. In some of these models, we find that
low temperatures are dominated by AdS2 but high temperatures are dominated by dS2,
concurrent with a recent proposal by Susskind.
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1 Introduction

Dilaton gravity in two dimensions (2D) provides infinitely many toy models for classical and
quantum gravity, black holes, and holography. Some of the attractiveness of 2D dilaton gravi-
ties are the universal features that apply to all models, regardless of the choice of the dilaton
potential V

�

X , (∂ X )2
�

in the bulk action

I[gµν, X ] =
1

2κ2

∫

M
d2 x

p

−g
�

XR+ 2 V
�

X , (∂ X )2
�

�

. (1)

For instance, all models (1) can be reformulated as a Poisson sigma model [1, 2], a specific
topological gauge theory. Moreover, all classical solutions can be obtained globally for all
models [3–5], see also [6,7] and refs. therein.

However, quite often crucial insights and technical advances rely on specific models. For
example, the Jackiw–Teitelboim (JT) model [8, 9] features prominently in AdS2 holography
and quantum gravity applications especially in the past decade, see e.g. [10–19]. Similarly, a
version of the Callan–Giddings–Harvey–Strominger (CGHS) model [20] arose recently in the
contexts of flat space and near horizon holography, see e.g. [21–30].

In the present work, we focus on a specific 2-parameter family of models (1) that exhibits
unique features, by choosing

V
�

X , (∂ X )2
�

= a2X 3 + a2 bX 2 +
(∂ X )2

X
, a, b ∈ R . (2)

As will be shown in our paper, all solutions of these models have constant curvature, but unlike
the JT or CGHS models, the magnitude and sign of the curvature are state-dependent. Such a
model contains as part of its solution space locally AdS2, locally flat, and locally dS2 spacetimes,
so that one can view dS2 as an excitation of AdS2 and transitions between positively and
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Figure 1: These conformal diagrams are explained in Figure 3. They show a progres-
sion from AdS2 (left two plots) via Minkowski2 to dS2 (right plot).

negatively curved spacetimes can arise, in a sense that we are going to make precise in the
body of the paper. As a preview, we sketch the conformal diagrams for solutions in a model
with negative b and different values of a mass parameter µ in Figure 1. The main goal of our
work is to define and study this model, including classical, thermodynamical, and quantum
aspects.

One of the take-away slogans is that most results for this model are opposite to usual
expectations. This is so because the weak coupling region (X →∞) does not turn out to be
the asymptotic region geometrically, but rather the center of spacetime; conversely, the strong
coupling region (X → 0) is not geometrically a center or singularity, but rather corresponds to
the asymptotic region.

We summarize here some additional key results, together with the organization of our
paper:

• Classically, we find that dS2 lies at the high-energy end of the spectrum, while AdS2 lies
at the low-energy end of the spectrum. Minkowski2 arises in between, for infinite fine-
tuning of the energy. See section 2, where we formulate the theory and describe all its
classical solutions.

• In the canonical ensemble, for a given temperature T , in addition to a unique state with
horizon we find a continuum of states without horizon. See section 3, where we define
the canonical ensemble associated with our model.

• Relatedly, in the canonical ensemble for models with negative parameter b the dominant
state is AdS2 at low temperatures and dS2 at high temperatures. Together with (non-
)perturbative stability considerations, this concludes section 3.

• The model remains exactly solvable classically in the presence of scalar matter. We
consider specifically matter shockwaves that generate bubble nucleation of spacetime
with different curvature and display the associated Penrose diagrams in section 4.

• We quantize the scalar matter fields on a fixed background and take into account back-
reactions, leading to numerous subtleties that we address in section 5.

• For a certain (dilaton-dependent) choice of the path integral measure for the scalar field,
the theory remains exactly solvable semiclassically. The transition from a stable AdS2
state at low temperature to a stable dS2 state at high temperature remains a feature
semiclassically. See the end of section 5.

In addition, a short summary of key results appears at the beginning of each section.
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2 Vacuum theory

In this section, we describe a 2D dilaton gravity model that yields solutions with state- depen-
dent constant curvature. The curvature is determined by an integration constant and may be
positive, zero, or negative for different solutions in the same model. Like many other dilaton
gravity models, the formulation of the theory includes a boundary condition that requires the
dilaton to take a large value X c on a regulating surface. This surface is later removed via the
limit X c →∞. The equations of motion (EOM) for the theory map large values of the dila-
ton to points deep in the interior of spacetime, allowing solutions with qualitatively different
spacetime asymptotics.

2.1 Action, boundary conditions, and vacuum equations of motion

Our starting point is dilaton gravity coupled to conformal matter in 2D, with a kinetic term
and potential for the dilaton that lead to solutions with state-dependent constant curvature.1

The model is initially defined on a 2D manifold M with boundary Σ. The boundary serves
as a regulator that allows us to set up a proper variational principle, but it will eventually be
removed via a limiting procedure that recovers the full spacetime. The dilaton is denoted by
X , the metric on M is g, and f is a minimally coupled scalar field. In Lorentzian signature the
action is

Γ =
1

2κ2

∫

M
d2 x

p

−g
�

X R+
2
X
(∇X )2 + 2 a2 X 3 + 2 a2 b X 2 −

1
2
(∇ f )2

�

(3)

+
1
κ2

∫

Σ

dx
p

−h
�

X K −Lct(X ,∂||X )
�

.

Here R is the scalar curvature, h is the metric induced on Σ, and K is the extrinsic curvature
of Σ embedded in M . The parameters a and b are constants; a has units of (length)−1 while
b is dimensionless. Later on, we shall fix a to a convenient value and consider models cor-
responding to different values of b. The boundary term Lct, which may in principle depend
on the dilaton and its derivative along Σ, ensures a well-defined variational principle in the
limit where the regulating surface Σ is removed to infinity [31]. Finally, we include but do
not explicitly write out a topological Einstein–Hilbert term in the action so that the effective
gravitational coupling remains finite and small over the range 0≤ X <∞.

To complete the definition of the theory we must specify boundary conditions for the
fields. In higher dimensional gravitational theories this often involves a particular choice
of coordinate frame for describing their asymptotic behavior. For example, one might use
Schwarzschild-like coordinates where spatial infinity corresponds to r →∞, and the differ-
ent components of the metric are required to fall off or grow as particular powers of r. An
alternative is to use a coordinate-independent definition [32–36], but in either case, a specific
notion of spacetime asymptotics is explicit in the field configurations allowed by the theory.
Here we require that the dilaton takes a large, fixed value X c at Σ independent of any partic-
ular choice of spacetime coordinates. In the Euclidean version of the theory, we also fix the
proper period of the Euclidean time at Σ to the value βc . The boundary conditions can be
stated as

X
�

�

�

Σ
= X c , β

p

h
�

�

�

Σ
= βc . (4)

The limiting procedure mentioned above, which removes the regulating boundary Σ, is
achieved by taking X c → ∞. In models like the ones considered in [31], the coordinate

1See Appendix A for a derivation.
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dependence of X is such that this procedure can be thought of as removing Σ to spatial in-
finity. But in the present model, the kinetic term for the dilaton leads to large values of the
dilaton being mapped to points deep in the interior of spacetime. The boundary conditions at
Σ and the limit X c →∞ ensure that all solutions of the theory have this region in common,
but exhibit different spacetime asymptotics. Thus, we encounter (with a few caveats) locally
AdS2, Minkowski, and dS2 spacetimes as solutions of a single model.

The boundary condition on the dilaton requires Σ to be an isosurface of X , and hence
derivatives of X along Σ vanish. In that case, the boundary counterterm for this model is

Lct(X ) =
p

a2 X 4 + 2 a2 b X 3 . (5)

With this boundary term, the action has a well-defined variational principle for field configu-
rations with the same X →∞ behavior as solutions of the EOM.2 A detailed discussion of the
variational problem can be found in [31].

Solutions with non-zero matter fields are considered in section 4. For now we set f = 0
and focus on solutions involving only the dilaton and metric. The EOM obtained from (3) with
f = 0 are

∇µ∇νX − gµν∇2X −
2
X
∇µX∇νX +

1
X

gµν(∇X )2 + gµν
�

a2 X 3 + a2 b X 2
�

= 0 , (6)

R+
2

X 2
(∇X )2 −

4
X
∇2X + 6 a2 X 2 + 4 a2 b X = 0 . (7)

We consider two choices of coordinate gauge when analyzing these equations. In this section
and the next we focus on static solutions written in Schwarzschild-like coordinates

ds2 = −ξ(X ) dt2 +
1
ξ(X )

dr2 , (8)

where the dilaton is a function of r. It is always possible to express vacuum solutions in this
form because the EOM imply a Killing vector with orbits that are isocurves of X , which we
denote by ∂t . Schwarzschild gauge is useful for establishing a few basic properties of solutions
and analyzing the thermodynamics of our model. Beginning in section 4 we frequently work
in conformal gauge3

ds2 = −e2ω(x+,x−) dx+ dx− , (9)

where the dilaton depends of both x+ and x−. This will be useful for incorporating matter,
connecting our results to analyses of related models, and studying backreaction. For static
solutions the fields depend only on the difference x+− x−, and the functions appearing in (8)
and (9) are related by

ω=
1
2

ln(4ξ) . (10)

Conformal gauge (9) is preserved by residual diffeomorphisms x±→W±(x±).

2.2 All classical solutions

The most surprising feature of our model is that solutions have state-dependent constant cur-
vature and exhibit different spacetime asymptotics. This is most easily seen in Schwarzschild

2Since we always consider the X c →∞ limit it is sufficient to work with the first three terms in the large-X
expansion of (5): Lct ' a X 2 + a b X − a b2/2.

3In later sections we also use the Euclidean analogue of lightcone coordinates x± with t → iτ.
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gauge (8), where the EOM (6) and (7) integrate to

∂r X = ± a X 2 , (11)

ξ(X ) = 1+
2 b
X
−

2 M
X 2

. (12)

The integration constant M is essentially the energy of our state, a notion we shall make
explicit in section 3. Integrating (11) yields X = ∓(a r + c)−1, with a constant c that can be
absorbed by shifting the origin of r. Since our solutions must include the region X →∞ and
avoid the strong coupling region at negative X , we fix (without loss of generality) a > 0 and
take the minus sign in (11) to obtain

X =
1

a r
, r ≥ 0 . (13)

With this choice X →∞ corresponds to r → 0, and r takes values in an interval 0≤ r < rmax.
The norm ξ of the Killing vector ∂t ,

ξ= 1+ 2 a b r − 2 M a2 r2 , (14)

yields the curvature

R= −∂ 2
r ξ= 4 a2 M . (15)

As promised, these solutions have constant curvature determined not by the boundary condi-
tions of the theory but by an integration constant M , i.e., state-dependent curvature. There
is no condition on the sign of M , so solutions with positive, zero, or negative curvature are
allowed. For the model with b = 0 one immediately recognizes AdS2 (M < 0), Minkowski2
(M = 0), and the static patch of dS2 (M > 0) in (14). For models with non-zero b, there are
additional possibilities.

The condition ξ ≥ 0 determines the upper end of the interval 0 ≤ r < rmax according to
whether or not ξ has a zero (horizon) at some finite rh > 0. For simplicity, we set a2 = 1
and consider the allowed range of r for solutions of models labeled by the parameter b in
the potential. In general, any model admits solutions both with and without horizon. In the
next section, we shall turn to the Euclidean theory and consider which of those states are
compatible with the finite temperature boundary condition (4) that fixes the proper period of
the Euclidean time at X →∞ (r → 0). For now, we describe solutions depending on the sign
of b. It is convenient to first shift the integration constant M by a model-dependent term

M =
µ− b2

2
. (16)

Then the Killing norm ξ and the scalar curvature are given by

ξ= (1+ b r)2 −µ r2 , R= 2 (µ− b2) . (17)

For models with b ≥ 0, solutions with a cosmological horizon exist for µ > b2. This implies
R> 0. So all such solutions are locally dS2. The horizon is at rh = (

p
µ− b)−1, and regularity

fixes the period of the Euclidean time to the b−independent value

β = −
4π
∂rξ

�

�

�

rh

=
2π
p
µ

. (18)

Whenµ= b2 the curvature vanishes, and r takes values on the semi-infinite interval 0≤ r <∞
corresponding to∞ > X > 0. For µ < b2 the curvature is negative, and r once again takes
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Table 1: Properties of solutions in Schwarzschild gauge. The second column
lists the range/value of the mass parameter µ, while the third column shows the
sign/value/range of the curvature. The fourth column gives the value of the dilaton
at rmax, as described in the text. This is positive for solutions with horizon and 0 for
solutions with 0 ≤ r <∞. The fifth column describes the admissible range/specific
value of β .

b µ R X (rmax) Allowed β

> b2 + p
µ− b 0< β < 2π

b

+ b2 0 0 Any

< b2 − 0 Any

> 0 + p
µ 0< β <∞

0 0 0 0 Any

< 0 − 0 Any

> b2 + p
µ+ |b| 0< β < 2π

|b|

b2 0 2 |b| 2π
|b|

− 0< µ < b2 −2 b2 < R< 0
p
µ+ |b| 2π

|b| < β <∞

0 −2 b2 |b| →∞

< 0 < −2 b2 0 Any

values in 0≤ r <∞. In the last two cases, R≤ 0, the Euclidean solutions are regular for any
period τ∼ τ+ β .

Models with b < 0 have solutions with horizon for µ ≥ 0 and hence the curvature
R = 2 (µ−b2)may be positive, zero, or negative. In all cases the horizon is at rh = (

p
µ+|b|)−1

and regularity of the Euclidean solution once again requires (18). The solution is non-extremal
for µ > 0, while the case µ= 0 (R= −2 b2) is the extremal limit β →∞ of a horizon patch in
a locally AdS2 spacetime. Negative values of µ are solutions with curvature R < −2 b2. They
have no horizon and r takes values in 0≤ r <∞.

The various solutions and some of their properties for models with different values of b
are summarized in Table 1.

Notice that for these solutions the dilaton takes values X (rmax)< X <∞ with X (rmax)> 0,
corresponding to the Schwarzschild coordinate r in the range 0 ≤ r ≤ rmax. This is what
one would expect for the dimensional reduction of a higher-dimensional theory, but for an
inherently 2D theory a coordinate like r would normally cover a range −rmax ≤ r ≤ rmax. The
form of the dilaton (13) prevents us from continuing these solutions to negative values of
r, since X → −∞ for r → 0−. For models with b = 0 two copies of the solution can be
glued together with the replacement r →−r for r < 0, which is still a solution with constant
curvature R = 4 a2 M . But for b 6= 0 this construction produces a Dirac delta in the curvature
at r = 0, R = 4 a2 M − 4 a bδ(r). Thus, these solutions cover only part of the full conformal
diagram associated with dS2, Minkowski2, or AdS2. This will be examined in more detail when
we construct conformal diagrams in section 4.3. For now we avoid this issue and restrict our
attention to the interval 0≤ r ≤ rmax.

2.3 Weyl-rescalings

There are a few obvious connections between the model (3) and some well-studied dilaton
gravity theories, most notably the Almheiri–Polchinski (AP) model [10].
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Implementing a Weyl-rescaling of the metric with the change of variable gµν = Xα ĝµν, the
bulk term in (3) becomes

LM ∼
Æ

ĝ
�

X R̂−α ∇̂2X +
2+α

X

�

∇̂X
�2
+ 2 a2 X 3+α + 2 a2 b X 2+α

�

. (19)

Setting α= −2 eliminates the dilaton kinetic term. Then, after discarding the total derivative
∇̂2X , we recover the AP model [10] with the parameters in their dilaton potential given by
A= 2 a2 and C = −2 a2 b. With b = 0 this is the usual JT model [8,9], and if we flip the sign
of our explicitly positive coefficient a2→−a2 we obtain the “nearly de Sitter gravity” studied
by Maldacena, Turiaci, and Yang in [37]. The rescaling with α = −1 reproduces the CGHS
model [20] when b is set to zero.

Since gµν = Xα ĝµν is just a change of variable, this sort of rescaling is often used to
justify working in a convenient choice of the conformal frame where the dilaton kinetic term
vanishes. One might conclude that the theory we study is simply the AP model rewritten in
different variables. It is true that the EOM (6)-(7), rewritten in terms of ĝµν rather than gµν,
are equivalent to the EOM for the AP model. However, there are three important differences
between the two models. First, the AP model avoids solutions of the EOM which include the
region X = 0, since this is taken to be a curvature singularity in a higher dimensional theory.
We take an inherently 2D point of view with our model, where the only concern with X → 0 is
whether this corresponds to infinite gravitational coupling. Including a topological Einstein–
Hilbert term in the action pushes the strong coupling region to some sufficiently large and
negative value of X so that solutions including the region where X = 0 are permitted alongside
other solutions. Second, the actions for the two models differ by non-zero terms arising from
integration-by-parts. This does not affect the EOM, but it does affect the value of the on-shell
action and thus the free energy. And third, we consider all signs of the parameter b, rather
than restricting to b < 0 (which corresponds to C > 0 in [10]). Thus, while there is a simple
map between solutions of the AP model and some of the solutions we consider, the two models
are not quite the same even classically.

Nevertheless, the map between our EOM (6)-(7) and those of the AP model is useful when
constructing solutions with matter, and some of the phenomena considered there have inter-
esting interpretations in our model. So it will sometimes be convenient for us to make the
change of variable

gµν = X−2 ĝµν . (20)

This must be done with care in the semiclassical theory (section 5) where Weyl invariance of
the classical theory is violated.

3 Thermodynamics

For the Euclidean version of our theory we define a canonical ensemble as in [31], with bound-
ary conditions at X c →∞ that fix the temperature T = β−1. The ensemble includes a single
regular solution with horizon, which is the state of lowest free energy, and a continuum of
states without horizon. For models with b ≥ 0 the solution with horizon is locally dS2, while
for models with b < 0 it is locally AdS2 at temperatures 2π T < |b| and locally dS2 at tem-
peratures 2π T > |b|. In b > 0 models this picture may break down at low temperatures due
to non-perturbative effects from the full continuum of horizonless states. But the spectrum of
models with b < 0 exhibits a finite gap in the free energy that probably protects them from
such effects.
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3.1 Canonical ensemble

The canonical ensemble for general dilaton gravity models was studied in [31]. Here we sum-
marize the relevant arguments as they apply to the Euclidean version of the model described
in the previous section.

Construction of the canonical ensemble begins by interpreting the regulating surface Σ
as a cavity wall that couples the system to a thermal reservoir. This reservoir fixes both the
local proper temperature Tc = β−1

c and a conserved dilaton charge that we take to be X c .
Classical solutions of the theory are saddle points of the Euclidean path integral, with the
on-shell action for a solution related to its Helmholtz free energy by Γc = βc Fc (the subscript
indicates dependence on the quantities X c and βc fixed at Σ). We are interested in models
with boundary conditions such that the classical saddle points include a solution with horizon
at Xh > 0. For the solution with horizon to be stable in the canonical ensemble, the Gaussian
integral over fluctuations around this state in the path integral should converge. In a general
dilaton gravity theory, one can always find values of X c in a neighborhood of Xh such that this
is true, but this neighborhood may not include the limit X c →∞ that decouples the system
from the reservoir. However, in the case of our model, the Gaussian integral over fluctuations
converges even in this limit. Let us now consider the various saddle points of the Euclidean
action and their properties as the system is decoupled from the reservoir.

For the Euclidean theory, any finite values of the boundary conditions βc > 0 and X c � 1
at Σ allow two types of saddle points. Both can be written in the form

ds2 = ξ(X ) dτ2 +
1
ξ(X )

dr2 , τ∼ τ+ β , (21)

with the Killing norm

ξ(X ) =
�

1+
b
X

�2
−
µ

X 2
, (22)

and the dilaton given by

X =
1
r

. (23)

Then ξc = ξ(X c) is the induced metric on Σ, and the boundary condition (4) is βc = β
p

ξc .
Note that limX c→∞ βc = β .

The first type of a saddle point occurs for an isolated value of µ and corresponds to the
Lorentzian signature solution with horizon at Xh =

p
µ− b > 0. The regularity condition (18)

fixes β (and hence µ) in terms of X c and βc

β =

Æ

β 2
c X 2

c + 4π2

X c + b
. (24)

The condition Xh > 0 implies β < 2π/b for models with b > 0, but any β > 0 is allowed for
models with b ≤ 0.

The second type of saddle point is a state of the form (22) with ξ(X ) > 0 on 0 ≤ X ≤ X c .
Positivity of ξ on the full range of X implies −∞ < µ < b2 in models with b ≥ 0, and
−∞ < µ < 0 for models with b < 0. Since ξ(X ) 6= 0 there is no regularity condition on the
period β , and the boundary condition is satisfied for

β =
βc X c

p

(X c + b)2 −µ
> 0 . (25)

There is a continuum of such states labeled by the value of µ.
Without including the full details of the calculation, the solution with horizon is the state

of lowest free energy and dominates the saddle point approximation of the Euclidean path
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integral. Following the arguments in [31], stability of this state in the canonical ensemble as
the system is decoupled from the reservoir (X c →∞) amounts to the condition

lim
X c→∞

4π2β 2
c X 2

c (b+ X c)

(β 2
c X 2

c + 4π2)
3
2

> 0 , (26)

which is always satisfied.4 In this limit the period β for both types of saddle points approaches
the value βc , which we henceforth refer to as β . The temperature is related to the period by
T = β−1, so this state is stable against thermal fluctuations in an ensemble defined at any
temperature for models with b ≤ 0, and at temperatures T > b

2π for models with b > 0.
The remaining saddle points are the continuum of horizonless states. In the limit X c →∞

the condition (25) describes regular solutions with τ ∼ τ + β for any value of µ such that
ξ > 0 on 0 < X <∞. These solutions are all at the same temperature T = β−1 fixed by the
boundary conditions. The parameter µ in (22) may be negative for these states, so to avoid
confusion over signs in later discussions we rewrite ξ for the horizonless solutions as

ξ=
�

1+
b
X

�2
+
(λ− b2)

X 2
. (27)

Then λ, defined as

λ= b2 −µ , (28)

is a continuous parameter that takes positive values b2 < λ <∞ for models with b < 0, and
non-negative values 0≤ λ <∞ for models with b ≥ 0.

3.2 Euclidean action and free energy

The holographically renormalized Euclidean action for our model is

ΓE = −
1

2κ2

∫

M
d2 x
p

g
�

X R+
2
X
(∇X )2 + 2 X 3 + 2 b X 2 −

1
2
(∇ f )2

�

(29)

−
1
κ2

∫

Σ

dx
p

h
�

X K −
p

X 4 + 2 b X 3
�

.

As before we set the matter fields to zero and work in Schwarzschild gauge (21)-(23).
Let us first evaluate the Euclidean action for the regular solution with horizon, (21)-(23).

In that case the integral over r covers the range rc ≤ r < rh. The horizon is at rh = (
p
µ− b)−1,

and the X c →∞ limit corresponds to rc → 0. Individual terms in (29) contain contributions
that diverge as rc → 0, but all such terms cancel.5 In the rc → 0 limit, the on-shell action for
the solution with horizon is

ΓE = −
1

2κ2
β

�

2π
β
− b

�2

. (30)

The on-shell action is negative for any value of b and any finite β . The Helmholtz free energy
F = β−1 ΓE for the solution with horizon is

F = −
1

2κ2

�

2π T − b
�2

, (31)

4This is just the requirement that the specific heat at constant X c remain positive as X c →∞.
5In evaluating (29), the outward-pointing unit normal vector at Σ used to evaluate K is nµ = −

p

ξδµr .
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which gives an entropy

S = −
∂ F
∂ T
=

2π
κ2
(2π T − b) =

2π
κ2

Xh =
Xh

4G
. (32)

As expected, the entropy reduces to the standard result, namely the dilaton at the horizon
divided by 4G [38–40]. The internal energy is then equal to the mass parameter,

E = F + T S = (µ− b2)/2κ2 = M . (33)

This result also agrees with the internal energy obtained from the Brown–York quasilocal stress
tensor [41] associated with the action (29).

The on-shell action for the continuum of horizonless states takes a qualitatively different
form than (30). In that case r covers the range rc ≤ r <∞. Evaluating the action for the
solution (27) gives

ΓE =
3
2
β λ . (34)

The free energy for these states is

F(λ) =
3
2
λ , (35)

which is non-negative for models with b ≥ 0 and positive for models with b < 0. Since there
is no horizon the free energy does not depend on T and there is no entropy associated with
these states.

Comparing (35) with (31), it is clear that the solution with horizon is always the state of
lowest free energy. The nature of this solution depends on the sign of b and, for negative b,
also on the temperature set by the boundary conditions. For models with b ≥ 0, the state with
horizon always has µ > b2 and corresponds to a locally dS2 solution with R = 2 (µ− b2) > 0.
But for models with b < 0 the sign of the curvature may be positive, zero, or negative depend-
ing on the temperature. In that case there is a solution with horizon for any value of β = T−1,
and the curvature can be written as R= 2 (4π2T2 − b2). Thus, for models with b < 0 there is
a low temperature regime 2π T < |b| where the state of lowest free energy is a horizon wedge
of AdS2, and a high-temperature regime 2π T > |b| where the state of lowest free energy is
the static patch of dS2. At the boundary 2π T = |b| between the high- and low-temperature
regimes the horizon state is locally Minkowski.

3.3 Non-perturbative thermodynamical stability

In the canonical ensemble the solution with horizon has negative free energy, while the hori-
zonless states have positive free energy. One would therefore expect the former to dominate
the latter in the saddle point approximation. A horizonless state’s contribution to the path
integral is suppressed relative to that of the horizon state by a factor

R∼ exp [−β∆F] , (36)

where ∆F is the difference in free energy between the two states

∆F =
3
2
λ+

1
2

�

2π
β
− b

�2

. (37)

The difference in free energy is strictly positive, so the relative contribution of the horizonless
state is suppressed.
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Even though contributions from horizonless states are suppressed, there are infinitely many
of them. The saddle point approximation of the path integral should include contributions
from all classical solutions, and it is not immediately obvious whether the sum over the full
continuum of solutions λmin ≤ λ <∞ can outweigh the contribution from the state of lowest
free energy. This would represent a non-perturbative instability where the interpretation of
the Euclidean path integral as describing a canonical ensemble dominated by a stable state
with horizon breaks down.

Consider the difference in free energy between the solution with horizon and the lowest-
lying horizonless state at λmin. For models with b < 0 the lowest horizonless state has λmin = b2.
Then an instability of this sort is unlikely thanks to a positive gap in ∆F that is non-zero even
in the zero-temperature limit

∆F = 2 |b|2 + 2π2 T2 + 2π |b| T > 2 |b|2 . (38)

But for models with b ≥ 0 this gap is not present. The lowest horizonless state in that case
has λmin = 0, and the allowed boundary conditions are 2π T > b. Near the minimum value we
can parameterize the temperature as

T =
b

2π
(1+ ε) , (39)

and the difference in free energy becomes

∆F =
1
2

b2 ε2 . (40)

This can be brought arbitrarily close to zero, so for these models, we might expect contributions
to the path integral from the full continuum of horizonless states to dominate the contribution
from the dS2 state near the minimum temperature.

To make this more precise, consider the cumulative contributions to the Euclidean path
integral obtained by integrating R over the full continuum of horizonless states. Ignoring a
possible prefactor in (36) we have

∞
∫

λmin

dλ exp [−β∆F] = exp

�

−
1
2
β

�

2π
β
− b

�2

−
3
2
β λmin + ln

�

2
3β

�

+ ln c

�

. (41)

Here c is some constant that reflects an ambiguity in the choice of measure. The contributions
from the horizonless states are subdominant to the contribution from the horizon state for
boundary conditions β that satisfy a positivity condition of the form

St(β , b, c) =
1
2
β

�

2π
β
− b

�2

+
3
2
β λmin + ln

�

3
2
β

�

− ln c > 0 . (42)

The presence of a prefactor in (36) would alter the argument of the first ln term in this func-
tion, but we do not expect this to qualitatively change the following conclusions. Let us now
consider whether such a stability condition might plausibly be violated.

In models with b < 0, boundary conditions with any value 0 < β <∞ are allowed. The
horizonless states have λ > b2 so the left-hand side of the stability condition (42) is

St(β ,−|b|, c) =
2π2

β
+ 2π |b|+ 2 b2 β + ln

�3
2
β
�

− ln c . (43)
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This is a convex function of β on (0,∞) with a local minimum at β∗ given by

β∗ =
−1+

p
1+ 16π2 b2

4 b2
. (44)

Its value at the minimum is

St(β∗,−|b|, c) = 2π |b|+
p

1+ 16π2 b2 + ln
�

3
8 b2

�p

1+ 16π2 b2 − 1
�

�

− ln c , (45)

which is a monotonically increasing function of |b| > 0. This is positive if c is less than a
rapidly (exponentially) increasing function of |b|, and for all |b| if c < 3π2 e. In that case
a stability condition like (42) is satisfied for all boundary conditions β . If c is large enough
such that (45) is negative for some values of |b|, the function (43) still becomes positive as
β → 0 or β →∞. Thus, even for very large values of c, all models with b < 0 would have
high- and low-temperature regimes where the saddle point approximation of the Euclidean
path integral describes a stable horizon state in the canonical ensemble, despite contributions
from the continuum of horizonless states.

The results are qualitatively similar in models with b = 0, where

St(β , 0, c) =
2π2

β
+ ln

�3
2
β
�

− ln c . (46)

As in the b < 0 case, this is a convex function of β with local minimum at β∗ = 2π2. It is
positive for all values of β if c < 3π2 e. If c exceeds this value then a stability condition like
(42) is not satisfied for some range βhigh < β < βlow. However, like the case b < 0, the function
(46) becomes positive as β → 0 or β →∞, so the solution with horizon would still dominate
over contributions from the continuum of horizonless states in high-temperature (T > β−1

high
)

and low-temperature (T < β−1
low

) regimes.
There is a wider range of possibilities for models with b > 0. In that case the allowed

boundary conditions are 0 < β < 2π/b. The continuum of horizonless states begins at
λmin = 0, so the function appearing in the stability condition is

St(β , b > 0, c) =
2π2

β
− 2π b+

1
2

b2 β + ln
�3

2
β
�

− ln c . (47)

This is positive at β → 0, while at β = 2π/b it takes the value

St
�

2π
b

, b, c
�

= ln
3π
b c

, (48)

which is positive for b c < 3π and negative if b c > 3π. There is a local minimum at β∗ given
by

β∗ =
−1+

p
1+ 4π2 b2

b2
, (49)

where (47) takes the value

St(β∗, b > 0, c) = −2π b+
p

1+ 4π2 b2 + ln

p
1+ 4π2 b2 − 1

2π b
+ ln

3π
b c

. (50)

This may be positive or negative, but it is strictly less than (48). The values at β∗ and β = 2π/b
are both monotonically decreasing functions of b, so there are three possible behaviors for a
stability condition like (42) with a given value of c. For sufficiently small b both (50) and (48)
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are positive, and the stability condition is satisfied for the full range of boundary conditions
0 < β < 2π/b. For larger values of b, (50) becomes negative but (48) remains positive.
Then the stability condition is violated in some interval βhigh < β < βlow. And for models with
b > 3π/c both (50) and (48) are negative. In those models the stability condition is violated
for all β above some critical value: βcrit < β < 2π/b. Then the description of the system in
terms of a stable horizon state in the canonical ensemble would break down below a critical
temperature Tcrit = β−1

crit
. For any value of b > 0, the model would still satisfy the stability

condition at sufficiently high temperatures (β → 0).
The general picture, if we assume that the stability condition takes the form (42) with

c ∼ O(1), is that the saddle point approximation of the Euclidean path integral for models
with b ≤ 0 is dominated by the solution with horizon for all values of β , even though there
are competing contributions from an infinite number of horizonless states. The same is true for
models with b > 0 when b ∼O(1), but at sufficiently large values of b the stability condition is
violated below a critical temperature Tcrit. This critical temperature is larger than the minimum
temperature b/(2π) that admits a solution with horizon, so there is a range of temperatures

b/(2π)< T < Tcrit , (51)

where contributions from the full continuum of horizonless states dominate. In that case, we
expect that it is no longer appropriate to interpret the Euclidean path integral as describing
a canonical ensemble dominated by a stable state with horizon. To avoid dealing with this
non-perturbative instability, we focus on negative b models in the semiclassical discussion in
section 5. But before arriving there, we introduce matter in the next section.

4 Adding scalar matter

In the previous sections, we considered solutions with the matter field set to zero. Here, we
work out general solutions with non-zero matter. The analysis in conformal gauge leads to an
interesting interpretation of this model in terms of the dilaton’s behavior on a fixed auxiliary
AdS2 spacetime. We revisit the properties of vacuum solutions in this context, then construct an
explicit solution with matter describing nucleation of a region of different spacetime curvature.
Throughout this section we set κ2 = 1 for simplicity.

4.1 Equations of motion

Including contributions from the matter field, the bulk term in the variation of the action (3)
is

1
2

∫

M
d2 x
p

g
�

(Eµν + Tµν)δgµν + EX δX + E f δ f
�

. (52)

The EOM for the matter field f is the Klein–Gordon equation

E f =∇2 f = 0 , (53)

while Eµν and EX are given by (6) and (7), respectively. There is no matter contribution to the
dilaton EOM, but the minimal coupling to gravity gives the stress-energy tensor

Tµν =
1
2

�

∂µ f ∂ν f −
1
2

gµν(∂ f )2
�

. (54)

The Schwarzschild-type coordinates introduced in section 2.2 are useful for quickly estab-
lishing the properties of solutions with the matter field set to zero. But to solve the EOM with
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non-zero matter we switch to conformal gauge (9). In conformal gauge, the +− component
of the stress-energy tensor vanishes, and the resulting EOM are

0= − ∂+∂−X −
1
2

e2ω
�

a2 X 3 + a2 b X 2
�

, (55)

0= 8 e−2ω
�

∂+∂−ω+
2
X
∂+∂−X −

1
X 2
∂+X ∂−X

�

+ 6 a2 X 2 + 4 a2 b X , (56)

0= − 2∂+∂− f . (57)

In addition, since the ±± components of the metric (9) are zero, the corresponding compo-
nents of Eµν + Tµν = 0 enforces the constraints

0= X 2 e2ω∂±

�

X−2 e−2ω∂±X
�

+
1
2
(∂± f )2 . (58)

The matter field f is absent from the dilaton and metric EOM (55), (56), but appears in the
constraints (58) and the Klein–Gordon equation (53).

4.2 Solutions with scalar matter

The EOM and constraints (55)-(58) can be solved exactly. The matter equation (57) is trivial,
with solutions

f (x+, x−) = f+(x
+) + f−(x

−) , (59)

for arbitrary functions f+ and f−. For the remaining equations, it is useful to first make the
change of variable mentioned in section 2.3,

ω̂=ω+ ln X . (60)

Then the EOM (55)-(56) are equivalent to the system

0= − ∂+∂−X −
1
2

a2 e2ω̂
�

X + b
�

, (61)

0= ∂+∂−ω̂+
1
4

a2 e2ω̂ , (62)

while the constraints (58) become

0= e2ω̂∂±

�

e−2ω̂∂±X
�

+
1
2

�

∂± f
�2

. (63)

These equations have the same form as the equations for the model studied in [10, 13] and
can be solved using the same techniques.

After making the change of variable we find an equation for ω̂ that decouples from both the
dilaton and matter field. Equation (62) is just the statement that ĝµν is a metric of constant
negative curvature R̂ = −2 a2. A solution can be written in terms of a pair of monotonic
functions W+(x+) and W−(x−) as

e2 ω̂ =
4
a2

∂+W+(x+)∂−W−(x−)
(W+(x+)−W−(x−))2

. (64)

For now, we set a = 1 and work in Poincaré coordinates W± = x±. Then the conformal factor
in the line element is

e2ω̂ =
4

(x+ − x−)2
. (65)
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Writing the dilaton X with an explicit factor of (x+ − x−)−1 as

X =
N(x+, x−)
x+ − x−

, (66)

the EOM (61) and constraints (63) take the simple form

0= (x+ − x−)∂+∂−N + ∂+N − ∂−N + 2 b , (67)

0= ∂ 2
± N + (x+ − x−) T±±(x

±) . (68)

In the last line, the ±± components of the matter stress-energy tensor are

T±± =
1
2

�

∂± f
�2

. (69)

Solutions of the matter EOM have the form (59), so the T++ and T−− components are functions
of x+ and x−, respectively.

The general solution of (67) and (68) can be written as a vacuum solution with T±± = 0,
plus terms that are sourced by the components of the stress-energy tensor:

N(x+, x−) = N0(x
+, x−) + I+(x+, x−)− I−(x+, x−) . (70)

The constraints (68) require that the vacuum solution N0 satisfy ∂ 2
+ N0 = ∂ 2

− N0 = 0, which can
be integrated to give

N0(x
+, x−) = d0 + d+ x+ + d− x− + d2 x+ x− , (71)

for constants d0, d+, d−, and d2. The functions I+ and I− are then given by the following
integrals of T++ and T−−

I±(x+, x−) =

x±
∫

u±

dy (y − x∓)(y − x±) T±±(y) , (72)

with each integral beginning at some point u+ or u−. This solution of the constraints (68) also
satisfies the EOM (67) if the coefficients of the linear terms in (71) satisfy

d+ − d− + 2 b = 0 . (73)

It is convenient to reparameterize the vacuum solution (71) in terms of a new set of constants
that automatically obey this condition.

Switching back to the original variable e2ω = X−2 e2 ω̂, a general solution for our model
with non-zero matter fields can be written in conformal gauge as

X = −b+
c0 + c1 (x+ + x−) + c2 x+ x− + I+(x+, x−)− I−(x+, x−)

x+ − x−
, (74)

ds2 =
−4dx+dx−

�

c0 + c1 (x+ + x−) + c2 x+ x− − b (x+ − x−) + I+(x+, x−)− I−(x+, x−)
�2 , (75)

where c0, c1, and c2 are arbitrary constants. With this parameterization the vacuum solutions
I± = 0 have scalar curvature given by

R= 2
�

c2
1 − c0 c2 − b2

�

, (76)

which is constant, as expected.
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Obtaining the general solution with matter is straightforward in Poincaré coordinates
W± = x±, but throughout the rest of the paper we will also use representations of the ĝ
metric (64) with other choices of W±. Then solutions are obtained by making the transforma-
tions x± → W±(x±) and recalling the factor ∂+W+ ∂−W− that appears in e2 ω̂. For example,
vacuum solutions can be written as

X = −b+
c0 + c1 (W+ +W−) + c2 W+W−

W+ −W− , (77)

ds2 =
−4 dW+dW−

�

c0 + c1 (W+ +W−) + c2 W+W− − b (W+ −W−)
�2 , (78)

for monotonic functions W+(x+) and W−(x−). Let us check this result by reproducing the
vacuum solutions with horizon in Schwarzschild coordinates from section 2.2. Static solutions
with curvature R= 2 (µ− b2) are obtained by setting c0 = 1, c1 = 0, c2 = −µ,6 and taking W±

to be

W± =
1
p
µ

tanh
�p
µ (t ± z)

2

�

, (79)

with −∞< t <∞ and 0≤ z <∞. In these coordinates, the dilaton and line element are

X = −b+
p
µ coth

�p
µ z
�

, (80)

ds2 =
−dt2 + dz2

�p
µ cosh(pµ z)− b sinh(pµ z)

�2 . (81)

Then the change of coordinate

z =
1
p
µ

coth−1

�

1+ b r
r
p
µ

�

, (82)

brings the solution into the Schwarzschild form (8), with X = 1/r and ξ given by (17).
Before constructing an explicit example of a solution with non-zero matter, it is worth

taking a closer look at the change of variable used in this section and what it tells us about
vacuum solutions.

4.3 Vacuum solutions, X = 0, and conformal diagrams

The change of variable (60) suggests an interesting way of thinking about these models and
the properties of their solutions. As initially formulated, the model has EOM and constraints
governing the conformal factor ω, dilaton X , and matter field f . After the change of variable
ω = ω̂ − ln X the equation for the rescaled conformal factor ω̂ decouples from X and f ,
revealing a fixed AdS2 geometry (64) hidden in the theory. The geometry described by ω
then depends on X and f , which satisfy (61) and (57) on this fixed AdS2. The geometries
described by ω and ω̂ can have qualitatively different properties, such as different conformal
boundaries. In the equation describing the change of variables

ds2 = X−2 dŝ2 , (83)

we can view the dilaton as playing the role of a defining function for the conformal boundary
of the spacetime M with metric g [32,33,36,42]. Borrowing a bit of terminology, we will refer

6The dilaton can always be brought into this form by an SL(2,R) transformation that leaves (64) invariant.
Such transformations shift the constants ci in (77) but do not change b or the Ricci scalar (76).
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to g as the “physical” metric and ĝ as the “unphysical” metric.7 The interpretation of X in this
context as a defining function is somewhat delicate, depending on two particular properties
of the solutions found in the previous section. First, X →∞ at the conformal boundary of
the unphysical AdS2 spacetime in precisely the right way to render ds2 regular there. And
second, X = 0 in the interior of the unphysical AdS2 where dŝ2 is regular. Then the locus
X = 0 describes the conformal boundary of the physical spacetime. As one would expect, this
conformal boundary is timelike, null, or spacelike for R< 0, R= 0, and R> 0, respectively.

Let us develop this picture in more detail for the vaccum solutions, starting with the hatted
AdS2 written in global coordinates (T,σ). Taking W± = tan(1

2(T±σ)) in (64) the line element
dŝ 2 is

dŝ 2 =
1

sin2σ

�

− dT 2 + dσ2
�

. (84)

The two components of the timelike conformal boundary are located at the endpoints of
0 < σ < π, and the compactified time coordinate runs from −π ≤ T ≤ π. Let D denote
the compact region 0 ≤ σ ≤ π, −π ≤ T ≤ π, which includes the conformal boundary. With
the matter field set to zero and the parameterization used in the previous section, the dilaton
on D is

X =
(1+µ) cos T + (1−µ) cosσ− 2 b sinσ

2 sinσ
. (85)

Vacuum solutions of our theory are given by the dilaton X and the physical metric g = X−2 ĝ
on a region in D where X > 0. The boundary of this region consists of portions of ∂D where
the physical metric is regular, along with one or more curves X = 0 on the interior of D that
describe the conformal boundary of the physical spacetime.

For finite values of b and µ the condition X > 0 describes either a single region or two
disconnected regions covering part (but not all) of D. Several examples are shown in Figure
2. With the parameterization used here, X > 0 always includes a portion of ∂D along σ = 0
which is the X → ∞ boundary of our model. It is part of the conformal boundary of the
unphysical AdS2 metric, but the physical metric g = X−2 ĝ is regular8 there because of the
sin2σ factor in X−2. The region X > 0 includes the full interval −π < T < π along σ = 0 for
solutions with µ < 0, and a smaller interval for µ > 0. For solutions with µ ≥ 0 the region
X > 0 includes part of the other component of the AdS2 conformal boundary at σ = π, where
the behavior of X again renders the physical metric regular. The region X > 0 may also include
portions of the T = ±π components of ∂D where ĝ and X−2 ĝ are both regular. The rest of
the boundary of the X > 0 region consists of one or more curves X = 0 on the interior of D
described by

(1+µ) cos T + (1−µ) cosσ− 2 b sinσ = 0 . (86)

The AdS2 metric ĝ is regular everywhere on the interior of D, so the locus X = 0 describes the
conformal boundary of the physical spacetime with metric X−2 ĝ. A quick calculation gives

∂ T
∂ σ
= ±

(1−µ) sinσ+ 2b cosσ
Ç

�

(1−µ) sinσ+ 2b cosσ
�2
+ 4 (µ− b2)

, (87)

7Note that X and ĝ do not have quite the same properties as the defining function and unphysical metric used
in, for instance, the definition of an asymptotically simple spacetime in [42]. But the construction is similar enough
to justify the terminology.

8More generally, factors of W+ −W− in (64) and (77) cancel in X−2 ĝ.
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along the components of X = 0, which satisfies

�

�

�

�

∂ T
∂ σ

�

�

�

�











> 1 µ− b2 < 0 ,

= 1 µ− b2 = 0 ,

< 1 µ− b2 > 0 .

(88)

Figure 2: Examples of the region X > 0 in D for models with different values of b
and solutions with different values of µ. The region X > 0 is shaded and X = 0 is
indicated by a bold dashed black line. The parts of σ = 0 and σ = π in X > 0, where
X → ∞, are indicated with a bold red line. The Schwarzschild-type coordinates
introduced in section 2.2 cover the entire region X > 0 (or the part attached to
σ = 0, in the case of two disconnected regions) for µ ≤ b2 when b ≥ 0, and for
µ < 0 when b < 0. Otherwise they cover a single horizon wedge, shaded in orange,
that includes the X →∞ boundary at σ = 0. A second horizon wedge attached to
σ = π is not shown.
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Thus, the same condition that determines the sign of the curvature as negative, zero, or positive
controls whether the conformal boundary X = 0 is timelike, null, or spacelike, respectively.

In section 2.2 the vacuum solutions were classified according to whether or not there is a
horizon at some rh > 0 in Schwarzschild-type coordinates. For the horizonless solutions these
coordinates cover the entire region X > 0, or one of the two disconnected regions when b > 0
and 0 < µ < b2. But for solutions with horizon (µ > b2 in models with b ≥ 0, or µ ≥ 0 in
models with b < 0) they cover only part of X > 0. In that case X > 0 is a single region in D that
includes portions of both σ = 0 and σ = π. There are two horizon wedges, one that includes
a segment along σ = 0 and another that includes a segment along σ = π, which meet at the
point T = 0, σ = cos−1((µ−1)/(µ+1)). The Schwarzschild-type coordinates used in previous
sections cover the horizon wedge that includes the X →∞ boundary at σ = 0. We saw this
explicitly in the example at the end of section 4.2, where the coordinates t, z cover the region
described in AdS2 global coordinates by −2 tan−1(1/pµ)< T −σ < T +σ < 2 tan−1(1/pµ).
This horizon patch is shown in the relevant parts of Figure 2 as the shaded orange regions.

We can construct conformal diagrams for the solutions with physical metric g = X−2 ĝ as
the image of the region X > 0 in global coordinates for dS2, Minkowski2, or AdS2. The dilaton
transforms under the isometries of the physical metric9 so this construction is not invariant.
But the causal structure of the spacetime and the important properties of the curves X = 0 and
X →∞ are not affected, so essential features are independent of the choice of representation
of X . Figure 3 shows a collection of conformal diagrams for different signs of b and values of
µ. As mentioned in section 2.2, the region X > 0 covers only part of the full conformal diagram
of AdS2, Minkowski2, or dS2. The conformal boundary of the locally AdS2 solutions without
horizon has a single timelike component, rather than two, while the conformal boundary of
locally AdS2 solutions with horizon includes part (but not all) of both timelike components.
Locally Minowski2 solutions of the b = 0 model have either the left or right components of
past and future null infinity, or part (but again not all) of both the left and right components
of past and future null infinity for models with b 6= 0. Finally, locally dS2 solutions include
part but not all of the future and past components of the spacelike conformal boundary of dS2.
In the case of the b = 0 model, one can glue together two copies of the same solution along
σ = 0 with the identification σ↔−σ, but in models with b 6= 0 this introduces a Dirac delta
term in the curvature.

4.4 Bubble nucleation through shockwaves

As an explicit example of a solution with a non-zero matter field, consider a vacuum solution
with c0 = 1, c1 = 0, c2 = −µ and a matter pulse with stress-energy given approximated by

T−− = δµδ(W
−) , T++ = 0 . (89)

Then I+ = 0, and the integral for I− can be evaluated to give the solution

X = −b+
1−

�

µ+δµθ (W−)
�

W+W−

W+ −W− , (90)

ds2 =
−4 dW+ dW−

�

1− b (W+ −W−)−
�

µ+δµθ (W−)
�

W+W−
�2 . (91)

This represents a spacetime with a matter pulse moving along the null trajectory W− = 0. The
curvature is R= 2(µ− b2) before the pulse, and R= 2(µ+δµ− b2) after. If the averaged null
energy condition holds then δµ≥ 0, implying that R can only increase through this process.

9These are SL(2,R) transformations for locally (A)dS2 solutions, and ISO(1, 1) transformations for locally
Minkowski2 solutions.
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Figure 3: Conformal diagrams for the physical spacetimes with metric g = X−2 ĝ.
The shaded region is a representation of X > 0 on the full conformal diagram of
dS2, Minkowski2, or AdS2. The region normally covered by the appropriate global
coordinates is indicated by a purple outline. The conformal boundary X = 0 is shown
as a bold dashed black line, while X → ∞ is shown as a bold red curve. One of
the two horizon wedges associated with Schwarzschild-type coordinates is shaded
orange.

The analogous solution in the AP model describes an infalling pulse of matter that increases
the mass of a black hole from µ to µ+ δµ [10, 13]. Here it represents nucleation of a region
where the constant curvature has increased by δR = 2δµ. For example, consider the dS2
solution of the model with b = 0. The solution initially describes the static patch of dS2 with
curvature R = 2µ. Using the same coordinates as the example at the end of section 4.2, the
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Figure 4: A solution describing a matter pulse T−− = δµδ(x−) on a µ > 0 solution of
the b = 0 model. The diagram on the left shows the relevant regions on the conformal
diagram of the unphysical AdS2 spacetime, using the same conventions as Figure 2.
The shaded X > 0 regions for vacuum solutions before (µ) and after (µ + δµ) the
pulse are joined along the green line T −σ = 0. The X = 0 curve for the vacuum
solution µ is continued into the T − σ > 0 region as a dotted line. The diagram
on the right shows the corresponding region on the (right half of the) dS2 conformal
diagram for the µ > 0 spacetime. In both diagrams the diagonal dashed line indicates
a horizon that separates part of the original static patch from an observer at r = 0.

pulse appears at r = 0 at time t = 0 and moves outward along the trajectory

r =
1
p
µ

tanh (t
p
µ) . (92)

Inside the bubble the curvature is R = 2 (µ + δµ). Figure 4 shows this process on both the
global patch of the unphysical AdS2 spacetime and the conformal diagram of the physical dS2
spacetime.

As we saw in the previous section, the solution with horizon is the state of lowest free
energy in the canonical ensemble and is thermodynamically stable. The analysis there set all
matter fields to zero, so one might ask whether turning on matter fields introduces a potential
instability via bubble nucleation. This seems unlikely. The boundary conditions of the theory
fix the value µ = (2π/β)2 for the regular solution with horizon. Since bubble nucleation
changes µ, the spacetime inside the bubble has the “wrong” period for the ensemble’s boundary
conditions and exhibits a conical singularity. But such field configurations generically have
larger free energy than the regular solution [43], so spontaneous bubble nucleation should be
suppressed.
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5 Semiclassical backreaction

After the investigation of the classical theory in the last few sections, we consider semiclas-
sical effects. In the first part of this section we discuss consistent definitions of the quantum
theory for the matter fields. After that, the main questions are how quantized matter field
fluctuations backreact on the classical solutions, and the effect this has on the spectrum and
thermodynamics. In general, the analysis in this section is valid when the quantum correc-
tions from integrating out matter fields are subleading compared to the classical behavior of
the metric and dilaton. Presumably there are other corrections that must be taken into account
in regimes where semiclassical corrections are not small. Nevertheless, in the two examples
we consider it is possible to solve the semiclassical EOM exactly under certain assumptions.10

In the first example, only linearized solutions appear to be consistent. Most of the horizon-
less solutions of the classical theory are eliminated in that case, but the solution with horizon
always remains. In the second example, the full spectrum of the classical theory is retained,
and the solutions of the semiclassical EOM are consistent even when the parameter controlling
corrections becomes large. The assumption is that the results are only valid at leading order,
but the full results are presented in case their regime of applicability extends beyond this.

5.1 Matter theory and conformal anomaly

Working directly in Euclidean signature we increase the number of identical matter fields in
(29) to N , yielding the matter action

Γm =
1

4κ2

N
∑

i=1

∫

M
d2 x
p

g (∂ fi)
2 . (93)

In principle one can include dilaton-dependent coupling functions in the matter action. How-
ever, such couplings lead to non-local terms in the semiclassical EOM so we consider only the
minimal coupling to the metric.

The first step of the semiclassical approximation consists of fixing a specific classical back-
ground {gB, XB, fi,B} which we take to be a vacuum solution. Next, we include quantum effects
from fluctuations of the matter fields δ fi , integrating over these configurations in the path
integral while treating the metric and dilaton in the saddle-point approximation. Evaluating
the path integral requires a specific choice of measure for the matter fields, which may depend
on the dilaton in addition to the metric. Here, two crucial ingredients enter: boundary con-
ditions are needed for the matter fluctuations, and we need to require G−1 � N for keeping
the perturbations around the gravitational saddle-point small when backreaction is taken into
account. We define the parameter

∆ :=
NG
3

, (94)

so that ∆� 1 when G−1� N .
Compared to the models studied in [10,20] we allow a more general class of measures for

the matter path integral. They are defined by

1=

∫

Dδ fi e−‖δ fi‖2
, ∀ i ∈ {1, . . . , N} , (95)

where

‖δ fi‖2 :=

∫

M
d2 x
p

gB Xη
B
δ f 2

i , η ∈ R . (96)

10When these assumptions are relaxed a perturbative treatment is necessary, discussed in Appendix B.
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Note that this choice preserves diffeomorphism invariance but breaks the Weyl invariance of
the classical theory. Although η 6= 0 might seem unusual we take the point of view that from
a 2D perspective it is as justified as any other choice, provided the measure is well-defined.11

To check this we need to make sure that (96), which is the exponent in (95), is finite for field
configurations allowed by the boundary conditions for the scalar fields. We fix these boundary
conditions by considering static solutions that approach the vacuum fi,B = 0 in the asymptotic
region, i.e. at XB → 0 or r → 0. To determine the fall-off behavior consider solutions to the
massless Klein–Gordon equation

∇µ
�

gµν
B
∂ν fi

�

= 0 , (97)

where the covariant derivative is compatible with the background metric. Imposing staticity
in the matter sector, fi = fi(r), and taking (13),(17) as the background we have

∂r

�

ξB(r)∂r fi(r)
�

= 0 , (98)

which has the general solution

fi(r) = c0 + c1

r
∫

0

dρ
1

ξB(ρ)
, c0, c1 ∈ R . (99)

The integration constants are chosen to be the same for all of the fields as we want to treat
them identically. This solution approaches the vacuum configuration fi,B = 0 at r → 0 if c0 = 0.
Then

lim
r→0

fi(r) = c1 r − b c1 r2 +O(r3) , (100)

and we conclude that fluctuations of the matter field behave near the boundary as

lim
r→0
δ fi(r) =O(r) . (101)

In that case the contribution to the normalization integral (96) in a neighborhood of r = 0 is
finite if

η < 3 . (102)

This places an upper bound on the possible measures we can define.
Integrating out the matter fields is straightforward as we are dealing with a Gaussian inte-

gral. This gives a non-local effective action W [g, X ] for the metric and dilaton, with one-loop
expectation values for the source terms in their EOM given by

〈Tµν〉=
2
p

g
δW
δgµν

, 〈TX 〉=
2
p

g
δW
δX

. (103)

For general η subject to the condition (102) the effective action is of generalized Polyakov type.
Without knowing the full details of this action we can still draw a few important conclusions.
First, diffeomorphism invariance has been preserved during quantization, so the expectation
values (103) satisfy the generalized conservation equation [6]

∇µ〈Tµν〉=
1
2
〈TX 〉∂νX . (104)

11Choices of η 6= 0 can also arise for dilaton models derived from higher-dimensional theories such as spherically
reduced Einstein gravity. There, one gets η = 1 with an additional dilaton dependent coupling in the matter
action [6].
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Second, breaking Weyl invariance causes the trace of the one-loop stress tensor to acquire a
non-zero value. Its form can be obtained via heat kernel methods [6,44] and is given by

〈Tµµ〉=
N

24π

�

R+η
(∇X )2

X 2
−η
∇2X

X

�

. (105)

In conformal gauge (9) this fixes the component 〈T+−〉

〈T+−〉= −
1
4

e2ω 〈Tµµ〉=
N

24π

�

− 2∂+∂−ω−η∂+∂− ln X
�

. (106)

Our goal is to determine the semiclassical backreaction on the geometry and dilaton, for which
we need the remaining components of the one-loop source terms. These are determined, up
to various ambiguities, by solving the generalized conservation equation (104). In conformal
gauge, its components are

∂+〈T+−〉 − 2∂+ω〈T+−〉= −∂−〈T++〉 −
1
4

e2ω〈TX 〉∂+X , (107)

∂−〈T+−〉 − 2∂−ω〈T+−〉= −∂+〈T−−〉 −
1
4

e2ω〈TX 〉∂−X . (108)

They can be solved by inserting (106) on the left-hand side and bringing the resulting terms
into the forms ∂±(. . . ) or (. . . )∂±X .12 Comparing this with the right-hand side determines
〈T±±〉 and 〈TX 〉 up to integration functions and various ambiguities. Then the following local
expressions are obtained

〈T±±〉=
N

24π

�

2∂ 2
±ω− 2(∂±ω)

2 +η∂ 2
± ln X

− γ (∂± ln X )2 − 2η∂±ω∂± ln X + (∂±k(X ))2
�

+τ±±(x
±) , (109)

〈TX 〉=
N
3π

e−2ω 1
X

�

η∂+∂−ω+ γ∂+∂− ln X − X ∂X k(X )∂+∂−k(X )
�

. (110)

These expressions depend on a free parameter γ ∈ R because there are terms that can be
associated with either 〈T±±〉 or 〈TX 〉. In addition, it is always possible to add and subtract
a term of the form (∂±k(X ))2 to the brackets in 〈T±±〉, where k(X ) is an arbitrary function
of the dilaton. One of the two can then be rewritten as a contribution to 〈TX 〉. Finally, the
±± components depend on two arbitrary integration functions that we denote τ±±(x±). It is
instructive to make the change of variable ω = ω̂ − ln X in the expression for 〈T±±〉. Using
(64), it can then be written as

〈T±±〉=
N

24π

�

W±(x±), x±
	

+τ±±(x
±) +

N
24π

�

η− γ+ (X ∂X k)2
�

(∂± ln X )2 . (111)

The first term is the Schwarzian derivative of W±(x±) with respect to x±. It is universal in the
sense that it appears in 〈T±±〉 for any choice of η, γ, and k(X ).

It is evident that at this stage there is quite some freedom left in the definition of the
semiclassical theory: We can still choose a measure for the path integral and even then the one-
loop effects of the matter fields are not fully determined. Part of this ambiguity corresponds
to the usual integration functions τ±± but there is also the freedom associated with γ and
k(X ). Some of these ambiguities are fixed by demanding certain properties for the effective

12At this point non-local terms would appear for a non-minimal dilaton coupling in the matter action. For
instance, a matter Lagrangian of the form X ζ(∂ fi)2 introduces a term proportional to X−2∂ 2

+X∂−X in (107). This
term cannot be brought into one of the two forms on the right-hand side, resulting in a non-local term in either
〈T±±〉 or 〈TX 〉.
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action itself. In Appendix C we construct effective actions that reproduce the one-loop source
terms for the metric and dilaton and discuss various properties they should have. Once these
ambiguities are fixed, either by consistency or assumption, we can compute the semiclassical
backreaction on the geometry and dilaton. From there, it is possible to calculate the on-shell
Euclidean action and corrections to the thermodynamics. In the following sections we carry
this out for two different choices of η, starting with the simplest choice, η= 0.

5.2 Standard semiclassical theory

As a first attempt to define a semiclassical theory we consider the simple choice η= 0 to define
the measure (95)-(96). The matter path integral in this case is independent of the dilaton, so
〈TX 〉= 0 and the trace anomaly is

〈Tµµ〉=
N

24π
R , (112)

which in conformal gauge reads

〈T+−〉= −
N

12π
∂+∂−ω . (113)

The generalized conservation equation (104) reduces to the standard result ∇µ〈Tµν〉 = 0.
Solving for the flux components 〈T±±〉 yields

〈T±±〉=
N

24π

�

2∂ 2
±ω− 2(∂±ω)

2
�

+τ±±(x
±) . (114)

Since there is no dilaton-dependence in the measure it is natural to ignore the ambiguities
associated with γ and k(X ) in (109). The only freedom is the choice of integration functions
τ±±(x±).

The components 〈Tµν〉 act as sources in the EOM. In the following it is useful to work in
Schwarzschild gauge (21). Then, the backreacted constraint and EOM read

0= X 2 ξ2 ∂r

� 1
X 2
∂r X

�

+ κ2 〈T±±〉 , (115)

0= ∂r

�

ξ∂r X
�

− 2 X 2 (X + b) +∆∂ 2
r ξ , (116)

0= ∂ 2
r ξ+ 2∂r

�

ξ
1
X
∂r X

�

− 2 X 2 − 2∆
1
X
∂ 2

r ξ , (117)

with ∆ defined in (94). Our goal is to solve these equations to understand semiclassical cor-
rections to the static solutions considered in the previous sections. This will reveal certain
limitations of the model with η= 0. Specifically, most of the static solutions that appeared in
the classical theory turn out to be no longer present in the semiclassical theory.

Inspired by [10], we first assume that 〈T±±〉= 0, which is accomplished by taking τ±±(x±)
proportional to the Schwarzian of W±(x±) in (111).13 Then the constraint (115) can be inte-
grated to give

X =
1

d0 r + d1
, (118)

for arbitrary constants d0 and d1. If we fix r = 0 as the point where X → +∞ then d1 = 0 and
d0 > 0. Without loss of generality, we set d0 = 1 (the coordinate r is dimensionless). With
X = 1/r the EOM (116) and (117) become

0= r ∂rξ− 2ξ+ 2
�

1+ b r
�

−∆ r3 ∂ 2
r ξ , (119)

0= r2
�

1− 2 r∆
�

∂ 2
r ξ− 2 r ∂rξ+ 2

�

ξ− 1
�

. (120)

13The condition 〈T±±〉= 0 is relaxed in Appendix B, where the equations are solved perturbatively.
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Solving (120) gives the Killing norm

ξ= 1+
c1 r + c2 r2

1− 2 r∆
, (121)

with integration constants c1 and c2. Thus, even semiclassically metric and dilaton remain
stationary. Inserting this result into (119) obtains

0=
(2 b− c1) r

�

1− 6 r∆+ 12 r2∆2
�

− 4 r4∆2
�

4 b∆+ c2

�

(1− 2 r∆)3
. (122)

We solve these equations to linear order in the backreaction parameter ∆.

5.2.1 Linearized solution

Linearizing the backreaction depends on the type of classical solution we are considering.
First, consider a solution with a horizon with r taking values in the finite range 0 ≤ r ≤ rh.
Expanding (122) for ∆� 1 gives an expansion in powers of r∆

0= r (2 b− c1) +O(r2∆2) . (123)

As long as r∆� 1, which is guaranteed when ∆� 1 and r takes values in a finite range, the
expansion is under control. The only condition on our solution at leading order is c1 = 2 b.
Rewriting the other integration constant as c2 = −µ+ b2 −∆4b yields

ξ= (1+ b r)2 −µ r2 −∆RB r3 , (124)

which is just the classical solution (17) with a semiclassical correction proportional to the
classical curvature RB = 2 (µ− b2).

However, we encounter a qualitatively different result for backreaction on the continuum
of AdS states with 0 ≤ r <∞. In that case, the fact that r becomes arbitrarily large means
that r∆will eventually become of O(1) for any finite∆, no matter how small. This is apparent
from the coefficient of the ∂ 2

r ξ term in (120). At some point the part involving r∆ becomes
dominant and backreaction has a significant impact on the solution, manifesting as a potential
pole in (121). The only way to avoid this pole is to tune c2 = −2∆ c1. Then, ξ= 1+ c1 r, and
(119) fixes c1 = 2 b to give

ξ= 1+ 2 b r . (125)

This horizonless solution remains in the spectrum of b ≥ 0 theories since it corresponds to the
state µ = b2 with classical curvature RB = 0. In that case the trace anomaly 〈Tµµ〉 vanishes
and there are no semiclassical corrections to the EOM. So while it is possible to linearize the
backreaction on solutions with a horizon when∆� 1, any∆ 6= 0 eliminates the continuum of
horizonless AdS states. The only such state that remains is the R= 0 solution (125) in models
with b ≥ 0.

In conclusion, the model with η= 0 does not retain the full spectrum of classical solutions
once semiclassical corrections are taken into account; only solutions with horizon remain.
This conclusion was reached assuming 〈T±±〉 = 0. Appendix B analyzes the semiclassical
corrections without making this assumption, reaching essentially the same conclusions, i.e.,
the model defined with η= 0 in the measure does not retain the full spectrum of the classical
theory. As discussed around (206), the only way to avoid this is to define the matter path
integral with η = 2. This leads to an an exactly solvable model with more or less the same
spectrum as the classical theory, analyzed in section 5.3.
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5.2.2 Semiclassical thermodynamics

Before turning to the exactly solvable η = 2 model, it is worth considering the semiclassical
thermodynamics for η= 0.

Recall that for a given value of b a classical solution with horizon exists only for a specific
range of β (see table 1). There is the additional condition rh∆� 1 which can further restrict
the allowed values of β . To first order in ∆, the semiclassical solution (124) has a horizon at

rh =
1

p
µ− b

�

1−∆
p
µ+ b

p
µ (pµ− b)

�

. (126)

Regularity at this horizon requires

β = −
4π
∂rξ

�

�

�

rh

, (127)

which determines a specific value of µ. The location of the horizon can then be expressed in
terms of β as

rh =
β

2π− bβ

�

1+∆
β (2π+ bβ)
(2π− bβ)2

�

. (128)

For models with b > 0, the condition ∆ rh � 1 breaks down near the upper end of the clas-
sically allowed range 0 < β < 2π/b, where rh is unbounded. Instead, in these models the
linearized solution is only consistent when β � 2π/b and ∆ � b. This corresponds to the
high temperature limit T � b/2π of the classical theory. For b = 0 the classically allowed
range 0 < β <∞ becomes 0 < β � 2π/∆, with ∆� 1. Finally, in models with b < 0, the
factors of (2π+ |b|β)−1 in rh are bounded and ∆ rh � 1 for all 0 < β <∞ when ∆� |b|.
This is the same range of β that is allowed in the classical theory. However, there is an addi-
tional condition that we shall encounter momentarily which places a lower limit on the allowed
temperature when b < 0.

To study the thermodynamics of this model with semiclassical corrections we work with
the local form of the effective action introduced in Appendix C,

Γeff = −
1

2κ2

∫

M
d2 x
p

g
�

X R+
2
X
(∇X )2 + 2 X 3 + 2 b X 2

�

−
1
κ2

∫

Σ

dx
p

h
�

X K −
p

X 4 + 2 b X 3
�

+
∆

κ2

∫

M
d2 x
p

g
�

χR+ (∇χ)2
�

+
2∆
κ2

∫

Σ

dx
p

hχ K . (129)

The EOM for the ancillary scalar field is

2∇2χ = R . (130)

Working in conformal gauge the solution on the static background is

χ = −ω−pµ z +χ0 . (131)

There is an arbitrary constant χ0 in the homogeneous solution along with a linear term whose
coefficient is fixed by requiring finite χ at the horizon. In the Schwarzschild coordinates (21),
where X = 1/r, this reads

χ = χ0 − ln2− coth−1

�

1+ b r
r
p
µ

�

−
1
2

ln
�

(1+ b r)2 −µ r2
�

. (132)
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The effective Newton’s constant in (129) is G−1
eff
= G−1 (X − 2∆χ), and we expect that this

should remain non-negative. The factor of X − 2∆χ is a monotonically decreasing function
of r that takes its smallest value at the horizon (128), where the dilaton and ancillary scalar
are given by

Xh =
1
rh
= 2πT − b+∆

2πT + b
2πT − b

, (133)

χh = χ0 + ln
2πT − b

8πT
. (134)

In models with b > 0 the condition rh∆� 1 excludes temperatures T ∼ b/2π near the poles
in Xh and χh. But for b < 0 models, where rh∆� 1 is consistent for all T ≥ 0, the ln term
in χh becomes large when T is very small. Requiring G−1

eff
> 0 places a lower bound on the

temperature in models with b < 0, given by

T >
|b|
8π

exp
�

−
|b|
2∆

�

. (135)

Since ∆� |b| this is exponentially small compared to |b|/2π.
As in the classical theory, the canonical ensemble for the semiclassical theory is dominated

by the solution with horizon. In models with b > 0 this solution is only consistent in the
high temperature limit T � b/2π, and for b = 0 the allowed temperatures are T � ∆/2π.
In both cases the solution with horizon is locally dS2. But for b < 0 we again have distinct
temperature regimes. At temperatures T > |b|/2π the horizon solution that dominates the
canonical ensemble is locally dS2, and at T = |b|/2π it is locally Minkowski. For temperatures
below |b|/2π the horizon solution is locally AdS2. The temperature range for locally AdS2
solutions is

|b|
8π

exp
�

−
|b|
2∆

�

< T <
|b|
2π

. (136)

Since the lower bound is exponentially small it is possible to consider a low-temperature limit
T � |b|/2π. In all cases, the solution with horizon is stable since its free energy is negative
and there is no longer a continuum of competing saddle points to consider. Evaluating the on-
shell Euclidean action (129) to first order in∆, and restoring factors of a that were previously
set to 1, the free energy is

F = −
1

2κ2 a
(2πT − a b)2 +

∆

κ2
(a b+ 2πT + 4π T χh) . (137)

The horizon value of the ancillary scalar, which depends on T when b 6= 0, is given in (134).
The entropy that follows from this has the expected form

S = −
∂ F
∂ T
=

2π
κ2
(Xh − 2∆χh) , (138)

and the internal energy is

E = F + T S =
1

2κ2 a
(2πT − a b) (2πT + a b)−

∆

κ2
a b

2πT + a b
2πT − a b

. (139)

Let us consider these results for models with different signs of b.
For b > 0 the apparent pole in the semiclassical correction to E is always outside of the

allowed range of T . In those models the conditions T � b/2π and b � ∆ ensure that the
leading semiclassical corrections are much smaller than the sub-leading classical terms. In
models with b = 0 the semiclassical correction to E vanishes entirely. It is interesting to note
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that χh is independent of T in that case, and hence can be set to zero with the choice χ0 = ln 4.
Then the b = 0 model has

F = −
2πT2

aκ2
+
∆

κ2
2πT , S =

2π
κ2

Xh =
2π
κ2

�

2π T −∆
�

, E =
2πT2

aκ2
. (140)

There is no contribution from the ancillary scalar in these expressions; the order ∆ terms are
due to the correction to the dilaton at the horizon.

Models with b < 0 are especially interesting. Starting at low temperatures, the ground
state transitions from a locally AdS2 solution to a locally dS2 solution as T increases. This
feature appeared in the classical theory, and persists in both this model and the exactly solvable
model of the next section. For boundary conditions T = |b|/2π the classical solution is locally
Minkowski. In that case 〈Tµµ〉= 0, the semiclassical corrections vanish, and it makes sense to
fix the constant part of the ancillary field to χ0 = ln 2 so that F and S take the same values as in
the classical theory. Below this temperature we are in a regime where the canonical ensemble
is dominated by a locally AdS2 solution. It is of interest then to compare the results above with
the AP model. In our conventions, their model corresponds to b = −1 and units where a = 2.
For T � a|b|/2π = 1/π, which is still well above the exponentially small temperature where
this semiclassical approximation breaks down, we obtain

S =
π T
4 G
+

1
4 G
+

N
6

ln T +
N
12
+

N
6
(ln4π−χ0) , (141)

E =
π T2

8 G
−

1
8πG

−
N

12π
+

N
6

T . (142)

This differs from the results of [10] by state-independent shifts only,

S ' SAP −
N
6
χ0 , E ' EAP −

1+ 2∆
8πG

. (143)

At low temperatures the behavior of the two models is essentially the same, even though the
semiclassical corrections have a different form. The difference in the entropy is proportional
to the constant term in the ancillary field. This is set to zero in [10], but as noted above
there may be more natural choices. The internal energy is independent of χ0 and agrees with
the Brown–York quasilocal stress tensor obtained from (129). The difference between E and
EAP in (143) is a constant term which is already present in the classical result and receives a
semiclassical correction. Though small, the correction could be comparable to the T2 part of
the classical result in this low temperature limit.

5.3 Exactly solvable semiclassical theory

We turn to the model with η = 2. In that case, the factor of
p

gB X 2
B

in (96) is precisely
p

ĝB,
and the measure for the matter fields is the same one used in [10]. Since the definition of the
measure for the matter fields depends on X there are additional ambiguities in how 〈TX 〉 and
the components of 〈Tµν〉 are defined. Based on the analysis of Appendix B, the only consistent
possibility for the ambiguity k(X ) in (109) and (110) can be absorbed in a redefinition of γ,
so henceforth we set k(X ) = 0. This leaves the parameter γ as a remaining ambiguity in the
definition of the model. In appendix C we construct a family of effective actions consistent with
the Weyl anomaly in this model. Demanding that these actions all take the same value for a
given solution of the semiclassical EOM fixes γ= 2, and also identifies a unique homogeneous
solution for the ancillary scalar χ for horizonless solutions.
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5.3.1 Effective action and semiclassical equations of motion

A convenient representative of the equivalent effective actions derived in appendix C is

Γeff = −
1

2κ2

∫

M
d2 x
p

g
�

X R+
2
X
(∇X )2 + 2 X 3 + 2 b X 2

�

+
∆

κ2

∫

M
d2 x
p

g
�

χR+ (∇χ)2 + 2∇χ∇ ln X
�

−
1
κ2

∫

Σ

dx
p

h
�

X K −
p

X 4 + 2 b X 3
�

+
2∆
κ2

∫

Σ

dx
p

h
�

χ K +
X
2

�

. (144)

The EOM for the ancillary scalar χ is

2∇2χ = R− 2∇2 ln X . (145)

Variations of the action (144), evaluated on solutions of (145), reproduce the components of
the Weyl anomaly with η= 2, γ= 2, and k(X ) = 0

〈T+−〉= −
N

24π
∂+∂−

�

2ω+ 2 ln X
�

= −
N

12π
∂+∂−ω̂ , (146a)

〈TX 〉=
N
3π

e−2ω 1
X
∂+∂−

�

2ω+ 2 ln X
�

=
2N
3π

e−2ω̂X∂+∂−ω̂ , (146b)

〈T±±〉=
N

24π

�

2∂ 2
±ω̂− 2(∂±ω̂)

2
�

+τ±±(x
±) . (146c)

Here, we also write the components in terms of the variable ω̂ defined in (60). Note that all the
parts of the action involving the ancillary field are proportional to the number of matter fields
N . Treating this as a classical problem requires N � 1 and G� 1 such that loop corrections can
be neglected. Also, as initially discussed, depending on our expectation concerning additional
corrections to the semiclassical EOM we may need to demand G−1� N , i.e. ∆� 1. While in
principle we could linearize in∆ at any stage, the EOM can be solved exactly and we retain the
full ∆-dependence throughout this section. As before, the effective inverse Newton constant
in (144) is

1
Geff

=
1
G

�

X − 2∆χ
�

, (147)

and needs to be positive.
The semiclassical EOM expressed in terms of X and ω̂ read

0= e2ω̂∂±
�

e−2ω̂∂±X
�

+ κ2 〈T±±〉 , (148a)

0= −∂+∂−X −
1
2

e2ω̂ (X + b )−
Nκ2

12π
∂+∂−ω̂ , (148b)

0= ∂+∂−ω̂+
1
4

e2ω̂ . (148c)

The equation for ω̂ is a linear combination of the dilaton- and g+− EOM. Both of these equa-
tions have semiclassical source terms, but the combination of 〈T+−〉 and 〈TX 〉 cancels in the
equation for ω̂. As a result, the hatted geometry does not receive corrections and is still AdS2
with curvature R̂= −2. Equation (148b) simplifies to

−∂+∂−X −
1
2

e2ω̂ (X + b −∆) = 0 . (149)

This is just the classical equation with b shifted by −∆. Splitting the dilaton into parts as

X = XB +∆+ Y , (150)
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where XB is the classical solution, the field Y satisfies

0= −∂+∂−Y −
1
2

e2ω̂ Y . (151)

But solutions of this equation are the same as the homogeneous solutions of the equation
for the classical dilaton XB, and these have already been accounted for since X satisfies the
same boundary conditions we initially considered for XB. We conclude that the dilaton with
backreaction is just X = XB +∆. The constraints (148a) then force 〈T±±〉 to vanish, which
is once again accomplished by taking τ±±(x±) proportional to the Schwarzian of W±(x±) in
(146c).

The full effect of integrating out the matter fields appears as the shift

b→ b−∆ , (152)

in the dilaton and metric (vacuum) solutions of the classical theory. There are no semiclassical
corrections to the hatted geometry, so the response of the physical metric g = X−2 ĝ is due
entirely to its dependence on the dilaton. Unlike the model in the previous section, all solutions
of the classical theory remain once semiclassical corrections are taken into account. The results
for X and ω̂ are the same as in [10].

5.3.2 Solutions to semiclassical equations of motion

Now we construct solutions with backreaction, evaluate the (non-linearized) on-shell action,
and analyze the thermodynamics for this model. While the following analysis can in principle
be carried out for general b, we focus on models with b < 0. These have the same interesting
feature as the classical ones: a stable AdS2 phase at low temperatures that transitions to a
stable dS2 phase at high temperatures.14 Classically, they have a single regular solution with
horizon for any value β > 0 of the boundary condition, along with a continuum of horizonless
states (cf. table 1). The exact solution of (148) with a horizon takes the same form as the
classical result, with the shift |b| → |b|+∆. In conformal gauge we have

ω̂(z) = ω̂B =
1
2

ln
4µ

sinh2(pµ z)
, (153a)

X (z) = |b|+∆+pµ coth
�p
µ z
�

, (153b)

ω(z) = ω̂− ln X =
1
2

ln
4µ

�p
µ cosh(pµ z) + (|b|+∆) sinh(pµ z)

�2 , (153c)

χ(z) = −ω̂−pµ z +χ0 , (153d)

where z ∈ [0,∞). The Ricci scalar remains constant but is shifted

R= 2
�

µ− (|b|+∆)2
�

, (154)

while regularity fixes µ as in (18). The ancillary field χ contains a single unfixed constant χ0
in its homogeneous solution. One might try to fix this constant as in section 5.2 by looking for
a state for which the corrections should vanish. Here, however, the anomaly takes a different
form with both (146a) and (146b) sourcing the EOM. A short calculation shows that the latter
cannot vanish for any solution with horizon.

The horizonless states correspond to λ > b2 in (27). However, in the following it is con-
venient to adopt a slightly different parameterization. Defining the non-negative parameter

λ̃= λ− b2 , (155)

14We regard ∆ as a small parameter compared to b 6= 0, so the shift (152) does not affect, for instance, the
classification of different possible solutions according to the sign of b→ b−∆.
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the Killing norm ξ in Schwarzschild coordinates takes the form

ξ=
�

1−
�

|b|+∆
�

r
�2
+ λ̃ r2 , λ̃ > 0 . (156)

In conformal gauge the solution is

ω̂(z) =
1
2

ln

 

4λ̃

sin2
�

p

λ̃ z
�

!

, (157a)

X (z) = |b|+∆+
Æ

λ̃ cot
�

Æ

λ̃ z
�

, (157b)

ω(z) = ω̂− ln X = ln

 

2
p

λ̃
p

λ̃ cos
�

p

λ̃ z
�

+ (|b|+∆) sin
�

p

λ̃ z
�

!

, (157c)

χ(z) = (|b|+∆) (z − zmax)−
1
2

ln

�

λ̃

λ̃+ (|b|+∆)2
csc2

�

Æ

λ̃ z
�

�

. (157d)

The homogeneous solution of the ancillary field is determined using the same procedure as in
Appendix C. It is completely fixed for the horizonless solutions once we demand that different
parameterizations of the effective action reproducing the same Weyl anomaly should take the
same value for a given solution.15 The coordinate z takes values in the interval [0, zmax] with

zmax =
1
p

λ̃

�

π− cot−1
� |b|+∆
p

λ̃

��

. (158)

Note that the range of this coordinate is affected by backreaction as the dilaton vanishes at a
different point. The Ricci scalar is

R= −2
�

λ̃+ (|b|+∆)2
�

, (159)

which is the classical result with the shift (152) in b.

5.3.3 Semiclassical thermodynamics

In the previous subsection, we considered a model where the semiclassical approximation
broke down outside of certain temperature regimes. Let us look at whether all classically
allowed temperatures are still admissible for the current model. Since the equations can be
solved exactly, the only condition follows from the requirement that (147) stays positive for
all z. Inserting a solution with horizon yields a monotonically decreasing function in z which
takes its minimum at the horizon. Thus, we get the condition

Xh − 2∆χh = |b|+ 2πT +∆
�

1+ 2 ln
T
T0

�

> 0 , (160)

where χ0 = ln(8πT0). The log term becomes large and negative at small temperatures so we
are forced to restrict T to values

T > T0 exp
�

−
|b|
2∆
−

1
2

�

. (161)

Since T = 0 is no longer accessible, the classically allowed solutions with extremal horizons
are inconsistent semiclassically. However, when ∆ � |b| this lower bound is exponentially
small and a near-extremal limit T � |b|/2π is still possible.

15There is additional ∆-dependence compared to (231) and (232) because we have not linearized.
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Evaluating the action (144) for the solution with horizon (153) gives

Γeff = −
β

2κ2

�2π
β
+ |b|

�2
+

2π∆
κ2

�

1+ 2χh

�

, (162a)

where χh is the ancillary field evaluated at the horizon. Its value there depends on the
temperature-independent integration constant χ0 and therefore is generically unfixed by our
requirements for the semiclassical theory. As in the classical theory, the solution with horizon
dominates the canonical ensemble. Its free energy is given by F = T Γeff

F = −
1

2κ2

�

2π T + |b|
�2
+
∆

κ2
2π T

�

1+ 2χh

�

. (163)

This leads to an entropy (with κ2 = 8πG and ∆= NG/3)

S =
Xh

4G
−

Nχh

6
=

1
4Geff,h

, (164)

where Geff,h is the value of the effective Newton’s constant (147) at the horizon. This (macro-
scopic) result matches with the Wald entropy derived from the effective action (144). The
internal energy

E = M +
N
6

T . (165)

is expressed in terms of the parameter M appearing in the original Schwarzschild form of the
solution (12). As expected, the same result is obtained (holographically) from the Brown–York
stress tensor

EBY = lim
z→0

2
p

h

δΓeff

δhττ
uτuτ = M +

N
6

T , uµ = 2 e−ωδµτ . (166)

Integrating the first law dE = T dS yields the (holographic) entropy

Shol =
πT
2G
+

N
6

ln T + s0 , (167)

with an integration constant s0. Setting

s0 =
|b|
4 G
+

N
12
−

N
6
χ0 +

N
6

ln(8π) , (168)

matches the Wald entropy (164).
For the horizonless solutions, the on-shell action is

Γeff =
β

κ2

�

3
2

�

λ̃+ |b|2
�

+ 2∆ |b|+∆
�

λ̃+ (|b|+∆)2
�

zmax

�

, (169)

with zmax defined in (158). Parameterizing the horizonless solutions in terms of λ̃ > 0 makes
it apparent that the semiclassical correction is strictly positive in models with b < 0. Thus,
the value of the on-shell action and the associated free energy for the horizonless solutions is
positive and larger than in the classical theory.

5.3.4 Semiclassical stability

The on-shell action for the solution with horizon is the explicitly negative classical result plus
an O(∆) correction that may be positive or negative depending on the sign of χh. As in the
classical theory, this contribution to the path integral always dominates the contribution from
a horizonless solution since (169) is strictly positive. But there is once again a continuum of
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horizonless solutions, so we should ask whether their cumulative contributions to the path
integral might overwhelm that of the single solution with horizon. Rather than repeating the
full analysis of section 3.3, it is sufficient to consider the difference in free energies between
a horizonless solution and the solution with horizon. Recall that in the classical theory the
smallest value of ∆F at a given temperature occurs for the horizonless solution λ̃= 0, with

(∆F)cl,min = 2 |b|2 + 2π2T2 + 2π |b| T > 2 |b|2 . (170)

Taking the semiclassical corrections into account, we have (setting κ2 = 1)

∆F = (∆F)cl,min +
3
2
λ̃ + 2∆ |b| +∆

�

λ̃ + (|b| +∆)2
�

zmax − 2π T ∆ + 4π T ∆ ln
T
T0

. (171)

As in the analysis of the lower bound on T , the constant χ0 in the ancillary scalar has been writ-
ten as χ0 = ln(8π T0). There are two differences to the classical result. First, the temperature-
dependent terms give a contribution of order ∆ that is negative around a local minimum at
T = T0/

p
e. However, since we assume ∆ � |b|, this is always much smaller than the posi-

tive 2π|b|T term in (170). Second, the smallest free energy for a horizonless solution occurs
at some λ̃ > 0, rather than λ̃ = 0. The free energy for the horizonless solution with this
value of λ̃ is larger than the (positive) classical result by an amount that is of order

p
∆. This

positive contribution to ∆F is parametrically larger than the negative contribution from the
temperature-dependent correction terms, which was already too small to appreciably change
the classical result.

We conclude that semiclassical effects generically enlarge the gap ∆F between the free
energies for the full range of allowed temperatures, so that the stability conclusions of section
3.3 become more robust than in the classical theory.

6 Discussion

We summarize briefly the key aspects of our paper. We started with a 2D dilaton gravity model
(1) whose specific potential (2) led to solutions of state-dependent constant curvature (15),
so that the same model accommodates dS2, Minkowski2, and AdS2 as part of its state space.
The state-dependent curvature is associated with the gravitational charges of our theory. This
is distinct from other constructions that yield a state-dependent cosmological constant, at the
price of introducing extra gauge fields [45–52]. It also differs from the “centaur geometry”
studied in [53] (see also [54]), which interpolates between AdS2 in the UV and dS2 in the IR.
Unlike the centaur geometries, solutions in our model have constant curvature, whose value
and sign are state-dependent.

A curious aspect of our model is the inversion between dilaton field and radial coordinate
(13), implying that the weak coupling region X →∞ corresponds to a center geometrically
(r → 0), while the asymptotic region r →∞ implies strong coupling (X → 0). Apart from
these key features, the model is similar to the Almheiri–Polchinski model [10], to which it
is conformally related, see (19). The sign of the curvature depends on the mass parameter
µ labeling our solutions and also on the model parameter b, see table 1. From the table, it
is evident that dS2 [AdS2] appears always at the high-mass [low-mass] end of the spectrum.
Thus, dS2 can be viewed as an excitation above AdS2, in essentially the same way that the
Schwarzschild black hole is an excitation above Minkowski space.

The Euclidean version of our theory led to interesting thermodynamics, where we defined
the canonical ensemble by fixing the temperature at a dilaton isosurface in the weak coupling
region. Depending on the sign of one of our model parameters, a unique regular (and per-
turbatively stable) solution with horizon exists either for any temperature (b ≤ 0) or for any
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temperature above a lower bound (b > 0). Additionally, there is a continuum of horizonless
states. The free energy of the solution with horizon is negative for any positive temperature
(31), while the free energy for the solutions without horizon is non-negative (35). As conse-
quence, the solution with horizon is always the state of lowest free energy, even though it has a
higher internal energy (33). Physically, this happens because the huge entropy of these states
reduces the free energy more than enough to be competitive with the horizonless states of
lower internal energy. The solutions with horizon are locally AdS2 for negative b and at small
temperatures, T < |b|

2π ; otherwise they are locally dS2. We also addressed non-perturbative
thermodynamical stability in section 3.3 and found that models with negative b are domi-
nated by the solution with horizon for all temperatures. By contrast, for positive b we found
a temperature range (51) where the continuum of horizonless states dominates.

To prepare the stage for backreactions, we added scalar matter in section 4. It was conve-
nient to work in conformal gauge and to introduce a fixed auxiliary Poincaré AdS2 spacetime
with conformal factor (64), related to the physical metric by a Weyl rescaling (83). This
allowed us to solve the equations by standard methods. Associated Penrose diagrams are dis-
played in Figure 3. As an explicit example, we considered a matter shockwave in section 4.4,
yielding the spacetime diagram depicted in Figure 4. It describes the nucleation of a bubble
of different spacetime curvature.

In section 5, we analyzed our model semiclassically, taking into account 1-loop effects and
backreaction. We worked perturbatively, at small Newton constant and large number of matter
fields, while still keeping their product small. An important subtlety was the choice of measure
in (96), parametrized by a real constant η. The standard choice of measure, with η = 0, was
analyzed in detail in section 5.2 where we found that the perturbative regime breaks down at
small values of the dilaton. This forced us to exclude the continuum of horizonless solutions in
the semiclassical treatment. For b < 0 the ground state at a given temperature then turned out
to be dominated by a horizon patch of AdS2 at low temperatures and dS2 at high temperatures,
just like in the classical model. Although the classical equations of motion match with [10] for
the model b = −1, the semiclassical theory differs from the one investigated there. However,
at low temperatures, we still find a similar behavior of the entropy and internal energy (143).
In section 5.3 we investigated the measure η = 2, which is unique if one wants to treat the
continuum of horizonless solutions semiclassically, see Appendix B. As opposed to the standard
measure, there are additional ambiguities in the definition of the theory which were fixed by
demanding a consistent description in terms of a local effective action (144). One of the
crucial ingredients here was to take a certain homogeneous solution for the ancillary field,
as explained in Appendix C. We analyzed the thermodynamics of the models with b < 0 and
argued that semiclassical effects enhance stability of the ground state with horizon, thereby
essentially reproducing the classical thermodynamic behavior.

In this paper we took an intrinsically 2D perspective. However, from the viewpoint of di-
mensional reduction a linear coupling of the matter field to the dilaton is required. Therefore,
it could be rewarding to generalize our discussion to non-minimal coupling in (93). Another
possible generalization is to relax the assumption of staticity in our treatment of backreaction.
This would accommodate time dependent configurations such as the shockwaves in [55].

We conclude with an intriguing observation, and additional prospects for future research.
Our analysis shows that the b < 0 model has a low-temperature phase dominated by AdS2
and a high-temperature phase dominated by dS2. This result is reminiscent of Susskind’s
proposal [56] for the Sachdev–Ye–Kitaev (SYK) model [57–59]. While the low temperature
phase of the large N limit of SYK has a gravity interpretation in terms of the JT model (see
e.g. [11–13, 15, 60–63] and refs. therein), Susskind proposed for its high-temperature phase
a gravitational description in terms of dS2. Since our model is conformally related to the AP
model, which in turn is related to the JT model by a shift of the dilaton, it is tempting to use
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our model as a possible realization of Susskind’s proposal.
For applications to SYK-like holographic correspondences, it is necessary to relax the con-

dition that the boundary is a dilaton isosurface. Like for the JT model [64], this requires the
addition of new boundary counterterms to the action (3) beyond the usual ones (5). It could
be rewarding to apply the covariant phase space analysis of general 2D dilaton gravity [7,65]
to study these and other boundary conditions, and to derive the associated asymptotic (or near
horizon) symmetries.
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A Models with state-dependent constant curvature

In this Appendix, we identify models of dilaton gravity in 2D with constant curvature solutions,
where the curvature is state-dependent. That is, the curvature is determined by a constant of
integration that distinguishes different solutions, rather than fixed parameters appearing in
the Lagrangian.

Consider a dilaton gravity model in 2D with bulk Lagrangian

L ∼
p

−g
�

X R− U(X ) (∇X )2 − 2 V (X )
�

. (172)

A generalized Birkhoff theorem ensures the existence of a Killing vector, the orbits of which
are isocurves of X , so that the function ξ in the Schwarzschild-like metric (8) can be expressed
as a function of the dilaton. Solutions of the EOM are

ξ(X ) = eQ(X ) (w(X )− 2 M) , ∂r X = ±e−Q(X ) . (173)

Here, M is an integration constant, and Q(X ) and w(X ) are determined by the functions U(X )
and V (X ) appearing in the bulk Lagrangian

Q(X ) =Q0 +

∫ X

dy U(y) , w(X ) = w0 − 2

∫ X

dy V (y) eQ(y) . (174)

The constants Q0 and w0 can be absorbed into a coordinate rescaling or the parameter M ,
respectively, so we set them to zero without loss of generality. Note that the EOM only deter-
mines ∂r X up to an overall sign in (173). The choice of sign does not affect any of the results
in this Appendix, but in the main text we take the minus sign in passing from (11) to (13).

We are interested in models that yield solutions with constant curvature determined by
the integration constant M rather than the functions U(X ) and V (X ). For the metric (8), the
scalar curvature is

R= −∂r
2ξ(X ) . (175)

Using the solution (173) this can be written as

R= 2 M Q′′ e−Q − e−Q
�

Q′′w+Q′w′ +w′′
�

, (176)
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where a prime indicates a derivative with respect to X . Thus, we must find functions U(X )
and V (X ) such that Q(X ) and w(X ), as defined in (174), satisfy

Q′′ e−Q = λ , Q′′w+Q′w′ +w′′ = 0 , (177)

for some constant λ.
The first equation in (177) is solved by expressing U as a function of Q(X ), which yields

1
2
∂

∂ Q

�

U2
�

= λ eQ . (178)

Integrating and using the result to solve Q′(X ) = U(X ) we arrive at a three-parameter set of
solutions for U(X ). After investigating various solutions, we find that the essential features
are captured by the simplest member of this family

U(X ) = −
2
X

. (179)

Then,
Q = −2 ln X (180)

and eQ = X−2. For this solution λ= 2. The second equation in (177) yields the Weyl invariant
function w(X ) = b1 X 2 + 2 b2 X , where b1 and b2 are arbitrary constants, which is the same
result as for the AP model. The definition (174) of w(X ) gives the function V (X ) appearing in
the Lagrangian

V (X ) = −b1 X 3 − b2 X 2 . (181)

These results for U(X ) and V (X ) are our starting point in section 2, the action (3). The result-
ing model has solutions with state-dependent curvature, R= 4 M .

B Linearized solution of semiclassical equations of motion

In this Appendix, we solve the EOM for the class of semiclassical theories given by the gravity
action in (29), with matter coupling (93) and the path integral measure (96) together with
η < 3. As discussed in section 5.1 the Weyl anomaly is given by the components

〈T+−〉= −
N

24π
∂+∂−

�

2ω+η ln X
�

, (182a)

〈T±±〉=
N

24π

�

2∂ 2
±ω− 2(∂±ω)

2 +η∂ 2
± ln X ,

− γ (∂± ln X )2 − 2η∂±ω∂± ln X + (∂±k(X ))2
�

+τ±±(x
±) , (182b)

〈TX 〉=
N
3π

e−2ω 1
X
∂+∂−

�

ηω+ γ ln X
�

−
N
3π

e−2ωk′(X )∂+∂−k(X ) , (182c)

where k(X ) and γ represent ambiguities in the definition of these components. It is convenient
to express the semiclassical EOM in terms of the variable ω̂ = ω + ln X described in section
2.3. After some simplifications this leads to

0= ∂+∂−ω̂+
1
4

e2ω̂ +κ2
� 1

X
〈T+−〉+

1
8X 2

e2ω̂〈TX 〉
�

, (183a)

0= −∂+∂−X −
1
2

e2ω̂ (X + b ) + κ2 〈T+−〉 , (183b)

0= e2ω̂∂±
�

e−2ω̂∂±X
�

+ κ2 〈T±±〉 . (183c)
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For specificity, we restrict to models with b = 0, but the procedure is analogous for b 6= 0. We
make the ansatz ω̂= ω̂B+∆δω̂, X = XB+∆δX with ω̂B and XB satisfying the above equations
with the sources 〈Tµν〉 and 〈TX 〉 set to zero. Expanding (183) to linear order in ∆ yields

0= ∂+∂−δω̂+
1
2

e2ω̂Bδω̂+
� 1

X
Θ+− +

1
8X 2

e2ω̂ΘX

�

, (184a)

0= ∂+∂−δX +
1
2

e2ω̂BδX + e2ω̂B XBδω̂−Θ+− , (184b)

0= ∂ 2
±δX − 2∂±δω̂∂±XB − 2∂±ω̂B∂±δX +Θ±± . (184c)

The rescaled components of the anomalies Θµν := 〈Tµν〉
κ2

∆ and ΘX := 〈TX 〉
κ2

∆ are evaluated
using the background fields ω̂B and XB, since we are linearizing. As we are only interested in
static configurations we switch to coordinates

ds2 =
1
4

e2ω
�

dτ2 + dz2
�

, (185)

and simplify the EOM by setting ∂± = ±∂z . The linearized EOM (184a) and (184b) take the
same general form

∂ 2
z y(z)−

1
2

e2ω̂B y(z) = jy(z) , (186)

where y(z) is either δω̂ or δX . The source term jδω̂ depends on the background fields, while
jδX depends on both the background fields and δω̂.

The linearized EOM can be solved analytically to determine the semiclassical corrections
δω̂(z) and δX (z). The correction to the physical metric is then obtained by transforming back
to unhatted variables

δω= δω̂−
δX
XB

. (187)

The constraints (184c) will subsequently determine the integration functions τ±± = τ which
are constant for a static configuration. Solving the equations (184a) and (184b) introduces
four integration constants {cω̂1, cω̂2, cX1, cX2} as coefficients of the homogeneous solutions
y1(z) and y2(z) of (186):

δω̂hom = cω̂1 y1(z) + cω̂2 y2(z) , (188)

δXhom = cX1 y1(z) + cX2 y2(z) . (189)

Just like in Schwarzschild gauge the spatial coordinate z has a range z ∈ [zmin, zmax], with the
values depending on the solution we are considering. When linearizing around a background
solution with horizon, two of the four constants in the homogeneous solutions are fixed by the
conditions that scalar fluctuations are small,

δX
XB

!
� 1 and

δR
RB

!
� 1 , ∀ z ∈ [zmin, zmax] . (190)

A third constant can be absorbed into a constant rescaling of the coordinates in (185), and
the fourth is fixed by regularity at the horizon. However, when attempting to linearize around
backgrounds without horizon we encounter an obstruction that cannot be removed by an
appropriate choice of constants in the homogeneous solutions. In section B.2 we will show
that only a single value ofη in the allowed range avoids this obstruction. That case corresponds
to a model where the EOM and constraints become (with some assumptions) exactly solvable,
see section 5.3.
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B.1 Background with horizon

As discussed in section 2.2 the b = 0 model has vacuum solutions with horizon for any bound-
ary conditions β > 0. We can transform (21) to the gauge (185) by

z =
1
p
µ

coth−1
� 1
p
µ r

�

, (191)

mapping to the range z ∈ [0,∞) where z→∞ corresponds to the horizon and z→ 0 to the
weak coupling region (the X →∞ boundary). The background solutions take the form

XB(z) =
p
µ coth(

p
µz) , (192a)

ωB(z) =
1
2

ln
� 4

cosh2(pµz)

�

, (192b)

ω̂B(z) =ωB + ln XB =
1
2

ln
� 4µ

sinh2(pµz)

�

, (192c)

and the homogeneous solutions of (186) are

y1(z) = coth(
p
µz) , y2(z) = 1−pµz coth(

p
µz) . (193)

Let us set the arbitrary function k(X ) in (182) to zero for a moment and see what the results
are in that case. Plugging the background into (184) we solve as described above obtaining

δω(z) = cω̂2 −
cX1p
µ
+

tanh(pµz)
2
p
µ

�

3γ− 4η− 2cω̂2µ z + 2(η− 2) ln(cosh(
p
µz))

�

, (194)

δX (z) = 1− γ+η− cX1 coth(
p
µz)

− cω̂2µ z csch2(
p
µz) + (η− 2)csch2(

p
µz) ln(cosh(

p
µz)) , (195)

δR(z) =
p
µ
�

4cX1 − 6(η− 2) tanh(
p
µz)

�

. (196)

The consistent linearization condition (190) has been used to fix two of the four integration
constants in (188) to the values

cX2 = 0 , cω̂1 =
γ− 2
2
p
µ

. (197)

At z = 0 the line element for the background solution takes the form ds2 ' dτ2 + dz2. This
receives a constant rescaling at order ∆ from the linearized solution, which can be canceled
by fixing

cω̂2 =
1
p
µ

cX1 . (198)

Finally, the regularity condition at the horizon gives

β = lim
z→∞

�

−
2π
∂zω

�

=
2π
p
µ

�

1+∆

�

η− 2
p
µ
− cX1

��

. (199)

This can be solved by setting µ= 2π/β , as with the background solution, and

cX1 = η− 2 . (200)
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Equivalently, since µ is just an integration constant, we can absorb the cX1 term via the rescal-
ing16 µ → µ (1 − 2∆ cX1/

p
µ). Then to linear order in ∆ the condition (199) fixes µ to the

value

µ=
�2π
β

�2 �
1+∆

β (η− 2)
π

�

. (201)

Either approach gives the same result. It follows that for any allowed values of η and γ we can
always find a consistent and unique linearized solution around the background with horizon.
Let us now turn to solutions without horizon.

B.2 Background without horizon

Solutions without horizon have µ < 0 and describe locally AdS2 spacetimes [cf. (17)]. Defin-
ing the positive quantity λ := |µ| and analytically continuing (191), we find the background
solution

XB(z) =
p

λ cot(
p

λz) , (202a)

ωB(z) =
1
2

ln
4

cos2(
p
λz)

, (202b)

ω̂B(z) =ωB + ln XB =
1
2

ln
4λ

sin2(
p
λz)

. (202c)

The radial coordinate is chosen to take values z ∈ [0,π/(2
p
λ)) where again z → 0 corre-

sponds to the weak-coupling region (XB →∞) and z → π/(2
p
λ) is the region of vanishing

background dilaton. We proceed as before with solving (184), setting k(X ) = 0 for now. The
expressions we get for δX and δR are

δX = 1− γ+η− cX1 ȳ1(z) + cX2 ȳ2(z) + csc2(
p

λz)
p

λ
�

cω̂1 − cω̂2

p

λz
�

+
csc2(

p
λz)

2

�

γ− 2+ 2(2−η) ln(cos(
p

λz))
�

, (203)

δR= 6(η− 2)
p

λ tan(
p

λz)− 4cX1

p

λ+ 4cX2zλ . (204)

Here, ȳi(z) are the analytically continued versions of homogeneous solutions (193)

ȳ1(z) = cot(
p

λz) , ȳ2(z) = 1−
p

λz cot(
p

λz) . (205)

To satisfy the first linearization condition (190) δX must approach zero at least as rapidly as
XB for z→ zmax =

π

2
p
λ

. Expanding around that value

lim
z→zmax

δX = (2−η) ln
�
p

λ (zmax − z)
�

+ cX2 −
γ

2
+η+

p
λ

2
(2cω̂1 − cω̂2π) +O(zmax − z) , (206)

it becomes evident that a logarithmic divergence appears at small values of the background
dilaton which cannot be cancelled by any choice of the homogeneous solution. We thus have
to fix η = 2 to make sense of linearized backreaction for horizonless states as only then the
corrections have the chance to be small compared to the background. A similar problem would
appear for the correction of the Ricci scalar (204). However, the divergent term automatically
cancels for the above choice of η.

16The background dilaton is XB(z) =
p
µ y1(z), so the coefficient cX1 of y1(z) in the homogeneous solution δXhom

can naturally be absorbed in this manner.
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One may ask, whether instead of fixing η= 2 one can instead make an appropriate choice
of k(X ). We argue now that this is not possible. In the following three examples the same
system of equations is solved for specific choices of k(X ) including an arbitrary coefficient
ρ ∈ R. The corrections to X and R then take the form

k(X ) = ρX : lim
z→zmax

δX = (2−η) ln
�
p

λ(zmax − z)
�

+
λρ2

6
+O(1) , (207)

δR = δR
�

�

ρ=0 +
2λ

3
2ρ2

3
cot(

p

λz)
�

8− 5 csc2(
p

λz)
�

, (208)

k(X ) = ρ ln X : lim
z→zmax

δX = (2−η) ln
�
p

λ(zmax − z)
�

+
ρ2

2
+O(1) , (209)

δR = δR
�

�

ρ=0 , (210)

k(X ) =
ρ

X
: lim

z→zmax
δX =

�

2−η+
2ρ2

3λ

�

ln
�
p

λ(zmax − z)
�

+O(1) , (211)

δR = δR
�

�

ρ=0 −
2ρ2

3
p
λ

tan(
p

λz)
�

8− 5sec2(
p

λz)
�

. (212)

In each case the behavior of δX is shown in the problematic limit z→ zmax.
In (207) and (209) the log divergence in δX is unaffected. A similar result is obtained if

k(X ) is any positive power of X . So for the first two choices of k(X ) we cannot get around
setting η = 2. In addition, δR in (208) has a divergence at z → 0, which violates the second
linearization condition in (190). The choice k(X ) = ρ/X changes the logarithmic term in
(211), but to cancel the divergence we would have to choose ρ = ρ(λ). This clearly does not
make sense as ρ is a parameter of the model and thus cannot be dependent on the solution.
And, as with positive powers of X , this choice introduces a divergence in δR, this time at
z → zmax. Other negative powers of X lead to the same behavior, so choices of k ∼ X c with
c < 0 have to be excluded as well. The only consistent choice is k(X ) = ρ ln X . But looking
at (182b) it becomes clear that this just amounts to a shift γ 7→ γ− ρ2. Therefore, k(X ) can
always be absorbed by a redefinition of γ.

We conclude that a consistent linearized backreaction for the horizonless solution with
general values of η is not possible. Under these assumptions, the choice η = 2 is the unique
measure allowing a consistent backreaction for solutions without horizon.

C One-loop effective action

In this Appendix, we construct a local description of the effective action for the semiclassical
models studied in sections 5.2 and 5.3. For the η= 0 model this is straightforward, but there
are subtleties when writing down a local effective field theory description that reproduces the
semiclassical theory with η= 2 and k(X ) = 0. Demanding the existence of such a description
fixes the last remaining free parameter γ.

The effective action obtained by integrating out the matter fields in the path integral is
in general non-local. Along the lines of [10, 20] it should, however, be possible to obtain an
equivalent action which is local, diffeomorphism invariant, and second-order in derivatives of
the fields by adding a new “ancillary” scalar field χ. Evaluating this action on a solution of the
EOM for χ gives the original non-local action, and the coupling of χ to the metric and dilaton
reproduces the semiclassical corrections 〈Tµν〉 and 〈TX 〉 to the EOM. The action has the form

Γeff[g, X ,χ] = ΓB + Γχ , (213)
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where ΓB is the classical Euclidean action (29) with fi = 0, and Γχ is the action for the ancillary
field that encodes semiclassical effects.

For the η= 0 model considered in section 5.2, an action Γχ that satisfies our requirements
is

Γχ =
∆

κ2

∫

M
d2 x
p

g
�

χR+ (∇χ)2
�

+
2∆
κ2

∫

Σ

dx
p

hχ K . (214)

This is proportional to the parameter ∆ = N G/3 defined in (94). The EOM obtained by
varying the action with respect to χ is

2∇2χ = R . (215)

The variation of Γχ with respect to the metric, evaluated on a solution of theχ EOM, reproduces
the semiclassical corrections studied in section 5.2.

In the rest of this appendix we focus exclusively on the model with η = 2 and k(X ) = 0
studied in section 5.3. This requires a more general action that includes different possible
couplings between χ and the dilaton. The two-derivative terms that might arise are

Γχ =
∆

κ2

∫

M
d2 x
p

g
�

χR+ (∇χ)2 + c4R ln X + c5(∇ ln X )2 (216)

+ c1χ∇2 ln X + c2∇χ∇ ln X + c3 ln X ∇2χ
�

+
2∆
κ2

∫

Σ

dx
p

h
�

(χ + c4 ln X )K −
c1

2
χnµ∇µ ln X −

c3

2
ln X nµ∇µχ +Lct

�

.

This action includes a boundary integral with Gibbons–Hawking–York contributions and other
terms required by second-derivative bulk terms. There is also a boundary counterterm La-
grangian Lct that is fixed once we have determined the boundary conditions for the ancillary
field. The coefficients ci in the bulk part of Γχ parameterize the possible effective terms con-
sistent with the above requirements.

The EOM for χ obtained by varying (216) is

2∇2χ = R+
�

c1 − c2 + c3

�

∇2 ln X . (217)

Solving this equation in conformal gauge (9) gives

χ = −ω+
c1 − c2 + c3

2
ln X +χ+(x+) +χ−(x−) , (218)

with two unspecified integration functions χ±(x±). Inserting this result into

〈Tµν〉=
2
p

g

δΓχ

δgµν
, 〈TX 〉=

2
p

g

δΓχ

δX
, (219)

obtains (105), (109) and (110) with k(X ) = 0 and the identification

η= −c1 + c2 − c3 − 2c4 , γ=
(c1 − c2 + c3)2

2
− 2c5 . (220)

The τ±± terms in 〈T±±〉 are related to the functions χ± by

τ±±(x
±) =

N
24π

�

2∂ 2
±χ
± − 2

�

∂±χ
±�2

�

. (221)

43

https://scipost.org
https://scipost.org/SciPostPhys.13.6.119


SciPost Phys. 13, 119 (2022)

Fixing η= 2 gives one condition,

−c1 + c2 − c3 − 2c4 = 2 , (222)

on the coefficients in the effective action. But there is still considerable freedom in the choice
of action functional. Even if we fix γ there is a three-parameter family of actions and one
would assume that these might take different values on-shell.

Our goal is to study the semiclassical thermodynamics by evaluating the action on the
backreacted solutions, so any ambiguity in the action introduced by this procedure is unsatis-
factory. Of course, the point of introducing χ was just to obtain a convenient local action. We
imagine that (up to standard ambiguities in the effective action) there is a unique action we
are trying to reproduce. It is therefore natural to demand that the on-shell value of both the
action and its first variation be independent of the choice of the parameters ci once η and γ
are fixed. That such a possibility exists is by no means obvious. However, it turns out to be
true in our case.

In section 5.2 the semiclassical EOM could be solved exactly for the model with η= 0. With
the choice of measure η = 2, this is no longer possible for general values of the parameter γ.
It is therefore necessary to linearize in ∆� 1 and repeat the computation of Appendix B for
b 6= 0. We then evaluate the action (213) on the linearized solution and ask what conditions
should hold in order for the result to be independent of the choice of ci once η is fixed. Note
that, since we are linearizing, the Γχ part of the action is evaluated only on the background
solutions. We first consider linearizing around the horizonless AdS solutions described in
section 2.2 and (27), and focus on models with b < 0 for simplicity. Working in conformal
gauge, the horizonless background solutions have µ < 0 and take the form17

XB(z) = |b|+
Æ

|µ| cot
�
Æ

|µ| z
�

, (223)

ωB(z) =
1
2

ln
4|µ|

�p

|µ| cos(
p

|µ| z) + |b| sin(
p

|µ| z)
�2 , (224)

where z ∈ [0, zmax]. The dilaton vanishes at

zmax =
1

p

|µ|

�

π− cot−1 |b|
p

|µ|

�

, (225)

while z→ 0 is the boundary X →∞. The ancillary field takes the form

χ = −ωB +
c1 − c2 + c3

2
ln X +

Æ

|µ|χ1 z +χ0 , (226)

where staticity restricts the homogeneous solution to a linear function in z dependent on two
integration constants χ0,χ1 ∈ R.

Let us consider the various terms in (216). A short calculation shows that contributions at
z → zmax from the R ln X and (∂ ln X )2 terms diverge, so we henceforth set c4 = 0 and c5 = 0.
In that case the condition (222) on the remaining coefficients becomes −c1 + c2 − c3 = 2, and
the terms in the second line of (216) can be rewritten as

∫

M
d2 x
p

g
�

c1χ∇2 ln X + c2∇χ∇ ln X + c3 ln X∇2χ
�

=
∫

M
d2 x
p

g
�

2∇χ∇ ln X
�

+
�

c1B1 + c3B3

�

�

�

�

zmax

z=0
, (227)

17Models with b ≥ 0 can be treated in the same way. However, for b > 0 one must consider solutions involving
trig functions of

p

|µ| z when µ < 0 and hyperbolic trig functions of
p
µ z when 0≤ µ < b2.
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where B1 and B3 are total derivative terms arising from integration-by-parts. Boundary terms
in the last line of (216) cancel the contributions from these total derivative terms at z → 0,
leaving just the contributions at z→ zmax

B1

�

�

�

zmax

∝ lim
z→zmax

β
p

hχ nµ∂µ ln X , (228)

B3

�

�

�

zmax

∝ lim
z→zmax

β
p

h ln X nµ∂µχ . (229)

These are both non-zero for generic values of χ0 and χ1 in (226). Since they are multiplied
by c1 and c3 in (227), the on-shell value of the action (216) will depend on the specific choice
of coefficients ci unless the homogeneous solution for χ is chosen so that both terms vanish.
This is accomplished by taking the unique homogeneous solution for χ such that χ and ∂zχ

both go to zero at z→ zmax. We have the requirements

−c1 + c2 − c3 = 2 , (230)

χ0 = −|b| zmax +
1
2

ln
�

4(|µ|+ b2)
�

, (231)

χ1 =
|b|
p

|µ|
, (232)

that ensure that any particular choice of the parameters c1, c2 and c3 in Γχ gives the same on-
shell value for the action and its first variation. Finally, an analysis of the variational properties
of the action fixes the boundary counterterm in (216) to be

Lct =
X
2

. (233)

This boundary term also guarantees that the action is finite on solutions of the semiclassical
EOM. A convenient representative of this family of equivalent actions is

Γχ =
∆

κ2

∫

M
d2 x
p

g
�

χR+ (∇χ)2 + 2∇χ∇ ln X
�

+
2∆
κ2

∫

Σ

dx
p

h
�

χ K +
X
2

�

. (234)

This form of the action is used throughout section 5.3.
We evaluate this action for solutions with horizon to check that its on-shell value remains

independent of the choice of constants ci . The background reads

XB(z) = |b|+
p
µ coth

�p
µ z
�

, (235)

ωB(z) =
1
2

ln
4µ

�p
µ cosh(pµ z) + |b| sinh(pµ z)

�2 , (236)

where z ∈ [0,∞), µ ≥ b2, and the horizon is at z→∞. With −c1 + c2 − c3 = 2 the ancillary
field is

χ = −ωB − ln X +
p
µχ1 z +χ0 , (237)

where the two constants χ0 and χ1 in the homogeneous solution do not necessarily take the
same values as for the horizonless background. Indeed, evaluating the total derivative contri-
butions (228) and (229) for this solution (at z →∞) both terms vanish iff χ1 = −1. There
is no condition on χ0, which can be rewritten in terms of the value χh that the ancillary field
takes at the horizon

χ = χh −
p
µ z + ln (2 sinh(

p
µ z)) . (238)
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Thus, the on-shell action for solutions with horizon gives the same value for any choice of
the constants c1, c2, and c3, subject to the conditions found previously. The local form of the
effective action (234) gives the unique (up to standard ambiguities associated with effective
actions and boundary counterterms) on-shell value of the action and its first variation for all
the solutions we consider.

The action derived above gives a well-defined variational principle in the sense mentioned
in section 2.1 and studied in [31]. That is, the first variation of the action vanishes on-shell
for all field variations with the same X →∞ asymptotic behavior as solutions of the EOM. In
the coordinates used here this corresponds to z→ 0. This means that the corrections to X and
gµν should satisfy the same boundary conditions at Σ as the background. To determine the
appropriate boundary condition for the ancillary field we expand near z→ 0 and find

lim
z→0
χ = ln

z
2
+χ0 +χ1

p
µz +O(z2) , (239)

for solutions with horizon, and a similar expression (with µ replaced by the appropriate param-
eter) for horizonless solutions. As we have to fix χ1 and possibly χ0 to get a consistent on-shell
action in the sense mentioned above, we choose the boundary condition of the ancillary field
as

δχ =O(z2) . (240)

It follows that

δΓeff

�

�

�

EOM
= 0 , (241)

as required. Furthermore, varying the action with respect to the boundary value of the metric
gives a finite quasilocal stress tensor.

It is interesting to note that, once we set c4 and c5 to zero, the constraint (220) on the
coefficients ci implies

γ= 2 . (242)

In fact, this value for γ makes it possible to solve the semiclassical equations exactly, allowing
us in section 5.3 to go beyond the linearized solutions considered in this Appendix.
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[50] M. Cvetič, G. W. Gibbons, D. Kubizňák and C. N. Pope, Black hole enthalpy and an
entropy inequality for the thermodynamic volume, Phys. Rev. D 84, 024037 (2011),
doi:10.1103/PhysRevD.84.024037.
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