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Abstract

We construct for the first time Drukker-Trancanelli (DT) type fermionic Bogomolǹyi-
Prasad-Sommerfield (BPS) Wilson loops in four-dimensional N = 2 superconformal
SU(N) × SU(N) quiver theory and N = 4 super Yang-Mills theory. The connections of
these fermionic BPS Wilson loops have a supermatrix structure. We construct timelike
BPS Wilson lines in Minkowski spacetime and circular BPS Wilson loops in Euclidean
space. These Wilson loops involve dimensionful parameters. For generic values of pa-
rameters, they preserve one real (complex) supercharge in Lorentzian (Euclidean) sig-
nature. Supersymmetry enhancement for Wilson loops happens when the parameters
satisfy certain constraints. The nature of such loops is quite different from the Wil-
son loop operators involving fermions constructed previously in the literature on four-
dimensional gauge theories. We hope that further investigations of such new Wilson
loops will explore deep structures in both the gauge theories and gauge/gravity duali-
ties.
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1 Introduction

Line operators are very important in the study of gauge theories. The vacuum expectation
values (vevs) of Wilson-’t Hooft line operators can be used to distinguish different (infrared)
phases of gauge theories [1, 2]. The precise description of the gauge theory should take into
account the choice of the set of Wilson-’t Hooft line operators included in the theory [3]. Also
notice that Wilson lines and ’t Hooft lines can carry charges of 1-form global symmetries [4].

In supersymmetric gauge theories, line operators preserving part of the supersymmetries
constantly attract much attention [5,6]. In N = 4 super Yang-Mills theory (SYM), for a Wilson
line along a timelike straight line or a Wilson loop along a circular loop in Euclidean theories
to be supersymmetric, the line/loop should also couple to the scalar fields in the theory [7–9].
The former can be understood as the dimensional reduction of a lightlike Wilson line in ten-
dimensional N = 1 SYM.

Such Bogomolǹyi-Prasad-Sommerfield (BPS) Wilson loops (WLs) also play an important
role [7, 8] in AdS/CFT correspondence since the earlier days of this holographic duality [10–
12]. The vev of a circular half-BPS Wilson loop depends on the SYM coupling constant non-
trivially. It was conjectured that this vev can be computed by using a Gaussian matrix model
[13]. The result in the large N and large ’t Hooft coupling limit is consistent with the prediction
from the IIB superstring theory on AdS5×S5 background [9,14]. This is one of the first precise
checks of the AdS/CFT correspondence beyond checks related to various non-renormalization
theorems [15–17]. Later, the conjecture about the reduction to the Gaussian matrix model
was proved using supersymmetric localization [18]. People have found a large amount of BPS
Wilson loops with fewer supersymmetries in N = 4 SYM. Among them, there are Zarembo
loops [19] and Drukker-Giombi-Ricci-Trancanelli (DGRT) loops [20,21]. The special property
of Zarembo loops is that their vev are constants protected by supersymmetries. As for DGRT
loops, though they are also BPS, their vevs depend on the SYM coupling constant. Further
classification was discussed in [22].

The situation for BPS Wilson loops in three-dimensional super-Chern-Simons theories is
more complicated and interesting. The construction of bosonic BPS WLs [23–26] here is quite
similar to the one in the four-dimensional SYM when the auxiliary fields in the vector mul-
tiplets are used. Taking into account the equations of motion, these auxiliary fields will be
replaced by scalar bilinears. Since the scalars in three-dimensional spacetime have dimension
one-half. The coefficients of these bilinears are dimensionless and the BPS condition imposes
constraints on these coefficients. More or less surprisingly, this Gaiotto-Yin type BPS WL along
a straight line or a circular loop in ABJM theory can be at most 1/6-BPS. However, the study
of probe F-strings/M2-branes in the string/M-theory side predicts that there should exist half-
BPS Wilson loops [24, 26]. This puzzle was resolved by Drukker and Trancanelli through the
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construction of half-BPS fermionic Wilson loops [27]. A key point here is to include fermions
in the construction of the super-connection. Since the fermions in three-dimensional space-
time have dimension one, we still do not need to introduce dimensionful parameters in the
construction. Later, fermionic 1/6-BPS Wilson loops were found [28, 29], and these loops
are interpolation between bosonic 1/6-BPS Wilson loops and fermionic half-BPS Wilson loops.
These 1/6-BPS Wilson loops are not locally SU(3) invariant, and this indicates that they are
not dual to F-strings with Dirichlet boundary conditions in CP3. In fact, they are dual to
F-strings with complicated mixed boundary conditions [30]. These general 1/6-BPS Wilson
loops can be thought of as marginal deformations of half-BPS Wilson loops from the defect
conformal field theory (dCFT) point of view. Although the marginality of the deformations
is yet to be proved at quantum level on the field theory side, it is supported by the general
classification of superconformal line defects and the studies of their deformations [31] and
the fact that there are massless fermions on the worldsheet of F-string dual to the half-BPS
Wilson loop [30, 32, 33]. General BPS Wilson loops in N ≥ 2 super-Chern-Simons theories
were constructed in [34] based on [28, 29]. The moduli spaces of such loops were shown to
be quiver varieties [35]. For many important aspects of Wilson loops in three-dimensional
super-Chern-Simons theories, we would like to recommend the wonderful review [36].

We now review some features of the fermionic BPS WLs in three-dimensional theories.
Two features will be compared with four-dimensional counterparts, and third one is about the
pattern in the construction which also appears in the four-dimensional case. The first feature
is above the supersymmetry enhancement. Using ABJM theory as an example, the fermionic
BPS WLs in [28, 29] preserve at least the same supercharges as the bosonic BPS WLs when
they are along the same timelike straight lines or circular loops, and the fermionic WLs can
have enhancement supersymmetries when the parameters in these WLs take certain special
values. The second is about the choice between the trace and the supertrace. Although a
super-connection was used, it was found that one should use a trace instead of a supertrace
in the construction of fermionic BPS Wilson loops [27]. Later such WLs were rewritten us-
ing a supertrace accompanied by adding certain shifts [35–37]. Also notice that the earlier
construction of fermionic WLs with fewer supersymmetries in [38] used a supertrace accom-
panied by multiplying a constant twist matrix. It is interesting to study switching between
the above two new approaches. The third feature is about a pattern in the construction of
fermionic super-connections. The construction of fermionic BPS WLs is more complicated
than the bosonic ones. The superconnection L f of a fermionic BPS WL can be constructed by
suitable deformation of a bosonic BPS WL with connection LB [28,29,34]. In [35–37], it was
noticed the following pattern in such deformation, L f = LB +(· · · )QG+(· · · )G2 with Q one of
the supercharges preserved by LB and G certain linear combination of scalar fields. (· · · )’s are
coefficients to be determined.

It is natural to explore whether one can construct BPS fermionic WLs in four-dimensional
superconformal gauge theories. In this paper, we successfully construct WLs in a simple four-
dimensional N = 2 quiver superconformal theory and N = 4 SYM. Our construction can be
easily generalized to general quiver superconformal theories. For the fermionic WLs to be BPS,
we should also introduce scalar bilinears besides the scalar terms already in the bosonic WLs.
Simple dimensional analysis shows that we need to introduce dimensionful parameters in the
construction. So the BPS Wilson lines along a timelike straight line are not scale invariant.
They only preserve Poincare supercharges.1 As for Wilson loops along circular loops, they
preserve some linear combinations of Poincare supercharges and superconformal charges. The
BPS fermionic WLs along timelike straight lines or circular loops preserve only a small part of
the supercharges preserved by the BPS bosonic WLs along the same lines or loops. This is

1WLs only preserving Poincare supercharges were already appearing in three-dimensional N = 2 super-Chern-
Simons theories when the matter fields have non-canonical dimensions [34].
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quite different from the three-dimensional case as reviewed above. About the choice between
the trace and the supertrace, we find that in the four-dimensional case, we should employ a
supertrace in the approach used in [27]. For N = 4 SYM, since there is only one node in
its N = 2 quiver diagram, we should employ more than one copy of the connection in the
bosonic BPS WL. Similar construction involving multiple copies has been employed in [34].
As in many three-dimensional cases, The construction in the current paper is based on the
pattern L f = LB + (· · · )QG + (· · · )G2 mentioned above.

This paper provides the first construction of Drukker-Trancanelli type fermionic BPS Wilson
loops. This construction is quite different from the Wilson loops involving fermions in the
four-dimensional gauge theory literature [9, 39–41]. There are many aspects of these novel
fermionic loops to be explored. Such investigations should be important to further studies of
both gauge theories and gauge/gravity dualities. We leave these investigations to further work
and list some possible future directions in the discussion section.

The paper is organized as follows. In section 2, we construct fermionic BPS Wilson loops
in N = 2 superconformal SU(N)× SU(N) quiver theory. In section 3, we construct fermionic
BPS Wilson loops in N = 4 SYM. The last section is dedicated to conclusions and discussion.
We summarize our conventions in appendix A. Appendix B contains some technical details.

2 Fermionic BPS Wilson loops in N = 2 superconformal
SU(N)× SU(N) quiver theory

In this section, we introduce the N = 2 superconformal SU(N)×SU(N) quiver theory which is
a marginal deformation of the Z2 orbifold of N = 4 SYM. A detailed discussion of the orbifold
procedure can be found in [42]. Then we construct fermionic BPS Wilson loops along an
infinite timelike straight line and a circle in Lorentzian and Euclidean signatures, respectively.

2.1 N = 2 superconformal SU(N)× SU(N) quiver theory

We begin by introducing the N = 2 superconformal SU(N) × SU(N) quiver theory which,
as we have just mentioned, is a marginal deformation of the Z2 orbifold of the N = 4 SYM.
We use six-dimensional (6d) spinorial notations for the spinors. The fields in the two N = 2
vector multiplets corresponding to two gauge group factors can be arranged into 2× 2 block
matrices:

Aµ =

�

A(1)µ 0
0 A(2)µ

�

, µ= 0, . . . , 5 ,

λα =

�

λ(1)α 0
0 λ(2)α

�

, α= 1,2 ,

(1)

where Am with m= 0, . . . , 3 is the gauge field and A4,5 are two real scalars. The SO(1, 5)Weyl
spinors λ1 and λ2 have chirality −1 for Γ 012345 and satisfy the reality condition λ̄α = −εαβλc

β

where εαβ is the antisymmetric symbol with ε12 = 1.2 (See appendix A for our conventions
on the spinors and gamma matrices). The matter content consists of two bifundamental hy-
permultiplets with component fields:

qα =

�

0 q(1)α

q(2)α 0

�

, ψ=

�

0 ψ(1)

ψ(2) 0

�

, (2)

2Later, we will use εαβ which is defined to be the inverse of εαβ , εαβε
βγ = δα

β
.

4

https://scipost.org
https://scipost.org/SciPostPhys.14.1.008


SciPost Phys. 14, 008 (2023)

where q1,2 are complex scalars and ψ is an SO(1, 5) Weyl spinor of chirality +1 for Γ 012345.
We denote by qα the complex conjugate of qα. The action of the N = 2 gauge theory is

SN=2 =

∫

d4 x
�

−
1
4

Tr (FµνFµν)−
i
2

Tr (λ̄αΓµDµλα)−DµqαDµqα−iψ̄ΓµDµψ

+
p

2gλ̄αAqαTAψ−
p

2gψ̄TAqαλA
α−g2(qαTAqβ)(qβTAqα)

+
1
2

g2(qαTAqα)(qβTAqβ)
�

, (3)

where TA are the generators of the gauge group. The coupling constants for the two gauge
group factors can be independently varied while preserving N = 2 superconformal symmetry.
We assemble them into a matrix:

g =

�

g(1) IN 0
0 g(2) IN

�

, (4)

where we denote by IN the N × N identity matrix. At the orbifold point where g(1)=g(2), the
theory can be obtained via orbifolding N = 4 SYM by Z2. The definitions of the covariant
derivatives are

Dµλ = ∂µλ− i g[Aµ,λ] , (5)

Dµqα = ∂µqα − i gAµqα , (6)

Dµqα = ∂µqα + i gqαAµ , (7)

DµΨ = ∂µΨ − i gAµΨ , (8)

with Aµ = AA
µTA. The definition of the field strength is

Fµν = ∂µAν − ∂νAµ − i g[Aµ, Aν] . (9)

One can show that the action is invariant under the N = 2 superconformal transformations:3

δAµ = −iξ̄αΓµλα = iλ̄αΓµξα ,

δqα = −i
p

2ξ̄αψ ,

δqα = −i
p

2ψ̄ξα ,

δλA
α =

1
2

FA
µνΓ

µνξα+2i gqαTAqβξβ − i gqβTAqβξα−2AA
aΓ

aϑα ,

δλ̄αA = −
1
2
ξ̄αFA

µνΓ
µν−2i gqβTAqαξ̄β + i gqβTAqβ ξ̄α+2ϑ̄αAA

aΓ
a ,

δψ= −
p

2DµqαΓµξα−2
p

2qαϑα ,

δψ̄=
p

2ξ̄αΓµDµqα−2
p

2ϑ̄αqα ,

(10)

where ξα = θα + xmΓmϑα and the index a = 4,5. The constant spinors θα and ϑα gener-
ate Poincaré supersymmetry transformations and conformal supersymmetry transformations,
respectively.

2.2 BPS Wilson lines in Minkowski spacetime

Let us start with reviewing the construction of bosonic BPS WLs. In Minkowski spacetime, one
can define a 1/2 BPS Wilson line along the timelike infinite straight line xm = δm

0 τ as

Wbos = Pei
∫

dτL1/2(τ) , L1/2 = gA0 − gA5 . (11)

3A typo in [42] has been corrected.
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The persevered supersymmetries can be parameterized by ξα satisfying

Γ5Γ0ξα = ξα . (12)

In three-dimensional N = 2 superconformal Chern-Simons theories fermionic BPS Wilson
lines can be constructed as deformations of the bosonic BPS ones [36]. We follow a similar
procedure here. Let us consider the Wilson line operator

Wfer = Pei
∫

dτL , (13)

where the connection L is a supermatrix analogous to the ones constructed in [27]:

L = L1/2 + B + F. (14)

The matrices B and F are defined as

B =

�

B(1) 0
0 B(2)

�

, (15)

F =ζcψ+ ψ̄η , (16)

ζc =

�

ζ(1)c IN 0
0 ζ(2)c IN

�

, (17)

η=

�

η(2) IN 0
0 η(1) IN

�

, (18)

where B(1) and B(2) are products of scalar fields and ζc and η are bosonic spinors. Different
from the three-dimensional case, the parameters ζc andη have the dimension of inverse square
root of mass. We would like to construct a Wilson line invariant under a given supersymmetry
transformation δξ parameterized by ξα = θ sα where θ is a real Grassmann variable and sα are
bosonic spinors. At this moment we restrict our attention to Poincaré supersymmetries and
thus sα are constant spinors along the line. It is convenient to define the preserved supercharge
Qs as δξ =

p
2θQs. We need the transformation

Qsq
α = −is̄αψ ,

Qsqα = iψ̄sα ,

Qsψ= −DµqαΓµsα ,

Qsψ̄= s̄αΓµDµqα .

(19)

To make the Wilson line preserve supercharge Qs with a fixed sα satisfying sα = Γ5Γ0sα, we
require L to transform as [27,43]

Qs L =D0Gs ≡ ∂0Gs − i[L1/2 + B, Gs] + i{F, Gs} , (20)

for some bosonic matrix Gs. Splitting this constraint into a fermonic and bosonic part, we find

QsB = i{F, Gs} , (21)

QsF = ∂0Gs − i[L1/2 + B, Gs] . (22)

Acting Qs on F , we get
QsF = −ζ(DµqβΓµsβ) + (s̄

βΓµDµqβ)η . (23)

In order that QsF takes the form of ∂0Gs + . . . , we require

Γ5Γ0η= η ,ζcΓ5Γ0 = −ζc , (24)
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and thus
QsF = ∂0Gs − i[L1/2, Gs] , (25)

where
Gs = ζ

cΓ0sαqα − qαs̄αΓ0η . (26)

Comparing equation (22) with (25), we need [B, Gs] = 0. Since QsB = i{F, Gs}, B should be a
sum of scalar bilinears. From [B, Gs] = 0, one can show that B = −kG2

s where k is a complex
number. Acting Qs on Gs, we find

QsGs = −iζcΓ0sαs̄αψ− iψ̄sαs̄αΓ0η= −
i
2

s̄αΓ0sαζ
cψ−

i
2
ψ̄ηs̄αΓ0sα = −

i
2

s̄αΓ0sαF . (27)

Therefore k = 2/(s̄αΓ0sα) and the super-connection can be written as4

L = L1/2 +
2i

(s̄αΓ0sα)
QsGs −

2
(s̄αΓ0sα)

G2
s . (28)

As we can see, F is proportional to QsGs and B is proportional to G2
s . This pattern was first

noticed in [36] for general fermionic BPS WLs in ABJM theory and later utilized in in [35,37].
A similar pattern will also appear in the construction of the circular WLs in this N = 2 theory
and the WLs in N = 4 SYM later in this paper.

The next task is to know whether the Wilson loop can preserve other supercharges.
We need to solve all the uα satisfying uα = Γ5Γ0uα and Qu L = D0Gu where
Gu = ζcΓ0uαqα − qαūαΓ0η. We need

[G2
s , Gu] = 0 , (29)

{QuGs, Gs}= {QsGs, Gu} . (30)

It follows from (29) that

Gu = KGs =

�

k(1) IN 0
0 k(2) IN

�

Gs , (31)

or equivalently
ζcΓ0uαqα − qαūαΓ0η= K(ζcΓ0sαqα − qαs̄αΓ0η) . (32)

Then (30) leads to

{QuGs, Gs}= {QsGs, Gu}
⇔ QuGsGs =QsGsGu and GsQuGs = GuQsGs

⇔ QuGuGs = KQsGsKGs and GsQuGu = KGsKQsGs

⇔ (ūαΓ0uα)QsGs = (s̄
βΓ0sα)k

(1)k(2)QsGs

⇔ k(1)k(2) =
ūαΓ0uα
s̄αΓ0sα

.

(33)

Assuming ζ(i) is nonzero, and taking into account that s̄α = −εαβ sc
β

, we can decompose sα
as5

sα = εαβ c̄(i)βζ(i) + c(i)α Bζ(i)∗ , (34)

4For Wilson lines, we focus on the construction of the super-connection since only the WL along a closed curve
is truly gauge invariant without subtleties.

5In eqs. (34)-(36) and other equations with repeated (i)’s, there is no summation with respect to the repeated
indices i’s.
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where B = Γ 35 in our convention.6 It follows from (32) that

uα = k̄(i)εαβ c̄(i)βζ(i) + k(i)c(i)α Bζ(i)∗ , (35)

and
ūαΓ0uα = k̄(i)k(i)s̄αΓ0sα . (36)

Then (30) leads to

{QuGs, Gs}= {QsGs, Gu}⇔ {QuGu, Gs}= K{QsGs, KGs}

⇔ (ūαΓ0uα){QsGs, Gs}= (s̄βΓ0sα)k
(1)k(2){QsGs, Gs}

⇔ k(1)k(2) =
ūαΓ0uα
s̄αΓ0sα

⇔ k(2) = k̄(1) .

(37)

Repeating the similar analysis for other terms in (32), we find in general k(1) and k(2)

are real numbers and the Wilson loop preserves one real Poincaré supercharge. But when
(ζ(1),η(1), Bζ(2)∗, Bη(2)∗) are all proportional to a single spinor, k(1) can be complex. In this
case, the Wilson loop preserves two real Poincaré supercharges. In both cases, the Wilson
loop cannot preserve any conformal supercharges because ζc and η have the dimension of
inverse square root of mass. One can check this explicitly by applying the superconformal
transformations on L. Therefore the Wilson loop is 1/16 or 1/8 BPS with respect to the total
16 supercharges. Compared with the bosonic BPS Wilson lines, the fermionic ones preserve
quite fewer supersymmetries. One reason is that all conformal supercharges are broken.

2.3 Circular BPS Wilson loops in Euclidean space

In the Euclidean signature, the bars over the spinors do not stand for Dirac conjugation. ψ
and ψ̄ are independent spinors. It is convenient to define s̄α = −εαβ sc

β
for any spinors with

an α index.
Let us start with the 1/2-BPS bosonic connection

L1/2 = g ẋmAm + i g rA5 , (38)

on the contour of a circle (x0, x1, x2, x3) = r(cosτ, sinτ, 0, 0). The supersymmetries preserved
by the bosonic Wilson loop Wbos = P exp(i

∫ 2π
0 dτL1/2(τ)) satisfy

r−1 ẋmΓmΓ5ξα = iξα ⇒ ϑα = −ir−1Γ015θα . (39)

The dot denotes derivation with respect to τ. We would like to construct a Wilson loop on the
same contour which is invariant under a supercharge Qs parameterized by

θα =
1

2
p

2
θ sα , ϑα = −

i

2
p

2r
Γ015θ sα , (40)

where θ is a complex Grassman variable and sα is a bosonic spinor. On the contour, the
supercharge Qs acts as:

Qsq
α = −is̄αΠ−ψ ,

Qsqα = iψ̄Π+sα ,

Qsψ= −DµqαΓµΠ+sα + ir−1qαΓ015sα ,

Qsψ̄= s̄αΠ−Γ
µDµqα + ir−1s̄αΓ015qα,

(41)

6Notice that this B is not the one in (14).
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where Π± =
1
2 ±

i
2r Γ5 ẋmΓm. We assume the fermionic part of the super-connection takes the

form:

F = rζcΠ−ψ+ rψ̄Π+η , ζc =

�

ζ(1)c IN 0
0 ζ(2)c IN

�

, η=

�

η(2) IN 0
0 η(1) IN

�

. (42)

We find

QsF =ζ
cΠ−(−r−1Dτqα ẋmΓmsα − iD5qα ẋmΓmsα + r−1qαxmΓmsα)

+ (r−1s̄α ẋmΓmDτqα + is̄α ẋmΓmD5qα − r−1s̄αxmΓmqα)Π+η .
(43)

In order that QsF takes the form of ∂τGs + . . . , we need

∂τ(ζ
cΠ−) ẋ

mΓmsα = 0 , s̄α ẋmΓm∂τ(Π+η) = 0 . (44)

As discussed in appendix B.1, if s1 and s2 are linearly dependent, the Wilson loop is BPS only
when Qs L = 0. In Lorentzian signature, linear dependence of s1 and s2 is not consistent with
the reality condition. In the following of this section, we assume that s1 and s2 are linearly
independent.

Solving the differential equations (44) for ζcΠ− and Π+η, we find the general solutions
can be represented by τ-independent ζc and η which satisfy

ζcΓ015sα = s̄αΓ015η= 0 . (45)

Then we get
Gs = iζcΠ−Γ5sαqα − iqαs̄αΓ5Π+η . (46)

Acting Qs on Gs, we find

QsGs = ζ
cΠ−Γ5sα(s̄

αΠ−ψ) + s̄αΓ5Π+η(ψ̄Π+sα)

=
1
2

s̄αΠ−Γ5sα(ζ
cΠ−ψ) +

1
2

s̄αΓ5Π+sα(ψ̄Π+η)

=
1
2r

s̄αΠ−Γ5sαF .

(47)

Similar to the straight line case, one can obtain B from the conditions [B, Gs] = 0 and
QsB = i{F, Gs}. The result is,

B = i
2r

s̄αΠ−Γ5sα
G2

s . (48)

Finally the super-connection L is

L = L1/2 +
2r

s̄αΠ−Γ5sα
QsGs + i

2r
s̄αΠ−Γ5sα

G2
s , (49)

which satisfies Qs L =DτGs. Because Gs is periodic on the contour, the trace of the holonomy
of L does not preserve the supercharge Qs, which is different from their three-dimensional
counterparts [27]. Since L has a natural supermatrix structure, we can define the Wilson loop
by using the supertrace:

Wfer = sTrP exp

�

i

∮

Ldτ

�

, (50)

which preserves the supercharge Qs. Following similar steps as in the three-dimensional case
[27, 45], one can show that the condition Qs L = DτGs leads to a classical Qs-cohomological
equivalence between the fermionic BPS Wilson loop and the bosonic one:

Wfer −Wbos =QsV , (51)
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where

Wbos = sTrP exp

�

i

∮

L1/2dτ

�

, (52)

and V is a complicated function of the gauge and matter fields whose first few orders are

V = sTrP
�

ei
∮

L1/2dτ
�

∮

Λ(τ1)dτ1 +
i
2
(Λ ∗ F − F ∗Λ)

+ iΛ ∗ B − iB ∗Λ−Λ ∗ F ∗ F − F ∗Λ ∗ F − F ∗ F ∗Λ+ . . .
�

�

,

(53)

where Λ= 2irGs/(s̄αΠ−Γ5sα) we use the notation

X ∗ Y =

∫

τ1>τ2

dτ1dτ2X (τ1)Y (τ2) , (54)

X ∗ Y ∗ Z = (X ∗ Y ) ∗ Z . (55)

The complete construction of V can be performed following the procedure in appendix D
of [45].

To investigate the possible supersymmetry enhancements of the Wilson loop, we need to
solve all the uα satisfying7

Qu L =DτGu , (56)

where Gu = iζcΠ−Γ5uαqα− iqαūαΓ5Π+η. Detailed discussion of the solutions are relegated to
appendix B.2. Here we summarize the conclusion as follows:

• When ζ(i) and η(i) are all proportional to a nonzero bosonic spinor χ satisfying
χ cΓ015χ = 0, the Wilson loop is 3/16-BPS. Denoting the two-dimensional vector space
spanned by {ζ(1), Γ01ζ

(1), Γ15ζ
(1), Γ50ζ

(1)} by Vζ(1) , sα can be decomposed as

sα = cαs⊥ζ(1) + sα∥ζ(1) , (57)

where sα∥ζ(1) is a vector in Vζ(1) and s⊥ζ(1) is a vector in the complementary transverse
direction. The preserved supercharges can be parameterized by

uα = k(1)sα + cαu′∥ζ(1) , (58)

where u′∥ζ(1) is an arbitrary vector in Vζ(1) . There are three complex parameters, one in

k(1) and two in u′∥ζ(1) , so the Wilson loop is 3/16-BPS. In another word, taking u′∥ζ(1),1
and u′∥ζ(1),2 to be one basis of Vζ(1) , uα is in the three-dimensional complex space spanned

by sα, cαu′∥ζ(1),1 cαu′∥ζ(1),2 for each α.

• When ζ(1)∝ η(1), ζ(2)∝ η(2), ζ(i)cΓ015ζ
(i) = 0 and Vζ(1) ∩ Vζ(2) = {0}. The Wilson loop

is 1/8-BPS. The preserved supercharges can be parameterized by

uα = k(2)c(1)α s∥ζ(1) + k(1)c(2)α s∥ζ(2) . (59)

There are two complex parameters k(1) and k(2), so the Wilson loop is 1/8-BPS. Now uα
is in the two-dimensional complex space spanned by c(1)α s∥ζ(1) and c(2)α s∥ζ(2) for each α.

7More precisely speaking, we should exclude other types of combinations of Poincarè superchanges and confor-
mal superchanges. We conjecture that the combinations other than Qu will not be preserved by the above fermionic
WLs.
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• When ζ(i) and η(i) are all proportional to a nonzero bosonic spinor χ satisfying
χ cΓ015χ ̸= 0 and

(sc
1Γ015s1)(s

c
2Γ015s2)− (sc

1Γ015s2)
2 = 0 , (60)

the Wilson loop is 1/8-BPS. In this case it is not easy to list a basis of the linear space
which uα’s belong to. We refer to the appendix B.2 for details.

• Otherwise, the Wilson loop is 1/16-BPS. uα is in the one-dimensional complex space
spanned by sα for each α. In another word, all preserved supercharges are proportional
to Qs.

3 Fermionic BPS Wilson loops in N = 4 SYM

Since the N = 2 theory considered in the previous section can be obtained from the N = 4
SYM by orbifolding followed by a marginal deformation, one might expect to find fermionic
BPS Wilson loops in N = 4 SYM. In this section, we turn to the N = 4 SYM and construct
the fermionic BPS Wilson loops. As in the N = 2 case, line BPS Wilson loops in Minkowski
spacetime in general preserve one real supercharge and circular BPS Wilson loops in Euclidean
space preserve one complex supercharge. We also give some examples of fermionic Wilson
loops preserving more supercharges.

3.1 BPS Wilson lines in Minkowski spacetime

The action of N = 4 SYM is

SN=4 =

∫

R4

d4 x
�

−
1
4

Tr (FMN F MN )−
i
2

Tr (Ψ̄ΓM DMΨ)
�

. (61)

In this section ΓM ’s are 10d gamma matrices. We use the index conventions M , N = 0, . . . , 9
and R, S = 5, . . . , 9. The action is invariant under the superconformal transformations:

δAM = −iξcΓMΨ ,

δΨ =
1
2

FMNΓ
MNξ− 2Γ SASϑ ,

(62)

where ξ = θ + xmΓmϑ with m = 0, . . . , 3. The constant spinors θ and ϑ generate Poincaré
supersymmetry transformations and special superconformal transformations respectively.

The supersymmetries preserved by the bosonic 1/2-BPS connection [7,8]

L1/2 = gA0 − gA5 , (63)

on the straight line xm = δm
0 τ satisfy

Γ5Γ0ξ= ξ . (64)

In this subsection we focus on Poincaré supersymmetries and set ϑ = 0. We would like to
construct a fermionic Wilson loop with a connection

L = L1/2 + B + F , (65)

on the same contour which is invariant under a supercharge Qs where s is a bosonic spinor
satisfying Γ5Γ0s = s. On the contour, the supercharge Qs acts as:

QsAM = −is̄ΓMΨ ,

QsΨ =
1
2

FMNΓ
MN s .

(66)
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We require Qs L =D0Gs and assume the bosonic matrix Gs takes the form of Gs = mSAS where
mS is a vector in the directions 4, . . . , 9. Acting Qs twice on Gs, we find

QsGs =− imS s̄ΓSΨ , (67)

Q2
s Gs =−

i
2

mS s̄ΓS FMNΓ
MN s = −iFSN s̄mSΓ N s = −i(s̄Γ 5s)(∂0Gs − i[L1/2, Gs]) . (68)

Then a connection L satisfying Qs L =D0Gs is

L = L1/2 +
i

s̄Γ 5s
QsGs −

1
s̄Γ 5s

G2
s , (69)

and the Wilson line Wfer = P exp
�

i
∫

Ldτ
�

preserves the supercharge Qs. More generally, we
can take Gs = MS⊗AS where MS is an r× r matrix-valued vector and the connection becomes

L = Ir ⊗ L1/2 +
i

s̄Γ 5s
MS ⊗QsAS −

1
s̄Γ 5s

(MS ⊗ AS)
2 . (70)

We now consider supersymmetry enhancement. Acting another supercharge Qu with the
condition Γ5Γ0u= u on F , we find

QuF =
1

2(s̄Γ 5s)
MS ⊗ FMN s̄ΓSΓ

MN u . (71)

In order that QuF takes the form of ∂τGu+ . . . , the terms with M , N = 1,2, 3 must vanish.
One way is to take

M4 = M5 = 0 , Γ 6789s = −s , Γ 6789u= −u . (72)

Then we have

QuF =
1

(s̄Γ 5s)
M P s̄ΓPΓ

Q5u⊗ (F0Q − F5Q)

=∂0Gu − i[Ir ⊗ L1/2, Gu] ,
(73)

with

Gu = M P U Q
P ⊗ AQ , U Q

P ≡
s̄ΓPΓ

Q5u
s̄Γ 5s

. (74)

We use the letters P and Q in the range of 6, . . . , 9. Using the identity,

1
ūΓ 5u

(s̄ΓPΓ
Q5u)ūΓQ = s̄ΓP , (75)

we find

F =
i

s̄Γ 5s
QsGs =

i
ūΓ 5u

QuGu , (76)

and therefore QuF = ∂τGu − i[L1/2, Gu] is satisfied.
By using an explicit representation of the Γ -matrices, one can show that the matrix U T has

two distinct eigenvalues λ+ and λ−, which satisfy

λ+λ− =
ūΓ 5u
s̄Γ 5s

, (77)

and each eigenvalue corresponds to a two-dimensional eigenspace. So we can write Gu as

Gu = λ+M P
+ ⊗ AP +λ−M P

− ⊗ AP , M P = M P
+ +M P

− , M P
±U Q

P = λ±MQ
± , (78)
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and we have

G2
u = (λ

2
+M P

+MQ
+ +λ

2
−M P
−MQ
− +

ūΓ 5u
s̄Γ 5s

M P
+MQ
− +

ūΓ 5u
s̄Γ 5s

M P
−MQ

+ )⊗ APAQ . (79)

Therefore if
M P
+MQ

+ = M P
−MQ
− = 0 , (80)

we have
1

ūΓ 5u
G2

u =
1

s̄Γ 5s
G2

s . (81)

and the conditions
[G2

s , Gu] = 0 , {QuGs, Gs}= {QsGs, Gu} (82)

are satisfied. To summarize, the Wilson line preserves the supercharge Qu when (72) and (80)
are satisfied. In the following, we provide a simple example to illustrate our construction. Let
the Wilson line preserve supercharge Qs with s satisfying

Γ50s = −Γ6789s = −Γ2367s = s . (83)

The solutions to these constraints are linear combinations of two linearly independent
Majorana-Weyl spinors. By using an explicit representation of the Γ -matrices, one can show
that the matrix U has the form of

U Q
P =







p1 p2 0 0
−p2 p1 0 0

0 0 p1 p2
0 0 −p2 p1






, (84)

where p1 and p2 are constants depending on the u and s we choose. The eigenvectors of U T

are

eigenvalue p1 + ip2 : m1+ = (0, 0, i, 1), m2+ = (i, 1, 0, 0) ,

eigenvalue p1 − ip2 : m2− = (0, 0,−i, 1), m2− = (−i, 1, 0, 0).
(85)

Therefore we can take
M P = K imP

i− + J imP
i+ , (86)

where the matrices K i and J i satisfies

K iK j = J iJ j = 0 . (87)

3.2 Circular BPS Wilson loops in Euclidean space

In the Euclidean signature, the superconformal transformations are formally the same as (62),
but there are no reality conditions for the spinors. The supersymmetries preserved by the
bosonic 1/2-BPS connection [7,8]

L1/2 = g ẋµAµ + i g rA5 , (88)

on the circular contour (x0, x1, x2, x3) = r(cosτ, sinτ, 0, 0) satisfy

ẋµΓµΓ5ξ= iξ ⇒ ϑ = −ir−1Γ015θ . (89)

We would like to construct a Wilson loop on the same contour which is invariant under a
supercharge Qs parameterized by

θ =
1
2
χs , ϑ = −

i
2r
Γ015χs , (90)
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where χ is a complex Grassmann variable and s is a bosonic spinor. On the contour, the
supercharge Qs acts as:

QsAM = −iscΠ−ΓMΨ ,

QsΨ =
1
2

FMNΓ
MNΠ+s+ ir−1Γ SASΓ015s ,

(91)

where Π± =
1
2 ±

i
2r Γ5 ẋmΓm. The connection L = L1/2 + B + F is expected to transform as

Qs L = DτGs. We assume the bosonic matrix Gs take the form of Gs = mSAS where mS is a
vector in the directions 4, . . . , 9. Acting Qs twice on Gs, we find

Q2
s Gs =−

i
2

mRscΠ−ΓRFMNΓ
MNΠ+s+ r−1mRscΠ−ΓRΓ

SASΓ015s

=− iFRN scΠ−mRΓ NΠ+s+ r−1mRscΠ−ΓRΓ
SASΓ015s

=imRF5RscΠ−Γ
5s+ r−1mR ẋmFmRscΠ−Γ

5s+ r−1mRscΠ−ΓRΓ
SASΓ015s

=r−1(scΠ−Γ
5s)( ẋm∂mGs − i[L1/2, Gs])

− r−1ṁRARscΠ−Γ
5s− imRAS

sc xmΓmsδS
R + irscΓ015ΓRΓ

Ss

2r2
.

(92)

Therefore we require

ṁS + imR r−1sc xmΓmsδS
R + iscΓ015ΓRΓ

Ss

2scΠ−Γ 5s
= 0 . (93)

The solution is

mS(τ) =cRscΠ−Γ5s(exp M) S
R , (94)

where the matrix M is defined by

M S
R =

∫ τ

dτ′
scΓ015ΓRΓ

Ss
2scΠ−(τ′)Γ 5s

. (95)

It is not hard to obtain that

mS(τ) =cRscΠ−Γ5s



exp

 

−
2iM015

q

v2
0 + v2

1 + v2
5

tanh−1

 

v0 + (v1 + iv5) tan
�

τ
2

�

q

v2
0 + v2

1 + v2
5

!!





S

R

, (96)

where vµ = scΓµs and (M015) S
R = scΓ015ΓRΓ

Ss. The matrix M015 satisfies

M5
015 −

1
2

Tr(M2
015)M

3
015 − (

1
2

Tr(M2
015) + v2)v2M015 = 0 , (97)

where v2 = v2
0 + v2

1 + v2
5 . Therefore the exponential exp M takes the form:

C1e f (τ)

s

−1−
TrM2

015
2v2 + C2e− f (τ)

s

−1−
TrM2

015
2v2 + C3e f (τ) + C4e− f (τ) + C5 , (98)

where Ci are τ independent matrices and

f (τ) = 2 tanh−1

 

v0 + (v1 + iv5) tan
�

τ
2

�

q

v2
0 + v2

1 + v2
5

!

. (99)
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From

e f (τ) =
eiτ (v + v0 − iv1 + v5) + v + v0 + iv1 − v5

eiτ (v − v0 + iv1 − v5) + v − v0 − iv1 + v5
, (100)

we know that e f (τ) is periodic with period 2π, then the first two terms in (98) are periodic
when

√

√

√

−1−
TrM2

015

2v2
∈ Z . (101)

A simple example is when Γ 6789s = −s, we have
√

√

√

−1−
TrM2

015

2v2
= 1 . (102)

As far as we know, it is for the first time that we need to impose extra constraints to guarantee
the (anti-)periodicity of Gs in the construction of circular fermionic BPS WLs.

A connection L which satisfies Qs L =DτGs is

L = L1/2 +
r

scΠ−Γ 5s
QsGs +

ir
scΠ−Γ 5s

G2
s . (103)

One can generalize mS to an r × r matrix-valued vector MS by taking cR in (96) to be a r-
dimensional constant matrix and the connection becomes

L = Ir ⊗ L1/2 +
r

scΠ−Γ 5s
MS ⊗QsAS +

ir
scΠ−Γ 5s

(MS ⊗ AS)
2 . (104)

Because Gs is periodic on the contour provided (101) is satisfied, to construct a BPS Wilson
loop we need L to be a supermatrix and only off-diagonal blocks of MS are nonzero. Explicitly,
we demand MS to be

MS =

�

0 MS
1

MS
2 0

�

. (105)

And then L can be decomposed as

L =

�

B1 F1
F2 B2

�

. (106)

Then a BPS Wilson loop preserving the supercharge Qs can be defined as

Wfer = sTrP exp

�

i

∮

Ldτ

�

. (107)

As the case in the previous section, one can prove that Wfer −Wbos =QsV where

Wbos = sTrP exp

�

i

∮

(Ir ⊗ L1/2)dτ

�

, (108)

with sTr defined as the one in (107), and V takes a similar form as that given by (53) with
now Λ= irGs/(scΠ−Γ

5s).
It would be difficult to find all possible supersymmetry enhancements. Leaving it for future

investigation, here we give a simple example of a Wilson loop preserving two supercharges Qs
and Qu with s and u satisfying

iΓ 01s = −Γ 6789s = s , Γ 6789u= −u , u= Γ 67s . (109)

If we take
M4 = M5 = 0 , M P = K imP

i− + J imP
i+ , (110)

where the vectors mi± are given in (85) and the matrices K i and J i satisfy K iK j = J iJ j = 0,
the Wilson loop will be invariant under Qs and Qu.
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4 Conclusion and discussions

In this paper we have constructed fermionic BPS Wilson loops in N = 2 quiver theory with
gauge group SU(N)×SU(N) and N = 4 SYM. The connections of these fermionic BPS Wilson
have a supermatrix structure. We have constructed BPS Wilson lines in Minkowski spacetime
and BPS circular Wilson loops in Euclidean space.

There are at least two features of such four-dimensional fermionic WLs which are quite
different from the such WLs in ABJM theory: the first is that the fermionic WLs along straight
lines in four-dimensional break the scale invariance, and the second is that the fermionic WLs
in four dimensions preserve a small part of the supercharges preserving by the bosonic WLs.
The common feature of four-dimensional WLs and three-dimensional WLs in [27–29] is that
the fermionic WL is always in the same Q-cohomology class of a bosonic WL with Q being a
supercharge shared by these two WLs. This was explicitly illuminated at the classical level.
Assuming that this is also correct at the quantum level, we predict that the fermionic BPS WL
has the same vev as one of Wbos. For circular loops, the vevs of Wbos defined using supertrace
can be obtained from the results in [13,42,46,47]. It is valuable to check this prediction from
Q-cohomology at the quantum level through direct perturbative computations, as people have
already done in three-dimensional cases [48–50]. Comparing vevs of WLs obtained from per-
turbative computations and localization in three-dimensional super-Chern-Simons theories is
subtle because they depend on the choice of framing which is a result of the point-splitting reg-
ularization prescription of the perturbative expansion of a WL. It was suggested [51] that one
should choose framing −1 for perturbative computations of vevs of bosonic WLs to compare
with the prediction from localization. And in [52], a suitable regularization scheme within
this framing for fermionic BPS WLs was proposed. But the computations in this scheme are
quite complicated in practice. We expect that comparing WL vevs in four-dimensional SYM
would be easier because of the absence of framing dependence in four dimensions.

In our construction of fermionic WLs, we started with half-BPS bosonic WLs along a line
or circle. Since there are various bosonic WLs with fewer supersymmetries, it is interesting
to construct BPS fermionic WLs starting with these loops. One may first start with 1/4-BPS
Wilson loops along a latitude circle [20, 21, 53], since they are almost the simplest among
WLs with fewer supersymmetries. Another way to include fermions inside the WLs is based
on N = 4 non-chiral superspace [39].8 One big difference is that the WLs there are along
contours in superspace instead of ordinary spacetime. The possible relation between the loops
there and the ones constructed here certainly deserves investigation.

The bosonic WLs in N = 4 SYM are dual to (Wilson-)’t Hooft loops under S-duality trans-
formation [5, 54] and F-stings/D-branes/bubbling geometries [7, 8, 55–61] under AdS/CFT
correspondence. It is interesting but also challenging to study the S-dual and the holographic
dual of the fermionic WLs constructed here.

Bosonic WLs play at least two roles in the study of integrability of the planar N = 4
SYM theory. When we insert composite local operators into the WLs, WLs provide integrable
boundary conditions/interactions for the open spin chains from the composite operators [62,
63].9 When we consider the correlators of a half-BPS circular WL (in the fundamental or an
antisymmetric representation) and a non-BPS single trace operator in the ’t Hooft limit, this
WL will provide an integrable matrix product state [64]. It is appealing to explore whether
the fermionic WLs constructed here also have such an integrable structure.

The construction of fermionic WLs involves dimensionful parameters which lead to the
breaking of scale invariance. So such WLs will lead to defect quantum field theories (dQFTs),

8These WLs were studied in [40] using integral forms. See also an old related construction in [41] and the
construction of the supersymmetrized WLs in appendix C of [9].

9The usual Wilson loops also provide integrable boundary conditions/interactions [63].
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instead of defect conformal field theories (dCFTs). On the other hand, by taking fermionic
WLs as deformations of bosonic BPS WLs suggested by the construction, these WLs lead to
irrelevant deformations of dCFTs. It is interesting to study possible ultraviolet completion of
such irrelevant deformations.
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A Conventions

In Lorentzian signature, we use the following representation for the 10d gamma matrices:

Γ
µ

(10) = I4 ⊗ Γ
µ

(6) , µ= 0, . . . , 5 ,

Γ s
(10) = Γ

10−s
(4) ⊗ Γ

012345
(6) , s = 6, . . . , 9 .

(A.1)

The 4d gamma matrices in Euclidean signature are defined as

Γ
j
(4) =

�

0 −iσ j
iσ j 0

�

, Γ 4
(4) =

�

0 I2
I2 0

�

, (A.2)

and the 6d gamma matrices in Lorentzian signature are defined as

Γ 0
(6) =(iσ2)⊗ (−σ3)⊗ (−σ3) ,

Γ 1
(6) =(σ1)⊗ (−σ3)⊗ (−σ3) ,

Γ 2
(6) =I2 ⊗σ1 ⊗ (−σ3) ,

Γ 3
(6) =I2 ⊗σ2 ⊗ (−σ3) ,

Γ 4
(6) =I2 ⊗ I2 ⊗σ1 ,

Γ 5
(6) =I2 ⊗ I2 ⊗σ2 ,

(A.3)

where σ j ’s are Pauli matrices. The charge conjugate matrices are defined as

C(10) = C(4) ⊗ C(6) , (A.4)

C(4) = −Γ 13
(4) =

�

iσ2 0
0 iσ2

�

, (A.5)

C(6) = Γ
035
(6) =























0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0























, (A.6)
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and the charge conjugation of a spinor ξ is defined as ξc ≡ ξT C(10). The supersymmetry
transformation parameter in the N = 4 satisfies the the chirality condition Γ 0123456789

(10) ξ = ξ

and the reality condition ξ̄= ξc .
To derive the N = 2 supersymmetry transformation, we write the N = 4 supersymmetry

transformation parameters as

ξ=









ξ1̇

ξ2̇

ξ1
ξ2









, (A.7)

where the components are 6d spinors. The chirality condition can be written as

Γ 012345
(6) (ξ1̇,ξ2̇,ξ1,ξ2) = (ξ

1̇,ξ2̇,−ξ1,−ξ2) , (A.8)

and the reality condition can be written as

(ξ̄1̇, ξ̄2̇, ξ̄1, ξ̄2) = (−ξ2̇,ξ1̇,−ξ2,ξ1)
T C(6) ≡ (−ξ2̇c ,ξ1̇c ,−ξc

2,ξc
1) . (A.9)

The N = 2 supersymmetry transformation parameters satisfies Γ 6789
(10) ξ= −ξ:

ξ=







0
0
ξ1
ξ2






. (A.10)

The fermionic fields in the N = 2 theory can be reduced from Ψ in the N = 4 theory using

Ψ =







ψ

−C(6)ψ̄
T

λ1
λ2






. (A.11)

In Euclidean signature, we use Γ 0
E(10,6) = iΓ 0

(10,6). In subsections 2.3 and 3.2, we use the Eu-
clidean Gamma matrices and omit the superscript E. We use the same definition of the charge
conjugate matrix C in both signatures. There are no reality conditions for the supersymmetry
transformation parameters in Euclidean signature.

B Technical details for section 2.3

B.1 The case when s1∝ s2

When s1 ∝ s2, the solutions to (44) are more complicated. Assuming (44) is satisfied, Gs is
still given by (46) but

QsGs =
1
2r

s̄αΠ−Γ5sαF = 0 . (B.1)

The general form of B is

B = Rαβqαqβ + R β
α qαqβ + Rαβqαqβ + Rαβqαqβ . (B.2)
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Then QsB = i g{F, Gs} gives

RαβQsqαqβ + R β
α Qsq

αqβ + RαβQsq
αqβ + RαβQsqαqβ (B.3)

=(ζcΠ−ψ+ ψ̄Π+η)(iζ
cΠ−Γ5sαqα − iqαs̄αΓ5Π+η)

⇒Rαβ(Π+sα) = −i gΠ+η(s̄
βΓ5Π+η) , (B.4)

R β
α (s̄

αΠ−) = i gζcΠ−(s̄
βΓ5Π+η) , (B.5)

Rαβ(s̄
αΠ−) = −i gζcΠ−(ζ

cΠ−Γ5sβ) , (B.6)

Rαβ(Π+sα) = i gΠ+η(ζ
cΠ−Γ5sβ) (B.7)

⇒ζcΠ−Γ5sβ = s̄βΓ5Π+η= 0, (B.8)

where we have used s̄αΠ−Γ5sβ = 0. Now we have QsB =QsF = Gs = 0. The solution is

B = (Rαqα + Rαqα)(Sβqβ + Sβqβ) , Rαsα = Sαsα = s̄αRα = s̄αSα = 0 , (B.9)

ζcΠ− = f (τ)s̄1Π− , Π+η= g(τ)Π+s1 , s̄αΓ015sβ = 0, (B.10)

where f (τ) and g(τ) and are arbitrary functions.

B.2 Supersymmetry enhancement

Using the explicit expression (49) for L, equation (56) can be decomposed into three equa-
tions:

2
s̄αΠ−Γ5sα

QuQsGs = ∂τGu − i[L1/2, Gu] , (B.11)

[G2
s , Gu] = 0 , (B.12)

{QuGs, Gs}= {QsGs, Gu} . (B.13)

It follows from (B.11) that ζcΓ015uα = ūαΓ015η= 0 and from (B.12) that

Gu = KGs =

�

k(1) IN 0
0 k(2) IN

�

Gs . (B.14)

or equivalently

iζcΠ−Γ5uαqα − iqαūαΓ5Π+η= K(iζcΠ−Γ5sαqα − iqαs̄αΓ5Π+η) . (B.15)

Then (B.13) leads to

{QuGs, Gs}= {QsGs, Gu}
⇔QuGsGs =QsGsGu and GsQuGs = GuQsGs

⇔QuGuGs = KQsGsKGs and GsQuGu = KGsKQsGs

⇔(ūαΓ5Π+uα)QsGs = (s̄
βΓ5Π+sα)k

(1)k(2)QsGs

⇔k(1)k(2) =
ūαΓ5Π+uα
s̄αΓ5Π+sα

.

(B.16)

Now we are left with equations:

ζ(i)cΠ−Γ5uα = k(i)ζ(i)cΠ−Γ5sα , (B.17)

ūαΓ5Π+η
(i) = k(i)s̄αΓ5Π+η

(i) , (B.18)

ζ(i)cΓ015uα = ūαΓ015η
i = 0 . (B.19)
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We divide the discussion into two cases: the spinors ζ(i) and η(i) satisfy
ζ(i)cΓ015ζ

(i) = η(i)cΓ015η
(i) = 0 or not.

Case 1: ζ(i)cΓ015ζ
(i) = η(i)cΓ015η

(i) = 0.
Let us consider the linear equations involving ζ(1)c

ζ(1)cΠ−Γ5uα = k(1)ζ(1)cΠ−Γ5sα , (B.20)

ζ(1)cΓ015uα = 0 . (B.21)

When ζ(1)cΓ015ζ
(1) = 0, the vector space spanned by {ζ(1), Γ01ζ

(1), Γ15ζ
(1), Γ50ζ

(1)} is two-
dimensional. Let Vζ(1) denote the vector space spanned by {ζ(1), Γ01ζ

(1), Γ15ζ
(1), Γ50ζ

(1)}. It
is a subspace of the three-dimensional solution space of the equation ζ(1)cΓ015sα = 0. There-
fore sα can be decomposed as

sα = cαs⊥ζ(1) + sα∥ζ(1) , (B.22)

where sα∥ζ(1) is a vector in Vζ(1) and s⊥ζ(1) is a vector in the complementary transverse direction.
One can use the inner product s†s to define a unique s⊥ζ(1) . The solution to (B.20) can be
written as

uα = k(1)cαs⊥ζ(1) + uα∥ζ(1) . (B.23)

So k(1) is a constant. Repeating similar analysis for the bottom-left block of the connection,
k(2) is also constant and thus

k(1)k(2) =
ūαΓ5Π+uα
s̄αΓ5Π+sα

= k(1)
ūα∥ζ(1)Γ5Π+cαs⊥ζ(1)

s̄α∥ζ(1)Γ5Π+cαs⊥ζ(1)
(B.24)

is a constant. This leads to

ūα∥ζ(1)Γicαs⊥ζ(1) = k(2)s̄α∥ζ(1)Γicαs⊥ζ(1) , (B.25)

for i = 0, 1,5. The solution is

uα∥ζ(1) = k(2)sα∥ζ(1) + cαu′∥ζ(1) , (B.26)

where u′∥ζ(1) is an arbitrary vector in Vζ(1) . Finally, we get

uα = k(1)cαs⊥ζ(1) + k(2)sα∥ζ(1) + cαu′∥ζ(1) . (B.27)

Now we consider linear equations involving ζ(2)c . There are two subcases:
(1) When ζ(1) and ζ(2) are proportional to the same vector, we find k(1) = k(2). Further-

more, if ζ(i) and η(i) are all proportional to a nonzero vector, the solution is

uα = k(1)sα + cαu′∥ζ(1) (B.28)

and the Wilson loop is 3/16 BPS when cα ̸= 0.10 When cα = 0, we get s̄αΠ−Γ5sα = 0 which is
not consistent with our construction, as can be seen from (49).

(2) When ζ(1) and ζ(2) are linearly independent, we have either Vζ(1) = Vζ(2) or
Vζ(1) ∩ Vζ(2) = {0}.

If Vζ(1) = Vζ(2) , ζ
(1)cΓ015sα = ζ(2)cΓ015sα = 0 implies sα ∈ Vζ(1) . In this case we get

s̄αΠ−Γ5sα = 0 which is not consistent with our construction.

10Taking u′
∥ζ(1) ,1

and u′
∥ζ(1) ,2

to be one basis of Vζ(1) . uα is in three-dimensional complex space spanned by sα,
cαu′
∥ζ(1) ,1

cαu′
∥ζ(1) ,2

for each α.
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If Vζ(1) ∩ Vζ(2) = {0}, the solution to ζ(1)cΓ015sα = ζ(2)cΓ015sα = 0 can be decomposed as

sα = c(1)α s∥ζ(1) + c(2)α s∥ζ(2) , (B.29)

where s∥ζ(i) ∈ Vζ(i) . Therefore we get

uα = k(2)c(1)α s∥ζ(1) + k(1)c(2)α s∥ζ(2) . (B.30)

The analysis for the η-equations is similar and we get

sα = cαs⊥ζ(1) + sα∥ζ(1) = cαs⊥η(1) + sα∥η(1) , (B.31)

uα = k(1)cαs⊥ζ(1) + k(2)sα∥ζ(1) + u′∥ζ(1) = k(1)cαs⊥η(1) + k(2)sα∥η(1) + u′∥η(1) . (B.32)

Let us consider the case when ζ(1) is not proportional to η(1). Now if Vζ(1) = Vη(1) ,
ζ(1)cΓ015sα = η(1)cΓ015sα = 0 leads to s̄αΠ−Γ5sα = 0. On the other hand, if Vζ(1) ∩ Vη(1) = {0},
equations (B.32) and (B.31) lead to uα = k(1)sα. Therefore supersymmetry enhancement is
possible only when ζ(1)∝ η(1), ζ(2)∝ η(2) and Vζ(1) ∩Vζ(2) = {0}. In this case the Wilson loop
is 1/8-BPS and the preserved supercharges can be parameterized by

uα = k(2)c(1)α s∥ζ(1) + k(1)c(2)α s∥ζ(2) . (B.33)

Now uα is in the two-dimensional complex space spanned by c(1)α s∥ζ(1) and c(2)α s∥ζ(2) for each α.
Case 2: At least one of the spinors ζ(i) and η(i) satisfies χ cΓ015χ ̸= 0, χ = ζ(i) or η(i).
Without loss of generality, we assume ζ(1)cΓ015ζ

(1) ̸= 0 and thus ζ(1)cΓ0, ζ(1)cΓ1, ζ(1)cΓ5 and
ζ(1)cΓ015 are linearly independent. We can decompose a spinor u satisfying ζ(1)cΓ015u= 0 as

u= U1Γ01ζ
(1) + U2Γ15ζ

(1) + U3Γ50ζ
(1) . (B.34)

Therefore we can associate a spinor u with a three-dimensional vector V (u) = (U1, U2, U3).
We find

V (s) · V (u)≡
3
∑

i=1

Vi(s)Vi(u) =
scΓ015u

ζ(1)cΓ015ζ(1)
, (B.35)

ζ(1)cΠ−Γ5u
ζ(1)cΓ015ζ(1)

= V (u) · Z , (B.36)

where Z = 1
2(1,−i sinτ, i cosτ). Denoting Sα= (Sα1, Sα2, Sα3) = V (sα) and Uα = V (uα), equa-

tion (B.20) is equivalent to

S1 · Z U2 · Z − S2 · Z U1 · Z = 0 . (B.37)

From the coefficients of 1, sinτ, cosτ, sin 2τ, cos 2τ, we get

2U11S21 − 2S11U21 − U12S22 + S12U22 − U13S23 + S13U23 = 0 , (B.38)

−U11S22 + S11U22 − U12S21 + S12U21 = 0 , (B.39)

U11S23 − S11U23 + U13S21 − S13U21 = 0 , (B.40)

U12S23 − S12U23 + U13S22 − S13U22 = 0 , (B.41)

U12S22 − S12U22 − U13S23 + S13U23 = 0. (B.42)

Viewing them as linear equations of Uα and computing the rank of the matrix of the coeffi-
cients, we find when det Sα · Sβ ̸= 0, the solution is Uα = k(1)Sα and thus uα = k(1)sα and k(1)

is a constant.
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When det Sα · Sβ = 0, there is a vector E+ = a1S1 + a2S2 such that E+ · Sα = 0. We can
further choose a basis of vectors {E+, E−, E0} such that

E+ · E− = 2E0 · E0 = 2 , E0 · E± = E± · E± = 0 . (B.43)

Then Sα can be decomposed as

Sα = M +
α E+ +M 0

α E0 . (B.44)

The solution of (B.20) can be written as

Uα = M +
α (κ1E+ +κ2E0) +M 0

α (κ1E0 − κ2E−) . (B.45)

For each α, Uα is in the two dimensional complex space spanned by Sα and M +
α E0 −M 0

α E−.
We get

k(1) =
Z · (κ1E+ +κ2E0)

Z · E+
. (B.46)

Using (B.16), we find

k(1)k(2) =
ūαΓ5Π+uα
s̄αΓ5Π+sα

=
εi jkZiU1 jU2k

εi jkZiS1 jS2k
= k(1)2 , (B.47)

where one can decompose Z over the basis {E+, E−, E0} and use Z · Z = 0 to derive the last
equality. Therefore we get k(1) = k(2).

When ζ(2)cΓ015ζ
(2) ̸= 0 or η(1,2)cΓ015η

(1,2) ̸= 0, we get similar results. So in the case, when
ζ(i) and η(i) are all proportional to a nonzero bosonic spinor χ satisfying χ cΓ015χ ̸= 0 and

(sc
1Γ015s1)(s

c
2Γ015s2)− (sc

1Γ015s2)
2 = 0 , (B.48)

the Wilson loop is 1/8-BPS. Otherwise, one can show the Wilson loop is 1/16-BPS, only the
supercharges proportional to Qs are preserved.
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