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Abstract

We investigate the tetragonal phase of the binary transition metal oxide CuO (t-CuO)
within the context of cellular dynamical mean-field theory. Due to its strong antifer-
romagnetic correlations and simple structure, analysing the physics of t-CuO is of high
interest as it may pave the way towards a more complete understanding of high-tem-
perature superconductivity in hole-doped antiferromagnets. In this work we give a for-
mal justification for the weak-coupling assumption that has previously been made for
the interconnected sublattices within a single layer of t-CuO by studying the non-local
self-energies of the system. We compute momentum-resolved spectral functions using a
Matrix Product State (MPS)-based impurity solver directly on the real axis, which does
not require any numerically ill-conditioned analytic continuation. The agreement with
photoemission spectroscopy indicates that a single-band Hubbard model is sufficient to
capture the material’s low energy physics. We perform calculations on a range of differ-
ent temperatures, finding two magnetic regimes, for which we identify the driving mech-
anism behind their respective insulating state. Finally, we show that in the hole-doped
regime the sublattice structure of t-CuO has interesting consequences on the symmetry
of the superconducting state.
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1 Introduction

Despite an unprecedented research effort for the last 35 years, the nature of high-temperature
superconductivity in cuprates and its proximity to other exotic phases like pseudogap and
charge-density phases still remain elusive [1–6]. In the quest for a microscopic theory for the
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Figure 1: (a) Rock salt crystal structure of tetragonal CuO. (b) slab of CuO within the
a-b plane. Bright (dark) red atoms indicate the sublattice A and B of our model. (c)
Two identical Cu-sublattices and indication of the hoppings td , t, t ′ and t ′′ included
in the model. The arrows sketch the columnar magnetic order corresponding to an
ordering vector Q = (0,π) considered throughout the paper. Highlighted in blue and
green are the magnetic sublattices that correspond to this ordering. (d-g) Clusters
including different hopping terms as discussed in the text.

cuprates’ superconductivity, their CuO2 planes were early on identified to be key and quasi-
two-dimensional (2D) minimal low-energy models were proposed and studied [7–12]. In
order to connect model calculations with real materials, an ideal cuprate without any ligand
field, distortion or disorder effects was long sought after, and polymorphs of pure Cu-O planes
suggested themselves [13]. However, in contrast to other binary transition metal oxides (MnO,
FeO, CoO, NiO) CuO does not crystallize in a cubic or tetragonal phase that is made up of CuO
planes. Instead, a lower-symmetry monoclinic structure is realized [14].
This changes when thin films of CuO are grown on a SrTiO3 substrate: CuO then crystallizes
in a tetragonal crystal structure, which is composed of 2D CuO planes that are arranged in a
staggered configuration along the c-axis [15–17]. In its distorted rocksalt structure, shown in
Fig. 1(a), the Cu-O distances for basal and apical oxygens differ by a factor 1.37 [15,16].
First principles studies including density functional theory (DFT) with hybrid functionals [18–
21] and DFT+U [22, 23] gave first insights into the electronic structure of tetragonal CuO
(t-CuO) and were able to reproduce the experimentally observed tetragonal distortion [19],
which could be traced back to Jahn-Teller orbital ordering at the Cu d9 ions [18,21].
Ab initio calculations also proposed a columnar magnetic order in (1,0) [or (0,1)] direction
in units of our lattice model [18, 19, 21], which is in agreement with experimental findings
from resonant inelastic x-ray scattering (RIXS) [24]. Extrapolation from other binary transi-
tion metal oxides [15,25] and estimates from first principles calculations [18,19,21] place the
Néel temperature around ∼ 800K, which is much higher than the critical temperature of its
monoclinic bulk phase (TN ∼ 220K [26]). It is due to these observations that we will also study
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magnetic properties within the framework of our quantum cluster methods choosing clusters
that allow for a columnar magnetic order with ordering vector Q = (0,π). In the following
we will refer to this ordering as magnetic stripe order. Please note that within this paper we
did not study charge order as we it is not expected to occur at half-filling, in particular since
non-local interactions were not taken into account.

t-CuO is an insulator with quite sizeable gap∆> 2.35 eV of which the electronic structure
was measured via angle-resolved photoemission spectroscopy (ARPES) [17] and used to con-
struct effective three- and one-band t − J models [17,27,28]. Whereas the question whether
or not a Zhang-Rice singlet (ZRS) [10] band can describe the low-energy spectral features of
t-CuO [27,28] is a (re-)current question in cuprate materials [29,30], the effective one-band
model derived from RIXS in Ref. [24] is in qualitative agreement with the one derived from a
ZRS description [28].
ARPES measurements [17] show strong replica features outside the single sublattice (see
Fig. 1(b)) Brillouin zone (BZ), corroborated by RIXS [24]measurements of the t-CuO magnon
dispersion that exhibits a strong similarity to previous experimental findings for the magnon
dispersion of Sr2CuO2Cl2. This has been interpreted as a signature of weak coupling between
the two CuO2 sublattices and raises the question of the microscopic origin of this sublattice
decoupling.

In this paper, we investigate the dynamical influence of the inter-sublattice hopping td
by the means of cellular dynamical mean field theory (CDMFT) [31–34] and motivate an
efficient block-construction scheme for our cluster calculations. Our key finding is that the
inter-sublattice correlations are heavily suppressed as compared to local and short-range intra-
sublattice correlations, which formally justifies to regard t-CuO as weakly-coupled interlaced
CuO2 lattices. Using a matrix product state [35, 36] (MPS)-based impurity solver working
directly on the real axis [37–41] and at effectively zero temperature we can reproduce equal
energy maps and momentum resolved spectral functions in remarkable agreement with ARPES
measurements without the need for analytic continuation. Furthermore, we analyse the mag-
netic ordering in t-CuO as a function of temperature and identify two driving mechanisms for
the insulating phase. Finally, we predict the presence of superconductivity (SC) upon hole-
doping by applying a complementary cluster technique, the variational cluster approximation
(VCA) [42]. As a direct consequence of the sublattice decoupling, we find coexistence of mag-
netic stripe order and superconductivity of dx y -symmetry, whereas the usual cuprate dx2−y2

order is strongly suppressed.

2 Model Hamiltonian

Each CuO plane of t-CuO is made up of edge-sharing CuO4 plaquettes, which can be viewed
as consisting of two interpenetrating CuO2 square lattices. Following this logic, we consider
one slab within the a − b plane as shown in Fig. 1(a). We consider a single-band Hubbard
model [43]:

H = U
∑

i

ni↑ni↓ +
∑

i, j,σ
|i−j|=a

td c†
iσc jσ +
∑

i, j,σ
|i−j|=

p
2a

tc†
iσc jσ +
∑

i, j,σ
|i−j|=2a

t ′c†
iσc jσ +
∑

i, j,σ
|i−j|=2

p
2a

t ′′c†
iσc jσ ,

with i, j being site indices and σ ∈ {↑,↓}.
The single particle terms (td = −0.1 eV, t = 0.44 eV, t ′ = −0.2eV, t ′′ = 0.075eV) were
obtained as a result of fitting the magnon dispersion, measured by RIXS, with a t-J model in
Ref. [24]. Contrary to the usual CuO2 planes found in cuprate superconductors, the interstitial
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O atoms within one slab favor next-nearest neighbour (NNN) hopping t between Cu sites
rather than nearest-neighbour (NN) hopping td .
We use an Hubbard interaction strength of U = 7 eV, a significantly higher value than the one
from Ref. [24] but necessary for obtaining a gap that is larger than the experimental lower
bound 2.35 eV [17]. Similar values of U have been used in LDA+U calculations [22,23].

3 Results

3.1 Sublattice decoupling

At the single particle level it is hard to argue for the decoupling of the two sublattices since the
nearest-neighbour hopping td is of the same order of magnitude as the next-nearest neighbour
hopping (td ∼ −

t
4). Therefore it is important to also take into account the self-energy which

captures the modification of the non-interacting Hamiltonian due to the presence of electronic
interactions in the correlated material.

Within the framework of CDMFT [31–34,44–46], which has shown to be extremely insight-
ful in the context of cuprates [32,47–54], local interactions, hopping terms on the given clus-
ter and dynamical fluctuations to an electronic reservoir are taken into account exactly, while
longer-ranged exchange with the rest of the lattice is included on the single-particle level and
enters via the self-consistency loop [55]. In CDMFT, the cluster self-energy Σ(ω) is a matrix-
valued quantity in terms of combined cluster site-spin indices. It links the non-interacting and
interacting cluster Green’s functions, G0(k,ω) and G(k,ω), via the Dyson equation

Σ(ω) = G0(k,ω)−1 −G(k,ω)−1 ,

Besides the local component, Σloc(ω), non-local self-energies within the cluster are accessi-
ble, which we denote with respect to the hopping term connecting the corresponding sites,
e.g. Σt(ω), Σtd

(ω). We compute the self-energy on different impurity cluster geometries
(Fig. 1(d)-(g)) and probe its influence on the coupling between the two sublattices.

To this aim, we choose the dimer cluster including the next-nearest neighbour hopping
t (Fig. 1 (d)) and the plaquette cluster containing two such dimers connected by the next-
neighbour hopping td (Fig. 1 (e)). The following results have been obtained by a MPS-based
impurity solver [56–58] working on the imaginary axis and were computed using CDMFT at
effectively zero temperature (T = 0K). More details on the solver can be found in Sec. 4 and
App. A.

In Fig. 2 we show selected elements of the self-energy computed for those two clusters. As
shown in Fig. 2(a,b) the elements of the self-energy already included in the dimer cluster do es-
sentially not change by considering the cluster containing a dimer on each sublattice. Indeed,
the self-energy element corresponding to the inter-sublattice hopping (Fig. 2(c)) is found to be
about three orders of magnitude smaller than the intra-sublattice element (Fig. 2(b)). On the
other hand, the inter-sublattice hopping (td) is roughly about one fourth of the leading order
hopping (|td | ≈ |

t
4 |). Therefore, the inter-sublattice self-energy suppression is far from trivial

and indicates that electronic correlation effects strongly favour the hopping between sites that
are connected by t, i.e. that are part of one sublattice.
We believe that the driving mechanism behind the formation of sublattices is that the hopping
elements td ,t,t ′,t ′′ are not decreasing monotonically with distance. The leading order hopping
is largely favoured by electronic correlations irrespective of whether it is the nearest neighbour
or any higher-ranged hopping. Furthermore, in systems where hopping terms monotonically
decrease with distance, the sites are all connected to each other through processes including
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Figure 2: Comparison between selected elements of the self-energy computed on
two different clusters using the MPS-based solver on the imaginary axis. Note the
difference in scales between panels (a,b) and (c). The components shown belong to
the block of the up-spin self-energy.

only the favoured hopping term. This leads to self-energies which smoothly decay with dis-
tance since higher-order hopping processes of the largest hopping term still connect to every
site. However, due to the position of the oxygen atoms in t-CuO, the NNN hopping term (t)
is favoured. Since the latter connects only sites from the same sublattice, the inter-sublattice
self-energy shows a strong suppression. Please note that this decoupling behaviour can also be
observed at finite temperatures as shown in App. B. We want to stress the importance of this
result, as it proves that thinking of t-CuO as two weakly-coupled sublattices is well justified
and reveals the physical origin of this behaviour.
This insight can be used to motivate a self-consistent super-cluster construction (Fig. 1(g))
consisting of two intercalated four-site intra-sublattice clusters (Fig. 1(f)) allowing us to in-
crease the momentum resolution within our CDMFT calculations to one corresponding to an
eight-site diamond cluster, while retaining the computational effort of a four-site plaquette.
This super-cluster is of special interest since it allows to treat t and t ′ exactly while td is
treated perturbatively. It is moreover based on the 2×2 plaquette on each sublattice, which is
argued as being the minimal cluster incorporating key ingredients of the low-energy physics
of cuprates [32, 59–65]. Hereafter, we refer to the emerging cluster as block construction.
Technical details of the construction can be found in App. C.

3.2 Spectral function

In the following, we compare calculated spectral functions using the block-construction to
ARPES data. The results presented in this section were obtained by the MPS - based impurity
solver on the real axis [37–41], see Sec. 4 and App. A. While the single-band Hubbard model
solved with quantum cluster methods has been shown to capture the main characteristic spec-
tral features of undoped and doped cuprates [47,48,66,67], we apply this method for the first
time to t-CuO.

In Fig. 3(a) we show an equal energy cut on the top of the valence band, which agrees
well with the energy map measured in experiment (Ref. [17], Fig. 1(a)): We recover the
strong maxima in the middle of the BZ, which are offset by 90◦. We also reproduce the replica
features outside the single-sublattice BZ (dashed black line) that experimentally justified the
assumption of only weakly-coupled sublattices. To elaborate on this point in more detail, we
note that on the one hand the two sublattices would be entirely decoupled only for td = 0,
yielding the spectral function of a single sublattice. In such a case, the features inside the first
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Figure 3: Spectral function A(k,ω). (a) Equal energy map at E = −2.2 eV where the
dashed black line depicts the first BZ of a single sublattice. (b) A(k,ω) along high-
symmetry k-path as computed with the block-construction scheme and compared
to the experimentally measured dispersion (purple circles in inset) extracted from
Ref. [17] and shifted by 0.4 eV in order to align the chemical potentials. All heat
maps are normalized to the maximal value displayed and averaged over the possible
orientations in the block-construction (see App. D).

BZ of a single sublattice would be periodically replicated outside the BZ. On the other hand,
the vanishing inter-sublattice self-energy (see Fig. 2(c)) keeps the hopping td bare, whereas
the intra-sublattice self-energy enhances the hopping t (see Fig. 2(b)) by a factor of ∼ 2. This
effectively renders the t hopping ∼ 10 times stronger than td , explaining the close resem-
blance of the replica features with respect to the ones in the original BZ. Note that unlike in
ARPES [68] there are no matrix-element effects present in our calculation, which is why our
replicas do not undergo any additional intensity modulations. In order not to favor any direc-
tion by using an asymmetric super-cluster we average over possible cluster orientations. This
procedure is described in more detail in App. D. The remaining difference between the x and
y direction in Fig. 3 is entirely due to the magnetic stripe order.
In panel (b), we show the momentum-resolved spectral function of the valence band using
the block construction and compare it to the ARPES spectrum along the high symmetry path
through the BZ depicted in Fig. 3(a). Comparing our results to ARPES (cf. Fig. 2(a) in
Ref. [17]) we find overall good agreement. In particular the low-energetic Zhang-Rice-like
bands, which are separated from the lower Hubbard band at higher binding energy coincide
(see inset of Fig. 3(b)). We identify this band to stem from a spin-polaron, i.e. a hole propagat-
ing in an antiferromagnetic background, similarly to the interpretation of Refs. [67,69–71] for
standard cuprates. The incoherent and very dispersive spectrum without well-defined struc-
tures around the M and Γ points are also consistent with the measured spectrum. Moreover we
reproduce the experimentally observed missing spectral weight at the X point, a feature which
was not obtained within a self-consistent Born approximation calculation based on a Zhang-
Rice singlet (ZRS) [10] spin-model [28]. An obvious feature that the calculations presented
in this work can not reproduce are the contributions from a lower-lying band marked with β
in the experimental data [17], which is not included in our low-energy model. However, apart
from these features the agreement between our model and the experiment is striking.
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Figure 4: (a) Staggered magnetization calculated using the dimer cluster and the
block construction. The dashed black lines indicate the β =∞ result computed with
the MPS based impurity solver on the imaginary axis. The vertical lines depict the
inverse critical temperature βc = (18.5± 0.7)eV−1 ((14.5± 0.8)eV−1) for the block
construction (dimer) cluster. The shaded area depicts the error bar for βc . (b) Real
part of the diagonal components of the self-energy for different inverse temperatures
β indicated in (a). The curves shown left correspond to the spin up (solid) and down
(dashed) components on a cluster site. On the right, we show the self-energy at the
two cluster momenta K1 = (0,0) (dashed) and K2 =

�

0, πa
�

(solid) respectively.

3.3 Finite temperature analysis

All results so far presented were computed at T = 0 K, however, there have been mul-
tiple predictions about the Néel temperature TN for the antiferromagnetic ordering of t-
CuO in the literature [15, 18, 19, 25], which underlines the necessity to better understand
the finite-temperature behavior of the system. To this end, we employ CDMFT with a
continuous-time Quantum Monte Carlo solver using the dimer and the block construction clus-
ters (Figs. 1(d),(g)).
In Fig. 4 we show the staggered magnetization as a function of temperature as well as the
spin- and momentum-resolved self-energy for three characteristic temperatures.
First, we note asymptotic convergence of the staggered magnetization towards the T = 0K
value obtained with the MPS - based solver for β →∞. Most importantly, Fig. 4(a) allows to
identify an inverse temperature at which the order melts, namely βc ≈ 18.5 eV−1 (14.5 eV−1),
corresponding to a critical temperature of Tc ≈ 627 K (800K) obtained with the block con-
struction (dimer) cluster. Details about the estimation of Tc can be found in App. F.

While the dimer cluster overestimates magnetic order, the block construction, which in-
cludes slightly longer-ranged magnetic fluctuations, leads to a smaller value of Tc . We study
a simplified 2D model of t-CuO, which does not include the inter-layer magnetic exchange
coupling. Long-range AF magnetic order should hence not be stable at finite temperature due
to fluctuations between the two equivalent stripe configurations [72]. In fact the staggered
magnetization of our CDMFT calculations is rather a consequence of choosing one of the two
possible stripe directions within the mean-field scheme, than an actual hallmark of long-range
magnetic order. Despite prohibiting a direct determination of TN , the reduction of Tc upon
extending the cluster size nevertheless shows the importance of including in-plane spin fluc-
tuations.
In Fig. 4(b), the Matsubara self-energies of the dimer cluster are compared at T = 0 K and at
three characteristic temperatures corresponding to the paramagnetic (PM), the magnetically
ordered and the transition region of the phase diagram.
First, as the system enters the insulating ordered phase, we observe the asymptotic conver-
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gence towards the MPS (T=0) result (see Fig. 4(b)). The frequency dependence of the self-
energy gets strongly suppressed. This is well described in the atomic limit as derived in
Ref. [73], or by the asymptotic development of the self-energy which becomes static in the
antiferromagnetic ordered limit [74].
We note that even at β = 10 eV−1 the material is still insulating as the diagonal of the Green’s
function (not shown) still approaches 0 in the limit of ωn → 0. In the PM phase this can not
be attributed to a freezing of dynamics due to large spin polarization, but by a momentum-
selective level splitting (right panel of Fig. 4(b)): Close to the real axis, the K1 = (0,0) orbital
is very strongly favoured with respect to the K2 = (0, πa ) orbital. This is consistent with previ-
ous quantum cluster calculations performed for dimer and larger clusters [75,76], and can be
interpreted as a freezing of the electron movement that is not generated by spin polarization
but rather by penalizing electrons with non-zero momentum.
Overall, this underlines that there is correlation-driven static level splitting present in the or-
dered phase whereas the PM phase is driven by dynamic splitting of momentum orbitals. We
note in passing the enhancement of ReΣ at β = 20eV−1 (c.f. Fig. 4(b)) near ωn = 0. Even
though here the system already is in the ordered phase, the splitting is larger than U at low
frequencies. This can be traced back to thermal fluctuations (see App. H for a more detailed
discussion).

3.4 Superconductivity away from half-filling

In order to address the question of superconductivity upon doping the system, we employed
the variational cluster approximation (VCA) method [42, 77, 78]. This technique is particu-
larly well suited to study the energetics of different symmetry-breaking solutions of the model
and their competition. It is based on finding stationary points of the self-energy functional
Ω(Σ), which approximates the grand potential of the (lattice) system in the space of cluster
self-energies [79]. These self-energies are parametrized via suitably chosen one-body param-
eters of the quantum cluster, potentially augmented by Weiss fields to allow for solutions with
long-range order.
We checked for different singlet-pairing channels and found stable solutions for superconduct-
ing Weiss fields of dx y and dx2−y2 symmetry. These two pairing channels have been discussed
already in the context of the t − t ′ − U Hubbard model [80], which would correspond to
only take into account td and t. Whereas the dx2−y2 channel and its competition with Néel
antiferromagnetism are important close to half-filling for t/td < 1, the (π, 0) collinear anti-
ferromagnet and SC of dx y symmetry were identified to be key for t > td [80, 81]. Here,
however, we focus on the superconducting channels of dx y and dx2−y2 symmetry away from
half-filling.
For both dx y and dx2−y2 symmetry, the superconducting solutions are energetically favoured
over the normal state (PM) solution for fillings n < 1. The same is true for antiferromagnetic
stripe order (AFS), see Fig. 5, which we find even lower in energy down to n ≈ 0.87. How-
ever, when allowing for competition between these symmetry-breaking orders, a coexistence
of superconductivity and AFS (AFS+SC) leads to the overall lowest energy solution at zero
temperature, see red curve in Fig. 5.
Comparing the corresponding antiferromagnetic and superconducting order parameters of
these solutions shows that they are reduced in the coexistence solution as compared to the
pure AFS and SC solutions. This indicates a competition between magnetic and superconduct-
ing orders upon doping. Most interestingly, the order parameter of the dx2−y2 SC is strongly
suppressed by the presence of antiferromagnetic stripe order such that the Cooper pairing is
mainly of dx y -symmetry.
Finally, we note that SC of dx y symmetry actually corresponds to dx2−y2 symmetry within each
of the two sublattices. Therefore, in the context of sublattice decoupling, our energetically
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Figure 5: (a) Internal energy Ω as a function of filling n for different solutions within
VCA: Antiferromagnetic stripe order (AFS), superconductivity (SC) of dx y or dx2−y2

symmetry as well as coexistence of all three. (b) Order parameters corresponding to
the phases in (a); the colors correspond to the solutions in (a). For all calculations we
used the full 8-site diamond cluster of Fig. 1(g), i.e. without block construction and
optimized the functional in addition with respect to the (cluster) chemical potential
µ (µ′).

most favourable solution could be interpreted as the emergence of a dx2−y2 superconducting
state with coexisting (Néel) antiferromagnetic order on each sublattice.

4 Methods

Our method of choice to treat the interacting many-electron problem is a cluster extension
of dynamical mean-field theory (CDMFT) [31–34, 82]. In CDMFT, the full lattice problem is
mapped to an effective cluster of several sites which is dynamically coupled to an electronic
reservoir that represents the rest of the solid. This cluster-bath system is solved numerically
for its Green’s function and linked to the full lattice problem via a self-consistency loop.
Due to the long-range magnetic stripe order, see Fig. 1(c), we perform magnetic calculations
choosing cluster tilings, that are inline with the order. We propose several cluster geome-
tries as shown in Fig. 1(d)-(g) for our CDMFT calculations, both to investigate the question of
weak coupling (Fig. 1(d,e)) as well as to obtain further observables like the spectral function
(Fig. 1(d,f,g)). In order to allow for a polarized solution, the CDMFT loop was initialized with
a strongly polarized (constant) self-energy.
To investigate possible superconducting solutions upon doping, we use the variational cluster
approximation (VCA) [42, 77, 78], which is an established variational quantum cluster tech-
nique well suited to check for different symmetry-breaking orders of the lattice system [83,84].
Both techniques can be explained in terms of self energy functional theory [79,85] and are in
this sense complementary [86]. They rely on the solution of the embedded cluster problem,
for which we used different solvers as detailed below.
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4.1 Imaginary axis MPS impurity solver

We use the MPS-based impurity solver introduced in Ref. [56] and successfully applied in the
context of DFT+DMFT in Refs. [57,58,87]. Using Matrix Product States (MPS) [35,36]we are
able to access effectively zero temperature. MPS need a Hamiltonian formulation of the cluster
impurity problem, which we obtain by following the fitting procedure introduced in Ref. [88]
in the context of exact diagonalisation (ED). However with MPS we are able to treat a larger
amount of bath sites allowing for a very accurate description of the hybridisation function. In
this work we use Lb = 8 (Lb = 6) bath sites per spin and site yielding a total system size of
Ltot = 36 (Ltot = 56) for clusters including two (four) sites.
As soon as the parameters for the impurity model are obtained we perform a grand canonical
ground state search by searching every symmetry sector in the vicinity of the total particle
number NU=0 the impurity model would have in the absence of electron-electron interaction.
We subsequently add single particle (hole) excitations onto the impurity sites and perform
imaginary time evolution until the excitations are decayed. The interacting impurity Green’s
function is computed by evaluating the overlaps with the initial states. Finally a Fourier trans-
form allows us to obtain the interacting impurity Green’s function on the imaginary frequency
axis, which can be used to close the self-consistency loop.
More details can be found and a comparison with CTQMC can be found in App. A and App. G
respectively.

4.2 Real axis MPS impurity solver

The MPS based solver can also be applied on the real axis directly [37–39], allowing one to
access real frequency data without the need of analytic continuation, which is known to be
numerically ill-conditioned [89–91].
This allows for a good resolution on the entire frequency range. However the price to pay is
that in order to discretise the hybridisation function at low broadening one needs to include a
vast number of bath degrees of freedom. The discretisation procedure we use is the linear dis-
cretisation approach introduced in Ref. [92]. In this work we use a broadening of η= 0.05 eV
which we treat using Lb = 274 (Lb = 200) bath sites per spin and impurity yielding a total
system size of Ltot = 1100 (Ltot = 1608) for calculations with clusters including two (four)
sites.
Again we search for the ground state in a grand canonical manner in the vicinity of the total
particle number of the non-interacting problem NU=0. The convergence of the ground state
search is aided by preparing an initial state that is, up to truncation, the ground state of the
non-interacting problem.
Once we have obtained the ground state we add single particle (hole) excitations on the impu-
rity sites and perform real time evolutions to obtain the retarded Green’s function. In contrast
to imaginary axis calculations, where entanglement stays roughly constant throughout time
evolutions, it grows in real axis calculations.
In order to keep this growth in check we split the time-evolution in two parts, namely a for-
ward and backward evolution, so that the Green’s function can be obtained by computing the
overlap between the two for a given excitation.
Finally we Fourier transform the retarded Green’s function and obtain the real frequency
Green’s function G(ω + iη) at some broadening η. Similar tensor network based real fre-
quency single-site DMFT calculations have already been presented in Refs. [37,38,40,41].

4.3 CTQMC

CDMFT calculations at finite temperatures were performed using the hybridization-expansion-
based CT-HYB [93] solver, based on CTQMC [94] method and ALPSCore libraries [95].
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Figure 6: Self-energy functional as a function of the superconducting Weiss field
strength of dx y symmetry, Dx y , for different electron filling n at the optimal value of
the chemical potential of the cluster µ′. The minima of the functional are indicated
by arrows. The value at zero field-strength, Ω0, has been subtracted for convenience.

Apart from the initialization, no symmetry-breaking was enforced during the self-consistency.
We however explicitly used the real-space symmetries of the 2x2 plaquette. A good fermionic
sign was ensured by a rotation to a basis diagonalizing the on-site energy matrix when solving
the effective impurity model.

4.4 VCA

Variational cluster approximation (VCA) is a quantum cluster technique based on the deter-
mination of stationary points of the self-energy functional [42, 79, 85]. The search of these
stationary points is limited to cluster self-energies, which are parameterized by a small num-
ber of suitably chosen cluster one-body parameters.
Here, we ensure thermodynamically consistent filling n by including the chemical potential
of the cluster in the set of variational parameters [96]. Furthermore, we use a Legendre-
transform of the self-energy functional to specify a target filling n [97]. Thereby, the chemical
potential of the lattice system represents a second variational parameter. Finally, different
symmetry-breaking Weiss fields were added to the cluster Hamiltonian to allow for long-range
order [83,84,96].
To allow for antiferromagnetic stripe order with ordering wavevector Q = (0,π), we add a
suitable field term on the cluster

HWeiss
AFS = M
∑

R

(−1)R y ·π
�

nR↑ − nR↓
�

,

where we denote the cluster sites with R; M is the field strength, determined via the variational
principle. Likewise, superconducting pairing fields are added via

HWeiss
SC = D
∑

i, j

∆i, j

�

ci↑c j↓ + h.c.
�

,

where D denotes the variational parameter and ∆i, j is chosen such that it amounts to pairing
with dx y - or dx2−y2-symmetry.
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To calculate the cluster self-energy we use exact diagonalization with a band Lanczos algo-
rithm [98]. Moreover, we employ a Nambu transformation to include the SC fields [84].
The existence of broken-symmetry solutions manifests in the form of additional stationary
points of the self-energy functional. For instance, Fig. 6 shows the self-energy functional as a
function of the field strength of the superconducting Weiss field of dx y symmetry. The station-
ary point at D = 0 corresponds to the normal state solution, whereas away from half-filling
the minimum for D ̸= 0 amounts to the superconducting solution, which is lower in energy.
To determine the stationary points of the coexistence solution, we add successively additional
Weiss fields by adiabatic switching on the field while keeping Ω stationary with respect to the
other variational parameters.

More information about technical details of the calculations can be found in App. I.

5 Conclusion

In this paper we analyse the spectral properties of t-CuO by using a square lattice model mo-
tivated by ARPES and RIXS measurements [17, 24] that consists of two interlaced CuO2 sub-
lattices coupled by an inter-sublattice hopping td . By considering selected elements of Mat-
subara self-energies we show that the inter-sublattice hopping has very weak influence on dy-
namic correlations. Thereby, we give a formal justification for the description of t-CuO by two
weakly interconnected sublattices [24] which explains the weak symmetry breaking found in
ARPES [17]. In addition we present momentum-resolved spectral functions and equal energy
maps computed within CDMFT directly on the real axis [37–41] using an MPS-based impurity
solver and compare them to data obtained from ARPES [17], which yields good agreement.
We perform calculations at finite temperatures with which we identify the driving mechanism
for the insulating states found in the ordered as well as the PM phase.
Given the good agreement of our results with experiment, we believe that a minimal one-band
Hubbard model is sufficient to capture most electronic and magnetic properties of t-CuO as
long as dynamical local and short-range fluctuations are treated properly. Further, using VCA
we are able to make predictions about the presence and symmetry of superconductivity upon
hole doping. We find that the decoupling of sublattices carries through to the superconduct-
ing state coexisting with antiferromagnetic stripe order. The dx y symmetry of the SC order
parameter can be interpreted as a superconducting state of dx2−y2-type within each sublattice.
Due to its tetragonal symmetry, the lack of interstitial atoms between the well separated 2D
CuO layers, and the fact that the electronic properties are mainly governed by its interlaced
CuO2 sublattices, we believe that t-CuO may be the ideal material to gain a more complete
understanding of the physics behind cuprate superconductivity. Although doping of t-CuO
by chemical substitution is probably not feasible experimentally, the study of doped t-CuO
by other experimental techniques like space charge doping [99], which has been successfully
applied to other cuprates [100], could be an option. Another interesting route to pursue exper-
imentally consists in growing CuO layers on top of a different substrate. Recently, copper-oxide
films have been grown on Bi2Sr2CaCu2O8+δ (BSCO), which resulted in nodeless pairing in the
superconducting state [101]. Whereas the monolayer was most likely of CuO2 structure, the
possibility of CuO could not be ruled out and is supported by ab initio calculations [102].
Several layers of t-CuO grown on top of a cuprate substrate would raise the question on the
node-structure of the superconducting phase again and might even allow to tune the symmetry
of the SC state as a function of the number of CuO layers.
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A Details on Cellular Dynamical Mean-Field Theory (CDMFT) cal-
culations

In the main text we present results for CDMFT at finite temperature computed with Continous-
Time Quantum Monte Carlo (CTQMC) [94] and at effectively zero temperature obtained using
a matrix product state (MPS)-based impurity solver [37–39, 56–58] both on the real and the
imaginary axis.
All real frequency quantities are directly computed on the real axis using the real frequency
MPS-based solver [37–39]. When computing momentum resolved spectral functions we apply
the reperiodisation procedure for cluster Green’s functions proposed by Sénéchal et al. [103–
105].

A.1 Matrix Product State (MPS)-based solver

All MPS calculations are performed using a tensor-network impurity solver [37–39, 56, 57]
based on the SYTEN toolkit [106,107].
For both real and imaginary axis computations we use two U(1) symmetries namely conser-
vation of spin in z-direction and particle number.
In the case of the t-dimer and the t-td -cell (cf. Fig. 1) the up and down spin sectors are de-
generate up to a permutation of sites, which is why we only compute the time-evolution for
one of those sectors and determine the other one from symmetry.
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A.1.1 Imaginary axis

For imaginary axis calculations we use a frequency grid corresponding to Matsubara frequen-
cies at a (fictitious) inverse temperature βfict = 200 eV−1. In ground state searches we allow for
bond dimensions of up to 2048. For the time-evolution we use the time-dependent-variational-
principle (TDVP) [108,109] up to τ= 200 eV−1. Due to being in an insulating regime for most
calculations the excitations decay very quickly which is why we abort the time evolution early
if the norm becomes smaller than 10−8.
Over the course of the last two iterations the self-energies presented in Fig. 2 did not change
by more than 7 · 10−4eV on the diagonals (Fig. 2 (a)), by not more than 5 · 10−4eV on the
offdiagonal corresponding to the intra-sublattice hopping t (Fig. 2 (b)), and by not more than
6 · 10−6eV on the inter-sublattice component (Fig. 2 (c)).
To improve the numerical accuracy for the computation of the high Matsubara frequency part
(tail) of self-energies we use the additional correlator introduced by Bulla et al. [110].

A.1.2 Real axis

For real axis calculations we use a broadening of η = 0.05 eV. In ground state searches we
allow for a maximal bond dimension of 1536. We time-evolve using TDVP [108,109] up until
Tmax = 40 eV−1 (Tmax = 60eV−1) for the block construction (dimer) calculations. Even though
more costly in real time calculations we also use the additional correlator introduced by Bulla
et al. [110] to improve the quality of the self-energy as compared to Dyson’s equation. For
calculations with the dimer cluster we use a mixing factor of 0.7 in the last few iterations.

A.2 Continuous-Time Quantum Monte Carlo (CTQMC) solver

CDMFT calculations at finite temperatures were performed using the hybridization-expansion-
based CT-HYB [93] solver, based on CTQMC [94] method and ALPSCore librairies [95].
We used Nω = 500 Matsubara frequencies and a grid of Nτ = 2001 imaginary time points for
all β , adapting the number of Legendre polynomials to the different β values. For all β and
cluster sizes the fermionic sign was always larger than 0.7, maximal sampling count for the last
iterations was larger than 7 ·106 for the dimer clusters, and 2 ·106 for the block construction.
We considered the CDMFT loop converged when the change in local Green’s function became
smaller than 10−3.

B Sublattice decoupling at finite temperatures

In Fig. A1 we show the temperature dependence of the ratio between the self-energy element
Σtd
(iωn) corresponding to the inter-sublattice hopping td and the self-energy elements on the

same sublattice Σloc(iωn) and Σt(iωn). The self-energies in Fig. A1 were obtained by CDMFT
calculations on the cluster consisting out of a dimer on every sublattice (Fig. 1 (e)) exactly as
in Sec. 3.1. Similar to Sec. 3.3 we employed a continous-time Quantum Monte Carlo solver
for the finite-temperature calculations.
Over the entire temperature range the inter-sublattice component of the self-energy Σtd

(iωn)
stays very small compared to the components contained on a single sublattice. Note that
the ratios range from roughly 10−2 to less than 10−3 indicating that the sublattices seem to
decouple over the entire temperature range. This observation justifies the use of the block
construction scheme (cf. App. C) mentioned in Sec. 3.1 at finite temperatures. Furthermore it
indicates that the sublattice decoupling seems to be independent of the magnetic ordering, as
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Figure A1: Temperature dependence of the ratio of Σtd
and Σt , as well as the ratio

betweenΣtd
andΣloc. We evaluate the self energy at the lowest Matsubara frequency

ω0 available for a given inverse temperature β .

even in the paramagnetic regime the inter-sublattice component is strongly suppressed.

C Block construction scheme

The self-consistent construction scheme consists in assuming a block structure of the cluster
self-energy. One proceeds by first assuming the off-diagonals of the self-energy that correspond
to td to be zero, which is a fair approximation as we confirmed when inspecting Fig. 2. Then,
the two interlaced sublattices are no longer interconnected and the cluster self-energy is of
block structure when regrouping cluster site indices that belong to the same sublattice. This
is for instance the case for the differently coloured sites in Fig. 1(g). Therefore, it is sufficient
to solve the impurity problem on one of the two sublattices. After closing the self-consistency
loop we project down onto one of those blocks and obtain an impurity problem on the unit
cell of a single sublattice (Fig. 1(f) in the main text). Solving this problem yields one of the
two blocks of the aforementioned self-energy.
This construction amounts to a momentum resolution as obtained by considering the cluster
depicted in Fig. 1(g), but with the computational effort of considering the unit cell shown in
Fig. 1(f). The approximations described in this paragraph in essence correspond to treating
the inter-sublattice hopping included in the diamond on the single-particle level via a feedback
from the self-consistency loop [55]. A similar block construction of a super-cluster was already
used successfully within CDMFT [111,112].

D Averaging dimer/diamond orientations

Most of the results in this work were computed using the t-dimer or the block construction as
unit cells. Fig. A2(a,b) shows two different orientations for these unit cells, that are in line
with the stripe order proposed in Ref. [24]. Choosing one of them would artificially introduce
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an asymmetry, which is why the results presented in the paper were averaged over the two
possible orientations. This approach goes by the name oriented cluster DMFT and was already
introduced in Ref. [113,114] and applied to Sr2IrO4 [113–115].
For completeness we show the equal energy maps obtained for every orientation compared to
their respective mean in Fig. A2(c,d). We observe that the dimer results are far more sensitive
to the orientation, however apart from the minimum in the middle of the BZ their average
is already very similar to the energy maps computed with the block construction. This has
two promising implications. First, it implies that the dimer results already capture very well
the physics in t-CuO, indicating that the most important physical content of the extended unit
cells is actually the delocalisation along the dominating bonds, as was already argued in the
main text. On a second note we interpret the fact that the block construction result is almost
independent of the orientation as an indication for convergence in cluster size.
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Figure A2: Sketch of the two possible orientations within a given magnetic stripe
order for (a) the dimer and (b) the diamond cluster. Panels (c) and (d) show the
corresponding equal energy maps obtained at E = −2.2 eV using these cluster ori-
entations as well as their mean. The dashed black line indicates the BZ of a single
sublattice.
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Figure A3: Comparison of equal energy maps (a,c) and spectral functions on a path
through the BZ (b,d) for the two different possible directions of the stripe order. The
results shown were obtained with the block construction discussed in the main text.
The heat maps were normalised to the maximal value shown. The path through the
BZ is the one depicted in Fig. 3(a) of the main paper.

E Stripe orientation

As mentioned in the main text we initialized our solvers such that the stripe order depicted in
Fig. 1 is favoured. However there is no reason why the stripes should specifically be oriented
in x-direction as opposed to y-direction. Thus in order to deliver a more complete picture
we compare in Fig. A3 the results obtained when favouring the order in y-direction to those
presented in the main text. In Ref. [27] the possibility of having multiple domains in the ARPES
sample was mentioned. This would yield a spectral function that amounts to some weighted
superposition of the two spectra and equal energy maps shown in Fig. A3, where the weight
would depend on the portion of the sample that has a certain magnetic stripe orientation.
However as both magnetic stripe orders yield qualitatively very similar results we only discuss
one of them in the main text.

F Estimation of the critical temperature

In the main text we mention an estimate for the critical temperature and also depict it with
error bars in Fig. 4(a). In order to extract this estimate we fitted a function of the form

M(T ) = θ (Tc − T )γ
�

1−
T
Tc

�β

,

to the staggered magnetization. Here γ, Tc and β are fit parameters and θ is the Heaviside
step function, that was added in order to make the fits more stable. Note that unlike the rest
of the manuscript here β is the critical exponent of the transition, while βc in the following
denotes the inverse critical temperature.
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Figure A4: Real and imaginary part of chosen elements of the cluster Green’s func-
tion G(iωn) using the horizontal block construction scheme with the MPS solver at
T = 0 and with the CTQMC solver at T = 1/50 eV. Panel (a) shows Gloc(iωn) the lo-
cal Green’s function on a orbital that is polarized in up direction. Panel (b) shows the
component corresponding to the t hopping element. Panels (c,d) show components
corresponding to hopping along the t ′ direction. Ge and Gf in panels (c,d) stand for
orbitals that are close to empty and filled respectively. Note that due to the magnetic
stripe order t ′ only connects orbitals with identical polarization (c,d), while t con-
nects those with opposite polarization (a). All the components shown correspond to
the spin down block of the cluster Green’s function.

By inspection of the self-energies in the transition region we find upper and lower boundaries
for βc . We set the lower boundary such that the spin splitting vanishes and the upper one such
that the imaginary part of the diagonal components of the self-energy tends to 0 as ωn → 0.
By this criterion we identify βc = 16 eV−1 (βc = 20eV−1) and βc = 13 eV−1 (βc = 17 eV−1) as
upper and lower boundary for the dimer and block-construction clusters respectively.
Varying the upper and lower boundaries of the fit interval we obtain a collection of fits, of
which we discard those, which either display a deviation bigger than 0.05 from any data point
or which do not give βc in the region that was determined by inspection of the self-energies.
Thus we end up with a collection of valid fits over which we average the resulting βc . The
error bars in Fig. 4(a) correspond to the standard deviation in the set of valid fits.
The average values we obtain for the critical exponent are β = 0.44±0.15 (β = 0.66±0.34) for
the block-construction (dimer) respectively. The errors are again determined as the standard
deviation in the set of valid fits. Finally, we note that the exponents are in good agreement
with the expected mean-field critical exponent of β = 0.5 [116].

G Comparing CTQMC and MPS data at low temperature

At lowest temperatures (e.g. for β = 50eV−1), the Green’s functions obtained from applying
the CTQMC solver and the MPS-based solver at T = 0K coincide, see Fig. A4. It is important to
point out that the only notable deviations occur in the off-diagonal part of the cluster Green’s
function, where the absolute value of Gi, j(iωn) is small (∼ 10−3). In order to achieve good
agreement between the two methods we ensured a sufficiently large sampling in the CTQMC
solver: maximal sampling count was larger than 7 · 106 for the dimer clusters, and 2 · 106 for
the block construction.
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H Self-energy temperature dependence

While already being in the ordered phase, at finite temperatures (e.g. β = 20 eV−1) the real
part of the self-energy in Fig. 4(b) in the main text shows an additional dynamic splitting at low
Matsubara frequencies. This dynamical effect decreases when temperature is lowered. The
static part given by the high-frequency tail however shows a constant increase. To identify
the leading mechanism we derive in the following a simple toy-model able to capture this
behaviour by including thermal effects only at the single-site level.
Following the idea of Stepanov et al. [73], we consider a single Hubbard site subject to a small
external magnetic field representing the spin-exchange coupling between neighbouring spins
in a mean-field fashion:

H = −µ
∑

σ

nσ − h(n↑ − n↓) + Un↑n↓ , (1)

where µ = U/2 is the chemical potential set for half-filling, h is the effective field, and U the
on-site Coulomb interaction. The latter being larger than the other characteristic energies of
the system, we assume βU ≫ 1 and βU ≫ βh. Using the finite-temperature Lehmann Green’s
function:

G0
↑ (iωn) =

1

iωn + h+ U
2

,

G0
↓ (iωn) =

1

iωn − h+ U
2

,

G↑(iωn)≈
1

(iωn + h)2 − U2

4

�

iωn + h−
U
2

tanh(βh)
�

,

G↓(iωn)≈
1

(iωn − h)2 − U2

4

�

iωn − h+
U
2

tanh(βh)
�

,

where G0 and G are respectively the non-interacting and interacting Green’s function. The
self-energy is obtained using Dyson equation:

Σ↑(iωn) =iωn + h+
U
2
−

(iωn + h)2 − U2

4

iωn + h− U
2 tanh(βh)

,

Σ↓(iωn) =iωn − h+
U
2
−

(iωn − h)2 − U2

4

iωn − h+ U
2 tanh(βh)

.

First it can be checked that the derived self-energy is consistent with the CDMFT calculations
in the paramagnetic βh→ 0 and the antiferromagnetic limit βh→∞:

lim
βh→0

Σ↑(iωn) =
U
2
+

U2

4(iωn + h)
,

lim
βh→0

Σ↓(iωn) =
U
2
+

U2

4(iωn − h)
,

lim
βh→∞

Σ↑(iωn) =0 ,

lim
βh→∞

Σ↓(iωn) =U .

At high temperature (βh → 0) we recover the Hubbard-I limit, with an additional constant
U/2 from the chemical potential, in agreement with β = 10eV−1 data shown in the main text
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Figure A5: Left: Self-energy functional Ω as a function of different Weiss fields ξ at
filling n = 0.9. The maximum at ξ = 0 corresponds to the PM solution, the minima
at finite ξ represent solutions with broken symmetry. Right: Ω as a function of both
ξAFS and ξdx y

. Following the local minima of the functional along either ξAFS (green)
or ξdx y

(magenta) leads to the global minimum (orange point).

which shows a vanishing real-part of the self-energy. Moreover, in the magnetically ordered
limit the self-energy becomes static in agreement with CTQMC solver at β = 40eV−1 and MPS-
based impurity solver at β =∞.
We now consider βh finite and derive the low/high frequency limits:

Σ↑(iωn→∞) =
U
2
−

U
2

tanh(βh) ,

Σ↓(iωn→∞) =
U
2
+

U
2

tanh(βh) ,

Σ↑(iωn→ 0) =
U
2
−

U
2

1
tanh(βh)

,

Σ↓(iωn→ 0) =
U
2
+

U
2

1
tanh(βh)

.

One can immediately see that as the temperature increases (i.e. as βh decreases), the split-
ting of the tail for the two spin species decreases. However, the low-frequency limit shows an
enhanced splitting larger than U and even a divergence when βh→ 0. This is perfectly con-
sistent with the self-energy calculated with CDMFT showing at β = 20eV−1 a larger (smaller)
low (high) frequency limit than at β = 40eV−1. Therefore we conclude that this behaviour in
the ordered phase can in large parts be traced back to a pure temperature effect.

I Variational Cluster Approximation

The variational cluster approximation (VCA) [42] is a well-established variational method and
different important technical aspects have been already discussed elsewhere [77,78,97].
As mentioned in the paper, we used at least the chemical potential on the cluster, µ′, and the
chemical potential µ as variational parameters to ensure a thermodynamically consistent filling
n [96,97]. In addition, up to three additional Weiss fields, corresponding to antiferromagnetic
stripe order (AFS) and superconductivity of dx y , dx2−y2 symmetry, were added. Since the
search for stationary points in a high-dimensional variational space is non-trivial, we briefly
outline in the following the procedure we followed.
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Starting from the paramagnetic solution without Weiss field, each symmetry-breaking Weiss
field ξi was switched on individually and slowly increased. The self-energy functional Ω(ξ)
was calculated for each value of ξi while optimizing locally with respect to µ and µ′. This is
illustrated in the top panel of Fig. A5, where we show the form of the self-energy functional
for different symmetry breaking Weiss fields. Even though the self-energy functional has a
physical meaning only at its stationary points, the smooth continuous form of Ω(ξi) shows
that adiabatically switching on the fields allows to identify new solutions while keeping the
filling at a fixed value.
Once a solution with broken symmetry ξ1 ̸= 0 was found, we added successively addi-
tional Weiss fields by following the same procedure: Starting from a known solution, say
(ξ1,ξ2) = (x , 0) with x ̸= 0, the field strength of the new field ξ2 was slowly cranked up while
assuring stationarity of Ω with respect to µ,µ′,ξ1. To cross-check solutions with more than
one Weiss field having a non-zero value, we verified that the same solution was also obtained
when inverting the order of successively including the Weiss fields, see right panel of Fig. A5.
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