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Abstract

Open quantum systems provide an essential theoretical basis for the development of
novel quantum technologies, since any real quantum system inevitably interacts with its
environment. Lindblad master equations capture the effect of Markovian environments.
Closed quantum systems can be treated using flow equations with the particle conserving
generator. We generalize this generator to non-Hermitian matrices and open quantum
systems governed by Lindbladians, comparing our results with recently proposed gener-
ators by Rosso et al. [1]. In comparison, we find that our advocated generator provides
an efficient flow with good accuracy in spite of truncations.
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1 Introduction

Even with recent computational advances, the theoretical study of many-body quantum physics
proves computationally very challenging, in particular for open systems. Often, only part of
the system is modeled microscopically with the remaining system treated as an external en-
vironment, introducing dissipation to the microscopic system. The environment cannot be
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disregarded, since in Nature as well as in practical technical applications one can never com-
pletely isolate a system from its surroundings, a problem especially significant for quantum
information processing [2].

Lindblad (or Gorini-Kossakowski-Sudarshan-Lindblad) master equations provide the most
general description of systems with couplings to Markovian baths [3]. The corresponding
Lindblad operator is non-Hermitian, as opposed to the Hermitian Hamiltonian and observ-
ables used in closed quantum mechanical models. Prominent examples of such systems in-
clude exciton polaritons [4], cold gases with losses [ 5], circuit QED array [6], trapped ions [7]
and Rydberg atoms [8]. Outside of Lindblad formalism, non-Hermitian Hamiltonians can ap-
pear systematically [9,10] as well , for instance in the Dyson-Maleev representation, in which
the spin operators are replaced by effective bosonic operators which are not explicitly Hermi-
tian on the full bosonic Hilbert space [11,12]. To solve the dynamics of such systems, novel
methods must be developed or existing methods for treating Hermitian Hamiltonians must
be adapted. Various methods have been introduced to this end, including quantum trajecto-
ries [13], tensor networks [14,15] and extensions of mean field theories [16, 17]. Efficient
and robust methods that can easily be extended to more classes of open quantum system are
invaluable in understanding novel quantum phenomena, especially for systems which cannot
be solved exactly and need to be treated approximately.

The method of interest in this paper is the flow equation approach [18], also known as con-
tinuous unitary transformations (CUTs), a renormalization scheme which is traditionally used
to transform Hermitian matrices and operators into an effective basis. Flow equations were
proposed by Wegner for condensed matter physics [19] and independently by Glazek and
Wilson for high-energy physics under the name similarity renormalization scheme [20, 21].
Similar flow equations have been studied by the mathematicians Brockett, Chu und Dries-
sel, called double bracket flow [22-24]. Flow equations have been applied on a wide range
of problems including the Anderson model [25, 26], the spin-boson model [27], electron-
phonon interaction [28,29], quantum systems including an environment [30,31], spin chains
with and without frustration [32-35], the quantum sine-Gordon models [36, 37], Shastry-
Sutherland lattices [38], spin ladders in copper nitrate [39], coupled spin ladders in the com-
pound BiCu,POg [40], the Kondo model out of equilibrium [41], and a quenched Hubbard
model [42]. Very often the goal is to decouple subspaces M,, of different numbers n of quasi-
particles by the change of basis. The transformation to the decoupling basis for the Hamil-
tonian has to be used for observables as well [30,43]. In the quasi-particle conserving basis,
subsequent calculations such as the calculation of spectral functions can be performed com-
putationally efficiently and with high numerical accuracy [44] and the effects from various
quasi-particle spaces can be switched on or off selectively [45].

The dynamics of extended physical systems are described by large matrices with exponen-
tially increasing dimension for increasing system size. Such matrices cannot be dealt with
numerically. Hence, physically justifiable truncation schemes are required to obtain closed
sets of equations. This applies equally to descriptions in second quantization where one has
to truncate the tracked number of operators to a finite set of operator monomials. Trunca-
tions can be performed based on the range of processes in real-space [46], perturbation the-
ory [32] or scaling arguments such as the operator product expansion [36,37] or the scaling
dimension [47,48]. Flow equations are especially useful for systems that can be expanded
perturbatively [49]. By using generator schemes with renormalizing properties and preserv-
ing band-diagonality, the error introduced by truncating the system to only the most relevant
components can be kept small [50]. The flow equation approach can also be extended and
combined with other formalisms such as the Floquet theory [51-53].

So far, flow equations are restricted to Hermitian matrices or non-Hermitian matrices with
real eigenvalues. But in dissipative open quantum systems one encounters non-Hermitian
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matrices with complex eigenvalues. The imaginary parts encode relaxation and dissipation.
Their quantitative understanding is crucial in non-equilibrium physics in general, for instance
for any pump-probe experiments, and for quantum coherent control as it matters for quan-
tum information processing. For this reason, we want to generalize the framework of flow
equations to dissipative flow equations [1] which work for non-Hermitian matrices as well.
Dissipative flow equations can be used for studying the non-unitary dynamics of a dissipative
system. This is different from approaches in the past, which attempted to describe the unitary
dynamics of system and environment microscopically as a whole [26,27,30,54-62]. The idea
of dissipative flow equations is to start from a framework of open quantum systems and to
solve the problem using a generalized flow equation scheme. This field is still in its infancy
and this paper aims to advance it by advocating an improved generator.

In 2020, Rosso et al. laid an important foundation for dissipative flow equations by in-
troducing three novel generators for non-Hermitian matrices [1]. The authors focused on the
important speed of convergence of the flows induced by the generators for various systems.
In the present work, we extend this focus to the equally crucial accuracy of the flows in spite
of truncations. As exposed above, truncations are inevitable for almost all applications. Thus,
the robustness of the flows against truncation is very important; an appropriate generator
scheme must keep the truncation error small to capture the physics correctly. The key idea
to achieve this consists in the renormalization properties of the generator: large energies and
rates are dealt with before the flow simplifies the processes at low energies and rates. To this
end, we propose an improved generator scheme, the generalized particle conserving generator
(gpc-generator), which addresses both the requirements for convergence speed and accuracy.
We benchmark both criteria for all four generators (the three from Rosso et al. and the gpc-
generator) by applying them to various mathematical and physical systems. Our results show
that the previously proposed generators only fulfill one of the two criteria, respectively, while
the gpc-generator allows for a good tradeoff, combining an efficient numerical calculation with
low truncation errors.

We begin by introducing the basic flow equation mechanism in Sec. 2.1. We then recall the
particle conserving generator (pc-generator) [32,50] in Sec. 2.2. The pc-generator is known
for an improved energy-dependence of the convergence compared to the Wegner generator
[19] and for preserving the band-diagonality of the Hamiltonian. Then, we introduce the basic
concept of non-Hermitian flow equations in Sec. 2.3 and briefly discuss the important physical
application of the Lindblad master equations in Sec. 2.4. We show how the pc-generator fails
for such non-Hermitian matrices in Sec. 2.5 and point out the solution for the trivial special
case of Antihermitian matrices in Sec. 2.6. We conclude the discussion of the pc-generator by
explaining how perturbative truncations can be performed in Sec. 2.7.

To tackle the non-Hermitian case, we introduce the generalized particle conserving gener-
ator (gpc-generator) in Sec. 3.1. We proceed by comparing the gpc-generator with the gen-
erators proposed by Rosso et al. [1], which are generalizations of the generator introduced
by Wegner [19] and the one by White [63] to non-Hermitian matrices, in Sec. 3.2. We prove
convergence of the gpc-generator perturbatively in Sec. 3.3.

In Sec. 4, we benchmark and compare the four generators for concrete mathematical and
physical models. We start by introducing the benchmark parameters in Sec. 4.1 and by dis-
cussing a simple physical two-level model analytically in Sec. 4.2. We proceed with a numerical
benchmark of a mathematical example of randomly sampled matrices in Sec. 4.3, where we
also show the importance of the ordering of the diagonal matrix elements. We proceed with
the numerical benchmark for two physical examples, both exhibiting dissipation and a single
strongly dissipative state: One is a model with ordered energies in Sec. 4.4 and the other is a
model with unordered energies in Sec. 4.5. As a final numerical example we sample random
Lindbladians in Sec. 4.6. We summarize our findings in Sec. 5.
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2 Fundamental Challenges

2.1 Hermitian Flow Equations

The idea of the flow equation method or continuous unitary transformations is to transform a
problem described by one or multiple Hermitian matrices to a basis, in which the matrix takes a
simpler and more tractable form. In that sense, the key idea is to transform a Hermitian matrix
H to an effective matrix H¢ using unitary transformations. In parallel, all relevant observables
O are transformed to effective observables O using the same basis as H.g. Instead of doing
this in a single step, we perform a continuous transformation [19,20,32,50].

H() =U)HO)U)",  H(0):=H, H(oo)=: Hg, (1a)

¢
U(L) =T, exp (J n(ﬁ’)dﬁ’) , (1b)
0

with an unitary transformation matrix U(£) and the {-ordered product 7,. Note that U({) can
be written in terms of the generator n(¢) as in (1b). While this approach seems to introduce
unnecessary complexity to the problem, it allows us to write the problem in the form of the
flow equations

SHO = [0, HO), @

which can be solved analytically in some cases, but is most commonly solved numerically.
Here, we use the notation n[H({)] to emphasize that the generator generally depends on
H({). Analogously, the flow equations of the observables read

d%ow) = [1[H(©O), 0(0)]. @

The advantage of an {-dependent generator can be illustrated by the analogy to a rotation.
The generator represents the rotation axis. Its dependence on ¢ allows one to optimize the
orientation of rotation to the momentary situation at this particular £. In the extremely high-
dimensional space of operators this optimization represents a vital asset. Thus, by choosing
an optimized generator scheme, we modify the properties of the flow in order to obtain an
amenable effective matrix H.g. For instance, the matrix H can be the Hamilton operator of a
many-particle system which does not conserve the number of particles, while a better tractable
effective matrix H.g conserves the number of quasi-particles and allows for a much simpler
subsequent analysis.

2.2 The PC-Generator

The particle conserving generator, in the most general form, is defined by

n*[H]=H'—H, (4a)
ng,cn[H] = Sign(qnn - qmm)hnm > (4Db)

for Hermitian matrices H [32, 50, 64]. We denote the matrix elements of n by 7,;. The
dependencies on £ are not denoted explicitly for brevity. The concrete definition of the operator
Q is chosen according to the specific problem, see below. The operator Q is diagonal; it is not
transformed together with H, which means that Q stays diagonal during the flow. The factors
Qnn are the diagonal elements of Q and the matrix H* contains all terms of H which increase
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Q, while H™ contains all terms which decrease Q. In matrix representation, the elements hjm
of H* are

(5)

h:l: — hnm vSign(qnn _qmm) ==1,
nm
0 else.

We can choose the concrete definition of operator Q depending on the desired Hg. For
example, we can have Q count the number of quasi-particles if we want to decouple subspaces
with different numbers of quasi-particles, obtaining a quasi-particle conserving H.g. In that
case, H' contains all terms which increase the number of quasi-particles and H~ all terms
which reduce the number of quasi-particles. If we want to diagonalize H, we choose q,,,, :=n
and obtain

My [H] = sign(n—j)hy;, (6)

in which case H* and H™ are the upper and lower triangular part of H, respectively. We will
use definition (6) of the pc-generator in this work, as it is directly accessible for numerical
benchmarks on various systems. We stress that because of the term sign(n — j), the generator
attempts to sort the diagonal elements in ascending order [32,50,65]. If they are not sorted
initially or the order is destroyed because two diagonal elements swap indices in the course
of the flow, the flow performs major rearrangements of matrix elements. Temporarily, this
causes an increase of off-diagonal elements. One possibility to avoid this consists in defining
Qnn = hpy, yielding

T)gfn[H] = Sign(hnn - hmm)hnm . (7)

Note that this does not offer a fundamental improvement of the method and works in the same
way as interchanging the basis vectors of the states without sorted h,,,.
In comparison to the Wegner generator [19]

1/,jW[I:-\[] = [Hdiag’ Hnon—diag] > (8)

the pc-generator (6) conserves the band-diagonality of H. When the flow is close to a fixed
point, off-diagonal elements converge to 0 according to m,;({) o< exp(—|AE,;|¢) with diag-
onal differences AE,; := m,, —m;j; as opposed to the m,; o< exp(—lAEnjlzf) scaling of the
Wegner approach. Diagonalization can be achieved with the pc-generator even when H fea-
tures degeneracies [32,50,65]. Since the pc-generator was first suggested, several perturbative
modifications [66] and other improvements have been established, for instance, the directly
evaluated enhanced perturbative CUT (deepCUT) [49].
For Hermitian matrices H, the pc-generator induces the flow

dihay = (sign(n— k) hyhy; +sign(j — k) hyjh) (9a)
k

= Ghy, =2 sign(n—k) g, (9b)
k#n

For finite (1 < n < N) and infinite (1 < n) matrices we can sum over the first r diagonal
elements to show the relation

af (ihnn) = Zr:z_zlhnklz <0, (10)
n=1

n=1k>r

implying that the sums can only decrease but never increase. Due to the variational principle
the quantity 22:1 h,,, is bounded from below by the sum of the lowest r eigenvalues of H

S o
n=1 n=1

6
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and thus the flow must converge [32,50,65].

2.3 Non-Hermitian Flow Equations

The pc-generator can be generalized to non-Hermitian matrices M
M(£) =S(O)M(0)S(e) 1, (12a)

¢
S() =T, exp (f n((’)dﬂ’) , (12b)
0

with a transformation matrix S(£), that needs not necessarily be unitary so that the generator
1(£) needs not necessarily be Antihermitian. For { — 00, we arrive at an effective matrix M.
The resulting flow equations for M and all relevant observables O read

M) = [nlm ()], M), (132)
o) =[nm®1, 0], (13b)

in analogy to the Hermitian case. In some cases, these equations can be solved analytically,
but in most cases a numerical integration is necessary. Numerical integrations are stopped at
a finite £, where the numerical flow is close enough to its converged fixed point M.g. The
choice of the generator 7 affects the properties of the flow, in particular the speed with which
M(¢) converges for a given system.

2.4 Lindblad Master Equations

As an application of non-Hermitian matrices in physics, we will focus on the Markovian Lind-
blad master equations

ih%P(t) =[H,p(t)]+ ihza: m(Lap(t)Lj; — %(LlLap(t) +p(t)LlLa))

= L[p(t)], (14)

which describes the dynamics of a quantum system in contact with an external bath by the
time-dependent density matrix p(t) and the Hamiltonian H. The operators L, are called
Lindblad operators [3], but sometimes also (quantum) jump operators or noise operators [67].
The corresponding rates are denoted by y,. The first summand is the Liouville-von Neumann
equation and the other summands describe the coupling (dissipator) to the environment. The
Lindbladian £ is a linear superoperator acting on operators in the Fock-Liouville space. For
all computational purposes, £ can be represented by a complex matrix, using a basis of p in
CW). The Lindbladian £ is not Hermitian and has complex eigenvalues A with Im(A) < 0.
For all eigenvalues with Re(A) # 0, £ also has the eigenvalue —A*. This is due to the sym-
metry £ = —L" of the map. Note that in other references, the Lindbladian is often defined
by L[p(t)] = % p(t), in which case non-real eigenvalues appear in pairs (A, A*) instead of
pairs (A,—A*). We will consider examples of spectra in C in Sec. 4.6 as part of the numerical
benchmarking.

Since we use the prefactor it in the definition L[p(t)] = ih% p(t), the time-evolution of
the eigenstates reads p,(t) = p,(0)exp(—iAt/h). The real parts of the spectrum describe
energies, which appear in the temporal evolution as oscillations exp(—iRe(A)t/f). The imag-
inary parts describe dissipations. Due to Im(A) < 0, all eigenstates decay over time with
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exp(—|Im(A)|t/k). The eigenvectors to the eigenvalue A = 0 corresponds to a steady state
po(t) = po, which can be degenerate. These states do not vanish in the temporal evolution.
Quasi-stationary states have an eigenvalue A with Im(A) = 0.

2.5 Limitations of the PC-Generator for Non-Hermitian Matrices

For a non-Hermitian matrix M with elements m,;, the variational principle does not hold.
Furthermore, the flow becomes more intricate. For example, the sum over the first r diagonal

flows is ) )
Z 8@ My = Z Z _zmnkmkn s (15)
n=1

n=1k>r
where m,,;;m;,, € C needs not be positive or even real, so we cannot derive the inequality (10)
that applied for Hermitian matrices H.
To understand the flow better, the general matrix M is split into a Hermitian part H = H'
and an Antihermitian part A= —A"

M+M'

M=H+A, H:= T’ hnj = (H)nj, (16a)
M—-M'

A= T: anj = (A)n] > (16b)

where H has a real spectrum and A has an imaginary spectrum. With this, the flow equations
read

8H =[n[H], H]+[nlAl A], (17a)
oA=[n[H], A]+[n[A], H]. (17b)

The flows of diagonal and non-diagonal components are

J¢hy; = sign(n—j) [hnj(hjj —hpn) + apj(aj; — ann)]

+ Z [sign(n —k) (hnkhkj + ankakj) +sign(j — k) (hnkhkj + ankakj)] , (18a)
k#n,j

O = 2sign(n—k) (Ihl? — lal?) € R, (18b)
k

and
aZanj = sign(n _]) [hnj(ajj - ann) + anj(hjj _hnn)]

+ Z [sign(n - k) (hnkakj + ankhkj) + Slgl’l(] - k) (ankhkj + hnkakj)] s (19a)
k#n,j

Oy = Z 2sign(n — k) (ankh’;k + aknhin) €iR. (19b)
k

If the Antihermitian components are significantly smaller than the Hermitian ones, fast con-
vergence can still be observed in our calculations. Many examples of non-Hermitian matrices
with real eigenvalues are known for which the pc-generator still convergences. This has been
observed, for instance, when using Dyson-Maleev representations of spin observables [47,48]
and for spin lattices subject to a non-Hermitian staggered magnetic field [68].

If the eigenvalues are not real and the Antihermitian components of the matrix are signifi-
cant, convergence is often not achieved. In App. A we discuss some possible generalizations of
the pc-generator to non-Hermitian matrices which prove to be unsuited for real applications.
There, we also show the flow and the convergence coefficients of the pc-generator and some
generalizations of it for non-Hermitian matrices to illustrate that the pc-generator indeed fails
if the Antihermitian part is dominant.
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2.6 Special Case: Antihermitian Matrix

Before introducing a solution for the general case, let us consider a purely Antihermitian matrix
A. Such a matrix can easily be expressed by a Hermitian matrix H

A=—A", (20a)
H:=iA=H". (20b)

For any Hermitian matrix H we have already proven that the pc-generator
nﬁ?[H] = sign(n — j)hy;, 21

converges and the diagonal flow J,h,,, € R is real. Evidently, the corresponding generator to
use for A is
ipc . pc . .

Mhnj [A] = My [H] = sign(n _])lanj > (22)
and the corresponding diagonal flow &;a,, € iR is imaginary. We will call this generator
n'P¢ or imaginary particle conserving generator (ipc-generator). The induced flow of the ipc-
generator converges nicely for Antihermitian matrices, but struggles with Hermitian matrices
the same way the pc-generator struggles with Antihermitian matrices. Numerical results for
the ipc-generator applied to non-Antihermitian matrices can be found in App. A. Note that just
like the pc-generator, we can modify this generator slightly, for example to

Ny [A] = in[H] = sign(ia,, —ia;)ia,; (23)

if the diagonal elements are not explicitly sorted.

2.7 Perturbative Expansion and Truncation Errors

In many cases, the Hilbert space of the physical system is infinite or much too large and the flow
equations are not closed or too numerous. In those cases, we introduce a truncation method
to reduce the basis to only the most relevant processes. Note that this must not necessarily
mean a finite Hilbert space. If we use second quantization, i.e. the basis consists of operator
monomials, we only track one coefficients for each operator term and each operator can be
represented by an infinite matrix. This way, even a finite amount of operators can fully describe
processes on an infinite Hilbert space [49].

A generic and successfull truncation scheme for flow equations relies on a small expan-
sion parameter. One puts the focus on the most significant contributions given by the lowest
orders of a perturbative expansion. In order to benchmark such a perturbative truncation we
introduce the matrix

o0
M= Z A,M®
n=0

with the small perturbation parameter A < 1. The Taylor matrices M ™ shall be band-diagonal
up to the nth minor diagonal, i.e. the off-diagonal elements fulfill mg.?) =0V|j—I| > n. For
simplification, we truncate high orders n > n.,,,, arriving at

nmax

Mirune = Z AnM(n) .
n=0

Note that M., is of band-diagonality n,,,. We use the notation on,,,, for the order, e.g. 02
for a second order expansion including the first two minor diagonals. In the context of flow
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equations, we generally choose n,,,, large enough to not introduce any initial truncation error,
i.,e. M({ = 0) = Mync(¢ = 0). During the flow, however, the band-diagonality of the matrix
can increase, leading to a truncated matrix

oo
Mirunc(@) = > A,M®(0),  with MTM(0) =0V > iy,
n=0
nmax
= Z A”M(n)(g) + AM, trunc(e) .

n=0
We only track terms of maximum order n,,, so that the flow equations are still closed in the
course of the flow. This leads to a finite truncation error. If we choose a sufficiently large
Nmax fOr a given, small perturbation parameter A, the truncation introduces a negligibly small
truncation error Ay yyne and the relevant physics is still captured sufficiently well. In this
context, it is obvious that the flow should not imply significant contribution on minor diagonals
far off. Ideally, it only modifies the tracked diagonal and minor diagonals.

The goal is to choose a generator that minimizes the truncation error, so that the physics
is well captured even in low orders. To minimize the error, a renormalizing flow is desirable.
Such a renormalizing flow first addresses excitations at large energies before it deals with the
ones at low energies. To this end, the speed at which it rotates the matrix elements m,; away
scales with |m,,, — myx|", where the exponent r depends on the chosen generator. Thus, if
the diagonal elements are sorted such that |m,, — my| < |m,, —my| YIn—k| < |n—1], the
renormalizing flow eliminates elements on the far off-diagonals very quickly and slowly moves
towards eliminating the elements on the closer off-diagonals. Note that rotating one matrix
element renormalizes the other matrix elements. This process leads eventually to the effective
model Meff-

If the flow equations do not conserve the band-diagonality of M, then rotating away el-
ements close to the diagonal also renormalizes elements far away from the diagonal. In this
way, far off-diagonal elements which were initially zero can take a finite value during the flow.
If those terms are truncated, however, all renormalizations of them are lost in the calculation.
This lost information leads to a significant truncation error Ay yync(£). This error can still
be kept small if the flow is renormalizing, since a renormalizing flow rotates far off-diagonal
elements away rapidly, including all renormalizations caused by the slower rotations of close
off-diagonal elements. Therefore, no significant renormalization of the far off-diagonals can
accumulate and the truncation error Ay . Stays small. For this reason, renormalizing gen-
erators are desirable for an accurate results in spite of truncation.

For Hermitian matrices the diagonal elements are real and can be ordered unambiguously
in absence of degeneracy. For non-Hermitian matrices, however, the diagonal elements are
complex and an ordering which fulfills |m,,, — my| < |m,, —my| Vin —k| < |n —1| does
not always exist. Furthermore, this ordering can change the band-diagonality of the matrix,
requiring a higher truncation order n,, ... In the benchmarking in Sec. 4 we consider physical
models with and without ordering. We see that reordering is not necessary for every system.
But in real applications the challenge of ordering the diagonal elements in a meaningful way
must be kept in mind.

3 GPC-Generator

3.1 Definition

The pc-generator defined in Sec. 2.2 provides a powerful tool for closed quantum system with
truncations, since it conserves the band-diagonality and is also renormalizing. However, we
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showed in Sec. 2.5 that it fails for non-Hermitian matrices with complex eigenvalues, which
appear in open quantum systems. For this reason, we want to generalize this generator scheme
to the non-Hermitian case. We saw in Sec. 2.6 that Antihermitian matrices can be treated by
the ipc-generator (22), which is the pc-generator with an additional phase factor of exp(irt/2).
In a sense, the pc-generator itself already contains a phase factor of exp(i0) = 1. Since the
diagonal elements of a Hermitian matrix are real and those of an Antihermitian matrix are
imaginary, it is reasonable to assume that for a general matrix M the correct phase factor is
directly connected to the complex phase of the diagonal elements m,,,, € C. With this idea in
mind, we can define the generalized particle conserving generator (gpc-generator)

* *
M

I L
0 Vm,, =m

mnj ann 7é TTlJJ 5 (24)

i

Note that the prefactor always has an absolute value of 1 and takes the value exp(i0) = 1 for
Hermitian matrices H and exp(irt/2) for Antihermitian matrices A. These special cases
My (H] = sign( hy, — hjphy; = nyi[H] VH=H", (25a)
nfgc[A] = isign(ia,, —ia;;)a,; = n;l;C[A] VA= -A", (25b)
match the generators (7) and (23) considered before. Note that for non-Hermitian matrices
with real eigenvalues, the gpc-generator is also equal to the pc-generator (7), explaining why
applying the pc-generator to such matrices leads to convergent flows.
We present other approaches to generalize the pc-generator in App. A and show that they
perform unsatisfactorily for non-Hermitian matrices. For this reason, only the gpc-generator
will be considered from here on.

3.2 Comparison to Generators Suggested Previously

Rosso et al. introduced three generators for dissipative systems [1]. Two of them are motivated
by the Wegner generator (8) and generalize it to non-Hermitian matrices. The third generator
is inspired by a prior suggestion in the context of quantum chemistry [63]. For clarity, we label
the three generators by the superscripts R1, R2 and R3

T’Rl = [MT’Mnondiag] 5 (26a)
,nRZ = [Mgiag’ Mnondiag] P T]EJZ = (mzn — m;fj)mnj 5 (26b)
mnj .
, ifm mi;,
nl:ji — ) Mpp—mj; . nn 7é jj (26c)
O’ 1f muy, = mJJ .

By defining ¢,; as the phase of m,, —mj;, a striking relation between three of the four
presented generators becomes apparent

nl,ff[M] = e Vnilm,, — mjjlmy;, (27a)
e_iﬁonjm . Vm m;:,

n;gl?c[M] _ nj nn 7é ji (27b)
0 ann = m]] 5

e_iwnj;m . Vm m:.,

0 ann :m”
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Two of the R-generators use the same phase factor e ¥ as the gpc-generator, but differ by
a factor |m,, —m;j;|. We can consider all three generators as special cases of a more general
definition

e—inpnj|mnn—mjj|rmnj ann#mjj,

M= { (28a)

0 ann =m”,

n®M] r=1,
nI[M]={ n#[M] r=0, (28b)
8 [M] r=-1.

In this sense, 8P¢ is placed between R2 and R3. Note that we can also define generators with
other values of the exponent r, including non-integer cases. In this paper we will focus on the
three cases r € {—1,0,1}.

The choice of the generator 1) also affects its physical dimension and hence the dimension
of the flow parameter £. For R1 and R2 the flow parameter has the dimension of an inverse
square energy 1/E?, for gpc the dimension 1/E and for R3 it is without dimension. More
generally, ) has the dimension E"*! and ¢ the dimension 1/E"*!. We also find the exponent
r + 1 in the asymptotic scaling behavior. We can show this with the flow equations

Oy ZZ(ﬂfllkaj _mnkn;((rj)) (29a)
k
=e Y |mnn - mjjlrmnjmjj - e_upnjlmnn - mjjlrmnjmnn
+ Z (e"kn|my, — my|” + 'k |m;; — ml") My My (29b)
k#n,j
— 1
—_lmnn_mjj|r+ mnj

::lAEnle—1 O(Mnondiag)

+ Z ("0t |myy — myg|” + €90 [y — myg|”) mpmy; (29¢)
k#n,j \_\2,_/
O(Mnondiag)

We call the differences of the diagonal elements AE in analogy to flow equations for Hamilto-
nians, where the eigenvalues are energies. We see that for large ¢, assuming that the matrix is
already close to its diagonal form, the first term dominates. Since, in this case, the diagonals
have already converged up to first order in Mpgiag On€ has my,,(£) = m,,(c0)+O(M, 13011 diag).
Hence, the off-diagonals show an asymptotic convergence m,; o< exp(—lAEnj|r+1€) with
AEnj = mnn(oo) - mjj(oo)-

Explicitly, the flow equations for R2 (r = 1), gpc (r =0) and R3 (r = —1) read

. _ 2
R2: gymy; = —|my, —mj;|*  my;  + Z (m;‘m + m}fj —Zmzk) MMy (30a)
k#n,j >
|AEnj 2 O(Mnondiag) O(Mx%ondiag)
* * * *
m._—m m;,—m
nn kk Jj kk
gpe: Gy == |muy—myl my 4 D | e mymyg . (30D)
~— i M =il mg = mil ) ——
|AEnj | O(Mnondiag) O(M;%ondiag)
1 1
R3: gmy;=— my; + Z + MMy - (300)
—~— ket j Myn — Mg mjj—mkk ~—
O(Mnondiag) O(Mr%ondiag)

Note that the asymptotic convergence and the dimensions of the generators are the same as
those of the original generator they are based on, i.e. the Wegner generator for R2, the pc-
generator for gpc and the White generator for R3. Furthermore, the asymptotic convergence
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of gpc and R2 scales with the energy differences, which makes their flow renormalizing. We
emphasize that this is a desirable property for minimizing the truncation error as discussed
in Sec. 2.7. The gpc-generator does not, however, preserve the band-diagonality of M like
the pc-generator does for Hermitian matrices, see App. B. While R1 does not directly fit into
the more general definition (28), it shows a linear energy dependence, just like R2, and we
will see in our results that both generators perform similarly. Only R3 is not renormalizing,
because it deals with all energy differences simultaneously.
The units and convergence behavior of the generators are summarized in Tab. 1.

Table 1: Comparison of the dimensions and convergence behaviours of the generators
considered in this work.

Generator | [n] | [£] Convergence behavior
R1, R2 E? 1/E? exp(—(|AE|?)

gpc E 1/E exp(—L|AE])

R3 1 1 exp(—£)

,n(r) E1+r 1/E1+r eXp(—f|AE|1+r)

3.3 Proof of Convergence

We show convergence of the flow induced by the gpc-generator using perturbative arguments
in a general expansion parameter x. We assume a matrix without degeneracy (for simplicity)
with non-diagonal elements that can be expanded in a Taylor series

Mn(€) = my(£), ma(0) # my(€) Ya # b, (31a)
my(0)=>alO)x!, n#l, (31b)
i>0

where |x| < 1 is the expansion parameter. For brevity of notation, we define

m,—m | om
|y —mg | |my —my]

and calculate the flow of the non-diagonal elements

ae(zafj}(z)xi) =— |mn—ml|(zafj}xi) (33a)

i>0 i>0
+ 3% e el )(Za). (330
k#n,l i>0 j>0
' i 8) (i—6
= aeafjl)(e) =—|mn—ml|a’(fl)+ Z anl( Z a,gk)a]({ll )). (33¢)
k#n,l 0<6<i

The {-dependence is not denoted explicitly for brevity of notation, but all aslz still depend on £.
We show convergence using induction in i by proving that all orders j < i of the non-diagonal

elements m,;(£) become exponentially small beyond a value ¢;, i.e.

a0 < 1, Vi>ji>0€>¢,. (34)

nl

The induction basis is
a)=o0, Ve > £, (35)
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which is fulfilled with £, = 0 since the constant order a;?)(ﬁ ) vanishes for all non-diagonal
elements by definition of the initial conditions. For the induction step, we assume that all
orders j < i have become exponentially small

190 <1, Vj<i; €>Lnay, =max(ly,..L;1). (36)

nl

Then, obviously afli)al((il_g) XK 1 for all 6 €N that fulfill 0 < 6 < i. With |c,;| < 2 the second

summand in (33c) becomes negligible compared to the first summand. Therefore, we obtain

8gaflil)(£) N — |mn —my |a£lll)(€) 5 Ve > gmax, i> (37a)
= aflll)(e) ~ afzil)(emax, i)e—lmn(oo)—ml(oo)lé s Ve > emax, i (37b)
= aflil)(g) <1, A4 >€i with Ei >>€max,i- (37¢)

If £; is chosen large enough, asl)(ﬂ) < 1 VL > {; is fulfilled. This concludes the induction
step. Note that no specific value for {; is given in the derivation. The convergence speed
depends on the matrix elements m,,(¢) and m;(£), but for an arbitrarily large ¢;, convergence
will eventually be achieved. O

We point out that the series in x can be ill-behaved if ¢; grows quickly with i so that the

. . . () .
series m,;(£) does not converge in spite of the convergence of all a /. In all our numerical
calculations, however, we observed that the gpc-generator induces a convergent flow.

4 Benchmark Results

We want to compare the flow induced by the generators analytically in Sec. 4.2 and numerically
in Secs. 4.3-4.6. For the numerical benchmarking, two criteria are of interest: The convergence
speed in real time and the truncation error, which are measured separately. Note that often
rapid convergence and minimal truncation errors are two orthogonal requirements and that it
is important to choose a generator scheme which represents a good compromise.

4.1 Benchmark Parameters
Convergence Speed

Rapid convergence is advantageous because it allows for fast numerical calculations for com-
plicated systems. We need a quantity to measure the convergence of the flow. For this, we use
the residual-off-diagonality (ROD) [46, 66]

1
ROD[M] = — D> Imyl2, (38)
i j#i

where D is the dimension of the matrix M. The ROD measures the size of all off-diagonal
matrix elements and converges to 0 while the matrix converges to a fixed point of the flow.
In our benchmark tests, we always diagonalize the matrix which implies that the ROD indeed
vanishes. It should be noted, however, that in most physical applications a full diagonalization
is not desired and the ROD can be adapted to sum only over the matrix elements that should
vanish in M.y = M({ — o0) [66] in order to simplify the problem at hand. We stop the
integration when ROD < 1078/ is fulfilled, where J = [mg,] is the energy dimension of the
matrix. For numerical calculations with non-physical matrices, we simply set J to 1. The ROD
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is often used as a convergence measure in applications of flow equations where the spectrum
is usually not known beforehand.

To display the convergence behavior of the function ROD({) concisely we introduce the
convergence coefficient

C(Z) _ _ln[ROD(Emax)/ROD(Kmin)] .

Conv —

emax - Kmin 39
It measures the speed of the exponential convergence of the ROD according to the asymptotic
behavior ROD o< exp(—Cg))nvﬁ ). The larger Cgf))nv, the faster the flow converges. The upper
limit £, is chosen such that ROD(4,,,4) &~ 1e-6J and £ ,,;, such that ROD(¢,;;,) ~ 2ROD(£ 1,ax)
to ensure that initial transient behavior at £ ~ 0 as well as irrelevant fluctuations are ignored.
If no convergence is achieved, C © s set to 0.

Conv
While Céi)nv is a natural first choice, the generators induce different energy scales and thus
different dimensions for ¢, which makes a direct comparison difficult. For this reason we focus

on the variant

C(t) _ _ln[ROD(tmax)/ROD(tmin)]

Conv — . 5
tmax tmin

(40)

using the actual computation time t. Measuring the performance in real time is prone to
other artifacts, e.g. increased computation times due to throttling of the CPU. While this can
introduce random fluctuations in the measured times, we observe that the temporal coefficient

Cé;)nv still gives a more meaningful benchmark for the real-life performance of the various
)

generators than C .

In some cases we see that C((:g)nv fails to capture the flow since the flow ROD(t) deviates
too much from an exponential decay. For this reason we also show exemplary plots of the full
flow ROD(t). We also check all our results for correct convergence by comparing the diagonal
elements once the flow equations have converged with the eigenvalues obtained by standard

diagonalization.

Truncation Error

Rapid convergence speed is only desirable if it does not entail large truncation errors. To
benchmark the accuracy of the generators in spite of truncation, we initialize a matrix M.,
based on a physical or mathematical model M. For the preparation, we truncate M in order
ONpay SO that M, is band-diagonal with diagonal width ny,,,, see Sec. 2.7. This truncation
scheme is reasonable if the truncated off-diagonal elements are small. If this is not true for a
given model M in our benchmark, we introduce the expansion parameter A as before according
t0 My prep = Aln=i |mnj. Another useful step in the initialization of M, is the reordering of
the diagonals, so that the condition |m,,,, —m;;| > |m,, —my| for [n — j| > [n — k| is fulfilled.
Note that we always perform the truncation to a band-diagonal matrix, but we only introduce
the expansion parameter or reordering if we mention this in the results for the specific model.
As an instructive example of perturbative truncation based on A consider a 4x4 matrix in

truncation order 02

2
mp; Myp NMygz Moy mqg Amyy  Afmys 0
2
_ | My Mpy Mp3 Moy _ Amgy; myy Amys  Amg,
M = = Mprep - A,Z A A (41)
Mgy Mgy M3z M3y mgz; 2’“32 ms3 M3y
My Myy Myz Mgy 0 A"myy  Amys Myy4

After initializing M., we solve the flow equations in order ony,, to calculate the spec-

trum Aype. Any element m,,;(€) with [n— j| > np,,y is truncated during the whole calculation,
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so truncation errors arise and the size of these errors depends on the model and the used
generator. We compare Ay With the spectrum Aey,er 0f My, Obtained with standard diag-
onalization

Mprep: with spectrum Aexact = (Al, exact» 2'2, exact» **» AD, exact) 5 (423)
flow equations .
? Meff’ with spectrum Atrunc = (Al, trunc» )LZ, truncs ***» AD, trunc) 5 (42]3)
2
Atrunc = Atrunc - Aexact\ = \J Z |Ai, trunc ~ A'i, exact| . (42C)
n
Note that My, is prepared specifically to compare the truncation errors of different gen-

erators with one another, not to compare the error of different truncation orders. Since the
initial matrix M,g(0) = M, is already truncated in order onp,y, it is less scarce in higher
orders, so the error A, does not always decrease upon increasing the order. In real applica-
tions, one considers a fixed initial matrix and can decrease the truncation error by increasing
nmax-

We implement the calculations in C++ and use the Eigen library [69] for matrix arithmetics
and the Runge-Kutta-Dopri5 algorithm from the Boost library [70] for integrating the flow
equations. This integration algorithm uses a controlled stepper that adjusts the stepsize A/
to ensure a maximum absolute and relative error of 10~8 of each step. All computations are
performed on the same machine and the computational runtimes are measured in seconds.
Since the time depends strongly on the used hardware and software optimizations, absolute
values are not representative, but the relative values provide information on the performance
of the generators.

4.2 Analytical Example: Fermionic Mode with Losses and Gains
4.2.1 Physical Model

We first discuss a purely analytical example [1] to acquire a basic understanding of the flow
equations. Consider a system with a single fermionic mode of energy € coupled to a bath with
loss rate of I} and gain rate of I;,. The Lindblad operators are the canonical fermionic creation
and annihilation operators ¢ and ¢'. The Lindblad master equations read

ih%p(t) =[H,p(t)] + ihz (erjp(t)L}f — %rj {L}Lj,p(t) }) (43a)
J

A

A=et¢, Ly=¢ Ly=¢. (43b)
We want to treat the fermionic problem including the bath as a fermionic two-level problem.
To do so, we study this model using the superfermion representation (presented in more detail

in Refs. [1,71,72]), where we express the density matrix p = Y pnn.In)(m| by a vector in
Fock-Liouville space

) =D pumln) @ m) =p & 1lI), (442)
1) = > In) @ [n). (44b)

Note that |I) is the expression of the identity matrix in Fock-Liouville space. Now, we can
define fermionic superoperators

c=¢®1, (45a)
E=(-1) "®¢, (45b)
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which describe the action of the fermionic operators ¢ and ¢' on the left side or on the right
side of the density matrix. These operators fulfill the fermionic anticommutation relations

{c,c}=0, {c,c'}=1, (46a)
{¢,¢}=0, {¢,¢"y =1, (46b)
{c,é}=0, {c,éT}=0. (46¢)

Applying the formalism yields the master equations in the form

_d _
1halp(t)) =M]|p(t)), (47)

where M is a bilinear expression

e— AT AT, c ik
M=(c" ¢ 2 e . | —e——(M+T
(C C) ( _hrl €+ %AFIZ CT € 2 ( 1 + 2): (48)

that can be diagonalized by a non-unitary, but invertible transformation M.s = SMS™! with
the diagonal elements A; and A,. We define new operators

d . .
(a-'r) - (ecf) .0, D)=(, 957, (49)

which also satisfy canonical anticommutation relations. Note that (d)" # D and (D) # dT,
but the operators fulfill the relations {d,D'} = 1 and {d",D} = 1. We obtain the diagonal
matrix

il .
o e [e=T+1y) 0 d)___in
Meff - (D D)( 0 €+ %(1—-1 + 1—-2) dT € 2 (Fl + F2): (50)

with AT}, =T} —TI,. With this, we obtain the analytical result
in
XiIEﬂ:E(Fl-I-Fz). (51)
We gauge the flow equation results with this analytical expression. We conduct the diagonal-

ization of the (2 x 2)-matrix with the presented generators of the flow equation parametrizing
the Lindbladian matrix as

M(0) = (e(é_) Jl (izc)(E) e(e‘;i(f;(f)) . a(0),e(6), ur () €R, (52a)
a(0) == AT, a0 =M, e(O)=c. (52b)

We stress that the matrix representation M (¢) fully determines the bilinear operator terms of
(48) in second quantization.

4.2.2 Flow Equations and Stationary State

The gpc-generator for this problem reads

(e—ia)—(e+ia) . .

e — ( L WHZ) _ ( 0 _”‘ZSIg“(“)) (53)

- e+ia)—(e—ia = _ . .
[(e+ia)—(e—ia)] (—u1) 0 iu,sign(a) 0
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and the flow equations read

oM =[n*, M] (54a)
124y psign(a) —2|al

= . . , 54b

( 2u4|a —i2uy upsign(a) (54P)

yielding the following differential equations for the parameters

gpe: Opa =2 Uysign(a), Oy =—2p4lal, g = —2uz|al. (55a)

For the other generators the following differential equations result

R1: o =4y uza, oy = =21 (2% + ui—u3), oy = —2Uy(2a* —pf +u3), (56a)
R2: Jpa = 4puippa,  Opuq =—4pia’, Oy = —4ua’, (56b)
R3: ga=pipo/a, G =—p1, Oplhz = —Hs - (56¢)
While all of these differential equations are quite simple, the system of differential equa-
tions for R1 is slightly lengthier and the equations for the gpc-generator seem slightly more
complicated than the ones for R2 and R3 due to the sign of a. By using |a| instead of o we

can reduce the complexity of the equations for the gpc-generator.
By using the two invariants of motion

Tr[M] = 2¢ = const. = € = const, (57a)

—p2 (I +1,)?

Tr[M?] = 2(e? — a?) — 2uu, = const. = a? + uq sy ) ,

(57b)

we obtain a single reduced equation of motion for a for each generator

gpe: d,a(l) = % (R3(1y + 1,)* — 4a%(0)) sign(a), (58a)

R1,R2: pa(t) = (M*(Iy + [,)* —4a?(€)) a(l), (58b)
) (I + )P

R3: ae a(f) = 4a—m - a(f), (58C)

where the different units of the flow parameter ¢ can be seen clearly because a, u; and AT}
are energies. The first three generators exhibit three fixed points at &, , = £h(I} +I,)/2
and a3 = 0. We check the stability of the fixed point by differentiating the flow equation
dpa =: f(a) respectively, receiving f'(a) and evaluating it at the fixed points. Since fy,(a)
diverges at a = 0, we evaluate the sign of g, in the proximity of a5 directly

fape(G12) = =201 + | <0, fapel@z) =*(T1 +1,)?6(0) > 0, (59a)
féLRz(&l,z) =—2f*(T} +,)* <0, fﬁl,Rz(ds’) =(I +1,)* >0, (59b)
faz(@) <O0Va#0, sign (6, ag3(£)) =sign(ags) for ags ~ @3 =0. (59¢)

We see that for all generators the fixed points @ , are stable and the fixed point a5 is un-
stable. This example shows that all four generators exhibit the same stationary value behavior,
even though the prefactors of the flow equations and therefore the convergence speeds in £
differ which can be seen in Fig. 1. Recall that £ has different units for the generators, so that
the above observation is rather a statement about energy dependence than about real-time
convergence speed. An analytical solution of the flow equations for the gpc-generator and a
simple observable are derived in App. C.
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M =0.1h, N, =0.2h N =0.5h, N, =1.0h M =1.0h, N, =2.0h

0.51
= 0.4 — gpc
+ R1
§03 R2
S — R3

o
[N

Figure 1: Exemplary flows a({) of the analytical example discussed in Sec. 4.2.

4.2.3 Simple Analytical Case I\, =0

We consider the special case I'; = 0 to further analyze the differences between the generators.
In this case, u,(¢) = 0 and by using the second invariant we also obtain a({) = —I}/2. By
using the second invariant in the differential equation for the remaining degree of freedom
wu1(£), we obtain

gpc: Jpuq(0) =—hTyu(6), (60a)
R1: Gy () = —2(R°T7 + p3 (€)1 (6), (60b)
R2: 0,1 (€) =— TP uy (€), (60¢)
R3: Gpup(€) =—p1(0), (60d)

with u,(0) = AI;. Again, we see the different units of £ clearly. This example also demonstrates
nicely how the R3-generator does not depend on the energy scales of the system, since I}
does not appear as a prefactor in the corresponding flow equation for u;. The gpc-generator
depends on the energy linearly while R1 and R2 show a quadratic dependence. The flow
equations can be solved analytically

,ufpc(ﬁ ) =hT; exp(—hIy{), (61a)
AT
ui) = . , (61b)
\/2 exp(4h°T20) — 1
ullu(ﬁ ) =hT} exp(—thlzé ), (61c)
ull)‘g (£) =hT; exp(—£). (61d)

From this example we see that all generators succeed in the diagonalization. There are differ-
ences in the convergence speed which slightly favor R3. No statement on truncation errors is
possible since all flows can be computed without approximations.

4.3 Random Matrices

4.3.1 Matrix Generation

We now want to benchmark both the convergence speed and truncation errors for various

non-Hermitian matrices. To cover a variety of matrices without bias, we generate random
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(DxD)-matrices with various ratios of Hermitian and Antihermitian contributions. To check
the influence of Hermiticity and Antihermiticity of the matrices on the flow, we introduce a
crossover ratio a. First, we construct a matrix R by sampling the real part and imaginary part
of all elements m,; from a uniform distribution on the interval [—1,1]. We use the uniform
distribution instead of other, unbounded distributions such as the normal distribution to avoid
the occurrence of extremely large matrix elements. Then, we construct

M:=(1—a)R+RN+a(R—R")=R+(1—2a)R", (62)

such that for a = 0 the matrix M is Hermitian and for a = 1 it is Antihermitian.

4.3.2 Convergence Speed

0 02040608 10 0.20.40.60.8 10 0.204060.8 1
a

Figure 2: Convergence coefficients for £-dependent (first row) and time-dependent
(second row) flow for D-dimensional random matrices, see Sec. 4.3.2, for various
crossover ratios a induced by the gpc-generator compared to the flows induced by
the R1-, R2- and R3-generator averaged over 100 samples. The dimension D is given
at the top of each column.

The bottom row of Fig. 2 shows the convergence coefficients Cé?nv for ROD(t) averaged
over 100 samples of random matrices for various matrix dimensions D. We use the same 100
random matrices for all four generators in order to compare the performance fairly. Recall that
a larger coefficient stands for faster convergence, thus is favorable. Clearly, the flows induced
by the gpc-generator and R3-generator converge much more quickly than the ones induced by
the R1- and R2-generator with the R3-generator slightly outperforming the gpc-generator.

It also seems that gpc, R1 and R2 perform better for matrices with a ~ 0.5 with the worst
performance for a € {0,1}, when M is completely Hermitian or Antihermitian. One possible
explanation for this effect is the distribution of the diagonal elements in the complex plane.
For a = 0 they are distributed randomly on a line with Im(m,,,({)) = 0 and for a = 1 they lie
on a line with Im(m,,,,(¢)) = 1. They stay on these lines during the entire calculation. This
makes it more likely for two diagonal elements to be very close to one another, slowing down
the renormalizing flows. For a = 0.5 the eigenvalues are distributed on a two-dimensional
sphere, where diagonal elements are less likely to be very close to each other. Hence the flows
converge faster. We created histograms (not shown) of all diagonal differences for various
a confirming this hypothesis. We point out that this observation favors the renormalizing
generators. Their disadvantage is the fact that they sacrifice convergence speed because they
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do not treat all matrix elements at the same speed compared to the R3-generator which treats
all elements simultaneously. Our results suggest that this disadvantage is less pronounced for
matrices with a strong mixture of Hermitian and Antihermitian parts.

For sake of completeness, we also show Cg))m, for ROD({) in the top row of Fig. 2. Here,
the R3-generator exhibits a constant Cé?nv =1 that is larger than the convergence coefficients
of the other generators. This is expected, since the scale of AE does not matter for the R3
flow as discussed in Sec. 3.2. We can discern that the fluctuations of Cé?nv for the generators
gpc, R1 and R2 are correlated. This is due to the fact that for all three generators, the scale of
the flow parameter depends on the diagonal differences of the matrix. For all three generators
the flow in the limit of nearly-diagonal matrices of the generators is similar, where we have
a convergence o< e Al for the gpc-generator and oc eIAEPL for the R1- and R2-generator
(see section Sec. 3.2). If a matrix has almost degenerate eigenvalues, all three renormalizing
generators perform worse than the generator R3.

D=41
— a=0.0
1072 ———— —_— a=0.1

I e e R a=02

10-8 a=0.3

N~ — a=0.4
1072, —

ROD

a=0.5
—— a=0.6

— a=0.7
. — a=0.8
— a=0.9
— a=1.0

00 05 1.0 15 20 25 3.0
t[s]

Figure 3: ROD flow vs. time for D-dimensional random matrices, see Sec. 4.3.2,
and various crossover ratios a induced by the gpc-generator in comparison to flows
induced by the R1-, R2- and R3-generator.

Inspecting the panels in Fig. 2 from left to right, the convergence speeds decrease for
larger matrices, which is not surprising. For the convergence coefficient C((Jf))nv’ the calculation
of the flow naturally takes longer for larger matrices. For the generator gpc, R1 and R2, the
coefficient Cg;)nv decreases with increasing D as well, because the matrices increase in size
and the flow becomes more intricate. Furthermore, for larger matrices it becomes more likely
for the initial diagonal elements m,,(0) to be close to each other, since these are restricted
to the region [—1,1]? € C2. This slows down the renormalizing flow at the beginning of the
calculation. Note that this effect is only relevant in the initial phase of the calculations, since
the eigenvalues, i.e. the final diagonal elements m,,(©0), scale linearly with D and do not
move closer to one another for larger D.

We stress that for all plots we checked the actual ROD flow and compared the spectrum
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Figure 4: Representative diagonal elements (left) and eigenvalues (right) of the
sorted truncated random matrices, see Sec. 4.3.3.

with results obtained by exact diagonalization to ensure that the convergence coefficients cor-
rectly reflect the convergence speed. For illustration, we include some exemplary flows with-
out averaging in Fig. 3. For the R3-generator, the convergence coefficient overestimates how
quickly the flow converges because of the initial transient, where the step size of the integra-
tion is small for R3. But after the slow start a rapid convergence is achieved which exceeds the
convergence speed of the gpc-generator. One should note, however, that for the R3-generator
the ROD can increase significantly at the beginning. This feature is important in the discussion
of the truncation error, see below. Note that no truncation has been performed in the present
example so that the error due to truncation does not matter here.

4.3.3 Truncation Error

Our tests in the previous section show rapid convergence of the R3-flow, while the renormal-
izing flows (gpc, R1 and R2) converge more slowly. Since flow equations are used primarily
with truncations, fast convergence can be detrimental if it is tied to large truncation errors.
Renormalizing flows are generally better at reducing this error. This expection is confirmed in
this section.

We benchmark the truncation error using two different models to test two different situa-
tions. For the first model we use unordered truncated random matrices, which we sample with
(62) and introduce an expansion parameter A according to My prep = Aln=i |mnj, explained in
Sec. 4.1. This way, the diagonal elements and the spectrum are not ordered, which makes it
more difficult for renormalizing flows to keep the error small, see Sec. 2.7.

For the second model we use ordered truncated random matrices with ordered diagonal
elements. This allows us to check our claim that the renormalizing flow induces smaller trun-
cation errors if the diagonal is ordered. We sample the ordered matrices in the same way as
the unordered matrices but finally replace the diagonal elements by

.aTm
Moo, ordered = €XP (17) o> (63a)
AT
Mun, ordered —=Mn—1,n—1, ordered + exp (1?) ™y Vne [1: D] 5 (63b)

where the r, are real random numbers drawn from an uniform distribution on [0,1]. The
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Figure 5: Truncation error A ,,.({max) between exact spectrum of the truncated
ordered matrix and the flow equation result of the matrices described in Sec. 4.3.3,
averaged over 100 samples each. The top row shows results for random matrices M,
the bottom row shows results for ordered matrices. The truncation order is denoted
by (01,02,03) for truncation in order (1,2,3).

crossover ratio a is the same parameter we used for sampling the random matrix in (62).
Note that we do not alter the off-diagonal elements. This way, all diagonal elements lie on a
straight line in the complex plane and the distances between the diagonal elements randomly
fluctuate between 0 and 1. We show some exemplary ordered diagonal elements in the left
panel of Fig. 4 and the resulting spectrum in the right panel of the same figure. We see that
both the diagonals as well as the spectrum are ordered nicely. The spectrum does not form a
perfect line because of the random off-diagonal elements m,,;.

The results in truncation order o1, 02 and 03 (referring to 1, 2 and 3 minor diagonals)
for the unordered model are shown in the top row of Fig. 5. We see that in this case, all four
generators have a similar error A, with the R3-generator performing slightly worse. Note
that we average over 100 samples for each data point. For some of the sampled matrices, the
gpc-generator has a significantly lower error than the other generators, but the average error
does not differ significantly. The bottom row of Fig. 5 shows the results for the ordered model.
In this case, we can see clearly that the gpc-generator has the highest accuracy due to its
renormalizing property. The R1- and R2- generator are also renormalizing, but perform only
slightly better than the R3-generator for a small perturbation parameter A = 0.1. Generator
R2 is slightly less accurate than R1.

The large error of the R3-generator is the price to pay for the rapid convergence observed
in Sec. 4.3.2. The R3-flow treats all matrix elements at the same time, which takes less com-
putation time, but induces significant renormalization of the off-diagonals far away from the
diagonal, i.e. the truncated matrix elements. This is in accordance with the initially rising ROD
we see in Fig. 3, which reveals that a major reordering happens in the off-diagonal elements.
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The renormalizing gpc-generator shows no such problem. It is surprising, however, that R1
and R2 do not perform much better than R3 even though they are renormalizing. This makes
R1 and R2 the least well suited generators for this model.

For larger perturbation parameters A = 0.5 the differences between the generators become
less significant. One reason for this is that the ordering of the diagonal elements can change
during the flow. If the off-diagonal elements scaled by A"~/ are too large, such reordering
occurs more frequently. If the ordering is destroyed in this way, the renormalizing property of
the gpc-, R1- and R2-generator no longer reduces the error. In fact, the R1 and R2 sometimes
perform even worse than R3. Nevertheless, the gpc-generator still shows the highest accuracy
even for larger perturbation parameters.

One might be surprised by the fact that the gpc-generator shows a finite error for a = 0.0
and a = 1.0. Naively, one would expect a vanishing error in these cases, because those edge
cases correspond to the pc- or ipc-generator described in Sections 2.2 and 2.6, which conserve
band-diagonality and hence no flow should go into the truncated area. However, the diagonal
elements can be reordered by the flow, i.e. two diagonal elements cross each other, in which
case band-diagonality is not always preserved. For this reason, the gpc-generator has a finite,
albeit small, error A, even for @ = 0.0 and a = 1.0.

4.4 Ordered Dissipative Scattering Model
4.4.1 Physical Model

After discussing a purely mathematical model of random matrices in the previous section, we
approach a real physical situation. We consider a model with many fermionic modes, which
we solve by integrating the flow equations numerically. Then, we compare the performance of
the gpc-flow with the R-flows. We consider a gas of spinless fermions in a d-dimensional box
of volume L9 with a loss mechanism localized at x = 0 [1]. The Lindblad master equations
read

ih%p(t)z[H,p(t)]+iﬁ J dxr(x)(w(x)p(t)\lﬂ”(x)—%{\If"f(x)\lf(x),p(t)})» (64a)

N

A=Y edlt, T®)=r5(x). (64b)

k
In momentum space, the dynamics can be written as
., d ata
ih-p(t) = [;ekc;ck,p(r)] +1—Z(ckp(t)c ——{ q,p(t)}) 65)

In the superoperator representation (47) we obtain

M = Zekcck+ckc dZ( —Ekéz)—z—ZZE Z(e(k)+1 ), (66)
k,q k

which reads in matrix form

H—1TA 0
M = 2711 . s 6
( —A, H+ %Al) (672)
h )
Py =e()8ns  (Ardyj = T4 ¥, (67b)

Note that the elements of the matrix are the coefficients of the bilinear operator pairs, so that
the computation is performed in second quantization. The triangular block form allows us to
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Figure 6: Eigenvalues of the ordered dissipative scattering model, see (68), calcu-
lated with the gpc-generator and dimension D = 201, i.e. for N=100. The eigenval-
ues are represented by transparent lines, and the eigenvalue of the strongly dissipa-
tive state starting at y/v = 4 is additionally marked by a dotted black line.

focus on finding the eigenvalues of only the first block. We consider the simplified situation of
a one-dimensional linear dispersion e(k)
if
M’ =H — %Al , (68a)
n2y

mn]- :e(kn)énj —i—

2
T e(k,) = HVTnn, ne[—-N,—N+1,...N—1,N]. (68b)

Note that the matrix dimension is D = 2N + 1 with an energy cutoff || < Ay = thT“N .
Analytical properties are discussed in App. D. For v > 4v one eigenvalue of particular interest

Aggs = —ily tan(% (4—V—1)), v>4v, (69)
Y

appears, which has no real part and a much larger imaginary part than the other eigenvalues,
corresponding to a strongly dissipative state denoted by the subscript ‘sds’. This state has a
large negative imaginary part of the eigenvalue corresponding to an especially quick decay.

Previous work [1] calculated the flow equations analytically in second quantization, while
for our benchmark we calculate them numerically by commuting the matrix representations.
To show that this leads to exactly the same flow equations, we carry out the commutation also
analytically in App. E.

4.4.2 Convergence Speed

For the benchmark of convergence speeds in this model, we only consider the two most efficient
generators, gpc and R3, since the other two generators induce a much slower convergence.
The resulting imaginary parts of all eigenvalues are shown in Fig. 6 and agree perfectly with
prior findings [1]. We can clearly see the strongly dissipative state emerging for y > 4v.

The convergence coefficient does not represent the ROD flow reliably for this model. If
we look at the definition of {,,, and {;, in Sec. 4.1, we see that we defined them so that
an initial transient at the beginning of the flow is suppressed. This is correct for calculating
the coefficient in £-space, where the transient is confined to the vicinity of £ ~ 0. If, however,
the initial changes of the flow are so big that the step size must be reduced in the integration
algorithm so that integrating the initial flow takes a significant portion of the real runtime.
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Figure 7: ROD flow of the ordered dissipative scattering model, see (68), calculated
with the gpc-generator and R3-generator and D = 201.

Hence, the convergence coefficient in real time does not display the convergence behavior of
R3 appropriately. In Fig. 7 we see that this problem occurs for the R3-generator for y > 4v,
where the strongly dissipative state appears. Both the gpc-generator and the R3-generator
initially cause an increasing ROD when the strongly dissipative state is present. For the R3-
generator, this initial phase takes a significantly higher computation time, slowing it down
considerably compared to the cases y < 4v. However, the R3-generator still converges much
more quickly to extremely small RODs than the gpc-generator due to the rapid convergence
after the initial transient.

4.4.3 Truncation Error

Since this model is a more physical example than the random matrices in Sec. 4.3, it can
provide insight in the accuracy of the flows in real applications. To this end, we calculate the
truncation error of all generators. We do not sort the diagonal elements for this benchmark,

2 ] —
D=41 10°9 5 =21 e yv=1.0
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Figure 8: Representative diagonal elements (left) and spectra (right) of the ordered
dissipative scattering model, see (68).
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Figure 9: Truncation error A ,,.({max) between exact spectrum of the truncated
matrix and the flow equation result for the ordered dissipative scattering model,
see (68). The truncation order is denoted by (01,02,03,04) for truncation in order
(1,2,3,4).

because they are already ordered in a nice fashion in the definition of the model (68). This can
be seen in Fig. 8, where the diagonal elements are displayed in the left panel and the spectrum
is displayed in the right panel. Note that the spectrum is shown for the full system without
truncation. We see the single strongly dissipative state emerging as a separated eigenvalue,
while all other eigenvalues are ordered on a one-dimensional curve. Such an ordering of the
diagonal elements is advantageous for the application of the renormalizing generators gpc, R1
and R2.

In order to study a perturbative truncation we introduce the expansion parameter A as
before my; prep = Aln=i |mnj so that off-diagonal elements further away from the diagonal are
less relevant. The truncation errors are shown in Fig. 9. We see that the gpc-generator performs
better than the other generators most of the time, especially for low truncation orders. This is
especially noteworthy because Fig. 7 shows that both the gpc- and the R3-generator initially
see an increasing ROD. The gpc-generator, however, mainly changes the matrix elements close
to the diagonal which are not truncated while the R3-generator changes the matrix elements
far away from the diagonal as well causing a larger truncation error A,.. This can be seen
nicely since A, for gpc and R3 differ the most in truncation order ol for high values of y.
High values of y correspond to a dominant strongly dissipative state. This is in accordance
with the fact that we see a rising ROD in Fig. 7 when the strongly dissipative state emerges.
The performance of R2 and R3 fluctuates: in many cases they perform just as badly as R3, but
sometimes they provide even more accurate results than gpc. It is noteworthy, however, that
the gpc-generator shows a higher accuracy than R1 and R2 in many cases. This observation
agrees with the properties summarized in Tab. 1 which suggested that the accuracy of the
gpc-generator is placed between R2 and R3. One might be surprised by the fact that the
truncation error A, of the gpc-generator increases for higher orders at A = 0.5. As discussed
in Sec. 4.1, this is due to the initial matrix M. having more elements in higher truncation
orders. The additional matrix elements m,; = —iAl"iln2y /(2L) are significant for A = 0.5,
so that a higher truncation order can lead to a more involved flow implying a larger A c-
This effect does not occur in a real application where the full initial matrix Mi,,,.(0) is already
captured by a low truncation order so that increasing the truncation order will decrease the
truncation error A ynec-
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4.5 Disordered Dissipative Scattering Model

4.5.1 Physical Model

While the last example featured ordering in the form of a linear, one-dimensional dispersion
we want to pass on to a model closer to a real physical situation. We do so by introducing dis-
order while still focusing on a system with a single strongly dissipative state [1]. In this way,
we can compare the performance of the generators for a real physical system with subopti-
mal conditions for the renormalizing generators. We use a fermionic disordered tight-binding
model on a one-dimensional chain

H=-J ) [¢lt;; +he]+ Y by hj=random([—W, W), (70)
J J

with periodic boundaries and h; drawn from a uniform distribution, where j denotes the lattice
sites. By adding a localized loss rate y at site O we obtain the Lindblad master equations

d A 1
iﬁaﬁ(t) =[H,p(t)]+iny (60p(t)é(§ — % {fg, p(t) }) . (71)

Similar to the ordered model in Sec. 4.4.1, we use fermionic superoperators to obtain the
matrix form (47) of the master equations with the elements of matrix M

h
m,,(€ = 0) =h, —i?}/ B10» (72a)
mn](ﬂ :O):_J(6n,]+1+5n,]—1) (72b)

From m,,({ = 0) we can expect already that a large v leads to the emergence of a single
strongly dissipative state with a large negative imaginary value. We checked by exact diag-
onalization that we obtain the same results as in Ref [1]. In particular, we checked that a
strongly dissipative state emerges for y > 4J.

100 H|D =45
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| — v/J=0.19
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8 v/ =0.79
o« R — =
L 1 ) yl/=1.58
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-6 | L
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1078 . . ; — y//=100.
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Figure 10: Exemplary ROD flow of the disordered dissipative scattering model, de-
fined in (72), for N = 45 and W = J, calculated with the gpc-generator and R3-
generator, averaged over 10 samples.
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4.5.2 Convergence Speed

Fig. 10 depicts exemplary flows of the ROD for gpc and R3, averaged over 10 samples. We
see that the R3-flow again takes a long time with an initially rising ROD, so the convergence
coefficients are an inadequate benchmark measure. Opposed to the benchmark results for the
ordered dissipative scattering model in Fig. 7, the ROD of the R3-generator now increases
even for y < 4J, where no dominant strongly dissipative state appears. Furthermore, the gpc-
generator does not suffer from an increasing ROD in any calculation and in most cases it even
beats R3 in pure convergence speed. One possible explanation is the fact that in the disordered
dissipative scattering model the differences between the diagonal elements are bigger than in
the ordered model, leading to a faster gpc-convergence exp(—|AE|£).

4.5.3 Truncation Error

We benchmark the truncation error on the unaltered system, which means without ordering
the diagonal elements m,,, and without introducing an expansion parameter A. The scaling
is not necessary since the matrix is essentially already tridiagonal aside from the two furthest
off-diagonal elements m ,_; = mp_; ¢ = —J, which are always truncated in our truncation
scheme. Therefore, all truncation orders use the same initial truncated matrix and increasing
the order typically increases the accuracy. We do not order the diagonal elements since this
would break the tridiagonal form of M., which would cause initial off-diagonal elements
m,;(0) to be truncated.

The truncation error A, is shown in Fig. 11. We find that A, € [107},10'] is quite
large for all generators. This is explained by the disordered energies, which force even the
three renormalizing generators (gpc, R1 and R2) to perform significant renormalizations of
the off-diagonal elements far away from the diagonal, which are truncated. In this case, high
accuracy requires a high truncation order. We see that the gpc-generator performs with the
highest accuracy of all generators in most cases. The difference between different generators
is greater when the range [—W, W] of the randomly sampled energies h,, is large. The R1-
and R2- generator also perform quite well with R3 generating the largest truncation error.
This is surprising, since in Sec. 4.3.3 we have seen for random matrices that the renormalizing
generators perform with high accuracy only if the diagonal matrix elements are ordered. Here
we see that they perform well even in presence of disorder.
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Figure 11: Deviation Ay n.(£max) between exact spectrum of the truncated matrix
and the flow equation result for the disordered dissipative scattering model (72),
averaged over 100 samples. The truncation order is denoted by (01,02,03) for trun-
cation in order (1,2,3).
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4.6 Random Lindbladians

4.6.1 Matrix Generation

In Sec. 4.3, we sampled random matrices. Subsequently, we considered two selected physical
models, one with ordered energies and the other with disordered energies. In this section, we
approach a wider range of large open quantum systems which may represent real applications
of dissipative flow equations better. To achieve this, we sample random Lindbladians because
the Lindblad master equations in Sec. 2.4 are the most general Markovian description of open
quantum system. The sampling of Lindbladians is still a subject of current studies [73].

Fig. 12 shows the difference between the spectrum of the uniformly random complex el-
ements used for the first test of the gpc-generator with random matrices in Sec. 4.3 and the
spectrum of the random Lindbladians considered here. While a random matrix has a circular
spectrum centered at the origin, a random Lindbladian has one eigenvalue 0 and a cluster of
eigenvalues centered around -i in a lemon-shape [74]. Note that the circular shaped spectrum
of the random matrix does not contradict the spectrum shown in Fig. 4 in Sec. 4.3.3, because
that figure displayed the spectrum of the artificially sorted matrix for the truncation bench-
marking, which differs from the purely random matrix in (62). Compared to the examples in
Sections 4.4 and 4.5, where we had a single strongly dissipative state with a dominating imag-
inary part, the random Lindbladians in this section show a cluster of approximately equally
dissipative states and the obligatory stationary state.

To sample the Lindbladians, we use the Gorini-Kossakowski-Sudarshan-Lindblad form [75,
76]

L(p)=[H,p]+ Lp(p) = Ly(p)+Lp(p), (73)

where £;(p) denotes the dissipative part

N2-1
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Figure 12: Top: Circular spectrum {A;} of a matrix with uniformly random complex
elements sampled with (62) for @ = 0.5 and dimension D = 2000. The spectrum
is normalized to the matrix dimension D and energy scale J. Bottom: Spectrum
{A;} of a random Lindbladian, see Sec. 4.6.1, normalized to the energy scale J. The
Lindbladian is sampled with N = 50 states, yielding D = N? = 2500 eigenvalues.
The spectrum consists of a single stationary state A; = 0 and a lemon-shaped cluster
around —i.
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with an orthonormal Hilbert-Schmidt basis {F,}, n = 1,2,..., N2 — 1 of traceless matrices in
Fock-Liouville space with Tr(F,) = 0, Tr(F,F 7;1) = 6, m and a positive semidefinite, complex
Kossakowski matrix K sampled from complex square Wishart matrices W = GG > 0 with
a complex square Ginibre matrix G with independent complex Gaussian elements [74]. The
particular choice for sampling K does not matter, since the spectral features of the random
purely dissipative Lindbladians are universal. To set up the Hilbert-Schmidt basis, we use the
N2 — 1 Hermitian generators of SU(N) [77]. The sampling process and the creation of the
matrix representation are explained in more detail in App. F.

4.6.2 Convergence Speed

Fig. 13 shows the ROD-flow of the generators for random Lindbladians (74) for two different
dimensions. Like for the other examples, the R1- and R2-generator perform very poorly, taking
a very long time to decrease the ROD by only a few orders of magnitude. This is not too sur-
prising, since convergence of these generators scales with |AE|? and the differences AE inside
the cluster of eigenvalues become very small. The gpc-generator with its | AE|-convergence
performs better. One would expect the R3-generator to converge even more rapidly, because
it does not depend on energy differences. For the smaller system with D = 100, this is true:
After an initially rising ROD, the R3-generator shows rapid convergence, like it does for most
of the previously considered models. For larger systems such as D = 400, however, the R3-
generator shows no rapid convergence and actually does not converge at all in our calculation
which continues up to t = 150000s (not shown).

It is also striking that the ROD increases much more strongly for the R3-generator than for
the gpc-generator for all system sizes. A possible explanation is the denominator m,, —m;j; in
the R3-generator (26¢), which might cause numerical instabilities. In the numerical integra-
tion we try to avoid this by setting nﬁ? = 0 if |my,, —m;;| < 10710 but this numerical cutoff
can also create numerical instabilities if two diagonal matrix elements are close to each other
but their overlapping off-diagonal m,,; has not been eliminated. This unstable behavior is an
important caveat of the R3-generator which does not arise for the more robust gpc-flow. In
the other models studied, we did not find unstable flows for the R3-generator. The fragility
of the R3-flow for large Lindbladians puts the rapid convergence observed in most other cases
into perspective. The gpc-generator converges less rapidly in most cases, but more reliably.

10° . . . . .
D=N?=100 D=N?=400

1071 3

102

1073

1074

ROD

1073
1076

1077

10-8

0 10 20 30 400 500 1000 1500 2000 2500 3000
t

Figure 13: ROD flow of random Lindbladians, defined in Sec. 4.6, calculated with
the gpc-generator, R1-, R2- and R3-generator, for a Lindbladian with 100 (N = 10)
and 400 (N = 20) eigenvalues.
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5 Conclusions

Open quantum systems in general and Lindblad master equations in particular describe quan-
tum systems in interaction with an external bath. They are important for the theoretical de-
scription of novel physics such as non-equilibrium physics, relevant for all pump-probe setups,
and quantum information processing. Lindbladian systems are described by non-Hermitian
matrices which calls for generalizations of existing methods such as the flow equation scheme.
Flow equations are a powerful renormalization tool and their renormalizing flow is calculated
by choosing an appropriate generator scheme. The dependence on the energy difference is
central for the renormalizing property of the generators and the convergence speed. A robust,
renormalizing flow often converges more slowly because not all matrix elements are treated
at the same time and speed. But such a flow is less prone to truncation errors. Therefore, one
must typically compromise between rapid convergence and minimal truncation error. This
aspect has been elucidated in the present manuscript and represents its main punchline com-
pared to previous studies.

We introduced the gpc-generator, a generalization of the pc-generator to non-Hermitian
matrices, and calculated the general form of its flow equations. In the limiting cases of Her-
mitian and Antihermitian matrices, the gpc-generator is equivalent to the pc- or ipc-generator.
We presented a proof for convergence and showed that band-diagonality is preserved only
in very limiting cases, namely for complex-sorted matrices. We compared the flow equations
with the R-generators from Ref. [1] and introduced the generalization ) in Sec. 3.2. The
generator 1) = nR2 has a quadratic energy dependence and sacrifices convergence speed for
higher accuracy and the non-renormalizing generator 1) = 1?3 sacrifices accuracy for rapid
convergence by treating all matrix elements simultaneously. The linearly energy-dependent
n(© = 8P is placed between those two.

In numerical tests, we found that the gpc-generator converges much more quickly than
the R1- and R2-generators in all considered cases. The R3-generator, which does not depend
on energy differences, typically converges more quickly than the other generators down to the
typical ROD values of ROD< 10~8 where the matrix is numerically diagonal. This result coin-
cides with the expectations based on the energy scaling. Surprisingly, for some limiting cases
of randomly sampled Lindbladians, the gpc-flow shows a more robust and fast convergence
than the R3-flow. A possible explanation is that the R3-flow becomes numerically unstable
when a matrix has almost degenerate eigenvalues. We stress that our analysis is based on
real computation time and not on the convergence behavior over the flow parameter £, which
cannot be compared properly due to the different units of ¢ for different generators.

We cannot overemphasize that truncations are the main issue in the applications of flow
equations because simple systems which are tractable without any truncation can generically
also be solved by other methods. Therefore, the truncation error A,. has to be minimized so
that the relevant physics is captured well. The fast R3-generator suffers from large truncation
errors between the exact spectrum and the spectrum calculated using the flow equations. The
R1- and R2- generators induce smaller errors in many cases, especially when the diagonal
elements are ordered. In this case, the renormalizing property of these generators causes less
flow into matrix elements which are truncated. The gpc-generator shows a significantly higher
accuracy than the R3-generator in even more cases than R1 and R2 do. Suprisingly, the gpc
results are often more accurate than the results for R1 and R2. In the rare cases where gpc
is slightly less accurate, it is still worth choosing gpc over R1/R2 since the faster convergence
speed means that higher truncation orders are computationally feasible. This also contributes
to increasing the overall accuracy of the results.

The gpc-generator n(©) = 18 is chosen to fill the gap between the other generators, so that
it induces faster convergence than the slow, but accurate n) = n®? with smaller truncation-
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Table 2: Results of the analytical analysis and numerical benchmark for the gener-
ators considered in this work. The dimension of 7 and £ are given in terms of the
energy E and the asymptotic convergence in terms of the energy differences AE of
the system. The convergence speed and the accuracy (during truncation) are de-
picted by + for positive results, — for negative results and ~ for mixed results.

Generator | [(m] | 4] | Asymptotic convergence | Convergence Speed | Accuracy

R1,R2 | E? | 1/E? exp(—L|AE|?) - ~
gpc E 1/E exp(—L|AE])
R3 1 1 exp(—{) -

errors than the fast, but prone to truncation errors () = n®3. Surprisingly, our results show
that the gpc-generator (%) = 1®° also provides higher accuracy than n(*) = n®? and in some
cases converges more quickly than Y = 1nR3. These qualitative results are summarized in
Tab. 2.

We conclude that the gpc-generator and the R3-generator both present strong tools for
studying dissipative systems and Lindbladian master equations. The R3-generator promises
fast convergence, while the gpc-generator represents a more consistent renormalization tool
with high accuracy in spite of truncations. Just like the pc-generator has seen further develop-
ment with novel truncation and approximation schemes [49, 66], further studies are called to
optimize the gpc- and R3-generator for more complicated systems with sophisticated interac-
tions and dissipation at play. Additionally, generators n") with —1 < r < 0 are promising can-
didates for further studies and might improve on the convergence speed of the gpc-generator
while maintaining high accuracy.
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A Other Considered Generator Schemes for Non-Hermitian
Matrices

While attempting to generalize the gpc-generator, we tested other generalization schemes

which proved less useful for real applications. We present those here to inform the reader
about less promising trials.
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A.1 Phase-Shifted PC-Generator

A.1.1 Definition

A possible generalization of the pc-generator and the ipc-generator for general matrices M is
the phase-shifted particle conserving generator (ppc-generator)

M (O)M] = sign(n— e®m,;,  6[0,7]. (75)

The idea is that for purely Antihermitian matrices, we can use the ipc-generator, which is just
the pc-generator shifted by a phase factor exp(i3 ). Randomly drawn matrices that are mostly
Hermitian converge nicely for the pc-generator and matrices that are mostly Antihermitian
converge well for the ipc-generator. For matrices consisting of both Hermitian and Antihermi-
tian parts, changing the phase shift might lead to a better convergence.

One caveat is the fact that for a given problem a suitable 8 must be chosen. For convenience
sake, one can use § = % for all matrices, such that the Hermitian and Antihermitian parts both
converge. It should be assumed, however, that choosing 6 in accordance with the ratio of the
Hermitian and Antihermitian parts of M leads to a faster convergence, which will be explored
below.

A.1.2 Convergence Speed

The ppc-generator was tested with different phases for different randomly generated (DxD)-
matrices. Two parameters are important and are varied during the tests

phase ratio ¢ 0 =: gap , (76a)
crossover ratio a M:=(1—-a)R+R)+a(R—R)=R+(1—2a)R". (76b)

The phase ratio ¢ is used instead of 6 for convenience sake. For ¢ = 0 the ppc-generator is
equivalent to the pc-generator, for ¢ = 1 the ppc-generator is equivalent to the ipc-generator.
The crossover ratio a is used for constructing the initial matrix M that is solved via the flow
equations. It is constructed from a random complex matrix R such that for a = 0 the matrix
M is Hermitian and for a = 1 it is Antihermitian. In a real application, where the matrix is
already given and a is unknown, a reasonable value of a can be obtained by computing

M —MT||—||M+ M|
a= , 77)
2||M||

with a norm that ensures a € [0,1], so that one can choose ¢ = a such that the matrix
converges nicely.

Fig. 14 shows the ROD-flow and the convergence coefficients for various ¢ and a. Recall
that a larger coefficient is desirable as it stands for faster convergence. For this comparison, we
use ROD({) instead of ROD(t) since changing the phase ratio ¢ does not change the energy
scale of £. It can be seen that the fastest convergence is achieved for fully Hermitian matrices
a = 0 (top right panel) with the pc-generator (¢ = 0) and for fully Antihermitian matrices
a =1 (bottom right panel) with the ipc-generator (¢ = 1). Convergence is still fast for ¢ ~ a,
but no convergence can be achieved for orthogonal angles | —a| =1 and even |p —a| ~ 1
converges very slowly. This means that the pc-generator does not converge to a diagonal
matrix for an Antihermitian matrix and the ipc-generator does not converge for a Hermitian
matrix.

Convergence is always comparatively slow for a ~ 0.5 (bottom left panel), no matter
which ¢ is chosen for the generator. However, in those cases the fastest convergence is often
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Figure 14: Top left: Exemplary ROD flow of the ppc-generator, see (75), with fixed
¢ = 0.5 for mixed random matrices with varying a. The other three panels show the
convergence coefficients, each for a fixed random matrix with given a, diagonalized
by the ppc-generator with various values of . All matrices are of dimension D = 20.

achieved by a generator with ¢ ¢ {0, 1}. Therefore, the ppc-generator does offer a benefit over
the pc- or ipc-generator in those cases. Fastest convergence, however, is not always achieved
by ¢ = a. The choice of ¢ for optimum convergence speed is not trivial.

Instead of searching an optimal value of ¢, one can use ¢ = 0.5 as a standard value to
ensure convergence for any complex matrix. For ¢ = 0.5, we see convergence of ROD({) for
all a =[0,1] (top left panel). However, for a ~ 0.5 convergence is very slow and the ROD
increases periodically. Note that we see no such effect for the gpc-generator in Fig. 3 and that
the gpc-generator also displays higher convergence coefficients at a ~ 0.5 in Fig 2.

We conclude that the ppc-generator with ¢ € [0, 1] has the benefit of converging for more
matrices than either the pc-generator or the ipc-generator, respectively. However, the ppc-
generator has two important drawbacks:

1. It is not obvious which ¢ maximizes the convergence speed for a given matrix. Some-
times, the more trivial pc-generator or the ipc-generator lead to a faster convergence.

2. The ppc-generator converges slower than the gpc-generator and suffers from periodically
increasing RODs.

A.2 Hermitized PC-Generator
A.2.1 Definition

If the matrix M is not Hermitian, then a Hermitian operator

H=MM,  hy=> mgm;, (78)
k

can be used as the Hamiltonian while M is treated like an observable, leading to the hermitized-
particle-conserving generator (hpc-generator)

M IM] = nPSLH] = sign(n—) D mi, my; . (79)
k

The flow equations can be treated by applying the flow equations on M and H at the same
time or alternatively by only applying it to H and calculating 1) directly from H.
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A.2.2 Fixed Points of the PC- and HPC-Generator

The fixed points of the pc-generator nP[H ] for Hermitian matrices are diagonal matrices. This
is easy to show by using the proof that Mielke used for the pc-generator [50]. We can see that
if the flow for the diagonal elements has stopped

8gh,m =0 (803)
= > [hyl =0 (80b)
k>n

diagonalization is achieved. Therefore, the fixed points of ng?C[M ] are all bases in which H is
diagonal

VYn#j:0=hy; (81a)
=Zminmkj (81b)

k
zmjmn. (81c)

In the last step we see that the condition can be written by using the usual inner product.
Considering the case n = j as well, this condition becomes

mim, = &l (82)

This resembles the condition of a unitary matrix, where the column vectors of the matrix are
pairwise orthonormal with respect to the usual inner product. The column vectors in (82),
however, are only pairwise orthogonal.

Thus, the fixed points of the flow, where M converges while H converges to a diagonal
matrix, are those where (82) is fulfilled. Diagonal matrices are a subset of such matrices, but
convergence to a diagonal matrix M is not guaranteed.

A.2.3 Convergence Speed

We use the hpc-generator to diagonalize random matrices like we did for the ppc-generator.
In the top panel of Fig. 15 we show the flow of the ROD[M "M of the Hermitian matrix which
converges nicely. This is not surprising, since effectively we are just diagonalizing a Hermitian
matrix using the pc-generator. The bottom panel shows the ROD that we care about: ROD[M ]
for the observable M, which is the matrix that we actually want to diagonalize. This ROD[M ],
however, converges only if M is predominantly Hermitian. In most cases, M retains significant
non-diagonal elements, rendering the effort of integrating the flow equations superfluous.
Therefore, the hpc-generator offers no advantages when compared to the simple pc-generator
approach and actually suffers from the increased numerical effort of solving the flow equations
for H and M at the same time.

A.3 Switching between PC- and IPC-Generator

If the flow equations preserves the Hermiticity or Antihermiticity of the matrices, then the pc-
and ipc-generator can be used one after another, i.e.

M+M' M-M'

M=H+A= =t =, (83a)
ipc H
Y (83b)
(4]
— M" =Hy, +Af,, (830)
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Figure 15: ROD flow of ROD[H = M™M] (top) and ROD[M] (bottom) of the
hpc-generator, see (79), for random matrices with different crossover ratios a, see
Sec. 4.3.

where H and A are always defined by the Hermitian and Antihermitian parts of the respective
matrix. The ipc-flow diagonalizes the Antihermitian part Aiﬁag and then the pc-flow diagonal-
izes the Hermitian part H é’iag. For this approach to diagonalize M completely, the pc-flow must
preserve the diagonality of the Antihermitian part so that Agiag is still diagonal. We show that
this naive assumption is wrong by recalling the flow equations of the Antihermitian compo-

nents (19)

9ya,; = sign(n—j) [hnj(ajj — dpp) + ayj(hy; — hun) ] (84a)
+ Z [sign(n —k) (hnkakj + ankhkj) +sign(j — k) (ankhkj + hnkakj)] . (84b)
k#n,j

Even tough A’diag is already diagonal, i.e. a,, = 0 Vn # k, the flow still yields a finite contribu-
tion
aEanj = Sign(n_j)hnj(ajj _ann)’ (85)

introducing off-diagonal elements to A”. Therefore our naive assumption that the pc-generator
preserves the diagonality of the Antihermitian part is wrong and A” is not guaranteed to be
diagonal. If we reverse the order of the generators, starting with pc and following with ipc,
the analogue argument holds that the ipc-generator does not preserve the diagonality of the
Hermitian part.

Our numerical calculations on random matrices, sampled as defined in Sec. 4.3, confirm
that applying the pc-generator and ipc-generator alternately does not lead to any improvement
beyond applying either the pc-generator or the ipc-generator once.

B Loss of Band-Diagonality
One great advantage of the pc-generator is the fact that it preserves the band-diagonality of

Hermitian matrices, which is shown in Sec. 2.2. This fact can be used to reduce the num-
ber of variables in the flow equations if one uses an operator representation for each matrix
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element or a sparse matrix representation. While the pc-generator always preserves the band-
diagonality of Hermitian matrices, the gpc-generator does so for a certain class of matrices,
but unfortunately not for all complex matrices. We define this class of matrices as

M ={m,;} is complex-sorted <= m,, =cx,,c € C,x, €R,x;;; > x;Vn, ], (86)

which means that
1. all diagonal elements lie on a straight line through the origin in C and
2. they are sorted on this line.

An example for the first condition are the sorted truncated random matrices introduced in
Sec. 4.3.3. The diagonal elements lie exactly on a straight line, which is shown in the left panel
of Fig. 4. The first condition is a strong restriction, but if it is fulfilled the second condition can
always be met by simply reordering indices. However, reordering indices includes changing
the position of off-diagonal elements, which can increase the diagonal width of the matrix, i.e.
the number of minor diagonals including the diagonal with non-vanishing elements. Note that
matrices with degeneracies in the diagonal elements do not fulfill this condition. Hermitian
matrices and Antihermitian matrices automatically fulfill the first condition.
We show

If M(£) = {m,;(£)} is complex-sorted
= gpc-generator preverses band-diagonality of M infinitesimally, i.e. (87)
ym,; =0 V[n—j|[> 6 if M has diagonal width & .

Proof:
A matrix is band-diagonal with diagonal width & if

We must prove that for all matrices fulfilling (88) dym,; =0 V|n— j| > & is implied. We first
show

* * * *
My = My mjj Mk (8_6)§ ( Xn — Xk Xj Xk ) (89a)
mﬁn_m;;kl |mj<]_mik| |C| |xn_xk| |Xj_xk|
n<k<j C .
= ]H(—1+1)=o Vn<k<j (89b)
c
and then immediately see that
aIfrnnj = |mnn - mjj| T My;
=0
m* —m* m’f‘—m;;k
+ Z i kkoy MMMy (90a)
Im, —mg | mi—mp | ) 2
k#n,j nn kk jj kk ’
~ =0 Yké([n,j]
=0 Yn<k<j
=0 Vin—j|>6, (90b)

where the step mym;; =0 Vk <nV k> j follows from the band-diagonality (88). O

Note that (87) only states that while M(£) is complex-sorted, the off-diagonals are not
renormalized. If at some point the diagonal elements m,,({) are not sorted anymore, which
can happen, the band-diagonality is no longer preserved. Furthermore, most band-diagonal
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matrices (88) are not complex-sorted, so that (89b) does not hold and the band-diagonality is
not preserved, e.g for the matrix

010
M;=|1 11 (91)
1 1
Actually, even for the Hermitian matrix
010
My,=11 1 1], (92)
010

the band-diagonality is not preserved by the gpc-generator, since the diagonal elements are
not sorted in ascending order. We can achieve preservation of band-diagonality if we change
the second and third basis vector

M, =

2 (93)

_ = O
S O
—_ O =

in which case the band-diagonality of M, is meaningless since M, has finite matrix elements
on all minor diagonals. Note, that this sorting is only possible rigorously for matrices with real
diagonal elements such as M,, but not for general complex matrices such as M;.

We showed that for a complex-sorted matrix M ({) with diagonal width &, the components
outside of its diagonal width are not renormalized Jym,; = 0 V|n — j| > & for this specific
value of £. For the band-diagonality to be preserved during the whole gpc-flow, that means
for all ¢, the matrix must stay complex-sorted during the flow, i.e. m,,(¢) = cx,(¢) with
Xpe1(£) > x,(€). Special cases where this is true can be constructed, but it should be noted
that in most cases, band-diagonality is no longer preserved.

In conclusion, the gpc-generator no longer preserves band-diagonality apart from some
rare limiting cases.

C Analytical Solution of the Single-Mode Model

In Sec. 4.2 we introduce a single-mode fermionic model with dissipation and discuss the stable
fixed points of all four flows. An analytical solution is only discussed for the simplified case
with I, = 0 in Sec. 4.2.3.

Here, we present a full analytical solution for arbitrary parameters. Additionally, we
demonstrate how observables O are transformed to O, by performing the transformation
analytically for a simple observable.

C.1 Analytical Solution of the Lindbladian

We discuss an analytical solution of the flow equations

ga = 2ujuysign(a), (94a)
Opbin = =24 |l , (94b)
iy = —22|al, (94c)
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with the initial conditions

h(T; —T
a(0) = -0 1) 5 2), (95a)
p1,2(0) = ATy 5, (95b)
that are discussed in Sec. 4.2. For brevity, we use the definitions

ATy + T

R CERN) 060
2

I —T.
Bi=—21 2, (96b)

I +0

By using the second invariant of motion a2 + u; u, = A% from (57) the flow equation for a can
be formulated as
dya = 2(A% — a?)sign(a). 97)

By separating the variables a and £ and using f(A2 —a?)"'da = tanh!(a/A)/A we find

a(f) =sign(a(0))A tanh [ZAE + sign(a(0)) tanh™! (B)] . (98)

Note that the sign of a does not change during the flow, i.e. sign(a({)) = sign(a(0)) V{. The
flow equations (94) and initial conditions (95) imply that u,(¢) and u,(£) can be expressed
by a single factor

U0 = pa(0) = %uz(e). (992)

By inserting (98) in the second invariant of motion a?+ u; U, = A% and applying trigonometric
relations, we find

ull)= \J?A/ cosh [ZAZ + sign(a(0)) tanh™* (B)] . (100)
2

A quick check confirms that a(oco) = sign(a)A and u(oo) = 0 are the stable fixed points
discussed in Sec. 4.2.

C.2 Basis Transformation of an Observable

The flow equation method does not only transform M, but instead performs a basis transfor-
mation. Therefore, all observables O can be transformed to the new basis by using the same
flow as M. As an instructive example, we perform an analytical transformation of the charge
observable O = ¢'c with the matrix representation

o(o):((l) 8) with O() = (¢! a)o(ﬁ)(éﬂ.). (101)

The parametrization

o0 =0 ) with 0,0 =1, 0,0 =10 = O =0, (102

yields closed flow equations d,0(¢) = [n®P¢(£), O({)] that read
L
Oy = —0ywy = —2Csign(a)y u, with C := I‘_2 ) (103a)
1

. . r
Oy =sign(a)(w; —wy)u, with y =y = F—lm. (103b)
2
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The flow equations and initial conditions imply w,(£) = 1 — w;(£) and, therefore,

Oy =sign(a)(2w; —1u. (104)

By solving dyw; and g,y for u and identifying the two terms with one another, we find

(2w —1)(Gw1) =—2Cx (9 x) (105a)
S wl—w =—Cy? (105b)

w1(1—wq) 1 1
x \J C P1T N A (1059
For w1, only the positive case
1 4|1
=_+\|==Cy2. 106
wq 3 2 X (106)

fulfills the initial conditions w;(0) = 1 and y(0) = 0. With this and the analytical solution
(100) of u(¢), the flow equation for y can be reformulated as

Ox =1/ 1—4Cyx2u (107)
= %\/ 1— 4C)(2/cosh|:2A€ + sign(a(0)) tanh™* (B)] , (108)
3y (€)= y/1— 72 [cosh(¢)), (109)

with ¥ = 24/Cy and ¢’ = 2A( + sign(a(0))tanh™! (B). This expression can be further sim-
plified by substituting 7(¢’) =: sin(u(¢’)) and applying trigonometric relations. This flow
equation is solved by

7(0") =sin (Ztan_1 tanh(%)—B’), (110a)

tanh™!(B)
2

B’ := 2sign(a(0))tan"! tanh ( = sign(a(0))sin"1(B). (110b)

The short expression B’ = sign(a(0))sin™*(B) can be derived by applying the trigonometric
relation sin(2 tan™!(x)) = 2x/(x% + 1) to

h™'(B
sin(B’) = sin [Zsign(a(o)) tan! tanh (%)] (111a)
2tanh(2 tanh™'(B
_ 2ot (8) 11
tanh“(5 tanh™ (B)) +1
1

= tanh(2 - > tanh™*(B)) (1110
—B, (111d)

After reversing the transformations § — y and ¢’ — £, we obtain the solution
()= 1 sin [2 tan™ ! tanh (A€ + sign(oz(O))1 tanh_l(B)) — B’] (112a)

2/C 2 ’

1 v1—B2
00) = cos(B') = = sign(a (112b)
7(00) 2/C ( 2/C n( )Fl b
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Figure 16: Comparison of the analytical results (113) with numerical results of
w1(00) and w,(00) obtained by integrating the flow equations numerically. The
data points match up to numerical precision and lie on the expected lines I} /(T + 1)

and 1"2/(1"1 + Fz)

By inserting (112b) in (106), we find

1 1 1 I —T.
col(oo):—+—sir1(B’)=—(1+l1 2|),

2" 2 2 T, +T,

1 1 1 I —L
wz(oo)z———sin(B’):—(l—M).

2 2 2 T+ 0,

With this, we have derived the components of the effective observable

Oeff =

Outt = w1(00)D'd 4+ wy(00)Dd" +iC y(00)DTd" —iy(c0)Dd,

(

w1 (00)
—iy(o0)

iCx(OO))

w,(00)

with the operators D, D, d and d" introduced in Sec. 4.2.

The charge of the steady state is ns, := (I|lc'c|poo) = (I|0]poo) in the original basis at
¢ = 0. Ref. [1] discussed that the steady state |po,) is defined by d|pso) = D|poo) = 0 in
the effective basis at £ — 0o and explains that the anticommutation relation {D, d'} =1 can
be applied to show n., = w,(00). Note, however, that the flow orders the eigenvalues such
that w, < w1, so the basis depends on sign(a) = sign(I;, —I}). For I, > I the basis states
are switched and no, = w;(00). Despite this, w;(0c0) and w,(00) match with the expected
results I /(T} +I3) and I, /(T; + I,), as can be seen in Fig. 16.

(113a)

(113b)

(114a)

(114b)

D Analytical Properties of the Ordered Dissipative Scattering

Model

We discuss analytical properties of the flow equations for the problem discussed in Sec. 4.4.

To make use of symmetries, the matrix elements m,,;

my;(£) =en;(€) +iay;(£)

nj are parametrized as

Vn,j€[-N,—N+1,..,N—1,N],

42
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with €,;(£), a,;({) € R and initial values

€,;(0)=06 hvann, (116a)
hz
0, (0) = —Z—LY. (116b)

The flow equations (30b) read

—m* mt. —m*
nn kk 1] kk
almnj =—|m,, — ]]lmnj+ E ( + " )mnkmkj. 117)

g \ M =gl m =gy
At £ = 0 we observe
My =—m’, Vn,j€[-N,-N +1,..,N—1,N], (118a)
My Mmjp, Vn,je[-N,—N+1,..,N—1,N]. (118b)

We claim that this is true V¢ € Ry and prove these claims by showing that the derivatives
0ym,,; fulfill the same symmetries, i.e.

Opmnj =—Gm_, _;, (119a)

agmnj = 3gmjn. (119b)
It suffices to prove (119) under the assumption of (118), since this implies that the flow equa-

tions (117) do not break the symmetries (119). First, we prove (119a). According to (117)
we have

OgmM_p—j = —Im_p_p—m_;_jIm_p_;
* ¥ * %
N Monn = Mokk o Moy 7 Mok (120a)
|m* —m* | |m* —m* | M_p,—kM—t,—j a
Kmj \Men—n ~ M —j=j T Mk—k

(118a) My, —m Mjj— My

=" |myy —mjj|lm;; — E 2 f:k + i] — |m;, m;. (120b)
J A m*x —m® | |mt.—m* | ]

k#n,j nn kk jj kk

=—0 m, ;. (120¢)

Note that we applied |z; —2,| = |2] — 23| Vz; € C in line (120b). To prove (119b), we apply
(117)

—m* m*, —m*

nn kk JjJ kk
aemjn = —|m,m JJ|m]n + Z ( | + |m e l)mjkmkn (1213)

k#n] nn kk kk

(118b) nn ]] mkk
=2 My — | + Z g | e L (121b)

k#n,j kk jj kk
= 3gmnj . (121C)

With this, we showed that the flow equations do not break the symmetries (118). Therefore,
the symmetries are fulfilled Y € R}.

The symmetries (118) imply that all eigenvalues appear in pairs (A, —A*), aside from the
singular eigenvalue Ay = iayy(00) with €y¢(£) = 0. By applying (117), the general derivatives
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of €,; and a, read

m* —m? mt. —m;
= kk ji kk
3genj = _|mnn - mulem + Re |: Z (|m:”_m* | + P |)mnkmkj] , (1223)
k#n,j nn Mk i Mk
* * *
— Moy _mik My — My
Oy 0ty = —|Mpy —mjjlay, +Im[2 (lm* o T T e ] | ek | (122b)
k#n,j nn Mk i Mk
The derivative of ayo(£) reads
- Mo — My
_ 2
aeaoo =2Im Z mmok (1233)
k#0 '" 700 kk
—€rk Hilog —a
=4Im ’;" (i = aoo) (€ox +iatgr)? (123b)
k>0 4/ € + (@00 — i )?

2 2
—2€ €0k ok + (i — Ago)(€q; — agy)
=4 E .

>0 V€ + (@00 — o )?

Further simplifications do not seem possible without knowledge about the solutions mgy(¢)
and my (£).

(123c)

E Automated Flow Equation Calculation for the Ordered Dissipa-
tive Scattering Model

We show here that setting up the flow equations for the third example in Sec. 4.4 by commuting
the matrices analytically leads to exactly the same flow equations as the second quantization
formulation in Ref. [1], as expected. The R2-generator for the problem reads

N = (D', V= D diVep — Veedy, (124)
C
and the flow
dymie =[n"%, M1 (125a)
= (i Ves — Ve )dsg + Veg) = (dis + Vi (dEveg — vied?y) (125b)
S,C
= Z(_Vks d:s)(dsq + Vsq) - (dks + vks)(ds*s vsq)
S
+ Z (dzcvcs)(dsq + vsq) - (dks + vks)(_vscd:q) (125C)
S,C#S
=(—Vigd ) gq — dir(dfvig) + D (—VigdE)veg — D Vi (dovig)
s#q s#k
+ D (i veddyg + D dieeedi )+ D (@ive)vig + D vis(veed?)) (125d)
c#q c#k s#q,c#s s#k,c#s
= — Vig(Udgg? + i P—diy g — dedl) + D vigvyg(diy +diy—2d%)  (125€)
s#{k,q}
= —Vigldgg —dil? + D vigvi(diy + d —2d%), (125)
s#{kq)
= miz =2 viva(d — ), (1259)
s#k
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is identical to the flow calculated using second quantization in Ref. [1], except for a factor
i, which was included in the non-diagonal components in Ref. [1]. The missing restriction
s # {k,q} in Ref. [1] is a typo, which was confirmed by the authors.

The R3-generator reads

R3 _ Vab/(daa - dbb) > for daa 7& dbb ) (126)
ab 0, for d,, =dy;,
and the corresponding flow is given by
armie =", Mg (127a)
=Z (M1s(diq + Veg) = (dis + Vis)sg) (127b)
Vis(dsq + Vg (dys + Vi)V
_ Z ks Z ks ks/Vsq (127¢)
s£k Ay — s£q dgs —dgq
_ vkq dqq . dkkvkq ( Vksvsq n vksvsq ) (127d)
dkk - dqq dkk - dqq s#{k,q} dkk - dss dqq - dss
dyge + dgq — 2ds )
==V, t+ (vks Vg (127e)
1 s#%:q} 1 (dkk dss)(dqq - dss)
gmi =2y Ttk * (1279
s#k dkk

which again matches the result in second quantization [1]. We stress that this shows that calcu-
lating the flow equations using automated numerical matrix multiplications without changing
to second quantization is a feasible approach that does not neglect any relevant physics. In
real applications beyond the scope of the benchmarks presented here, however, flow equations
are commonly calculated and solved in second quantization, because this approach allows one
to tread more processed with less parameters.

F Sampling of Random Lindbladians

In Sec. 4.6 we introduce

N2-1

ED(p): Z Kinn I:anFr'n_%(F:nan'i_pF:nFn)iI (128)

m,n=1

as a way to sample random Lindbladians. Here, we explain the method in more detail.
The Hilbert-Schmidt basis {F,},n = 1,2,...,N2 —1 is traceless (Tr(F,) = 0) and orthonor-
mal (Tr(FnFT‘;) = 6,m). We can sample them using the N 2 _1 Hermitian generators of SU(N)

N(N—-1) . . 1 . .
_— t t Si=—= k| + |k 12
5 symmetric matrices Sy = = () (k| + k) (1292)
N(N -1 i
NN =1) antisymmetric matrices  Jj = - () (k= 1K) (51 » (129b)
V2
1 l
N —1 diagonal matrices D} = ——— [n)(n|—1l+1){I+1]], (129c)
/0D (Z
with j,ke€{1,2,..,N}and [ € {1,2,...,N — 1}. (1294d)
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In N = 2 these are the well-known Pauli matrices and in N = 3 the standard eight Gell-Mann
matrices.

All matrices K, F,, and p are of dimension N x N. After constructing £ (p), we calculate all
its matrix elements by using a basis {B,},, for all possible density matrices p in Fock-Liouville
space. This basis does not need to fulfill any particular conditions, so we simply choose N2
possible matrices that have one element 1 and all other elements 0. After calculating the
(N2 x N2)-dimensional supermatrix representation of £, (p), we diagonalize the supermatrix
to receive the spectrum.

The computationally most costly part is calculating the matrix representation of L,(p)
which scales according to O(N7) in the worst case, assuming an O(N3) complexity for matrix
multiplications. Considering that F,, and p are rather sparse and matrix products are often
calculated more efficiently for sparse matrices, the real scaling is possibly slightly lower on
average, i.e. O(N*) with non-integer scaling dimension a € [6,7]. We optimized the sampling
of the Lindbladians by using sparse matrix representations and pre-calculating all possible
products F,p and pF T'n outside of the innermost loop which sums over all possible values of
n and m and calculates the matrix products. The matrix products are calculated using the
Eigen library for C++4 [69]. With these optimizations, the time necessary for sampling the
Lindbladians was negligible compared to the time for solving the flow equations.
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