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Abstract

We sketch a procedure to capture general non-invertible symmetries of a d-dimensional
quantum field theory in the data of a higher-category, which captures the local prop-
erties of topological defects associated to the symmetries. We also discuss fusions of
topological defects, which involve condensations/gaugings of higher-categorical sym-
metries localized on the worldvolumes of topological defects. Recently some fusions of
topological defects were discussed in the literature where the dimension of topological
defects seems to jump under fusion. This is not possible in the standard description of
higher-categories. We explain that the dimension-changing fusions are understood as
higher-morphisms of the higher-category describing the symmetry. We also discuss how
a 0-form sub-symmetry of a higher-categorical symmetry can be gauged and describe
the higher-categorical symmetry of the theory obtained after gauging. This provides a
procedure for constructing non-invertible higher-categorical symmetries starting from
invertible higher-form or higher-group symmetries and gauging a 0-form symmetry. We
illustrate this procedure by constructing non-invertible 2-categorical symmetries in 4d
gauge theories and non-invertible 3-categorical symmetries in 5d and 6d theories. We
check some of the results obtained using our approach against the results obtained using
a recently proposed approach based on ’t Hooft anomalies.
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1 Introduction

The most unexpected, generalized symmetries [ 1] thus far are those that relax the group multi-
plication structure, often referred to as non-invertible symmetries. After a long and prosperous
history in spacetime dimensions d = 2,3 [2-16], non-invertible symmetries characterized by
topological operators satisfying a fusion-algebra (as opposed to a group law), have only very
recently been started to be systematically studied in d = 4, especially in non-topological QFTs.
The approaches used in [17-19] use mixed anomalies and duality defects to construct non-
invertible symmetries in 4d gauge theories. In [20,21] arguments were provided to construct
non-invertible defects in O(2) gauge theories, and related theories, by gauging charge conju-
gation in U(1) gauge theories. Recently, in [22], condensation defects (see also [23]) in 3d
were discussed, which provide examples of non-invertible symmetries. For topological theories
some work on non-invertible defects in higher dimensions can be found here [24, 25].

In this paper we propose a general procedure, applicable in any dimension, which con-
structs non-invertible symmetries by gauging 0-form sub-symmetries of invertible higher-form
and higher-group symmetries.

These non-invertible symmetries and their properties, such as the possible gaugings and
analogs of 't Hooft anomalies, are expected to be encoded in the structure of a higher-category,
which can be understood as capturing the local properties of topological defects associated to
these symmetries. We can thus call these symmetries as higher-categorical symmetries. The
most general symmetry structure of a d-dimensional QFT is given by a (d — 1)-category. Some
mathematics literature on these higher categories can be found in [26-29].

Our approach is inspired by the one in [30] in 3d (see also [31]), where O-form global
symmetries of TQFTs are gauged. We generalize this to any dimension as follows: the starting
point of our analysis is a theory ¥, whose symmetry category of topological defects, satisfies the
group law. We also assume the presence of a 0-form symmetry G(©), generated by topological
defects of dimension d — 1: D;_;. We furthermore consider situations, where these 0-form
symmetries act as outer automorphisms, in particular inducing a non-trivial action on the lower
dimensional topological defects Dy_(, 1) that generate the p-form symmetries.

We then gauge this 0-form symmetry, and determine the higher-category that is obtained
after gauging. One set of topological operators in the gauged theory ¥/G are the invariant
combinations of topological defects Dy_(, 1) in the initial category. After gauging the 0-form
symmetry, there will be additional topological line operators, that generate the dual symmetry.
We develop a consistent framework to combine these two sets of defects and determine their
fusions. The resulting structure is naturally a higher-category, with a fusion product defined
at every level of the category.

Examples that we apply this method to are

. Zgo) outer automorphism gauging of Spin(4N) and Spin(4N + 2) pure gauge theories in
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3d and 4d, generalized also to any d.

. Zgo) outer automorphism gauging of discrete abelian gauge theories in 3d and 4d, where

Zgo) acts as electromagnetic duality in 3d and ‘layer/flavor swap’ in 4d.

—_—

* O(2) and SU(N) gauge theories in 4d
+ S3.gauging of Spin(8) gauge theory in 3d and 4d

* An example of a quiver gauge theory in 4d, where dihedral Dg O-form symmetry group
is gauged.

* 6d absolute theories with supersymmetry
* 5d theories with supersymmetry

In the second part of the paper — starting with section 8 — we develop an alternative ap-
proach, which is closely related to the one proposed in [17], where the authors construct
non-invertible symmetries starting from a 4d theory ¥ which has a mixed anomaly of suitable
type between a 0-form symmetry I'®) and a 1-form symmetry I'"). In particular, they consider
an anomaly A linear in the background gauge field A, for the 0-form symmetry and quadratic
in the background gauge field B, for the 1-form symmetry and argue that gauging the 1-form

symmetry T'M) results in a theory T’ = </ I with non-invertible symmetries. Indeed, con-

sider the codimension-1 topological defects D?Eg), g €T associated to the 0-form symmetry

of T. The mixed anomaly .4 implies that D?Eg) is anomalous under background gauge transfor-

mations of B,. Once we gauge the 1-form symmetry and go to ¥, this becomes a dependence
on dynamical fields that makes the O-form symmetry defects ill-defined. We can still preserve
the symmetry associated to these topological defects by stacking them with an appropriate 3d
TQFT X(®), which has itself an anomaly that can absorb the bulk dependency of Dég) and re-

store gauge invariance. The price to pay (or the bonus) is that the topological codimension-1

(g)

N D?()g) ® X&) no longer satisfy a group law, but a non-invertible

defects of T, namely D
fusion-like algebra.

Our starting point is either a theory with a mixed anomaly, or a discrete 2-group symmetry
[32-40].} Several theories in this list are amenable also to the approach proposed by [17]
that we have just described. We develop this approach in dimensions d < 6, and construct
a variety of theories with non-invertible symmetries. In particular we will consider theories
with 2-groups symmetries

5Ale :d)*@ (1)

The approach using twist is applicable when the Postnikov class © = 0. When © is not neces-
sarily zero and we can gauge the 1-form symmetry associated to B,, then the resulting theory
has a mixed anomaly, and the approach in [17] is applicable. This however has limitations, as
it requires the mixed anomaly to be linear in the background field, whose topological defect
becomes non-invertible after gauging. Moreover this latter approach is somewhat computa-
tionally intense beyond Z, gaugings, and is currently unknown to be applicable in the case of
non-abelian discrete symmetries. On the contrary, the higher-category approach is applicable
for both abelian and non-abelian gauging of 0-form symmetries.

Thus, both approaches have a range of applicability, with advantages and limitations. In
this paper we will explore both approaches and cross-connect them whenever possible. This
will provide an important cross-check for our construction. In this comparison with [17] (and

1Other examples of 2-groups symmetries in higher-dimensional QFTs have recently appeared in [41-46], which
however have continuous 0-form flavor symmetries.
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also the fusion in [20] for O(2)) it is also noteworthy that our approach will yield fusion
structures at all levels of the higher-category: i.e. for the objects, and the n-morphisms, thus
refining the fusion that includes topological defects of different dimension that was proposed
in [17]. We will show how these two descriptions are compatible.

Another important phenomenon that we comment upon is the appearance of conden-
sations of higher-form symmetries in the fusion of non-invertible defects on arbitrary sub-
manifolds of spacetime, as observed in [17,18]. We provide examples generalizing this phe-
nomena where the fusion products involve generalized gaugings of the higher-categorical sym-
metries localized on topological defects.

We should make one clarifying comment: the symmetry categories considered in this paper
are obtained by gauging a 0-form symmetry. The resulting symmetry category has topological
defects which descend from the ungauged symmetry category, but also includes condensation
defects. Fusion of the former can include condensation defects, which we include. However
we do not discuss the fusion of condensation defects themselves. This is done in subsequent
work [47-50]. The full symmetry categories including condensation defects and their fusion,
in the examples we consider here are discussed in [48].

The plan of this paper is as follows: we begin in section 2 with a general discussion of
higher categories and their relevance for symmetries in QFTs. In section 3, we discuss higher-
categorical symmetries localized on the world-volumes of defects and their generalized gaug-
ing/condensation. The concrete setting of 0-form gauging of higher-categories is discussed in
detail in section 4, both in 3d and in higher dimensions. The subsequent three sections 5, 6
and 7, contain a multitude of examples in 3d, 4d, and 5d/6d, respectively. Each example is
constructed by gauging a 0-form symmetry and deriving the higher-categorical fusion in the
gauged theory.

In section 8 we change gears and derive numerous non-invertible symmetries from 2-
groups and mixed anomalies. This then is used as a comparison to the earlier higher-category
approach. Finally we conclude and supply some appendices with computational details.

2 Symmetries and Higher-Categories

In this section, we review why generalized symmetries are expected to form the mathematical
structure of a higher-category.

2.1 Symmetries in Terms of Topological Defects

Generalized symmetries of a QFT correspond to the existence of topological defects of var-
ious dimensions in the QFT. These topological defects can be genuine or non-genuine. We
begin with a discussion of genuine topological defects, that can be defined independently of
other higher-dimensional topological defects. A genuine topological defect D, of dimension-p
is a defect operator that can be inserted along any dimension-p sub-manifold %, of the d-
dimensional spacetime M,. The fact that it is topological means the following: Consider a
correlation function < Dp(%,) - > containing D,, where the dots denote other topological
and non-topological defects of various dimensions. Then, we have the equality of correlation

functions
<'“Dp(2p)“'>:<“'Dp(2;>“'>’ 2

where < D, (Z;) . > denotes the correlation function obtained by changing the locus of

D, from %, to Z}; by a homotopy that does not intersect the loci of other defects participating
in the correlation function, and the loci of other defects are not changed.
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Figure 1: Example of non-genuine defects arising at junctions of genuine defects.
Here D] and D, are genuine line and surface defects respectively. D; is a non-genuine
line defect arising at the end of D, and D, is a non-genuine local operator that can
arise at an end of D] along D,.

Now, in order to discuss non-genuine topological defects, we begin by considering sub-
defects arising at the intersections or junctions of genuine topological defects. See figure
1 for some examples. Consider a p-dimensional junction ¥, of genuine topological defects

D (Z ),Where

Pi Pi

5, = ﬂzpi. 3)

We need to have p; > p for all i. There can be various kinds of sub-defects that can live
at this junction X, for a fixed choice of D,.. In general, these include both topological and
non-topological sub-defects, where a topological sub-defect J,, satisfies

<HD i (Zpi)Jp(2p>...> _ <HDp (%) (=) > @

which is an equality of correlation functions involving the configuration of defects D, and J,,,

where ¥ are related to %, by a homotopy that does not intersect the loci of other defects
1

involved in the correlation function, and

= ::ﬂz’i. (5)

Above is only a class of possible non-genuine topological defects. More generally, non-genuine
topological defects arise at the junctions of genuine topological defects and non-genuine topo-
logical sub-defects arising at the junctions of genuine topological defects. See figure 2.

So far whatever we have discussed holds true for both discrete and continuous symmetries.
A discrete symmetry is one for which the corresponding genuine and non-genuine topological
defects are parametrized by discrete parameters. On the other hand, for a continuous sym-
metry, the corresponding genuine and non-genuine topological defects are parametrized by
continuous parameters.

For a discrete symmetry, the associated topological defects and their configurations provide
full information about the various possible backgrounds for the discrete symmetry that the QFT
can be coupled to. However, for a continuous symmetry, the associated topological defects
and their configurations only provide information about “flat” backgrounds of the continuous
symmetry.
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D,

Figure 2: An example of a non-genuine defect arising at the junctions of genuine and
other non-genuine defects. Here D, is a non-genuine local operator that can arise at
an end of D] along D;, where Dj is a genuine line defect, while D; itself is a non-
genuine line defect that can arise at an end of the genuine surface defect D,.

2.2 From Topological Defects to Higher-Categories

Symmetry category. From the information about configurations of topological defects in
a d-dimensional QFT ¥, we can construct a (d — 1)-category Cg, which we refer to as the
symmetry category of ¥. For d = 2, it is a 1-category, or a standard category. Ford > 2, it is a
higher-category.

Recall that a (d —1)-category has d levels. At the first level, we have objects of the category,
which are also called O-morphisms. At the second level, we have 1-morphisms between objects.
At the third level, we have 2-morphisms between 1-morphisms. Continuing in this fashion, at
the i-th level for 2 < i < d, we have (i — 1)-morphisms between (i — 2)-morphisms.

Objects. The objects of C; correspond to topological codimension-1 defects of T. We use the
same labels D;_; to denote both topological codimension-1 defects and the corresponding ob-

jects of Cz. There is an additive structure on the objects coming from the additive structure on
the codimension-1 topological defects. A codimension-1 topological defect Dy;_; = @); niDc(lll1

with n; > 0 is a sum of distinct codimension-1 topological defects Déizl, which has the prop-

erty that it has a total of ) ; n; number of vacua, out of which in n; number of vacua it behaves
like the defect Délll.
Simple objects are by definition those codimension-1 topological defects that have a single

vacuum, or in other words, carry a single topological local operator on their worldvolume.
There is also a product/monoidal structure on the objects coming from fusing codimension-

one topological defects. See figure 3, where we consider fusing two codimension-1 defects
(12)

11> Which we represent

Dél_)l and Dc(iz_)l. The resulting codimension-1 defect is denoted as D

in equations as

pV, ®p? =, (6)
Oor as 1 ) 12
DV (%41) @D (24_1) = DI (24_1), 7

if we want to manifest the codimension-one submanifold %;_; of spacetime that the defects
wrap.
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(1)
d—1 d—1

Figure 3: Fusion of codimension-1 topological defects that describes a monoidal
structure on the objects in the symmetry higher-category.

@)
Ddfl

(1)
Ddfl

(1,2) (1) (2)

i_o trom D, = i1
defect living between codimension-1 topological defects D(gl_)l and Dé .- To specify
the direction of the morphism, we need to pick a “time” direction, which is taken to

run from bottom to top of the figure.

is a codimension-2 topological
2)

Figure 4: A 1-morphism D L toD

1-morphisms. The 1-morphisms of Cs correspond to topological codimension-2 defects liv-
ing at the intersection of two topological codimension-1 defects. More precisely, a topological
codimension-2 defect Dy_, living between codimension-1 defects D;_; and D) , (with suit-
able choice of orientations) corresponds to a 1-morphism from D;_; to D<I1—1' See figure 4.
There is an additive structure on 1-morphisms: Let Dc(zlzz be distinct 1-morphisms from fixed
object Dy_; to fixed object D) ,. Then

Dy_y:= EI—) nl-Déizz , (8)
L

/

for n; > 0 is also a 1-morphism from Dy_; to D;_,,

of vacua in which it behaves like defect Déizz.
Two 1-morphisms can be composed to obtain another 1-morphism. Given a 1-morphism

(1,2) 1) 2 : (2,3)
D,”, from D, to D;”’, and a 1-morphism D™,

which has (for each value of i) n; number

from D((iz_)1 to Dc(i?’_)l, we have a 1-morphism

p{*¥ o p ©)

2) (2,3)
, and D,

D(gz_)l and Dég_)l. See

from Dél_)l to D((ig’_)l. This composition operation describes fusion of Dc(il_’ along a

codimension-1 locus containing all three codimension-1 defects Dél_)l,
figure 5.

Changing the time direction in the above fusion leading to composition of morphisms, we
obtain a monoidal/fusion structure on 1-morphisms. However, it should be noted that we

8
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(3) (3)
Dy Dy
(2.3)
D,
() — (23) _ H(1,2)
D, DyyoDy7,
(1,2)
Dy,
(1) 1)
Dy, Dy,
. . . . (1,2) (2,3)
Figure 5: Fusing two codimension-2 defects D, and D;” leads to the defect
szz_"? o D((il_’zz). This is described in the higher-category as a composition of 1-

morphisms, and to describe the direction of the morphisms and composition, we
need to pick a “time” direction, which is taken to run from bottom to top of the fig-
ure.

2)

1,2 2,3 a, (2,3)
(1,2) 2) Dy, ®D§{>l Dy

(
Dy~ Dy”

Figure 6: Here we have rotated the figure 5, while keeping the time direction going
from bottom to top. The fusion of Délizz) and Déz;z) now is represented as a monoidal
operation on 1-morphisms. Such a monoidal operation is labeled by objects, as in

equation (10).

define this fusion structure only if Cz admits 2-morphisms, i.e. if the theory ¥ has dimension

(1_’22) from D((il_)1 to Dc(iz_)1 and a 1-morphism D(Z_’?;) from D((iz_)1 to

d > 3. Given a 1-morphism D, i

p®

11> We have a 1-morphism

(1,2) (2,3)
D,z ®Dézjl DyZ5 (10)

from Dc(il_)1 to Df_)l. See figure 6. Even though we have

Dy"y @y Dy =Dy o D, an
we use both notions as they have different utilities. For example, we will see later that the
fusion structure ®p, , on 1-morphisms from Dy_; to Dy_; descends to a fusion structure on
objects of a higher-category of symmetries localized along D, _;.

There is another fusion structure on 1-morphisms, which is defined for any Cs, irrespective
(1.2) )1 to Déz_)l and

of whether it admits 2-morphisms or not. Given a 1-morphism D, " from Dél_

9
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(2) ) (2) 4)
D; -4 Dy D~y ®D; 7
(1,2) (3,4) _ (1,2) (3.4)
D~y D;”, - D7y ®D;~,
(1) (3) (1) 3)
Dy Dy Dy 1 ®Dy 7

Figure 7: The fusion structure ® on general codimension-2 topological defects.

a 1-morphism Dc(lr“i;) from D(gg_)l to D‘g4_)1 constructs a 1-morphism
D @Y, (12)
from Dc(il_:? to Dc(iz_‘?, where
(13) ._ @) 3)
Ddfl '_Dd71®Dd71’ (13)
24 ._ @ 4)
Ddfl T Ddfl <>§Dd71 .

This fusion operation is described in figure 7.

2-morphisms. The 2-morphisms of Cs correspond to topological codimension-3 defects liv-
ing at the intersection of two codimension-2 defects corresponding to 1-morphisms of Cs.

More precisely, consider two codimension-2 defects Dél_’zz)’(l) and Dél_,zz),(z) both acting as 1-
morphisms from the codimension-1 defect D(gljl to the codimension-1 defect Dézjl. Then,

(1,2),(1) (1,2),(2)
s to Dd_2

intersection of Dél_’zz)’(l) and Dél_’zz)’(z). See figure 8. There is again an additive structure on

2-morphisms similar to that for 1-morphisms and 0-morphisms discussed above. We can com-

pose a 2-morphism Dc(ll;é) from 1-morphism Déljz to 1-morphism Dézjz with a 2-morphism

(2.3) (2) (3)
Dd -3 d— d—2’

2-morphisms from D correspond to codimension-3 defects that live at the

Q.

from D™, to 1-morphism D to obtain a 2-morphism

(2,3) (1,2)
D;~5 oDy 5 (14)
from Dc(ll_)2 to D(gs_)z.
There are again multiple fusion structures we can define. For any arbitrary Cs contain-

ing 2-morphisms, i.e. for any ¥ having d > 3, we have a fusion structure on 2-morphisms,
(1,2),(1,2) (12).(1) ¢ 4

d—3 d—2

, Where each 1-morphism Dél_’z)’(l) , to an object

(3:4),(1)

2
3,4),(
3 d—2

which we denote by ®. Consider a 2-morphism D

(1,2),(2)
d—2

Déi)l. Similarly, consider another 2-morphism Dé
(3:4),(2) 3,4),(0)

from a 1-morphism D

is from an object Dél_)

L2 from a 1-morphism D
(3)

1-morphism D

to a

1-morphism D , Where each 1-morphism Dc(i is from an object D™, to an object

d—2 2 d—
Dyjl. Then, the 2-morphism
(1,2),(1,2) (3.4),(1,2)
DiZs™ " ®Dy s (15)

10
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(1,2)(2)
Ddfz
(1,2)(1,2)
Dde
(1) (2)
Dd—l Dd—l
PREEEY

(1 2)(1 ?) between 1- morphisms D( ) ™) and D(1_,22),(2) (both

Figure 8: A 2-morphism D, i

from Dé_)l to D((i_)l).

is from the 1-morphism Dél 2) (1)®D(3 AW 46 the 1-morphism D((il_’z) @ D(3 ()

1-morphism D(1 20 ®D§_2) @ 4 from the object Dc(il_)1 ® Dc(ig_)1 to the object DC(ZZ_)1 ® DC(14_)1.
Similarly, for any arbitrary Cs containing 2-morphisms, i.e. for any ¥ having d > 3, we have

another fusion structure on 2-morphisms which is parametrized by objects of Cs. Consider a
(1, )( (1, )() (12)(2)

, where each

Y2 from a 1- morphism D, , where each

)(i) ()

2-morphism D, to a 1-morphism D,

)

is from an object D, i1°

1-morphism D( , to an object D Similarly, consider another

2-morphism D( 3) 12 from a 1- morphism D( 3)( ) to a 1- morphism Déz_,?;),(z), where each
1-morphism D(g ) @ is from the object D( ) , to an object D( ) . Then, the 2-morphism
Dél 2),(1, 2)® 2 D(23) (1,2) (16)

1,2),(1 2,3),(1)

is from the 1-morphism Dc(i 5 ) @D(z) Dé 7 to the 1-morphism p{+»-@ ®.@ D(Z_’S)’(z),
—1

d—2 2)
where each 1-morphism D( 2) © ®D(2 D( ) @ is from the object Dél_)l to the object Dég’_)l.

Now, if C5 contains 3-morphisms i. e if T is a theory in d > 4, then we have a third fusion
structure, which is parametrized by 1-morphisms of Cz. Consider a 2-morphism D(1,2),(1,2)

(L, )(1) )() (12)(1)-

to a 1-morphism D( , where each 1-morphism D, is
( ) (2,3)

(2) Slmllarly, consider another 2-morphism D,

-1
to another 1-morphism Délj)’(g), where Délizz)’(g)

from a 1-morphism D,

(1 )

from an object D, ’; to an object D

(1)()

from the 1- morph1sm D, is also from

the object D( ) , to the obJect D( ) . Then, the 2-morphism

D3 @00 DI Y a7
is from the 1-morphism D( ) M to the 1- morphism D(1 2:3) gee figure 9. It should be noted
that

Dél 2),(1, )® a2 Dc(i 3) (23) _ (51_,?,(2,3) oDél_’ZS)’(l’z). (18)

Higher-morphisms. Continuing inductively, we define p-morphisms from p — 1-morphism
Dy_, to p — 1-morphism Dcll—p of Cs as topological codimension-(p + 1) defects Dy_,_; that

11
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(1)
Ddfl
(1,2),(2)
Dd*Z
5120 p{-2)
d—2 (1,2),(1,2) (1,2),(2,3) -2
Dy’5 Dys
(2)
Dd—l
(1)
Dd—l
_ (1,2),(1) (1,2),(3)
= D D
o d—2
Déljg)’(l’z) ®D§122z>’(2) D((il,’i)’(z’?’)
(2)
Ddfl
Figure 9: A 2-morphism fusion in Dél_,zz),(z): D(gl_’?’(l 2) ®D(1,2>,<2> DC(11_,§),(2,3)
d—2

live at the intersection of topological codimension-p defects D4_,, and D(’i_p (with appropriate
choices of orientation). There is an additive structure and composition on p-morphisms. For
an arbitrary C; admitting p-morphisms, i.e. for any theory ¥ of d > p + 1, we can define
many kinds of fusion structures on p-morphisms: a fusion structure ®, fusion structures ®p, |
parametrized by objects of Cg, fusion structures ®p, , parametrized by 1-morphisms of Cg, and
so on upto fusion structures ®p, ipi1 parametrized by (p — 2)-morphisms of Cz. If C admits
(p+1)-morphisms, i.e. if ¥ has dimension d > p +2, then we can also define a fusion structure
on p-morphisms parametrized by (p — 1)-morphisms of Cs, which is the same as composition
of p-morphisms.

3 Localized Symmetries and Condensations

Suppose we are provided two topological defects D;” and DIEZ)

D}()l_,Zl) between them, such that wrapping the junction D}El_’?

to not wrapping it, as shown in figure 10. Then, we say that Dlgl) and DIEZ) are related by a
condensation. See [23] for a general discussion of condensations.
This lets us define equivalence classes of topological defects? that are related to each other

with a topological junction

on a sphere SP~1! is proportional

by condensations. Pick a representative D[El) of such an equivalence class. Then any other
defect DISZ) lying in the equivalence class can be obtained by performing a generalized gauging
operation on the worldvolume of D}EI). Moreover, all the topological sub-defects of DIEZ) can

be obtained from topological sub-defects of D[El). The purpose of this section is to explain this
generalized gauging construction.

2These are also known as ‘Schur components’ [51].

12
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(1) (1)
DP DP

Figure 10: Two topological defects Dlgl) and Dlgz)

exists a topological junction Dl()l_’zl) which can be bubbled out of nothing at the cost

of changing the correlation function by an overall constant non-zero number.

are related by condensation if there

3.1 Symmetries Localized Along Topological Defects

To describe the generalized gauging operation, we need to first begin with a discussion of the
(higher-)category CQ’DP of symmetries localized along the worldvolume of a topological defect
D, (which may be genuine or non-genuine). CQ’DP is a (p — 1)-category describing topological
defects that are constrained to live inside D,,, and we refer to it as the symmetry category of the
defect Dj,.

In fact Cx p, can be recognized as a subcategory of the symmetry (d — 1)-category Cs of the
theory ¥. The defect D,, is itself a (d — p —1)-morphism of Cz. The objects of CT’DP are (d —p)-
morphisms of Cg from D,, to itself. The 1-morphisms of Cg p, are (d — p 4+ 1)-morphisms of C¢
going between (d — p)-morphisms of Cs that are objects of C. D, Proceeding inductively, the
g-morphisms of Cy p are (d —p+q)-morphisms of C; going between (d —p +q —1)-morphisms
of Cs that are (g — 1)-morphisms of Csp,- The additive and composition structures on Cg
descend from those on Cs.

The fusion structure ® on Cg, D, descends from the fusion structure ®p on Cs. The fusion
structures on Cg, D, parametrized by g-morphisms (where q > 0) of Cg, D, descend from fusion
structures on Cy parametrized by the (d — p 4+ q)-morphisms of Cs that are associated to g-
morphisms of CQ’DP.

3.2 Generalized Gauging: p = 2

. . 2) . 1
Let us now describe the construction of DIE ) in terms of ng ), when the two defects are related

by condensation. We will first discuss the case of p = 2, where we can be quite concrete. Later
we will sketch the case of general p, where we will not be so concrete.

D(z) can be obtained from Dél)

2
symmetry C_ ) of Dél). The gauging is described by what is known as an algebra inside the
(o)

by performing a generalized gauging [8, 52, 53] of the

1-category C The algebra is comprised of the following data:

OF
T,D}

)

. . 1,2) . . .
* First of all, we have an object A(1 * inside CT o> which can be constructed as
72

1,2) (1,2) (2,1)

( b bl
Al =pi? D>V, (19)
where DS’Z) is the junction lines between Dél) and Dz(z) discussed above that is respon-

. . 2,1) . . . . . .
sible for condensation, and Di ") s the line obtained by reversing the orientation of

Dfl’z). See figure 11.
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* Additionally we have the following canonical morphisms

Agl,2;p) . A(ll,Z) ®A(11,2) _)A(11,2) ’
AE)],Z;cp) . A(11,2) _’A(ll’Z) ®A(11,2) ,

(1,2;ev) . A(1,2) (20)
A -\ -1 @),

0 1 p{v

(1,2;cev) | (1,2)
Ay : 1D§1> —AT,

(1,2) (2,1)

which are constructed from D
erties shown in figure 13.

.~ and D, as shown in figure 12, and satisfy the prop-

The gauging of C_ ) by the algebra
)

A(l’z) _ {A(ll,Z)JAE)I,2;p)’AE)1,2;cp),Aél,Z;ev)’Agl,Z;cev)} , 21)

is performed by inserting a mesh of topological defects comprised out of algebra along the full

locus of Dil’z), as shown in figure 14. We denote the defect with algebra A% condensed by

M
p@_ D
2 A2

(22)

Above, we used DF’Z) and Dﬁz’l) to construct the algebra A(?). Conversely, we can con-

struct Dfl’z) and sz’l) using the algebra A(%?), by inserting a mesh of topological defects

(1)

comprised out of algebra along half-of the locus of D;

, as shown in figure 15.

Category of lines after condensation. The symmetry category capturing localized symme-
tries on Déz) can be recognized as

CT,DZQ) = Bimod,2) (CT,D§1)> , (23)

which is the category of A2 bimodules in C‘z - Thatis, the topological line operators living
)

on DZ(Z) are bimodules of the algebra A, Such a bimodule BDZ(l> comprises of the following

data

) D pWip pMap pWiep  pMipe
D stp ;TP step srep
B = {Blz ,B,> ".B,> ", By " B, , (24)

(1.2) (1.2) (1,2)
Dl Dl Al

Figure 11: The construction of the object comprising the algebra implementing the
(2)

gauging procedure to go from Dél) to D,

14
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A(ll,Z)

(1,2) (1,2)
Al Al

(1,2) (1,2)
Al Al

- i) A0 oV
(1,2)
Al
Dél) Dz(l)
p"? .
_ (1,2);ev
1 Al e
p{?
(1,2)
Al
(1,2)
Al
p{?
_ (1,2);cev
p(+? o Ay
Dz(l) Dz(l)

Figure 12: Construction of various morphisms comprising the algebra A(-

(1)
Dy . .
where B,? is an object of C

T Dél)’ and the other four are morphisms
(1) (1) (1)
D, /slp 1,2 D. D.
B2 ‘7. AP @B? B,
(1) (1) (1)
D, ;rp D. 1,2 D.
B2 "7 B @A"Y B,
(1) (1) (1)
Dy slep D 1,2 D
B2 "7 B2 »AY @B,
(1) (1) (1)
D, ’;rcp D. D 1,2
By2 "P. BY* —B* @AM,

15
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(1,2) (1,2)
Al Al
A(()l,Z);ev
’ (1,2) .
AP — A1 AL2)sep -
A(11,2) 0 0
A(()l,Z);cev
A(11,2) A(ll,z) A(11,2) A(11,2)

Figure 13: Conditions specified by the morphisms comprising the algebra A(12).
These conditions follow simply from topological moves performed on the topolog-

ical defects Dil’z) participating in the definition of these morphisms.

such that these satisfy the properties shown in figure 16. A morphism in the category

. . pM (1) bV (2) . .
Bimod,1,2) (CI e between bimodules B*2 *'*/ and B*2 -\*) is a morphism between objects
)
(1) (1)
sz (1) and sz @)
the morphisms defining the corresponding bimodules.

2) &
The topological line Lllj2 on DZ(Z) associated to a bimodule B2~ has the property that

in category C_ o) satisfying the relationships shown in figure 17 with

p?

1,2) ®L
1

(1)
B2 =D!

2.1)
. ®D>Y. (26)

16
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Dél) Déz)

Figure 14: The construction of the topological defect Dz(z) by gauging algebra A

on Dz(l). The blue lines on the left hand side are algebra objects A(ll’z), while the

tri-junctions are morphisms comprising the algebra.

(1,2)

(1) - (1) 2)
D, D, D,
(1,.2)
D,
Figure 15: The construction of the interface Dfl’z) using the algebra A(?). The blue
(1.2)

lines on the left hand side are algebra objects A} ™, while the tri-junctions and ends
of the lines are morphisms comprising the algebra.

' . pYsip iVsrp o D{Mslep pV;srep . .
See figure 18. The morphisms B, , By , By and B, are defined in terms of

(2)
sz s Dil’z) and Diz’l) as shown in figure 19.

3.3 Generalized Gauging: General p

The above description for p = 2 is expected to generalize to general p. DIEZ) can be ob-

tained from D,E” by performing a generalized gauging of the symmetry CT,D;”’ The gauging

is expected to be described by what we call a (p — 1)-algebra A2 in the (p — 1)-category

C. .. The (p — 1)-algebra A1:2) is comprised of an object A;lizl) and multiple i-morphisms
)

for 1 <i < p — 1 describing various ways in which A;lizl objects can join, split, be annihilated
and created. The object A;lizl)

¢!
T,

can again be described as

(1,2) (1,2) (2,1)
Ay =Dy @Dy, (27)
while the various i-morphisms are described in terms of different configurations of DISLZ) and

(2.1)
D>,

17
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1
oM

1 Bl Bl Bl
(1) (1)
D, *slp D, '5rp
B,? B,?
(1) (1)
B ;B =
p{Msip p{Mirp
B,? B,?
12 402 _p® (12) (12) bV (12 412 ALY ALY
A} A B? A Ay B* A} A 1 1
.2) (1.2) A 02 pP AL A2 oV 402 402)
A Ay 1 1 B, 1 1 B; 1 1

A(ll,z)

1) (1) (1)
Dy A(ll,z) lejz A(ll,z) A(ll,z) B?Z A(11,2>

(1)
Figure 16: Conditions that a bimodule BP2 ~ has to satisfy.

D}()z) is then obtained by placing a mesh of the (p — 1)-algebra A2) along Dél). The

)

topological sub-defects of DISZ describing the symmetry (p — 1)-category C:r () are obtained
>7p

in terms of appropriate bimodules of the (p — 1)-algebra A2,

In this paper, we only consider the case of p = 2, and hence do not need to develop the
theory of generalized gauging for general p expanding the sketch discussed in this subsection.
See [24,25,54-56] for prior work in this direction.

4 0-Form Gauging of Higher-Categorical Symmetries
In this section, we study a sub-symmetry of T given by a (d — 2)-category C;q « which is a

subcategory of the (d —1)-category Cs capturing the full symmetry of . We have a group action
on Ciy ¢ given by a finite group G, which may be non-abelian. The group action corresponds

18
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)
D2

2
G G G G
CDZ(I);ZP CDZ(I);rp
0 m 0 m
(1) (1) (1) (1)
D, — D, D, D,
C.? - B,? C,? B.?
1 1 1 1
m BDS)?IP m ofVirp
0 0
(1.2) p{" (12) _p{V p{M (12) bV ,(12)
A B? Ay 1 B? Ay 1 A
12 _p" (12) p{M p{M  ,(12) p{M (12)
A 1 A C? c: 4 c? A
\\ oD /
0 m CDZ(I);rcp m
(1) (1) (1) 0 (1)
D, — D, D, — D,
o B, ’ o B,
m D;l);lcp m Dz(l);rcp
0 0
(1) (1) (1) (1)
DZ D2 DZ D2
B, B, B, B,

(1)
Figure 17: Conditions satisfied by a bimodule morphism m from bimodule BDz1 to

)
bimodule .

(1)
(2) D.
LD2 B] 2

D@

)
D, 2

D§1’2) D§1,2)

(2)
Figure 18: The relationship between a topological line defect L?z living on Déz)

. . . IS
the associated bimodule object B;* living on Dél).

and

to a O-form symmetry of T which can be gauged, resulting in the theory T/G. We describe a
construction of the corresponding (d —2)-category Cig ¢/ of the full symmetry (d —1)-category
Cs /g of the gauged theory T/G in terms of the data of Cjq ¢ and the action of G on it.

The classes of G that we consider are restricted to be of the form?

G=T xThx - xI, (28)

where T; are abelian groups. This is because we describe the effect of gauging a finite abelian
group I', and the effect of gauging G can be deduced by sequentially gauging the finite abelian
groups I;.

3These do not exhaust all non-abelian finite G. An example of a group that cannot be written in this fashion is
the group (of order 8) formed by quaternions.
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e
Bl2
(1) — (1) oy (1)
D, D, B,? D,
(1,2) p{M
A 312
: o . pMip D;” (12)
Figure 19: The definition of morphism B> in terms of L;* and D, . Other
pDorp  pMiep .

morphisms By* ", B, and B(])) 2 P are defined similarly.

A particularly interesting application would be the construction of higher-categories cor-
responding to non-invertible symmetries starting from a group action on higher-categories
corresponding to invertible symmetries.

4.1 Setup

The category Ciq < is the category describing symmetries localized along the codimension-1
identity defect of T. In other words, Cjy ¢ is obtained from the full symmetry category Cs by
forgetting about non-trivial codimension-1 topological defects.

On the other hand, G is a 0-form symmetry of €. This means that C; contains objects

Dé‘gjl parametrized by the elements g of G. We further assume that there are no 1-morphisms

between Dc(lg_)1 and Dc(ig_q for g # g’. This condition is equivalent to requiring that there are
no topological defects in the twisted sector of the G O-form symmetry. If this condition is
violated, one obtains extra codimension-two (and also higher codimensional) defects in Cig 5/
that are not accounted by our procedure discussed below. These extra defects are also known
as topological defects lying in non-trivial flux sector, or as topological Gukov-Witten operators.
Our procedure can be applied to such cases, but in such cases we only construct a subcategory
of the full category Cig /g, which can be understood as the subcategory formed by defects
lying in the trivial flux sector.

The tensor product of these objects follows the group operation on G:

¥ @D = D). (29)

We assume that G does not participate in any higher-group structures and 't Hooft anomalies.

The action of G on Cq ¢ is realized as follows:
Consider an object D;_5 of Cjq 5. An element g € G sends D;_, to an element g-Dy_5 of Cig ,
which can be computed as

—1
8Dy > :Dég_)2®Dd72®D§g;2)) (30)

()

using the fusion structure on 1-morphisms of the category Cs, where D>,

(d — 2)-dimensional defect on Déf)l. See figure 20.

Now, consider a 1-morphism Dy _3 of Cig ¢ from an object D;_, of Cjg z to another object
D, , of Ciqz. An element g € G sends D;_3 to a 1-morphism g - Dy_3 of Cjq < from the object

is the identity
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& Dg_»

Figure 21: Action of the symmetry g € G on the defects D;_5 as in equation (31).

g -Dy_j of Cig ¢ to the object g - D}, of Ciq ¢, which can be computed as

-1
g-Dy_3=D¥.®Dy_s®D% ), 31)

()

using the fusion structure on 2-morphisms of the category Cs, where D>,

(d — 3)-dimensional defect on Dég_)l. See figure 21.

Continuing inductively, consider a p-morphism Dy_,_5 of Cjqx from a (p — 1)-morphism
Dy_p—1 of Ciq x to another (p — 1)-morphism D, o1 of Cig.z. An element g € G sends Dy_,_»
to a p-morphism g - Dy_,_, of Ciqz from the (p — 1)-morphism g - Dy_,_; of Cjg s to the

(p — 1)-morphism g - D(’PI[F1 of Ciq =, which can be computed as

is the identity

-1
g 'Dd7p72 = Dég,)p,2®Dd7p72 ®D§{p32, (32)

using the fusion structure on (p + 1)-morphisms of the category C, where p'¢ is the

d—p—2
identity (d — p — 2)-dimensional defect on Dc(ig_)l. We will restrict G to be an abelian group
from this point on.

4.2 Gauging in 3d

We begin the discussion of gauging finite, abelian G from the special case of d = 3. This
has been considered in the literature earlier [30, 31] in the context of 3d TQFTs, and our
discussion is mostly a review of these works but now applied to general 3d QFTs that need not
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be topological. We formulate the discussion such that it is amenable to generalization to higher
dimensions. The category Ciq < is a standard 1-category describing the genuine topological line
defects and the topological local operators living at their junctions. Our task is to determine
the 1-category Ciq 5/ of the 3d theory T/G obtained after gauging the 0-form symmetry G of
the 3d theory %.

Let us begin by discussing the objects of Ciq /¢, i-e. the genuine line defects in the theory
%/G. First of all, gauging G produces Wilson line defects for the gauge group G, which are
topological as G is finite and abelian. We will discuss a non-abelian example in section 5.3.
These line defects form a sub-category

Rep(G) = Vecg (33)

of Cig,x/g, where Vecg is the category of vector spaces graded by elements of the Pontryagin

dual G of G. Recall that G is the group formed by irreducible representations of the finite group
G (which are all 1-dimensional) under tensor product operation. This subcategory provides
objects in Cjq 5/ labeled by representations of G. The irreducible representations of G, i.e.

elements of G, give rise to simple objects of Ciaz/c-

In addition to the G representations, there are objects of Ciq ¢/ arising from the objects of
Ciqs- However, not every object of Ciq ¢ descends to an object of Ciq 5. This is because only
those objects of Ci4 ¢ that are left invariant by the action of G are gauge invariant in the theory
T/G, so only those objects survive as objects of Ciq 5/ A simple object Dio)
this way can be described as the object

of Ciq 5/ arising

p{? =pol (34)
i€0
in the category Ci4 <, where Dii) are distinct simple objects of Cjq ¢ lying in an orbit O of the G
action.
Finally, there are simple objects of Ciqs/c which are mixtures of the two above kinds of

simple objects, which can be thought of as objects Dio)

(0)
1

for i € O. Such an object Dio

dressed by Wilson line defects. Con-
cretely, to a simple object D
(i) can be dressed by representations of the

1
stabilizer G,. Thus the simple objects corresponding to Dfo) can be represented as

, we can associate a subgroup G, of G, which is the stabilizer

of any object D )

Do), (35)

where R, is an irreducible representation of G, or in other words, an element of the Pontrya-

gin dual group éo of Gp. The bare object D§O) is obtained by choosing R, to be the trivial

representation. The simple objects of the subcategory Rep(G) of Cig « /c are obtained as special

cases of Dl(O’RO) by taking O to be the orbit formed by the identity object of Cj4 <, for which the

stabilizer is the whole group G. We represent these simple objects as
M, (36)

where R is an irreducible representation of G. The identity object of the category Ciq /¢ is
denoted as .
D, (37)

which is obtained by choosing R to be the trivial representation of G.
Let us now discuss the fusion operation on the objects of Ciq ¢/ First of all, we have

p® @p*) — pF¥) (38)
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(0")

(0")

gauge G
Dy€R —_— Dy

0)

(0) (0") ( (0)
D, D, D, D

1

Figure 22: A local operator transforming in representation R of G before gauging G,
is attached to a Wilson line in representation R of G after gauging G.

where R,R’ € G, and RR’ € G is the product of R and R’ in G. Next, we have

Dio,RO) ® DiR/) _ DfO’RORb) , (39)

where R}, € (A}O is the image of Re G under the surjective homomorphism

To: G— G, (40)
dual to the injective homomorphism
ip: Gop— G, (41)
descending from the fact that G, is a subgroup of G.
The fusions D§O’RO) ®D1(O,’Rg') are more complicated. For this purpose, we consider the

fate of local operators, i.e. morphisms of Cjy « under gauging. Because we have an action of G
on Ciq ¢, the morphisms (between objects left invariant by G action) can be decomposed into
representations of G. After gauging G, a morphism transforming in representation R of G is not
gauge invariant, but can be made gauge invariant by attaching a Wilson line in representation
Rof G. See figure 22. This phenomenon provides information about the morphisms of Cig 5/,
and hence in particular the tensor product structure on objects of Cig 7 /¢-

Let us begin by verifying, from this point of view, the fusion relation (39) for the case when
R, is trivial, in which case the fusion relation becomes

p!9@p® = p{OF), (42)

The verification amounts to showing that there is a 1-dimensional space of morphisms from
0), .
( )) in the cat-

1
egory Ciq ¢ that form representation R~ ! € G under the G action. The endomorphism space

of
p” =@n;’ (43)
ie0

Dio) to Dio) (which can also be referred to as endomorphisms of the object D

in Ciq ¢ has dimension |O|, where |O| denotes the number of elements i in the orbit O. This is

)

because Dii are simple objects, so morphism space from Df) to Dij ) is 6;; dimensional. There

action of the stabilizer group G, on the 1-dimensional endomorphism space of each Dii) has
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(O”,R ”) (O//) (Ol/)
Dl ? Dl Dl
/ " / R//R/71R71
/, %\ .
DiO,RO) Dio Ror) D1<O) Dfo ) D§O) Dio )
Figure 23: We can relate the morphism space Dl(O’RO) ® Dfo Ror) Dio Ron) ot

ter gauging G to the sub-space of the morphism space Dio) ® Diol) — D§o:,) before

gauging G transforming in a specific representation of G determined by the repre-
sentations Ro, RO/ B Ro// .

to be trivial for consistency. Using this fact, it can be easily shown that the endomorphism

space of Dio) decomposes as

@ R, (44)

Reker(my)

where ker(my) < G is the kernel of the map 7 defined in (40). Thus, we have

p!?@p® = p{, (45)
only if R € ker (7)), which agrees with (39).

Now let us say we want to deduce morphisms of Cjq 5/ from object Dio) ®D§O ) to Dfo ),
These can be recognized as the subspace of morphisms between same objects in the category

Ciq = which is left invariant by the action of G. Let V((OO)//() o)
(O/l

Dio) ® Diol) contains dim <V((OO)/:()O,)) copies of D; ) in Cid,z/c> where dim (V((OO)/:()O,)> is the

. . 0
dimension of the vector space V(O

(0),(0)"
Generalizing this, the morphisms of Ci4 5/ from object DfO’RO) ® Dio Ror) 1o Dio Ror) are

be this invariant subspace. Then,

deduced from the subspace of morphisms from Dio) ® Dfol) to DfO”) of the category Ciq s that
transform in representation

R":=R'R7'R7'€G, (46)
for any choices of elements R € n,'(Ry) G,R ¢ m, (Ror) € GandR' € ﬂ:(_)} (Ron) < G.
See figure 23 for an explanation. Let V(((;)};;S(”E'(;CRO,) be this space of morphisms in Cjg 5 /¢ from
DiO’RO) ®D§OI’RO') to D§O”’RO"). Then, D§O’RO) ®D§O,’RO') contains
dim (Vo)) “47)
copies of DiO”’RON).

4.3 Gauging in Higher d and Fusion

We now extend the discussion of the previous subsection to arbitrary d > 4. The category Cig ¢
before gauging is now a (d — 2)-category. Our task is to determine the (d — 2)-category Ciq 5/
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obtained after gauging the 0-form symmetry G of the theory <.

The objects of Ciq 5/ are objects of Ciq ¢ left invariant by the G action, and objects related to
such gauge invariant objects by condensation. If d > 5, then 1-morphisms of Cig ¢ from object
D, _, to object Dclifz of Cig 5/ are obtained as the 1-morphisms from object D4_, to object D’

of Cj4 ¢ that are left invariant by G-action, and 1-morphisms related to such gauge invariilnzt
1-morphisms by condensation. Continuing inductively, if d > 4 + p, then p-morphisms of
Ciq,x/g from (p — 1)-morphism Dy_,_; to (p — 1)-morphism D}, S of Ciq 5/ are obtained as
the p-morphisms from (p — 1)-morphism Dy_,_; to (p —1)-morphism D(’i_p_1 of Cjq < that are
left invariant by G-action, and p-morphisms related to such gauge invariant p-morphisms by
condensation.

Fusion of two non-condensation defects can create condensation defects. That is, if we
consider two p-morphisms of Cjq 5/ obtained directly as gauge invariant p-morphisms of Ciq ¢
without involving any condensation, then the product p-morphism is in general a p-morphism
of Ciq 5/ obtained as a gauge invariant p-morphism of Cjq ¢ with an additional condensation
on top of it. We will describe how the additional condensation can be determined for surface
defects, while leaving the case of higher-dimensional defects to future works.

We still need to describe (d —3)-morphisms and (d —2)-morphisms of Ciq /. These corre-
spond respectively to (genuine and non-genuine) topological line defects and topological local
operators of the gauged theory /G. As in previous subsection, to describe them we need to
also incorporate Wilson line defects created by the G gauging. The analysis is a straightforward
generalization of the analysis in the previous subsection.

First of all, the (d — 3)-morphisms of Cq ¢ that are left invariant by G action descend to

(d — 3)-morphisms of Ciqz/g. Thus, a class of simple (d — 3)-morphisms of Ciq /s are Dl(o)

which can be represented in the category Cig ¢ as

0" =@}, (48)
€0

(i)

1

Ciq,z- Other simple (d — 3)-morphisms of Ciq 5/ are obtained by dressing D§O

where O is an orbit under G action formed by simple (d — 3)-morphisms D, of the category

) by Wilson line

defects valued in @O, which is the Pontryagin dual of the stabilizer G, < G of the orbit O.
These (d — 3)-morphisms are represented as

plOFo) (49)
with RO € éo.

The (d —2)-morphisms of Ciq 5/ from DfO’RO) ®D§O Ro) o D§O Ro") are obtained in terms
of (d —2)-morphisms of C;4 £ from Dfo)®D§O ) to Dio ) as described in the previous subsection.
Similarly, the (d —2)-morphisms of Ciq 5/ from DfO’R°)®Dq DiO/’RO/) to D{O/',RO,/) where D, with
q > 2 is a higher-morphism of Cjy ¢/ are also obtained in terms of (d — 2)-morphisms of Cig ¢
from Dfo) ®p, Diol) to D§OI/), with the only difference in the procedure being that ® is replaced
by ®D .

q

Fusion of Surface Defects and Condensation. We now provide the key to computing the
fusion of topological surface defects in the symmetry category. For this we now describe how
fusion of surfaces can create condensations — and provide numerous examples in the subse-
quent sections.
; (0) (o'
Consider two surfaces D, * and D,
gauging, they have a fusion rule

) described by orbits O and O’. In the theory T before

p{” ©p{’) = @0, (50)
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Diol/)’(oo/)
(0")
D2
(0) (0" ()
D2 ® D2 D1
(0")
2
Dgol/),(ool)

Figure 24: The coefficient n; appearing in (52) is the dimension of the vector space
of local operators shown in the figure.

where Dz(i) are simple surfaces. We have line operators describing the 1-morphisms

0 o’ ) . . . .
Dé ) ®D§ ) Dz(l) in the category Cjq <. These line operators organize themselves into orbits
under the G action such that we can write the above equation as

(0”)

I (51)

p{” @D = @puD

where O” are orbits of surfaces. The right hand side @D of the above fusion is a repre-

sentative of the equivalence class under condensation of DZ(O) ® DZ(O,) in the theory T/G.
Our task is now to describe the generalized gauging on top of each Dé
(0),(09") i the 1-category of localized symmetries C,

first describe the object A(lo”),(oo/)

obtain a line operator D}O”)’(
Cig,z/c- The algebra object can be expressed as

(0”)
2

) This is captured

in terms of an algebra A Let us

",
d,%/G,DY
comprising the algebra. From the gauging procedure, we

00’) describing a 1-morphism DZ(O)®D2(O,) — DéOu) in the category

A0 _ gD (52)

(1)

where D, are the line operators living on p"

and n; is the dimension of the vector space

2
formed by local operators living at the end of Dfl) along D§O 1099 25 shown in figure 24. This

follows from (19) applied to the current situation in e.g. figure 24.
Thus, the algebra object A(lo"),(oo’) is described by local operators living on D
The morphisms comprising the algebra can be roughly determined as follows. We leave
a full description to a future work. In many of the examples encountered in this paper, the
algebra object would uniquely fix the algebra morphisms, so we will not require this machin-

ery. The algebra product AE)O”),(OO/);p comes from fusing these local operators along the line

D%O )>(OO ) AE)O )’(OO )scp

algebra evaluation and co-evaluation morphisms AE)O 100:¢” and Ag 1(009:¢eY ;e also easy
to determine as follows. There is a one-dimensional space of local operators living along
NCRREED ("),(007):ev s the

1 0
L . . . 0"),(00");cev .
projection map from all local operators to this one-dimensional space, and the AE) ),(007)seev 4

the inclusion map from this one-dimensional space to the space of all local operators.
In summary the fusion of surfaces is computed as follows:

(0"),(00")
N .

. The algebra co-product is the adjoint of the algebra product. The

that are not attached to any other line operator. The morphism A
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Diou)’(ool)
(0) (0") (0)
D2 ® D2 D2
(0) (0") (1)
Dl ® Dl Dl
(0) (0") (0)
DZ ® DZ DZ
p(0"):(00")

1

Figure 25: The coefficient n; appearing in (54) is the dimension of the vector space
of local operators shown in the figure.

1. Determine the orbit decomposition of the surface fusion as in (51).

),(00")

2. Compute the algebra object A(lol/ which characterizes the gauging of the localized

symmetry on Dg”. This is computed as in (52) in terms of certain 2-morphisms captur-
ing various kinds of local operators living on the line defect describing a 1-morphism

(0) (0") (0)
D,” @Dy’ — Dy’
3. The morphisms comprising the algebra are determined as described in the previous para-

graph.

4. Then the fusion of Déo) ®D2(O/) will contain a term

Déoll) 53
4,007 3

(0")
2
A0"),(00) using which one performs generalized gauging associated to the condensa-

tion. The fusion of condensation defects, which are a central part of the symmetry
category, will not be discussed in this paper, as it requires developing further technology.
The fusion of condensation defects have appeared in [47-50].

which describes the condensation appearing on top of D in terms of the algebra

In a similar way, we can describe the fusion of two arbitrary lines Dfo) and Dfol) living

) and Déol). This is described as a collection of bimodules B(©")
(Ol/) (O//)
2 1

respectively in Déo in the sym-

metry categories associated to D is described

as

appearing in (51). The bimodule object B

gO ) = @iniDii) , (54)

B
(i) (0" . . .
and n; is the dimension of the vector space

1 2
formed by local operators living at the end of D(l), Dio) and Dfo ) along Dfo 109 25 shown

in figure 25.

where D. "’ are the line operators living on D

The morphisms B

(© );lp, B );rp, B(()O P ang BLO)rep comprising the bimodule are ob-

0 0 0

tained as follows. The morphisms B(()O”);lp and B(()O”);rp are obtained by fusing the above local
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operators describing the bimodule object with the local operators describing the algebra ob-
ject, and the morphisms B(()O”);ZCP and B(()OH) ""P are obtained as adjoints of the above product
operations. We leave a precise analysis to future work.

It should be possible to generalize the above procedure to describe condensations included
in the fusion of higher-dimensional topological defects, and would be an interesting future

direction to develop.

5 Examples: Non-Invertible Categorical Symmetries in 3d

In this section we provide examples of 3d theories whose topological line defects and local
operators form a non-invertible symmetry described by a standard 1-category. All the examples
we discuss can be obtained by gauging an invertible 0-form symmetry of 3d theories containing
invertible 1-form symmetries upon which the 0-form symmetry acts non-trivially. The main
example is the gauging of Z, on pure Spin(2N) gauge theories, which is carried out in section
5.1 and appendix A.1. We also provide an example of gauging of a non-abelian finite symmetry
S5 in section 5.3.

In subsection 5.2, we connect with established literature [30, 31] pertaining to gauging
0-form global symmetries in 3d TQFTs by reviewing the paradigmatic example of gauging Z,
electromagnetic duality symmetry in the topological Z, gauge theory [57]. In this example
we obtain the sub-category of the symmetry category of the gauged theory corresponding to
the zero flux sector®, which agrees with the known result [31, 58].

In most of the examples presented, the symmetry categories describe discrete symmetries,
but we also provide an example in subsection 5.4 of a symmetry category describing continuous
symmetries, or in other words a continuous symmetry category.

5.1 Pure Pin*(4N) Gauge Theory in 3d

In this subsection, we begin with pure Spin(4N) Yang-Mills theory in 3d, which has a 1-form
symmetry group Z, x Z,. The outer-automorphism of the gauge algebra so(4N) provides a
Z- 0-form symmetry of the theory that exchanges the two Z, factors of the 1-form symmetry
group. Gauging this O-form symmetry results in the pure Pin™ (4N) Yang-Mills theory in 3d,
which we show to contain a non-invertible categorical symmetry descending from the 1-form
symmetry of Spin(4N) Yang-Mills theory.

We label the two Z, factors in the 1-form symmetry group of Spin(4N ) theory as ng) and

ch) depending on whether the Z, leaves the spinor irrep S invariant, or the cospinor irrep

(V)
2

invariant. Thus, we express the 1-form symmetry group I'") as

C invariant. The diagonal Z, factor can be represented as Z, ’ as it leaves the vector irrep

r® =z zl9. (55)

The outer-automorphism provides a 0-form symmetry group

r© -z, (56)

which exchanges ng) and ch), while leaving the Zév) invariant.
The data of 1-form symmetry can be converted into the data of a 1-category Cgin(an) as
follows. The simple objects of Cgpin(4n) correspond to topological line operators implementing

*See the discussion regarding restriction of our analysis to zero-flux sector at the beginning of section 4.1.
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the 1-form symmetry I'"), and we write the set of simple objects as

= {p{¥,pf,p{" D"}, (57)

ob
CSpin(4N )

where Dfd) is the identity line, and DY
spectively to generators of Zg) 1-form symmetries. The Z, 0-form symmetry acts on the 1-form
symmetry generators as

) are the topological line operators corresponding re-

Dl(s) — D§C) ) (58)

and leaves Dfd), va)
r,

Now we gauge Z, to obtain a category Cp;,+ (4N) describing topological line defects and
local operators of the Pin™ (4N) theory. A subset of simple objects of Cp, + (4N arise as objects

invariant. The tensor product of these objects follows the group law of

of Cgpin(4n) left invariant by the Z, outer automorphism action. These are Dfd), Div) and

0= (0P @n{?) | (59)

Spin

where the subscript Cgpin(4n) on the RHS reflects that the object DESC) is decomposed as this
direct sum only in the category Cpin(4n), but it is a simple object in the category Cpip+ (4y)-
Other simple objects of Cpy,+(4y) are obtained by dressing with Wilson line defects. Note

that the stabilizer for Diid), D}V) is the whole O-form symmetry group Z,, while the stabilizer for

Disc) is trivial. Thus, we obtain new simple objects of Cp;,+4y) by dressing Diid), Div) with
the non-trivial irrep of Z,. We call the resulting simple objects as Di_), va_) respectively.
Thus, the full set of simple objects of Cp;+ 4y is
ob _ [pld) (=) H(SC) (V) (V)
ey = {01,010, D, D" (60)
The topological line defects
{p{,p{"} (61)

are the Wilson line defects for the gauged Z, 0-form symmetry, and hence generate the dual
Z- 1-form symmetry arising as a result of Z, 0-form gauging. Their fusion rules are (38)

Diid) ® Dfd) _ plid).

1
p{Y@p") —p), (62)
D\ @p!) = piY
following the representation theory of Z,.
Moreover, from (39) we have
Dl(SC) ®D§id) _ D1(SC) ’
Dfsc) ®D1(_) _ D§SC)’
D§V) ®D§id) _ ng),
(63)
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in the category Cpip+ (4n)-

(SC)

1 ®D£V) and D£SC) ®D£V7) in CPin+ (4N)- Notice that

Let us now determine the fusions D
in Cgpin(4ny we have the fusion

(ienf),  =(0PenNen), = (o en)
CSpin(4N) CSpin(4N) CSpin(4N)
(64)
()
= (%)
CSpin(4N)
which implies that, in the category Cp;,+ (4N)> only at most a single copy of Disc) can appear

(sc
1

these fusions, we need to study the Z, representations formed by morphisms from Disc) ®D£V)

in the fusions D ) ® va) and Dl(sc) ® Div’) . To determine whether or not Dgsc) appears in

to Dgsc) in Cgpin(an)- There is a 2-dimensional vector space of such morphisms of Cgpin(4n)

spanned by a morphism D(()S®C’V) from Dis) ® ch) to D§V), and a morphism DSC®S’V) from
Dic) ® D§S) to va). It is clear that Z, outer automorphism acts as the exchange
DéS@C,V) DéC@S,V) . (65)

Thus the morphism space decomposes as 1@ 1_; under the Z, 0-form symmetry, where 1 de-
notes the trivial Z, rep and 1_; denotes the non-trivial Z, irrep. Since both Z, representations

are present, we learn that
V) sC)

B

SC)

(SC) (
D@D, =D

(
1
(66)
(SC) (vo) (
D"’ ®D, ' =Dj

are the descending fusion rules in the category Cpip+ (4n)-
Finally, we consider the tensor product p® ®D1(SC)

1 in the category Cp;,+ (4y)- Notice that
in Cgpin(4ny we have the fusion

(0 @ D*) = (20{¢ 2p{"") , 67)
Cspin(4n) Cspin(4n)
which implies that, in the category Cp;,+ (4N)> only Dfd) , fo), va) and Div’) can appear in
the fusion Dl(sc) ® Disc). To determine the precise multiplicity of these objects, we need to
study the Z, representations formed by morphisms from Dl(sc) ®D§SC) to Dl(id) in Cgpin(an) and
the Z, representations formed by morphisms from Disc) ® DI(SC) to Div) in Cgpin(4n)-
Let us first consider the Cgpin4y) morphisms from Disc) ® Disc) to Dfd). There is a 2-

(S®S,id)
0

from DEC) ® ch) to Dfd). It is clear that

dimensional vector space of such morphisms of Cgpiy4y) spanned by a morphism D,
from Dis) ® Dis) to Dfd), and a morphism Déc®c’ld)
Z,, outer automorphism acts as the exchange

D éS@S,id) D (()C®C id) (68)

Thus the morphism space decomposes as 1 @ 1_ under the Z, O-form symmetry. Since there
is a single copy of both Z, representations, we learn that Dfsc) ®D1(SC) contains a single copy

of Dfd) and a single copy of D§_) in Cpin+ (4n)-
Now consider the Cgpin(4y) morphisms from p¢ ®D§SC) to D\, There is a 2-dimensional

1 1
vector space of such morphisms of Cgpiy(4n) Spanned by a morphism Dés®c’v) from Dis) ®D§C)
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to D§V), and a morphism DéC®S’V) from D§C) ®D§5) to D). 1t is clear that 7, outer automor-

1
phism acts as the exchange

(S®C,V)

\S@CY) ., pleesy) (69)

D

Thus the morphism space decomposes as 1 @ 1_ under the Z, 0-form symmetry. Since there
is a single copy of both Z, representations, we learn that Disc) ®D§SC) contains a single copy

of D§V) and a single copy of Div’) in Cpin+ (45)-
Combining everything, we learn the fusion rule

D§SC) ®DfSC) _ Diid) @fo) @Di‘/) @DSL) (70)

Of Cpin+(4n)- Since the RHS contains objects other than Dfld), we find that Disc) is a non-
invertible topological line defect. Thus, the category Cp;+ (4y) describes non-invertible sym-
metries of the Pin™ (4N) gauge theory.

From the fusion rules, we observe that the resulting category Cp;,+ 4y can be recognized
as one of the Tambara-Yamagami categories based on the abelian group Z, x Z,. There are
four such categories [59] (see also Section 5.5 of [8]), and it is a natural question to ask
which one is Cpi,+ (4y). The difference between the four categories is captured in the data of
the associators. We can compute the associators of Cpy,+ 4y from the associators of Cyin4n),
where the latter associators are trivial as Cgpin(4y) describes a non-anomalous 1-form symmetry.
From this computation, we find that

Chin* (4n) = Rep(Dg), (71)

i.e. Cpip+(4n) is the category formed by representations of the dihedral group Dg, which is one
of the four Tambara-Yamagami categories.

There is an alternate derivation of Cp;,+4y) Which makes it manifest that it has to be
Rep(Dg). We first gauge the Z5 x Z$ 1-form symmetry to go to the pure PSO(4N) Yang-Mills
theory in 3d. After gauging, we obtain a dual Zg X Zg 0-form symmetry. The Z, outer-
automorphism is still a O-form symmetry, and it now acts on the Z‘g X Zg 0-form symmetry by
exchanging Zg and Zg. Thus, the total 0-form symmetry group of the PSO(4N) theory is

r©® = (5 x z5) % Z, = Dy, (72)

which is the dihedral group Dg. On the other hand, the 1-form symmetry group of the PSO(4N)
theory is trivial. Now, the pure Pin* (4N) Yang-Mills theory is obtained from the PSO(4N)
Yang-Mills theory by gauging both the Zg X Zg O0-form symmetry and the Z,
outer-automorphism O-form symmetry, or in other words, by gauging the full Dg 0-form sym-
metry. Since there is no 1-form symmetry, the category Cpso(4y) associated to the PSO(4N)
theory is the trivial category

Cpso(an) = Vec, (73)

which is the category of ungraded vector spaces, and the action of Dg on this category is
trivial. After gauging Dg, we obtain non-trivial topological line defects arising as the Wilson
line defects forming representations of Dg, and thus we find that

Chin* (4n) = Rep(Dg) - (74)

In appendix A.1 we compute in a similar fashion the symmetry category for Pin™ (4N +2) and
find it to be also

Cpin+ (an+2) = Rep(Dg) . (75)
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5.2 Ising x Ising from Z, Gauge Theory in 3d

In this subsection, we discuss the well-known example of gauging Z, electromagnetic duality

in the Z, topological gauge theory. It is known that the resulting TQFT obtained after such a

gauging corresponds to the Drinfeld double of the Ising fusion category. Within our approach,

we access the untwisted or zero flux sector of this resulting (gauged) fusion category.
Consider the topological Z, gauge theory described by the action

S:lTEJ b1U6a1, (76)
M

where by,a; € C}(M,Z,). The model has a 1-form symmetry group Z, x Z, generated by the
electric and magnetic lines Die) (y) =exp {in §Y al} and Dim) (y) =exp {in §Y bl} respectively.

We denote the corresponding Z, subgroups as Z and Z7' and thus the 1-form symmetry as
1
r =z xzm, (77)

The diagonal subgroup of I'") is generated by a fermionic line Dif ) (y) = Die) (y)Dfm) (y)- The

topological lines form a 1-category Cz, whose simple objects are

cg = {p{¥,p}, o™, D"} . (78)

Additionally, there is O-form symmetry
r® =zem, (79)
which acts on the objects of the 1-category by exchanging as

D! «— pi™, (80)

and leaves the remaining objects Dfid) and fo ) invariant. Note that this is precisely the same
symmetry structure as that obtained in pure Spin(4N) gauge theory described in section 5.1.
Upon gauging the 0-form symmetry ZS™", the same analysis as in section 5.1 goes through i.e.
the objects Dl(e) and D§m) combine into a single object Dfe’m) = (Die) G—)Dim))CZZ as they form
a single orbit under the Z3™ action. Meanwhile, the objects Diid) and fo ) , each split into two
objects which carry an additional Z, representation label, i.e.,
(d) (f) (id) (=) () H(F-)
(o9, 07)  — (i, p{”, (", D7) . (81)

Czy Cayr()

There is a crucial difference between the symmetry category obtained after gauging Z5™ in the
topological Z, gauge theory and the analagous symmetry category obtained in the Pin_ (4N)
theory upon gauging the outer-automorphism 0-form Z, symmetry. Since the Z, gauge theory
is topological, the resulting theory obtained after gauging Z:™" contains additional topological
line operators corresponding to the fluxes or twisted sector operators of Z5™. In contrast, since
Spin(4N) is not topological, the Z, flux lines are not topological and hence do not contribute
to the symmetry category of the Pin, (4N) gauge theory. Let us recall the fusion rules com-
puted in section 5.1, with a relabelling of objects (S,C,V) — (e, m, f ). Notably, these form a
subcategory of the fusion category Ising x Ising. The objects of which are

e~ {0, b}

Ising

COb _ { (82)
Tsing


https://scipost.org
https://scipost.org/SciPostPhys.14.1.007

Scil SciPost Phys. 14, 007 (2023)

The objects in the zero flux sector of the category Cz, r() can be identified with a sub-category
of Ising x Ising by identifying the labels (id) ~ (1), (f) ~ (¥), (f =) ~ (), (=) ~ (3p¢) and
(e,m) ~ (0&). Similarly, the remaining objects in Ising x Ising can be identified with the flux
lines of the gauged category Cy, - [30,31]. The Z, gauge theory can be obtained by gauging

a dual 1-form Z, symmetry in the Ising x Ising theory, generated by (—) ~ ().

5.3 Pure Spin(8) x S; Gauge Theory in 3d
Consider Spin(8) gauge theory, which has a
r®—s, (83)

0-form outer-automorphism symmetry, which acts on 1-form symmetry

W =75 x 78, (84)
by permuting the generators of Z5, Zg and Z‘Z/. We will now gauge this O-form symmetry and
obtain a 3d Spin(8) x S; gauge theory. To do this we first gauge a Z5 subgroup and then the
full S5.
5.3.1 Gauging Z; Spin(8) in 3d
Let us gauge the Zs subgroup of S; O-form symmetry, which acts as cyclic permutations

S c 14 s
Z5— 1S — 7Y - 75. (85)
This produces pure Yang-Mills theory in 3d with gauge group

Spin(8) x Zs. (86)

The category Cgpi, describing 1-form symmetries of Spin(8) theory descends to a category Cz,
of topological lines and local operators in the Spin(8) x Z; theory. Its simple objects are

COb {D(ld) D(w) D(w) DiSCV)}, (87)

s 2
where Dfd) , Diw) and wa ) are the Z5 Wilson lines whose fusion obeys group law of Z5, and

Discv) _ (Dis) @Dic) 69Div)) ’ (88)
Spin
as a Z invariant object of the category Cg,;,, associated to the symmetries of the Spin(8) theory.
Since the stabilizer of D{S) is trivial, there are no Wilson line dressings of Discv) in Cyg, .
The fusion rules of Discv) with the Wilson lines are simply
scv ® D Dgscv) ’ (89)

with i € {id, w, w?}.

To determine the fusion D(SCV)

® D(SCV), we need to study morphism spaces

(SCV) ®D(SCV) (id) and Discv) ®D(SCV) Discv) in the category Cgpin,. The morphism
space Discv) ®D(SCV) Dfld) is three-dimensional, being generated by morphisms

DS . p) g p®) _, plid

B

DéC ,C; ld) ( )®D( ) Diid) ) (90)
D(()‘/,V;id) . Div) ®D§ ) N Dild) ,
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which decomposes in terms of representations of Z5 as

3=1®1,®1,:, (91)

where 1, is the representation in which the generator of Z5 acts by multiplication by w, and 13)
is the representation in which the generator of Z4 acts by multiplication by w?. On the other

hand, the morphism space Dgscv) ®D§SCV) — Discv) is six-dimensional, being generated by
morphisms
DéS,C;V) . D§S) ®D§C) D§V):
D(()C,V;S) . D§C) ®D§V) R D§S) ’
D(()v,s;C) : D§V) ®D§S) ch),
D(()C,S;V) . D§C) ®D1(S) Df‘/): (92)
Dév,c;S) : va) ®D§C) DiS)’
D(()S,V;C) . D§S) ®D§V) D§C);
which decomposes in terms of representations of Z5 as
6=2(101,®1,). (93)
From this, we learn that
D§scv) ®D£scv) _ Dfd) @Dl(w) @DY*’Z) @2D§scv). (94)
In fact, we can recognize the full category C, as
Cz, = Rep(Ay), (95)

where A, is the order 12 alternating group permuting 4 elements. This follows from the fact
that
A4 - (Zz X Zz) D! Zg (96)

is part of the O-form symmetry of the PSO(8) theory, which is being gauged to construct the
Spin(8) x Z5 theory.

5.3.2 Gauging S; in Spin(8) Gauge Theory in 3d

Now consider gauging the full S; 0-form symmetry of the Spin(8) theory to construct pure
Yang-Mills theory in 3d with gauge group Spin(8) x S3. This can be obtained by gauging the
Z, O-form symmetry of the Spin(8) x Zj theory. Let us call the category associated to the
Spin(8) x S3 theory descending from Cy, as Cs,.

Let us deduce simple objects of Cg,. First of all, we obtain Wilson lines

{p{,p{7}, 97)

associated to the gauged Z,. Then, we obtain simple objects of Cg, from orbits formed by
simple objects of C;, under the Z, action. From this we obtain

(UC()Z w (JJ2
p{**" = (o ®p{*) (98)
3
and (scv) (scv)
D, = (Dl >Cz3 . (99)
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Since the stabilizer of DI(SCV)

another simple object

is non-trivial, we can dress it with a Z, Wilson line to obtain

D). (100)
In total, the simple objects of Cg, are
b (id) (=) plew?) H(SCV) (SCV_)
e = {p¥, p{~), o, DY) p** (101)
Some of the straightforward fusion rules are
(=) & pleoe?) (we?)
D, "®D, =D, ’
D§ )® §scv) _ Discv,) , (102)
(=) (scv_) (scv)
D, "®D, =D,
To determine Diwwz) ® Dfscv) and Diwwz) ® Discv,), we note that the morphism space
(ww?) (scv) (scv) . . . . .
D, ® D, — D in Cz, is two-dimensional, spanned by the morphisms
pleSeVisev) . p(w) ®D(scv) _, peY)
((c)oz,scv;scv) . th) 1(scv) 1(ch)’ (103)
D : D) '®Dy — D ,
which decomposes under the Z, action as
2=101_, (104)
leading to the fusion rules
Diwa) ®D(scv) _ D§SCV) er)Dfscv,) ’
(ww? (Scv_) (scv) (scv_) (105)
Dy ®D =D, ®D, .
(we?) (we?) (id) .
To determine D ® D , we note that the morphism space D; ® D, — Dy in
Cz, is two- dlmenswnal spanned by the morphisms
Déw w%id) | . Diw) ®D§w2) R Diid) )
(0 wsid) | (w?) (@) (id) (106)
DO ? . Dl ® Dl - D1 >
which decomposes under the Z, action as
2=1p1_. (107)

2 2 2
On the other hand, the morphism space waw ) ® waw) — waw) in Cz, is also
two-dimensional, spanned by the morphisms

[ONOND) w w 0)2
D@’ . pl@)@p _, p©),

(wZ wz.w) (wZ) (wz) (w) (108)
D" DI @Dy - DI,

which decomposes under the Z, action as

2=101_. (109)
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Combining the above, we are lead to the fusion rule

p{®*) @ p(@*?) _ pid) @ p() @ p(ee?) (110)
Finally, to determine fusion rules D(SCV ® Dy SCV) SCV ) ®D(SCV ) SCV ®D(SCV )
we note that the morphism space D (S¢V) ® D, SCV) D(ld) in Cz, is one- d1rnens1onal which

is left invariant by the Z, action. The morphism space Dgscv)

two-dimensional, spanned by the morphisms

®D§SCV) — Diww ) in Cz, is

Déscv,scv;w) : Dfscv) @Dgscv) N Diw) ’
(SCV,SCV;w?) (scv) (scv) (w?) (1D
Dy e p Y @Dt — Dy
which decomposes under the Z, action as
2=11_. (112)

The morphism space D§SCV)

the morphisms

(SCV) _ pscv)
1

® D, in Cz, is also two-dimensional, spanned by

(
Dy

D(()scv,scv;scv)(b) _ (Déc,s;v) +D(()v,c;s) +Dés,v;c))

>

SCV,SCV;SCV)(a) _ (Dés,c;v) D
Spin

(C,V;S) (V,S;C)
V) 4 pf )

(113)

b)
Spin

where we have expressed them as morphisms of Cgy;;, to make the action of Z; on them man-
ifest. The Z, acts as the exchange

Déscv,scv;scv)(a) - Déscv,scv;scv)(b). (114)
Thus, the morphism space D;scv) ®D(SCV) D§scv) in Cz, decomposes as
2=101_ (115)
under Z,. Combining the above, we are lead to the fusion rules
scv ®D (scv) Diid) ®D£ww2) EBDl(scv) @Dfscv,) ’
(scv ®D(scv ) Dgid) @wawz) 69Dl(ch) (—DDfSCV’), (116)
(scv) ®D(scv ) D( )@Dl(wwz) 69Dfscv) @Discv_)
We can in fact recognize the full category Cs, as
Cs, = Rep(Sy). (117)
This follows from the fact that
Sy = (Zy x Zy) x Sg (118)

is the O-form symmetry group of the PSO(8) theory, which is being gauged to construct the
Spin(8) x S5 theory.
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5.4 Pure O(2) Gauge Theory in 3d

Pure Yang-Mills theory in 3d with gauge group O(2) can be constructed from pure Yang-Mills
theory in 3d with gauge group U(1) by gauging the charge conjugation Z, 0-form symmetry.
The U(1) theory has a

rY —uQ) (119)

1-form symmetry. The
r® -z, (120)

charge conjugation symmetry acts by complex conjugation on D, This 1-form symmetry
descends to a continuous non-invertible categorical symmetry in the O(2) theory.

The symmetry defects that implement flat U(1) backgrounds can be organized into a 1-
category Cy (1), which has simple objects

e, = {p”|0er/z}. (121)

o
u(l) =

)

Physically, inserting a single simple object Dfe along a 1-cycle corresponds to turning on a

symmetry background with holonomy 6 around the linking 1-cycle. Z, leaves invariant Dfo)

and Dil/ 2) , while acting as the exchange

p!¥ «— pi=), (122)
for 6 # 0,1/2. The fusion of simple objects follows the additive group law of R/Z.

Now we gauge Z, charge conjugation to obtain the category Cp (o) descending from Cy ).
The simple objects of Cyy) are

COb

0(2) —

(o120, D, D210 o <0 < 1/2] 02

where
i = (0"en™”) (124)
Cu)

as object in Cyq). Since Dio) and Dl(l/ ?) have Z, stabilizers, they lead to the simple objects

p!™) and D> by dressing with Z, Wilson line. Let us now discuss the fusion rules of these

1 1
objects. The fusion rules of Dio),Df),Dil/Z),Dfl/Zﬁ)

compute Df) ®L§9) , we note that the endomorphism space of L
which decomposes as 2 = 1@ 1_ under Z,, implying

follow the group law of Z, x Z,. To

(6)

1 inCyq) is two-dimensional,

D@Ll =1 (125)
in CO(Z)'

To compute D§1/ 2) ® ng) and Dil/ 27) ® Lge), we note that the only non-trivial morphism

space is Dil/z) ®L§9) — Lgl/zfe) in Cy (1), which decomposes as 2 = 1@1_ under Z,, implying
(1/2) o 7 (0) (1/2-6)

D, ®L; " =1L, . (126)
Dl(l/Z,f) ®L§9) _ L§1/279)

in Co(z).
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0')

Let us now turn to the fusion rules L% ®L( . For 8’ # 1/2 -0 and 6’ # 0, only

1 1

L1(|9+9/|1/2) and L£|979'|l/2) can appear, where
|l =a+n, (127)
if 0 <a+n<1/2 for some n € Z, and
||y = —a+n, (128)
if 0 < —a+n < 1/2 for some n € Z. The reader can check that there is a single Z, invariant
morphism for both possibilities L£|9+9,l1/ 2) and L£|9—9’|l/ 2>, implying the fusion rule
1O @@ = (10+0he) g (19-0he) (129)
in Co(g)-
(1/2-6)

Now let us consider Lge) ®L; . For 6 # 1/4, the possible simple objects that can ap-

pear in this fusion are Dil/z), D§1/2’_) and L$|2671/2|1/2)
L§9) ®L§1/2_6) N D§1/2)
Dil/Z) Dil/z’_)

. The morphism space
in Cy(;) decomposes as 2 = 1@ 1_ under Z,, implying that both

appear in the corresponding fusion in Cy,) with multiplicities 1. On the other

0—
1260-1/2[/5) in Cy(1) has a single morphism

hand, the morphism space Lie) ® Lgl/ 2= _, Lg
invariant under Z,, implying that the total fusion rule is

(\29—1/2|1/2)

1/2-6) ‘@1, (130)

1/2,—

L9 @1{*® — pi? g p!

in Co(z).

In a similar fashion, we can compute ng) ® ng) for 6 # 1/4, which is found to be

o1® — p© g p-) @ng\m) (131)
in CO(Z)‘

(1/4)

Finally, we are left with the computation of L ® Lgl/ ) The possible simple objects in

1
the fusion are Dil/ 2), D§1/ 2’7), Dl(o) and Df). The reader can check that all these appear with
multiplicity one, leading to the fusion rule

L:(ll/4) ® L§1/4) — D](-O) @D:E_) @D:El/z) @D](-l/za_) (132)

in CO(Z)'

6 Examples: Non-Invertible 2-Categorical Symmetries in 4d

In this section we provide examples of 4d theories whose topological surface defects, line
defects and local operators form a non-invertible symmetry described by a 2-category. All
the examples we discuss can be obtained by gauging an invertible 0-form symmetry of 4d
theories containing invertible 1-form symmetries upon which the 0-form symmetry acts non-
trivially. Most of the symmetry 2-categories we discuss describe discrete symmetries, but we
also provide an example in subsection 6.3, of a symmetry 2-category describing continuous
symmetries, or in other words a continuous symmetry 2-category.
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We discuss the Pin™ (4N) 4d Yang-Mills theory in section 6.1 and the non-abelian gauging
by S; of 4d Spin(8) Yang-Mills. The O(2) theory is discusssed in section 6.3, and the closely

—_—~

related principle extension of SU(N), SU(N), in appendix A.2. To illustrate that such non-
invertible symmetries also arise beyond pure gauge theories, we provide a quiver example in
appendix A.3.

In all examples we find that fusions of surfaces lead to surfaces with condensation on top
of them. In most of the examples, the condensation is described by gauging of an invertible
0-form symmetry living on the surface defect. However, we also find an example where we
have to gauge a non-invertible categorical symmetry of the surface defect. See equation (193)
and discussion around it.

The most non-trivial example in terms of fusions is the discrete gauge theory in section 6.4,
which has two layers of non-invertibles in the higher category, i.e. we have both non-invertible
genuine line operators and non-invertible genuine surface operators.

6.1 Pure Pin*(4N) Gauge Theory in 4d

We start with 4d Spin(4N) pure Yang-Mills theory which has a Z, x Z, 1-form symmetry on

which a Z, 0-form symmetry acts non-trivially. Gauging the Z, 0-form symmetry leads to the

4d Pin™" (4N) pure Yang-Mills theory. The Z, x Z, 1-form symmetry of the Spin(4N) theory

descends to a non-invertible 2-categorical symmetry in the Pin™ (4N) theory. We discuss the

topological defects in the two theories before and after gauging, including their fusion algebra.

In a later section, we derive these fusion rules using a different approach and find agreement.
The 1-form symmetry of the Spin(4N) theory is

@ =75 x z§. (133)
As before, we represent by Zg the diagonal Z, of Zg and Zg. The theory has a
r® =z, (134)

outer-automorphism O-form symmetry which exchanges Z‘g and Zg, while leaving Zg invari-
ant.

The 1-form symmetry I'") corresponds to a rather trivial 2-category Cspin(an), whose simple
objects are

C2 awy = {08, 08%, D, D{" |, (135)

where Déid) is the identity surface defect, while Déi) fori e {S,C,V} is the topological surface

defect corresponding to the generator of Z;,. The fusion of these surface defects follows the
group law of TV

(i) () (if)

D,’®D,’ =D,"”, (136)

with ij e (M), .

There is a single simple 1-endomorphism for each simple object, which we denote as Dil)

for i € {id,S,C,V}. It can be understood as the identity line defect living on each simple

surface defect Dél). There are no 1-morphisms between two distinct simple objects. Thus, the
full set of simple 1-endomorphisms of simple objects is

cente. = (D0, b{”, D[} (137)

The fusion ® for 1-endomorphisms follows the group law of I'")

p{ @ pY) = pV), (138)
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and the fusion ®D(i) is trivially
2

D’ @, Dy’ =Dy”. (139)

The I'©) = Z, outer-automorphism 0-form symmetry acts on Cgpin(4n) @S

s)

D% «— D[, (140)

for each i € {1, 2}, while leaving invariant Di(ld) and Di(v).

We now gauge the outer automorphism Z,, which results in the Pin™ (4N) gauge theory.
Let us call the resulting symmetry 2-category as Cp,+(4y)- The objects of Cpip+ (4y) modulo
condensations are the objects of Cgpin(4y) left invariant by the Z, action. Thus, the simple

objects of Cpj+ (4y) modulo condensations are’

Pin
ob A Gd) ~(SC) ~(V)
CL sy = {py, D%, D"}, (141)
where
p{*® = (D} @) : (142)
Cspin(4N)
as an object of the 2-category Cspin(an)-
Now let us discuss 1-morphisms between the objects appearing in the set C°° . Since

Pint (4N)
there are no non-identity simple 1-endomorphisms of the identity object in Cgpin(4n), the simple

(id)

1-endomorphisms of the identity object D, * in Cpjy+(4y) are

{p{,p{7}, (143)

which are the Wilson line defects for the gauged Z,. Similarly, since the simple

1-endomorphism Dl(v) in Cgpin(any is left invariant by the Z, action, the simple

1-endomorphisms of the object Dév) in the 2-category Cpj+ 4y are

{p{",p{" 1, (144)
where Div) is the identity 1-endomorphism on DZ(V), and Div‘) is obtained by dressing Div)
with the non-trivial Z, Wilson line. On the other hand, there is only the identity
1-endomorphism Dfsc) of DZ(SC), which can be expressed as
¥ = (0¥ & () , (145)
cSpin(4N)

as a 1-morphism of Cgpin(4n). Thus,

C;l-sll(iZN) — {D(id),D(i),D(SC),D(V),D(Vf)} (146)

ob
Pint (4N)"
ob

are the simple 1-endomorphisms of simple objects C

Let us deduce the fusion rules of the objects in C First of all, we have

Pint (4N)"
(i) o (V) _ (V)
D, ®D, =D, (147)
p{" @D = p{?¥.

5The simple objects of the symmetry category include the condensation defects. We use the notation C to
denote however simple objects modulo condensation, since we will only discuss fusion of these objects, with the
condensation defects being discussed elsewhere [48-50].
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These are just the fusion rules of Cgpin4y) as there is no Z, action on the involved objects.

Thus, Dz(id) and Dév) are invertible surface defects which can be recognized as generating the
Z,, center 1-form symmetry of the Pin™ (4N) theory.

To determine the fusion rule Déi) ® Désc)

1-morphisms from the object Déi) ® Désc) to the object Désc

<)

for i € {id, V}, notice that there are two simple

) in the 2-category Cgpin(4n) and

no 1-morphisms from the object Dz(i) ®D§S
can be recognized as the 1-morphisms

to any other object. The two simple 1-morphisms

0;"*: ) @D Dy, (148)
Di‘/,C;S) . Dév) ®D2(C) N DéS) ,
for i =V, and the 1-morphisms
D(id:S;S) . D(id) ®D(S) s D(S) ,
(0G0 ) € (O (149)
D" D@D, — D,

for i = id, where these 1-morphisms are in the 2-category Cgin(4n)- The Z, outer-automor-

phism acts as the exchange

(V,Cs8)

1 >

. o (150)
Dild,S,S) Dﬁld,C,C) .

Div,S;C) D

Thus, there is a single simple 1-morphism for each i

(i,5C;SC) . (i) (sC) (C)
D, : Dy’ ®D, ") — Dy (151)
in the 2-category Cpip+ (4y), Which can be expressed as
(V.8C;8C) _ ((VS;C) (V,C;8)
D, = <D1 ® D, >cSpin(4N) 5 152)
Diid’SC;SC) _ (Dfid’S;S) (—DDfid’C;C)>
CSpin(4N)
1-morphisms in the category Cspin(4n), leading to the fusion rule
(D) (C) (sc)
D,’®D, " =D, (153)

for i € {id, V'} in Cpjy+ (4y). There is no possibility of condensations arising on the right hand

)

. . s .. sc .
side of the above equation, because there are no non-trivial lines living on Dé as discussed

above.

Now let us discuss DéSC)®D§SC) in Cpip+ (4n)- From the corresponding fusion in Cgpin(4n), We
see that only Dz(ld) and Dév) can appear in this fusion. There are two 1-morphisms
Désc) ® DZ(SC) — Déld) in Cgpin(an), Which can be recognized as

($,5:id) . 1 (S) (8) (id)
D, : D, ®@D,” - D, (154
(C,Ciid) | (C) (C) (id)
D, : D, ®D,") — Dy
Similarly, there are two 1-morphisms DZ(SC) ®D2(SC) — Dév) in Cgpin(4n), which can be recog-
nized as SCV) . ) o p© _, p¥)
") p;’ @Dy - D", (155)
(Cs5v) ., (0) (s) (V)
p,*"): D, @D, - D,
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Figure 26: The defect configuration describing a 2-morphism from Disc) ® Disc) to

fo), where Dl(sc) is the identity line living on the surface DéSC) shown in the figure.

These 1-morphisms are exchanged by the Z, action as

pESid) _, plecid) (156
ch,s;v) - Dis,c;v)
Thus, we have single simple 1-morphisms
pCsCid) . p($Q) o p(SC) | p(id).
1(sc SC;V) 2(“sc) %sc) %V) (157)
D" DY @Dy — Dy

in Cpiy + (4n5)> and hence following the general analysis of section 4.3, we obtain that the fusion

rule must take the form
s s D(id) D(V)
$)@Df) = 2 @2 (158)

b =26 Q2w

in Cpip+ (4, Where we still need to determine the algebras A and AV) describing the conden-

sation/gauging on top of the surfaces Dz(id) and DZ(V) respectively. The form of the above fusion

rule means that D2(SC) is a non-invertible surface defect, and hence the 2-category Cp;,,+ (4N) de-
scribes a non-invertible symmetry of the Pin™ (4N) theory.

To complete the description of above fusion, we need to determine local operators corre-
sponding to 2-morphisms from D§sc) ® Disc) to lines Dfd) , Dif), va) and Div’). This is the
same as the determination of local operators in the analogous 3d case we considered in the
previous section. From the results obt(air;ed th(ere), we learn that there is a single dimens;ional

sc sc 14

vector space of 2-morphisms from D;”" ® D;” " to each of the lines Diid), Dif), Di

V_ . . .
Di ). Let us make a side comment here in order to resolve some of the confusing statements
found in previous literature: the fact that we have a 2-morphism

and

¥ @D - pi, (159)

means that there is a non-zero local operator lying at the intersection of the genuine line Di_)

and the genuine surface DESC), since D§SC) is the identity line on the surface DZ(SC). See figure

26. This looks like a configuration implying that a surface can fuse with itself to give line
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defects, and could motivate one to introduce fusion rules taking two objects (i.e. surfaces)
to a 1-morphism (i.e. a line). However, in the standard definitions of 2-category used in
mathematics, the fusion of two objects is always an object. As we have described above,
mathematically this figure is interpreted instead as a 2-morphism.

Returning back to our original problem, we have determined the algebra objects to be

A(lid) _ Diid) @ Di_) ’
(160)
) V) (V-)
A =Dy @D 7,
which means that we have to gauge the Z, 0-form symmetry on Dz(id) generated by Df_) and the

év) generated by Div’). There is a unique way to perform

this gauging as H2(BZ,, U(1)) = 0. Consequently the morphisms comprising the algebras Al
and AY) are uniquely fixed, and the full fusion rule can be expressed as

Z, O-form symmetry localized on D

(id) (V)
D D
Désc) ®D2(SC) — —ZZZ D —ZZZ ) (161)

Let us now discuss various fusion rules for lines. The fusion of 1-morphisms inside objects
is straightforward to determine:

D@, D) =L,
Dy @y Dy =Dy,
i) By P9 — p°),
o @y 0l =Dl e
Dy @y 0y =D,
0" @,m D'~ = p{").
On the other hand, the fusion ® of 1-morphisms is
D](-ld) ® Dgid) _ ng)’
p0n =0l
D\ @p!”) = pi,
D§SC) ®D§id) _ Dfsc),
D§SC) ®D§_) _ Dfsc),
Div) ®D§id) _ va)’
(v-) (163)

D@0 =0{",

va‘) ®D§id) _ va_)’
o op{ ) =0l
Dfsc) ®D1(v) _ Dfsc)’

Dgsc) ®D§V*) _ Dfsc),

Disc) ®D§SC) _p| D2<5C>®D2(SC)) ’
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(Dz(sc)®D2(sc)>

1

of the line Dgsc) ® Disc) in Déld) @ Dz(v) is provided simply by the algebra A9 @ A(Y) itself.
This example is of particular utility, as we have an alternate means of computing the fusions

using the approach in [17]. We will do so in section 8 and find agreement with the above

prescription. This reassures us to apply our approach to an example that is beyond the mixed

anomaly approach, namely the Z5 and S; gaugings of Spin(8).

where D denotes the identity line on the surface (161). The bimodule description

6.2 Pure Spin(8) x S; Gauge Theory in 4d

We consider the gauging, as in 3d, of the outer automorphism S5 acting on pure Spin(8) Yang-
Mills. Again we will perform this in two steps by first gauging a subgroup Zs;.

6.2.1 Pure Spin(8) x Z3; Gauge Theory in 4d

Now consider gauging Zj; outer-automorphism symmetry of the 4d Spin(8) pure Yang-Mills
theory. This constructs 4d Spin(8) x Z3 pure Yang-Mills theory.
The Z3 acts on Cgpin(g) as a cyclic permutation

p!¥ -~ p - p") _ p®, (164)

1
forie{1,2}.
Let us denote the 2-category for the Spin(8) x Z3 theory descending from Cgyin(s) as Cz,-
Its simple objects modulo condensations are

P = {ng),DfC")} , (165)

where

D — (08 D @b}

2 2 (166)

CSpin(S) ’
as an object of the 2-category Cgpins)-

Let us deduce the fusion rule DZ(SCV) ® DZ(SCV). From the corresponding fusion in Cgpin(s),

id scv s . .
we see that both Dz(1 ) and Dé ) can appear in this fusion modulo condensations. There are

three 1-morphisms Déscv) ®Déscv) — Dz(id) in Cgpin(s), which can be recognized as

(8,S;id) |
) :
Dic,c;id) : Déc) ®D2(C) N Dz(id) ) (167)
D§V,V;id) : D§V) ®D2(V) N Déid)_

id)
b

(S) (S) (
D D,’ ®D,”’ — D,

These three 1-morphisms are cyclically permuted by the Z5 action:

Dfs,s;id) R ch,c;id) - DfV,V;id) . Dis’S;id)_ (168)
From this, we obtain a 1-morphism
DiSCV’SCV;id) : Déscv) ®D£scv) N Dz(id) (169)
of Cz,, which can be expressed as the following 1-morphism
D§SCV’SCV;M) _ <D§S,S;id) ®D§C,C;id) ®D£V,V;id))cspm(s) (170)
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of the 2-category Cgyins)-

On the other hand, there are six 1-morphisms Déscv) ®D(SCV) — Déscv) in Cgpin(s), which

2
can be recognized as

DiS’C;V) : Dés) ®D§C) R DéV),
ch’v;s) : Déc) ®D2(V) —>D§S),
D59 . 5D ), ar
D§c,s;v) : Déc) ®D2(S) R DéV),
va’c;s) : Dév) ®Dz(c) —>D§S),
D§S’V;C) : Dés) ®Dév) N DéC)-

These six 1-morphisms are cyclically permuted by the Z5 action in two orbits:

(8,.C5V) (C,V;5) (V,$;C) (8,C5V)
tc S;V) - Divc-s) - D(ls V;C) - Dic S;V) , (172)
1 Dy =Dy =Dy

D
D

From this, we obtain two simple 1-morphisms

(SCV,SCV;SCV)(i) . ~(SCV) (scv) (scv)

D, : Dy @Dy ) Dy, (173)
forie {a, b} of Cyz,, which can be expressed as the following 1-morphisms
Discv,scv;scv)(a) _ <D§s,c;v) @Dic,v;S) @DfV’S;C)) ,
CSpin(S) (174)
Dl(scv,scv;scv)(b) _ <D§c,s;v) @DS/’C;S) (—BDiS’V;C))
CSpin(S)
of the 2-category Cgpin(s)-
In total, we obtain using the general result in section 4.3
(id) (scv) (scv)
D D D
(scv) (scv)y 2 2 2
by ®D, — Ad) EIaA(scv,a) C—BA(SCV,b) 75)
in the 2-category Cz,. Consequently, Déscv) is a non-invertible surface defect, and hence the

2-category Cy, describes a non-invertible symmetry of the Spin(8) x Z3 theory. We will finish

the determination of the algebras A1) ASCV:0) and ASCV:D) Jater.
Let us now turn to a discussion of the 1-morphisms of Cz,. Since there are no non-identity

simple 1-endomorphisms of the identity object in Cgpiy(g), the simple 1-endomorphisms of the

(id)

identity object D,

in Cy, are
(id) (@) n(w?)

{p{,p{*), D[}, (176)
which are the Wilson line defects for the gauged Z. Their fusion ®, which equals the fusion
® ) inside the identity object, follows the group law of Z3. On the other hand, there is only

2

the identity 1-endomorphism Discv) of DZ(SCV) in Cz,, which can be expressed as
pfY - (pPep@en”) | a77)
Spin(8)
as a 1-morphism of Cgpip(g)- Thus,
-end (id) H(w) n(w?) H(SCV)
Cponde = {Dl‘ ,D,,D;”’,D; } (178)
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)

is the list of simple 1-endomorphisms of simple objects in Cg‘;. Since Discv

(scv)
2

is the identity

1-endomorphism of D , we simply have

SCV) (scv)

pv) ®pen DY) — pEv), (179)

On the other hand, from computations simiar to as in the analogous 3d case, we learn that

scv) ®D£w) _ pev) ’

(
D, 1

(180)

2
D§ch) ®D§w ) _ D§SCV)'

We also have a 2-morphism from Dfscv) ® DiSCV) to D(id), D(w) and D(wz), and two

1 1 1
2-morphisms to Dgscv)' One of these two 2-morphisms lives along the line plsevsevisev)(a)

1 5
(SCV,SCV;SCV)(b)
1 .
are trivial, whereas

while the other lives along the line D
(SCV,i)

Thus the two algebras A]

A — pi9 g ple) @waz) _ (181)

The above allows us to complete the fusion (175) to

(id)

D
DZ(SCV)®D2(SCV): 72 @2D2(scv)’ (182)
3
where .
Dz(ld) 183
Z_3 (183)

is the condensation surface defect obtained by gauging Z; 2-form symmetry of the Spin(8) x Z

theory along a two-dimensional surface, and there is no gauging performed along the two

D(SCV)

5 surfaces.

6.2.2 Gauging S5 in Spin(8) Gauge Theory in 4d

To construct the 4d Spin(8) x S5 pure Yang-Mills theory, we can begin with the 4d Spin(8) x Z3
pure Yang-Mills theory studied in the previous subsection, and gauge a Z, 0-form symmetry of
it. The symmetry 2-category Cz, of the Spin(8) x Z3 theory descends to a symmetry 2-category
Cs, of the Spin(8) x S5 theory under the gauging procedure.

The simple objects (modulo condensation) of Cy, are left invariant by the Z, action. Thus,
the simple objects modulo condensation

cg = {p{, |

{ scv) } ’ (184)

of C, are the same as for Cy,.

Let us deduce the fusion rule Déscv) ®Déscv) in Cg,. The Z, action acts as
Discv,scv;scv)(a) - D£scv,scv;scv)(b). (185)
Thus, there is a single 1-morphism
D(SCVSCVSCV) . p(sCV) ®D§SCV) _, pey) (186)

1 2 2
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in Cg,, which can be expressed as

Dgscv,scv;scv) _ (Discv,scv;scv)(a) ®D§scv,5cv;scv)(b)>c , (187)
Z3
as 1-morphism of Cz,. Thus, we are lead to conclude the fusion rule
(id) (scv)
D D
(scv) ®D (SCV) 2 2 (188)

- A(d) S A(SCV)

in the 2-category Cs,. We will determine these algebras below.

There are three simple 1-endomorphisms Dfi) for i € {id, w, w?} of the identity object in

2
Cyz,- Out of these, Dgw) and wa ) are combined into a simple 1-endomorphism

wawZ) — <D§w) @Diwz))cz (189)
3
(id)

of the identity object of Cs,. On the other hand, the 1-endomorphism D, of Cy, is left invari-

ant by the Z, action, so gives rise to two simple 1-endomorphisms Diid),Df) of the identity

object of Cs,. These can also be recognized as the Wilson lines created by the Z, gauging.

Similarly, there is only the identity 1-endomorphism D§scv) of DZ(SCV)

(scv)

in Cz,, which is left in-

variant by the Z, action. Consequently, we can dress D; of Cz, by Wilson lines to obtain

two simple 1-endomorphisms D§SCV), Discv ) of the identity object of Cg,. In total,
C;g.endo _ {Diid)’Di—)’Diww )7D§SCV)’D§SCV_)} (190)
describes simple 1-endomorphisms of simple objects in Cgb.
3
The fusion rules for the fusion ® scv) parametrized by the object Déscv) are
2

Discv) ®D2(SCV> D(scv) _ Dgscv)

Discv) @D(ch) D(scv ) DiSCV’),

DiSCV_) ®D2(SCV) D(scv) _ Discv_) , (19D
DiSCV’)@) e D(scv ) D§scv).

ww?)

The fusion rules for Diid),D(_) D!

1 o7
. id . . .
object Dél ) are the same as the fusion rules for these objects under the fusion ® that we

discuss below.
From computations similar to the ones for the analogous 3d case we considered in the
previous section, we find the following fusion rules

under the fusion ® ) parametrized by the identity
2

Di_) ®D§ww2) _ Diwwz),

(=) o (SCV) - (SCV.)
D1 ®@DV) — pev-)
D@Dy =D, (192)
waa) )®D(SCV) i )@D(SCV_)
Diwa) ®D§scv ) iSCV) @D(scv )
(

p{““) @ p{**") — p{¥ g p{~) @Dl
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We also have a single 2-morphism from Dgscv) ®D§SCV) to each of DY , D(wwz) , DY) and

1 1 1
Discv,); a single 2-morphism from Discv,) ® Discv,) to each of Dfd), Diwwz), Discv) and
Discv,) ; and a single 2-morphism from Discv) ®D1(SCV*) to each of Df), D , Dfscv)
(scv.)

D,

(ww?)

1 and

The above 2-morphisms allow us to compute the algebras appearing in (188), which we
can now complete as

(SCV) _ - (SCV) Dy DY)
VoD =— 2 e E— (193)
2 2 A(lld) _ Dild) @Diwwz) Zy
where
Déscv)
7 (194)
2

(scv)

is the defect obtained by gauging the Z, localized symmetry of D,

algebra being uniquely determined by the algebra object

with the corresponding

A(lscv) _ D§SCV) @Discv_). (195)
and (id)
D, (196)
A _ D;ld) ®D§wa)2)

(id)

is obtained from D, ’ by gauging the Rep(S3) localized symmetry of Déid) using the algebra

object
. . 2
A(lld) _ Dild) @DY"” ) (197)

We leave the precise determination of the morphisms comprising the algebra A9 to future
work.

The fusions of lines living on Déscv)

are described in terms of bimodules of the categories

scv) §scv) ®D§scv)’ the cor-

responding bimodules are the algebras A0 and ASCY) themselves, as the fused line is simply

the identity line on fused surface Déscv) ®D§SCV). For the fusion DESCV’) ®D§SCV*)
scv)

underlying the bimodules are A% and Al , while we leave the determination of morphisms

1 1
comprising the bimodules to future work. Finally, for the fusion D§SCV) ®D£SCV‘), the objects

underlying the bimodules are Df_) &) Diwwz) and A(lscv)7 while we leave the determination of

morphisms comprising the bimodules to future work.

describing symmetries localized on Dz(id) and Dz( . For the fusion D

, the objects

6.3 Pure O(2) Gauge Theory in 4d

4d O(2) pure Yang-Mills theory can be constructed from 4d U(1) pure Yang-Mills theory by
gauging the charge conjugation Z, 0-form symmetry. The U(1) theory has a

M —vu@), xUu), (198)

1-form symmetry, where U(1), is the electric 1-form symmetry acting on Wilson line defects,
and U(1),, is the magnetic 1-form symmetry acting on 't Hooft line defects. The

r® -z, (199)
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charge conjugation symmetry acts by complex conjugation on both U(1), and U(1),,. This
1-form symmetry descends to a continuous non-invertible 2-categorical symmetry. In what
follows we ignore U(1),, and consider only the U(1), symmetry (or vice versa). It is straight-
forward to extend the analysis to the full '(!) symmetry.

The 2-category Cy (1) associated to the 1-form symmetry U(1), of the U(1) theory has
simple objects, the Gukov-Witten operators, which generate the 1-form symmetry

C

@, = {0\ |6 er/zf, (200)
©)

whose fusion follows the group law of R/Z. There is only an identity line D,”’ on each such

surface Dée). Thus the set of simple 1-endomorphisms of simple objects is

come = {p{” |6 er/zf, (201)

whose fusion ® is also given by the group law of R/Z.
The Z, charge conjugation leaves invariant Di(o) and Di(l/ 2
Dl(e) — D(*G)

i B

, while exchanging

(202)

fori e {1,2} and 6 # 0,1/2. Gauging the Z, charge conjugation leads to the O(2) theory
in which the 2-category Cy(;) descends to a 2-category Cp(z). The simple objects modulo
condensations of Cy(y) are

0) ~(1/2) (6
ey = (D7, 0", s o< 0 <1/2}, (203)
where ] ] o
sy = (0 @Dy~ >)CU(1) , (204)
as object in Cy(y).
The simple 1-endomorphisms of simple objects in CS‘EZ) are
-end 0) (=) 1/2) 11/2,-) ;(6)
cxae — {p{®,p{~), p{"»,p{"*7, 1" o< 0 <1/2}, (205)
where Dio), Dil/ %) and Lge) are identity 1-endomorphisms of DZ(O), Dél/ ?) and Ség) respectively,
and
i = (o{”en{™) (206)
U(1)

as 1-morphism in Cy ;). Since Dfo) and Dfl/ %) have Z, stabilizers, dressing them by the non-
trivial Z, Wilson line leads to the non-identity simple 1-endomorphisms Dl(_) and Dgl/ 27) of
Déo) and Dél/ 2) respectively.

The Cp(2) fusion rules of these objects can be deduced to be

p{l? @ (2 _ pl®,
D§1/2) @559) _ S§1/279) ’
Sée) ®S§9,) _ Sz(|9+9’\1/2) @SZ(IG—G’h/z) ,
s @s{20) - % @s\P7he) g Ly, (207)
2

©0)
D
sy @8 = 2 @si?h) g 14,
2

(0) (1/2)
D D
a8, =g e
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where 6’ # 1/2 — 6 and 6’ # 6, and ||y /5 is defined in (127) and (128). The fusion ® of
1-morphisms are straightforward.

A closely related symmetry category is that of SU (N') Gauge Theory in 4d, which we discuss
in appendix A.2.

6.4 (Z, x Z,) x Z, Gauge Theory in 4d

Our general procedure is equally applicable to discrete gauge theories, for which we now
discuss a 4d example. Consider two copies of the Z, gauge theory in 4d. We denote the
various topological defects in the two copies by L and R labels respectively. The action takes
the form

S=im ), f b'usd, (208)
I=L,RYM4

where a! € C'(M,,7Z,) and b’ € C?(M,,Z,). The model has topological ('t-Hooft) surface and
(Wilson) line operators that generate 1-form and 2-form global symmetries respectively. The
1-form symmetry group is

r =zL x z&, (209)

generated by the topological surface operators exp {inSZ b! } Similarly, the 2-form global
symmetry is also
r® =75 x z&, (210)

generated by the topological line operators exp {iTC SY al } The data of topological operators

can be recast as a fusion 2-category Cz, ,z,. The simple objects of the category are the topo-
logical surface operators

ez, = {0y, D", DV, p{} @11)

The fusion of surfaces in Cy, , 5, is read off from the group composition in Zé X Zﬁ, ie,

p{¥ @p{M — pl&h (212)

where g,h € {id,L,R, LR} = Zé X Zg. The endomorphism space of each of the simple surfaces
is isomorphic as a set to the topological line operators in the theory. We denote the lines on a

surface Dz(g ) by the label Dig "™ The set of 1-endomorphisms corresponding to a surface Dz(g )
is
1-end (8):(h)
C(g(;?zzoxzz - {Dl | heZy x Zz} . (213)

The fusion rules of lines inherit the group structure i.e

ngl)a(hl) ®D§gz),(h2) _ D§g1g2)’(hlh2) . (214)
Similarly, the fusion of lines within a surface is given by
hihy)

D) D) — ). @

Furthermore each of the simple lines have a 1-dimensional endomorphism space associated to
which are the 2-morphisms of the symmetry category Cz, .z, -

ez — (D | g he 2y x 25} @10
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The 2-morphisms satisfy the fusion structure

D(()gl)’(hl) ®Dég2)’(h2) _ Déglgz)’(hth)

J

(@) (@)(hha) (217)
0 - DO ‘

g)’(hl) ®D2(g) D

(
D,
Finally, the fusion structure of 2-morphisms within lines is trivial. The theory has a 0-form

symmetry
r®=z,, (218)

which acts by exchanging L <> R. We are interested in the symmetry category C(z, .z,)/r©
that arises upon gauging this O-form global symmetry. More precisely, using the procedure

developed in the previous sections, we can access the untwisted or identity flux sector which
(id)

(ZyxZ)/T®)
are T'©) orbits within C2°__ . More precisely

Loy X7y
(id),ob . (id) (
C(ZZXZZ)/F(O) o {Dz ? DZ

forms a sub-category C < C(z,xz,)/r©- Firstly, the objects of the gauged category

LR) DéLR) } ’ (219)

where
LR
D" = (D} DDf) (220)
as an object in the pre-gauged symmetry category Cz, . z,. Next, we compute the fusion rules
of surfaces. Firstly, we have

J
CZZ XZy

(id) (id) (id)
D21 ®D21 :Dl ’

2
Dz(id) ®DéLR) _ DéLR) ) (221)
(LR) (LR) (id)
D2 ®D2 = D2 P

which are obtained from the fusion rules in Cz, .7, as each of the objects involved are r©

éL,R) z(i) where i € {id, LR}, can be computed

by lifting the surfaces to the pre-gauged category and restricting to I'®) invariant 1-morphisms.

For instance, in the pre-gauged symmetry category Cy, ., there are two 1-morphisms from the

object Dz(id) ® DéL’R) to DZ(L’R) and no 1-morphisms to any other object

invariant. The fusion rules of the D surface with D

PEMRD) |, @ o pw) )
ORE i) R ® (222)
D" DY @D, — Dy

Similarly, in Cz, . ,, there are two simple 1-morphisms from DZ(LR) ® DZ(L’R) to DZ(L’R) and no

1-morphisms to any other object

pURMDI®) , pUR) @ b1, p(®),

-2
DiLR)’(R);(L) . D2(LR) ®D2(R) N DZ(L) .

(223)

These two 1-morphisms in each set are exchanged under the action of I'(®)

pELEW) __, p®sR).
PURMDI®) __, pURLE(E)

(224)
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(id)

and therefore form a single simple 1-morphism in C;

(ZyxZ,) /T
gid),(L, ),(L,R) . ng) ®D2(L,R) N DZ(L,R) i (295,
D(LR) (L,R),(L,R) , DéLR) ®D2(L,R) N DZ(L,R) )
Furthermore the fusion of the identity line on DéL’R) with the identity line on Dz(i) gives
Di (i) ® D i),(id) DiL,R),(id) ’ (226)
hence there is no additional condensation in this fusion process. Next, the object DéL’R)@)DZ(L’R) ,

in the category Cy, .z, , has two simple 1-morphisms each to the surfaces Déid) and Dz(LR) . These
are

DB | p®) g p®) _, pld)
D) 0 C>D<) D
D(R)!(L);(LR) -D Z(R) ®D2( ) —D id

( (227)
2 >

=

(L),(R);(LR) . (L) (R) (
D) :D,”  ®Dy —> D,

These 1-morphisms form two orbits under the action of I'®)

PO P (RL®:(d)

(
1
Dl(R)J(L);(LR) .

B

- (228)

1
DiL)’(R);(LR)

The T(© invariant orbits therefore become simple 1-morphisms in the symmetry category

C(z,xz,)/r®- There can be an additional condensation on the D;d and DéLR) surface, depending
on the fusion of identity lines Dl(L’R)’(ld) ®D§L’R)’(ld). Let us denote the algebras corresponding

to these (potential) condensations as A4 and AR, To summarize, the fusion of topological
surface operators in the identity flux sector of the gauged theory is

(1d) ®D(LR) (LR)
2 5

DéLR) ® D(LR) Dz(ld) ,
D( RN D(L R _ plLA),

D (1d) D éLR)

(L,R) (LR) Yo
D@D, = @

AUR) *

Next, we move onto the topological lines, i.e., 1-morphisms in the gauged sub-category

(id) (id), (id) . (id),(id)
C (Zyx1Zy)/TO - Firstly the identity line D;

and Di .= ) where the latter is the non-trivial Z, Wilson line and carries the sign representa-
tion of Z,. Importantly, this line generates a non-anomalous 2-form global symmetry which

is dual to I'®©), This 2-form Z, symmetry can be gauged by proliferating the topological line
(id),(-)
D
1

in Cy, 7, splits into two lines denoted as D,

in order to recover the original symmetry category Cz, .z, Similarly all the other r©

invariant lines in Cz, . 7, also split into two lines each, labelled by representations of I such
that the non-trivial representation, denoted with a minus sign, is obtained by dressing the

(id), (=

original line operator in Cz, 7, with the Z, Wilson line D, ). The remaining lines in the
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Cz,xz,» i-€., those that transform under I'®, combine into orbits that become simple lines in
(id) (id)
(ZyxZ,) /T (ZyxZ,) /T

lines in the surface Dz( ) where i e {id, LR} are

It is straightforward to enumerate the lines in C The endomorphism

Lendo,(i)  _ f(@),(id) 5(@),(=) r().(LR) 1 (D),(LR,=) 1 (),(L.R)
emo o = {0, ), pt0, pf D0 (230)
where LR - .
p{?E0 - (p{H) g p )>Cz N 231)
2 XL
Similarly the 1-endomorphisms within the surface DéL’R) are
l-endo,(LR) _ f ~(L,R),(id) ~(L.R),(LR) ~(L.R),(L,R;1) (L,R),(L,R;2)
e = {p D! D D b, (232)
where
(D (L), @ D(R (i ))
CZzXZZ ’
(LR (L), (R),(LR)
D D, 5
G
(233)
J(LR;1) ( pw: (R))
czz X Zg ’
,(L,R;2) (DL R)(_DD (L)) '
Czyx2s
Next, we move onto the fusion of lines within surfaces. Firstly, within the surface Dz(i) where
i € {id, LR}, the fusion rules are
(1),(id) (0),(-) i),(—)
D' By D" =D
(1),(LR) (0),(=) i),(LR,—)
D' 0 D" =D} :
(),(LR) (1),(LR,—) 0,(=)
D, ®D2(1) D, =D )
(0),(LR )® ) Dii)’(LR ) _ pD,(id) ,
, (234)

DY)’(_) ®D2(i) Dii),(L,R) _p.
Dii),(LR) ®D2("’ Df)’(L’R) —pl

1

(
1
(
1
(
1
(
1
Dgi),(id) &0 D§i),(L,R) _ Dii),(L,R)
(
1
(
1
p-(LR.—) ®D2(") Df)’(L’R) _ Df)’( R
(
1

pOER g DR _ 6 g D) g L) gy (R

Notice that the fusion 1-category of lines within the defect Déi) is isomorphic to the Tambara-
Yamagami fusion-category TY (Z, x Z,). The fusion of lines on distinct surfaces Dé and Dé

with j € {id, LR} is almost the same as in (234) except we need to account for the group
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composition of the surface labels, i.e.,

pH®) g pUM) _ pla),
PR @ M=) _ pliR-),
()( ®) @ pUHIR=) _ pliii-),
Dl \an =) @ pUHER) _ plid)
pHi®) @ pUMER) _ i LR) (235)
D= )®D< DER) _ pER)
®D ),(L,R) Diij)’(L’R) )
th)( ) @pUHLR) _ piLR)
LR @ pONLR) _ p(ii0) g plih(-) g pikIR) g plif(1R-)

In summary the lines Dii)’(a) with a = id, —, LR or LR, — are invertible lines while Dfi)’(L’R)

is a non-invertible line and together these lines form the Tambara-Yamagami fusion-category
TY(Zy x Z,). Next, the fusion among lines in the surface DZ(L’R)
computed by lifting to the pre-gauged category and finding I'®) invariant morphisms. First
(L.R)

consider the fusion rules between lines in the D,
L,R),(id) is

and with other lines can be

surface and lines in D! with i € {id, LR}.

Fusion of invertible lines Dfi)’(a) with Df

Dii)’(id) ®D§L,R),(id) _ DiL’R)’(id) ,

Dii),(_) ®D1(L,R),(id) _ Dl(L,R),(id) ,

Dii)’(LR) ®D§L,R),(id) _ Dl(L,R),(LR) , (236)
Dii)’(LR’_) ®D§L,R),(id) DiL’R)’(LR)

The fusion of the non-invertible line D(l) (LR)

pre-gauged category as

pLR g p0) g plint >)®(D§L>,(id>@ p{-9)

DH) @ DM @ p1M) g (1)

< CZZXZZ
< (237)
_ pERALRD) g LR (LR).

Czy %2,

Similarly, the fusion rules involving the invertible lines Dii)’(a) on Dé with the line DiL’R)’(LR)

on D(L R) are

(238)
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While the fusion of the non-invertible line Dii)’(L’R) with DiL’R)’(LR) is computed as

DL @ RN _ (Db g Dii),(R)) ® (Di”’(“‘) D)

CZZ XZo
= (p{" @ g p™ @ pO) (239)
Czyxzs
(L,R),(L,R;1) (L,R),(L,R;2)
=D, '@ D! :
The fusion of the invertible lines Dfi)’(a) on Dé' with the line DfL’R)’(L’R;U) with 0 = 1,2 on
DéL’R) are
(id),(id) (LR),(LR;0) _ (L R),(L,R;0)
D1 ®D 1 .
(id),(—) (L,R),(L,R;0) (L,R),(L,R;0)
D" ®D) =D, ,
(id),(LR) (L,R),(L,R;0) (L,R),(0+1 mod 2)
Dll ®D g Dl g mo ,
DUDLR=) o 1y (LR),(LR@) _ 1y (LR),(0+1 mod 2)
' (LR),(id) tL,R),(L,R;o-) tL R),(L,R;0+1 mod 2) (240)
D] ® D, =D, ,
(LR),(—) (L,R),(L,R;0) (L,R),(L,R;0+1 mod 2)
Dl ®D1 g Dl o mo ,
(LR),(LR) (L,R),(L,R;0) _ (L R),(0)
D, ®D, 7 :
D§LR),(LR,7) ®D§L,R),(L,R;U) _ DiL,R),(U) ’
and the fusion of the non-invertible line Dfi)’(L’R) with DiL’R)’(L’R; o) is
Dl(id),(L,R) ®D%L,R),(L,R;a) _ DiL’R)’(id) @DiL’R)’(LR) ) (241)
DiLR),(L,R) ®D§L,R),(L,R;a) _ DiL,R),(ld) @DiL,R),(LR)'

L,R)

Next, we are left with computing the fusion rules of lines within the Dé surface. In particu-

lar, the fusion DiL’R)’(id) ®D£L’R)’(id) has an important physical consequence—it directly encodes

the algebra objects A1 and ALR) that condense on the fusion outcome of DZ(L’R) ® DéL’R)
(L>R)’(id) (L’R):(id) id LR
D, ®D, = Al @ ALk, (242)
In the category Cz, . z,, there is a two dimensional morphism space between D(L’R)’(id) and the

lines Dfid) ,(id)

and D( R4 2nd no other morphisms to any other lines. The morphism space
decomposes into the two representations of I'©) in C(z,xz,)r©® and therefore one needs to
attach the Z, Wilson line to the non-trivial morphism to make it I'®) invariant. Consequently,

the algebra objects can be read off to be
A(lld) — (id)’(id) @D(ld)’(_)

(1R

(LR) (243)

( ® DR

A =D,

(L,R)

Finally, the fusion rules among the remaining lines in the D, *™ surface can be computed. Since

the fusion outcome of DZ(L’R) ®D§L’R) involves extra condensations (see (229)), the fusion of

(L,R)

lineson D, are described as algebra bimodules on defects before condensations (see section
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3)

D(L,R),(LR) ® D(L,R),(LR) _ B(Déid) JAG) (GELRSLR) gy B(DZELR) /AR (id;LR;LR) ’
D( R),(id) ®D(L R),(LR) _ p(D§® /A0),(LR;id;LR) (_DB(DZ(LR)/A<LR)),(LR;id;LR) ’
D(L,R),(ld) ®D£L R)L(LR1) _ p(D /a0D),(1,Rsid;L,R1) @B(Dz(LR)/A<LR>),(L,R;id;L,R;l)
D(L R),(id) ® D§L’R) (LR2) _ p(DfY /aW) (L R;id;LR,2) @ B (D5 /AGR) (L R;id; LR ,2) ’
(LR

D(L R),(LR) L(L,R,1) B(Déid) /AGD) (L R;LR;L,R,1) @® B(Dﬁ“‘) JAUR)) (L R:LR;L,R,1) ) (244)

®D

DiL,R),(LR) ® D(L,R):(L,R,Z) _ B(Dfd) JAGD)Y (L R;LR;L,R,2) @ B(DZ(LR) JAUR)Y (L R;LR;L,R,2)

D(L’R)’(L’R’l) @D(L R),(L,R,1) B(Déid)/f\(id)),(id;L,R,l;L,R,l) (_BB(DELR)/A(LR)),(LR;L,Rl;L,R,l)

1 5
pERMERD) o B LR)(LR2) _ (DS /A1), (id;LR,1;L,R 2) @ g (D5 /AGR) (LR, RI;LR,2)

1 1 - >
pLRLLR2) o B (LR)(LR2) _ (D) /AW0),(id:L.R2LR.2) gy g(Df™ /AU (LR;L.R,2L.R,2)

1 1 :

The bimodules with a direct sum of invertible lines as objects are

(id) /2 (id)Y (iq.7 p- N N
BiDZ JAGD),(LRLR) Dild)(ld) @ D](-ld)( )’
:(lDz(LR)/A(LR)),(id;LR;LR) _ DfLR)(id) <dBD(LR)(f)’
ingian/A(id)),(LR;id;LR) _ Dild 69D(ld )(LR,— ),
(DS JA(LR)) (LR;id; LR) (LR)(LR) (LR)(LR,—)
Bl 2 = Dl @Dl b)
B(Dz““1> /AG) (id;LR,I;LRT) D(id)(id) @ D(id)(—)

1 - >
(D) /AWR)) (LR;L,R,1;L,R,1) (LR)(LR) . +(LR)(LR,—) (245)
12 T =Dy ® D, >

(0 /A (ELRTLR2) _ P (id)(id) o pi9)

1 Dy >
(D5 /AR (LR;L,R, ;LR 2) (LR)(LR) (LR)(LR,~)

Bl 2 = D1 @Dl b)
B(Dgid’ /AWD) (id;LR2LR2) P o D(ld)( )
1 =M >
BiDZ(LR)/A(LR)),(LR;L,R,Z;L,RQ) _ DfLR)(LR) @D(LR)(LR,f).
While the remaining bimodules have non-invertible lines as objects. These are
B§D2(w/A(id)),(L,R;id;L,R,l) _ pUd)(LR)
BEDZ(LR)/A(LR)),(L,R;id;L,R;l) _ pIRLR) ,
BiDz(id)/A(id)),(L,R;id;L,R,Z) _ plaLR) ’
(D" /A (LR:LR2) (LR)(LR)
B —D ’ (246)
(id) /4 (id) I p. :
(DS /AGD) (LR;LR;L,R,1) (id)(L,R)
1 =D, >
(LR) /5 (LR) I p-
BiDZ /AUD),(LRLRLRY) D(LR)(L’R),
(D{Y /A (L R;LR;L,R,2) (id)(L,R)
1 =D, >
(DS JA(LR)) (1 R;LR;L,R,2) (LR)(L,R)
1 =D, :

We leave the computation of the bimodule morphisms for future work.
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7 Examples: Non-invertible 3-Categorical Symmetries in 5d and
6d

In this section, we discuss examples of UV complete 5d and 6d theories that carry
non-invertible 3-categorical symmetries. So far we considered non-supersymmetric theories,
however in 5d and 6d, the natural class of theories are supersymmetric.

The higher-category gauging is applicable again in cases where there is also a description
in terms of higher-groups/mixed anomalies, and we will give a comparison in section 8.

7.1 5d N =2Pin"(4N) Super Yang-Mills Theory

It is clear from the example of Pin™" (4N) Yang-Mills Theory in the previous two sections that
this theory contains a non-invertible (d — 2)-categorical symmetry in d spacetime dimensions.
However it is not UV complete on its own in d > 5. But in d = 5, its analogue with 16
supercharges, namely the 5d A/ = 2 Pin™ (4N ) super Yang-Mills theory, is a 5d KK theory, i.e.
it UV completes to a 6d SCFT compactified on a circle.

We construct it by gauging the Z, outer automorphism symmetry of 5d N' = 2 Spin(4N)
super Yang-Mills, which has a 3-category Cgpin4n) describing invertible Z, x Z, 1-form sym-
metry. The key elements of the 3-category are
{D(id),Di(S),Di(C),Di(V)} , (247)

i
for i € {1,2,3}. The elements Déi) are simple objects of Cgyinan), Dz(i)
1-endomorphisms of D(l), and Dil) are simple 2-endomorphisms of Dél) . These fusion ® on

these elements follows the Z, x Z, group law as in previous sections. The non-trivial part of
the action of Z, is the exchange of Dl.(s) and Di(c).

Cspin(4n) descends to a 3-category Cpiy+ 4y describing non-invertible symmetries in the
Pin™ (4N) super Yang-Mills theory. We can easily determine key data of Cp,; + (an) to be as

follows. The simple objects modulo condensations of Cp;+ 4y are

are simple

b _ [pld) {(8C) (V)
l(’)in+(4N) - {DS D37, Dy } , (248)
where . . c
p{*® = (p{” @D} ))C o (249)
Spin(4N)

as an object of the 3-category Cspin(an)-
The fusion rules of these objects can be deduced to be

(i) o pV) _ p™)
D;®D; ' =D; ",

Dév) ®Dév) _ Déid)’

Déid) ®D§SC) _ D?SSC), 250)
D?Ev) ®D3(SC) _ D?SSC),
D) @ D) Ds(..id) @
Alid) " A(V)
for some yet to be determined 2-algebras A4 and A().
The simple 1-endomorphisms of simple objects in Cg}; +(qy) TE
it = o19.0.007) =
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(1)

2
The simple 2-endomorphisms of simple 1-endomorphisms Dél) of Cpi+ (4N) are

)

where each D, is the identity 1-endomorphism of Drgi .

czente, = {0{.0{7. b, p". "}, (252)

Z(i) has identity 2-endomorphism D(i), and DY), DSL) are non-identity

1
éld), Dz(v) respectively, arising due to dressings by Z, Wilson lines.

The lines D§_) and Div’) can end on the 3-surface Désc) leading to the conclusion that its

fusion rule with itself is

where D

2-endomorphisms of D

(SC) . ~(SC) Déid) Dg(;v)
Dy " ®Dy = TG_)W’ (253)
Z, Z,
where .
D?()l) (254)
20

2
for i € {id,V} is a 3-dimensional topological defect obtained by gauging the Z, 1-form sym-
metry of the 3-dimensional defect Dél). For Déld) the Z, 1-form symmetry is generated by

Diid), Df_), and for Dév) the Z, 1-form symmetry is generated by Div), DEV’).

The other fusion rules are straightforward to determine.

7.2 Absolute 6d N = (2,0) SCFT of Type [SO(2n) x SO(2n)] x Z,

Relative 6d N = (2,0) SCFTs are known to be classified by simple A,D,E Lie algebras. Here
relative means that the theory contains mutually non-local defects if one tries to define them
as purely 6d theories. The locality is restored if one realizes the 6d theory as the boundary
condition of a non-invertible 7d TQFT. On the other hand, an absolute 6d theory is one that
can be defined as a purely 6d theory without encountering mutually non-local defects.

Consider 6d A/ = (2,0) SCFT based on Lie algebra D,,, which we refer to as 6d N = (2,0)
SCFT of type Spin(2n), as it contains topological dimension-3 defects whose fusion is de-
scribed by the group law of the center of Spin(2n). This is a relative theory, but can be made
absolute by choosing a topological boundary condition for the attached 7d TQFT. We refer to
the resulting absolute theory as 6d N = (2,0) SCFT of type SO(2n), as it contains topological
dimension-3 defects whose fusion is described by the group law of the center of SO(2n), which
is Z,. In other words, the 6d N/ = (2,0) SCFT of type SO(2n) contains a

r® =z, (255)

2-form symmetry.
Now stack together two 6d N = (2,0) SCFTs of SO(2n) type to obtain a 6d N = (2,0)
SCFT of type SO(2n) x SO(2n) which has a

r® =z, xz, (256)
2-form symmetry. This theory also has a
r® =z, (257)

0-form symmetry, which acts by exchanging the two SO(2n) theories. Thus, it acts on r® by
exchanging the two Z, 2-form symmetries. The category describing I, is a 3-category which
is isomorphic to the 3-category Cgyin4n) We discussed in the previous subsection.
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Gauging the Z, 0-form symmetry, we are lead to a 6d N = (2,0) SCFT of type

[SO(2n) x SO(2n)]| x Z,, (258)

which has a non-invertible symmetry described by a 3-category descending from Cgpin(45)- This
is precisely the Cpj;+ (4, category we discussed in the previous subsection, but now Cpip+ (4
describes topological defects of a 6d theory.

8 Non-Invertibles and Fusion from Higher-Groups/Anomalies

8.1 Non-Invertibles from Higher-Groups via Gauging

In [17], a construction was presented that takes as an input a d-dimensional quantum field
theory ¥ with a certain type of mixed anomaly, i.e. one that is linear in the background
field A, | ; corresponding to a p-form global symmetry I'P), and produces as an output a new
quantum field theory T’ which contains (d — p — 1)-dimensional non-invertible defects. The
descendent theory ¥’ is obtained by gauging some part of the symmetry structure of T that
is contained in the complement of T'?) and also appears manifestly in the anomaly action.
Crucially, the anomaly, by definition, poses an obstruction to gauging that is alleviated by
locally modifying the I'P) defect. In fact, the local modification is what causes the I'P) defect
to become non-invertible in T'.

Concretely, let the symmetry structure of ¥ be a product of higher-form groups
Gs = Hg;g '@, Some of the factors I'® could be trivial.
It is more convenient to formulate everything in terms of background fields A, , ; in terms

of which the anomaly action is given by

A= AprVEWAS) A5 = {Aci ey » (259)

Ng11

where
gent? (G0 rd)), £, ) e P Ny, TiE)) (260)

where Féﬁ 211 := hom(I'®)R/271Z). Ny, is an auxiliary d + 1-manifold, used to define the
anomaly in (259), whose boundary is the d-manifold where ¥ lives. Since Gg is a prod-
uct of higher groups, the quotient by I'®) should be understood more technically as taking
the quotient on the classifying space BG which is a Cartesian product of B**1T(®), We sup-
press such technicalities since they make the presentation heavy without adding much con-
tent. Let the defect corresponding to g € I'?) be denoted as Dg. If Dy is wrapped along a
(d — p — 1)-dimensional sub-manifold %3_,_; of My, then we denote it as Dg(2g_p,_1). Due
to the anomaly, such a defect carries a non-trivial dependence on the background A; 1 Which

cannot be localized on Z3_,_;. Now consider gauging some subgroup of G/ r'®) on which &
depends. Doing so, we obtain a gauged theory ¥’ in which the defect D, becomes ill-defined
due to an anomaly. More precisely, it has a dependence on dynamical fields that cannot be
localized on %4_,_. This situation can be remedied by a local modification to D,, which in-
volves adding a topological field theory X, with a G/ T'P) *t-Hooft anomaly £. The defects in
the gauged theory correspondingly are modified as

Dy —> Ny = Dy, . (261)
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PO(4N)
non-invertibles

Ca
M2 >
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Spin(4N) auge B SO(4N) auge A, and B! .
2-group gatge % mixed anomaly gauge 2 P“'l (4N )
0By =A;Cy A=m§,A,C, B, non-invertibles
&
al[é}ee/
2 q
IIQ'O

Sc(4N)
non-invertibles

Figure 27: Overview of the theories with non-invertible symmetries that we can con-
struct from gauging the 2-group in the Spin(4N) theory in 4d.

Notably any such theory T with anomaly (259) can, in turn, be obtained from a theory ¥, with
a non-anomalous higher-group symmetry G, which sits in the short exact sequence

1— B PP}, BG — BGy/BTP) — 1, (262)

with an extension class . The symmetry structure of ¥ is obtained from the symmetry struc-

ture of ¥, by gauging Féﬁ 211 in €,. In summary, the non-invertibles discussed in [17] can be

obtained by starting from a higher group and gauging in two steps.

8.2 Non-Invertibles from 2-Groups in Pure 4d so(4N) Yang-Mills

Let us consider pure Spin(4N ) gauge theory and for concreteness let us work in 4d. The theory

has a '™ = Zél)’B x Zgl)’c 1-form symmetry and a I'®) = Zgo) outer-automorphism 0-form
symmetry. The two symmetries combine into a 2-group, which in terms of the background
gauge fields reads

5B2 :A1C2 5 (263)

where B,, C, are the backgrounds for the two 1-form symmetry factors and A; is the back-
ground for the O-form symmetry.
(0)

. . . . . . 1
This 2-group is equivalent to the Z,” outer-automorphism action exchanging two Z; )

subgroups of the 1-form symmetry, as can be understood pictorially in the following way (see
figure 28). We denote the subgroups of I'") which are exchanged by the Zgo) action by Zgl)’s
and Z(l)’c, while Zgl)’B denotes the diagonal subgroup.® In terms of symmetry defects, the

2
action is the following: if a topological surface defect p{© »C

)

crosses the
).S

. 1
N associated to Zg

. S . 1 .
, it emerges as the defect Dé ) associated to Zé . Since,

following the I'") group law, we have that Dés) = DéB) ® DZ(C), we can re-interpret the above
action in this way: upon passing Déc) through a codimension-1 defect for Zg)), we create a

codimension-3 junction from which the defect DéB) associated to the Zgl)’B subgroup is emitted.

codimension-1 defect D:.E_) for Zéo

The 2-group (263) states precisely this: at the junction of Dé_) (on a 3-cycle Poincaré dual to

Notice that this was denoted in the previous sections as Zgl)’v.
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DC.C. DC.C.
\3 \3

D¢ = D¢

2 2 ~\B 2
\ \ D,

Figure 28: Left: exchange action of Zgo) on the 1-form symmetry defects Dés) and

(B)
2

subgroup is emitted at the junction of Dé_) and DZ(C). This represents pictorially the
2-group 6B, = A;C,.

DZ(C). Right: equivalently, the 1-form symmetry defect D, ’ associated to the diagonal

A;) and DZ(C) (on a 2-cycle Poincaré dual to C,), there is a flux for Z

non-trivial background B, is sourced.
We will show that by gauging various combination of the symmetries appearing in the
2-group (263) we can go to different theories that have non-invertible symmetries:

(1).B

, ~ meaning that a

1. PO(4N) theory:
gauge B,, C,, A;: we obtain a codimension-2 non-invertible defect;

2. Pin" (4N) theory:
gauge A;: we obtain a codimension-2 non-invertible defect;

3. Sc(4N) theory:
gauge C,: we obtain a codimension-1 non-invertible defect.

A way of deriving this result is to first gauge the ZS)’B subgroup of the 1-form symmetry

to go to SO(4N) gauge theory by promoting B, to a dynamical field b, (see figure 27). The
SO(4N) theory has an emergent dual 1-form symmetry ZS)’B (in 4d), whose background we
denote by B; and which couples as nSM4 b,B;. Due to the relation (263), this coupling is

ill-defined, as it has a bulk dependency
Ms Ms

This results in a mixed 't Hooft anomaly for the SO(4N) theory. Using this map from 2-groups
to mixed ’t Hooft anomalies, the fusion rules can then by derived by following the approach
of [17], as we review in appendix B.

Before writing explicitly the fusion algebra in the theories mentioned above, we summarize
the non-invertible defects that we obtain

* N(My;B)): non-invertible defect in PO(4N ), corresponding to the codimension-2 defect
(1),B',

generating Z, " ;

* N(M,; C,): non-invertible defect in Pin™* (4N ), corresponding to the codimension-2 de-

fect generating Zél) < ;

* N(Ms;A;): non-invertible defect in Sc(4N), corresponding to the codimension-1 defect
generating Zgo)_
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8.2.1 Fusion Rules: Pin™* (4N)

This can be obtained by gauging B} and A, in the SO(4N) theory. Gauging Zgl)’B/ we recover

Spin(4N), and gauging A; we obtain Pin™ (4N ). Therefore the overall effect of these gaugings
is to gauge charge conjugation in Spin(4N ) theory.
The fusion algebra that we find is

1+ T(My)
N (Ma; Cy) x N (My; Cy) = m L(My),
2>52)1 MyeH, (My,Z,) (265)
N (My;Cy) x T(My) =N (My; Cy),
N (My; Cy) x L(M;) = N (My; Cy).
Here T(M,) = e ™ s the defect generating the Zgl)’B 1-form symmetry and

L(M;) = e™5n 4 s the defect generating the Zéz) 2-form symmetry dual to Zgo).

This is precisely the theory which we studied in section 6.1 using the higher-categorical
approach. In particular

Dz(sc) — N(My;GCy),
D" T(My), (266)

b7 LMy,

and the identification of the identity surface and lines with Déld) and Dfld), respectively. Note
that in (265) we use x and not ® as in section 6.1 to distinguish between the somewhat
“mixed" fusion algebra, between objects of various dimensions and the ‘proper’ fusion algebra,
in the higher category, that involves only objects and morphisms of the same dimension.
Notice also that the right hand side of the fusion N'(My; C,) x N'(My; C,) is precisely

Dz(id) M. DéV) M 267
Z2(2)®Z2(2)’ (267)

as we found using our approach in section 6.1.
For the sake of clarity we provide the details for this theory now.

Gauging of B, and A;. We gauge B, and A; and expect the codimension-two defect imple-
menting the Zgl)’c symmetry, which we denote as D(M,), to become non-invertible. Indeed,
in the presence of the anomaly (264), only the following combination is invariant under back-

ground gauge transformations of B, and A,

D(M,)e!™ s MBz. (268)

This implies that when we gauge Zgl)’Bl and ZZ(O) and promote B;, and A; to dynamical fields

b, and a;, we must couple D(M,) to an appropriate TQFT which absorbs the bulk dependency.

We conjecture that in this case the TQFT we need is simply a 2d BF coupling, and we define

the 2d defect (we will in following not include the background field in the labeling of N for
simplicity)

N (My)or J DDy D(My, by, ap) e/ e =0t oobiinan, (269)

where ¢ € C°(M,,Z,) is a O-form field and y; € C*(M,,Z,) is a 1-form field. The first term

in the exponential is the BF coupling, while the other two are couplings between the TQFT

fields and the bulk dynamical fields b}, and a;. Using the ¢, equation of motions §y; = b5,
the variation of the exponential precisely gives ba;.
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Fusion Algebra. We will now show that the defects N (M,) satisfy a fusion algebra, and are
non-invertible. First note that

N(Mz) % N(MZ)OC J‘Dd)ODYqugOD};lemgMz(%$O)b£+(h?l)al¢06Y1+4§06?1 , (270)

where we used D?(M,) = 1, since it satisfies the Z, fusion rules. We can shift variables
¢o — $o = ¢ and y; — ¥; = ¥ to obtain the expression

N(Mz) x N(MZ)OC JD¢ODY1D$ODfleinSM2 <190b£+f’1a1—¢05?1—4905)’1'*‘0905?1 . (271)

Integrating out ¢, and y; in the above expression sets 67, = 5¢;0 = 0, so the term SMz q§05 71
is actually trivial. Then we are left with

N(My) x /\[(Mz)ocfD‘lgop}’Alem&V’2 $obythiar (272)
We can rewrite the above equation in discrete notation as
N(Mp) x N(Mp)or 3 et 57 grha i, (273)
$oEHO (My,Z,) F1€H (My,Z5)

which using §,, 71a; = §,; a1, where M € Hy(My, Zy) is the Poincaré dual of f,, reads

N (Mp) x N (Mp)oc(1 + ™ty N1 gt e, (274)

M €H; (My,Zy)

Here /™4 %2 — T(M,) is the codimension-2 defect generating the 1-form symmetry dual to

Zél)’B/ and e ™ @ — [ (M) is the codimension-3 defect generating the 2-form symmetry dual
to Zéo). Hence we see that
1+ T(M,)
N(My) x N (M) = ————"= L(My), (275)
|[HO(My, Z,))|

MyeH;(M,,Z,)

and so N (M) is a non-invertible defect. The normalization can be fixed with considerations
similars to those in [17].

We can compute also the fusion rules of N'(M,) with the other operators in the theory.
First we compute the fusion rule between N (M,) and the surface operator W (M,). This is
given by

N (My) x T (M) = f Do Dy D(My, b, ay)e'™ o o871t dobarnar+indi, b _ pr(pg,)

(276)
The fusion rule between A (M,) and L(M,) is instead given by
N(My)  L(My) = | Dy, =001+ o
_ JD¢0DY1 eiﬂ:SMZ —¢ody1+¢obytria1+{y, han
_ JD%DH 1Sy ~900T 1+ 0B+ _ £rppy 277)

where 1, € HY(M,, Z,) is the Poincaré dual of M; € H;(M,,Z,). In the last line we are free to
shift y; — y; + ;. The first term in the exponential does not give an additional contribution
since 61; = 0. Hence we recover exactly N (My).
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8.2.2 Fusion Rules: PO(4N)

The fusion algebra is computed similarly, see also appendix B, and is given by

1+ W (M)
N (My; By) x N (My; By) = WZZM > LMy,
2721 MyeH, (M, Z,) (278)
N (Ma; By) x W(My) = N (My; BY),
N (My;By) x L(M;) = N (My;By).
Here L(M;) = ™% is the defect for the Zéz) 2-form symmetry dual to Zgo) and
W(M,) = ¢!™$ 2 is the defect for the 1-form symmetry Zgl) dual to Zél)’c.
8.2.3 Fusion Rules: Sc(4N)
The fusion algebra is determined in appendix B and is
1 !/
N(Mg;A) X N(Mg3Al) = s ), WMy)V(My),
|HO (M3, Zy)| /
My,M;€eH,(Ms,Z5)
(279)

N (Ms3;A1) x V(My) = N (Ms;A,),
N (M3;A1) x W(My) = N (Ms;4,),

where W(M,) and V(M) are the codimension-two operators generating the one-form sym-
(1),8’

metries dual to Zél)’c X Ly

8.3 Non-Invertibles from 2-Groups in Pure 4d so(4N + 2) Yang-Mills

The 4d Spin(4N + 2) pure gauge theory has a Zgo) charge conjugation 0-form symmetry, while

(1)

the 1-form symmetry is Z,

. They form a 2-group [60]
532 = BOCk(Cz) +A1 C2 5 (280)

where A; is the background for the 0-form symmetry, and B,, C, are backgrounds for the two

. . . 1
Z, factors in the 1-form symmetry, which form an extension to Zi )

1>%2y >7Z4—7Zy—1. (281)

The Bock is the Bockstein homomorphism for this extension sequence.
By gauging various combination of the symmetries of Spin(4N + 2) we can go to different
theories with non-invertibles

1. PO(4N +2):
gauge B,,A;, Cy: we obtain codimension-2 non-invertible defect;

2. Pin" (4N +2):
gauge A;: we obtain a codimension-2 non-invertible defect.

The non-invertible defects that we obtain are

* N(My;Bj): non-invertible defect in the PO(4N + 2) theory, corresponding to the
codimension-2 defect for the Zgl) symmetry dual to Zg)’B;
* N(M,;C,): non-invertible defect in the Pin™ (4N + 2) theory, corresponding to the

codimension-2 defect for the Zgl)’c symmetry.
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8.3.1 Fusion Rules for Pin* (4N + 2)

The fusion algebra that we find in appendix is B.2

1+ T(M,) .
N(M,;C) x N(My; C)) = —————22 QM) 1 (M),
M) it 2
N(My;Cy) x T(My) = N (My;Cy),

N (M3 Cy) x L(My) = e ™M N (My; C,).

Here we defined Q(M;) = §,, Bock(e1) = §), €1 L €, where €, is the Poincaré dual of M.

This additional phase is non-trivial only on non-orientable manifolds. L(M;) = e/ 41 s the

defect for the Zgz) 2-form symmetry dual to Zgo) and T(M,) = ei™$%2 js the defect for the
(1),

1-form symmetry Z, .

8.3.2 Fusion Rules for PO(4N + 2)

The fusion algebra is given by

1+W(M .
N (My;By) x N (My; By) = o M) s pimatot ),
|H (MZJ Z2)| MIEHl(MLZZ) (283)
N(M2§B/2) x W(M,) = N(M2§Bé),

N (Ma; BY) x L(My) = e MIN (My; BY).

Here we defined Q(M;) and L(M;) as above. W (M,) = e "4 s the defect implementing

the 1-form symmetry dual to Zgl)’c.

8.4 Extension to s0(4N) Yang-Mills Theories in any Dimension

The construction of non-invertible symmetries in the Spin pure gauge theories can be straight-
forwardly extended to generic dimension dimension d. Let us consider the Spin(4N) case for

concreteness. The theory has ZS) X Zgl) 1-form symmetry, Zgo) outer automorphism, and 2-

group 6B, = A;C,. We now gauge the Zg) 1-form symmetry with background B, as we did

above. The new coupling 7 SMd B,B,_5 has a bulk dependency
A = th Al CZBd—Z . (284)
Mg 11

Here B,_, is the background for the ng_g) (d — 3)-form symmetry dual to Zgl). Now the

discussion is completely analogous to the one in 4d. We list the possibilities for non-invertible
symmetries.

Pint(4N). Gauge A; and B,_, first. In this case the codimension-2 defect generating Z;l)
becomes non-invertible. These satisfy the fusion algebra

N(My_3) x N(Mg_5)

HY™5(My_5,7Z,)]... ; ,
_ :Hd_4§Md2:Z2;: (1 + eln@Md—Z bd72> Z em§M1 a; . (285)
d—2>%442) |-+

MyeH| (My_3,2Z5)
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PO(4N). Consider the gauging of A; and C,. In this case the defect generating ng—s) be-

comes non-invertible (notice it has dimension 2). We have the fusion

N (M,) x N (My)
1+ ¢!y €2
|HO(M,, Z,)|

(286)

eiﬂ§M1 a

MyeH;(M,,Z;)

Sc(4N). Finally, consider gauging C, and B;_,. In this case the codimension-1 defect imple-

menting Zgo) becomes non-invertible. We find the fusion rules

N(Mg_1) x N(Mg_4)
_ 1 HI™S(My_1,Zy)] ...
|HO(Mg_1,Z5)| |HI=*(My_1,Z5)|. ..

S emhwad st (287)

My€eH,(My_1,25)
My_2€Hq_5(Mg_1,Z5)

8.5 Non-Invertibles from 2-Groups in Pure 4d O(2) Theory

Complementing the higher-category gauging analysis in section 6.3 we provide a derivation
of the fusion of topological defects in the 4d O(2) gauge theory using the mixed anomaly
approach.

Recall that the O(2) gauge theory can be obtained by U(1) gauge theory by gauging Zéo)
charge conjugation. U(1) gauge theory also has a U(1) electric 1-form symmetry generated by
Gukov-Witten operators. To our knowledge, the approach of [17] allows us only to consider a
Z4 < U(1) of the 1-form symmetry, so it is more limited than the higher-categorical approach
we used in section 6.3 to study non-invertible symmetries in the same theory.

In particular, we start by considering a discrete Zgl) subgroup of the 1-form symmetry. The
analysis is very similar to the one for the Spin(4N + 2) theory. Namely, we have a 2-group

632 = BOCk(Cz) + CZAI , (288)

where B, and C, are backgrounds for two Zgl) symmetries inside ZS), while A; is the back-
ground for charge-conjugation. If we now gauge B,, we obtain theory with a mixed anomaly

A= TEJ B,Bock(Cy) + B,CoA;, (289)
Ms

where B, is the background for the dual Zgl) 1-form symmetry. At this point we want to

gauge B, and A; to make the codimension-2 defect implementing the Zgl) 1-form symmetry
associated to C, non-invertible. Notice that the net effect of this series of gaugings is to gauge
Ay, i.e. charge conjugation, in the U(1) gauge theory, hence we expect to recover a subset of
the non-invertible defects of the O(2) gauge theory.
Using the result for the Spin(4N + 2) theory, we obtain a non-invertible defect /(M)
which has fusion
1+ T(M,)

e el St VA inQ(M;)
N(Ma) x N (Ma) = o0t 2,)] MIGH%V,z,ZZ)e HM)- 290

()
2 >

B 1-form

Here L(M,) is the topological invertible line operator implementing the dual symmetry Z

(1)

while T (M) is the codimension-2 topological invertible operator generating the Z.,
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symmetry. We also defined Q(M;) = <§M2 Bock(ep) = §M2 €1 U €1, where € is the Poincaré dual
of M. This additional phase is non-trivial only on non-orientable manifolds.

This is a special case of the fusion algebra of section 6.3 for the case of 6 = % with the
identifications

S(1/4) — N(M)
2 b

D" s T(My), (291)
D\ L(My).

8.6 Non-Invertibles from Higher-Groups: 6d and 5d Theories

In this section we explore non-invertible symmetries appearing in 6d and 5d theories from
the higher-group approach. This complements the analysis in section 7, where we used the
higher-category gauging.

To apply the higher-group approach, we need to however restrict here to an absolute the-
ory (e.g. pick a polarization on the defect group of 1-/2-form symmetries in 5d). In particular,
we will find examples of non-invertibles in 6d (2,0) absolute SCFTs and in 5d KK theories ob-
tained as circle compactifications of 6d (1,0) SCFTs. 6d (2,0) SCFTs are an example of relative
theories [61,62], in the sense that they have defects — in this case 2d surfaces — which are mu-
tually non-local, meaning that there is phase ambiguity in defining the correlation function of
two such defects. This implies that the theory is not well defined on its own, but rather must
be thought as living at the boundary of a 7d TQFT. For 6d (2,0) SCFTs specified by an ADE
algebra g, the defect group D [63] is simply given by the center of the simply connected group
G with Lie algebra g

D=2 (292)

Given a relative theory, one can obtain an absolute theory by choosing subgroup a L < D
of the defect group corresponding to picking a subset of mutually local surface operators.
This is often referred to as a choice of polarization. 6d (2,0) absolute theories were classi-
fied (upto two simple factors) in [64]. The data entering this classification are a Lie algebra
g=0:1DgsD...®g,, where each summand is of ADE type, and the aforementioned choice of
polarization.

In particular, we will consider the theories

(A15’Z4) E] (Dn @Dm ZZ X ZZ) s (293)

where the first entry denotes the choice of algebra and the second one the choice of L. L gives
the 2-form symmetry group of the theory.

We will then consider example of non-invertibles in 5d theories obtained by circle compact-
ification from 6d SCFTs. We pick 5d absolute KK theories with a 1-form symmetry group inher-
ited from 6d, both from the defect group and the 1-form symmetry itself of the 6d SCFT [65].
In particular, we will look at non-Higgsable clusters (NHCs), which are building blocks for 6d
N = (1,0) SCFTs with non-trivial defect group. The single node NHC consists of a single curve
with negative self-intersection number —n with non-Higgsable gauge algebra g. We will look
in particular at two examples, namely su(3) on a —3 curve, which has defect group Z;, and
50(8) on a —4 curve, which has defect group Z,. Upon compactification to 5d, we can pick an
absolute 5d KK theory whose 1-form symmetry is given by [65]

M
) =D®Zs, (294)

where D is the 6d defect group and Z; is the center of the simply connected group with algebra
g.
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8.6.1 6d (2,0) Theories of Type (D, ®D,,)

We first consider the 6d (2,0) absolute theory of type (D, ® D, ). This case was also studied
from the higher gauging in section 7. This theory has a 2-form symmetry Zgz),c X Zgz)’B and

a Zgo) outer-automorphism O-form symmetry symmetry which exchanges the two D, copies,
and hence the two 2-form symmetries. Let us denote the background gauge fields for the 2-
form symmetry by Bs, C3 and by A; the background gauge field for the O-form symmetry. The
symmetries form a non-trivial 3-group which reads

5B3 :A1C3 . (295)

(2).B

Now we gauge the Z," subgroup of the 2-form symmetry. We gain a dual 2-form symmetry

Zgz)’Bl whose background we denote by Bj. Due to the 3-group structure (295), we obtain a

mixed anomaly

M;

Very similarly to the 4d Spin(4N ) case, we can now gauge various combinations of symmetries
appearing in (296) and obtain theories with non-invertible symmetries.

Gauge C; and B]. After gauging the Zgz),c the codimension-1 defect generating the 0-form

symmetry becomes non-invertible. We denote the non-invertible defect by N'(Ms;A;). The
fusion of two defects can be computed as in appendix B and gives

H°(Ms,Z,)|?
|H" (Ms,Zy)| 3

N(Ms;A;) x N (Ms;A;) = |HY(Ms, Z,)|?

T(Mg)W(NB) >
M3, Ns€H3(Ms,Z) (297)
N(Ms;A;) x T(M3) = N (Ms;A,),

N (Ms; A1) x W(Ms) = N (Ms;4,).

Here T(Ms) = /™% % is the defect for Z, and W(N3) = ¢ "% is the defect generating the

2-form symmetry dual to Zgz),c

Gauge A; and C;. We can also gauge A; and Cs, effetively gauging the full 3-group. In

this case what becomes non-invertible is the defect for the symmetry Z( )2’ We denote the
non-invertible defect by N'(Mj; By).
The fusion rules are given by

|HO(M3,Z,)|

Q+WO) > L(My),
/ / MyeH, (Ms,Z) (298)
N (M3;B;) x W(Ms) = N (Mj; B),

N (M3;B3) x L(M;) = N (M3;By),

where L(M,;) = ¢ % is the defect for the 4-form symmetry dual to Zgo), while W (M) is
defined as above.

Gauge A; and B;. We can also gauge A; and Bj, effetively gauging only charge conjugation
in the original theory. In this case what becomes non-invertible is the defect for the symmetry
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Zgz),c. We denote the non-invertible defect by A/(Ms; Cs). The fusion rules are given by

_|HY(M3,2,))|

/\/'(M3;C3) X N(Mg;Cs) = |HY(Mj3,Z,)]|

(1+T(Ms)) Z L(M,),

My €H; (Ms,Z5) (299)
N (M3;C3) x T(M3) =N (Ms;Cs),

N (Ms; C3) x L(My) = N (M3;Cs),

where L(M;) and T (Mj3) are defined as above.

8.6.2 6d (2,0) of Type A2 Forn=4
Consider the A,2_; theory for n = 4. Here we have a sz) 2-form symmetry and the Zgo) outer-

()

automorphism acts on it by sending a generator of Z,

fields, we have a 3-group of the form

to its inverse. In terms of background

633 = BOCk(Cg) +A1 ) C3 , (300)

The discussion here is very similar to the one for Spin(4N +2) YM. We write down explicitly
only the case where we gauge the full 3-group. The defect that becomes non-invertible is the

one implementing the 2-form symmetry Zgz)’B/ dual to Zgz)’B. Denote this defect by NV (M3; B).
The fusion rules are derived in a similar fashion to the 4d examples, and we find

_ |HY(M3,2,))

N (M3;B;) x N (M3;By) = TH(M;, Z,)|

(1 +W(M3)) Z einQ(Ml)L(Ml):
| / M1€H1(M3’ZZ) (301)
N (Ms;By) x W (Ms) = N (Ms; By),

N (My;By) x L(M) = e™MN (My; By),
where L(M;) = ™9 s the defect for the 4-form symmetry dual to Zgo)’ while
W(M;) = ¢/ is the defect for the 2-form symmetry dual to Z#€. We also defined

2
Q(M,) = SMs Bock(y,), where y, € H2(Mj, Z,) is the Poincaré dual of M; in Mj.

8.7 5d Theories

There are several theories in 5d that have anomalies that are amenable to being gauged and
result in non-invertible symmetries. We focus on 5d KK-theories, which are obtained from 6d
SCFTs, by compactifications on S'. The theories in 6d have 2-form symmetries and 1-form
symmetries [65, 66], which descend in 5d to 1-form symmetries (for a particular choice of
polarization) by (294).” We will focus on two examples: the non-Higgsable clusters, which
correspond to an su(3) (so0(8)) singularity tuned over a —3 (—4) self-intersection curve in
F-theory.

8.7.1 su(3)ona —3 curve

This theory has a Zgl) X Zgl) 1-form symmetry. We denote the backgrounds for the two factors
by B, and C, respectively. The two symmetries have a mixed anomaly [67,69, 70]

2
Az—“f Cy UBy UB,. (302)
3 Ju.

7As shown in [67], the 1-form symmetries that we will gauge, do not have a B type anomaly [64, 68], which
would obstruct gauging these symmetries.
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Since we have a theory with a mixed anomaly, we can gauge part of the symmetries involved
to obtain non-invertible defects.

Note however that gauging the Zgl) associated to C, does not give a non-invertible defect,
but rather results in a higher-group symmetry. Indeed, consider the partition function of the
theory with C, gauged:

~ 2mi 2mi
Z[Ms; C3,B,) = JDCZZ[Ms;cZ,BZ]e 5 Jug 2 P2 B 75 By 200G
27 2mi
- f Dey Z[Ms; ca, Byle ® s P2 Pag s g 200G (303)

where Cj is the background for the dual 2-form symmetry Zgz)- The bulk dependency is re-

absorbed simply by setting §C3 = B, U By, which results in a higher-group structure between
the dual 2-form symmetry and the residual 1-form symmetry in the gauged theory.

Then to construct non-invertibles we consider the case in which we gauge B, and make the
defect associated to C, non-invertible. We denote it by D(,,(Ms), with n = 0,1, 2. Due to the
mixed anomaly, we must consider the dressed defect

2min

Dy (Mz)e > 22, (304)

Now consider gauging B, by making it a dynamical field by b,.
To make D(,)(M3) well defined we must couple it with a TQFT which cancels the anomaly

21in

M,

by U by — ,
fM4zuz 3 2

where P(b,) is the Pontryagin square of b,. It was shown in [71] that there is a notion of
minimal TQFT with such an anomaly. In particular, we have

B
ANP «—  minimal TQFT living at the boundary of 27'53 P(B,) . (306)
NJu, 2
Thus we define
Ny (Mz) = Dy (M3) A>~2(Ms3, by) = D1y (Ms) A>! (M3, by)
Ni2)(M3) = D(5)(M3) A>~*(Ms, by) = D1y (M3) A>* (M3, b,), (307)

where we used A>~2 =~ A>! since p is defined mod N for AN a spin TQFT.
To compute fusions between N, (M) and its orientation reversal \(,)(Ms), we can use
the following duality derived in [71]

AP QANTP «— (Zy) v whenged(N,p) =1. (308)

Here (Zy)_py is the Zy DW discrete gauge theory, which can be described by the continuum
action

N N
J—Lxdx + —xdy, (309)
47 27

with x and y U(1) gauge fields. o
For example, we can compute the fusion between /\/(1) and its orientation reversal A/ (1)- This
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is given by

N 1) (Ms) x Niy)(Ms) = A~ (Mg, by) x A™! (Ms, by) = (23) —3(Ms, by)
= J’Dxl’Dyl eiSM3 _47X1dx1+ﬁx1dy1+iSM3 x1by

_ Z o7 Sy, $1Bock(F1) , 5§y, %1b2 (310)
%,€HY (M3,Z3)
_ Z imQ(My) , 5 i, bz

M,eH,(M3,Z3)

where x; = Tﬂ 1 with %, € HY (M5, Z3) a discrete gauge field, M, is the Poincaré dual of %, in
M; and Q(M,) = S %;1Bock(X;). In summary we obtain

1

N (1) (Ma) x Ny Ma) = T

e MW ) (My), (311)
My€eH,(Mj,Z3)

()

where W;)(M,) = e %" Sy b2 generates the dual Z,™ 2-form symmetry.

8.7.2 s0(8) ona —4 curve

This theory has a Zil) 1-form symmetry, whose background we denote by C,, and a Zg) X Zél)

1-form symmetry, whose backgrounds we denote by Bél) and Béz)

factors. The theory has a mixed anomaly given by [67,70]

respectively for the two

A= nf c,uBY UBY. (312)
Mg

We denote by D(,,) (M3) the defect implementing the Zgl) symmetry, where n = 0, 1,2, 3. Due to
the mixed anomaly, we can make it gauge invariant under background gauge transformations
of Bél) and Béz) by considering the combination

) ninSM4B£1>uB§2) '

D(n) (M3 e (313)

Note in particular that the defect D(;)(M3) does not have an anomaly, so that D(gy(Ms3) and

D(;)(Ms) generate an anomaly free Z(l) subgroup. Upon gauging Z(l) (1) , the defects D)
and D3y become non-invertible. We denote by /\f(l ) the respective non 1nvert1ble defects.
The fusions are given by

1 1 2
NayMs) x Ngy(Mz) = ———— > vOuM)yv@u?),
|H (MB’ZB)| ) ,,2)
M, M, €H, (M3, Zy)

Na)(M3) x D(2)(M3) = N (3)(M3),
N(3)(M3) x Dg)(M3) = N1y (M3). (314)

Here V(1):(2) (Mz(l)’(z)) are the defects for each Z, subgroup of the 2-form symmetry dual to
71 71
2 2
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9 Outlook

We have provided an operational definition of higher-categorical symmetries in higher dimen-
sions. It would be important to put this proposal on firm mathematical foundations, developing
the theory of higher-categories, connecting it to the mathematical literature, and determining
similarly stringent constraints as they are known in three and lower dimensions. We pass the
sniff-test in that the proposal agrees in 3d with the known theory in [30,31]. A crucial consis-
tency requirement, which needs to be fully integrated into this formalism are constraints such
as hexagon identities.

There are numerous ways to extend the work in this paper. The most obvious extension is
to gauging higher-form symmetries in higher-categories. Deriving the fusion after higher-form
symmetry gauging can furthermore in some instances be compared with the approach using
mixed anomalies or higher groups discussed in section 8.

Most of our examples have been non-supersymmetric gauge theories in various dimen-
sions. Clearly there are numerous supersymmetric ones — we have given examples of 5d and 6d
theories, but of course likewise 4d SCFTs will be equally amenable to our approach. Exploring
higher-categorical symmetries in geometric engineering will be another important milestone,
as it will open up studies both of strongly-coupled supersymmetric QFTs, but also will play a
role in the context of the swampland program (concretely, the no global symmetry conjecture).
Understanding the action of twist operators on the string theoretic topological operators that
generate the higher-form symmetries (see [65, 72-74]) will be crucial in implementing this
construction in string theory.

The approach in section 8 as well as the closely-related [17], on the other hand starts with
a higher-group symmetry or mixed anomaly for discrete symmetries. We have given examples
of 5d and 6d theories with such structures, but multitude of examples can be constructed using
the recent advances in geometric engineering of such discrete higher-group symmetries.

Finally it would be interesting to make contact with the mathematics literature on higher-
category theory, such as the works [27,75].
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A Further Examples

In this appendix we provide further examples of symmetry categories for 3d and 4d QFTs.

A.1 Pure Pin" (4N + 2) Gauge Theory in 3d

Let us now consider analogous construction of pure Pin™ (4N +2) Yang-Mills theory by gauging
outer-automorphism O-form symmetry of pure Spin(4N +2) Yang-Mills theory. Before gauging,
we have a 1-form symmetry group coming from the center of Spin(4N + 2)

rd —z,, (315)
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and the outer-automorphism of so(4N + 2) gives rise to a O-form symmetry group

r®=z,, (316)

which acts on T = Z,4 by interchanging the generator of Z, with the inverse of the generator,
and leaving invariant the Z, subgroup of Z,.
The category Cgpin(an+2) for Spin(4N + 2) theory has objects

Cob

(id) H(S) H(V) H(C)
Spin(4N+2):{D1 ,D;",D; 7, D }, (317)

1

$) corresponding to the generator of Zy, p©

with D ,  corresponding to the inverse of the gener-
ator, D, corresponding to the identity element of Z,4, and Div) corresponding to the generator
of the Z, subgroup of Z,. The fusion of objects follows the group law of Z,.

Now we gauge Z, to obtain a category Cp;,+ (4N+2) describing topological line defects and

(
1
(id)

local operators of the Pin* (4N + 2) theory. A subset of simple objects of Cp;, + (4N +2) arise as

(id) (V)

objects of Cgpin(an+2) left invariant by the Z, outer automorphism action. These are D; ', D;

and c c
0= (0P @n{?) (318)
Spin

where the subscript Cgpin 4y 42) on the RHS reflects that the object DiSC) is decomposed as this

direct sum only in the category Cgpin(an4+2), Dut it is a simple object in the category Cpin+(4N +2)-
Other simple objects of Cp;;+ 4y .2) are obtained by dressing with Wilson line defects. Note

fd), Div) is the whole O-form symmetry group Z,, while the stabilizer

is trivial. Thus, we obtain new simple objects of Cpj;+ 4y 2) by dressing p™ p)

1 07
with the non-trivial irrep of Z,. We call the resulting simple objects as fo), Diw)

Thus, the full set of simple objects of Cp;+ 4y 4 2) 18

that the stabilizer for D

for Dl(sc)

respectively.

id) (=) ~(SC) ~(V) ~(V-
ey = {21,010, D, D" (319)
Note that, at the level of objects, the category for Pin* (4N +2) is the same as that for Pin* (4N)
discussed in the previous subsection. In fact, the reader can imitate the arguments of previous
subsection and find that fusion rules of the objects are also exactly the same for Pin" (4N + 2)
and Pin™ (4N).

Thus the category for the Pin™ (4N +2) theory is also a Tambara-Yamagami category based
on Zy x Z,. Is it the same as the category for the Pin* (4N ) theory? It turns out, by computing
the associators, that the answer is yes. That is, the category for the Pin™ (4N + 2) theory is
also

Coin+ (4n+2) = Rep(Dg) . (320)

This can again be understood by constructing Pin* (4N + 2) theory as a gauging of the pure
PSO(4N + 2) theory in 3d. The latter theory is obtained by gauging the Z, 1-form symmetry
of the Spin(4N + 2) theory, leading to a dual Z, 0-form symmetry in the PSO(4N + 2) theory.
The outer-automorphism acts by interchanging generators of Z,, so the full 0-form symmetry
of PSO(4N + 2) theory is

r®—=z,%z,. (321)

It can be easily seen that this group is isomorphic to Dg, that is we have

r© = pg. (322)
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On the other hand, the PSO(4N + 2) theory has trivial 1-form symmetry. The Pin™ (4N + 2)
theory is obtained by gauging the Dg symmetry of the PSO(4N + 2) theory, which creates
Wilson line defects for Dg, thus implying that

Cpin*+ (an+2) = Rep(Dg) (323)

is the category of symmetries for the Pin™ (4N + 2) theory.

A.2 Pure SU(N) Gauge Theory in 4d

Another example of disconnected gauge theory with a non-invertible symmetry is the SU (N)

—_——

gauge theory. Here the group SU(N) is the so-called principal extension of SU(N) (see [76] for
some field theoretic discussions). This is obtained by taking the semi-direct product of SU(N)
with the Z, outer-automorphism of its Dynkin diagram. Recall that the outer-automorphism
of the su(N) Dynkin diagram acts by flipping the order of its nodes, which corresponds to
exchanging the fundamental and anti-fundamental representation of SU(N). In this sense,
we can also identify this Z, with charge conjugation, and interpret SU(N) as SU(N) with
charge conjugation gauged.

The construction of non-invertible defects is very closely related to the construction for
O(2) in section 6.3. SU(N) Yang-Mills theory has the following symmetries

W=z, , TO=z7,. (324)

The 1-form symmetry is described by a 2-category Cgy(y) which can be recognized as a sub-
category of the the 2-category Cy (1) with 6 € Zy S R/Z.
Consequently, the descending 2-category CST](N) describing non-invertible symmetries in

the SU (N) theory is described as a subcategory of Co(2) Whose simple objects modulo conden-
sations o (o
e ) = {Dy, 57}, (325)

for N odd and with 9 constrained to lie in the set
{0eZy <R/Z}n{0< 0 <1/2}. (326)

Similarly the simple objects modulo condensations for N even are

o _ [pO p/2) ¢O)
e = (D20 s (327)

with 6 constrained to lie in the set (326). The fusion rules follow from the fusion rules for
0(2).
The simple 1-endomorphisms of simple objects modulo condensations are

Canee = {Dl“’),Dl(*),Lg@)} , (328)

for N odd and with 6 constrained to lie in the set (326), and

ckende — {p{”, oy, 0", D7), L} | (329)

for N even and with 0 constrained to lie in the set (326). The fusion rules follow from the
fusion rules for O(2).
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A.3 A [Spin(4N) x Spin(4N)| x Dy Gauge Theory with Matter in 4d

Consider a 4d gauge theory with Spin(4N) x Spin(4N) gauge group with a scalar field in the
bi-vector representation (4N,4N). The center symmetries Z‘z‘ are broken to

r® =z3, (330)

by the matter field. If no masses and potentials are introduced, then there is furthermore a
0-form symmetry group

IO = Dy =7y % Zy = (Zy X Zy) ¥ Lo, (331)

given by the dihedral group Dg of order 8, which is the group of outer automorphisms of the
50(4N)@so0(4N) gauge algebra. The group of outer automorphisms is computed as the group
of symmetries of the Dynkin diagram of s0(4N ) ®s0(4N ). Exchanging the spinor and cospinor
nodes for each s0(4N) subfactor gives rise to the Z, x Z, subgroup of Dg in its presentation as

D8 = (ZZ X ZZ) A Zz . (332)

The other Z, comes from the exchange of the two s0(4N) Dynkin diagrams, which acts on
75 x Z- non-trivially. Thus the full group structure is non-abelian and given by the Dg group.
As the bivector representation is left invariant by each Z,, the Dg outer automorphism descends
to a O-form symmetry of the Spin(4N) x Spin(4N) gauge theory under consideration.

The elements of I'V) are

rt = {(idid), (idv), (vid), (VV), (SS), (SC), (CS), (CC)}, (333)
with group structure
(ij) x (k) = (mn), (334)
where m and n are obtained as follows
m =ik,
. (335)
n=jl,
using the group structure of
ZZ X Zz = {ld,S, C,V} (336)
discussed earlier.
The Z, subgroup of Dy in its presentation
DS = Z4 X Zz (337)
acts on T(M) as ©
Z, : (8S) — (CS) — (CC) — (SC) — (89), (338)

(idV) < (Vid),

while (idid) and (VV) are left invariant. The other Z, in Dg does not commute with this and
acts as follows:
z0 . (8S) > (SC), (CC)« (CS), (339)

and leaves all other elements invariant.
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0 .
A3.1 Zgr) Gauging

(1)
2
follows group law, and simple 1-endomorphisms Dil) of Dz(l) whose fusion ® also follows group
law. Let us begin by gauging Z, subgroup of Dg. The 2-category Cgpinspin descends to a 2-
category C(spinx spin)xz, Of the resulting [Spin(4N) x Spin(4N)]| x Z, gauge theory.

The simple objects modulo condensations of C(gpin x spin)xz, are

The 2-category Cgpinxspin Defore gauging has simple objects D, * with (i) € I whose fusion

b (A (did) (VV) o(Vid) o(SC)
C?SpinxSpin)xZ4 - {D2 ’DZ ’SZ ’52 } ’ (340)
where (Vid) (Vid) (idv)
Vi Vi idv
s = (oo™
Spin X Spin (341)
(SC) (85) (Cs) (CO) (C)
529 = (0§ @D} @0 @} )C o
Spin X Spin
as objects of the 2-category Cgpin x spin-
The simple 1-endomorphisms of simple objects in C?;)pinxSpin)xZ4 are
1-endo
(Spinx Spin) xZy4
gy 2 3 2 3 ; ;
_ {Dfdld)’D;w)’wa )’Dl(co )’D§VV)’D§VV,w),D§VV,w ),D§VV,0.> )’L§V1d),L§V1d,—),L§SC) ’

N . (342)
where Dl(ldld), Dl(vv)’ ngd) and Lgsc) are identity 1-endomorphisms of the simple objects
pldid  pVV) = WD) 4 55€) ively, D¢ and DYV®' for i 1,2,3

>, > Dy 0, S, and S, respectively. © an 1 @ for i e {1,2,3} are
non-identity 1-end0mprphisms of Dz(ld) and Dévv.) respectively. ngd’_) is a non-identity 1-
endomorphism of Séwd) obtained by dressing ngd) with a non-trivial Wilson line for Z,, be-

cause Z, C Zy, is the stabilizer group for the orbit of (Vid). The simple 1-endomorphisms of

Déid), DZ(VV), Séwd), Sésc) follow Zy4,Z4, Z, 7, group laws respectively under fusions inside the

surfaces (i.e. fusions parametrized by objects).

The fusion of the objects in C?;’ . . is as follows. DY and D" have fusion rules
pinXx Spin) xZy4 2 2
with each other such that they form a Z, 1-form symmetry of the [Spin(4N) x Spin(4N)| x Z,
theory. In particular, ngld) is the identity surface defect. The fusion of DZ(VV) with other
objects is . .
Dz(VV) ® SéVld) _ SéVld) ’ .
D" @559 = 559
The remaining fusions of Séwd) are
idid 4%
SVid) g g(Vid) _ Dy o p,""
2 2 Zs Zy (344)
sV 559 _ 95(50)
Finally, we have
(idid) vv) (vid)
D D S
Sésc) ®S§SC) _ 2 2 go22 (345)

Z, Z, Z,
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The fusion rules under the bulk fusion structure ® of the 1-endomorphisms are

Diw") ®D§‘°q) _ Df“ﬁq) ,
DiVV,w") <@D(wq) _ D§VV,wP+q) )
D( )®D(Vqu) Diwﬁq) ’
wa) ®L§Vid) _ D1(w3) ®L§Vid) _ L§Vid,—) ,
D§w) ®L§Vid,7) _ D1(w3) ®L(Vld - _ LgVId) ,
Diwz) ®L(Vid) _ ngd) ’
Dng) ®L (vid,—) L§Vid,f)’

Diw") ®L§SC) _ L(SC)
DiVV) ®L§Vid) (VVco )®L(V1d) L(Vld)

(346)
(vv) ®L§Vid,—) ivvﬁo )®L(vld, ) _ Lgvld, ),
(VVw) ®L(V1d) _ Dl(VVco3) ®L(V1d) L§Vid,—) ’
vav,w) ®ngd,f) _ Dl(vv,w3) ®L§vld, ) _ ngd) ’
D%VVwP) & L5 Lgsc),
ngd) ®L§Vid,—) wa) @D( )®D§vv,w) @D(W“’ )
L§Vid -) ®L§SC) _ g C)(a) @Lﬁsc)(b) ’
1d1d) 7 D(VV) 7
L(Vld )®L(Vld,—) _ Ll( / 2) (—BLl( , 2) ,
idid) 2,):2 ") 2.z
(Vld)®L(V1d,—) _ Ll( / z) 2®L1( PR z) 3
where Diwo) = Dfidid) and Diw’wo) = vav); Lgsc)(i) for i € {a,b} are copies of L&SC) in
pidid)
the two copies of respective surfaces appearing in the fusion of surfaces; L( 2/ 2) and

)
(Dz / ZZ) (idid)
L are identity lines of the surfaces D,

1

D(idid)/Z : D(vv>/Z z

L1( 2 2) and L1( 2> ’
(idid) (VV) .

metries localized on the surfaces D, ( /Zz D, "’ /Z, respectively.

/Zz and D /Zz respectively; and

are lines generating Z, subgroups of Z, x Z, 0-form sym-

A.3.2 Dg-Gauging

. 0 .
We next gauge the additional Z; ). In terms of the surface defects, the ones in C(spinxspin)xz,

are Z, invariant, and thus the simple objects modulo condensation are

b (idid) ~(VV) L(Vid) ~(SC)
C?SpinxSpin)xDs = {DZ ’DZ ’SZ ’52 } . (347)

Next consider the action on the 1-endomorphisms: the Z, acts by exchanging

p@ _ p@®)  pve)

(VV,0?)
1 1 <D

! , (348)
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and leaving the other 1-endomorphisms invariant. The simple 1-endomorphisms are

1-endo
(Spin x Spin) x Dg

_ {Dfidid)’Die),D§ww3),D§w2)’D§w2,e),

vv) vv,e)’Divv,ww fvv,wz)’Divv,wae) (349)

( ( %)
D", D, ,D

(vid)  (Vide) , (Vid,—) ; (Vid,—e) ;(SC) , (SCe)
Ly Ly L Ly, L }

b

(€)

where D,

is the non-trivial line on the identity surface due to the gauged Z, symmetry and

B

(ww?) () (@?)
D =(D; "@®D
( 1 1 ) C(Spinx Spin) X Zy4

Vv ww3 VV,w VvV 0)3

C(Spinx Spin) xZg

Furthermore, the lines Dfl’e) are the non-identity endomorphisms on the surfaces i = idid, Vid,

who have non-trivial stabilizer Z,.
We leave the determination of fusion rules to the interested reader.

B Derivation of the Fusion Rules for Spin Yang-Mills in 4d

In this appendix we compute the fusion rules for the Spin(4N) and Spin(4N + 2) gauge theo-
ries, which we discussed in section 8.

B.1 Non-Invertible Symmetries from Spin(4N) Yang-Mills

We start with pure Spin(4N) gauge theory and for concreteness let us work in 4d. The theory
has a IV = ZS)’B X Zgl)’c 1-form symmetry and a I'¥) = Zéo) outer-automorphism 0-form
symmetry. The two symmetries combine into a 2-group (263). Gauging Zgl)’B yields the
SO(4N) gauge theory by promoting B, to a dynamical field b,, and a dual 1-form symmetry
Zgl)’B (in 4d), with background field B;,. This couples as SM4 b,B;,. Due to the 2-group (263)
this coupling is ill-defined, since it has a bulk dependency and yields an t’ Hooft anomaly (264)
for the SO(4N) theory. As described in the main text, we now gauge various combinations of
global symmetries, which result in the following distinct 4d gauge theories:

1. Pin*(4N) theory:

gauge B, and A;: the codimension-2 defect implementing Zgl)’c becomes non-invertible

2. PO(4N) theory:

(1),

B’ . .
5 becomes non-invertible

gauge C,, A;: the codimension-2 defect implementing Z

3. Sc(4N) theory:

(0)

5 becomes non-invertible.

gauge C, and B;, the codimension-1 defect implementing Z

The first case is already presented in detail in the main text in section 8.
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B.1.1 Non-Invertible Symmetries of PO(4N) YM

We can obtain a codimension-2 non-invertible defect by gauging C, and A;. We denote the
corresponding dynamical fields by c, and a;. Here we expect the codimension-2 defect imple-
menting the Zgl)’B/ symmetry, which we denote as D(M,), to become non-invertible.
Let us call the non-invertible defect N”'(M,). Similarly to the previous case of Pin", we
have the fusion
N(Mp) x N(Mp)oc(1+W(Mp)) D) L(My), (351)

My €H; (My,Zy)

where W (M,) = ¢/ and L(M;) = ¢/ %1 @ The derivation is completely analogous to the
one in the main text.

B.1.2 Non-Invertible Symmetries in Sc(4N) YM

We can also gauge both the two 1-form symmetries and promote C,, B, to dynamical fields c,,
b). This gives a Sc(4N) theory. Here we expect the codimension-1 defect which implements

the outer-automorphism Zgo) symmetry to become non-invertible. Let us denote by D(M3) the

defect implementing the Zgo)' Due to the anomaly (264), when we gauge Zgl)’c X Zél)’B/ and

promote C, and B}, to dynamical fields ¢, and b}, we must dress D(M) with an appropriate
TQFT to maintain gauge invariance. Our proposal is also in the case a BF coupling, and we
define

N (Mz)oc JD¢1DY1D(M3> C2; b/z)emSM3 Preztnbymidds (352)

Imposing 6 ¢, = b, the variation of the action precisely gives bsc,.
Now let us compute the fusion rule between two such operators, which is given by

N(Mg) XN(Mg)ocf'qul'DYl'Dd;l'D);lei“Sm(¢1—051)524'()/1—)71)17&—}’15(151+)715¢;1
_ JD¢1DY1D¢;1D?1GMSM3 ¢;102+?1bQ*Y15¢;1+}A’15¢1+?15431 ) (353)

Following the same discussion around eq. (273), we obtain

N(M3) x N(Mg)oc > elrdwetindu by, (354)

2,3/ €H,(Ms,Z,)

We can rewrite the above expression as

N(Mg) x N(Ma)or > W(E)V(Z), (355)

%, %/€H, (M3, Zy)

where ¥ € H,(Ms,Z,) is Poincaré dual to ¢, € H'(Ms, Z,), &' € Hy(Ms, Z,) is Poincaré dual
to 7, € H'(M;,7Z,) and W(X) and V(X') are the codimension-two operators generating the

)¢ X Z(l)’B/.

1-form symmetries dual to Zgl >

B.2 Non-Invertible Symmetries from Spin(4N + 2) Yang-Mills
The 4d Spin(4N + 2) pure gauge theory has a Zgo) charge conjugation 0-form symmetry, while

the 1-form symmetry is Zgl) . They form a 2-group [60]

5B2 - BOCk(Cz) +A1C2 5 (356)
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where A; is the background for the 0-form symmetry, and B,, C, are backgrounds for the two

. . . (1)
Z, factors in the 1-form symmetry, which form an extension to Z,

1—>Zy—>Z4—7Zy—1. (357)

The Bock is the Bockstein homomorphism for this extension sequence.

Now let us gauge B, to go to a SO(4N + 2) theory, and turn B, into a dynamical field b,.
Because of the 2-group, the coupling SM4 b, B, where B;, is the background for the dual 1-form
symmetry, has the bulk dependency

Ms Ms

This is a mixed 't Hooft anomaly in the SO (4N +2) theory. Notice that (358) has an additional
piece compared to (264), due to the fact that the short exact sequence 1 — Zy — Zy4 — Zy — 1
does not split. Nevertheless, the discussion is quite similar to that of the Spin(4N) case, so we
work out explicitly only the case in which we gauge C, and A; and go to a PO(4N + 2) theory.
In this case, the defect implementing the Zgl)’B/ 1-form symmetry becomes non-invertible in
PO(4N + 2). We denote such defect D(M5,c,,a;) in the presence of the background fields
for the two symmetries we are gauging. The non-invertible defect is obtained by dressing
D(M,, cy,a;) by an appropriate TQFT which cancels the anomaly (358). Then we define

671—-C2

N(M,) = JD%DH D(Mz,cz,aﬂems”’z Pocatradr=dolrat = ) (359)

where ¢ € C®(My,Z,), v, € C*(Ms,Z,) and {4, ¢, denote the lifts of 4, ¢, to Z4 cochains.®
Now let us compute the fusion rules between two N (M) defects.

51—t 818
7

N (M) x N (M) = J‘Dd)OfDYqugOID}A,lei”SM2(¢0—$0)C2+(Y1—?1)al—¢o5Y1+<1905)71+ 7

(362)
Here we used D(M,,a;,c;)? = 1 since it obeys the Z, fusion rules. Making the change of
variables ¢, = ¢y — ¢ and €; = y; — 7, we obtain

. 5¢
N(MZ) X _/\/'(Mz) — fDd)O’D},l'D(pO'DelemXMZ PoCat€1a1—Pod€e1—pobY1+ g 561+Tl ) (363)

The equations of motion of ¢ and y; impose de; = 0 and 6y = 0 (mod 2). Notice that then
last term gives 6€;/2 = Bock(e;). Integrating ¢, and y; out and collecting the non trivial
terms, we are left with

N(MZ) % N(Mz)@( Z eiﬂ:SMz (p0C2+61(11+B0Ck(61) ) (364)
0o€H®(M3,Z3), €1€H (M2,Z5)

We can rewrite this as

N(My) x N (Mp)or (1 + ™) 37 oin@M)eihn @ (365)

My €H, (My,Z,)

8Notice that there are other choices of TQFTs that cancel the anomaly, and in particular the Bock part. For
example, we could use the TQFT

L=¢ouca+11Va —Poudy  +r1VY1+711 V1671, (360)
since also in this case
8T, =0y, va, — 8y, U1 811 =c, ua; —Sqt(cy) = ¢, Ua; —Bock(c,). (361)

One can check that using this TQFT we obtain the same fusion rules.
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where M,; is the Poincaré dual of e; € HYM,,Z,) and we defined
Q(M;) = 4§, Bock(e;) = §, €1 U ;. This additional phase is non-trivial only on
non-orientable manifolds.

The case in which we gauge A; and B, hence obtaining a Pin* (4N + 2) theory, is very
similar. Indeed, notice that we can rewrite the anomaly as

nf A;C,B), + Bock(C,)B;, = nJ A;C,B), + CyBock(B)) . (366)
Ms

Ms
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