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Abstract

We sketch a procedure to capture general non-invertible symmetries of a d-dimensional
quantum field theory in the data of a higher-category, which captures the local prop-
erties of topological defects associated to the symmetries. We also discuss fusions of
topological defects, which involve condensations/gaugings of higher-categorical sym-
metries localized on the worldvolumes of topological defects. Recently some fusions of
topological defects were discussed in the literature where the dimension of topological
defects seems to jump under fusion. This is not possible in the standard description of
higher-categories. We explain that the dimension-changing fusions are understood as
higher-morphisms of the higher-category describing the symmetry. We also discuss how
a 0-form sub-symmetry of a higher-categorical symmetry can be gauged and describe
the higher-categorical symmetry of the theory obtained after gauging. This provides a
procedure for constructing non-invertible higher-categorical symmetries starting from
invertible higher-form or higher-group symmetries and gauging a 0-form symmetry. We
illustrate this procedure by constructing non-invertible 2-categorical symmetries in 4d
gauge theories and non-invertible 3-categorical symmetries in 5d and 6d theories. We
check some of the results obtained using our approach against the results obtained using
a recently proposed approach based on ’t Hooft anomalies.
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1 Introduction

The most unexpected, generalized symmetries [1] thus far are those that relax the group multi-
plication structure, often referred to as non-invertible symmetries. After a long and prosperous
history in spacetime dimensions d “ 2,3 [2–16], non-invertible symmetries characterized by
topological operators satisfying a fusion-algebra (as opposed to a group law), have only very
recently been started to be systematically studied in d “ 4, especially in non-topological QFTs.
The approaches used in [17–19] use mixed anomalies and duality defects to construct non-
invertible symmetries in 4d gauge theories. In [20,21] arguments were provided to construct
non-invertible defects in Op2q gauge theories, and related theories, by gauging charge conju-
gation in Up1q gauge theories. Recently, in [22], condensation defects (see also [23]) in 3d
were discussed, which provide examples of non-invertible symmetries. For topological theories
some work on non-invertible defects in higher dimensions can be found here [24,25].

In this paper we propose a general procedure, applicable in any dimension, which con-
structs non-invertible symmetries by gauging 0-form sub-symmetries of invertible higher-form
and higher-group symmetries.

These non-invertible symmetries and their properties, such as the possible gaugings and
analogs of ’t Hooft anomalies, are expected to be encoded in the structure of a higher-category,
which can be understood as capturing the local properties of topological defects associated to
these symmetries. We can thus call these symmetries as higher-categorical symmetries. The
most general symmetry structure of a d-dimensional QFT is given by a pd ´1q-category. Some
mathematics literature on these higher categories can be found in [26–29].

Our approach is inspired by the one in [30] in 3d (see also [31]), where 0-form global
symmetries of TQFTs are gauged. We generalize this to any dimension as follows: the starting
point of our analysis is a theory T, whose symmetry category of topological defects, satisfies the
group law. We also assume the presence of a 0-form symmetry Gp0q, generated by topological
defects of dimension d ´ 1: Dd´1. We furthermore consider situations, where these 0-form
symmetries act as outer automorphisms, in particular inducing a non-trivial action on the lower
dimensional topological defects Dd´pp`1q that generate the p-form symmetries.

We then gauge this 0-form symmetry, and determine the higher-category that is obtained
after gauging. One set of topological operators in the gauged theory T{G are the invariant
combinations of topological defects Dd´pp`1q in the initial category. After gauging the 0-form
symmetry, there will be additional topological line operators, that generate the dual symmetry.
We develop a consistent framework to combine these two sets of defects and determine their
fusions. The resulting structure is naturally a higher-category, with a fusion product defined
at every level of the category.

Examples that we apply this method to are

• Zp0q

2 outer automorphism gauging of Spinp4Nq and Spinp4N `2q pure gauge theories in
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3d and 4d, generalized also to any d.

• Zp0q

2 outer automorphism gauging of discrete abelian gauge theories in 3d and 4d, where

Zp0q

2 acts as electromagnetic duality in 3d and ‘layer/flavor swap’ in 4d.

• Op2q and ČSUpNq gauge theories in 4d

• S3-gauging of Spinp8q gauge theory in 3d and 4d

• An example of a quiver gauge theory in 4d, where dihedral D8 0-form symmetry group
is gauged.

• 6d absolute theories with supersymmetry

• 5d theories with supersymmetry

In the second part of the paper – starting with section 8 – we develop an alternative ap-
proach, which is closely related to the one proposed in [17], where the authors construct
non-invertible symmetries starting from a 4d theory T which has a mixed anomaly of suitable
type between a 0-form symmetry Γ p0q and a 1-form symmetry Γ p1q. In particular, they consider
an anomaly A linear in the background gauge field A1 for the 0-form symmetry and quadratic
in the background gauge field B2 for the 1-form symmetry and argue that gauging the 1-form
symmetry Γ p1q results in a theory T1 “ T{Γ p1q with non-invertible symmetries. Indeed, con-

sider the codimension-1 topological defects Dpgq

3 , g P Γ p0q, associated to the 0-form symmetry

of T. The mixed anomaly A implies that Dpgq

3 is anomalous under background gauge transfor-
mations of B2. Once we gauge the 1-form symmetry and go to T1, this becomes a dependence
on dynamical fields that makes the 0-form symmetry defects ill-defined. We can still preserve
the symmetry associated to these topological defects by stacking them with an appropriate 3d
TQFT X pgq, which has itself an anomaly that can absorb the bulk dependency of Dpgq

3 and re-
store gauge invariance. The price to pay (or the bonus) is that the topological codimension-1
defects of T1, namely Dpgq

3 “ Dpgq

3 b X pgq, no longer satisfy a group law, but a non-invertible
fusion-like algebra.

Our starting point is either a theory with a mixed anomaly, or a discrete 2-group symmetry
[32–40].1 Several theories in this list are amenable also to the approach proposed by [17]
that we have just described. We develop this approach in dimensions d ď 6, and construct
a variety of theories with non-invertible symmetries. In particular we will consider theories
with 2-groups symmetries

δA1
B2 “ φ˚Θ . (1)

The approach using twist is applicable when the Postnikov class Θ “ 0. When Θ is not neces-
sarily zero and we can gauge the 1-form symmetry associated to B2, then the resulting theory
has a mixed anomaly, and the approach in [17] is applicable. This however has limitations, as
it requires the mixed anomaly to be linear in the background field, whose topological defect
becomes non-invertible after gauging. Moreover this latter approach is somewhat computa-
tionally intense beyond Z2 gaugings, and is currently unknown to be applicable in the case of
non-abelian discrete symmetries. On the contrary, the higher-category approach is applicable
for both abelian and non-abelian gauging of 0-form symmetries.

Thus, both approaches have a range of applicability, with advantages and limitations. In
this paper we will explore both approaches and cross-connect them whenever possible. This
will provide an important cross-check for our construction. In this comparison with [17] (and

1Other examples of 2-groups symmetries in higher-dimensional QFTs have recently appeared in [41–46], which
however have continuous 0-form flavor symmetries.
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also the fusion in [20] for Op2q) it is also noteworthy that our approach will yield fusion
structures at all levels of the higher-category: i.e. for the objects, and the n-morphisms, thus
refining the fusion that includes topological defects of different dimension that was proposed
in [17]. We will show how these two descriptions are compatible.

Another important phenomenon that we comment upon is the appearance of conden-
sations of higher-form symmetries in the fusion of non-invertible defects on arbitrary sub-
manifolds of spacetime, as observed in [17, 18]. We provide examples generalizing this phe-
nomena where the fusion products involve generalized gaugings of the higher-categorical sym-
metries localized on topological defects.

We should make one clarifying comment: the symmetry categories considered in this paper
are obtained by gauging a 0-form symmetry. The resulting symmetry category has topological
defects which descend from the ungauged symmetry category, but also includes condensation
defects. Fusion of the former can include condensation defects, which we include. However
we do not discuss the fusion of condensation defects themselves. This is done in subsequent
work [47–50]. The full symmetry categories including condensation defects and their fusion,
in the examples we consider here are discussed in [48].

The plan of this paper is as follows: we begin in section 2 with a general discussion of
higher categories and their relevance for symmetries in QFTs. In section 3, we discuss higher-
categorical symmetries localized on the world-volumes of defects and their generalized gaug-
ing/condensation. The concrete setting of 0-form gauging of higher-categories is discussed in
detail in section 4, both in 3d and in higher dimensions. The subsequent three sections 5, 6
and 7, contain a multitude of examples in 3d, 4d, and 5d/6d, respectively. Each example is
constructed by gauging a 0-form symmetry and deriving the higher-categorical fusion in the
gauged theory.

In section 8 we change gears and derive numerous non-invertible symmetries from 2-
groups and mixed anomalies. This then is used as a comparison to the earlier higher-category
approach. Finally we conclude and supply some appendices with computational details.

2 Symmetries and Higher-Categories

In this section, we review why generalized symmetries are expected to form the mathematical
structure of a higher-category.

2.1 Symmetries in Terms of Topological Defects

Generalized symmetries of a QFT correspond to the existence of topological defects of var-
ious dimensions in the QFT. These topological defects can be genuine or non-genuine. We
begin with a discussion of genuine topological defects, that can be defined independently of
other higher-dimensional topological defects. A genuine topological defect Dp of dimension-p
is a defect operator that can be inserted along any dimension-p sub-manifold Σp of the d-
dimensional spacetime Md . The fact that it is topological means the following: Consider a
correlation function

@

¨ ¨ ¨ DppΣpq ¨ ¨ ¨
D

containing Dp, where the dots denote other topological
and non-topological defects of various dimensions. Then, we have the equality of correlation
functions

@

¨ ¨ ¨ DppΣpq ¨ ¨ ¨
D

“

A

¨ ¨ ¨ Dp

´

Σ1
p

¯

¨ ¨ ¨

E

, (2)

where
A

¨ ¨ ¨ Dp

´

Σ1
p

¯

¨ ¨ ¨

E

denotes the correlation function obtained by changing the locus of

Dp from Σp to Σ1
p by a homotopy that does not intersect the loci of other defects participating

in the correlation function, and the loci of other defects are not changed.
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D2

D1

D1
1

D0

Figure 1: Example of non-genuine defects arising at junctions of genuine defects.
Here D1

1 and D2 are genuine line and surface defects respectively. D1 is a non-genuine
line defect arising at the end of D2 and D0 is a non-genuine local operator that can
arise at an end of D1

1 along D2.

Now, in order to discuss non-genuine topological defects, we begin by considering sub-
defects arising at the intersections or junctions of genuine topological defects. See figure
1 for some examples. Consider a p-dimensional junction Σp of genuine topological defects
Dpi

`

Σpi

˘

, where

Σp :“
č

i

Σpi
. (3)

We need to have pi ą p for all i. There can be various kinds of sub-defects that can live
at this junction Σp for a fixed choice of Dpi

. In general, these include both topological and
non-topological sub-defects, where a topological sub-defect Jp satisfies

C

¨ ¨ ¨
ź

i

Dpi

`

Σpi

˘

JppΣpq ¨ ¨ ¨

G

“

C

¨ ¨ ¨
ź

i

Dpi

´

Σ1
pi

¯

Jp

´

Σ1
p

¯

¨ ¨ ¨

G

, (4)

which is an equality of correlation functions involving the configuration of defects Dpi
and Jp,

where Σ1
pi

are related to Σpi
by a homotopy that does not intersect the loci of other defects

involved in the correlation function, and

Σ1
p :“

č

i

Σ1
pi

. (5)

Above is only a class of possible non-genuine topological defects. More generally, non-genuine
topological defects arise at the junctions of genuine topological defects and non-genuine topo-
logical sub-defects arising at the junctions of genuine topological defects. See figure 2.

So far whatever we have discussed holds true for both discrete and continuous symmetries.
A discrete symmetry is one for which the corresponding genuine and non-genuine topological
defects are parametrized by discrete parameters. On the other hand, for a continuous sym-
metry, the corresponding genuine and non-genuine topological defects are parametrized by
continuous parameters.

For a discrete symmetry, the associated topological defects and their configurations provide
full information about the various possible backgrounds for the discrete symmetry that the QFT
can be coupled to. However, for a continuous symmetry, the associated topological defects
and their configurations only provide information about “flat” backgrounds of the continuous
symmetry.
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D2

D1

D1
1D0

Figure 2: An example of a non-genuine defect arising at the junctions of genuine and
other non-genuine defects. Here D0 is a non-genuine local operator that can arise at
an end of D1

1 along D1, where D1
1 is a genuine line defect, while D1 itself is a non-

genuine line defect that can arise at an end of the genuine surface defect D2.

2.2 From Topological Defects to Higher-Categories

Symmetry category. From the information about configurations of topological defects in
a d-dimensional QFT T, we can construct a pd ´ 1q-category CT, which we refer to as the
symmetry category of T. For d “ 2, it is a 1-category, or a standard category. For d ą 2, it is a
higher-category.

Recall that a pd´1q-category has d levels. At the first level, we have objects of the category,
which are also called 0-morphisms. At the second level, we have 1-morphisms between objects.
At the third level, we have 2-morphisms between 1-morphisms. Continuing in this fashion, at
the i-th level for 2 ď i ď d, we have pi ´ 1q-morphisms between pi ´ 2q-morphisms.

Objects. The objects of CT correspond to topological codimension-1 defects of T. We use the
same labels Dd´1 to denote both topological codimension-1 defects and the corresponding ob-
jects of CT. There is an additive structure on the objects coming from the additive structure on
the codimension-1 topological defects. A codimension-1 topological defect Dd´1 “

À

i ni D
piq
d´1

with ni ą 0 is a sum of distinct codimension-1 topological defects Dpiq
d´1, which has the prop-

erty that it has a total of
ř

i ni number of vacua, out of which in ni number of vacua it behaves

like the defect Dpiq
d´1.

Simple objects are by definition those codimension-1 topological defects that have a single
vacuum, or in other words, carry a single topological local operator on their worldvolume.

There is also a product/monoidal structure on the objects coming from fusing codimension-
one topological defects. See figure 3, where we consider fusing two codimension-1 defects
Dp1q

d´1 and Dp2q

d´1. The resulting codimension-1 defect is denoted as Dp12q

d´1, which we represent
in equations as

Dp1q

d´1 b Dp2q

d´1 “ Dp12q

d´1 , (6)

or as
Dp1q

d´1pΣd´1q b Dp2q

d´1pΣd´1q “ Dp12q

d´1pΣd´1q , (7)

if we want to manifest the codimension-one submanifold Σd´1 of spacetime that the defects
wrap.
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“

Dp2q

d´1Dp1q

d´1 Dp12q

d´1

Figure 3: Fusion of codimension-1 topological defects that describes a monoidal
structure on the objects in the symmetry higher-category.

Dp1,2q

d´2

Dp1q

d´1

Dp2q

d´1

Figure 4: A 1-morphism Dp1,2q

d´2 from Dp1q

d´1 to Dp2q

d´1 is a codimension-2 topological

defect living between codimension-1 topological defects Dp1q

d´1 and Dp2q

d´1. To specify
the direction of the morphism, we need to pick a “time” direction, which is taken to
run from bottom to top of the figure.

1-morphisms. The 1-morphisms of CT correspond to topological codimension-2 defects liv-
ing at the intersection of two topological codimension-1 defects. More precisely, a topological
codimension-2 defect Dd´2 living between codimension-1 defects Dd´1 and D1

d´1 (with suit-
able choice of orientations) corresponds to a 1-morphism from Dd´1 to D1

d´1. See figure 4.

There is an additive structure on 1-morphisms: Let Dpiq
d´2 be distinct 1-morphisms from fixed

object Dd´1 to fixed object D1
d´1. Then

Dd´2 :“
à

i
ni D

piq
d´2 , (8)

for ni ě 0 is also a 1-morphism from Dd´1 to D1
d´1, which has (for each value of i) ni number

of vacua in which it behaves like defect Dpiq
d´2.

Two 1-morphisms can be composed to obtain another 1-morphism. Given a 1-morphism
Dp1,2q

d´2 from Dp1q

d´1 to Dp2q

d´1 and a 1-morphism Dp2,3q

d´2 from Dp2q

d´1 to Dp3q

d´1, we have a 1-morphism

Dp2,3q

d´2 ˝ Dp1,2q

d´2 , (9)

from Dp1q

d´1 to Dp3q

d´1. This composition operation describes fusion of Dp1,2q

d´2 and Dp2,3q

d´2 along a

codimension-1 locus containing all three codimension-1 defects Dp1q

d´1, Dp2q

d´1 and Dp3q

d´1. See
figure 5.

Changing the time direction in the above fusion leading to composition of morphisms, we
obtain a monoidal/fusion structure on 1-morphisms. However, it should be noted that we
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Dp1,2q

d´2

Dp2,3q

d´2

Dp1q

d´1

Dp2q

d´1

Dp3q

d´1

“ Dp2,3q

d´2 ˝ Dp1,2q

d´2

Dp1q

d´1

Dp3q

d´1

Figure 5: Fusing two codimension-2 defects Dp1,2q

d´2 and Dp2,3q

d´2 leads to the defect

Dp2,3q

d´2 ˝ Dp1,2q

d´2 . This is described in the higher-category as a composition of 1-
morphisms, and to describe the direction of the morphisms and composition, we
need to pick a “time” direction, which is taken to run from bottom to top of the fig-
ure.

Dp1,2q

d´2 Dp2,3q

d´2

Dp1q

d´1 Dp2q

d´1 Dp3q

d´1
“

Dp1,2q

d´2 b
Dp2q

d´1
Dp2,3q

d´2

Dp1q

d´1 Dp3q

d´1

Figure 6: Here we have rotated the figure 5, while keeping the time direction going
from bottom to top. The fusion of Dp1,2q

d´2 and Dp2,3q

d´2 now is represented as a monoidal
operation on 1-morphisms. Such a monoidal operation is labeled by objects, as in
equation (10).

define this fusion structure only if CT admits 2-morphisms, i.e. if the theory T has dimension
d ě 3. Given a 1-morphism Dp1,2q

d´2 from Dp1q

d´1 to Dp2q

d´1 and a 1-morphism Dp2,3q

d´2 from Dp2q

d´1 to

Dp3q

d´1, we have a 1-morphism

Dp1,2q

d´2 b
Dp2q

d´1
Dp2,3q

d´2 , (10)

from Dp1q

d´1 to Dp3q

d´1. See figure 6. Even though we have

Dp1,2q

d´2 b
Dp2q

d´1
Dp2,3q

d´2 “ Dp2,3q

d´2 ˝ Dp1,2q

d´2 , (11)

we use both notions as they have different utilities. For example, we will see later that the
fusion structure bDd´1

on 1-morphisms from Dd´1 to Dd´1 descends to a fusion structure on
objects of a higher-category of symmetries localized along Dd´1.

There is another fusion structure on 1-morphisms, which is defined for any CT, irrespective
of whether it admits 2-morphisms or not. Given a 1-morphism Dp1,2q

d´2 from Dp1q

d´1 to Dp2q

d´1 and

9
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Dp2q

d´1

Dp1q

d´1

Dp1,2q

d´2

Dp4q

d´1

Dp3q

d´1

Dp3,4q

d´2
=

Dp2q

d´1 b Dp4q

d´1

Dp1q

d´1 b Dp3q

d´1

Dp1,2q

d´2 b Dp3,4q

d´2

Figure 7: The fusion structure b on general codimension-2 topological defects.

a 1-morphism Dp3,4q

d´2 from Dp3q

d´1 to Dp4q

d´1 constructs a 1-morphism

Dp1,2q

d´2 b Dp3,4q

d´2 , (12)

from Dp13q

d´1 to Dp24q

d´1, where

Dp13q

d´1 :“ Dp1q

d´1 b Dp3q

d´1 ,

Dp24q

d´1 :“ Dp2q

d´1 b Dp4q

d´1 .
(13)

This fusion operation is described in figure 7.

2-morphisms. The 2-morphisms of CT correspond to topological codimension-3 defects liv-
ing at the intersection of two codimension-2 defects corresponding to 1-morphisms of CT.
More precisely, consider two codimension-2 defects Dp1,2q,p1q

d´2 and Dp1,2q,p2q

d´2 both acting as 1-

morphisms from the codimension-1 defect Dp1q

d´1 to the codimension-1 defect Dp2q

d´1. Then,

2-morphisms from Dp1,2q,p1q

d´2 to Dp1,2q,p2q

d´2 correspond to codimension-3 defects that live at the

intersection of Dp1,2q,p1q

d´2 and Dp1,2q,p2q

d´2 . See figure 8. There is again an additive structure on
2-morphisms similar to that for 1-morphisms and 0-morphisms discussed above. We can com-
pose a 2-morphism Dp1,2q

d´3 from 1-morphism Dp1q

d´2 to 1-morphism Dp2q

d´2 with a 2-morphism

Dp2,3q

d´3 from Dp2q

d´2 to 1-morphism Dp3q

d´2, to obtain a 2-morphism

Dp2,3q

d´3 ˝ Dp1,2q

d´3 , (14)

from Dp1q

d´2 to Dp3q

d´2.
There are again multiple fusion structures we can define. For any arbitrary CT contain-

ing 2-morphisms, i.e. for any T having d ě 3, we have a fusion structure on 2-morphisms,
which we denote by b. Consider a 2-morphism Dp1,2q,p1,2q

d´3 from a 1-morphism Dp1,2q,p1q

d´2 to a

1-morphism Dp1,2q,p2q

d´2 , where each 1-morphism Dp1,2q,piq
d´2 is from an object Dp1q

d´1 to an object

Dp2q

d´1. Similarly, consider another 2-morphism Dp3,4q,p1,2q

d´3 from a 1-morphism Dp3,4q,p1q

d´2 to a

1-morphism Dp3,4q,p2q

d´2 , where each 1-morphism Dp3,4q,piq
d´2 is from an object Dp3q

d´1 to an object

Dp4q

d´1. Then, the 2-morphism

Dp1,2q,p1,2q

d´3 b Dp3,4q,p1,2q

d´3 (15)
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Dp1,2qp2q

d´2

Dp1,2qp1q

d´2

Dp1q

d´1 Dp2q

d´1

Dp1,2qp1,2q

d´3

Figure 8: A 2-morphism Dp1,2qp1,2q

d´3 between 1-morphisms Dp1,2q,p1q

d´2 and Dp1,2q,p2q

d´2 (both

from Dp1q

d´1 to Dp2q

d´1).

is from the 1-morphism Dp1,2q,p1q

d´2 bDp3,4q,p1q

d´2 to the 1-morphism Dp1,2q,p2q

d´2 bDp3,4q,p2q

d´2 , where each

1-morphism Dp1,2q,piq
d´2 b Dp3,4q,piq

d´2 is from the object Dp1q

d´1 b Dp3q

d´1 to the object Dp2q

d´1 b Dp4q

d´1.
Similarly, for any arbitrary CT containing 2-morphisms, i.e. for anyT having d ě 3, we have

another fusion structure on 2-morphisms which is parametrized by objects of CT. Consider a
2-morphism Dp1,2q,p1,2q

d´3 from a 1-morphism Dp1,2q,p1q

d´2 to a 1-morphism Dp1,2q,p2q

d´2 , where each

1-morphism Dp1,2q,piq
d´2 is from an object Dp1q

d´1 to an object Dp2q

d´1. Similarly, consider another

2-morphism Dp2,3q,p1,2q

d´3 from a 1-morphism Dp2,3q,p1q

d´2 to a 1-morphism Dp2,3q,p2q

d´2 , where each

1-morphism Dp2,3q,piq
d´2 is from the object Dp2q

d´1 to an object Dp3q

d´1. Then, the 2-morphism

Dp1,2q,p1,2q

d´3 b
Dp2q

d´1
Dp2,3q,p1,2q

d´3 (16)

is from the 1-morphism Dp1,2q,p1q

d´2 b
Dp2q

d´1
Dp2,3q,p1q

d´2 to the 1-morphism Dp1,2q,p2q

d´2 b
Dp2q

d´1
Dp2,3q,p2q

d´2 ,

where each 1-morphism Dp1,2q,piq
d´2 b

Dp2q

d´1
Dp2,3q,piq

d´2 is from the object Dp1q

d´1 to the object Dp3q

d´1.

Now, if CT contains 3-morphisms, i.e. if T is a theory in d ě 4, then we have a third fusion
structure, which is parametrized by 1-morphisms of CT. Consider a 2-morphism Dp1,2q,p1,2q

d´3

from a 1-morphism Dp1,2q,p1q

d´2 to a 1-morphism Dp1,2q,p2q

d´2 , where each 1-morphism Dp1,2q,piq
d´2 is

from an object Dp1q

d´1 to an object Dp2q

d´1. Similarly, consider another 2-morphism Dp1,2q,p2,3q

d´3

from the 1-morphism Dp1,2q,p2q

d´2 to another 1-morphism Dp1,2q,p3q

d´2 , where Dp1,2q,p3q

d´2 is also from

the object Dp1q

d´1 to the object Dp2q

d´1. Then, the 2-morphism

Dp1,2q,p1,2q

d´3 b
Dp1,2q,p2q

d´2
Dp1,2q,p2,3q

d´3 (17)

is from the 1-morphism Dp1,2q,p1q

d´2 to the 1-morphism Dp1,2q,p3q

d´2 . See figure 9. It should be noted
that

Dp1,2q,p1,2q

d´3 b
Dp1,2q,p2q

d´2
Dp1,2q,p2,3q

d´3 “ Dp1,2q,p2,3q

d´3 ˝ Dp1,2q,p1,2q

d´3 . (18)

Higher-morphisms. Continuing inductively, we define p-morphisms from p ´ 1-morphism
Dd´p to p ´ 1-morphism D1

d´p of CT as topological codimension-pp ` 1q defects Dd´p´1 that
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Dp1q

d´1

Dp2q

d´1

Dp1,2q,p1q

d´2 Dp1,2q,p3q

d´2

Dp1,2q,p2q

d´2

Dp1,2q,p1,2q

d´3 Dp1,2q,p2,3q

d´3

Dp1q

d´1

Dp2q

d´1

Dp1,2q,p1q

d´2 Dp1,2q,p3q

d´2
Dp1,2q,p1,2q

d´3 b
Dp1,2q,p2q

d´2
Dp1,2q,p2,3q

d´3

=

Figure 9: A 2-morphism fusion in Dp1,2q,p2q

d´2 : Dp1,2q,p1,2q

d´3 b
Dp1,2q,p2q

d´2
Dp1,2q,p2,3q

d´3 .

live at the intersection of topological codimension-p defects Dd´p and D1
d´p (with appropriate

choices of orientation). There is an additive structure and composition on p-morphisms. For
an arbitrary CT admitting p-morphisms, i.e. for any theory T of d ě p ` 1, we can define
many kinds of fusion structures on p-morphisms: a fusion structure b, fusion structures bDd´1

parametrized by objects of CT, fusion structures bDd´2
parametrized by 1-morphisms of CT, and

so on upto fusion structures bDd´p`1
parametrized by pp ´ 2q-morphisms of CT. If CT admits

pp`1q-morphisms, i.e. if T has dimension d ě p`2, then we can also define a fusion structure
on p-morphisms parametrized by pp ´ 1q-morphisms of CT, which is the same as composition
of p-morphisms.

3 Localized Symmetries and Condensations

Suppose we are provided two topological defects Dp1q
p and Dp2q

p with a topological junction

Dp1,2q

p´1 between them, such that wrapping the junction Dp1,2q

p´1 on a sphere Sp´1 is proportional

to not wrapping it, as shown in figure 10. Then, we say that Dp1q
p and Dp2q

p are related by a
condensation. See [23] for a general discussion of condensations.

This lets us define equivalence classes of topological defects2 that are related to each other
by condensations. Pick a representative Dp1q

p of such an equivalence class. Then any other

defect Dp2q
p lying in the equivalence class can be obtained by performing a generalized gauging

operation on the worldvolume of Dp1q
p . Moreover, all the topological sub-defects of Dp2q

p can

be obtained from topological sub-defects of Dp1q
p . The purpose of this section is to explain this

generalized gauging construction.

2These are also known as ‘Schur components’ [51].
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Dp1q
p

Dp2q
p

Dp1,2q

p´1
9

Dp1q
p

Figure 10: Two topological defects Dp1q
p and Dp2q

p are related by condensation if there

exists a topological junction Dp1,2q

p´1 which can be bubbled out of nothing at the cost
of changing the correlation function by an overall constant non-zero number.

3.1 Symmetries Localized Along Topological Defects

To describe the generalized gauging operation, we need to first begin with a discussion of the
(higher-)category CT,Dp

of symmetries localized along the worldvolume of a topological defect
Dp (which may be genuine or non-genuine). CT,Dp

is a pp ´ 1q-category describing topological
defects that are constrained to live inside Dp, and we refer to it as the symmetry category of the
defect Dp.

In fact CT,Dp
can be recognized as a subcategory of the symmetry pd ´1q-category CT of the

theory T. The defect Dp is itself a pd ´ p´1q-morphism of CT. The objects of CT,Dp
are pd ´ pq-

morphisms of CT from Dp to itself. The 1-morphisms of CT,Dp
are pd ´ p ` 1q-morphisms of CT

going between pd ´ pq-morphisms of CT that are objects of CT,Dp
. Proceeding inductively, the

q-morphisms of CT,Dp
are pd´p`qq-morphisms of CT going between pd´p`q´1q-morphisms

of CT that are pq ´ 1q-morphisms of CT,Dp
. The additive and composition structures on CT,Dp

descend from those on CT.
The fusion structure b on CT,Dp

descends from the fusion structure bDp
on CT. The fusion

structures on CT,Dp
parametrized by q-morphisms (where q ě 0) of CT,Dp

descend from fusion
structures on CT parametrized by the pd ´ p ` qq-morphisms of CT that are associated to q-
morphisms of CT,Dp

.

3.2 Generalized Gauging: p “ 2

Let us now describe the construction of Dp2q
p in terms of Dp1q

p , when the two defects are related
by condensation. We will first discuss the case of p “ 2, where we can be quite concrete. Later
we will sketch the case of general p, where we will not be so concrete.

Dp2q

2 can be obtained from Dp1q

2 by performing a generalized gauging [8, 52, 53] of the

symmetry C
T,Dp1q

2
of Dp1q

2 . The gauging is described by what is known as an algebra inside the

1-category C
T,Dp1q

2
. The algebra is comprised of the following data:

• First of all, we have an object Ap1,2q

1 inside C
T,Dp1q

2
, which can be constructed as

Ap1,2q

1 “ Dp1,2q

1 b Dp2,1q

1 , (19)

where Dp1,2q

1 is the junction lines between Dp1q

2 and Dp2q

2 discussed above that is respon-

sible for condensation, and Dp2,1q

1 is the line obtained by reversing the orientation of

Dp1,2q

1 . See figure 11.
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• Additionally we have the following canonical morphisms

Ap1,2;pq

0 : Ap1,2q

1 b Ap1,2q

1 Ñ Ap1,2q

1 ,

Ap1,2;cpq

0 : Ap1,2q

1 Ñ Ap1,2q

1 b Ap1,2q

1 ,

Ap1,2;evq

0 : Ap1,2q

1 Ñ 1
Dp1q

2
,

Ap1,2;cevq

0 : 1
Dp1q

2
Ñ Ap1,2q

1 ,

(20)

which are constructed from Dp1,2q

1 and Dp2,1q

1 as shown in figure 12, and satisfy the prop-
erties shown in figure 13.

The gauging of C
T,Dp1q

2
by the algebra

Ap1,2q “

!

Ap1,2q

1 , Ap1,2;pq

0 , Ap1,2;cpq

0 , Ap1,2;evq

0 , Ap1,2;cevq

0

)

, (21)

is performed by inserting a mesh of topological defects comprised out of algebra along the full
locus of Dp1,2q

1 , as shown in figure 14. We denote the defect with algebra Ap1,2q condensed by

Dp2q

2 “
Dp1q

2

Ap1,2q
. (22)

Above, we used Dp1,2q

1 and Dp2,1q

1 to construct the algebra Ap1,2q. Conversely, we can con-

struct Dp1,2q

1 and Dp2,1q

1 using the algebra Ap1,2q, by inserting a mesh of topological defects

comprised out of algebra along half-of the locus of Dp1q

1 , as shown in figure 15.

Category of lines after condensation. The symmetry category capturing localized symme-
tries on Dp2q

2 can be recognized as

C
T,Dp2q

2
“ BimodAp1,2q

´

C
T,Dp1q

2

¯

, (23)

which is the category of Ap1,2q bimodules in C
T,Dp1q

2
. That is, the topological line operators living

on Dp2q

2 are bimodules of the algebra Ap1,2q. Such a bimodule BDp1q

2 comprises of the following
data

BDp1q

2 “

"

B
Dp1q

2
1 , B

Dp1q

2 ;l p
0 , B

Dp1q

2 ;rp
0 , B

Dp1q

2 ;lcp
0 , B

Dp1q

2 ;rcp
0

*

, (24)

Dp1,2q

1 Dp1,2q

1

Dp1q

2 Dp2q

2 Dp1q

2
“

Ap1,2q

1

Dp1q

2 Dp1q

2

Figure 11: The construction of the object comprising the algebra implementing the
gauging procedure to go from Dp1q

2 to Dp2q

2 .
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Dp1,2q

1 Dp1,2q

1

Dp1,2q

1

Dp1q

2

Dp1q

2

Dp2q

2
Dp1q

2
“

Ap1,2q

1

Dp1q

2

Ap1,2q

1

Ap1,2q

1

Dp1q

2Ap1,2q;p
0

Dp1,2q

1Dp1,2q

1

Dp1,2q

1

Dp1q

2

Dp1q

2

Dp2q

2Dp1q

2
“

Ap1,2q

1

Dp1q

2

Ap1,2q

1

Ap1,2q

1

Dp1q

2 Ap1,2q;cp
0

Dp1,2q

1

Dp1q

2

Dp2q

2

“

Ap1,2q

1

Dp1q

2

Ap1,2q;ev
0

Dp1,2q

1

Dp1q

2

Dp2q

2

“

Ap1,2q

1

Dp1q

2

Ap1,2q;cev
0

Figure 12: Construction of various morphisms comprising the algebra Ap1,2q.

where B
Dp1q

2
1 is an object of C

T,Dp1q

2
, and the other four are morphisms

B
Dp1q

2 ;l p
0 : Ap1,2q

1 b B
Dp1q

2
1 Ñ B

Dp1q

2
1 ,

B
Dp1q

2 ;rp
0 : B

Dp1q

2
1 b Ap1,2q

1 Ñ B
Dp1q

2
1 ,

B
Dp1q

2 ;lcp
0 : B

Dp1q

2
1 Ñ Ap1,2q

1 b B
Dp1q

2
1 ,

B
Dp1q

2 ;rcp
0 : B

Dp1q

2
1 Ñ B

Dp1q

2
1 b Ap1,2q

1 ,

(25)
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Ap1,2q

1 Ap1,2q

1 Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

Ap1,2q;p
0

Ap1,2q;p
0

=

Ap1,2q

1 Ap1,2q

1 Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

Ap1,2q;p
0

Ap1,2q;p
0

Ap1,2q

1Ap1,2q

1Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

Ap1,2q;cp
0

Ap1,2q;cp
0

=

Ap1,2q

1Ap1,2q

1Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

Ap1,2q;cp
0

Ap1,2q;cp
0

Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

Ap1,2q;cev
0

Ap1,2q;p
0

=

Ap1,2q

1 Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

Ap1,2q;ev
0

Ap1,2q;cp
0

=

Ap1,2q

1

;

Figure 13: Conditions specified by the morphisms comprising the algebra Ap1,2q.
These conditions follow simply from topological moves performed on the topolog-
ical defects Dp1,2q

1 participating in the definition of these morphisms.

such that these satisfy the properties shown in figure 16. A morphism in the category

BimodAp1,2q

´

C
T,Dp1q

2

¯

between bimodules BDp1q

2 ,p1q and BDp1q

2 ,p2q is a morphism between objects

B
Dp1q

2 ,p1q

1 and B
Dp1q

2 ,p2q

1 in category C
T,Dp1q

2
satisfying the relationships shown in figure 17 with

the morphisms defining the corresponding bimodules.

The topological line L
Dp2q

2
1 on Dp2q

2 associated to a bimodule BDp1q

2 has the property that

B
Dp1q

2
1 “ Dp1,2q

1 b L
Dp2q

2
1 b Dp2,1q

1 . (26)
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“

Dp1q

2 Dp2q

2

Figure 14: The construction of the topological defect Dp2q

2 by gauging algebra Ap1,2q

on Dp1q

2 . The blue lines on the left hand side are algebra objects Ap1,2q

1 , while the
tri-junctions are morphisms comprising the algebra.

“Dp1q

2 Dp1q

2 Dp2q

2

Dp1,2q

1

Figure 15: The construction of the interface Dp1,2q

1 using the algebra Ap1,2q. The blue

lines on the left hand side are algebra objects Ap1,2q

1 , while the tri-junctions and ends
of the lines are morphisms comprising the algebra.

See figure 18. The morphisms B
Dp1q

2 ;l p
0 , B

Dp1q

2 ;rp
0 , B

Dp1q

2 ;lcp
0 and B

Dp1q

2 ;rcp
0 are defined in terms of

L
Dp2q

2
1 , Dp1,2q

1 and Dp2,1q

1 as shown in figure 19.

3.3 Generalized Gauging: General p

The above description for p “ 2 is expected to generalize to general p. Dp2q
p can be ob-

tained from Dp1q
p by performing a generalized gauging of the symmetry C

T,Dp1q
p

. The gauging

is expected to be described by what we call a pp ´ 1q-algebra Ap1,2q in the pp ´ 1q-category

C
T,Dp1q

p
. The pp ´ 1q-algebra Ap1,2q is comprised of an object Ap1,2q

p´1 and multiple i-morphisms

for 1 ď i ď p ´ 1 describing various ways in which Ap1,2q

p´1 objects can join, split, be annihilated

and created. The object Ap1,2q

p´1 can again be described as

Ap1,2q
p “ Dp1,2q

p b Dp2,1q
p , (27)

while the various i-morphisms are described in terms of different configurations of Dp1,2q
p and

Dp2,1q
p .
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B
Dp1q

2
1

Ap1,2q

1Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

B
Dp1q

2 ;l p
0

B
Dp1q

2 ;l p
0

=

Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

Ap1,2q;p
0

B
Dp1q

2 ;l p
0

;

B
Dp1q

2
1

Ap1,2q

1 Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

B
Dp1q

2 ;rp
0

B
Dp1q

2 ;rp
0

=

Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

Ap1,2q;p
0

B
Dp1q

2 ;rp
0

B
Dp1q

2
1

Ap1,2q

1 Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

B
Dp1q

2 ;rcp
0

B
Dp1q

2 ;rcp
0

=

Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

Ap1,2q;cp
0

B
Dp1q

2 ;lcp
0

;

B
Dp1q

2
1

Ap1,2q

1Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

B
Dp1q

2 ;lcp
0

B
Dp1q

2 ;lcp
0

=

Ap1,2q

1

Ap1,2q

1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2
1

Ap1,2q;cp
0

B
Dp1q

2 ;lcp
0

B
Dp1q

2
1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2 ;l p
0

Ap1,2q;cev
0

=

B
Dp1q

2
1

;

B
Dp1q

2
1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2 ;rp
0

Ap1,2q;cev
0

=

B
Dp1q

2
1

;

B
Dp1q

2
1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2 ;lcp
0

Ap1,2q;ev
0

=

B
Dp1q

2
1

;

B
Dp1q

2
1

Ap1,2q

1

B
Dp1q

2
1

B
Dp1q

2 ;rcp
0

Ap1,2q;ev
0

=

B
Dp1q

2
1

B
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Figure 16: Conditions that a bimodule BDp1q

2 has to satisfy.

Dp2q
p is then obtained by placing a mesh of the pp ´ 1q-algebra Ap1,2q along Dp1q

p . The

topological sub-defects of Dp2q
p describing the symmetry pp ´ 1q-category C

T,Dp1q
p

are obtained

in terms of appropriate bimodules of the pp ´ 1q-algebra Ap1,2q.
In this paper, we only consider the case of p “ 2, and hence do not need to develop the

theory of generalized gauging for general p expanding the sketch discussed in this subsection.
See [24,25,54–56] for prior work in this direction.

4 0-Form Gauging of Higher-Categorical Symmetries

In this section, we study a sub-symmetry of T given by a pd ´ 2q-category Cid,T which is a
subcategory of the pd´1q-category CT capturing the full symmetry ofT. We have a group action
on Cid,T given by a finite group G, which may be non-abelian. The group action corresponds
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Figure 17: Conditions satisfied by a bimodule morphism m from bimodule BDp1q

2 to

bimodule C Dp1q

2 .

Dp1,2q

1 Dp1,2q

1

Dp1q

2
Dp2q

2

Dp1q

2
Dp2q

2

LDp2q

2

“

B
Dp1q

2
1

Dp1q

2 Dp1q

2

Figure 18: The relationship between a topological line defect L
Dp2q

2
1 living on Dp2q

2 and

the associated bimodule object B
Dp1q

2
1 living on Dp1q

2 .

to a 0-form symmetry of T which can be gauged, resulting in the theory T{G. We describe a
construction of the corresponding pd´2q-category Cid,T{G of the full symmetry pd´1q-category
CT{G of the gauged theory T{G in terms of the data of Cid,T and the action of G on it.

The classes of G that we consider are restricted to be of the form3

G “ Γ1 ¸ Γ2 ¸ ¨ ¨ ¨ ¸ Γk , (28)

where Γi are abelian groups. This is because we describe the effect of gauging a finite abelian
group Γ , and the effect of gauging G can be deduced by sequentially gauging the finite abelian
groups Γi .

3These do not exhaust all non-abelian finite G. An example of a group that cannot be written in this fashion is
the group (of order 8) formed by quaternions.
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Dp1,2q

1
Dp1,2q

1

Dp1,2q

1

Dp1q

2
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Dp2q

2
1

Dp2q

2

Dp1q

2
“

Ap1,2q

1

Dp1q
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2
1

Dp1q

2

B
Dp1q

2
1

B
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0

Figure 19: The definition of morphism B
Dp1q

2 ;l p
0 in terms of L

Dp2q

2
1 and Dp1,2q

1 . Other

morphisms B
Dp1q

2 ;rp
0 , B

Dp1q

2 ;lcp
0 and B

Dp1q

2 ;rcp
0 are defined similarly.

A particularly interesting application would be the construction of higher-categories cor-
responding to non-invertible symmetries starting from a group action on higher-categories
corresponding to invertible symmetries.

4.1 Setup

The category Cid,T is the category describing symmetries localized along the codimension-1
identity defect of T. In other words, Cid,T is obtained from the full symmetry category CT by
forgetting about non-trivial codimension-1 topological defects.

On the other hand, G is a 0-form symmetry of T. This means that CT contains objects
Dpgq

d´1 parametrized by the elements g of G. We further assume that there are no 1-morphisms

between Dpgq

d´1 and Dpg1q

d´1 for g ‰ g 1. This condition is equivalent to requiring that there are
no topological defects in the twisted sector of the G 0-form symmetry. If this condition is
violated, one obtains extra codimension-two (and also higher codimensional) defects in Cid,T{G
that are not accounted by our procedure discussed below. These extra defects are also known
as topological defects lying in non-trivial flux sector, or as topological Gukov-Witten operators.
Our procedure can be applied to such cases, but in such cases we only construct a subcategory
of the full category Cid,T{G , which can be understood as the subcategory formed by defects
lying in the trivial flux sector.

The tensor product of these objects follows the group operation on G:

Dpgq

d´1 b Dpg1q

d´1 “ Dpg g1q

d´1 . (29)

We assume that G does not participate in any higher-group structures and ’t Hooft anomalies.
The action of G on Cid,T is realized as follows:

Consider an object Dd´2 of Cid,T. An element g P G sends Dd´2 to an element g ¨ Dd´2 of Cid,T,
which can be computed as

g ¨ Dd´2 “ Dpgq

d´2 b Dd´2 b Dpg´1q

d´2 , (30)

using the fusion structure on 1-morphisms of the category CT, where Dpgq

d´2 is the identity

pd ´ 2q-dimensional defect on Dpgq

d´1. See figure 20.
Now, consider a 1-morphism Dd´3 of Cid,T from an object Dd´2 of Cid,T to another object

D1
d´2 of Cid,T. An element g P G sends Dd´3 to a 1-morphism g ¨ Dd´3 of Cid,T from the object
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Dpgq

d´1

Dd´2

g ¨ Dd´2

Figure 20: Action of the symmetry g P G on the defects Dd´2 as in equation (30).

Dp12q

d´3

Dp1q

d´2 Dp2q

d´2
Dp1q

d´2

g ¨ Dp2q

d´2
g ¨ Dp1q

d´2

g ¨ Dp12q

d´3

Dpgq

d´1

Figure 21: Action of the symmetry g P G on the defects Dd´3 as in equation (31).

g ¨ Dd´2 of Cid,T to the object g ¨ D1
d´2 of Cid,T, which can be computed as

g ¨ Dd´3 “ Dpgq

d´3 b Dd´3 b Dpg´1q

d´3 , (31)

using the fusion structure on 2-morphisms of the category CT, where Dpgq

d´3 is the identity

pd ´ 3q-dimensional defect on Dpgq

d´1. See figure 21.
Continuing inductively, consider a p-morphism Dd´p´2 of Cid,T from a pp ´ 1q-morphism

Dd´p´1 of Cid,T to another pp ´ 1q-morphism D1
d´p´1 of Cid,T. An element g P G sends Dd´p´2

to a p-morphism g ¨ Dd´p´2 of Cid,T from the pp ´ 1q-morphism g ¨ Dd´p´1 of Cid,T to the
pp ´ 1q-morphism g ¨ D1

d´p´1 of Cid,T, which can be computed as

g ¨ Dd´p´2 “ Dpgq

d´p´2 b Dd´p´2 b Dpg´1q

d´p´2 , (32)

using the fusion structure on pp ` 1q-morphisms of the category CT, where Dpgq

d´p´2 is the

identity pd ´ p ´ 2q-dimensional defect on Dpgq

d´1. We will restrict G to be an abelian group
from this point on.

4.2 Gauging in 3d

We begin the discussion of gauging finite, abelian G from the special case of d “ 3. This
has been considered in the literature earlier [30, 31] in the context of 3d TQFTs, and our
discussion is mostly a review of these works but now applied to general 3d QFTs that need not
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be topological. We formulate the discussion such that it is amenable to generalization to higher
dimensions. The category Cid,T is a standard 1-category describing the genuine topological line
defects and the topological local operators living at their junctions. Our task is to determine
the 1-category Cid,T{G of the 3d theory T{G obtained after gauging the 0-form symmetry G of
the 3d theory T.

Let us begin by discussing the objects of Cid,T{G , i.e. the genuine line defects in the theory
T{G. First of all, gauging G produces Wilson line defects for the gauge group G, which are
topological as G is finite and abelian. We will discuss a non-abelian example in section 5.3.
These line defects form a sub-category

ReppGq “ Vec
pG (33)

of Cid,T{G , where Vec
pG is the category of vector spaces graded by elements of the Pontryagin

dual pG of G. Recall that pG is the group formed by irreducible representations of the finite group
G (which are all 1-dimensional) under tensor product operation. This subcategory provides
objects in Cid,T{G labeled by representations of G. The irreducible representations of G, i.e.

elements of pG, give rise to simple objects of Cid,T{G .
In addition to the G representations, there are objects of Cid,T{G arising from the objects of

Cid,T. However, not every object of Cid,T descends to an object of Cid,T{G . This is because only
those objects of Cid,T that are left invariant by the action of G are gauge invariant in the theory

T{G, so only those objects survive as objects of Cid,T{G . A simple object DpOq

1 of Cid,T{G arising
this way can be described as the object

DpOq

1 ”
à

iPO
Dpiq

1 (34)

in the category Cid,T, where Dpiq
1 are distinct simple objects of Cid,T lying in an orbit O of the G

action.
Finally, there are simple objects of Cid,T{G which are mixtures of the two above kinds of

simple objects, which can be thought of as objects DpOq

1 dressed by Wilson line defects. Con-

cretely, to a simple object DpOq

1 , we can associate a subgroup GO of G, which is the stabilizer

of any object Dpiq
1 for i P O. Such an object DpOq

1 can be dressed by representations of the

stabilizer GO. Thus the simple objects corresponding to DpOq

1 can be represented as

DpO,ROq

1 , (35)

where RO is an irreducible representation of GO, or in other words, an element of the Pontrya-
gin dual group pGO of GO. The bare object DpOq

1 is obtained by choosing RO to be the trivial
representation. The simple objects of the subcategory ReppGq of Cid,T{G are obtained as special

cases of DpO,ROq

1 by taking O to be the orbit formed by the identity object of Cid,T, for which the
stabilizer is the whole group G. We represent these simple objects as

DpRq

1 , (36)

where R is an irreducible representation of G. The identity object of the category Cid,T{G is
denoted as

Dpidq

1 , (37)

which is obtained by choosing R to be the trivial representation of G.
Let us now discuss the fusion operation on the objects of Cid,T{G . First of all, we have

DpRq

1 b DpR1q

1 “ DpRR1q

1 , (38)
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D0 P R

DpO2q

1

DpOq

1 DpO1q

1

gauge G
D0

DpO2q

1

DpOq

1 DpO1q

1

DpRq

1

Figure 22: A local operator transforming in representation R of G before gauging G,
is attached to a Wilson line in representation R of G after gauging G.

where R, R1 P pG, and RR1 P pG is the product of R and R1 in pG. Next, we have

DpO,ROq

1 b DpR1q

1 “ D
pO,ROR1

Oq

1 , (39)

where R1
O P pGO is the image of R P pG under the surjective homomorphism

πO : pG Ñ pGO , (40)

dual to the injective homomorphism

iO : GO Ñ G , (41)

descending from the fact that GO is a subgroup of G.

The fusions DpO,ROq

1 b D
pO1,R1

O1 q

1 are more complicated. For this purpose, we consider the
fate of local operators, i.e. morphisms of Cid,T under gauging. Because we have an action of G
on Cid,T, the morphisms (between objects left invariant by G action) can be decomposed into
representations of G. After gauging G, a morphism transforming in representation R of G is not
gauge invariant, but can be made gauge invariant by attaching a Wilson line in representation
R of G. See figure 22. This phenomenon provides information about the morphisms of Cid,T{G ,
and hence in particular the tensor product structure on objects of Cid,T{G .

Let us begin by verifying, from this point of view, the fusion relation (39) for the case when
RO is trivial, in which case the fusion relation becomes

DpOq

1 b DpRq

1 “ DpO,ROq

1 . (42)

The verification amounts to showing that there is a 1-dimensional space of morphisms from
DpOq

1 to DpOq

1 (which can also be referred to as endomorphisms of the object DpOq

1 ) in the cat-
egory Cid,T that form representation R´1 P pG under the G action. The endomorphism space
of

DpOq

1 “
à

iPO
Dpiq

1 (43)

in Cid,T has dimension |O|, where |O| denotes the number of elements i in the orbit O. This is

because Dpiq
1 are simple objects, so morphism space from Dpiq

1 to Dp jq
1 is δi j dimensional. There

action of the stabilizer group GO on the 1-dimensional endomorphism space of each Dpiq
1 has
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DpO2,RO2 q

1

DpO,ROq

1 DpO1,RO1 q

1

“

DpO2q

1

DpOq

1 DpO1q

1

R R1

R2

“

DpO2q

1

DpOq

1 DpO1q

1

R2R1´1R´1

Figure 23: We can relate the morphism space DpO,ROq

1 b DpO1,RO1 q

1 Ñ DpO2,RO2 q

1 af-

ter gauging G to the sub-space of the morphism space DpOq

1 b DpO1q

1 Ñ DpO2q

1 before
gauging G transforming in a specific representation of G determined by the repre-
sentations RO, RO1 , RO2 .

to be trivial for consistency. Using this fact, it can be easily shown that the endomorphism
space of DpOq

1 decomposes as
à

RPkerpπOq

R , (44)

where kerpπOq Ď pG is the kernel of the map πO defined in (40). Thus, we have

DpOq

1 b DpRq

1 “ DpOq

1 , (45)

only if R P kerpπOq, which agrees with (39).

Now let us say we want to deduce morphisms of Cid,T{G from object DpOq

1 b DpO1q

1 to DpO2q

1 .
These can be recognized as the subspace of morphisms between same objects in the category

Cid,T which is left invariant by the action of G. Let V pO2q

pOq,pO1q
be this invariant subspace. Then,

DpOq

1 b DpO1q

1 contains dim
´

V pO2q

pOq,pO1q

¯

copies of DpO2q

1 in Cid,T{G , where dim
´

V pO2q

pOq,pO1q

¯

is the

dimension of the vector space V pO2q

pOq,pO1q
.

Generalizing this, the morphisms of Cid,T{G from object DpO,ROq

1 b DpO1,RO1 q

1 to DpO2,RO2 q

1 are

deduced from the subspace of morphisms from DpOq

1 b DpO1q

1 to DpO2q

1 of the category Cid,T that
transform in representation

R3 :“ R2R1´1R´1 P pG , (46)

for any choices of elements R P π´1
O pROq Ď pG, R1 P π´1

O1 pRO1q Ď pG and R2 P π´1
O2 pRO2q Ď pG.

See figure 23 for an explanation. Let V pO2,RO2 q

pO,ROq,pO1,RO1 q
be this space of morphisms in Cid,T{G from

DpO,ROq

1 b DpO1,RO1 q

1 to DpO2,RO2 q

1 . Then, DpO,ROq

1 b DpO1,RO1 q

1 contains

dim
´

V pO2,RO2 q

pO,ROq,pO1,RO1 q

¯

(47)

copies of DpO2,RO2 q

1 .

4.3 Gauging in Higher d and Fusion

We now extend the discussion of the previous subsection to arbitrary d ě 4. The category Cid,T
before gauging is now a pd ´2q-category. Our task is to determine the pd ´2q-category Cid,T{G
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obtained after gauging the 0-form symmetry G of the theory T.
The objects of Cid,T{G are objects of Cid,T left invariant by the G action, and objects related to

such gauge invariant objects by condensation. If d ě 5, then 1-morphisms of Cid,T{G from object
Dd´2 to object D1

d´2 of Cid,T{G are obtained as the 1-morphisms from object Dd´2 to object D1
d´2

of Cid,T that are left invariant by G-action, and 1-morphisms related to such gauge invariant
1-morphisms by condensation. Continuing inductively, if d ě 4 ` p, then p-morphisms of
Cid,T{G from pp ´ 1q-morphism Dd´p´1 to pp ´ 1q-morphism D1

d´p´1 of Cid,T{G are obtained as
the p-morphisms from pp ´1q-morphism Dd´p´1 to pp ´1q-morphism D1

d´p´1 of Cid,T that are
left invariant by G-action, and p-morphisms related to such gauge invariant p-morphisms by
condensation.

Fusion of two non-condensation defects can create condensation defects. That is, if we
consider two p-morphisms of Cid,T{G obtained directly as gauge invariant p-morphisms of Cid,T
without involving any condensation, then the product p-morphism is in general a p-morphism
of Cid,T{G obtained as a gauge invariant p-morphism of Cid,T with an additional condensation
on top of it. We will describe how the additional condensation can be determined for surface
defects, while leaving the case of higher-dimensional defects to future works.

We still need to describe pd ´3q-morphisms and pd ´2q-morphisms of Cid,T{G . These corre-
spond respectively to (genuine and non-genuine) topological line defects and topological local
operators of the gauged theory T{G. As in previous subsection, to describe them we need to
also incorporate Wilson line defects created by the G gauging. The analysis is a straightforward
generalization of the analysis in the previous subsection.

First of all, the pd ´ 3q-morphisms of Cid,T that are left invariant by G action descend to

pd ´ 3q-morphisms of Cid,T{G . Thus, a class of simple pd ´ 3q-morphisms of Cid,T{G are DpOq

1
which can be represented in the category Cid,T as

DpOq

1 “
à

iPO
Dpiq

1 , (48)

where O is an orbit under G action formed by simple pd ´ 3q-morphisms Dpiq
1 of the category

Cid,T. Other simple pd ´ 3q-morphisms of Cid,T{G are obtained by dressing DpOq

1 by Wilson line

defects valued in pGO, which is the Pontryagin dual of the stabilizer GO Ď G of the orbit O.
These pd ´ 3q-morphisms are represented as

DpO,ROq

1 , (49)

with RO P pGO.

The pd ´2q-morphisms of Cid,T{G from DpO,ROq

1 b DpO1,RO1 q

1 to DpO2,RO2 q

1 are obtained in terms

of pd´2q-morphisms of Cid,T from DpOq

1 bDpO1q

1 to DpO2q

1 as described in the previous subsection.

Similarly, the pd ´2q-morphisms of Cid,T{G from DpO,ROq

1 bDq
DpO1,RO1 q

1 to DpO2,RO2 q

1 where Dq with
q ě 2 is a higher-morphism of Cid,T{G are also obtained in terms of pd ´ 2q-morphisms of Cid,T

from DpOq

1 bDq
DpO1q

1 to DpO2q

1 , with the only difference in the procedure being that b is replaced
by bDq

.

Fusion of Surface Defects and Condensation. We now provide the key to computing the
fusion of topological surface defects in the symmetry category. For this we now describe how
fusion of surfaces can create condensations – and provide numerous examples in the subse-
quent sections.

Consider two surfaces DpOq

2 and DpO1q

2 described by orbits O and O1. In the theory T before
gauging, they have a fusion rule

DpOq

2 b DpO1q

2 “ ‘i D
piq
2 , (50)
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DpO2q,pOO1q

1

DpOq

2 b DpO1q

2

DpO2q

2

DpO2q,pOO1q

1

Dpiq
1

DpO2q

2

Figure 24: The coefficient ni appearing in (52) is the dimension of the vector space
of local operators shown in the figure.

where Dpiq
2 are simple surfaces. We have line operators describing the 1-morphisms

DpOq

2 b DpO1q

2 Ñ Dpiq
2 in the category Cid,T. These line operators organize themselves into orbits

under the G action such that we can write the above equation as

DpOq

2 b DpO1q

2 “ ‘O2 DpO2q

2 , (51)

where O2 are orbits of surfaces. The right hand side ‘O2 DpO2q

2 of the above fusion is a repre-

sentative of the equivalence class under condensation of DpOq

2 b DpO1q

2 in the theory T{G.

Our task is now to describe the generalized gauging on top of each DpO2q

2 . This is captured
in terms of an algebra ApO2q,pOO1q in the 1-category of localized symmetries Cid,T{G,DO2

2
. Let us

first describe the object ApO2q,pOO1q

1 comprising the algebra. From the gauging procedure, we

obtain a line operator DpO2q,pOO1q

1 describing a 1-morphism DpOq

2 bDpO1q

2 Ñ DpO2q

2 in the category
Cid,T{G . The algebra object can be expressed as

ApO2q,pOO1q

1 “ ‘ini D
piq
1 , (52)

where Dpiq
1 are the line operators living on DpO2q

2 and ni is the dimension of the vector space

formed by local operators living at the end of Dpiq
1 along DpO2q,pOO1q

1 as shown in figure 24. This
follows from (19) applied to the current situation in e.g. figure 24.

Thus, the algebra object ApO2q,pOO1q

1 is described by local operators living on DpO2q,pOO1q

1 .
The morphisms comprising the algebra can be roughly determined as follows. We leave

a full description to a future work. In many of the examples encountered in this paper, the
algebra object would uniquely fix the algebra morphisms, so we will not require this machin-

ery. The algebra product ApO2q,pOO1q;p
0 comes from fusing these local operators along the line

DpO2q,pOO1q

1 . The algebra co-product ApO2q,pOO1q;cp
0 is the adjoint of the algebra product. The

algebra evaluation and co-evaluation morphisms ApO2q,pOO1q;ev
0 and ApO2q,pOO1q;cev

0 are also easy
to determine as follows. There is a one-dimensional space of local operators living along

DpO2q,pOO1q

1 that are not attached to any other line operator. The morphism ApO2q,pOO1q;ev
0 is the

projection map from all local operators to this one-dimensional space, and the ApO2q,pOO1q;cev
0 is

the inclusion map from this one-dimensional space to the space of all local operators.
In summary the fusion of surfaces is computed as follows:
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DpO2q,pOO1q

1

DpOq

2 b DpO1q

2 DpO2q

2

DpO2q,pOO1q

1

Dpiq
1

DpO2q

2DpOq

2 b DpO1q

2

DpOq

1 b DpO1q

1

Figure 25: The coefficient ni appearing in (54) is the dimension of the vector space
of local operators shown in the figure.

1. Determine the orbit decomposition of the surface fusion as in (51).

2. Compute the algebra object ApO2q,pOO1q

1 which characterizes the gauging of the localized
symmetry on DO2

2 . This is computed as in (52) in terms of certain 2-morphisms captur-
ing various kinds of local operators living on the line defect describing a 1-morphism

DpOq

2 b DpO1q

2 Ñ DpO2q

2 .

3. The morphisms comprising the algebra are determined as described in the previous para-
graph.

4. Then the fusion of DpOq

2 b DpO1q

2 will contain a term

DpO2q

2

ApO2q,pOO1q
, (53)

which describes the condensation appearing on top of DpO2q

2 in terms of the algebra
ApO2q,pOO1q using which one performs generalized gauging associated to the condensa-
tion. The fusion of condensation defects, which are a central part of the symmetry
category, will not be discussed in this paper, as it requires developing further technology.
The fusion of condensation defects have appeared in [47–50].

In a similar way, we can describe the fusion of two arbitrary lines DpOq

1 and DpO1q

1 living

respectively in DpOq

2 and DpO1q

2 . This is described as a collection of bimodules BpO2q in the sym-

metry categories associated to DpO2q

2 appearing in (51). The bimodule object BpO2q

1 is described
as

BpO2q

1 “ ‘ini D
piq
1 , (54)

where Dpiq
1 are the line operators living on DpO2q

2 and ni is the dimension of the vector space

formed by local operators living at the end of Dpiq
1 , DpOq

1 and DpO1q

1 along DpO2q,pOO1q

1 as shown
in figure 25.

The morphisms BpO2q;l p
0 , BpO2q;rp

0 , BpO2q;lcp
0 and BpO2q;rcp

0 comprising the bimodule are ob-

tained as follows. The morphisms BpO2q;l p
0 and BpO2q;rp

0 are obtained by fusing the above local
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operators describing the bimodule object with the local operators describing the algebra ob-

ject, and the morphisms BpO2q;lcp
0 and BpO2q;rcp

0 are obtained as adjoints of the above product
operations. We leave a precise analysis to future work.

It should be possible to generalize the above procedure to describe condensations included
in the fusion of higher-dimensional topological defects, and would be an interesting future
direction to develop.

5 Examples: Non-Invertible Categorical Symmetries in 3d

In this section we provide examples of 3d theories whose topological line defects and local
operators form a non-invertible symmetry described by a standard 1-category. All the examples
we discuss can be obtained by gauging an invertible 0-form symmetry of 3d theories containing
invertible 1-form symmetries upon which the 0-form symmetry acts non-trivially. The main
example is the gauging of Z2 on pure Spinp2Nq gauge theories, which is carried out in section
5.1 and appendix A.1. We also provide an example of gauging of a non-abelian finite symmetry
S3 in section 5.3.

In subsection 5.2, we connect with established literature [30, 31] pertaining to gauging
0-form global symmetries in 3d TQFTs by reviewing the paradigmatic example of gauging Z2
electromagnetic duality symmetry in the topological Z2 gauge theory [57]. In this example
we obtain the sub-category of the symmetry category of the gauged theory corresponding to
the zero flux sector4, which agrees with the known result [31,58].

In most of the examples presented, the symmetry categories describe discrete symmetries,
but we also provide an example in subsection 5.4 of a symmetry category describing continuous
symmetries, or in other words a continuous symmetry category.

5.1 Pure Pin`p4Nq Gauge Theory in 3d

In this subsection, we begin with pure Spinp4Nq Yang-Mills theory in 3d, which has a 1-form
symmetry group Z2 ˆ Z2. The outer-automorphism of the gauge algebra sop4Nq provides a
Z2 0-form symmetry of the theory that exchanges the two Z2 factors of the 1-form symmetry
group. Gauging this 0-form symmetry results in the pure Pin`p4Nq Yang-Mills theory in 3d,
which we show to contain a non-invertible categorical symmetry descending from the 1-form
symmetry of Spinp4Nq Yang-Mills theory.

We label the two Z2 factors in the 1-form symmetry group of Spinp4Nq theory as ZpSq

2 and

ZpCq

2 depending on whether the Z2 leaves the spinor irrep S invariant, or the cospinor irrep

C invariant. The diagonal Z2 factor can be represented as ZpV q

2 as it leaves the vector irrep
invariant. Thus, we express the 1-form symmetry group Γ p1q as

Γ p1q “ ZpSq

2 ˆZpCq

2 . (55)

The outer-automorphism provides a 0-form symmetry group

Γ p0q “ Zp0q

2 , (56)

which exchanges ZpSq

2 and ZpCq

2 , while leaving the ZpV q

2 invariant.
The data of 1-form symmetry can be converted into the data of a 1-category CSpinp4Nq as

follows. The simple objects of CSpinp4Nq correspond to topological line operators implementing

4See the discussion regarding restriction of our analysis to zero-flux sector at the beginning of section 4.1.
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the 1-form symmetry Γ p1q, and we write the set of simple objects as

Cob
Spinp4Nq

“

!

Dpidq

1 , DpSq

1 , DpCq

1 , DpV q

1

)

, (57)

where Dpidq

1 is the identity line, and Dpiq
1 are the topological line operators corresponding re-

spectively to generators of Zpiq
2 1-form symmetries. The Z2 0-form symmetry acts on the 1-form

symmetry generators as
DpSq

1 ÐÑ DpCq

1 , (58)

and leaves Dpidq

1 , DpV q

1 invariant. The tensor product of these objects follows the group law of
Γ p1q.

Now we gauge Z2 to obtain a category CPin`p4Nq describing topological line defects and
local operators of the Pin`p4Nq theory. A subset of simple objects of CPin`p4Nq arise as objects

of CSpinp4Nq left invariant by the Z2 outer automorphism action. These are Dpidq

1 , DpV q

1 and

DpSCq

1 :“
´

DpSq

1 ‘ DpCq

1

¯

CSpin

, (59)

where the subscript CSpinp4Nq on the RHS reflects that the object DpSCq

1 is decomposed as this
direct sum only in the category CSpinp4Nq, but it is a simple object in the category CPin`p4Nq.

Other simple objects of CPin`p4Nq are obtained by dressing with Wilson line defects. Note

that the stabilizer for Dpidq

1 , DpV q

1 is the whole 0-form symmetry groupZ2, while the stabilizer for

DpSCq

1 is trivial. Thus, we obtain new simple objects of CPin`p4Nq by dressing Dpidq

1 , DpV q

1 with

the non-trivial irrep of Z2. We call the resulting simple objects as Dp´q

1 , D
pV´q

1 respectively.
Thus, the full set of simple objects of CPin`p4Nq is

Cob
Pin`p4Nq

“

!

Dpidq

1 , Dp´q

1 , DpSCq

1 , DpV q

1 , D
pV´q

1

)

. (60)

The topological line defects
!

Dpidq

1 , Dp´q

1

)

(61)

are the Wilson line defects for the gauged Z2 0-form symmetry, and hence generate the dual
Z2 1-form symmetry arising as a result of Z2 0-form gauging. Their fusion rules are (38)

Dpidq

1 b Dpidq

1 “ Dpidq

1 ,

Dpidq

1 b Dp´q

1 “ Dp´q

1 ,

Dp´q

1 b Dp´q

1 “ Dpidq

1 ,

(62)

following the representation theory of Z2.
Moreover, from (39) we have

DpSCq

1 b Dpidq

1 “ DpSCq

1 ,

DpSCq

1 b Dp´q

1 “ DpSCq

1 ,

DpV q

1 b Dpidq

1 “ DpV q

1 ,

DpV q

1 b Dp´q

1 “ D
pV´q

1 ,

D
pV´q

1 b Dpidq

1 “ D
pV´q

1 ,

D
pV´q

1 b Dp´q

1 “ DpV q

1

(63)
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in the category CPin`p4Nq.

Let us now determine the fusions DpSCq

1 b DpV q

1 and DpSCq

1 b D
pV´q

1 in CPin`p4Nq. Notice that
in CSpinp4Nq we have the fusion

´

DpSCq

1 b DpV q

1

¯

CSpinp4Nq

“

´

pDpSq

1 ‘ DpCq

1 q b DpV q

1

¯

CSpinp4Nq

“

´

DpCq

1 ‘ DpSq

1

¯

CSpinp4Nq

“

´

DpSCq

1

¯

CSpinp4Nq

,
(64)

which implies that, in the category CPin`p4Nq, only at most a single copy of DpSCq

1 can appear

in the fusions DpSCq

1 b DpV q

1 and DpSCq

1 b D
pV´q

1 . To determine whether or not DpSCq

1 appears in

these fusions, we need to study the Z2 representations formed by morphisms from DpSCq

1 bDpV q

1

to DpSCq

1 in CSpinp4Nq. There is a 2-dimensional vector space of such morphisms of CSpinp4Nq

spanned by a morphism DpSbC ,V q

0 from DpSq

1 b DpCq

1 to DpV q

1 , and a morphism DpCbS,V q

0 from

DpCq

1 b DpSq

1 to DpV q

1 . It is clear that Z2 outer automorphism acts as the exchange

DpSbC ,V q

0 ÐÑ DpCbS,V q

0 . (65)

Thus the morphism space decomposes as 1 ‘ 1´1 under the Z2 0-form symmetry, where 1 de-
notes the trivial Z2 rep and 1´1 denotes the non-trivial Z2 irrep. Since both Z2 representations
are present, we learn that

DpSCq

1 b DpV q

1 “ DpSCq

1 ,

DpSCq

1 b D
pV´q

1 “ DpSCq

1

(66)

are the descending fusion rules in the category CPin`p4Nq.

Finally, we consider the tensor product DpSCq

1 b DpSCq

1 in the category CPin`p4Nq. Notice that
in CSpinp4Nq we have the fusion

´

DpSCq

1 b DpSCq

1

¯

CSpinp4Nq

“

´

2Dpidq

1 ‘ 2DpV q

1

¯

CSpinp4Nq

, (67)

which implies that, in the category CPin`p4Nq, only Dpidq

1 , Dp´q

1 , DpV q

1 and D
pV´q

1 can appear in

the fusion DpSCq

1 b DpSCq

1 . To determine the precise multiplicity of these objects, we need to

study the Z2 representations formed by morphisms from DpSCq

1 b DpSCq

1 to Dpidq

1 in CSpinp4Nq and

the Z2 representations formed by morphisms from DpSCq

1 b DpSCq

1 to DpV q

1 in CSpinp4Nq.

Let us first consider the CSpinp4Nq morphisms from DpSCq

1 b DpSCq

1 to Dpidq

1 . There is a 2-

dimensional vector space of such morphisms of CSpinp4Nq spanned by a morphism DpSbS,idq

0

from DpSq

1 b DpSq

1 to Dpidq

1 , and a morphism DpCbC ,idq

0 from DpCq

1 b DpCq

1 to Dpidq

1 . It is clear that
Z2 outer automorphism acts as the exchange

DpSbS,idq

0 ÐÑ DpCbC ,idq

0 . (68)

Thus the morphism space decomposes as 1 ‘ 1´ under the Z2 0-form symmetry. Since there

is a single copy of both Z2 representations, we learn that DpSCq

1 b DpSCq

1 contains a single copy

of Dpidq

1 and a single copy of Dp´q

1 in CPin`p4Nq.

Now consider the CSpinp4Nq morphisms from DpSCq

1 bDpSCq

1 to DpV q

1 . There is a 2-dimensional

vector space of such morphisms of CSpinp4Nq spanned by a morphism DpSbC ,V q

0 from DpSq

1 b DpCq

1
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to DpV q

1 , and a morphism DpCbS,V q

0 from DpCq

1 b DpSq

1 to DpV q

1 . It is clear that Z2 outer automor-
phism acts as the exchange

DpSbC ,V q

0 ÐÑ DpCbS,V q

0 . (69)

Thus the morphism space decomposes as 1 ‘ 1´ under the Z2 0-form symmetry. Since there

is a single copy of both Z2 representations, we learn that DpSCq

1 b DpSCq

1 contains a single copy

of DpV q

1 and a single copy of D
pV´q

1 in CPin`p4Nq.
Combining everything, we learn the fusion rule

DpSCq

1 b DpSCq

1 “ Dpidq

1 ‘ Dp´q

1 ‘ DpV q

1 ‘ D
pV´q

1 (70)

of CPin`p4Nq. Since the RHS contains objects other than Dpidq

1 , we find that DpSCq

1 is a non-
invertible topological line defect. Thus, the category CPin`p4Nq describes non-invertible sym-
metries of the Pin`p4Nq gauge theory.

From the fusion rules, we observe that the resulting category CPin`p4Nq can be recognized
as one of the Tambara-Yamagami categories based on the abelian group Z2 ˆ Z2. There are
four such categories [59] (see also Section 5.5 of [8]), and it is a natural question to ask
which one is CPin`p4Nq. The difference between the four categories is captured in the data of
the associators. We can compute the associators of CPin`p4Nq from the associators of CSpinp4Nq,
where the latter associators are trivial as CSpinp4Nq describes a non-anomalous 1-form symmetry.
From this computation, we find that

CPin`p4Nq “ ReppD8q , (71)

i.e. CPin`p4Nq is the category formed by representations of the dihedral group D8, which is one
of the four Tambara-Yamagami categories.

There is an alternate derivation of CPin`p4Nq which makes it manifest that it has to be
ReppD8q. We first gauge the ZS

2 ˆZC
2 1-form symmetry to go to the pure PSOp4Nq Yang-Mills

theory in 3d. After gauging, we obtain a dual ZS
2 ˆ ZC

2 0-form symmetry. The Z2 outer-
automorphism is still a 0-form symmetry, and it now acts on the ZS

2 ˆZC
2 0-form symmetry by

exchanging ZS
2 and ZC

2 . Thus, the total 0-form symmetry group of the PSOp4Nq theory is

Γ p0q “
`

ZS
2 ˆZC

2

˘

¸Z2 “ D8 , (72)

which is the dihedral group D8. On the other hand, the 1-form symmetry group of the PSOp4Nq

theory is trivial. Now, the pure Pin`p4Nq Yang-Mills theory is obtained from the PSOp4Nq

Yang-Mills theory by gauging both the ZS
2 ˆ ZC

2 0-form symmetry and the Z2
outer-automorphism 0-form symmetry, or in other words, by gauging the full D8 0-form sym-
metry. Since there is no 1-form symmetry, the category CPSOp4Nq associated to the PSOp4Nq

theory is the trivial category
CPSOp4Nq “ Vec , (73)

which is the category of ungraded vector spaces, and the action of D8 on this category is
trivial. After gauging D8, we obtain non-trivial topological line defects arising as the Wilson
line defects forming representations of D8, and thus we find that

CPin`p4Nq “ ReppD8q . (74)

In appendix A.1 we compute in a similar fashion the symmetry category for Pin`p4N `2q and
find it to be also

CPin`p4N`2q “ ReppD8q . (75)
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5.2 Ising ˆ Ising from Z2 Gauge Theory in 3d

In this subsection, we discuss the well-known example of gauging Z2 electromagnetic duality
in the Z2 topological gauge theory. It is known that the resulting TQFT obtained after such a
gauging corresponds to the Drinfeld double of the Ising fusion category. Within our approach,
we access the untwisted or zero flux sector of this resulting (gauged) fusion category.

Consider the topological Z2 gauge theory described by the action

S “ iπ
ż

M
b1 Yδa1 , (76)

where b1, a1 P C1pM ,Z2q. The model has a 1-form symmetry group Z2 ˆZ2 generated by the

electric and magnetic lines Dpeq

1 pγq “ exp
!

iπ
ű

γ a1

)

and Dpmq

1 pγq “ exp
!

iπ
ű

γ b1

)

respectively.
We denote the corresponding Z2 subgroups as Ze

2 and Zm
2 and thus the 1-form symmetry as

Γ p1q “ Ze
2 ˆZm

2 . (77)

The diagonal subgroup of Γ p1q is generated by a fermionic line Dp f q

1 pγq “ Dpeq

1 pγqDpmq

1 pγq. The
topological lines form a 1-category CZ2

whose simple objects are

Cob
Z2

“

!

Dpidq

1 , Dpeq

1 , Dpmq

1 , Dp f q

1

)

. (78)

Additionally, there is 0-form symmetry

Γ p0q “ Zem
2 , (79)

which acts on the objects of the 1-category by exchanging as

Dpeq

1 ÐÑ Dpmq

1 , (80)

and leaves the remaining objects Dpidq

1 and Dp f q

1 invariant. Note that this is precisely the same
symmetry structure as that obtained in pure Spinp4Nq gauge theory described in section 5.1.
Upon gauging the 0-form symmetry Zem

2 , the same analysis as in section 5.1 goes through i.e.

the objects Dpeq

1 and Dpmq

1 combine into a single object Dpe,mq

1 :“ pDpeq

1 ‘ Dpmq

1 qCZ2
as they form

a single orbit under the Zem
2 action. Meanwhile, the objects Dpidq

1 and Dp f q

1 , each split into two
objects which carry an additional Z2 representation label, i.e.,

´

Dpidq

1 , Dp f q

1

¯

CZ2
ÞÝÑ

´

Dpidq

1 , Dp´q

1 , Dp f q

1 , Dp f ´q

1

¯

CZ2{Γp0q

. (81)

There is a crucial difference between the symmetry category obtained after gauging Zem
2 in the

topological Z2 gauge theory and the analagous symmetry category obtained in the Pin`p4Nq

theory upon gauging the outer-automorphism 0-form Z2 symmetry. Since the Z2 gauge theory
is topological, the resulting theory obtained after gauging Zem

2 contains additional topological
line operators corresponding to the fluxes or twisted sector operators of Zem

2 . In contrast, since
Spinp4Nq is not topological, the Z2 flux lines are not topological and hence do not contribute
to the symmetry category of the Pin`p4Nq gauge theory. Let us recall the fusion rules com-
puted in section 5.1, with a relabelling of objects pS, C , V q Ñ pe, m, f q. Notably, these form a
subcategory of the fusion category Ising ˆ Ising. The objects of which are

Cob
Ising “

!

Dp1q

1 , Dpψq

1 , Dpσq

1

)

,

Cob
Ising

“

!

Dp1q

1 , Dpψ̄q

1 , Dpσ̄q

1

)

.
(82)
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The objects in the zero flux sector of the category CZ2{Γ p0q can be identified with a sub-category

of Ising ˆ Ising by identifying the labels pidq „ p1q, p f q „ pψq, p f ´q „ pψ̄q, p´q „ pψψ̄q and
pe, mq „ pσσ̄q. Similarly, the remaining objects in Ising ˆ Ising can be identified with the flux
lines of the gauged category CZ2{Γ p0q [30,31]. The Z2 gauge theory can be obtained by gauging

a dual 1-form Z2 symmetry in the Ising ˆ Ising theory, generated by p´q „ pψψ̄q.

5.3 Pure Spinp8q ¸ S3 Gauge Theory in 3d

Consider Spinp8q gauge theory, which has a

Γ p0q “ S3 (83)

0-form outer-automorphism symmetry, which acts on 1-form symmetry

Γ p1q “ ZS
2 ˆZC

2 , (84)

by permuting the generators of ZS
2, ZC

2 and ZV
2 . We will now gauge this 0-form symmetry and

obtain a 3d Spinp8q ¸ S3 gauge theory. To do this we first gauge a Z3 subgroup and then the
full S3.

5.3.1 Gauging Z3 Spinp8q in 3d

Let us gauge the Z3 subgroup of S3 0-form symmetry, which acts as cyclic permutations

ZS
2 Ñ ZC

2 Ñ ZV
2 Ñ ZS

2 . (85)

This produces pure Yang-Mills theory in 3d with gauge group

Spinp8q ¸Z3 . (86)

The category CSpin describing 1-form symmetries of Spinp8q theory descends to a category CZ3

of topological lines and local operators in the Spinp8q ¸Z3 theory. Its simple objects are

Cob
Z3

“ tDpidq

1 , Dpωq

1 , Dpω2q

1 , DpSCV q

1 u , (87)

where Dpidq

1 , Dpωq

1 and Dpω2q

1 are the Z3 Wilson lines whose fusion obeys group law of Z3, and

DpSCV q

1 “

´

DpSq

1 ‘ DpCq

1 ‘ DpV q

1

¯

CSpin

, (88)

as a Z3 invariant object of the category CSpin associated to the symmetries of the Spinp8q theory.

Since the stabilizer of DpSq

1 is trivial, there are no Wilson line dressings of DpSCV q

1 in CZ3
.

The fusion rules of DpSCV q

1 with the Wilson lines are simply

DpSCV q

1 b Dpiq
1 “ DpSCV q

1 , (89)

with i P tid,ω,ω2u.

To determine the fusion DpSCV q

1 b DpSCV q

1 , we need to study morphism spaces

DpSCV q

1 b DpSCV q

1 Ñ Dpidq

1 and DpSCV q

1 b DpSCV q

1 Ñ DpSCV q

1 in the category CSpin. The morphism

space DpSCV q

1 b DpSCV q

1 Ñ Dpidq

1 is three-dimensional, being generated by morphisms

DpS,S;idq

0 : DpSq

1 b DpSq

1 Ñ Dpidq

1 ,

DpC ,C;idq

0 : DpCq

1 b DpCq

1 Ñ Dpidq

1 ,

DpV,V ;idq

0 : DpV q

1 b DpV q

1 Ñ Dpidq

1 ,

(90)
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which decomposes in terms of representations of Z3 as

3 “ 1 ‘ 1ω ‘ 1ω2 , (91)

where 1ω is the representation in which the generator ofZ3 acts by multiplication byω, and 12
ω

is the representation in which the generator of Z3 acts by multiplication by ω2. On the other
hand, the morphism space DpSCV q

1 b DpSCV q

1 Ñ DpSCV q

1 is six-dimensional, being generated by
morphisms

DpS,C;V q

0 : DpSq

1 b DpCq

1 Ñ DpV q

1 ,

DpC ,V ;Sq

0 : DpCq

1 b DpV q

1 Ñ DpSq

1 ,

DpV,S;Cq

0 : DpV q

1 b DpSq

1 Ñ DpCq

1 ,

DpC ,S;V q

0 : DpCq

1 b DpSq

1 Ñ DpV q

1 ,

DpV,C;Sq

0 : DpV q

1 b DpCq

1 Ñ DpSq

1 ,

DpS,V ;Cq

0 : DpSq

1 b DpV q

1 Ñ DpCq

1 ,

(92)

which decomposes in terms of representations of Z3 as

6 “ 2 p1 ‘ 1ω ‘ 1ω2q . (93)

From this, we learn that

DpSCV q

1 b DpSCV q

1 “ Dpidq

1 ‘ Dpωq

1 ‘ Dpω2q

1 ‘ 2DpSCV q

1 . (94)

In fact, we can recognize the full category CZ3
as

CZ3
“ ReppA4q , (95)

where A4 is the order 12 alternating group permuting 4 elements. This follows from the fact
that

A4 “ pZ2 ˆZ2q ¸Z3 (96)

is part of the 0-form symmetry of the PSOp8q theory, which is being gauged to construct the
Spinp8q ¸Z3 theory.

5.3.2 Gauging S3 in Spinp8q Gauge Theory in 3d

Now consider gauging the full S3 0-form symmetry of the Spinp8q theory to construct pure
Yang-Mills theory in 3d with gauge group Spinp8q ¸ S3. This can be obtained by gauging the
Z2 0-form symmetry of the Spinp8q ¸ Z3 theory. Let us call the category associated to the
Spinp8q ¸ S3 theory descending from CZ3

as CS3
.

Let us deduce simple objects of CS3
. First of all, we obtain Wilson lines
!

Dpidq

1 , Dp´q

1

)

, (97)

associated to the gauged Z2. Then, we obtain simple objects of CS3
from orbits formed by

simple objects of CZ3
under the Z2 action. From this we obtain

Dpωω2q

1 “

´

Dpωq

1 ‘ Dpω2q

1

¯

CZ3
, (98)

and
DpSCV q

1 “

´

DpSCV q

1

¯

CZ3
. (99)
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Since the stabilizer of DpSCV q

1 is non-trivial, we can dress it with a Z2 Wilson line to obtain
another simple object

D
pSCV´q

1 . (100)

In total, the simple objects of CS3
are

Cob
S3

“

!

Dpidq

1 , Dp´q

1 , Dpωω2q

1 , DpSCV q

1 , D
pSCV´q

1

)

. (101)

Some of the straightforward fusion rules are

Dp´q

1 b Dpωω2q

1 “ Dpωω2q

1 ,

Dp´q

1 b DpSCV q

1 “ D
pSCV´q

1 ,

Dp´q

1 b D
pSCV´q

1 “ DpSCV q

1 .

(102)

To determine Dpωω2q

1 b DpSCV q

1 and Dpωω2q

1 b D
pSCV´q

1 , we note that the morphism space

Dpωω2q

1 b DpSCV q

1 Ñ DpSCV q

1 in CZ3
is two-dimensional, spanned by the morphisms

Dpω,SCV ;SCV q

0 : Dpωq

1 b DpSCV q

1 Ñ DpSCV q

1 ,

Dpω2,SCV ;SCV q

0 : Dpω2q

1 b DpSCV q

1 Ñ DpSCV q

1 ,
(103)

which decomposes under the Z2 action as

2 “ 1 ‘ 1´ , (104)

leading to the fusion rules

Dpωω2q

1 b DpSCV q

1 “ DpSCV q

1 ‘ D
pSCV´q

1 ,

Dpωω2q

1 b D
pSCV´q

1 “ DpSCV q

1 ‘ D
pSCV´q

1 .
(105)

To determine Dpωω2q

1 b Dpωω2q

1 , we note that the morphism space Dpωω2q

1 b Dpωω2q

1 Ñ Dpidq

1 in
CZ3

is two-dimensional, spanned by the morphisms

Dpω,ω2;idq

0 : Dpωq

1 b Dpω2q

1 Ñ Dpidq

1 ,

Dpω2,ω;idq

0 : Dpω2q

1 b Dpωq

1 Ñ Dpidq

1 ,
(106)

which decomposes under the Z2 action as

2 “ 1 ‘ 1´ . (107)

On the other hand, the morphism space Dpωω2q

1 b Dpωω2q

1 Ñ Dpωω2q

1 in CZ3
is also

two-dimensional, spanned by the morphisms

Dpω,ω;ω2q

0 : Dpωq

1 b Dpωq

1 Ñ Dpω2q

1 ,

Dpω2,ω2;ωq

0 : Dpω2q

1 b Dpω2q

1 Ñ Dpωq

1 ,
(108)

which decomposes under the Z2 action as

2 “ 1 ‘ 1´ . (109)
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Combining the above, we are lead to the fusion rule

Dpωω2q

1 b Dpωω2q

1 “ Dpidq

1 ‘ Dp´q

1 ‘ Dpωω2q

1 . (110)

Finally, to determine fusion rules DpSCV q

1 b DpSCV q

1 , D
pSCV´q

1 b D
pSCV´q

1 and DpSCV q

1 b D
pSCV´q

1 ,

we note that the morphism space DpSCV q

1 b DpSCV q

1 Ñ Dpidq

1 in CZ3
is one-dimensional which

is left invariant by the Z2 action. The morphism space DpSCV q

1 b DpSCV q

1 Ñ Dpωω2q

1 in CZ3
is

two-dimensional, spanned by the morphisms

DpSCV,SCV ;ωq

0 : DpSCV q

1 b DpSCV q

1 Ñ Dpωq

1 ,

DpSCV,SCV ;ω2q

0 : DpSCV q

1 b DpSCV q

1 Ñ Dpω2q

1 ,
(111)

which decomposes under the Z2 action as

2 “ 1 ‘ 1´ . (112)

The morphism space DpSCV q

1 b DpSCV q

1 Ñ DpSCV q

1 in CZ3
is also two-dimensional, spanned by

the morphisms

DpSCV,SCV ;SCV qpaq

0 “

´

DpS,C;V q

0 ` DpC ,V ;Sq

0 ` DpV,S;Cq

0

¯

CSpin

,

DpSCV,SCV ;SCV qpbq

0 “

´

DpC ,S;V q

0 ` DpV,C;Sq

0 ` DpS,V ;Cq

0

¯

CSpin

,
(113)

where we have expressed them as morphisms of CSpin to make the action of Z2 on them man-
ifest. The Z2 acts as the exchange

DpSCV,SCV ;SCV qpaq

0 ÐÑ DpSCV,SCV ;SCV qpbq

0 . (114)

Thus, the morphism space DpSCV q

1 b DpSCV q

1 Ñ DpSCV q

1 in CZ3
decomposes as

2 “ 1 ‘ 1´ (115)

under Z2. Combining the above, we are lead to the fusion rules

DpSCV q

1 b DpSCV q

1 “ Dpidq

1 ‘ Dpωω2q

1 ‘ DpSCV q

1 ‘ D
pSCV´q

1 ,

D
pSCV´q

1 b D
pSCV´q

1 “ Dpidq

1 ‘ Dpωω2q

1 ‘ DpSCV q

1 ‘ D
pSCV´q

1 ,

DpSCV q

1 b D
pSCV´q

1 “ Dp´q

1 ‘ Dpωω2q

1 ‘ DpSCV q

1 ‘ D
pSCV´q

1 .

(116)

We can in fact recognize the full category CS3
as

CS3
“ ReppS4q . (117)

This follows from the fact that
S4 “ pZ2 ˆZ2q ¸ S3 (118)

is the 0-form symmetry group of the PSOp8q theory, which is being gauged to construct the
Spinp8q ¸ S3 theory.
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5.4 Pure Op2q Gauge Theory in 3d

Pure Yang-Mills theory in 3d with gauge group Op2q can be constructed from pure Yang-Mills
theory in 3d with gauge group Up1q by gauging the charge conjugation Z2 0-form symmetry.
The Up1q theory has a

Γ p1q “ Up1q (119)

1-form symmetry. The
Γ p0q “ Z2 (120)

charge conjugation symmetry acts by complex conjugation on Γ p1q. This 1-form symmetry
descends to a continuous non-invertible categorical symmetry in the Op2q theory.

The symmetry defects that implement flat Up1q backgrounds can be organized into a 1-
category CUp1q, which has simple objects

Cob
Up1q

“

!

Dpθq

1

ˇ

ˇ

ˇθ P R{Z
)

. (121)

Physically, inserting a single simple object Dpθq

1 along a 1-cycle corresponds to turning on a

symmetry background with holonomy θ around the linking 1-cycle. Z2 leaves invariant Dp0q

1

and Dp1{2q

1 , while acting as the exchange

Dpθq

1 ÐÑ Dp´θq

1 , (122)

for θ ‰ 0,1{2. The fusion of simple objects follows the additive group law of R{Z.
Now we gauge Z2 charge conjugation to obtain the category COp2q descending from CUp1q.

The simple objects of COp2q are

Cob
Op2q

“

!

Dp0q

1 , Dp´q

1 , Dp1{2q

1 , Dp1{2,´q

1 , Lpθq

1

ˇ

ˇ

ˇ0 ă θ ă 1{2
)

, (123)

where
Lpθq

1 “

´

Dpθq

1 ‘ Dp´θq

1

¯

CUp1q

, (124)

as object in CUp1q. Since Dp0q

1 and Dp1{2q

1 have Z2 stabilizers, they lead to the simple objects

Dp´q

1 and Dp1{2,´q

1 by dressing with Z2 Wilson line. Let us now discuss the fusion rules of these

objects. The fusion rules of Dp0q

1 , Dp´q

1 , Dp1{2q

1 , Dp1{2,´q

1 follow the group law of Z2 ˆ Z2. To

compute Dp´q

1 bLpθq

1 , we note that the endomorphism space of Lpθq

1 in CUp1q is two-dimensional,
which decomposes as 2 “ 1 ‘ 1´ under Z2, implying

Dp´q

1 b Lpθq

1 “ Lpθq

1 (125)

in COp2q.

To compute Dp1{2q

1 b Lpθq

1 and Dp1{2,´q

1 b Lpθq

1 , we note that the only non-trivial morphism

space is Dp1{2q

1 b Lpθq

1 Ñ Lp1{2´θq

1 in CUp1q, which decomposes as 2 “ 1‘1´ under Z2, implying

Dp1{2q

1 b Lpθq

1 “ Lp1{2´θq

1 ,

Dp1{2,´q

1 b Lpθq

1 “ Lp1{2´θq

1

(126)

in COp2q.
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Let us now turn to the fusion rules Lpθq

1 b Lpθ 1q

1 . For θ 1 ‰ 1{2 ´ θ and θ 1 ‰ θ , only

L
p|θ`θ 1|1{2q
1 and L

p|θ´θ 1|1{2q
1 can appear, where

|α|1{2 “ α` n , (127)

if 0 ă α` n ă 1{2 for some n P Z, and

|α|1{2 “ ´α` n , (128)

if 0 ă ´α` n ă 1{2 for some n P Z. The reader can check that there is a single Z2 invariant

morphism for both possibilities L
p|θ`θ 1|1{2q
1 and L

p|θ´θ 1|1{2q
1 , implying the fusion rule

Lpθq

1 b Lpθ 1q

1 “ L
p|θ`θ 1|1{2q
1 ‘ L

p|θ´θ 1|1{2q
1 (129)

in COp2q.

Now let us consider Lpθq

1 b Lp1{2´θq

1 . For θ ‰ 1{4, the possible simple objects that can ap-

pear in this fusion are Dp1{2q

1 , Dp1{2,´q

1 and L
p|2θ´1{2|1{2q
1 . The morphism space

Lpθq

1 b Lp1{2´θq

1 Ñ Dp1{2q

1 in CUp1q decomposes as 2 “ 1 ‘ 1´ under Z2, implying that both

Dp1{2q

1 , Dp1{2,´q

1 appear in the corresponding fusion in COp2q with multiplicities 1. On the other

hand, the morphism space Lpθq

1 b Lp1{2´θq

1 Ñ L
p|2θ´1{2|1{2q
1 in CUp1q has a single morphism

invariant under Z2, implying that the total fusion rule is

Lpθq

1 b Lp1{2´θq

1 “ Dp1{2q

1 ‘ Dp1{2,´q

1 ‘ L
p|2θ´1{2|1{2q
1 (130)

in COp2q.

In a similar fashion, we can compute Lpθq

1 b Lpθq

1 for θ ‰ 1{4, which is found to be

Lpθq

1 b Lpθq

1 “ Dp0q

1 ‘ Dp´q

1 ‘ L
p|2θ |1{2q
1 (131)

in COp2q.

Finally, we are left with the computation of Lp1{4q

1 b Lp1{4q

1 . The possible simple objects in

the fusion are Dp1{2q

1 , Dp1{2,´q

1 , Dp0q

1 and Dp´q

1 . The reader can check that all these appear with
multiplicity one, leading to the fusion rule

Lp1{4q

1 b Lp1{4q

1 “ Dp0q

1 ‘ Dp´q

1 ‘ Dp1{2q

1 ‘ Dp1{2,´q

1 (132)

in COp2q.

6 Examples: Non-Invertible 2-Categorical Symmetries in 4d

In this section we provide examples of 4d theories whose topological surface defects, line
defects and local operators form a non-invertible symmetry described by a 2-category. All
the examples we discuss can be obtained by gauging an invertible 0-form symmetry of 4d
theories containing invertible 1-form symmetries upon which the 0-form symmetry acts non-
trivially. Most of the symmetry 2-categories we discuss describe discrete symmetries, but we
also provide an example in subsection 6.3, of a symmetry 2-category describing continuous
symmetries, or in other words a continuous symmetry 2-category.
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We discuss the Pin`p4Nq 4d Yang-Mills theory in section 6.1 and the non-abelian gauging
by S3 of 4d Spinp8q Yang-Mills. The Op2q theory is discusssed in section 6.3, and the closely
related principle extension of SUpNq, ČSUpNq, in appendix A.2. To illustrate that such non-
invertible symmetries also arise beyond pure gauge theories, we provide a quiver example in
appendix A.3.

In all examples we find that fusions of surfaces lead to surfaces with condensation on top
of them. In most of the examples, the condensation is described by gauging of an invertible
0-form symmetry living on the surface defect. However, we also find an example where we
have to gauge a non-invertible categorical symmetry of the surface defect. See equation (193)
and discussion around it.

The most non-trivial example in terms of fusions is the discrete gauge theory in section 6.4,
which has two layers of non-invertibles in the higher category, i.e. we have both non-invertible
genuine line operators and non-invertible genuine surface operators.

6.1 Pure Pin`p4Nq Gauge Theory in 4d

We start with 4d Spinp4Nq pure Yang-Mills theory which has a Z2 ˆ Z2 1-form symmetry on
which a Z2 0-form symmetry acts non-trivially. Gauging the Z2 0-form symmetry leads to the
4d Pin`p4Nq pure Yang-Mills theory. The Z2 ˆ Z2 1-form symmetry of the Spinp4Nq theory
descends to a non-invertible 2-categorical symmetry in the Pin`p4Nq theory. We discuss the
topological defects in the two theories before and after gauging, including their fusion algebra.
In a later section, we derive these fusion rules using a different approach and find agreement.

The 1-form symmetry of the Spinp4Nq theory is

Γ p1q “ ZS
2 ˆZC

2 . (133)

As before, we represent by ZV
2 the diagonal Z2 of ZS

2 and ZC
2 . The theory has a

Γ p0q “ Z2 (134)

outer-automorphism 0-form symmetry which exchanges ZS
2 and ZC

2 , while leaving ZV
2 invari-

ant.
The 1-form symmetry Γ p1q corresponds to a rather trivial 2-category CSpinp4Nq, whose simple

objects are

Cob
Spinp4Nq

“

!

Dpidq

2 , DpSq

2 , DpCq

2 , DpV q

2

)

, (135)

where Dpidq

2 is the identity surface defect, while Dpiq
2 for i P tS, C , Vu is the topological surface

defect corresponding to the generator of Zi
2. The fusion of these surface defects follows the

group law of Γ p1q

Dpiq
2 b Dp jq

2 “ Dpi jq
2 , (136)

with i j P Γ p1q.
There is a single simple 1-endomorphism for each simple object, which we denote as Dpiq

1
for i P tid, S, C , Vu. It can be understood as the identity line defect living on each simple

surface defect Dpiq
2 . There are no 1-morphisms between two distinct simple objects. Thus, the

full set of simple 1-endomorphisms of simple objects is

C1-endo
Spinp4Nq

“

!

Dpidq

1 , DpSq

1 , DpCq

1 , DpV q

1

)

. (137)

The fusion b for 1-endomorphisms follows the group law of Γ p1q

Dpiq
1 b Dp jq

1 “ Dpi jq
1 , (138)
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and the fusion b
Dpiq

2
is trivially

Dpiq
1 b

Dpiq
2

Dpiq
1 “ Dpiq

1 . (139)

The Γ p0q “ Z2 outer-automorphism 0-form symmetry acts on CSpinp4Nq as

DpSq

i ÐÑ DpCq

i , (140)

for each i P t1,2u, while leaving invariant Dpidq

i and DpV q

i .
We now gauge the outer automorphism Z2, which results in the Pin`p4Nq gauge theory.

Let us call the resulting symmetry 2-category as CPin`p4Nq. The objects of CPin`p4Nq modulo
condensations are the objects of CSpinp4Nq left invariant by the Z2 action. Thus, the simple
objects of CPin`p4Nq modulo condensations are5

Cob
Pin`p4Nq

“

!

Dpidq

2 , DpSCq

2 , DpV q

2

)

, (141)

where
DpSCq

2 “

´

DpSq

2 ‘ DpCq

2

¯

CSpinp4Nq

, (142)

as an object of the 2-category CSpinp4Nq.
Now let us discuss 1-morphisms between the objects appearing in the set Cob

Pin`p4Nq
. Since

there are no non-identity simple 1-endomorphisms of the identity object in CSpinp4Nq, the simple

1-endomorphisms of the identity object Dpidq

2 in CPin`p4Nq are
!

Dpidq

1 , Dp´q

1

)

, (143)

which are the Wilson line defects for the gauged Z2. Similarly, since the simple
1-endomorphism DpV q

1 in CSpinp4Nq is left invariant by the Z2 action, the simple

1-endomorphisms of the object DpV q

2 in the 2-category CPin`p4Nq are
!

DpV q

1 , D
pV´q

1

)

, (144)

where DpV q

1 is the identity 1-endomorphism on DpV q

2 , and D
pV´q

1 is obtained by dressing DpV q

1
with the non-trivial Z2 Wilson line. On the other hand, there is only the identity
1-endomorphism DpSCq

1 of DpSCq

2 , which can be expressed as

DpSCq

1 “

´

DpSq

1 ‘ DpCq

1

¯

CSpinp4Nq

, (145)

as a 1-morphism of CSpinp4Nq. Thus,

C1-endo
Pin`p4Nq

“

!

Dpidq

1 , Dp´q

1 , DpSCq

1 , DpV q

1 , D
pV´q

1

)

(146)

are the simple 1-endomorphisms of simple objects Cob
Pin`p4Nq

.

Let us deduce the fusion rules of the objects in Cob
Pin`p4Nq

. First of all, we have

Dpidq

2 b DpV q

2 “ DpV q

2 ,

DpV q

2 b DpV q

2 “ Dpidq

2 .
(147)

5The simple objects of the symmetry category include the condensation defects. We use the notation Cob to
denote however simple objects modulo condensation, since we will only discuss fusion of these objects, with the
condensation defects being discussed elsewhere [48–50].
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These are just the fusion rules of CSpinp4Nq as there is no Z2 action on the involved objects.

Thus, Dpidq

2 and DpV q

2 are invertible surface defects which can be recognized as generating the
Z2 center 1-form symmetry of the Pin`p4Nq theory.

To determine the fusion rule Dpiq
2 b DpSCq

2 for i P tid, Vu, notice that there are two simple

1-morphisms from the object Dpiq
2 b DpSCq

2 to the object DpSCq

2 in the 2-category CSpinp4Nq and

no 1-morphisms from the object Dpiq
2 b DpSCq

2 to any other object. The two simple 1-morphisms
can be recognized as the 1-morphisms

DpV,S;Cq

1 : DpV q

2 b DpSq

2 Ñ DpCq

2 ,

DpV,C;Sq

1 : DpV q

2 b DpCq

2 Ñ DpSq

2 ,
(148)

for i “ V , and the 1-morphisms

Dpid,S;Sq

1 : Dpidq

2 b DpSq

2 Ñ DpSq

2 ,

Dpid,C;Cq

1 : Dpidq

2 b DpCq

2 Ñ DpCq

2 ,
(149)

for i “ id, where these 1-morphisms are in the 2-category CSpinp4Nq. The Z2 outer-automor-
phism acts as the exchange

DpV,S;Cq

1 ÐÑ DpV,C;Sq

1 ,

Dpid,S;Sq

1 ÐÑ Dpid,C;Cq

1 .
(150)

Thus, there is a single simple 1-morphism for each i

Dpi,SC;SCq

1 : Dpiq
2 b DpSCq

2 Ñ DpSCq

2 (151)

in the 2-category CPin`p4Nq, which can be expressed as

DpV,SC;SCq

1 “

´

DpV,S;Cq

1 ‘ DpV,C;Sq

1

¯

CSpinp4Nq

,

Dpid,SC;SCq

1 “

´

Dpid,S;Sq

1 ‘ Dpid,C;Cq

1

¯

CSpinp4Nq

(152)

1-morphisms in the category CSpinp4Nq, leading to the fusion rule

Dpiq
2 b DpSCq

2 “ DpSCq

2 , (153)

for i P tid, Vu in CPin`p4Nq. There is no possibility of condensations arising on the right hand

side of the above equation, because there are no non-trivial lines living on DpSCq

2 as discussed
above.

Now let us discuss DpSCq

2 bDpSCq

2 in CPin`p4Nq. From the corresponding fusion in CSpinp4Nq, we

see that only Dpidq

2 and DpV q

2 can appear in this fusion. There are two 1-morphisms

DpSCq

2 b DpSCq

2 Ñ Dpidq

2 in CSpinp4Nq, which can be recognized as

DpS,S;idq

1 : DpSq

2 b DpSq

2 Ñ Dpidq

2 ,

DpC ,C;idq

1 : DpCq

2 b DpCq

2 Ñ Dpidq

2 .
(154)

Similarly, there are two 1-morphisms DpSCq

2 b DpSCq

2 Ñ DpV q

2 in CSpinp4Nq, which can be recog-
nized as

DpS,C;V q

1 : DpSq

2 b DpCq

2 Ñ DpV q

2 ,

DpC ,S;V q

1 : DpCq

2 b DpSq

2 Ñ DpV q

2 .
(155)
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DpSCq

2

Dp´q

1

Figure 26: The defect configuration describing a 2-morphism from DpSCq

1 b DpSCq

1 to

Dp´q

1 , where DpSCq

1 is the identity line living on the surface DpSCq

2 shown in the figure.

These 1-morphisms are exchanged by the Z2 action as

DpS,S;idq

1 ÐÑ DpC ,C;idq

1 ,

DpC ,S;V q

1 ÐÑ DpS,C;V q

1 .
(156)

Thus, we have single simple 1-morphisms

DpSC ,SC;idq

1 : DpSCq

2 b DpSCq

2 Ñ Dpidq

2 ,

DpSC ,SC;V q

1 : DpSCq

2 b DpSCq

2 Ñ DpV q

2

(157)

in CPin`p4Nq, and hence following the general analysis of section 4.3, we obtain that the fusion
rule must take the form

DpSCq

2 b DpSCq

2 “
Dpidq

2

Apidq
‘

DpV q

2

ApV q
(158)

in CPin`p4Nq, where we still need to determine the algebras Apidq and ApV q describing the conden-

sation/gauging on top of the surfaces Dpidq

2 and DpV q

2 respectively. The form of the above fusion

rule means that DpSCq

2 is a non-invertible surface defect, and hence the 2-category CPin`p4Nq de-
scribes a non-invertible symmetry of the Pin`p4Nq theory.

To complete the description of above fusion, we need to determine local operators corre-

sponding to 2-morphisms from DpSCq

1 b DpSCq

1 to lines Dpidq

1 , Dp´q

1 , DpV q

1 and D
pV´q

1 . This is the
same as the determination of local operators in the analogous 3d case we considered in the
previous section. From the results obtained there, we learn that there is a single dimensional
vector space of 2-morphisms from DpSCq

1 b DpSCq

1 to each of the lines Dpidq

1 , Dp´q

1 , DpV q

1 and

D
pV´q

1 . Let us make a side comment here in order to resolve some of the confusing statements
found in previous literature: the fact that we have a 2-morphism

DpSCq

1 b DpSCq

1 Ñ Dp´q

1 , (159)

means that there is a non-zero local operator lying at the intersection of the genuine line Dp´q

1

and the genuine surface DpSCq

2 , since DpSCq

1 is the identity line on the surface DpSCq

2 . See figure
26. This looks like a configuration implying that a surface can fuse with itself to give line
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defects, and could motivate one to introduce fusion rules taking two objects (i.e. surfaces)
to a 1-morphism (i.e. a line). However, in the standard definitions of 2-category used in
mathematics, the fusion of two objects is always an object. As we have described above,
mathematically this figure is interpreted instead as a 2-morphism.

Returning back to our original problem, we have determined the algebra objects to be

Apidq

1 “ Dpidq

1 ‘ Dp´q

1 ,

ApV q

1 “ DpV q

1 ‘ D
pV´q

1 ,
(160)

which means that we have to gauge theZ2 0-form symmetry on Dpidq

2 generated by Dp´q

1 and the

Z2 0-form symmetry localized on DpV q

2 generated by D
pV´q

1 . There is a unique way to perform
this gauging as H2pBZ2, Up1qq “ 0. Consequently the morphisms comprising the algebras Apidq

and ApV q are uniquely fixed, and the full fusion rule can be expressed as

DpSCq

2 b DpSCq

2 “
Dpidq

2

Z2
‘

DpV q

2

Z2
. (161)

Let us now discuss various fusion rules for lines. The fusion of 1-morphisms inside objects
is straightforward to determine:

Dpidq

1 b
Dpidq

2
Dp´q

1 “ Dp´q

1 ,

Dp´q

1 b
Dpidq

2
Dp´q

1 “ Dpidq

1 ,

DpSCq

1 b
DpSCq

2
DpSCq

1 “ DpSCq

1 ,

DpV q

1 b
DpVq

2
DpV q

1 “ DpV q

1 ,

DpV q

1 b
DpVq

2
D

pV´q

1 “ D
pV´q

1 ,

D
pV´q

1 b
DpVq

2
D

pV´q

1 “ DpV q

1 .

(162)

On the other hand, the fusion b of 1-morphisms is

Dpidq

1 b Dpidq

1 “ Dpidq

1 ,

Dpidq

1 b Dp´q

1 “ Dp´q

1 ,

Dp´q

1 b Dp´q

1 “ Dpidq

1 ,

DpSCq

1 b Dpidq

1 “ DpSCq

1 ,

DpSCq

1 b Dp´q

1 “ DpSCq

1 ,

DpV q

1 b Dpidq

1 “ DpV q

1 ,

DpV q

1 b Dp´q

1 “ D
pV´q

1 ,

D
pV´q

1 b Dpidq

1 “ D
pV´q

1 ,

D
pV´q

1 b Dp´q

1 “ DpV q

1 ,

DpSCq

1 b DpV q

1 “ DpSCq

1 ,

DpSCq

1 b D
pV´q

1 “ DpSCq

1 ,

DpSCq

1 b DpSCq

1 “ D

´

DpSCq

2 bDpSCq

2

¯

1 ,

(163)
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where D

´

DpSCq

2 bDpSCq

2

¯

1 denotes the identity line on the surface (161). The bimodule description

of the line DpSCq

1 b DpSCq

1 in Dpidq

2 ‘ DpV q

2 is provided simply by the algebra Apidq ‘ ApV q itself.
This example is of particular utility, as we have an alternate means of computing the fusions

using the approach in [17]. We will do so in section 8 and find agreement with the above
prescription. This reassures us to apply our approach to an example that is beyond the mixed
anomaly approach, namely the Z3 and S3 gaugings of Spinp8q.

6.2 Pure Spinp8q ¸ S3 Gauge Theory in 4d

We consider the gauging, as in 3d, of the outer automorphism S3 acting on pure Spinp8q Yang-
Mills. Again we will perform this in two steps by first gauging a subgroup Z3.

6.2.1 Pure Spinp8q ¸Z3 Gauge Theory in 4d

Now consider gauging Z3 outer-automorphism symmetry of the 4d Spinp8q pure Yang-Mills
theory. This constructs 4d Spinp8q ¸Z3 pure Yang-Mills theory.

The Z3 acts on CSpinp8q as a cyclic permutation

DpSq

i Ñ DpCq

i Ñ DpV q

i Ñ DpSq

i , (164)

for i P t1,2u.
Let us denote the 2-category for the Spinp8q ¸Z3 theory descending from CSpinp8q as CZ3

.
Its simple objects modulo condensations are

Cob
Z3

“

!

Dpidq

2 , DpSCV q

2

)

, (165)

where
DpSCV q

2 “

´

DpSq

2 ‘ DpCq

2 ‘ DpV q

2

¯

CSpinp8q

, (166)

as an object of the 2-category CSpinp8q.

Let us deduce the fusion rule DpSCV q

2 b DpSCV q

2 . From the corresponding fusion in CSpinp8q,

we see that both Dpidq

2 and DpSCV q

2 can appear in this fusion modulo condensations. There are

three 1-morphisms DpSCV q

2 b DpSCV q

2 Ñ Dpidq

2 in CSpinp8q, which can be recognized as

DpS,S;idq

1 : DpSq

2 b DpSq

2 Ñ Dpidq

2 ,

DpC ,C;idq

1 : DpCq

2 b DpCq

2 Ñ Dpidq

2 ,

DpV,V ;idq

1 : DpV q

2 b DpV q

2 Ñ Dpidq

2 .

(167)

These three 1-morphisms are cyclically permuted by the Z3 action:

DpS,S;idq

1 Ñ DpC ,C;idq

1 Ñ DpV,V ;idq

1 Ñ DpS,S;idq

1 . (168)

From this, we obtain a 1-morphism

DpSCV,SCV ;idq

1 : DpSCV q

2 b DpSCV q

2 Ñ Dpidq

2 (169)

of CZ3
, which can be expressed as the following 1-morphism

DpSCV,SCV ;idq

1 “

´

DpS,S;idq

1 ‘ DpC ,C;idq

1 ‘ DpV,V ;idq

1

¯

CSpinp8q

(170)
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of the 2-category CSpinp8q.

On the other hand, there are six 1-morphisms DpSCV q

2 b DpSCV q

2 Ñ DpSCV q

2 in CSpinp8q, which
can be recognized as

DpS,C;V q

1 : DpSq

2 b DpCq

2 Ñ DpV q

2 ,

DpC ,V ;Sq

1 : DpCq

2 b DpV q

2 Ñ DpSq

2 ,

DpV,S;Cq

1 : DpV q

2 b DpSq

2 Ñ DpCq

2 ,

DpC ,S;V q

1 : DpCq

2 b DpSq

2 Ñ DpV q

2 ,

DpV,C;Sq

1 : DpV q

2 b DpCq

2 Ñ DpSq

2 ,

DpS,V ;Cq

1 : DpSq

2 b DpV q

2 Ñ DpCq

2 .

(171)

These six 1-morphisms are cyclically permuted by the Z3 action in two orbits:

DpS,C;V q

1 Ñ DpC ,V ;Sq

1 Ñ DpV,S;Cq

1 Ñ DpS,C;V q

1 ,

DpC ,S;V q

1 Ñ DpV,C;Sq

1 Ñ DpS,V ;Cq

1 Ñ DpC ,S;V q

1 .
(172)

From this, we obtain two simple 1-morphisms

DpSCV,SCV ;SCV qpiq
1 : DpSCV q

2 b DpSCV q

2 Ñ DpSCV q

2 , (173)

for i P ta, bu of CZ3
, which can be expressed as the following 1-morphisms

DpSCV,SCV ;SCV qpaq

1 “

´

DpS,C;V q

1 ‘ DpC ,V ;Sq

1 ‘ DpV,S;Cq

1

¯

CSpinp8q

,

DpSCV,SCV ;SCV qpbq

1 “

´

DpC ,S;V q

1 ‘ DpV,C;Sq

1 ‘ DpS,V ;Cq

1

¯

CSpinp8q

(174)

of the 2-category CSpinp8q.
In total, we obtain using the general result in section 4.3

DpSCV q

2 b DpSCV q

2 “
Dpidq

2

Apidq
‘

DpSCV q

2

ApSCV,aq
‘

DpSCV q

2

ApSCV,bq
(175)

in the 2-category CZ3
. Consequently, DpSCV q

2 is a non-invertible surface defect, and hence the
2-category CZ3

describes a non-invertible symmetry of the Spinp8q ¸Z3 theory. We will finish
the determination of the algebras Apidq, ApSCV,aq and ApSCV,bq later.

Let us now turn to a discussion of the 1-morphisms of CZ3
. Since there are no non-identity

simple 1-endomorphisms of the identity object in CSpinp8q, the simple 1-endomorphisms of the

identity object Dpidq

2 in CZ3
are

!

Dpidq

1 , Dpωq

1 , Dpω2q

1

)

, (176)

which are the Wilson line defects for the gauged Z3. Their fusion b, which equals the fusion
b

Dpidq

2
inside the identity object, follows the group law of Z3. On the other hand, there is only

the identity 1-endomorphism DpSCV q

1 of DpSCV q

2 in CZ3
, which can be expressed as

DpSCV q

1 “

´

DpSq

1 ‘ DpCq

1 ‘ DpV q

1

¯

CSpinp8q

, (177)

as a 1-morphism of CSpinp8q. Thus,

C1-endo
Z3

“

!

Dpidq

1 , Dpωq

1 , Dpω2q

1 , DpSCV q

1

)

(178)
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is the list of simple 1-endomorphisms of simple objects in Cob
Z3

. Since DpSCV q

1 is the identity

1-endomorphism of DpSCV q

2 , we simply have

DpSCV q

1 b
DpSCVq

2
DpSCV q

1 “ DpSCV q

1 . (179)

On the other hand, from computations simiar to as in the analogous 3d case, we learn that

DpSCV q

1 b Dpωq

1 “ DpSCV q

1 ,

DpSCV q

1 b Dpω2q

1 “ DpSCV q

1 .
(180)

We also have a 2-morphism from DpSCV q

1 b DpSCV q

1 to Dpidq

1 , Dpωq

1 and Dpω2q

1 , and two

2-morphisms to DpSCV q

1 . One of these two 2-morphisms lives along the line DpSCV,SCV ;SCV qpaq

1 ,

while the other lives along the line DpSCV,SCV ;SCV qpbq

1 .

Thus the two algebras ApSCV,iq
1 are trivial, whereas

Apidq

1 “ Dpidq

1 ‘ Dpωq

1 ‘ Dpω2q

1 . (181)

The above allows us to complete the fusion (175) to

DpSCV q

2 b DpSCV q

2 “
Dpidq

2

Z3
‘ 2DpSCV q

2 , (182)

where
Dpidq

2

Z3
(183)

is the condensation surface defect obtained by gauging Z3 2-form symmetry of the Spinp8q¸Z3
theory along a two-dimensional surface, and there is no gauging performed along the two
DpSCV q

2 surfaces.

6.2.2 Gauging S3 in Spinp8q Gauge Theory in 4d

To construct the 4d Spinp8q¸S3 pure Yang-Mills theory, we can begin with the 4d Spinp8q¸Z3
pure Yang-Mills theory studied in the previous subsection, and gauge a Z2 0-form symmetry of
it. The symmetry 2-category CZ3

of the Spinp8q¸Z3 theory descends to a symmetry 2-category
CS3

of the Spinp8q ¸ S3 theory under the gauging procedure.
The simple objects (modulo condensation) of CZ3

are left invariant by the Z2 action. Thus,
the simple objects modulo condensation

Cob
S3

“

!

Dpidq

2 , DpSCV q

2

)

, (184)

of CS3
are the same as for CZ3

.

Let us deduce the fusion rule DpSCV q

2 b DpSCV q

2 in CS3
. The Z2 action acts as

DpSCV,SCV ;SCV qpaq

1 ÐÑ DpSCV,SCV ;SCV qpbq

1 . (185)

Thus, there is a single 1-morphism

DpSCV,SCV ;SCV q

1 : DpSCV q

2 b DpSCV q

2 Ñ DpSCV q

2 (186)
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in CS3
, which can be expressed as

DpSCV,SCV ;SCV q

1 “

´

DpSCV,SCV ;SCV qpaq

1 ‘ DpSCV,SCV ;SCV qpbq

1

¯

CZ3
, (187)

as 1-morphism of CZ3
. Thus, we are lead to conclude the fusion rule

DpSCV q

2 b DpSCV q

2 “
Dpidq

2

Apidq
‘

DpSCV q

2

ApSCV q
(188)

in the 2-category CS3
. We will determine these algebras below.

There are three simple 1-endomorphisms Dpiq
1 for i P tid,ω,ω2u of the identity object in

CZ3
. Out of these, Dpωq

1 and Dpω2q

1 are combined into a simple 1-endomorphism

Dpωω2q

1 “

´

Dpωq

1 ‘ Dpω2q

1

¯

CZ3
(189)

of the identity object of CS3
. On the other hand, the 1-endomorphism Dpidq

1 of CZ3
is left invari-

ant by the Z2 action, so gives rise to two simple 1-endomorphisms Dpidq

1 , Dp´q

1 of the identity
object of CS3

. These can also be recognized as the Wilson lines created by the Z2 gauging.

Similarly, there is only the identity 1-endomorphism DpSCV q

1 of DpSCV q

2 in CZ3
, which is left in-

variant by the Z2 action. Consequently, we can dress DpSCV q

1 of CZ3
by Wilson lines to obtain

two simple 1-endomorphisms DpSCV q

1 , D
pSCV´q

1 of the identity object of CS3
. In total,

C1-endo
S3

“

!

Dpidq

1 , Dp´q

1 , Dpωω2q

1 , DpSCV q

1 , D
pSCV´q

1

)

(190)

describes simple 1-endomorphisms of simple objects in Cob
S3

.

The fusion rules for the fusion b
DpSCVq

2
parametrized by the object DpSCV q

2 are

DpSCV q

1 b
DpSCVq

2
DpSCV q

1 “ DpSCV q

1 ,

DpSCV q

1 b
DpSCVq

2
D

pSCV´q

1 “ D
pSCV´q

1 ,

D
pSCV´q

1 b
DpSCVq

2
DpSCV q

1 “ D
pSCV´q

1 ,

D
pSCV´q

1 b
DpSCVq

2
D

pSCV´q

1 “ DpSCV q

1 .

(191)

The fusion rules for Dpidq

1 , Dp´q

1 , Dpωω2q

1 under the fusion b
Dpidq

2
parametrized by the identity

object Dpidq

2 are the same as the fusion rules for these objects under the fusion b that we
discuss below.

From computations similar to the ones for the analogous 3d case we considered in the
previous section, we find the following fusion rules

Dp´q

1 b Dpωω2q

1 “ Dpωω2q

1 ,

Dp´q

1 b DpSCV q

1 “ D
pSCV´q

1 ,

Dp´q

1 b D
pSCV´q

1 “ DpSCV q

1 ,

Dpωω2q

1 b DpSCV q

1 “ DpSCV q

1 ‘ D
pSCV´q

1 ,

Dpωω2q

1 b D
pSCV´q

1 “ DpSCV q

1 ‘ D
pSCV´q

1 ,

Dpωω2q

1 b Dpωω2q

1 “ Dpidq

1 ‘ Dp´q

1 ‘ Dpωω2q

1 .

(192)
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We also have a single 2-morphism from DpSCV q

1 b DpSCV q

1 to each of Dpidq

1 , Dpωω2q

1 , DpSCV q

1 and

D
pSCV´q

1 ; a single 2-morphism from D
pSCV´q

1 b D
pSCV´q

1 to each of Dpidq

1 , Dpωω2q

1 , DpSCV q

1 and

D
pSCV´q

1 ; and a single 2-morphism from DpSCV q

1 b D
pSCV´q

1 to each of Dp´q

1 , Dpωω2q

1 , DpSCV q

1 and

D
pSCV´q

1 .
The above 2-morphisms allow us to compute the algebras appearing in (188), which we

can now complete as

DpSCV q

2 b DpSCV q

2 “
Dpidq

2

Apidq

1 “ Dpidq

1 ‘ Dpωω2q

1

‘
DpSCV q

2

Z2
, (193)

where
DpSCV q

2

Z2
(194)

is the defect obtained by gauging the Z2 localized symmetry of DpSCV q

2 with the corresponding
algebra being uniquely determined by the algebra object

ApSCV q

1 “ DpSCV q

1 ‘ D
pSCV´q

1 . (195)

and
Dpidq

2

A “ Dpidq

1 ‘ Dpωω2q

1

(196)

is obtained from Dpidq

2 by gauging the ReppS3q localized symmetry of Dpidq

2 using the algebra
object

Apidq

1 “ Dpidq

1 ‘ Dpωω2q

1 . (197)

We leave the precise determination of the morphisms comprising the algebra Apidq to future
work.

The fusions of lines living on DpSCV q

2 are described in terms of bimodules of the categories

describing symmetries localized on Dpidq

2 and DpSCV q

2 . For the fusion DpSCV q

1 b DpSCV q

1 , the cor-
responding bimodules are the algebras Apidq and ApSCV q themselves, as the fused line is simply

the identity line on fused surface DpSCV q

2 bDpSCV q

2 . For the fusion D
pSCV´q

1 bD
pSCV´q

1 , the objects

underlying the bimodules are Apidq

1 and ApSCV q

1 , while we leave the determination of morphisms

comprising the bimodules to future work. Finally, for the fusion DpSCV q

1 b D
pSCV´q

1 , the objects

underlying the bimodules are Dp´q

1 ‘ Dpωω2q

1 and ApSCV q

1 , while we leave the determination of
morphisms comprising the bimodules to future work.

6.3 Pure Op2q Gauge Theory in 4d

4d Op2q pure Yang-Mills theory can be constructed from 4d Up1q pure Yang-Mills theory by
gauging the charge conjugation Z2 0-form symmetry. The Up1q theory has a

Γ p1q “ Up1qe ˆ Up1qm (198)

1-form symmetry, where Up1qe is the electric 1-form symmetry acting on Wilson line defects,
and Up1qm is the magnetic 1-form symmetry acting on ’t Hooft line defects. The

Γ p0q “ Z2 (199)
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charge conjugation symmetry acts by complex conjugation on both Up1qe and Up1qm. This
1-form symmetry descends to a continuous non-invertible 2-categorical symmetry. In what
follows we ignore Up1qm and consider only the Up1qe symmetry (or vice versa). It is straight-
forward to extend the analysis to the full Γ p1q symmetry.

The 2-category CUp1q associated to the 1-form symmetry Up1qe of the Up1q theory has
simple objects, the Gukov-Witten operators, which generate the 1-form symmetry

Cob
Up1q

“

!

Dpθq

2

ˇ

ˇ

ˇθ P R{Z
)

, (200)

whose fusion follows the group law of R{Z. There is only an identity line Dpθq

1 on each such

surface Dpθq

2 . Thus the set of simple 1-endomorphisms of simple objects is

C1´endo
Up1q

“

!

Dpθq

1

ˇ

ˇ

ˇθ P R{Z
)

, (201)

whose fusion b is also given by the group law of R{Z.
The Z2 charge conjugation leaves invariant Dp0q

i and Dp1{2q

i , while exchanging

Dpθq

i ÐÑ Dp´θq

i , (202)

for i P t1, 2u and θ ‰ 0,1{2. Gauging the Z2 charge conjugation leads to the Op2q theory
in which the 2-category CUp1q descends to a 2-category COp2q. The simple objects modulo
condensations of COp2q are

Cob
Op2q

“

!

Dp0q

2 , Dp1{2q

2 , Spθq

2

ˇ

ˇ

ˇ0 ă θ ă 1{2
)

, (203)

where
Spθq

2 “

´

Dpθq

2 ‘ Dp´θq

2

¯

CUp1q

, (204)

as object in CUp1q.
The simple 1-endomorphisms of simple objects in Cob

Op2q
are

C1-endo
Op2q

“

!

Dp0q

1 , Dp´q

1 , Dp1{2q

1 , Dp1{2,´q

1 , Lpθq

1

ˇ

ˇ

ˇ0 ă θ ă 1{2
)

, (205)

where Dp0q

1 , Dp1{2q

1 and Lpθq

1 are identity 1-endomorphisms of Dp0q

2 , Dp1{2q

2 and Spθq

2 respectively,
and

Lpθq

1 “

´

Dpθq

1 ‘ Dp´θq

1

¯

CUp1q

, (206)

as 1-morphism in CUp1q. Since Dp0q

1 and Dp1{2q

1 have Z2 stabilizers, dressing them by the non-

trivial Z2 Wilson line leads to the non-identity simple 1-endomorphisms Dp´q

1 and Dp1{2,´q

1 of

Dp0q

2 and Dp1{2q

2 respectively.
The COp2q fusion rules of these objects can be deduced to be

Dp1{2q

2 b Dp1{2q

2 “ Dp0q

2 ,

Dp1{2q

2 b Spθq

2 “ Sp1{2´θq

2 ,

Spθq

2 b Spθ 1q

2 “ S
p|θ`θ 1|1{2q
2 ‘ S

p|θ´θ 1|1{2q
2 ,

Spθq

2 b Sp1{2´θq

2 “
Dp1{2q

2

Z2
‘ S

p|2θ´1{2|1{2q
2 ; θ ‰ 1{4 ,

Spθq

2 b Spθq

2 “
Dp0q

2

Z2
‘ S

p|2θ |1{2q
2 ; θ ‰ 1{4 ,

Sp1{4q

2 b Sp1{4q

2 “
Dp0q

2

Z2
‘

Dp1{2q

2

Z2
,

(207)
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where θ 1 ‰ 1{2 ´ θ and θ 1 ‰ θ , and |α|1{2 is defined in (127) and (128). The fusion b of
1-morphisms are straightforward.

A closely related symmetry category is that of ĂSUpNq Gauge Theory in 4d, which we discuss
in appendix A.2.

6.4 pZ2 ˆZ2q ¸Z2 Gauge Theory in 4d

Our general procedure is equally applicable to discrete gauge theories, for which we now
discuss a 4d example. Consider two copies of the Z2 gauge theory in 4d. We denote the
various topological defects in the two copies by L and R labels respectively. The action takes
the form

S “ iπ
ÿ

I“L,R

ż

M4

bI YδaI , (208)

where aI P C1pM4,Z2q and bI P C2pM4,Z2q. The model has topological (’t-Hooft) surface and
(Wilson) line operators that generate 1-form and 2-form global symmetries respectively. The
1-form symmetry group is

Γ p1q “ ZL
2 ˆZR

2 , (209)

generated by the topological surface operators exp
␣

iπ
ş

Σ bI
(

. Similarly, the 2-form global
symmetry is also

Γ p2q “ ZL
2 ˆ ZR

2 , (210)

generated by the topological line operators exp
!

iπ
ş

γ aI
)

. The data of topological operators
can be recast as a fusion 2-category CZ2ˆZ2

. The simple objects of the category are the topo-
logical surface operators

Cob
Z2ˆZ2

“

!

Dpidq

2 , DpLq

2 , DpRq

2 , DpLRq

2

)

. (211)

The fusion of surfaces in CZ2ˆZ2
is read off from the group composition in ZL

2 ˆZR
2, i.e,

Dpgq

2 b Dphq

2 “ Dpghq

2 , (212)

where g, h P tid, L, R, LRu “ ZL
2 ˆZR

2. The endomorphism space of each of the simple surfaces
is isomorphic as a set to the topological line operators in the theory. We denote the lines on a
surface Dpgq

2 by the label Dpgq,phq

1 . The set of 1-endomorphisms corresponding to a surface Dpgq

2
is

C1-endo
pgq,Z2ˆZ2

“

!

Dpgq,phq

1

ˇ

ˇ h P Z2 ˆZ2

)

. (213)

The fusion rules of lines inherit the group structure i.e

Dpg1q,ph1q

1 b Dpg2q,ph2q

1 “ Dpg1 g2q,ph1h2q

1 . (214)

Similarly, the fusion of lines within a surface is given by

Dpgq,ph1q

1 b
Dpgq

2
Dpgq,ph2q

1 “ Dpgq,ph1h2q

1 . (215)

Furthermore each of the simple lines have a 1-dimensional endomorphism space associated to
which are the 2-morphisms of the symmetry category CZ2ˆZ2

.

C2-morph
Z2ˆZ2

“

!

Dpgq,phq

0

ˇ

ˇ g, h P Z2 ˆZ2

)

. (216)
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The 2-morphisms satisfy the fusion structure

Dpg1q,ph1q

0 b Dpg2q,ph2q

0 “ Dpg1 g2q,ph1h2q

0 ,

Dpgq,ph1q

0 b
Dpgq

2
Dpgq,ph2q

0 “ Dpgq,ph1h2q

0 .
(217)

Finally, the fusion structure of 2-morphisms within lines is trivial. The theory has a 0-form
symmetry

Γ p0q “ Z2 , (218)

which acts by exchanging L Ø R. We are interested in the symmetry category CpZ2ˆZ2q{Γ p0q

that arises upon gauging this 0-form global symmetry. More precisely, using the procedure
developed in the previous sections, we can access the untwisted or identity flux sector which
forms a sub-category Cpidq

pZ2ˆZ2q{Γ p0q
Ă CpZ2ˆZ2q{Γ p0q . Firstly, the objects of the gauged category

are Γ p0q orbits within Cob
Z2ˆZ2

. More precisely

Cpidq,ob
pZ2ˆZ2q{Γ p0q

“

!

Dpidq

2 , DpL,Rq

2 , DpLRq

2

)

, (219)

where
DpL,Rq

2 “
`

DL
2

à

DR
2

˘

CZ2ˆZ2
, (220)

as an object in the pre-gauged symmetry category CZ2ˆZ2
. Next, we compute the fusion rules

of surfaces. Firstly, we have

Dpidq

2 b Dpidq

2 “ Dpidq

2 ,

Dpidq

2 b DpLRq

2 “ DpLRq

2 ,

DpLRq

2 b DpLRq

2 “ Dpidq

2 ,

(221)

which are obtained from the fusion rules in CZ2ˆZ2
as each of the objects involved are Γ p0q

invariant. The fusion rules of the DpL,Rq

2 surface with Dpiq
2 where i P tid, LRu, can be computed

by lifting the surfaces to the pre-gauged category and restricting to Γ p0q invariant 1-morphisms.
For instance, in the pre-gauged symmetry category CZ2ˆZ2

there are two 1-morphisms from the

object Dpidq

2 b DpL,Rq

2 to DpL,Rq

2 and no 1-morphisms to any other object

Dpidq,pLq;pLq

1 : Dpidq

2 b DpLq

2 ÝÑ DpLq

2 ,

Dpidq,pRq;pRq

1 : Dpidq

2 b DpRq

2 ÝÑ DpRq

2 .
(222)

Similarly, in CZ2ˆZ2
, there are two simple 1-morphisms from DpLRq

2 b DpL,Rq

2 to DpL,Rq

2 and no
1-morphisms to any other object

DpLRq,pLq;pRq

1 : DpLRq

2 b DpLq

2 ÝÑ DpRq

2 ,

DpLRq,pRq;pLq

1 : DpLRq

2 b DpRq

2 ÝÑ DpLq

2 .
(223)

These two 1-morphisms in each set are exchanged under the action of Γ p0q

Dpidq,pLq;pLq

1 ÐÑ Dpidq,pRq;pRq

1 ,

DpLRq,pLq;pRq

1 ÐÑ DpLRq,pRq;pLq

1 ,
(224)
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and therefore form a single simple 1-morphism in Cpidq

pZ2ˆZ2q{Γ p0q

Dpidq,pL,Rq,pL,Rq

1 : Dpidq

2 b DpL,Rq

2 ÝÑ DpL,Rq

2 ,

DpLRq,pL,Rq,pL,Rq

1 : DpLRq

2 b DpL,Rq

2 ÝÑ DpL,Rq

2 .
(225)

Furthermore the fusion of the identity line on DpL,Rq

2 with the identity line on Dpiq
2 gives

DpL,Rq,pidq

1 b Dpiq,pidq

1 “ DpL,Rq,pidq

1 , (226)

hence there is no additional condensation in this fusion process. Next, the object DpL,Rq

2 bDpL,Rq

2 ,

in the category CZ2ˆZ2
, has two simple 1-morphisms each to the surfaces Dpidq

2 and DpLRq

2 . These
are

DpLq,pLq;pidq

1 : DpLq

2 b DpLq

2 ÝÑ Dpidq

2 ,

DpRq,pRq;pidq

1 : DpRq

2 b DpRq

2 ÝÑ Dpidq

2 ,

DpRq,pLq;pLRq

1 : DpRq

2 b DpRq

2 ÝÑ Dpidq

2 ,

DpLq,pRq;pLRq

1 : DpLq

2 b DpRq

2 ÝÑ DpLRq

2 .

(227)

These 1-morphisms form two orbits under the action of Γ p0q

DpLq,pLq;pidq

1 ÐÑ DpRq,pRq;pidq

1 ,

DpLq,pRq;pLRq

1 ÐÑ DpRq,pLq;pLRq

1 .
(228)

The Γ p0q invariant orbits therefore become simple 1-morphisms in the symmetry category
CpZ2ˆZ2q{Γ p0q . There can be an additional condensation on the Did

2 and DpLRq

2 surface, depending

on the fusion of identity lines DpL,Rq,pidq

1 b DpL,Rq,pidq

1 . Let us denote the algebras corresponding
to these (potential) condensations as Apidq and ApLRq. To summarize, the fusion of topological
surface operators in the identity flux sector of the gauged theory is

Dpidq

2 b DpLRq

2 “ DpLRq

2 ,

DpLRq

2 b DpLRq

2 “ Dpidq

2 ,

Dpidq

2 b DpL,Rq

2 “ DpL,Rq

2 ,

DpLRq

2 b DpL,Rq

2 “ DpL,Rq

2 ,

DpL,Rq

2 b DpL,Rq

2 “
Dpidq

2

Apidq
‘

DpLRq

2

ApLRq
.

(229)

Next, we move onto the topological lines, i.e., 1-morphisms in the gauged sub-category
Cpidq

pZ2ˆZ2q{Γ p0q
. Firstly the identity line Dpidq,pidq

1 in CZ2ˆZ2
splits into two lines denoted as Dpidq,pidq

1

and Dpidq,p´q

1 where the latter is the non-trivial Z2 Wilson line and carries the sign representa-
tion of Z2. Importantly, this line generates a non-anomalous 2-form global symmetry which
is dual to Γ p0q. This 2-form Z2 symmetry can be gauged by proliferating the topological line
Dpidq,p´q

1 in order to recover the original symmetry category CZ2ˆZ2
. Similarly all the other Γ p0q

invariant lines in CZ2ˆZ2
also split into two lines each, labelled by representations of Γ p0q such

that the non-trivial representation, denoted with a minus sign, is obtained by dressing the
original line operator in CZ2ˆZ2

with the Z2 Wilson line Dpidq,p´q

1 . The remaining lines in the
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CZ2ˆZ2
, i.e., those that transform under Γ p0q, combine into orbits that become simple lines in

Cpidq

pZ2ˆZ2q{Γ p0q
. It is straightforward to enumerate the lines in Cpidq

pZ2ˆZ2q{Γ p0q
. The endomorphism

lines in the surface Dpiq
2 , where i P tid, LRu are

C1-endo,piq
pZ2ˆZ2q{Γ p0q

“

!

Dpiq,pidq

1 , Dpiq,p´q

1 , Dpiq,pLRq

1 , Dpiq,pLR,´q

1 , Dpiq,pL,Rq

1

)

, (230)

where
Dpiq,pL,Rq

1 “

´

Dpiq,pLq

1 ‘ Dpiq,pRq

1

¯

CZ2ˆZ2

. (231)

Similarly the 1-endomorphisms within the surface DpL,Rq

2 are

C1-endo,pL,Rq

pZ2ˆZ2q{Γ p0q
“

!

DpL,Rq,pidq

1 , DpL,Rq,pLRq

1 , DpL,Rq,pL,R;1q

1 , DpL,Rq,pL,R;2q

1

)

, (232)

where

DpL,Rq,pidq

1 “

´

DpLq,pidq

1 ‘ DpRq,pidq

1

¯

CZ2ˆZ2

,

DpL,Rq,pLRq

1 “

´

DpLq,pLRq

1 ‘ DpRq,pLRq

1

¯

CZ2ˆZ2

,

DpL,Rq,pL,R;1q

1 “

´

DpLq,pLq

1 ‘ DpRq,pRq

1

¯

CZ2ˆZ2

,

DpL,Rq,pL,R;2q

1 “

´

DpLq,pRq

1 ‘ DpRq,pLq

1

¯

CZ2ˆZ2

.

(233)

Next, we move onto the fusion of lines within surfaces. Firstly, within the surface Dpiq
2 where

i P tid, LRu, the fusion rules are

Dpiq,pidq

1 b
Dpiq

2
Dpiq,p´q

1 “ Dpiq,p´q

1 ,

Dpiq,pLRq

1 b
Dpiq

2
Dpiq,p´q

1 “ Dpiq,pLR,´q

1 ,

Dpiq,pLRq

1 b
Dpiq

2
Dpiq,pLR,´q

1 “ Dpiq,p´q

1 ,

Dpiq,pLR,´q

1 b
Dpiq

2
Dpiq,pLR,´q

1 “ Dpiq,pidq

1 ,

Dpiq,pidq

1 b
Dpiq

2
Dpiq,pL,Rq

1 “ Dpiq,pL,Rq

1 ,

Dpiq,p´q

1 b
Dpiq

2
Dpiq,pL,Rq

1 “ Dpiq,pL,Rq

1 ,

Dpiq,pLRq

1 b
Dpiq

2
Dpiq,pL,Rq

1 “ Dpiq,pL,Rq

1 ,

Dpiq,pLR,´q

1 b
Dpiq

2
Dpiq,pL,Rq

1 “ Dpiq,pL,Rq

1 ,

Dpiq,pL,Rq

1 b
Dpiq

2
Dpiq,pL,Rq

1 “ Dpiq,pidq

1 ‘ Dpiq,p´q

1 ‘ Dpiq,pLRq

1 ‘ Dpiq,pLR,´q

1 .

(234)

Notice that the fusion 1-category of lines within the defect Dpiq
2 is isomorphic to the Tambara-

Yamagami fusion-category T Y pZ2 ˆ Z2q. The fusion of lines on distinct surfaces Di
2 and D j

2
with j P tid, LRu is almost the same as in (234) except we need to account for the group
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composition of the surface labels, i.e.,

Dpiq,pidq

1 b Dp jq,p´q

1 “ Dpi jq,p´q

1 ,

Dpiq,pLRq

1 b Dp jq,p´q

1 “ Dpi jq,pLR,´q

1 ,

Dpiq,pLRq

1 b Dp jq,pLR,´q

1 “ Dpi jq,p´q

1 ,

Dpiq,pLR,´q

1 b Dp jq,pLR,´q

1 “ Dpi jq,pidq

1 ,

Dpiq,pidq

1 b Dp jq,pL,Rq

1 “ Dpi jq,pL,Rq

1 ,

Dpiq,p´q

1 b Dp jq,pL,Rq

1 “ Dpi jq,pL,Rq

1 ,

Dpiq,pLRq

1 b Dp jq,pL,Rq

1 “ Dpi jq,pL,Rq

1 ,

Dpiq,pLR,´q

1 b Dp jq,pL,Rq

1 “ Dpi jq,pL,Rq

1 ,

Dpiq,pL,Rq

1 b Dp jq,pL,Rq

1 “ Dpi jq,pidq

1 ‘ Dpi jq,p´q

1 ‘ Dpi jq,pLRq

1 ‘ Dpi jq,pLR,´q

1 .

(235)

In summary the lines Dpiq,pαq

1 with α “ id, ´, LR or LR, ´ are invertible lines while Dpiq,pL,Rq

1
is a non-invertible line and together these lines form the Tambara-Yamagami fusion-category
T Y pZ2 ˆ Z2q. Next, the fusion among lines in the surface DpL,Rq

2 and with other lines can be
computed by lifting to the pre-gauged category and finding Γ p0q invariant morphisms. First
consider the fusion rules between lines in the DpL,Rq

2 surface and lines in Di
2 with i P tid, LRu.

Fusion of invertible lines Dpiq,pαq

1 with DpL,Rq,pidq

1 is

Dpiq,pidq

1 b DpL,Rq,pidq

1 “ DpL,Rq,pidq

1 ,

Dpiq,p´q

1 b DpL,Rq,pidq

1 “ DpL,Rq,pidq

1 ,

Dpiq,pLRq

1 b DpL,Rq,pidq

1 “ DpL,Rq,pLRq

1 ,

Dpiq,pLR,´q

1 b DpL,Rq,pidq

1 “ DpL,Rq,pLRq

1 .

(236)

The fusion of the non-invertible line Dpiq,pL,Rq

1 with DpL,Rq,pidq

1 is computed using the lift to the
pre-gauged category as

Dpiq,pL,Rq

1 b DpL,Rq,pidq

1 “

´

Dpiq,pLq

1 ‘ Dpiq,pRq

1

¯

b

´

DpLq,pidq

1 ‘ DpRq,pidq

1

¯ ˇ

ˇ

ˇ

CZ2ˆZ2

“

´

DpLq,pLq

1 ‘ DpRq,pRq

1 ‘ DpLq,pRq

1 ‘ DpRq,pLq

1

¯
ˇ

ˇ

ˇ

CZ2ˆZ2

“ DpL,Rq,pL,R;1q

1 ‘ DpL,Rq,pL,R;2q

1 .

(237)

Similarly, the fusion rules involving the invertible lines Dpiq,pαq

1 on Di
2 with the line DpL,Rq,pLRq

1

on DpL,Rq

2 are

Dpiq,pidq

1 b DpL,Rq,pLRq

1 “ DpL,Rq,pLRq

1 ,

Dpiq,p´q

1 b DpL,Rq,pLRq

1 “ DpL,Rq,pLRq

1 ,

Dpiq,pLRq

1 b DpL,Rq,pLRq

1 “ DpL,Rq,pidq

1 ,

Dpiq,pLR,´q

1 b DpL,Rq,pLRq

1 “ DpL,Rq,pidq

1 .

(238)
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While the fusion of the non-invertible line Dpiq,pL,Rq

1 with DpL,Rq,pLRq

1 is computed as

Dpiq,pL,Rq

1 b DpL,Rq,pLRq

1 “

´

Dpiq,pLq

1 ‘ Dpiq,pRq

1

¯

b

´

DpLq,pLRq

1 ‘ DpRq,pLRq

1

¯ ˇ

ˇ

ˇ

CZ2ˆZ2

“

´

DpLq,pLq

1 ‘ DpRq,pRq

1 ‘ DpLq,pRq

1 ‘ DpRq,pLq

1

¯ ˇ

ˇ

ˇ

CZ2ˆZ2

“ DpL,Rq,pL,R;1q

1 ‘ DpL,Rq,pL,R;2q

1 .

(239)

The fusion of the invertible lines Dpiq,pαq

1 on Di
2 with the line DpL,Rq,pL,R;σq

1 with σ “ 1,2 on

DpL,Rq

2 are

Dpidq,pidq

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pL,R;σq

1 ,

Dpidq,p´q

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pL,R;σq

1 ,

Dpidq,pLRq

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pσ`1 mod 2q

1 ,

Dpidq,pLR,´q

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pσ`1 mod 2q

1 ,

DpLRq,pidq

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pL,R;σ`1 mod 2q

1 ,

DpLRq,p´q

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pL,R;σ`1 mod 2q

1 ,

DpLRq,pLRq

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pσq

1 ,

DpLRq,pLR,´q

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pσq

1 ,

(240)

and the fusion of the non-invertible line Dpiq,pL,Rq

1 with DpL,Rq,pL,R;σq

1 is

Dpidq,pL,Rq

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pidq

1 ‘ DpL,Rq,pLRq

1 ,

DpLRq,pL,Rq

1 b DpL,Rq,pL,R;σq

1 “ DpL,Rq,pidq

1 ‘ DpL,Rq,pLRq

1 .
(241)

Next, we are left with computing the fusion rules of lines within the DpL,Rq

2 surface. In particu-

lar, the fusion DpL,Rq,pidq

1 bDpL,Rq,pidq

1 has an important physical consequence—it directly encodes

the algebra objects Apidq and ApLRq that condense on the fusion outcome of DpL,Rq

2 b DpL,Rq

2

DpL,Rq,pidq

1 b DpL,Rq,pidq

1 “ Apidq ‘ ALR . (242)

In the category CZ2ˆZ2
, there is a two dimensional morphism space between DpL,Rq,pidq

1 and the

lines Dpidq,pidq

1 and DpLRq,pidq

1 and no other morphisms to any other lines. The morphism space
decomposes into the two representations of Γ p0q in CpZ2ˆZ2q{Γ p0q and therefore one needs to

attach the Z2 Wilson line to the non-trivial morphism to make it Γ p0q invariant. Consequently,
the algebra objects can be read off to be

Apidq

1 “ Dpidq,pidq

1 ‘ Dpidq,p´q

1 ,

ApLRq

1 “ DpLRq,pidq

1 ‘ DpLRq,p´q

1 .
(243)

Finally, the fusion rules among the remaining lines in the DpL,Rq

2 surface can be computed. Since

the fusion outcome of DpL,Rq

2 b DpL,Rq

2 involves extra condensations (see (229)), the fusion of

lines on DpL,Rq

2 are described as algebra bimodules on defects before condensations (see section
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3)

DpL,Rq,pLRq

1 b DpL,Rq,pLRq

1 “ BpDpidq

2 {Apidqq,pid;LR;LRq ‘ BpDpLRq

2 {ApLRqq,pid;LR;LRq ,

DpL,Rq,pidq

1 b DpL,Rq,pLRq

1 “ BpDpidq

2 {Apidqq,pLR;id;LRq ‘ BpDpLRq

2 {ApLRqq,pLR;id;LRq ,

DpL,Rq,pidq

1 b DpL,Rq,pL,R,1q

1 “ BpDpidq

2 {Apidqq,pL,R;id;L,R,1q ‘ BpDpLRq

2 {ApLRqq,pL,R;id;L,R;1q

DpL,Rq,pidq

1 b DpL,Rq,pL,R,2q

1 “ BpDpidq

2 {Apidqq,pL,R;id;L,R,2q ‘ BpDpLRq

2 {ApLRqq,pL,R;id;L,R,2q ,

DpL,Rq,pLRq

1 b DpL,Rq,pL,R,1q

1 “ BpDpidq

2 {Apidqq,pL,R;LR;L,R,1q ‘ BpDpLRq

2 {ApLRqq,pL,R;LR;L,R,1q ,

DpL,Rq,pLRq

1 b DpL,Rq,pL,R,2q

1 “ BpDpidq

2 {Apidqq,pL,R;LR;L,R,2q ‘ BpDpLRq

2 {ApLRqq,pL,R;LR;L,R,2q ,

DpL,Rq,pL,R,1q

1 b DpL,Rq,pL,R,1q

1 “ BpDpidq

2 {Apidqq,pid;L,R,1;L,R,1q ‘ BpDpLRq

2 {ApLRqq,pLR;L,R1;L,R,1q ,

DpL,Rq,pL,R,1q

1 b DpL,Rq,pL,R,2q

1 “ BpDpidq

2 {Apidqq,pid;L,R,1;L,R,2q ‘ BpDpLRq

2 {ApLRqq,pLR;L,R1;L,R,2q ,

DpL,Rq,pL,R,2q

1 b DpL,Rq,pL,R,2q

1 “ BpDpidq

2 {Apidqq,pid;L,R,2;L,R,2q ‘ BpDpLRq

2 {ApLRqq,pLR;L,R,2;L,R,2q .

(244)

The bimodules with a direct sum of invertible lines as objects are

B
pDpidq

2 {Apidqq,pid;LR;LRq

1 “ Dpidqpidq

1 ‘ Dpidqp´q

1 ,

B
pDpLRq

2 {ApLRqq,pid;LR;LRq

1 “ DpLRqpidq

1 ‘ DpLRqp´q

1 ,

B
pDpidq

2 {Apidqq,pLR;id;LRq

1 “ DpidqpLRq

1 ‘ DpidqpLR,´q

1 ,

B
pDpLRq

2 {ApLRqq,pLR;id;LRq

1 “ DpLRqpLRq

1 ‘ DpLRqpLR,´q

1 ,

B
pDpidq

2 {Apidqq,pid;L,R,1;L,R,1q

1 “ Dpidqpidq

1 ‘ Dpidqp´q

1 ,

B
pDpLRq

2 {ApLRqq,pLR;L,R,1;L,R,1q

1 “ DpLRqpLRq

1 ‘ DpLRqpLR,´q

1 ,

B
pDpidq

2 {Apidqq,pid;L,R,1;L,R,2q

1 “ Dpidqpidq

1 ‘ Dpidqp´q

1 ,

B
pDpLRq

2 {ApLRqq,pLR;L,R,1;L,R,2q

1 “ DpLRqpLRq

1 ‘ DpLRqpLR,´q

1 ,

B
pDpidq

2 {Apidqq,pid;L,R,2;L,R,2q

1 “ Dpidqpidq

1 ‘ Dpidqp´q

1 ,

B
pDpLRq

2 {ApLRqq,pLR;L,R,2;L,R,2q

1 “ DpLRqpLRq

1 ‘ DpLRqpLR,´q

1 .

(245)

While the remaining bimodules have non-invertible lines as objects. These are

B
pDpidq

2 {Apidqq,pL,R;id;L,R,1q

1 “ DpidqpL,Rq

1 ,

B
pDpLRq

2 {ApLRqq,pL,R;id;L,R;1q

1 “ DpLRqpL,Rq

1 ,

B
pDpidq

2 {Apidqq,pL,R;id;L,R,2q

1 “ DpidqpL,Rq

1 ,

B
pDpLRq

2 {ApLRqq,pL,R;id;L,R,2q

1 “ DpLRqpL,Rq

1 ,

B
pDpidq

2 {Apidqq,pL,R;LR;L,R,1q

1 “ DpidqpL,Rq

1 ,

B
pDpLRq

2 {ApLRqq,pL,R;LR;L,R,1q

1 “ DpLRqpL,Rq

1 ,

B
pDpidq

2 {Apidqq,pL,R;LR;L,R,2q

1 “ DpidqpL,Rq

1 ,

B
pDpLRq

2 {ApLRqq,pL,R;LR;L,R,2q

1 “ DpLRqpL,Rq

1 .

(246)

We leave the computation of the bimodule morphisms for future work.
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7 Examples: Non-invertible 3-Categorical Symmetries in 5d and
6d

In this section, we discuss examples of UV complete 5d and 6d theories that carry
non-invertible 3-categorical symmetries. So far we considered non-supersymmetric theories,
however in 5d and 6d, the natural class of theories are supersymmetric.

The higher-category gauging is applicable again in cases where there is also a description
in terms of higher-groups/mixed anomalies, and we will give a comparison in section 8.

7.1 5d N “ 2 Pin`p4Nq Super Yang-Mills Theory

It is clear from the example of Pin`p4Nq Yang-Mills Theory in the previous two sections that
this theory contains a non-invertible pd ´2q-categorical symmetry in d spacetime dimensions.
However it is not UV complete on its own in d ě 5. But in d “ 5, its analogue with 16
supercharges, namely the 5d N “ 2 Pin`p4Nq super Yang-Mills theory, is a 5d KK theory, i.e.
it UV completes to a 6d SCFT compactified on a circle.

We construct it by gauging the Z2 outer automorphism symmetry of 5d N “ 2 Spinp4Nq

super Yang-Mills, which has a 3-category CSpinp4Nq describing invertible Z2 ˆ Z2 1-form sym-
metry. The key elements of the 3-category are

!

Dpidq

i , DpSq

i , DpCq

i , DpV q

i

)

, (247)

for i P t1, 2,3u. The elements Dpiq
3 are simple objects of CSpinp4Nq, Dpiq

2 are simple

1-endomorphisms of Dpiq
3 , and Dpiq

1 are simple 2-endomorphisms of Dpiq
2 . These fusion b on

these elements follows the Z2 ˆZ2 group law as in previous sections. The non-trivial part of
the action of Z2 is the exchange of DpSq

i and DpCq

i .
CSpinp4Nq descends to a 3-category CPin`p4Nq describing non-invertible symmetries in the

Pin`p4Nq super Yang-Mills theory. We can easily determine key data of CPin`p4Nq to be as
follows. The simple objects modulo condensations of CPin`p4Nq are

Cob
Pin`p4Nq

“

!

Dpidq

3 , DpSCq

3 , DpV q

3

)

, (248)

where
DpSCq

3 “

´

DpSq

3 ‘ DpCq

3

¯

CSpinp4Nq

, (249)

as an object of the 3-category CSpinp4Nq.
The fusion rules of these objects can be deduced to be

Dpidq

3 b DpV q

3 “ DpV q

3 ,

DpV q

3 b DpV q

3 “ Dpidq

3 ,

Dpidq

3 b DpSCq

3 “ DpSCq

3 ,

DpV q

3 b DpSCq

3 “ DpSCq

3 ,

DpSCq

3 b DpSCq

3 “
Dpidq

3

Apidq
‘

DpV q

3

ApV q
,

(250)

for some yet to be determined 2-algebras Apidq and ApV q.
The simple 1-endomorphisms of simple objects in Cob

Pin`p4Nq
are

C1-endo
Pin`p4Nq

“

!

Dpidq

2 , DpSCq

2 , DpV q

2

)

, (251)

57

https://scipost.org
https://scipost.org/SciPostPhys.14.1.007


SciPost Phys. 14, 007 (2023)

where each Dpiq
2 is the identity 1-endomorphism of Dpiq

3 .

The simple 2-endomorphisms of simple 1-endomorphisms Dpiq
2 of CPin`p4Nq are

C2-endo
Pin`p4Nq

“

!

Dpidq

1 , Dp´q

1 , DpSCq

1 , DpV q

1 , D
pV´q

1

)

, (252)

where Dpiq
2 has identity 2-endomorphism Dpiq

1 , and Dp´q

1 , D
pV´q

1 are non-identity

2-endomorphisms of Dpidq

2 , DpV q

2 respectively, arising due to dressings by Z2 Wilson lines.

The lines Dp´q

1 and D
pV´q

1 can end on the 3-surface DpSCq

3 leading to the conclusion that its
fusion rule with itself is

DpSCq

3 b DpSCq

3 “
Dpidq

3

Zp1q

2

‘
DpV q

3

Zp1q

2

, (253)

where
Dpiq

3

Zp1q

2

, (254)

for i P tid, Vu is a 3-dimensional topological defect obtained by gauging the Z2 1-form sym-

metry of the 3-dimensional defect Dpiq
3 . For Dpidq

3 the Z2 1-form symmetry is generated by

Dpidq

1 , Dp´q

1 , and for DpV q

3 the Z2 1-form symmetry is generated by DpV q

1 , D
pV´q

1 .
The other fusion rules are straightforward to determine.

7.2 Absolute 6d N “ p2, 0q SCFT of Type
“

SOp2nq ˆ SOp2nq
‰

¸Z2

Relative 6d N “ p2,0q SCFTs are known to be classified by simple A,D,E Lie algebras. Here
relative means that the theory contains mutually non-local defects if one tries to define them
as purely 6d theories. The locality is restored if one realizes the 6d theory as the boundary
condition of a non-invertible 7d TQFT. On the other hand, an absolute 6d theory is one that
can be defined as a purely 6d theory without encountering mutually non-local defects.

Consider 6d N “ p2,0q SCFT based on Lie algebra Dn, which we refer to as 6d N “ p2,0q

SCFT of type Spinp2nq, as it contains topological dimension-3 defects whose fusion is de-
scribed by the group law of the center of Spinp2nq. This is a relative theory, but can be made
absolute by choosing a topological boundary condition for the attached 7d TQFT. We refer to
the resulting absolute theory as 6d N “ p2, 0q SCFT of type SOp2nq, as it contains topological
dimension-3 defects whose fusion is described by the group law of the center of SOp2nq, which
is Z2. In other words, the 6d N “ p2, 0q SCFT of type SOp2nq contains a

Γ p2q “ Z2 (255)

2-form symmetry.
Now stack together two 6d N “ p2,0q SCFTs of SOp2nq type to obtain a 6d N “ p2,0q

SCFT of type SOp2nq ˆ SOp2nq which has a

Γ p2q “ Z2 ˆZ2 (256)

2-form symmetry. This theory also has a

Γ p0q “ Z2 (257)

0-form symmetry, which acts by exchanging the two SOp2nq theories. Thus, it acts on Γ p2q by
exchanging the two Z2 2-form symmetries. The category describing Γ2 is a 3-category which
is isomorphic to the 3-category CSpinp4nq we discussed in the previous subsection.
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Gauging the Z2 0-form symmetry, we are lead to a 6d N “ p2, 0q SCFT of type
“

SOp2nq ˆ SOp2nq
‰

¸Z2 , (258)

which has a non-invertible symmetry described by a 3-category descending from CSpinp4nq. This
is precisely the CPin`p4nq category we discussed in the previous subsection, but now CPin`p4nq

describes topological defects of a 6d theory.

8 Non-Invertibles and Fusion from Higher-Groups/Anomalies

8.1 Non-Invertibles from Higher-Groups via Gauging

In [17], a construction was presented that takes as an input a d-dimensional quantum field
theory T with a certain type of mixed anomaly, i.e. one that is linear in the background
field Ap`1 corresponding to a p-form global symmetry Γ ppq, and produces as an output a new
quantum field theory T1 which contains pd ´ p ´ 1q-dimensional non-invertible defects. The
descendent theory T1 is obtained by gauging some part of the symmetry structure of T that
is contained in the complement of Γ ppq and also appears manifestly in the anomaly action.
Crucially, the anomaly, by definition, poses an obstruction to gauging that is alleviated by
locally modifying the Γ ppq defect. In fact, the local modification is what causes the Γ ppq defect
to become non-invertible in T1.

Concretely, let the symmetry structure of T be a product of higher-form groups
GT “

śd´2
a“0 Γ

paq. Some of the factors Γ paq could be trivial.
It is more convenient to formulate everything in terms of background fields Aa`1 in terms

of which the anomaly action is given by

A “

ż

Nd`1

Ap`1 Y ξpAcp`1q , Acp`1 “
␣

Aa`1

(

a‰p , (259)

where

ξ P Hd´p
´

GT{Γ ppq, Γ ppq

dual

¯

, ξpAcp`1q P Hd´p
´

Nd`1, Γ ppq

dual

¯

, (260)

where Γ ppq

dual :“ hompΓ ppq,R{2πZq. Nd`1 is an auxiliary d ` 1-manifold, used to define the
anomaly in (259), whose boundary is the d-manifold where T lives. Since GT is a prod-
uct of higher groups, the quotient by Γ ppq should be understood more technically as taking
the quotient on the classifying space BG which is a Cartesian product of Ba`1Γ paq. We sup-
press such technicalities since they make the presentation heavy without adding much con-
tent. Let the defect corresponding to g P Γ ppq be denoted as Dg. If Dg is wrapped along a
pd ´ p ´ 1q-dimensional sub-manifold Σd´p´1 of Md , then we denote it as DgpΣd´p´1q. Due
to the anomaly, such a defect carries a non-trivial dependence on the background Acp`1 which

cannot be localized on Σd´p´1. Now consider gauging some subgroup of GT{Γ ppq on which ξ
depends. Doing so, we obtain a gauged theory T1 in which the defect Dg becomes ill-defined
due to an anomaly. More precisely, it has a dependence on dynamical fields that cannot be
localized on Σd´p´1. This situation can be remedied by a local modification to Dg, which in-
volves adding a topological field theory Xg with a GT{Γ ppq ’t-Hooft anomaly ξ. The defects in
the gauged theory correspondingly are modified as

Dg ÞÝÑ Ng “ DgXg . (261)
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Spinp4Nq

2-group
δB2 “ A1C2

SOp4Nq

mixed anomaly
A “ π

ş

5d A1C2B1
2

POp4Nq

non-invertibles

Pin`p4Nq

non-invertibles

Scp4Nq

non-invertibles

gauge B2 gauge A1 and B1
2

gauge A1
and C2

gauge B 1
2 and C

2

Figure 27: Overview of the theories with non-invertible symmetries that we can con-
struct from gauging the 2-group in the Spinp4Nq theory in 4d.

Notably any such theory T with anomaly (259) can, in turn, be obtained from a theory T0 with
a non-anomalous higher-group symmetry G, which sits in the short exact sequence

1 ÝÑ Bd´p´1Γ
ppq

dual ÝÑ BGÝÑ BGT{BΓ ppq ÝÑ 1 , (262)

with an extension class ξ. The symmetry structure of T is obtained from the symmetry struc-
ture of T0 by gauging Γ ppq

dual in T0. In summary, the non-invertibles discussed in [17] can be
obtained by starting from a higher group and gauging in two steps.

8.2 Non-Invertibles from 2-Groups in Pure 4d sop4Nq Yang-Mills

Let us consider pure Spinp4Nq gauge theory and for concreteness let us work in 4d. The theory

has a Γ p1q “ Zp1q,B
2 ˆ Zp1q,C

2 1-form symmetry and a Γ p0q “ Zp0q

2 outer-automorphism 0-form
symmetry. The two symmetries combine into a 2-group, which in terms of the background
gauge fields reads

δB2 “ A1C2 , (263)

where B2, C2 are the backgrounds for the two 1-form symmetry factors and A1 is the back-
ground for the 0-form symmetry.

This 2-group is equivalent to the Zp0q

2 outer-automorphism action exchanging two Zp1q

2
subgroups of the 1-form symmetry, as can be understood pictorially in the following way (see
figure 28). We denote the subgroups of Γ p1q which are exchanged by the Zp0q

2 action by Zp1q,S
2

and Zp1q,C
2 , while Zp1q,B

2 denotes the diagonal subgroup.6 In terms of symmetry defects, the

action is the following: if a topological surface defect DpCq

2 associated to Zp1q,C
2 crosses the

codimension-1 defect Dp´q

3 for Zp0q

2 , it emerges as the defect DpSq

2 associated to Zp1q,S
2 . Since,

following the Γ p1q group law, we have that DpSq

2 “ DpBq

2 b DpCq

2 , we can re-interpret the above

action in this way: upon passing DpCq

2 through a codimension-1 defect for Zp0q

2 , we create a

codimension-3 junction from which the defect DpBq

2 associated to theZp1q,B
2 subgroup is emitted.

The 2-group (263) states precisely this: at the junction of Dp´q

3 (on a 3-cycle Poincaré dual to

6Notice that this was denoted in the previous sections as Zp1q,V
2 .
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Dc.c.
3

DC
2 DS

2 DC
2

DB
2

Dc.c.
3

DC
2

Figure 28: Left: exchange action of Zp0q

2 on the 1-form symmetry defects DpSq

2 and

DpCq

2 . Right: equivalently, the 1-form symmetry defect DpBq

2 associated to the diagonal

subgroup is emitted at the junction of Dp´q

3 and DpCq

2 . This represents pictorially the
2-group δB2 “ A1C2.

A1) and DpCq

2 (on a 2-cycle Poincaré dual to C2), there is a flux for Zp1q,B
2 meaning that a

non-trivial background B2 is sourced.
We will show that by gauging various combination of the symmetries appearing in the

2-group (263) we can go to different theories that have non-invertible symmetries:

1. POp4Nq theory:
gauge B2, C2, A1: we obtain a codimension-2 non-invertible defect;

2. Pin`p4Nq theory:
gauge A1: we obtain a codimension-2 non-invertible defect;

3. Scp4Nq theory:
gauge C2: we obtain a codimension-1 non-invertible defect.

A way of deriving this result is to first gauge the Zp1q,B
2 subgroup of the 1-form symmetry

to go to SOp4Nq gauge theory by promoting B2 to a dynamical field b2 (see figure 27). The

SOp4Nq theory has an emergent dual 1-form symmetry Zp1q,B1

2 (in 4d), whose background we
denote by B1

2 and which couples as π
ş

M4
b2B1

2. Due to the relation (263), this coupling is
ill-defined, as it has a bulk dependency

A “ π

ż

M5

δb2B1
2 “ π

ż

M5

A1C2B1
2 . (264)

This results in a mixed ’t Hooft anomaly for the SOp4Nq theory. Using this map from 2-groups
to mixed ’t Hooft anomalies, the fusion rules can then by derived by following the approach
of [17], as we review in appendix B.

Before writing explicitly the fusion algebra in the theories mentioned above, we summarize
the non-invertible defects that we obtain

• N pM2; B1
2q: non-invertible defect in POp4Nq, corresponding to the codimension-2 defect

generating Zp1q,B1

2 ;

• N pM2; C2q: non-invertible defect in Pin`p4Nq, corresponding to the codimension-2 de-

fect generating Zp1q,C
2 ;

• N pM3; A1q: non-invertible defect in Scp4Nq, corresponding to the codimension-1 defect

generating Zp0q

2 .
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8.2.1 Fusion Rules: Pin`p4Nq

This can be obtained by gauging B1
2 and A1 in the SOp4Nq theory. Gauging Zp1q,B1

2 we recover
Spinp4Nq, and gauging A1 we obtain Pin`p4Nq. Therefore the overall effect of these gaugings
is to gauge charge conjugation in Spinp4Nq theory.

The fusion algebra that we find is

N pM2; C2q ˆN pM2; C2q “
1 ` TpM2q

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

LpM1q ,

N pM2; C2q ˆ TpM2q “ N pM2; C2q ,

N pM2; C2q ˆ LpM1q “ N pM2; C2q .

(265)

Here TpM2q “ eiπ
ű

M2
b1

2 is the defect generating the Zp1q,B
2 1-form symmetry and

LpM1q “ eiπ
ű

M1
a1 is the defect generating the Zp2q

2 2-form symmetry dual to Zp0q

2 .
This is precisely the theory which we studied in section 6.1 using the higher-categorical

approach. In particular
DpSCq

2 ÐÑ N pM2; C2q ,

DpV q

2 ÐÑ TpM2q ,

Dp´q

1 ÐÑ LpM1q ,

(266)

and the identification of the identity surface and lines with Dpidq

2 and Dpidq

1 , respectively. Note
that in (265) we use ˆ and not b as in section 6.1 to distinguish between the somewhat
“mixed" fusion algebra, between objects of various dimensions and the ‘proper’ fusion algebra,
in the higher category, that involves only objects and morphisms of the same dimension.

Notice also that the right hand side of the fusion N pM2; C2q ˆN pM2; C2q is precisely

Dpidq

2

Z2
pM2q ‘

DpV q

2

Z2
pM2q , (267)

as we found using our approach in section 6.1.
For the sake of clarity we provide the details for this theory now.

Gauging of B1
2 and A1. We gauge B1

2 and A1 and expect the codimension-two defect imple-

menting the Zp1q,C
2 symmetry, which we denote as DpM2q, to become non-invertible. Indeed,

in the presence of the anomaly (264), only the following combination is invariant under back-
ground gauge transformations of B1

2 and A1

DpM2qeiπ
ş

M3
A1B1

2 . (268)

This implies that when we gauge Zp1q,B1

2 and Zp0q

2 and promote B1
2 and A1 to dynamical fields

b1
2 and a1, we must couple DpM2q to an appropriate TQFT which absorbs the bulk dependency.

We conjecture that in this case the TQFT we need is simply a 2d BF coupling, and we define
the 2d defect (we will in following not include the background field in the labeling of N for
simplicity)

N pM2q9

ż

Dφ0Dγ1 DpM2, b1
2, a1q eiπ

ş

M2
´φ0δγ1`φ0 b1

2`γ1a1 , (269)

where φ0 P C0pM2,Z2q is a 0-form field and γ1 P C1pM2,Z2q is a 1-form field. The first term
in the exponential is the BF coupling, while the other two are couplings between the TQFT
fields and the bulk dynamical fields b1

2 and a1. Using the φ0 equation of motions δγ1 “ b1
2,

the variation of the exponential precisely gives b1
2a1.
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Fusion Algebra. We will now show that the defects N pM2q satisfy a fusion algebra, and are
non-invertible. First note that

N pM2q ˆN pM2q9

ż

Dφ0Dγ1Dφ̃0Dγ̃1eiπ
ş

M2
pφ0´φ̃0qb1

2`pγ1´γ̃1qa1´φ0δγ1`φ̃0δγ̃1 , (270)

where we used D2pM2q “ 1, since it satisfies the Z2 fusion rules. We can shift variables
φ0 ´ φ̃0 “ φ̂0 and γ1 ´ γ̃1 “ γ̂1 to obtain the expression

N pM2q ˆN pM2q9

ż

Dφ0Dγ1Dφ̂0Dγ̂1eiπ
ş

M2
φ̂0 b1

2`γ̂1a1´φ0δγ̂1´φ̂0δγ1`φ̂0δγ̂1 . (271)

Integrating out φ0 and γ1 in the above expression sets δγ̂1 “ δφ̂0 “ 0, so the term
ş

M2
φ̂0δγ̂1

is actually trivial. Then we are left with

N pM2q ˆN pM2q9

ż

Dφ̂0Dγ̂1eiπ
ş

M2
φ̂0 b1

2`γ̂1a1 . (272)

We can rewrite the above equation in discrete notation as

N pM2q ˆN pM2q9
ÿ

φ̂0PH0pM2,Z2q

eiπ
ş

M2
φ̂0 b1

2
ÿ

γ̂1PH1pM2,Z2q

eiπ
ş

M2
γ̂1a1 , (273)

which using
ş

M2
γ̂1a1 “

ű

M1
a1, where M1 P H1pM2,Z2q is the Poincaré dual of γ̂1, reads

N pM2q ˆN pM2q9p1 ` eiπ
ű

M2
b1

2q
ÿ

M1PH1pM2,Z2q

eiπ
ű

M1
a1 . (274)

Here eiπ
ű

M2
b1

2 “ TpM2q is the codimension-2 defect generating the 1-form symmetry dual to

Zp1q,B1

2 and eiπ
ű

M1
a1 “ LpM1q is the codimension-3 defect generating the 2-form symmetry dual

to Zp0q

2 . Hence we see that

N pM2q ˆN pM2q “
1 ` TpM2q

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

LpM1q , (275)

and so N pM2q is a non-invertible defect. The normalization can be fixed with considerations
similars to those in [17].

We can compute also the fusion rules of N pM2q with the other operators in the theory.
First we compute the fusion rule between N pM2q and the surface operator W pM2q. This is
given by

N pM2q ˆ TpM2q “

ż

Dφ0Dγ1 DpM2, b1
2, a1qeiπ

ş

M2
´φ0δγ1`φ0 b1

2`γ1a1`iπ
ű

M2
b1

2 “ N pM2q .

(276)

The fusion rule between N pM2q and LpM1q is instead given by

N pM2q ˆ LpM1q “

ż

Dφ0Dγ1 eiπ
ş

M2
´φ0δγ1`φ0 b1

2`γ1a1`
ű

M1
a1

“

ż

Dφ0Dγ1 eiπ
ş

M2
´φ0δγ1`φ0 b1

2`γ1a1`
ş

M2
l1a1

“

ż

Dφ0Dγ1 eiπ
ş

M2
´φ0δγ1`φ0 b1

2`pγ1`l1qa1 “ N pM2q , (277)

where l1 P H1pM2,Z2q is the Poincaré dual of M1 P H1pM2,Z2q. In the last line we are free to
shift γ1 Ñ γ1 ` l1. The first term in the exponential does not give an additional contribution
since δl1 “ 0. Hence we recover exactly N pM2q.
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8.2.2 Fusion Rules: POp4Nq

The fusion algebra is computed similarly, see also appendix B, and is given by

N pM2; B1
2q ˆN pM2; B1

2q “
1 ` W pM2q

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

LpM1q ,

N pM2; B1
2q ˆ W pM2q “ N pM2; B1

2q ,

N pM2; B1
2q ˆ LpM1q “ N pM2; B1

2q .

(278)

Here LpM1q “ eiπ
ű

M1
a1 is the defect for the Zp2q

2 2-form symmetry dual to Zp0q

2 and

W pM2q “ eiπ
ű

M2
c2 is the defect for the 1-form symmetry Zp1q

2 dual to Zp1q,C
2 .

8.2.3 Fusion Rules: Scp4Nq

The fusion algebra is determined in appendix B and is

N pM3; A1q ˆN pM3; A1q “
1

|H0pM3,Z2q|2

ÿ

M2,M 1
2PH2pM3,Z2q

W pM2qV pM 1
2q ,

N pM3; A1q ˆ V pM 1
2q “ N pM3; A1q ,

N pM3; A1q ˆ W pM2q “ N pM3; A1q ,

(279)

where W pM2q and V pM 1
2q are the codimension-two operators generating the one-form sym-

metries dual to Zp1q,C
2 ˆZp1q,B1

2 .

8.3 Non-Invertibles from 2-Groups in Pure 4d sop4N ` 2q Yang-Mills

The 4d Spinp4N `2q pure gauge theory has a Zp0q

2 charge conjugation 0-form symmetry, while

the 1-form symmetry is Zp1q

4 . They form a 2-group [60]

δB2 “ BockpC2q ` A1C2 , (280)

where A1 is the background for the 0-form symmetry, and B2, C2 are backgrounds for the two
Z2 factors in the 1-form symmetry, which form an extension to Zp1q

4

1 Ñ Z2 Ñ Z4 Ñ Z2 Ñ 1 . (281)

The Bock is the Bockstein homomorphism for this extension sequence.
By gauging various combination of the symmetries of Spinp4N ` 2q we can go to different

theories with non-invertibles

1. POp4N ` 2q:
gauge B2, A1, C2: we obtain codimension-2 non-invertible defect;

2. Pin`p4N ` 2q:
gauge A1: we obtain a codimension-2 non-invertible defect.

The non-invertible defects that we obtain are

• N pM2; B1
2q: non-invertible defect in the POp4N ` 2q theory, corresponding to the

codimension-2 defect for the Zp1q

2 symmetry dual to Zp1q,B
2 ;

• N pM2; C2q: non-invertible defect in the Pin`p4N ` 2q theory, corresponding to the

codimension-2 defect for the Zp1q,C
2 symmetry.
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8.3.1 Fusion Rules for Pin`p4N ` 2q

The fusion algebra that we find in appendix is B.2

N pM2; C2q ˆN pM2; C2q “
1 ` TpM2q

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

eiπQpM1q LpM1q ,

N pM2; C2q ˆ TpM2q “ N pM2; C2q ,

N pM2; C2q ˆ LpM1q “ eiπQpM1qN pM2; C2q .

(282)

Here we defined QpM1q “
ű

M2
Bockpε1q “

ű

M2
ε1 Y ε1, where ε1 is the Poincaré dual of M1.

This additional phase is non-trivial only on non-orientable manifolds. LpM1q “ eiπ
ű

M1
a1 is the

defect for the Zp2q

2 2-form symmetry dual to Zp0q

2 and TpM2q “ eiπ
ű

b1
2 is the defect for the

1-form symmetry Zp1q,B
2 .

8.3.2 Fusion Rules for POp4N ` 2q

The fusion algebra is given by

N pM2; B1
2q ˆN pM2; B1

2q “
1 ` W pM2q

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

eiπQpM1q LpM1q ,

N pM2; B1
2q ˆ W pM2q “ N pM2; B1

2q ,

N pM2; B1
2q ˆ LpM1q “ eiπQpM1qN pM2; B1

2q .

(283)

Here we defined QpM1q and LpM1q as above. W pM2q “ eiπ
ű

M2
c2 is the defect implementing

the 1-form symmetry dual to Zp1q,C
2 .

8.4 Extension to sop4Nq Yang-Mills Theories in any Dimension

The construction of non-invertible symmetries in the Spin pure gauge theories can be straight-
forwardly extended to generic dimension dimension d. Let us consider the Spinp4Nq case for

concreteness. The theory has Zp1q

2 ˆ Zp1q

2 1-form symmetry, Zp0q

2 outer automorphism, and 2-

group δB2 “ A1C2. We now gauge the Zp1q

2 1-form symmetry with background B2 as we did
above. The new coupling π

ş

Md
B2Bd´2 has a bulk dependency

A “ π

ż

Md`1

A1C2Bd´2 . (284)

Here Bd´2 is the background for the Zpd´3q

2 pd ´ 3q-form symmetry dual to Zp1q

2 . Now the
discussion is completely analogous to the one in 4d. We list the possibilities for non-invertible
symmetries.

Pin`p4Nq. Gauge A1 and Bd´2 first. In this case the codimension-2 defect generating Zp1q

2
becomes non-invertible. These satisfy the fusion algebra

N pMd´2q ˆN pMd´2q

“
|Hd´5pMd´2,Z2q| . . .

|Hd´4pMd´2,Z2q| . . .
p1 ` e

iπ
ű

Md´2
bd´2

q
ÿ

M1PH1pMd´2,Z2q

eiπ
ű

M1
a1 .

(285)
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POp4Nq. Consider the gauging of A1 and C2. In this case the defect generating Zpd´3q

2 be-
comes non-invertible (notice it has dimension 2). We have the fusion

N pM2q ˆN pM2q

“
1 ` eiπ

ű

M2
c2

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

eiπ
ű

M1
a1 .

(286)

Scp4Nq. Finally, consider gauging C2 and Bd´2. In this case the codimension-1 defect imple-

menting Zp0q

2 becomes non-invertible. We find the fusion rules

N pMd´1q ˆN pMd´1q

“
1

|H0pMd´1,Z2q|

|Hd´5pMd´1,Z2q| . . .

|Hd´4pMd´1,Z2q| . . .

ÿ

M2PH2pMd´1,Z2q

Md´2PHd´2pMd´1,Z2q

eiπ
ű

M2
c2 e

iπ
ű

Md´2
bd´2 . (287)

8.5 Non-Invertibles from 2-Groups in Pure 4d Op2q Theory

Complementing the higher-category gauging analysis in section 6.3 we provide a derivation
of the fusion of topological defects in the 4d Op2q gauge theory using the mixed anomaly
approach.

Recall that the Op2q gauge theory can be obtained by Up1q gauge theory by gauging Zp0q

2
charge conjugation. Up1q gauge theory also has a Up1q electric 1-form symmetry generated by
Gukov-Witten operators. To our knowledge, the approach of [17] allows us only to consider a
Z4 Ă Up1q of the 1-form symmetry, so it is more limited than the higher-categorical approach
we used in section 6.3 to study non-invertible symmetries in the same theory.

In particular, we start by considering a discrete Zp1q

4 subgroup of the 1-form symmetry. The
analysis is very similar to the one for the Spinp4N ` 2q theory. Namely, we have a 2-group

δB2 “ BockpC2q ` C2A1 , (288)

where B2 and C2 are backgrounds for two Zp1q

2 symmetries inside Zp1q

4 , while A1 is the back-
ground for charge-conjugation. If we now gauge B2, we obtain theory with a mixed anomaly

A “ π

ż

M5

B1
2BockpC2q ` B1

2C2A1 , (289)

where B1
2 is the background for the dual Zp1q

2 1-form symmetry. At this point we want to

gauge B1
2 and A1 to make the codimension-2 defect implementing the Zp1q

2 1-form symmetry
associated to C2 non-invertible. Notice that the net effect of this series of gaugings is to gauge
A1, i.e. charge conjugation, in the Up1q gauge theory, hence we expect to recover a subset of
the non-invertible defects of the Op2q gauge theory.

Using the result for the Spinp4N ` 2q theory, we obtain a non-invertible defect N pM2q

which has fusion

N pM2q ˆN pM2q “
1 ` TpM2q

|H0pM2,Z2q|

ÿ

M1PH1pM2,Z2q

eiπQpM1q LpM1q . (290)

Here LpM1q is the topological invertible line operator implementing the dual symmetry Zp2q

2 ,

while TpM2q is the codimension-2 topological invertible operator generating the Zp1q,B
2 1-form
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symmetry. We also defined QpM1q “
ű

M2
Bockpε1q “

ű

M2
ε1 Yε1, where ε1 is the Poincaré dual

of M1. This additional phase is non-trivial only on non-orientable manifolds.
This is a special case of the fusion algebra of section 6.3 for the case of θ “

1
4 with the

identifications
Sp1{4q

2 ÐÑ N pM2q ,

Dp1{2q

2 ÐÑ TpM2q ,

Dp´q

1 ÐÑ , LpM1q .

(291)

8.6 Non-Invertibles from Higher-Groups: 6d and 5d Theories

In this section we explore non-invertible symmetries appearing in 6d and 5d theories from
the higher-group approach. This complements the analysis in section 7, where we used the
higher-category gauging.

To apply the higher-group approach, we need to however restrict here to an absolute the-
ory (e.g. pick a polarization on the defect group of 1-/2-form symmetries in 5d). In particular,
we will find examples of non-invertibles in 6d p2,0q absolute SCFTs and in 5d KK theories ob-
tained as circle compactifications of 6d p1,0q SCFTs. 6d p2,0q SCFTs are an example of relative
theories [61,62], in the sense that they have defects – in this case 2d surfaces – which are mu-
tually non-local, meaning that there is phase ambiguity in defining the correlation function of
two such defects. This implies that the theory is not well defined on its own, but rather must
be thought as living at the boundary of a 7d TQFT. For 6d p2,0q SCFTs specified by an ADE
algebra g, the defect group D [63] is simply given by the center of the simply connected group
rG with Lie algebra g

D “ Z
rG . (292)

Given a relative theory, one can obtain an absolute theory by choosing subgroup a L Ď D
of the defect group corresponding to picking a subset of mutually local surface operators.
This is often referred to as a choice of polarization. 6d p2, 0q absolute theories were classi-
fied (upto two simple factors) in [64]. The data entering this classification are a Lie algebra
g “ g1 ‘ g2 ‘ ... ‘ gr , where each summand is of ADE type, and the aforementioned choice of
polarization.

In particular, we will consider the theories

pA15,Z4q , pDn ‘ Dn,Z2 ˆZ2q , (293)

where the first entry denotes the choice of algebra and the second one the choice of L. L gives
the 2-form symmetry group of the theory.

We will then consider example of non-invertibles in 5d theories obtained by circle compact-
ification from 6d SCFTs. We pick 5d absolute KK theories with a 1-form symmetry group inher-
ited from 6d, both from the defect group and the 1-form symmetry itself of the 6d SCFT [65].
In particular, we will look at non-Higgsable clusters (NHCs), which are building blocks for 6d
N “ p1,0q SCFTs with non-trivial defect group. The single node NHC consists of a single curve
with negative self-intersection number ´n with non-Higgsable gauge algebra g. We will look
in particular at two examples, namely sup3q on a ´3 curve, which has defect group Z3, and
sop8q on a ´4 curve, which has defect group Z4. Upon compactification to 5d, we can pick an
absolute 5d KK theory whose 1-form symmetry is given by [65]

Γ
p1q

5d “ D ‘ Z
rG , (294)

where D is the 6d defect group and ZG̃ is the center of the simply connected group with algebra
g.

67

https://scipost.org
https://scipost.org/SciPostPhys.14.1.007


SciPost Phys. 14, 007 (2023)

8.6.1 6d p2, 0q Theories of Type pDn ‘ Dnq

We first consider the 6d p2,0q absolute theory of type pDn ‘ Dnq. This case was also studied

from the higher gauging in section 7. This theory has a 2-form symmetry Zp2q,C
2 ˆ Zp2q,B

2 and

a Zp0q

2 outer-automorphism 0-form symmetry symmetry which exchanges the two Dn copies,
and hence the two 2-form symmetries. Let us denote the background gauge fields for the 2-
form symmetry by B3, C3 and by A1 the background gauge field for the 0-form symmetry. The
symmetries form a non-trivial 3-group which reads

δB3 “ A1C3 . (295)

Now we gauge the Zp2q,B
2 subgroup of the 2-form symmetry. We gain a dual 2-form symmetry

Zp2q,B1

2 whose background we denote by B1
3. Due to the 3-group structure (295), we obtain a

mixed anomaly

A “ π

ż

M7

A1C3B1
3 . (296)

Very similarly to the 4d Spinp4Nq case, we can now gauge various combinations of symmetries
appearing in (296) and obtain theories with non-invertible symmetries.

Gauge C3 and B1
3. After gauging the Zp2q,C

2 the codimension-1 defect generating the 0-form
symmetry becomes non-invertible. We denote the non-invertible defect by N pM5; A1q. The
fusion of two defects can be computed as in appendix B and gives

N pM5; A1q ˆN pM5; A1q “
|H0pM5,Z2q|2

|H1pM5,Z2q|2

ÿ

M3,N3PH3pM5,Z2q

TpM3qW pN3q ,

N pM5; A1q ˆ TpM3q “ N pM5; A1q ,

N pM5; A1q ˆ W pM3q “ N pM5; A1q .

(297)

Here TpM3q “ eiπ
ű

M3
b1

3 is the defect for Z2 and W pN3q “ eiπ
ű

N3
c3 is the defect generating the

2-form symmetry dual to Zp2q,C
2 .

Gauge A1 and C3. We can also gauge A1 and C3, effetively gauging the full 3-group. In

this case what becomes non-invertible is the defect for the symmetry Zp2q,B1

2 . We denote the
non-invertible defect by N pM3; B1

3q.
The fusion rules are given by

N pM3; B1
3q ˆN pM3; B1

3q “
|H0pM3,Z2q|

|H1pM3,Z2q|
p1 ` W pM3qq

ÿ

M1PH1pM3,Z2q

LpM1q ,

N pM3; B1
3q ˆ W pM3q “ N pM3; B1

3q ,

N pM3; B1
3q ˆ LpM1q “ N pM3; B1

3q ,

(298)

where LpM1q “ eiπ
ű

M1
a1 is the defect for the 4-form symmetry dual to Zp0q

2 , while W pM3q is
defined as above.

Gauge A1 and B1
3. We can also gauge A1 and B1

3, effetively gauging only charge conjugation
in the original theory. In this case what becomes non-invertible is the defect for the symmetry
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Zp2q,C
2 . We denote the non-invertible defect by N pM3; C3q. The fusion rules are given by

N pM3; C3q ˆN pM3; C3q “
|H0pM3,Z2q|

|H1pM3,Z2q|
p1 ` TpM3qq

ÿ

M1PH1pM3,Z2q

LpM1q ,

N pM3; C3q ˆ TpM3q “ N pM3; C3q ,

N pM3; C3q ˆ LpM1q “ N pM3; C3q ,

(299)

where LpM1q and TpM3q are defined as above.

8.6.2 6d p2, 0q of Type An2´1 For n “ 4

Consider the An2´1 theory for n “ 4. Here we have a Zp2q

4 2-form symmetry and the Zp0q

2 outer-

automorphism acts on it by sending a generator of Zp2q

4 to its inverse. In terms of background
fields, we have a 3-group of the form

δB3 “ BockpC3q ` A1 Y C3 , (300)

The discussion here is very similar to the one for Spinp4N `2q YM. We write down explicitly
only the case where we gauge the full 3-group. The defect that becomes non-invertible is the

one implementing the 2-form symmetry Zp2q,B1

2 dual to Zp2q,B
2 . Denote this defect by N pM3; B1

3q.
The fusion rules are derived in a similar fashion to the 4d examples, and we find

N pM3; B1
3q ˆN pM3; B1

3q “
|H0pM3,Z2q|

|H1pM3,Z2q|
p1 ` W pM3qq

ÿ

M1PH1pM3,Z2q

eiπQpM1q LpM1q ,

N pM3; B1
3q ˆ W pM3q “ N pM3; B1

3q ,

N pM3; B1
3q ˆ LpM1q “ eiπQpM1qN pM3; B1

3q ,

(301)

where LpM1q “ eiπ
ű

M1
a1 is the defect for the 4-form symmetry dual to Zp0q

2 , while

W pM3q “ eiπ
ű

M3
c3 is the defect for the 2-form symmetry dual to Zp2q,C

2 . We also defined
QpM1q “

ş

M3
Bockpγ2q, where γ2 P H2pM3,Z2q is the Poincaré dual of M1 in M3.

8.7 5d Theories

There are several theories in 5d that have anomalies that are amenable to being gauged and
result in non-invertible symmetries. We focus on 5d KK-theories, which are obtained from 6d
SCFTs, by compactifications on S1. The theories in 6d have 2-form symmetries and 1-form
symmetries [65, 66], which descend in 5d to 1-form symmetries (for a particular choice of
polarization) by (294).7 We will focus on two examples: the non-Higgsable clusters, which
correspond to an sup3q (sop8q) singularity tuned over a ´3 (´4) self-intersection curve in
F-theory.

8.7.1 sup3q on a ´3 curve

This theory has a Zp1q

3 ˆZp1q

3 1-form symmetry. We denote the backgrounds for the two factors
by B2 and C2 respectively. The two symmetries have a mixed anomaly [67,69,70]

A “
2π
3

ż

M6

C2 Y B2 Y B2 . (302)

7As shown in [67], the 1-form symmetries that we will gauge, do not have a B3 type anomaly [64, 68], which
would obstruct gauging these symmetries.
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Since we have a theory with a mixed anomaly, we can gauge part of the symmetries involved
to obtain non-invertible defects.

Note however that gauging the Zp1q

3 associated to C2 does not give a non-invertible defect,
but rather results in a higher-group symmetry. Indeed, consider the partition function of the
theory with C2 gauged:

pZrM5; C3, B2s “

ż

Dc2 ZrM5; c2, B2s e
2πi
3

ş

M6
c2YB2YB2 e

2πi
3

ş

M5
c2YC3

“

ż

Dc2 ZrM5; c2, B2s e
2πi
3

ş

M6
c2YB2YB2 e

2πi
3

ş

M6
c2YδC3 , (303)

where C3 is the background for the dual 2-form symmetry Zp2q

3 . The bulk dependency is re-
absorbed simply by setting δC3 “ B2 Y B2, which results in a higher-group structure between
the dual 2-form symmetry and the residual 1-form symmetry in the gauged theory.
Then to construct non-invertibles we consider the case in which we gauge B2 and make the
defect associated to C2 non-invertible. We denote it by DpnqpM3q, with n “ 0,1, 2. Due to the
mixed anomaly, we must consider the dressed defect

DpnqpM3q e
2πin

3

ş

M4
B2YB2 . (304)

Now consider gauging B2 by making it a dynamical field by b2.
To make DpnqpM3q well defined we must couple it with a TQFT which cancels the anomaly

2πin
3

ż

M4

b2 Y b2 “
4πin

3

ż

M4

Ppb2q

2
, (305)

where Ppb2q is the Pontryagin square of b2. It was shown in [71] that there is a notion of
minimal TQFT with such an anomaly. In particular, we have

AN ,p ÐÑ minimal TQFT living at the boundary of 2π
p
N

ż

M4

PpB2q

2
. (306)

Thus we define

Np1qpM3q “ Dp1qpM3qA3,´2pM3, b2q “ Dp1qpM3qA3,1pM3, b2q ,

Np2qpM3q “ Dp2qpM3qA3,´4pM3, b2q “ Dp1qpM3qA3,2pM3, b2q , (307)

where we used A3,´2 – A3,1 since p is defined mod N for AN ,p a spin TQFT.
To compute fusions between NpnqpM3q and its orientation reversal N pnqpM3q, we can use

the following duality derived in [71]

AN ,p bAN ,´p ÐÑ pZN q´pN whengcdpN , pq “ 1 . (308)

Here pZN q´pN is the ZN DW discrete gauge theory, which can be described by the continuum
action

ż

´
pN
4π

xd x `
N
2π

xd y , (309)

with x and y Up1q gauge fields.
For example, we can compute the fusion between Np1q and its orientation reversal N p1q. This
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is given by

N p1qpM3q ˆNp1qpM3q “ A3,´1pM3, b2q ˆA3,1pM3, b2q “ pZ3q´3pM3, b2q

“

ż

Dx1D y1 ei
ş

M3
´

3
4π x1d x1`

3
2π x1d y1`i

ş

M3
x1 b2

“
ÿ

x̃1PH1pM3,Z3q

e´iπ
ş

M3
x̃1Bockp x̃1qe

2πi
3

ş

M3
x̃1 b2

“
ÿ

M2PH2pM3,Z3q

eiπQpM2qe
2πi
3

ű

M2
b2 ,

(310)

where x1 “
2π
3 x̃1 with x̃1 P H1pM3,Z3q a discrete gauge field, M2 is the Poincaré dual of x̃1 in

M3 and QpM2q “
ş

M3
x̃1Bockp x̃1q. In summary we obtain

N p1qpM3q ˆNp1qpM3q “
1

|H0pM3,Z3q|

ÿ

M2PH2pM3,Z3q

eiπQpM2qWp1qpM2q , (311)

where Wp1qpM2q “ e
2πi
3

ű

M2
b2 generates the dual Zp2q

3 2-form symmetry.

8.7.2 sop8q on a ´4 curve

This theory has a Zp1q

4 1-form symmetry, whose background we denote by C2, and a Zp1q

2 ˆZp1q

2

1-form symmetry, whose backgrounds we denote by Bp1q

2 and Bp2q

2 respectively for the two
factors. The theory has a mixed anomaly given by [67,70]

A “ π

ż

M6

C2 Y Bp1q

2 Y Bp2q

2 . (312)

We denote by DpnqpM3q the defect implementing theZp1q

4 symmetry, where n “ 0,1, 2,3. Due to
the mixed anomaly, we can make it gauge invariant under background gauge transformations
of Bp1q

2 and Bp2q

2 by considering the combination

DpnqpM3qeπin
ş

M4
Bp1q

2 YBp2q

2 . (313)

Note in particular that the defect Dp2qpM3q does not have an anomaly, so that Dp0qpM3q and

Dp2qpM3q generate an anomaly free Zp1q

2 subgroup. Upon gauging Zp1q

2 ˆZp1q

2 , the defects Dp1q

and Dp3q become non-invertible. We denote by Np1q,p3q the respective non-invertible defects.
The fusions are given by

Np1qpM3q ˆNp3qpM3q “
1

|H0pM3,Z3q|2

ÿ

Mp1q

2 ,Mp2q

2 PH2pM3,Z2q

V p1qpM p1q

2 q V p2qpM p2q

2 q ,

Np1qpM3q ˆ Dp2qpM3q “ Np3qpM3q ,

Np3qpM3q ˆ Dp2qpM3q “ Np1qpM3q . (314)

Here V p1q,p2qpM p1q,p2q

2 q are the defects for each Z2 subgroup of the 2-form symmetry dual to

Zp1q

2 ˆZp1q

2 .
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9 Outlook

We have provided an operational definition of higher-categorical symmetries in higher dimen-
sions. It would be important to put this proposal on firm mathematical foundations, developing
the theory of higher-categories, connecting it to the mathematical literature, and determining
similarly stringent constraints as they are known in three and lower dimensions. We pass the
sniff-test in that the proposal agrees in 3d with the known theory in [30,31]. A crucial consis-
tency requirement, which needs to be fully integrated into this formalism are constraints such
as hexagon identities.

There are numerous ways to extend the work in this paper. The most obvious extension is
to gauging higher-form symmetries in higher-categories. Deriving the fusion after higher-form
symmetry gauging can furthermore in some instances be compared with the approach using
mixed anomalies or higher groups discussed in section 8.

Most of our examples have been non-supersymmetric gauge theories in various dimen-
sions. Clearly there are numerous supersymmetric ones – we have given examples of 5d and 6d
theories, but of course likewise 4d SCFTs will be equally amenable to our approach. Exploring
higher-categorical symmetries in geometric engineering will be another important milestone,
as it will open up studies both of strongly-coupled supersymmetric QFTs, but also will play a
role in the context of the swampland program (concretely, the no global symmetry conjecture).
Understanding the action of twist operators on the string theoretic topological operators that
generate the higher-form symmetries (see [65, 72–74]) will be crucial in implementing this
construction in string theory.

The approach in section 8 as well as the closely-related [17], on the other hand starts with
a higher-group symmetry or mixed anomaly for discrete symmetries. We have given examples
of 5d and 6d theories with such structures, but multitude of examples can be constructed using
the recent advances in geometric engineering of such discrete higher-group symmetries.

Finally it would be interesting to make contact with the mathematics literature on higher-
category theory, such as the works [27,75].
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A Further Examples

In this appendix we provide further examples of symmetry categories for 3d and 4d QFTs.

A.1 Pure Pin`p4N ` 2q Gauge Theory in 3d

Let us now consider analogous construction of pure Pin`p4N `2q Yang-Mills theory by gauging
outer-automorphism 0-form symmetry of pure Spinp4N`2q Yang-Mills theory. Before gauging,
we have a 1-form symmetry group coming from the center of Spinp4N ` 2q

Γ p1q “ Z4 , (315)
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and the outer-automorphism of sop4N ` 2q gives rise to a 0-form symmetry group

Γ p0q “ Z2 , (316)

which acts on Γ p1q “ Z4 by interchanging the generator of Z4 with the inverse of the generator,
and leaving invariant the Z2 subgroup of Z4.

The category CSpinp4N`2q for Spinp4N ` 2q theory has objects

Cob
Spinp4N`2q

“

!

Dpidq

1 , DpSq

1 , DpV q

1 , DpCq

1

)

, (317)

with DpSq

1 corresponding to the generator of Z4, DpCq

1 corresponding to the inverse of the gener-

ator, Dpidq

1 corresponding to the identity element ofZ4, and DpV q

1 corresponding to the generator
of the Z2 subgroup of Z4. The fusion of objects follows the group law of Z4.

Now we gauge Z2 to obtain a category CPin`p4N`2q describing topological line defects and
local operators of the Pin`p4N ` 2q theory. A subset of simple objects of CPin`p4N`2q arise as

objects of CSpinp4N`2q left invariant by the Z2 outer automorphism action. These are Dpidq

1 , DpV q

1
and

DpSCq

1 :“
´

DpSq

1 ‘ DpCq

1

¯

CSpin

, (318)

where the subscript CSpinp4N`2q on the RHS reflects that the object DpSCq

1 is decomposed as this
direct sum only in the category CSpinp4N`2q, but it is a simple object in the category CPin`p4N`2q.

Other simple objects of CPin`p4N`2q are obtained by dressing with Wilson line defects. Note

that the stabilizer for Dpidq

1 , DpV q

1 is the whole 0-form symmetry group Z2, while the stabilizer

for DpSCq

1 is trivial. Thus, we obtain new simple objects of CPin`p4N`2q by dressing Dpidq

1 , DpV q

1

with the non-trivial irrep of Z2. We call the resulting simple objects as Dp´q

1 , D
pV´q

1 respectively.
Thus, the full set of simple objects of CPin`p4N`2q is

Cob
Pin`p4Nq

“

!

Dpidq

1 , Dp´q

1 , DpSCq

1 , DpV q

1 , D
pV´q

1

)

. (319)

Note that, at the level of objects, the category for Pin`p4N `2q is the same as that for Pin`p4Nq

discussed in the previous subsection. In fact, the reader can imitate the arguments of previous
subsection and find that fusion rules of the objects are also exactly the same for Pin`p4N ` 2q

and Pin`p4Nq.
Thus the category for the Pin`p4N `2q theory is also a Tambara-Yamagami category based

on Z2 ˆZ2. Is it the same as the category for the Pin`p4Nq theory? It turns out, by computing
the associators, that the answer is yes. That is, the category for the Pin`p4N ` 2q theory is
also

CPin`p4N`2q “ ReppD8q . (320)

This can again be understood by constructing Pin`p4N ` 2q theory as a gauging of the pure
PSOp4N ` 2q theory in 3d. The latter theory is obtained by gauging the Z4 1-form symmetry
of the Spinp4N ` 2q theory, leading to a dual Z4 0-form symmetry in the PSOp4N ` 2q theory.
The outer-automorphism acts by interchanging generators of Z4, so the full 0-form symmetry
of PSOp4N ` 2q theory is

Γ p0q “ Z4 ¸Z2 . (321)

It can be easily seen that this group is isomorphic to D8, that is we have

Γ p0q “ D8 . (322)
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On the other hand, the PSOp4N ` 2q theory has trivial 1-form symmetry. The Pin`p4N ` 2q

theory is obtained by gauging the D8 symmetry of the PSOp4N ` 2q theory, which creates
Wilson line defects for D8, thus implying that

CPin`p4N`2q “ ReppD8q (323)

is the category of symmetries for the Pin`p4N ` 2q theory.

A.2 Pure ĂSUpNq Gauge Theory in 4d

Another example of disconnected gauge theory with a non-invertible symmetry is the ĂSUpNq

gauge theory. Here the group ČSUpNq is the so-called principal extension of SUpNq (see [76] for
some field theoretic discussions). This is obtained by taking the semi-direct product of SUpNq

with the Z2 outer-automorphism of its Dynkin diagram. Recall that the outer-automorphism
of the supNq Dynkin diagram acts by flipping the order of its nodes, which corresponds to
exchanging the fundamental and anti-fundamental representation of SUpNq. In this sense,
we can also identify this Z2 with charge conjugation, and interpret ĂSUpNq as SUpNq with
charge conjugation gauged.

The construction of non-invertible defects is very closely related to the construction for
Op2q in section 6.3. SUpNq Yang-Mills theory has the following symmetries

Γ p1q “ ZN , Γ p0q “ Z2 . (324)

The 1-form symmetry is described by a 2-category CSUpNq which can be recognized as a sub-
category of the the 2-category CUp1q with θ P ZN Ď R{Z.

Consequently, the descending 2-category C
ĂSUpNq

describing non-invertible symmetries in

the ĂSUpNq theory is described as a subcategory of COp2q whose simple objects modulo conden-
sations

Cob
ĂSUpNq

“

!

Dp0q

2 , Spθq

2

)

, (325)

for N odd and with θ constrained to lie in the set

tθ P ZN Ď R{Zu X t0 ă θ ă 1{2u . (326)

Similarly the simple objects modulo condensations for N even are

Cob
ĂSUpNq

“

!

Dp0q

2 , Dp1{2q

2 , Spθq

2

)

, (327)

with θ constrained to lie in the set (326). The fusion rules follow from the fusion rules for
Op2q.

The simple 1-endomorphisms of simple objects modulo condensations are

C1-endo
ĂSUpNq

“

!

Dp0q

1 , Dp´q

1 , Lpθq

1

)

, (328)

for N odd and with θ constrained to lie in the set (326), and

C1-endo
ĂSUpNq

“

!

Dp0q

1 , Dp´q

1 , Dp1{2q

1 , Dp1{2,´q

1 , Lpθq

1

)

, (329)

for N even and with θ constrained to lie in the set (326). The fusion rules follow from the
fusion rules for Op2q.
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A.3 A
“

Spinp4Nq ˆ Spinp4Nq
‰

¸ D8 Gauge Theory with Matter in 4d

Consider a 4d gauge theory with Spinp4Nq ˆ Spinp4Nq gauge group with a scalar field in the
bi-vector representation p4N,4Nq. The center symmetries Z4

2 are broken to

Γ p1q “ Z3
2 , (330)

by the matter field. If no masses and potentials are introduced, then there is furthermore a
0-form symmetry group

Γ p0q “ D8 “ Z4 ¸Z2 “ pZ2 ˆZ2q ¸Z2 , (331)

given by the dihedral group D8 of order 8, which is the group of outer automorphisms of the
sop4Nq ‘sop4Nq gauge algebra. The group of outer automorphisms is computed as the group
of symmetries of the Dynkin diagram of sop4Nq‘sop4Nq. Exchanging the spinor and cospinor
nodes for each sop4Nq subfactor gives rise to the Z2 ˆZ2 subgroup of D8 in its presentation as

D8 “ pZ2 ˆZ2q ¸Z2 . (332)

The other Z2 comes from the exchange of the two sop4Nq Dynkin diagrams, which acts on
Z2 ˆZ2 non-trivially. Thus the full group structure is non-abelian and given by the D8 group.
As the bivector representation is left invariant by eachZ2, the D8 outer automorphism descends
to a 0-form symmetry of the Spinp4Nq ˆ Spinp4Nq gauge theory under consideration.

The elements of Γ p1q are

Γ p1q “ tpididq, pidV q, pV idq, pV V q, pSSq, pSCq, pCSq, pCCqu , (333)

with group structure
pi jq ˆ pklq “ pmnq , (334)

where m and n are obtained as follows

m “ ik ,

n “ jl ,
(335)

using the group structure of
Z2 ˆZ2 “ tid, S, C , Vu (336)

discussed earlier.
The Z4 subgroup of D8 in its presentation

D8 “ Z4 ¸Z2 (337)

acts on Γ p1q as
Zp0q

4 : pSSq Ñ pCSq Ñ pCCq Ñ pSCq Ñ pSSq ,

pidV q Ø pV idq ,
(338)

while pididq and pV V q are left invariant. The other Z2 in D8 does not commute with this and
acts as follows:

Zp0q

2 : pSSq Ø pSCq , pCCq Ø pCSq , (339)

and leaves all other elements invariant.
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A.3.1 Zp0q

4 Gauging

The 2-category CSpinˆSpin before gauging has simple objects Dpiq
2 with piq P Γ p1q whose fusion

follows group law, and simple 1-endomorphisms Dpiq
1 of Dpiq

2 whose fusion b also follows group
law. Let us begin by gauging Z4 subgroup of D8. The 2-category CSpinˆSpin descends to a 2-
category CpSpinˆSpinq¸Z4

of the resulting
“

Spinp4Nq ˆ Spinp4Nq
‰

¸Z4 gauge theory.
The simple objects modulo condensations of CpSpinˆSpinq¸Z4

are

Cob
pSpinˆSpinq¸Z4

“

!

Dpididq

2 , DpV V q

2 , SpV idq

2 , SpSCq

2

)

, (340)

where
SpV idq

2 “

´

DpV idq

2 ‘ DpidV q

2

¯

CSpinˆSpin

,

SpSCq

2 “

´

DpSSq

2 ‘ DpCSq

2 ‘ DpCCq

2 ‘ DpSCq

2

¯

CSpinˆSpin

,
(341)

as objects of the 2-category CSpinˆSpin.
The simple 1-endomorphisms of simple objects in Cob

pSpinˆSpinq¸Z4
are

C1-endo
pSpinˆSpinq¸Z4

“

!

Dpididq

1 , Dpωq

1 , Dpω2q

1 , Dpω3q

1 , DpV V q

1 , DpV V,ωq

1 , DpV V,ω2q

1 , DpV V,ω3q

1 , LpV idq

1 , LpV id,´q

1 , LpSCq

1

)

,
(342)

where Dpididq

1 , DpV V q

1 , LpV idq

1 and LpSCq

1 are identity 1-endomorphisms of the simple objects

Dpididq

2 , DpV V q

2 , SpV idq

2 and SpSCq

2 respectively. Dω
i

1 and DV Vωi

1 for i P t1,2, 3u are

non-identity 1-endomorphisms of Dpidq

2 and DpV V q

2 respectively. LpV id,´q

1 is a non-identity 1-

endomorphism of SpV idq

2 obtained by dressing LpV idq

1 with a non-trivial Wilson line for Z2, be-
cause Z2 Ď Z4 is the stabilizer group for the orbit of pV idq. The simple 1-endomorphisms of

Dpidq

2 , DpV V q

2 , SpV idq

2 , SpSCq

2 follow Z4,Z4,Z2,Z1 group laws respectively under fusions inside the
surfaces (i.e. fusions parametrized by objects).

The fusion of the objects in Cob
pSpinˆSpinq¸Z4

is as follows. Dpididq

2 and DpV V q

2 have fusion rules

with each other such that they form a Z2 1-form symmetry of the
“

Spinp4NqˆSpinp4Nq
‰

¸Z4

theory. In particular, Dpididq

2 is the identity surface defect. The fusion of DpV V q

2 with other
objects is

DpV V q

2 b SpV idq

2 “ SpV idq

2 ,

DpV V q

2 b SpSCq

2 “ SpSCq

2 .
(343)

The remaining fusions of SpV idq

2 are

SpV idq

2 b SpV idq

2 “
Dpididq

2

Z2
‘

DpV V q

2

Z2
,

SpV idq

2 b SpSCq

2 “ 2SpSCq

2 .

(344)

Finally, we have

SpSCq

2 b SpSCq

2 “
Dpididq

2

Z4
‘

DpV V q

2

Z4
‘ 2

SpV idq

2

Z2
. (345)
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The fusion rules under the bulk fusion structure b of the 1-endomorphisms are

Dpωpq

1 b Dpωqq

1 “ Dpωp`qq

1 ,

DpV V,ωpq

1 b Dpωqq

1 “ DpV V,ωp`qq

1 ,

DpV V,ωpq

1 b DpV V,ωqq

1 “ Dpωp`qq

1 ,

Dpωq

1 b LpV idq

1 “ Dpω3q

1 b LpV idq

1 “ LpV id,´q

1 ,

Dpωq

1 b LpV id,´q

1 “ Dpω3q

1 b LpV id,´q

1 “ LpV idq

1 ,

Dpω2q

1 b LpV idq

1 “ LpV idq

1 ,

Dpω2q

1 b LpV id,´q

1 “ LpV id,´q

1 ,

Dpωpq

1 b LpSCq

1 “ LpSCq

1 ,

DpV V q

1 b LpV idq

1 “ DpV V,ω2q

1 b LpV idq

1 “ LpV idq

1 ,

DpV V q

1 b LpV id,´q

1 “ DpV V,ω2q

1 b LpV id,´q

1 “ LpV id,´q

1 ,

DpV V,ωq

1 b LpV idq

1 “ DpV V,ω3q

1 b LpV idq

1 “ LpV id,´q

1 ,

DpV V,ωq

1 b LpV id,´q

1 “ DpV V,ω3q

1 b LpV id,´q

1 “ LpV idq

1 ,

DpV V,ωpq

1 b LpSCq

1 “ LpSCq

1 ,

LpV idq

1 b LpV id,´q

1 “ Dpωq

1 ‘ Dpω3q

1 ‘ DpV V,ωq

1 ‘ DpV V,ω3q

1 ,

LpV id,´q

1 b LpSCq

1 “ LpSCqpaq

1 ‘ LpSCqpbq

1 ,

LpV id,´q

1 b LpV id,´q

1 “ L

´

Dpididq

2 {Z2

¯

1 ‘ L

´

DpV Vq

2 {Z2

¯

1 ,

LpV idq

1 b LpV id,´q

1 “ L

´

Dpididq

2 {Z2

¯

;Z2

1 ‘ L

´

DpV Vq

2 {Z2

¯

;Z2

1 ,

(346)

where Dpω0q

1 :“ Dpididq

1 and DpV V,ω0q

1 :“ DpV V q

1 ; LpSCqpiq
1 for i P ta, bu are copies of LpSCq

1 in

the two copies of respective surfaces appearing in the fusion of surfaces; L

´

Dpididq

2 {Z2

¯

1 and

L

´

DpV Vq

2 {Z2

¯

1 are identity lines of the surfaces Dpididq

2 {Z2 and DpV V q

2 {Z2 respectively; and

L

´

Dpididq

2 {Z2

¯

;Z2

1 and L

´

DpV Vq

2 {Z2

¯

;Z2

1 are lines generating Z2 subgroups of Z2 ˆ Z2 0-form sym-

metries localized on the surfaces Dpididq

2 {Z2 and DpV V q

2 {Z2 respectively.

A.3.2 D8-Gauging

We next gauge the additional Zp0q

2 . In terms of the surface defects, the ones in CpSpinˆSpinq¸Z4

are Z2 invariant, and thus the simple objects modulo condensation are

Cob
pSpinˆSpinq¸D8

“

!

Dpididq

2 , DpV V q

2 , SpV idq

2 , SpSCq

2

)

. (347)

Next consider the action on the 1-endomorphisms: the Z2 acts by exchanging

Dpωq

1 Ø Dpω3q

1 , DpV V,ωq

1 Ø DpV V,ω3q

1 , (348)
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and leaving the other 1-endomorphisms invariant. The simple 1-endomorphisms are

C1-endo
pSpinˆSpinq¸D8

“

!

Dpididq

1 , Dpεq

1 , Dpωω3q

1 , Dpω2q

1 , Dpω2,εq

1 ,

DpV V q

1 , DpV V,εq

1 , DpV V,ωω3q

1 , DpV V,ω2q

1 , DpV V,ω2,εq

1 ,

LpV idq

1 , LpV id,εq

1 , LpV id,´q

1 , LpV id,´,εq

1 , LpSCq

1 , LpSC ,εq

1

)

,

(349)

where Dpεq

1 is the non-trivial line on the identity surface due to the gauged Z2 symmetry and

Dpωω3q

1 “

´

Dpωq

1 ‘ Dpω3q

1

¯

CpSpinˆSpinq¸Z4

,

DpV V,ωω3q

1 “

´

DpV V,ωq

1 ‘ DpV V,ω3q

1

¯

CpSpinˆSpinq¸Z4

.
(350)

Furthermore, the lines Dpi,εq

1 are the non-identity endomorphisms on the surfaces i “ idid, V id,
who have non-trivial stabilizer Z2.

We leave the determination of fusion rules to the interested reader.

B Derivation of the Fusion Rules for Spin Yang-Mills in 4d

In this appendix we compute the fusion rules for the Spinp4Nq and Spinp4N ` 2q gauge theo-
ries, which we discussed in section 8.

B.1 Non-Invertible Symmetries from Spinp4Nq Yang-Mills

We start with pure Spinp4Nq gauge theory and for concreteness let us work in 4d. The theory

has a Γ p1q “ Zp1q,B
2 ˆ Zp1q,C

2 1-form symmetry and a Γ p0q “ Zp0q

2 outer-automorphism 0-form

symmetry. The two symmetries combine into a 2-group (263). Gauging Zp1q,B
2 yields the

SOp4Nq gauge theory by promoting B2 to a dynamical field b2, and a dual 1-form symmetry

Zp1q,B1

2 (in 4d), with background field B1
2. This couples as

ş

M4
b2B1

2. Due to the 2-group (263)
this coupling is ill-defined, since it has a bulk dependency and yields an t’ Hooft anomaly (264)
for the SOp4Nq theory. As described in the main text, we now gauge various combinations of
global symmetries, which result in the following distinct 4d gauge theories:

1. Pin`p4Nq theory:

gauge B1
2 and A1: the codimension-2 defect implementing Zp1q,C

2 becomes non-invertible

2. POp4Nq theory:

gauge C2, A1: the codimension-2 defect implementing Zp1q,B1

2 becomes non-invertible

3. Scp4Nq theory:

gauge C2 and B1
2 the codimension-1 defect implementing Zp0q

2 becomes non-invertible.

The first case is already presented in detail in the main text in section 8.
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B.1.1 Non-Invertible Symmetries of POp4Nq YM

We can obtain a codimension-2 non-invertible defect by gauging C2 and A1. We denote the
corresponding dynamical fields by c2 and a1. Here we expect the codimension-2 defect imple-

menting the Zp1q,B1

2 symmetry, which we denote as DpM2q, to become non-invertible.
Let us call the non-invertible defect N 1pM2q. Similarly to the previous case of Pin`, we

have the fusion
N pM2q ˆN pM2q9p1 ` W pM2qq

ÿ

M1PH1pM2,Z2q

LpM1q , (351)

where W pM2q “ eiπ
ű

M2
c2 and LpM1q “ eiπ

ű

M1
a1 . The derivation is completely analogous to the

one in the main text.

B.1.2 Non-Invertible Symmetries in Scp4Nq YM

We can also gauge both the two 1-form symmetries and promote C2, B1
2 to dynamical fields c2,

b1
2. This gives a Scp4Nq theory. Here we expect the codimension-1 defect which implements

the outer-automorphism Zp0q

2 symmetry to become non-invertible. Let us denote by DpM3q the

defect implementing the Zp0q

2 . Due to the anomaly (264), when we gauge Zp1q,C
2 ˆZp1q,B1

2 and
promote C2 and B1

2 to dynamical fields c2 and b1
2, we must dress DpM3q with an appropriate

TQFT to maintain gauge invariance. Our proposal is also in the case a BF coupling, and we
define

N pM3q9

ż

Dφ1Dγ1DpM3, c2, b1
2qeiπ

ş

M3
φ1c2`γ1 b1

2´γ1δφ1 . (352)

Imposing δφ1 “ b1
2 the variation of the action precisely gives b1

2c2.
Now let us compute the fusion rule between two such operators, which is given by

N pM3q ˆN pM3q9

ż

Dφ1Dγ1Dφ̃1Dγ̃1eiπ
ş

M3
pφ1´φ̃1qc2`pγ1´γ̃1qb1

2´γ1δφ1`γ̃1δφ̃1

“

ż

Dφ1Dγ1Dφ̂1Dγ̂1eiπ
ş

M3
φ̂1c2`γ̂1 b1

2´γ1δφ̂1`γ̂1δφ1`γ̂1δφ̂1 . (353)

Following the same discussion around eq. (273), we obtain

N pM3q ˆN pM3q9
ÿ

Σ,Σ1PH2pM3,Z2q

eiπ
ű

Σ c2`iπ
ű

Σ1 b1
2 . (354)

We can rewrite the above expression as

N pM3q ˆN pM3q9
ÿ

Σ,Σ1PH2pM3,Z2q

W pΣqV pΣ1q , (355)

where Σ P H2pM3,Z2q is Poincaré dual to φ̂1 P H1pM3,Z2q, Σ1 P H2pM3,Z2q is Poincaré dual
to γ̂1 P H1pM3,Z2q and W pΣq and V pΣ1q are the codimension-two operators generating the

1-form symmetries dual to Zp1q,C
2 ˆZp1q,B1

2 .

B.2 Non-Invertible Symmetries from Spinp4N ` 2q Yang-Mills

The 4d Spinp4N `2q pure gauge theory has a Zp0q

2 charge conjugation 0-form symmetry, while

the 1-form symmetry is Zp1q

4 . They form a 2-group [60]

δB2 “ BockpC2q ` A1C2 , (356)
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where A1 is the background for the 0-form symmetry, and B2, C2 are backgrounds for the two
Z2 factors in the 1-form symmetry, which form an extension to Zp1q

4

1 Ñ Z2 Ñ Z4 Ñ Z2 Ñ 1 . (357)

The Bock is the Bockstein homomorphism for this extension sequence.
Now let us gauge B2 to go to a SOp4N ` 2q theory, and turn B2 into a dynamical field b2.

Because of the 2-group, the coupling
ş

M4
b2B1

2, where B1
2 is the background for the dual 1-form

symmetry, has the bulk dependency

A “ π

ż

M5

δb2B1
2 “ π

ż

M5

A1C2B1
2 ` BockpC2qB1

2 . (358)

This is a mixed ’t Hooft anomaly in the SOp4N `2q theory. Notice that (358) has an additional
piece compared to (264), due to the fact that the short exact sequence 1 Ñ Z2 Ñ Z4 Ñ Z2 Ñ 1
does not split. Nevertheless, the discussion is quite similar to that of the Spinp4Nq case, so we
work out explicitly only the case in which we gauge C2 and A1 and go to a POp4N `2q theory.

In this case, the defect implementing the Zp1q,B1

2 1-form symmetry becomes non-invertible in
POp4N ` 2q. We denote such defect DpM2, c2, a1q in the presence of the background fields
for the two symmetries we are gauging. The non-invertible defect is obtained by dressing
DpM2, c2, a1q by an appropriate TQFT which cancels the anomaly (358). Then we define

N pM2q “

ż

Dφ0 Dγ1 DpM2, c2, a1qeiπ
ş

M2
φ0c2`γ1a1´φ0δγ1`

δγ̃1´c̃2
2 , (359)

where φ0 P C0pM2,Z2q, γ1 P C1pM2,Z2q and γ̃1, c̃2 denote the lifts of γ1, c2 to Z4 cochains.8

Now let us compute the fusion rules between two N pM2q defects.

N pM2q ˆN pM2q “

ż

Dφ0Dγ1Dφ̂0Dγ̂1eiπ
ş

M2
pφ0´φ̂0qc2`pγ1´γ̂1qa1´φ0 δγ1`φ̂0 δγ̂1`

δγ̃1´c̃2
2 ´

δ ˜̂γ1´c̃2
2 .

(362)
Here we used DpM2, a1, c2q2 “ 1 since it obeys the Z2 fusion rules. Making the change of
variables ϕ0 “ φ0 ´ φ̂0 and ε1 “ γ1 ´ γ̂1, we obtain

N pM2q ˆN pM2q “

ż

Dφ0Dγ1Dϕ0Dε1eiπ
ş

M2
ϕ0c2`ε1a1´φ0δε1´ϕ0δγ1`ϕ0 δε1`

δε̃1
2 . (363)

The equations of motion of φ0 and γ1 impose δε1 “ 0 and δϕ0 “ 0 (mod 2). Notice that then
last term gives δε̃1{2 “ Bockpε1q. Integrating φ0 and γ1 out and collecting the non trivial
terms, we are left with

N pM2q ˆN pM2q9
ÿ

ϕ0PH0pM2,Z2q,ε1PH1pM2,Z2q

eiπ
ş

M2
ϕ0c2`ε1a1`Bockpε1q . (364)

We can rewrite this as

N pM2q ˆN pM2q9
`

1 ` eiπ
ű

M2
c2
˘

ÿ

M1PH1pM2,Z2q

eiπQpM1qeiπ
ű

M1
a1 , (365)

8Notice that there are other choices of TQFTs that cancel the anomaly, and in particular the Bock part. For
example, we could use the TQFT

I2 “ φ0 Y c2 ` γ1 Y a1 ´φ0 Yδγ1 ` γ1 Y γ1 ` γ1 Y1 δγ1 , (360)

since also in this case

δI2 “ δγ1 Y a1 ´δγ1 Y1 δγ1 “ c2 Y a1 ´ Sq1pc2q “ c2 Y a1 ´ Bockpc2q . (361)

One can check that using this TQFT we obtain the same fusion rules.
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where M1 is the Poincaré dual of ε1 P H1pM2,Z2q and we defined
QpM1q “

ű

M2
Bockpε1q “

ű

M2
ε1 Y ε1. This additional phase is non-trivial only on

non-orientable manifolds.
The case in which we gauge A1 and B1

2, hence obtaining a Pin`p4N ` 2q theory, is very
similar. Indeed, notice that we can rewrite the anomaly as

π

ż

M5

A1C2B1
2 ` BockpC2qB1

2 “ π

ż

M5

A1C2B1
2 ` C2BockpB1

2q . (366)
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