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Abstract

We employ the equal-time formulation of quantum field theory to derive effective kinetic
theories, first for a weakly coupled non-relativistic Bose gas, and then for a strongly
correlated system of self-interacting N-component fields. Our results provide the link
between state-of-the-art measurements of equal-time effective actions using quantum
simulator platforms, as employed in Refs. [1, 2], and observables underlying effective
kinetic or hydrodynamic descriptions. New non-perturbative approximation schemes
can be developed and certified this way, where the a priori time-local formulation of the
equal-time effective action has crucial advantages over the conventional closed-time-

path approach which is non-local in time.
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1 Introduction

Quantum fields describe the microphysical laws of nature and are relevant for quantum tech-
nology when devices become large. Despite their relevance, the complex dynamical properties
of quantum fields are to a large extent unknown because ab initio simulations in real time are
in general beyond capabilities of classical computers. Quantum simulators open up a way for-
ward, and prominent examples with ultra-cold atoms include the simulation of relaxation and
(pre-)thermalization dynamics [3-6], many-body localization [7, 8], quantum scars [9-11],
and universal dynamics far from equilibrium [12-14].

Ultra-cold atom measurements are typically done at snapshots in time with the important
ability to extract equal-time correlations to high orders [15,16]. Equal-time correlations are
highly suitable for the description of non-equilibrium systems, similar in spirit — but not limited
to — kinetic descriptions in terms of single-time distributions. However, in contrast to these
time-local approaches the conventional formulation of non-equilibrium quantum field theory
is based on the closed-time-path contour [17-19] involving multiple-time correlations, which
are difficult to access experimentally. In particular, standard derivations of effective kinetic
descriptions from quantum field theory start from non-local equations in time which become
time-local only after a series of approximations [20,21].

In this work we derive effective kinetic theories for an ultra-cold Bose gas starting from
an equal-time formulation of quantum field theory [1,2,22]. The central quantity is the time-
dependent quantum effective action I, which contains the same information as the density
operator at time t, but is expressed in terms of equal-time correlations. From the functional
evolution equation for I, [22] we derive evolution equations for equal-time vertices, which
may be directly extracted from quantum simulation results as pioneered in Refs. [1,2]. Here
we demonstrate that the two- and four-point correlation functions at equal times contain the
complete information for the derivation of the Boltzmann equation for a weakly coupled non-
relativistic Bose gas, and of an effective kinetic theory for a strongly correlated system of self-
interacting N-component fields [23]. Our results establish a direct link between equal-time
correlations and observables underlying effective kinetic or hydrodynamic descriptions. The
approach thus opens up new possibilities to develop and certify novel approximation schemes
for the dynamics of complex quantum many-body systems.
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2 Model and overview

We consider an N-component non-relativistic scalar field theory with Hamiltonian

\ viive \rs fia
A= J [—;m S A 4% SCIRMEE ] . &)
X

Here ¥, = (zﬁx’l, ,1/3 x,n) is the N-component field operator at spatial position x, g is the
scattering constant, m denotes the mass of the atoms, u represents the chemical potential
and the colons indicate normal ordering of operators. The field operators fulfill canonical
commutation relations ["JJXJ, 1/3)'/1] = 6(x—y)0d;j, where we employ natural units with setting
h = 1. Here and in the following, we use short-hand notations for integrals over spatial
coordinates fx = f_ozo d®x and momenta f P = f _O:o d3k/(2m)3. We focus on three spatial
dimensions where Eq. (1) may be considered as a low-energy effective theory for ultra-cold
Bose gases with a U(N) symmetry.
We define a generating functional for equal-time correlations as [22]

Z,[10) =T (p el Bt @)
where p, denotes the time-dependent density operator and JS(*) = (J)(ﬁ, oo )(c*]z,) are the N-
component source fields. The generating functional contains the same information as the t-
dependent density operator and fully describes the underlying quantum system at time t. With
this representation the system is completely characterized by its set of equal-time correlations
and its evolution is determined by the Hamiltonian of the theory. Repeated differentiation
with respect to the sources, and evaluation for vanishing sources, yields symmetrically ordered
correlation functions

- oL 06 .58 &5 b

= N e 7 J’(*) , 3
Z[I0]6J; 8Ty 8y, 6, il ]J’J*:O (3)

A1..Qj,0 410y

where we abbreviated the spatial and component indices as a;, e.g. a; = (x1,i;). According
to (3) we associate fields 1) with the indices to the left (here a; - -- a;), and conjugate fields

)" with the rightmost indices (@j41°+-ay). Throughout this work we consider the case of
U(N) invariant correlations in the non-relativistic theory. By choosing a U(N) invariant initial
state the symmetry is preserved for the dynamics with Hamiltonian (1). As a consequence,
all non-vanishing correlation functions involve an equal number of field and conjugate field
operators. Specifically, this yields one type of two-point function which is given by

1, » At
G, (0= o (Wi, e @

where {:,-} denotes the anti-commutator of operators, and the expectation value is given by
the trace with respect to the density operator at time t.

In general, we distinguish between connected and disconnected correlation functions.
Connected correlation functions (superscript “c”) are obtained by differentiating with respect
to the equal-time Schwinger functional W, =1log(Z,),

o o o o
Gc,(”) t) = v v
(t) 5I; 8T 6J
j

al..aj,aj+1..an

w,[J®) . 5
0Jq, L ]J,J*:O )
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At order 2n, they contain information about correlations of n bodies. Conversely, n-th order
disconnected correlation functions are given by sums of all combinations of connected correla-
tions involving in total n/2 bodies. For example, for n = 4 one gets (for the U(N)-invariant

case)
G# =Go™ + G2 g2 4 ge) o) 6)

a10,a30y 010,030 a1,A3 0,0y Q1,04 ~ Q2,037
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and for n = 2 we have G% (2)2 = G(z)a since the one-point function vanishes.

The dynamics of quantum fields is often addressed in terms of effective kinetic theories
for a time-dependent distribution function f,,(t), where we consider the case of spatially tans-
lation invariant systems to ease the notation and the momentum p is obtained from Fourier
transformation with respect to relative coordinates. In the following, using U(N) symmetry
the distribution function is obtained without loss of generality from the diagonal two-point

i i (2) G2
correlation function G, — G, &; ;, in Fourier space as

1
GP(1) = f,(6) + 7 )

Starting from an exact evolution equation for the time-dependent quantum effective action
obtained as the Legendre transform of W, in section 3, we will derive effective kinetic equations
of the form

3tfp(t)=J | Tpgrs (O (U, (6) + DU () + DA — £,(Of,(OF (O + DO +1)). (8)
q,r,s

It shows characteristic "gain" and "loss" terms describing (in this case) 2 «— 2 scattering into
and out of the momentum mode p.

We first compute the dynamics of the Bose gas using a perturbative expansion in the small
interaction strength g < 1 in section 4, where (8) reduces to the Boltzmann equation de-
scribing a dilute medium with occupancy f, < O(1/g) such that particles stream freely in
between individual scatterings. In this simplest case one finds from the (irreducible part) of
the equal-time four-point function G a time- and momentum-independent matrix element
| pqrs(t)lz =g?/202n)36(p+q—r —5)(2m)6(Awpgrs), where Awpg,s = w, + wq — W, — Wy
is the single-particle energy difference of in- and out-going particles. Therefore, one recovers
that the scattering rate is given by the asymptotic T-matrix elements | Ty, |2 in vacuum in this
case.

In section 5 a non-perturbative approximation scheme is considered, where we employ
an expansion in the number of field components N. At next-to-leading order in the large-N
expansion we again recover an effective kinetic equation of the form (8), however, in this case
with a time- and momentum-dependent ITqus(t)Iz. We demonstrate that the latter is also fully
determined by the irreducible part of the equal-time four-point function, which implements
a geometric series resummation of the distribution f,(t) itself such that one obtains a closed
equation for the time evolution. The importance of the large-N kinetic theory is that it can
describe also strongly correlated systems with non-perturbatively high occupancies [24].

While these results establish a direct link between equal-time correlations and typical ob-
servables underlying effective kinetic theories, the exact quantum evolution equations we de-
rive from the equal-time effective action are not limited to kinetic theory approximations. In
section 6 we discuss an experimental protocol of how the exact equations could be estab-
lished in quantum simulations with ultra-cold atom platforms, extending the procedures of
Refs. [1,2] to the Bose fields appearing in the defining Hamiltonian.

3 Equal-time 1PI effective action
In this section, we introduce the equal-time effective action and the corresponding time-

dependent vertices, which are the irreducible building blocks of all connected equal-time cor-
relation functions. The equal-time one-particle irreducible (1PI) effective action [1, 2, 22],
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G = + + perm.

Figure 1: Connected correlation functions from irreducible building blocks. We show
the diagrammatic contributions to the 1PI connected six-point function (G%©). The
first term involves a 1PI six-vertex, the second is assembled from two four-vertices.
Field indices and permutations of external legs are implied and the number of in-
and outgoing arrows is conserved due to U(N) invariance. For details, see also ap-
pendix A.

analogous to the free energy, is defined as the Legendre transform

T [w] = —w,[J¥]+ f (¥iy, +30w,), ©)
X

with field-dependent sources J(¥), J*(¥*), and \IIJ(C*)(J(*)) = (\i;)(('i‘)) 7, Where the expectation

value is defined with respect to the trace in Eq. (2) in the presence of sources. The effective

action can be expanded in terms of the fields as

oo

Ft[\I,(*)] = Z F)E;I.)..xn,h...,in(t) X w;kchif"wxmin ’ 10)

n=2
with 1PI equal-time vertices that are obtained by differentiation as
_ o"'T,
B S ;O g, Iwrw=0"

These 1PI vertices are the irreducible building blocks for connected correlation functions.
Specifically, this means that any equal-time connected correlation function is a combination of
equal-time vertices and two-point functions. Important relations of correlation functions and
effective vertices can be obtained by the definitions of the Schwinger functional and effective
action, in combination with the chain rule for derivatives with respect to fields and sources.
As an example, one finds for the two-point functions the relation G;fiz = (F(Z))gllaz, and for
four-point functions

(11)

(n)
Fxl X0 oDy ( t)

c,(4) — __6(2) A6,(2) 0,(2) ~e,(2) 1(4)
Gal ayazay Gal a) Gaza’z Ga3 ag Ga4ag Fa’l ayazal (12)
Here, every index a; of the four-vertex is contracted with an equal-time two-point function also
carrying a corresponding external index a;. To illustrate this relation graphically, we introduce
the following notation

el = —— (13)
2) _ (re2)! —
I, =(G5®), 0= e, (14)

0, = 3 as)
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where each ending line represents an index a, and 1PI vertices are amputated (red bars). Lines
can furthermore meet at bare vertices, which in the evolution equations arise in combination
with either one or three inverse two-point functions attached to them, as we will establish
shortly.

In general, diagrams are assembled by connecting lines with vertices, which is accompa-
nied by integration and summation over vertex positions and component indices as summa-
rized by a. Importantly, the arrow indicates the flow of particles, such that all diagrams should
conserve the arrows along the attached lines. While this diagrammatic language is very sim-
ilar to perturbation theory in conventional quantum field theory, the equal-time correlation
functions here depend on spatial coordinates and an overall time argument, rather than a set
of spacetime coordinates, and no time-integrals appear.

Assuming spatial translation invariance, it will be beneficial to transform these objects and
their evolution equations to Fourier space, where two-point functions and vertices are assigned
momentum variables. Overall, momentum variables are assigned in a momentum conserving
manner, i.e. a §-distribution (271)>5(p; + p, — p3 — p.) is implied at each vertex with ingoing
momenta p;, p, and outgoing ones ps, p4. While connected four-point correlations originate
from the four-vertex, all connected n-point correlations with n > 4 are built from sums over
different diagrams involving vertices I®, .., T(™. For example, the diagrams corresponding to
the connected six-point function are displayed in Fig. 1. To clarify the diagrammatic rules,
explicit formulae for diagrams are given in appendix A.

In the following, we first consider N = 1. The straightforward generalization to the N com-
ponent field theory will become important later for non-perturbative approximations based on
an expansion in powers of 1/N.

The effective action obeys an exact flow equation [22], which for the current model reads

e [T Ny T (P )
latrt_£(5¢x(2m+‘u)¢x 5¢§(2m+u 'l.bx (16)

g/2 83z,[J®] 6T, g/2 &°z,[J®] 61, g , 6T, 6T, 6T, L8 0L T, 6Ff¢)
- x |

Z[TOT (8,287 6% Z[JP] 8T (8T5)2 5, 8 X 51p, oY% 5% 8 654, 51 Y%

where J&) = J (*)[1,1)(*)], such that the effective action is a functional of the fields 1/)(*) [25].
Similar to the von-Neumann equation for the density operator, the evolution equation of
the equal-time effective action is time-local. This is different from functional approaches in-
volving unequal-time effective actions, where the system’s history enters at each step of the
evolution. The first two lines of Eq. (16) represent the terms also present in the classical-
statistical theory, while the third line represents genuine quantum corrections. The term
~ 5SZt[J(*)]/((5JX)25J:) corresponds to a symmetrized third-order correlation function
which may be written in terms of the effective action. To this end, we split it into connected
and disconnected correlations

WL I ) sym = (DL L) + 2G8P% + (PLP 1) Y + (50 (17)

where “sym” implies the symmetrization over all operator orderings. We furthermore have
(2) — (r(2y-1 PR — (71 (P21 (21 (3 :
G;)E ) = (1t ))xx and (zp;czp;csz)gym' = —(1¢ ))xyl(F( ))xyz(I‘( ))Y3X1—‘}(’1;’2y3' Since odd orders of
correlations vanish in the absence of a mean field (z,b(*)[J () = 0] = 0), these contributions
only contribute in the presence of further field derivatives.
Differentiation with respect to the fields y® yields the evolution equations for the in-

verse propagators and vertices. After applying the derivatives 52/8 Y36¢,, and evaluating
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the resulting expression for Y™®[J®) = 0] =0, we get

V§ VZ
. 2 X 2)\—1 2)\—1 2
lat['(y) = (_ ——= 4 g(F)Ex)) — g(l"}(/y)) )1")5 )

E | v (r@ y1p@) ‘12 114
+2LFXJ/4(F}'4}’1) (F}’4}'2) (F}'s}’4) FJ/LYZJ/S.Y

_8 | @ @) 1@ 1@ y-11(2)
zfrxysylyz(rylm) (F}’2}’4) (FJ'4}’3) FJ’4}" (18)
y

where y refers to the set of integration variables y, .., y4. For translationally invariant systems
we switch to Fourier space, where the expression simplifies to

. n_ & 2) (21 1(2)y=11(2)\—1 (4 4
latrlg)_—5 f r; )(ré N1y (1) (rlgqgs_rrggq). (19)
q,1,s

Here, we used the definition Flsz)(Zn)BS(p —q)= f

xy exp(ipx—iq y)I‘g,), see also correspond-

4)
qrs

delta distribution (271)*8(p +q—r —s) which will be implied throughout the rest of this work.
From now on, we furthermore abbreviate G;’(Z) = G, and FISZ) = T,. The evolution equation
(19) has a characteristic two-loop structure reminiscent of scattering diagrams in quantum
field theory [21]. We note that at this stage the evolution equation is exact, such that knowl-
edge of the four-vertex allows one to compute the exact solution for the inverse two-point
functions.

For the four-vertex, we analogously obtain

ing expressions in section A. Similarly, the four-vertices F;S carry a momentum conserving

10T = A T8 + Vg (TP) = Mg, (T). (20)

The result consists of three different contributions: The first term corresponds to the free
evolution, and it is obtained by applying the four field-derivatives to the terms in the first line of
Eq. (16). Corresponding terms will appear at all orders in the hierarchy of evolution equations
and they lead to phase rotations with the single particle energies, Aw,q,s = W, +wq—w, —ws,
with w, = p?/2m — u. The second term is the “bare" vertex function

_ yC
VquS - qurs + Vqurs ’ 1)

which consists of a classical scattering vertex

o
Vpcqrs =—g([,+,—I,—L)= :}\( + perm., (22)
as well as a quantum contribution

ve = %(rprq(rr +T)—TL(T, +I,) = :/f + perm., (23)
where solid lines are amputated, i.e. corresponding two-point functions are removed. Quan-
tum scattering involves additional factors of inverse two-point functions, such that classical
scattering dominates for large occupancies. We furthermore obtain higher-loop contributions
M,qr5(T'), which contain interaction vertices up to sixth order r("<6)_ see Fig. 2. They orig-
inate from derivatives acting on the second line of Eq. (16), as detailed in appendix B, and
here we focus on the translation invariant system. The set of diagrams couples the evolution
of four-point interactions with six-point correlations as well as non-linear combinations of
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039
¥ -

Figure 2: Loop-contributions to the evolution equation of T'® involving 1PI four-
and six-vertices in a translation invariant system. Note that all external propagators
(solid lines) are amputated and permutations of legs are implied. For the underlying
analytical expressions, see B.

M(F(4) F(b))

four-vertices to realize the complex dynamics of the Bose fields. Corresponding higher-order
evolution equations for T'"=®) follow from analogous differentiations of Eq. (16).

The vertex (21) already carries the “gain minus loss" structure characteristic for effective
ldescriptions in terms of kinetic equations. To also make contact with kinetic descriptions, we
derive the evolution equation for two-point functions from Eq. (19)

. p p P P
G, =—Gy(8T,)G, = iG,| »@->. _ -»-@»‘]Gp :f gIm(r’ )G,G,G,G,. (24)
q,1,s

Here, the imaginary part originates from the structure ~ I') —T® "in Eq. (19) and the

pqrs rspq
identity (I‘lggzs)* r(s‘gq

4 Perturbative expansion

The evolution equations derived in the previous section constitute an infinite hierarchy of
equations at higher orders of the vertices. The four-vertex is coupled to the six-vertex which
will depend on the eight-vertex, etc. In practice, solving this set of equations requires us
to truncate the hierarchy, for instance at a certain order of the vertices. In this section, we
consider a perturbative expansion in powers of the coupling constant g.

To achieve this, we address Eq. (20) by first transforming to a rotating frame
' ()= exp(lAwpqut)F (4) (¢), such that

pqrs pqars

i9 F}S;‘ZS = elAwpqrs ( qus(F(Z)) _Mpqrs(r)) . (25)

This equation may be integrated on both sides to yield our analog of a Bethe-Salpeter equation

t
Flggls = f dt/ iAw qrs(t —t) (qurs(rt(,z)) —Mpqrs(rt’)) , (26)
t

0

where we assumed the initial condition F(;‘Z ;(to) = 0 for all momenta p, q, r,s. This amounts to

starting the evolution from Gaussian initial conditions which is typical for kinetic descriptions.
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4.1 Leading order

At O(g?) we focus on the bare vertex and neglect all higher-order terms M. One can show
that this represents a self-consistent power counting, as I'¥) is sourced by bare vertex terms
of order O(g) and hence M = O(g?). The contribution of loop diagrams to the evolution of
two-point functions will be of order O(g?). We get

t

it (0) = J dt’e! A0y, (1). (27)
to

In the following, we focus on the late-time regime where the evolution of the two-point func-

tions is slow compared to the fast-rotating phase factor ~ exp(iAcopqrs(t’ —t)). Hence, we set

to — —oo and the evaluation of the integral yields

t [ee]
iFé;‘ls(t)=f dt’em‘”ws“"f)qum(t’)=f de'0(t —t")etrens =0y (¢)).  (28)

—0Q —0Q

Unless stated otherwise, integration boundaries are taken as 00 henceforth. Here, we em-
ploy an integral representation of the Heaviside function 6(x) = f dw/(2m)iexp(—iwx)/(w+i€)
in the limit € — 0. Specifically, we get

dt/dél) 1 : /
(4) — _ i(Awpgst)(t'—t) /
Tpars()= f 2n w+ ieel e Voars(t). (29)
Using a Taylor expansion of the time-dependent bare vertex with respect to the coordinate t,
A '—t)0,

qurs(t ) - e(t 0 qurs(5)|s:t ’ (30)

yields the expression
'@ (1) = do 1 ~i0,0, dt’ el(B@pgrste)t'—1) 31
pqrs(t) - 2T w + iee quS(S){szt te ‘ : B

From the integral in the second line we obtain a Dirac 6-distribution, i.e.

@ (= [92_ 1 aay

pqrs 2T w+ie qu5(1)|l:t5(Aw

pars T @) (32)
This expression can be integrated by parts and rewritten in terms of a derivative with respect
to €, which subsequently is evaluated in the limit € — 0,

v )

4 8.d pqrs

rltgq)rs(t) ¢ l(—Am +ie)‘l— -0’ (33)
pqrs =t,e—>0

At sufficiently late times we expect time derivatives of distribution functions to be small. This
follows from the assumption that distribution functions evolve slowly at long times [20].
Specifically, higher-order terms in the expansion of the exponential function include terms
as 9G,(l) = O(g?), which are again higher-order in the interaction constant. At order O(g?),
we approximate exp(d.d;) — 1 and get

p K

Vogrs(£)
I ()=—2"" = . 34
pars(0) —Awpgs +ie G

r

Here, we defined a new Feynman rule representation for the solution of I'*) at leading order,
which includes the frequency factors. Corresponding factors will appear at every subsequent
coupling order as discussed next.
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4.2 Next-to-leading order (NLO)

Analogous to the leading-order result (34), one may systematically derive higher-order con-
tributions. To compute I'® at order O(g?), we consider the following loop diagrams in its
evolution equation

Mpqrs(l“(4)) = + + perm. + O(g3), (35)

:" :"
q rooq r

where the four-vertices on the right-hand side are expanded to leading-order O(g).
To illustrate the computation of next-to-leading order contributions to the solution of I'*),
we focus on the first diagram in Eq. (35) next. Explicitly, we get

P s

4
= gT, f GroGio Ty » (36)
k/

:}0
q r

where all ingredients are evaluated at time t and we introduced the shorthand notation
k" = p —s + k' to abbreviate the loop momentum variable. The diagram’s contribution to
the solution for I'® reads

t
r (6)> gJ dt’emwmrs(f’—ﬂrq(t’)f Gio ()G ()T s (2. (37)
to Kk

To compute I'® at order O(g?) on the left-hand side, we approximate I'® at order O(g), as
given in Eq. (27), on the right-hand side of Eq. (37). We obtain

4
0,5

Vorrs(t”),  (38)

dt’dewdt”de’ 1B @pgrstO)(E—0) iAo ) —t')
wtie W’ +ie’

2n)? () k/Gk’(t/)Gk”(t/)

where we again have set t, — —oo and used the integral representation of the heaviside
function. Next, we rewrite the expression in analogy to the steps performed in Egs. (30)-(33)
to arrive for the right-hand side of Eq. (38) at

/
o(8—2)2y 43c8 ( LD [ GG Vs )’ . (39)
[=l'=t,e’=e—0

Acopqrs —ie Aa)pk/k//s —1€’

At order O(g?), we again approximate the exponential operators by unity. Similar to Eq. (34),
we identify this result after time integration with a diagrammatic expression
P K

O S GeGrr Yok
pqrs Acw

= , (40)

X
q r

pqrs ie Awpk/k//s —1i€

where all quantities are evaluated at time t. It is important to keep track of the frequency
factors. In the present case, there is one factor 1/(—Awprs + i€) which comes with the

vertex “V" and another factor 1/(—Aw,,,s +1€) carrying the external momentum labels of the

10
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left-hand side’s vertex Fp(gls. At order O(g?) we then write the solution for the time-dependent
four-vertex diagrammatically as

p s p s
p. s
r® = :}x{ + + + perm (41)
pqrs :
q r ". .
q r q r

In general, frequency factors enter the calculation for each “insertion" of I'*) as demonstrated
for the present order in Egs. (37) and (38).

4.3 Boltzmann equation

To derive the late-time evolution equation for the two-point functions at leading order
6,G, = 0O(g?)), we consider the imaginary part of the corresponding solution of the four-
vertex

Im (T, (£)) = —6(Awpgrs)Vpgrs(£).- 42)

Here, the imaginary part is a crucial ingredient to obtain the energy conservation of the parti-
cles which stream freely in-between collisions. Plugging this result into Eq. (24), one finds

2

8fy =" | @P8(p+a—r—s)2m5(Awpys)
q,r,s
(U + DUy + Dffi = fify U + DU+ 1)), (43)

which is the well-known Boltzmann equation for weakly correlated non-relativistic systems.
Here, we defined a distribution function G, = fp + 1/2 as in Eq. (7) corresponding to

fr= (1/31’)1[3 p)» with " p being the Fourier transformed field operator. Using this, one finds

VogrsGpGq G, G = gl fp fo(fy + Dfs + 1) — (f, + D(fg + DS £, (44)

which yields the result (43). It contains a characteristic “gain minus loss" structure and
has a momentum independent scattering rate g2/2, such that we get the matrix element
| Tyqrsl* = §2/2(21)°6(p + ¢ — 1 —5)(2m)5(Aw,qr)- The equation describes a dilute medium
with occupancy f, ~ O(1) for weak coupling at sufficiently late times, where leading-order
perturbation theory is expected to be valid. In the following section we derive the correspond-
ing scattering rate for a non-perturbative setting which allows to also access the regime of
over-occupied Bose fields.

5 Non-perturbative large-N expansion

While the previous section dealt with a perturbative expansion of equal-time vertices, we
consider a non-perturbative expansion for large numbers of field components next [26, 27].
Starting from the corresponding flow equation, the expansion will allow us to sum an infi-
nite number of scattering interactions as shown below. This yields important corrections to
the equal-time effective vertices, which can drastically alter the dynamics of Bose fields in
strongly correlated regimes.
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The large-N counting scheme is detailed in appendix C. We use in the following that for
suitable initial conditions, for instance Gaussian states, equal-time vertices obey [28]

r(")zo( 1_2), n>2. (45)
2

Specifically, for Gaussian initial states, where I'™>2)(¢,) = 0, the evolution of I'¥) is sourced by
the bare vertex (see Eq. (1)) at order O(1/N). Vertices rn>4) subsequently build up at corre-
sponding higher orders through combinations of bare vertices and I'® according to Eq. (45).
Then, loop diagrams as displayed in Fig. 2 also contribute to the evolution of I'®) at order
O(1/N) at most, where every vertex comes with a factor of 1/N and factors of N originate
from summation over field components in closed loops. To determine the contribution of
equal-time vertices to the evolution equation at order 1/N, we focus on the case, with exter-
nal field indices i; = i4 and i, = i5.

In the following, to keep the notation in the main text simple, we use the U(N) symmetry
to diagonalize the two-point function in field space. Subsequently, we may explicitly sum over
the field components, and we will omit the field index i in our notation. The bare vertex is
given by

__ & r@ @ _ @ _v@ L & (1@r@ (@ L @)y _ r@p@) (@) 4 2
Vagrs = =5 (02 + TP =1 -1, )+8N(rp IO +1@)-rA1AI® + 1)), (46)

and using the expansion to order O(1/N), the evolution equation for I'® involves no more
than propagators and four-vertices, i.e.

1
Mpgrs(TH) = + perm. + O (ﬁ) , (47)

where

1
—o(2). -

The shown diagram involves two factors of 1/N for the bare vertex and for I'¥), as well as a
factor of N representing the different field components which “run” in the loop (cf. appendix
C). The corresponding evolution equation thus evolves I'“) again at order 1/N, and it can
formally be integrated to yield

_ 8 4
=21, fk G Gir T

pqars

t
ir (6)= J dt’e! 20 (v (8) = Mpgrs(t) (49)
to

which by employing analogous approximations as in the previous section becomes

-1
F(4) (t) - —16( pqrs(t) + =T )f Gk’Gk”F k’k”s(t) + {p,S «—q, r}:l): (50)

rs
Pq Awpqrs

where we sum over a second term with permuted external legs. For i; = i, and i, = i3 at
order 1/N, only combined permutations of p,s with q,r appear. At this stage, Eq. (50) is
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analogous to Eq. (37), but we keep I'®) consistently at order 1/N here. Eq. (50) can be solved
by iteration in terms of an infinite set of loop diagrams. In the following we first illustrate the
iterative computation to two-loop order, while we subsequently calculate the full evolution of
distribution functions at order 1/N.

The vertex is diagrammatically given by

FIESZS = :}\{ 5 + perm. +Zn loop (51D
n=2

r

—_— V ! et
g pk'k’s
= qurs (Fq_rr) Gk/Gk//—.+{p,5‘_’q,r}:D
Awpgrs — 1€ 2 K Awpprirs — 1€

+ higher-orders,

where frequency factors are assigned analogous to Eq. (40). The corresponding two-loop
expression is given by summing the following diagrams

(52)

where summation over permutations of external lines is implied. The first diagram corresponds
to the equation

_ (5)2 —Fr Gk’ G /G, //qu q’s (53)
/KT 2 Awpqrs —ie Awpk/kns —ie Awpq/q//s — i€ ’

where the two-point function at momentum k” is amputated by the inverse propagator rep-
resented by the dashed line. The first frequency factor 1/(—Aw,q, + i€) originates from the
external lines, the second factor carries the momentum labels of lines connecting to the upper
loop, i.e. p, k’, k”, and s. The last insertion is given by the bare vertex, which comes with a
frequency factor carrying the same momentum labels, 1/(—Aw, ., + i€). Analogously, the
last diagram is obtained as

pq'q

2 —FF G,G 7 G/G //Vk/ gl k!
(g)f rls k Gk q'Yq"Vk'q"q (54)

gk A(J)pqrs —1i€ Awpk’k”s —1i€ Awk/q//q/ku —1€ '

Again, the result is augmented with frequency factors for each iteration step, which carry in-
going and out-going momentum labels according to the momenta of the internal four-vertex
which is iterated. Here, the last insertion of the bare vertex is internal, i.e. the corresponding
frequency factor carries internal momenta only. In general, one needs to keep track of the
“history” of insertions for the correct assignment of labels.
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At this point, we distinguish different cases originating from the various possibilities of
forming diagrams at order 1/N. In the following, we sort contributions according to the num-
ber of external inverse two-point functions attached to the diagram. To this end, we will name
the set of loop diagrams leading to an odd number of external inverse propagators I}, while
the loop diagrams with an even number are represented by I'®. Thus, I represents important
corrections to the bare classical and quantum vertices, while I'’® yields a new type of vertex
which is not present in the perturbative theory. The summation of both contributions will yield
a Boltzmann equation for a strongly-correlated Bose system with momentum- and medium-
dependent scattering rate. We note that the series of diagrams at order 1/N is reminiscent of
the diagrams employed in Ref. [29], where (unequal-time) propagators are similarly sorted by
their quantum (dashed) and classical (solid) external lines.

5.1 Vertex I

At first, we consider the terms with an odd number of external propagators. To distinguish the
diagrams with respect to their configuration of external legs we introduce the vertices

Ve B
»
— T Ej}@,g(+perm. (55)
—Awpygrs T 1€ ; g
and
VQ p~ s
— = :@5 + perm., (56)
—Awpgrs T 1€ g

see also the definition of Eq. (34). The expression I'! is given by the sum of the bare vertices
(55) and (56) with all n-loop diagrams rAn involving an odd number of external F(Z), ie.

p .S P‘ S o
A _ » *@RA Z An
qurs(t) = j}@&( + 9, + perm. + qurs(t)
q rooq° Sr n=1
)2 JEE N s
=+ @l
= }1@&( + 48, + perm., (57)
rooq’ Sr

q

where the symbol “A” comprises all diagrams with according configuration of external legs.
For a particular configuration, Eq. (50) reads diagrammatically

(58)

(59)

including the usual frequency factors. Here, we also defined a one-loop self-energy function
as

) (60)

Hps(t)=§f G (t) — G (t)
k

2 / Awpk’k”s —1i€
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where we sum over both possibilities of amputating an internal loop propagator. Using the
series ZnZO(_Hps)n = 1/(1 + ), the sum over all loop orders reads

v

A pars 1
=— X +{p,s ,r}, 61
pars Awpqrs_ie 1 +Hps {p 4 r} o1
where we introduced the notation
1 1
Vogrs/8 = =5 (G =T)(1= J L), (62)
1 1
ngré/g:—ﬁ(Fp—I's)(l—ZFqFr), (63)

i.€. Vogrs = Vogrs + Vogrs-

The vertex I"* has a similar structure as the bare vertex defined in Eq. (34), including a
correction arising from the non-perturbative resummation of the infinite series of diagrams
presented in this section. Indeed, the bare vertex V emerges from Eq. (61) in the perturbative
expansion at leading order, where IT = O(g) and hence 1/(1 +1I) —» 1 + O(g).

The relevant contribution to the evolution equation (24) is the imaginary part of the four-
vertices. Here, we get

V. V

pqrs 1 pqrs
Im(I ) =—n6(A R — |-P Im — | +{p,s—q,r}, (64
(qus) 6 (Awpqrs) e(1+nps) [Awpqrs_ie] (1+Hps) {p,s —q,r}, (64)

where P denotes the Cauchy principal value. Using the identities Im(1/(1+1I1))=—Im(IT)/|1+1I1|?
and Re(1/(1+11)) = (1+Re(I1))/|1+11|?, and the definition of an effective coupling and vertex

1%
eff g eff pqrs

=—= Vel = ————, 65

8ps |1+ T2 Pars 1+ I0,4)2 (©5)

we find

€ 1 €
Im (r;qrs) = —71:6(Aa)pqrs)quf£s (1+P1,)) + P[m][vp;ﬁslm(nps) +{p,sq, r}] . (66)

In the first line, we used that Re(I1;,) = Re(Il,,) under the conditions of energy and momen-
tum conservation, represented by 5(Aw,q)0(p +q —r —s), see appendix F. We thus find
an on-shell contribution ~ §(Aw,,,) as well as off-shell terms involving the principle value
P (1 [(Awpg,s — ie)). All terms include the effective coupling g, which leads to a suppression
of the effective interaction of modes if the gas is highly occupied towards lower momenta [30].
In this regime, the denominator is dominated by the large distribution function in the one-
loop self-energy IT [24]. Our findings are in qualitative agreement with results obtained from
Ref. [2], where such an infrared suppression was observed experimentally.

5.2 Vertex I'?

Next, we consider the diagrams with an even number of external inverse propagators and
(amputated) propagators. We may similarly sort terms by their number of loops

s

oo P, ’
b
B — B,n — Y
8 ()= 21' rhn (t) = ' +perm., (67)
n—=

.

q r
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however, no bare vertices appear in this case, and we define the diagram “B” according to the
configuration of the two external I'®. In terms of bare vertices, we get the series

e e

.S

+{p,s <> q,r} + higher-order loops. (68)

+{p,s <= q,r} + higher-order loops. (69)

Explicitly, for a general configuration of external legs, we obtain the integral equation

_ 1 ( )2 (F F )(F Fr) ( Gk/Gk// - % ]_ Gk’Gk” — % ]_ )
pqrs B N —Aw pqrs +1€ % Awk’psk” —iel+ Hk’k” Awk”qu’ —iel+ Hk’/k’
r —1" I, — F
g r g B
Py G /G ” k! . G /G //F /" 7 (70)
2 A(“)pqrs +ie J/ Kk pk k 5 2 Awpqrs +1e f, k' Hk qrk

where we used the solution for Y, Eq. (61). In the following, we focus on the imaginary
part of Eq. (70), as Im(T'®) is the relevant quantity to determine the evolution of two-point
functions in the Bose system. In appendix D, we demonstrate that this equation is solved by
the ansatz

eff

(T, —L)(T,—T.) 788 1
B _ ps
Im(qurs) [ Aa)pqrs ‘e ( 4N / 7T5(Awpk/k”s)(Gk/Gk” - Z) + {p,S «—q, r}) . (71)

Again, we find that each term contains the medium-augmented non-perturbative interaction
vertex g through the resummation of diagrams.
5.3 Non-perturbative Boltzmann equation

In this section we assemble the results for the resummed effective vertices to derive the evo-
lution equation for two-point functions. Starting from Eq. (24), one gets

8,G, =J gIm(r'}) )G,G,G, G, = f gIm(Ty  + T2 )G,G,G, G, (72)
q,1,S q,1,s

where momentum conservation, represented by 6(p +q—r —s), is implied. The full vertex so-
lution is the sum over all configurations of external legs and hence we add I and T'2. Plugging
in Egs. (66) and (71) we obtain by direct computation (appendix E)

0,G, = —f E(Awpqgrs) Vent GpGeGr G, (73)
q,1,s
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which is equivalent to the previous perturbative Boltzmann equation except for the replace-
ment V — Vi je.

ger
atfp = 4N (27[) 5(p+q_r_s)(2ﬂ:)5(Awpqrs)((fp+1)(fq+1)frfs_fpfq(fr+1)(fs+1))- (74)
q,r,s

Accordingly, the matrix element of the kinetic equation is given by
|qur5|2 = ggl‘f/(4N)(2n)3 X 6(p+q—r—5)(21)6(Awpy,s), which receives the momentum-
dependent correction 1/|1 4TI, |2 compared to the perturbative case. This momentum depen-
dence dominates the non-perturbative evolution with large occupations where IT > 1, with
drastic consequences for dynamical phenomena such as turbulence and far-from-equilibrium
universality [12,30,31].

6 Measurement protocol

The above coupling and large-N expansion results establish a direct link between equal-time
correlations and standard observables for effective kinetic theories and corresponding hydro-
dynamic descriptions. However, the quantum evolution equations we derive in section 3 from
the equal-time effective action are exact and not limited to kinetic theory approximations. For
instance, the exact time evolution equation (19) relates the time derivative of r@ _ encoding
distribution information — to the effective interaction I'® and convolutions with the distri-
butions. It would be a tremendous progress for quantum many-body physics to be able to
extract the exact quantum evolution equation for strongly correlated systems from quantum
simulation measurements of I'® and I'® for relevant times. This would provide important in-
sights into the long-standing problem of finding suitable approximations of the time evolution
equations also for strongly coupled systems and their range of validity.

In this section we devise an efficient scheme to measure equal-time effective vertices, in
particular I'® and I'®, in cold-atom quantum simulators. This discussion extends the pro-
cedures of Refs. [1, 2] to the underlying Bose fields appearing in the defining Hamiltonian.
Often, such experiments are limited to extracting equal-time density correlations. A common
strategy is to let the system evolve to time t and illuminate with light to obtain a snapshot at
this instant of time. Subsequently, density correlations are extracted by averaging over many
repetitions of this procedure.

To relate the experiment with theory it is especially beneficial to express effective descrip-
tions of the system in such equal-time quantities. We hence provide a protocol to extract the
relevant two- and four-point correlation functions via density measurements. 1PI equal-time
vertices are extracted according to Eq. (12), i.e. by “amputating” the external legs. This is
most efficiently performed in Fourier space, where “amputation" refers to dividing out the
corresponding two-point functions. While we illustrate our scheme for the case of a single-
component gas, it is more general and can similarly be applied to multi-component systems.

The desired quantities are the symmetrized two- and four-point correlation functions of
the fields, i.e. ({lﬁ)'c,lj; y}) and (iﬁliﬁitﬁ ylf)w>sym. While we specifiy the symmetrically ordered
correlation functions here, all other operator orderings are equivalent and they are related
through the equal-time commutation relations. For simplicity, we focus here on the observables

A

O, =(0;) ={ Ajﬂij), (75)
Oy =(Oy) = (PiahIap ). (76)

The central idea is to couple the atoms at the respective positions to ancilla degrees of freedom
to create effective three-state systems, for instance in a A-type configuration, see Fig. 3. Raman
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b, bf
ﬁ%(ﬂ/Q) UZ ()
94 Q
U3 (7/2) e
1 Vs Yy

by, D]

Figure 3: Schematics of the measurement scheme. We construct an effective A-
type level scheme and propose to introduce rotations between the states with Raman
transitions or microwave coupling with strengths Q,Q’.

beams or microwave pulses can transfer population among the three states or manipulate their
relative phases. Achieving this requires addressing the bosonic fields position-selectively, e.g.
by locally adjusting the chemical potential u.

We start by transferring the population from position x to the ancilla. Afterwards we
couple position y to the ancilla, therefore effectively coupling positions x and y. Density
measurements of ancilla and the spatial mode at y will then give rise to (@1). Here we use that
these manipulations can be performed on much shorter time-scales compared to the system
evolution, such that the information about the quantum state is effectively frozen during the
measurement procedure. We outline this procedure in detail next.

We describe the ancilla degree of freedom “b” with bosonic operators b, b". The microwave
interaction of the ancilla with a bosonic mode Q,IAJ s z,lA)JT( is described by the two unitary operators

A o hTal Ll
U () = e #0¥atvid), 77)
U5 (p) = e? Vb, (78)

In a Schwinger boson representation these operators may locally be interpreted as rotations
of the collective spin on a Bloch sphere. Using bosonic commutation relations, we obtain the
transformations of the operators

Py — (), (UF(9))T = cos(p ), + isin(i)b, (79)
Py = UX () (UF ()T = cos(p), +sin(p)b. (80)

We first couple the ancilla to the atoms at position x with lAJf (7). Secondly, we couple position
y to the ancilla with Uf (m/2). A subsequent density measurement yields

(b7b)1 = ()] 0 (m/2) 05 (m)bTb U7 (m)0 " (m/2) lyp (1))
= (b + (W, D =m0y, (81)

where | (t)) is the time-dependent Schrédinger quantum state, and (1[)}(1,[3 ,) is the local mean
number density at time t, which can be accessed in a separate measurement. Measuring the
density at position y after the rotation U; similarly yields

W, = ((OIOY (/20T 3, 07 (/2) [ (2))
= UL + W1, +m(©y), (52)
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such that we obtain Im (O, ) by subtracting the two measurements. In order to measure the
corresponding real part in separate realizations of the experiment, we perform the same series
of unitary operations with U, replacing the second operator. We get

(bTh)y = (P(O) T (m/2)0 (m)bTh UL ()0 (m/2) I (£))
= () + WL, +Re (0, 53)

and for position y one finds

(Wlaby)s = (PO 03 (/20T 3, 03 (r/2) lp (£))
= (b + (b, ) —Re(©y) (84)

The difference yields the real part Re (O;), which subsequently allows to reconstruct the ob-
servable O; by combining real and imaginary part. In the Schwinger boson representation real
and imaginary parts of O; correspond to spin projections in x and y direction, respectively.
Our scheme thus effectively employs appropriate spin rotations to rotate the information to
the z component which can be accessed with density measurements.

Similarly, one can access the observable O, by adding a second ancilla mode “d” with
bosonic operators d,d" and measuring density correlations between both ancillas. Here, we
focus on the situation where all four positions x, v, y, w are different, assuming those cases with
equal positions to become irrelevant in the thermodynamic limit of a large-scale quantum sys-
tem described by quantum field theory. We assign ancilla b to positions x, y and ancilla d to
positions v, w and subsequently perform the same operations on both sets of modes individu-
ally. Appropriate density correlation measurements of both ancillas give the four combinations

({re(01(x,)),Re (O, (v, w))}), (85)
({Re(01(x, ), 1m (61 (v, m)} ), (86)
({1 (01(x,)),Re (01 (v, w)} ), 87)
< {m(01(x,5)),1m (O, (v,w))} > (88)

where {-,-} is the anti-commutator. These contributions can be combined with the equal-time
commutation relations and two-point functions O; to compute the observable O,.

7 Conclusion

In our work we outlined an equal-time approach to the dynamics of quantum fields out of
equilibrium. Starting from the equal-time quantum effective action, we derived effective ki-
netic equations in two regimes: First we considered a dilute, perturbative system governed by
two-to-two scattering. Secondly, we extended our analysis to the case of non-perturbatively
large occupancies of the gas, which results in important vertex corrections to the scattering
rates.

Our results open up new avenues in non-equilibrium quantum field theory. While our cal-
culations are performed for a non-relativistic Bose gas, the approach is general and can also
be applied to systems with fermions, relativistic field theories, and in particular gauge theories
where the time-local formulation can provide important advantages in finding approximations
consistent with local gauge symmetries. Moreover, the textbook (“unequal-time”) approach
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to non-equilibrium quantum field theory employing a closed-time path yields ab initio evolu-
tion equations that are non-local in time, such that late times are difficult to reach and the
derivation of efficient time-local descriptions require additional approximations.

Most importantly, our approach matches experimental capabilities of quantum simulators
such as employing ultra-cold quantum gases. These platforms offer the unique opportunity
to extract the irreducible correlations directly from experiments in the many-body regime de-
scribed by quantum fields. Our results demonstrate that the extraction of lower equal-time
correlations, such as the two- and four-point functions, involve already all the ingredients to
obtain effective kinetic descriptions from first principles. Strikingly, the approach also offers
the perspective of determining the exact evolution equations from quantum simulations. This
can provide essential insights into the long-standing problem of finding non-perturbative ap-
proximations for strongly coupled systems.
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A Diagrammatic examples

In this appendix, we present further details on the calculations given in the main text.

To illustrate the diagrammatic rules Eqgs. (13)-(15), we give the full expression for the
exemplary diagrams of Fig. 1 for the example of N = 1. The first diagram represents the
connected four-point function (Eq. (12)), which is obtained as

o (4) _ 6 o6 o6 o W [J(*)]
X1X2X3X4 5];1 5J;:2 5Jx3 5Jx4 ‘ J J*¥=0

[ 6¢J’1 5wJ’Z 6¢}’3 51’1))’4 r.(4)
Jy 5J;§1 5J;;2 5Jx3 5JX4 Y1Y2Y3Y4

[ 6w, SW, SW, SW,

== 4
Jy 6Jj;l 5Jy1 5J;';26Jy2 5J;35Jx3 5J;45,]x4 Y1Y2Y3Ya
-
=— ¢,(2) ~¢,(2) ¢,(2) e, (2) 1 (4)
- J le)’lGXzJ’zG)’gstJ’4X4FJ’1)’zJ’3)’4’ (89)
y

where we used the definitions for n-point functions and the effective action, the U(1) symmetry,
and y refers to position variables y, .., y4. Going to Fourier space G&{» = [ ) Go@ exp(ip(x—y)),
we get

c,(4) - _ ¢,(2) 2¢,(2) 76,(2) (2¢,(2) ,ip1 X1 +ipa Xy ,—iP3X3—ip4X4(4)
GX1X2X3X4_ JGpl GPz GPS GP4 e “e o ! 41—‘1711721731?4’ (90)
p
such that
c(4) — _6(2) 6,(2) 2¢,(2) (¢, (2) 1 (4)
P1P2P3Ps Gp1 sz Gps Gp4 Fp1p2p3p4' O1)
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Here we used

(4 = | e iP1Y17iP2Y25iP3Y3HiP4Y4(4)
1—‘P1PzP3P4 € r)’l)’z)’3)’4 (92)
y
c,(4) — —ip1X1—ipaXy ,iP3X3+ipaXy 2€,(4)
GP1P2P3P4 f € € Gx1x2x3x4 (93)
X
Using the translation invariance in real-space one finds that FJE‘?( - is independent of the

sum of its arguments x; + x5 + X3 + x4 such that the integratlon over this component results
in a momentum conserving factor 6(p; + po — p3 — p4) in Fourier space.
The second and third diagrams are given accordingly by

c(6) — _~c(2) c(2) c(2) c(2) c(2) c(2) (6)
Gp1~~p6_ Gp1 G G G G G erl -De

¢,(2) 7¢,(2) e, (2)(4) c,(2)(4) c,(2) ¢,(2) C(Z)
JG P1 sz GP3 l—|l71P2P3file 1—‘111’4PSP6GP4 GPS G

+ permutations. 94)

B Loop expressions

The loop diagrams which involve the scattering of two and three particles are summarized
in the function M, and diagrammatically displayed in Fig. 2 for N = 1. In this section, we
derive the analytic expressions which underlie the individual diagrams contributing to the
evolution of I'. The loop expressions originate from field-derivatives acting on the second
line of Eq. (16), where we focus on one representative of each type of diagram (without listing
complex conjugates or trivial permutations). Also, the integration over internal indices will be
implied throughout this section. We consider

1 832,[JW] 6T, _c® Oh
Z[JW](8J,)26J 5epr XXX Gepr”

(95)

XX,X
be split into its connected components and is subsequently differentiated with respect to the

four external fields:

where G©®) ((I,Z’i)zifl x)J,sym is Non-zero in the presence of a source J. The expression may

* First, one gets

0 o 6 ;
@
6”(,[))(1 5’{/))(2 51/) w |:’(/) w IIJX Sw* :| 5X1X45x2x4 X3X4 x1x4 }\&» (96)

representing the bare classical scattering vertex.

* Secondly, one finds terms of the kind

5§ &6 &6 & [ — 5rt] ©7)
Oy, 8y, 6Y3, 61/);4 XU Sap |7
6 & & & se(2) OT

Gc,(Z)_f:| , (98)
5z, 5, S 5¢;4[ R ey
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with GS® = ((4)*)?)S. Applying all derivatives in (97) to the first and the last factor in
the bracket, we get the first diagram of M

5§ &5 5 & [w* co@ ST ]3 _ge@r@ X 99)
54, Wb, S, Sy, | X By | T .
For translation invariant systems this diagram cancels against its permutations. The

analogous expression (98) vanishes as (N}f(’)gz) = 0 when setting J = 0. When acting two
derivatives on the two-point function in (97), we get

6 6 & e Ol | @ ()@@ :
5, Sy, OYY, YT, [”’X e |2 iy G Oy r2, —~ O, (100)

by using that

6 0 @ — @ ¢(2) 26(2)
5¢x1 51'[);2 GXZ PpE=0 - X1Y1}’2X2Gx}’1 G Y2z (101)

where contributions involving the three-vertex vanish due to U(1) invariance. Similarly,
an analogous contribution arises from (97)

6 &6 &6 & ¢ o2 0T @ ¢ (2) ge(2(2) '
5¢x1 5¢x2 5¢;3 51:[);4 |:¢XGXX 5",[«'* o X1Y1Y2X4GX3J’1 YaX3 xsxz - m (102)

¢ Third, we consider

5 & & & ST,
Gc’(3)—t] ) (103)
6%y, 61y, Y% Y%, [ XOX Gak

By U(1) symmetry, the only surviving contributions are obtained by applying an odd
number of derivatives to each factor inside the brackets.

For one derivative acting on the three-point function, we use that

_6 3 4 2 ,(2 ,(2
X4

which yields the diagram in combination with the other derivatives acting on the second
factor to yield I'*)

XX X1X2
In the case where three derivatives act on the three-point function, we get terms of the
kind
o o 6 Ge®
XX,X
0Py, 0%, 0P,

6 2 2 2
PH=0 - 1—‘3533)542135222‘%3 GJCCZ(1 ) gz(x )G§3(x) % (105)

where we again augmented the result with the second factor, here F)Ei) , or alternatively

o o 5 (3
Oy, Oy Sy, T

__6 o [ Ge@Ge@6e@]
PE=0 6¢x2 511);3 X421%9%23  XZ1 29X 23X

5@ ge@ge@_ 0 0 [6e@]

X4Z1%2%3 ~ XZ] - ZyX wa 5w* 23X
2 X3

=1 G&2) e GS2)ge(2)

X4%122%3 ~ XZ1  ZX T X3Y1Y2X2 Z3Y1  YaX

= «.*\‘\_'./}« , (106)
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including again Fg)l

Analogously, we give the expression for the computation of the conjugate of the diagram
shown in Eq. (100). This diagram will be especially important for the computation of
observables in the 1/N expansion of the effective action. It originates from the term

1 &%z,W] st _ o Oh
Z [J0I](8J%)26J, 0y o,

(107)

/\

where G(3) =1/ 2({1,@ ,¥2});. Again applying the external derivatives, we get

6 o ce@ 9T 15 @ (2 Ge @)
TSy, 51, 5¢; 5y, [ xGx VN Leiy1ys2 T Gy, @), — . (108)
1 2 3

C 1/N counting of diagrams

In this section, we briefly review the counting of powers of N in loop diagrams. While the
Hamiltonian is invariant under a global U(N) symmetry, there are N U(1) subgroups which
imply the conservation of particle number for the individual components i. Since we diago-
nalized the two-point function in field space, i.e. Gcl(zg = ;1(33)51112, lines carrying a certain
field index are never interrupted throughout a diagram. For the effective vertices, we get

1—‘15?)(1 o< 5111361214 + perm') (109)
1—‘(5?) 511145121551316 + perm., (]. ].O)

and analogously for all higher-order vertices.
Depending on field indices and orientation of vertices, we can differentiate between dif-
ferent contributions, illustrated here for the example of a one-loop diagram

>©/\: = O(1/N?), (111)
}@{ = O(1/N?) x O(N), (112)

where red lines follow field components through the diagrams. The factor of 1/N? originates
from the two bare vertices, which come with a factor of 1/N each. The additional factor of N
in the second diagram originates from the summation over all possible intermediate particles
within the loop. In general, each such closed loop of field indices yields a factor of N. Using
this and assuming Eq. (45), we get the following power counting for the diagrams shown in
Fig. 2 (where we always pick the representative with the largest power of N). Subleading
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diagrams of Fig. 2 are the following

X =oa/n, (113)
&@%—, = O(1/N3) x N = O(1/N?), (114)
%— — O(1/N%) x N = O(1/N?), (115)
eé:_— =O(1/N3®)x N = O(1/N?). (116)

The dominant contribution at order 1/N is given by

IO = 0(1/N?*) x N = O(1/N). (117)

Eventually, we can confirm self-consistently that all contributions lead to an evolution of the
four-vertex at order O(1/N). As I'™ is initially sourced by the bare vertex at order O(1/N),
it confirms our initial assumption Eq. (45). This line of argument can be applied to the entire
hierarchy of equal-time vertices: I'® is sourced by a combination of the bare vertex and I'*)
(i.e. at order O(1/N?)) and the corresponding diagrams for its evolution remain at this order.

D Proof of Eq. (71)

Here, we explicitly demonstrate that the expression (71) is a solution to the imaginary part of
Eq. 70. First, we make use of the defining property of I'2, to define

re =T, -L)T,—T.)B

o (118)

pqrs»

where we made the external inverse propagators explicit. With this, Eq. (71) becomes

1 1
pars _ACl)pqu +1ie , Awk/psk// —iel+ Hk’k” Aa)k//qu/ —iel+ Hk”k’
&)
g/2 g/2
- J (Gk” — Gk’)Bpk’k”s - - (Gk’ — Gk”)Bk”qu’ , (]. 19)
—Awpgrs TIE i —Awpgrs TIE Jp

(1n am
and our ansatz for the solution (71) is accordingly given by

ggse/(4N)

Im(B =
m( pqu) P|:—Aco +ie

1
f 7T5(Awpk’k”s)(Gk’Gk” - —) + {p,S «—q, T'} . (120)
pqrs k’ 4

In the following, we will strip Eq. (119) into its individual parts and analyse terms separately.
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D.1 First term: (I)

Considering the first term of Eq. (119), we use the symmetry relation (135) to get

1 1
G G — 7 1 GG — 7 1 ) —0
Awk’psk” —iel+ Hk’k” A(,()k//qu/ —iel+ Hk”k’ ’

S(Awpgrs) Re( — (121)
k/

Using this, the imaginary part of the first term in Eq. (119) is given by
2 1
4N Gy Gyrr 1
Im(I) = P(L).) x Im” Sl +{p,q r,s}]. (122)
—Awp,qrs T 1€ o AW psrr —1€ 14+ Mgen

Next, we compute the second factor separately,

GG //—l 1 1 1+Re(H*, ,,)
Im Kk 4. = TES(Awk’psk”) (Gk’Gk” — —) ——
, Awk’psk” —iel+ Hk’k” , 4 |1 + Hk’k”|2

GG //—l Im(l'[*, ,,)
+f Rﬁ( k' Yk 4 ) k'k (123)

Awk/psk// —1i€ |1 + Hk’k”lz ’

D.2 Second and third term: (II) and (III)

Similarly, for the second and third term of Eq. (119), which involves B itself, we have

g/2
k/

—AWpgrs T 1€

g
— —7'[55(Awpqrs) L/(Gk// — Gk/)Re I:Bpk’k”s _B;k’k”s]
o, (124)

where we used the identity BY, ... = Bsip, €€ section F. As a consequence, we focus on the
following combination of 1reaiD and imaginary parts
8/2

—-'-le] kl(Gk// - Gk/)Im(Bpk/k//s) . (125)

g 1
—=Re| — G — G )Im(B rgns) = —P
|:—A(x) T 16] k/( k k ) ( pk’k s) |:—A(qur5

2 pqrs
Next, we compute the second factor of this term by employing the definition of B, i.e. Eq (120)

ff
1\[ &&ps (Gyr — Gyr)
Grv — Gr)Im(B, 1) = G, Gyn—— P wo(A 1l
k’( k k) ( pK'k S) L/ k’( T 4)[ 4 |:_Awpk’k”s+i€ ( wpqq S)
ff
gge/ 7 G " —G /
+ Kk P ( k k ) T[5(A(Ok/q//q/k//):|
4 _Awpk/k”s +1€
ff eff 1
gg;s 1 ggq/q// Gq/Gq// -z
= PH 7T5A 11t G, Gy—— 7) Im(IT., /).
2 pS)L, (820G G 4)L, 4 7| Taepyptie | W)
(126)

Putting all terms together, we observe
2 !
AN GG — 7
Im(1) + Im(I1) + Im(I11) = P (L) f n5(Awk/psk//)L|42 +{p,s < q,r}

—Awpqrs +ie |1 + Hk’k”
g8 /(4N) 1

=Pl —m T[5(Aa)k/psk//)(Gk/Gk//——)+{p,5 «—q,r}
—Awpgrs T 1€ / 4

= Im(qurs) , (127)
which confirms that the ansatz Eq (120) solves the imaginary part of Eq. (119).
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E Non-perturbative Boltzmann equation

To derive the non-perturbative Boltzmann equation, we compute

0,G, = _J glm(Ty,  +T) )G,GG,G;. (128)
q,1,s
To this end, we again split the expression into individual parts

E.1 Im(T%)

We first consider the following term, see also (66),

_ off
f fm (qu q’/s) G Ggr =~ f MGy G (Awpqiqrs)Vpgrgns
7 ¢

ff
— f TCGq’Gq”5(Awpq’q”S)V;q q”sP(HPS)
q/

Gq/Gq// eff , y
I Aw. 0 —i€ Vggrsm () +{p.s = q',q"}|,  (129)
q —

pq/q//S

where we adapted the notation of Egs. (62) and (63). Here, the second line is given by

ff
8ps 1
—J‘ T[Gq’Gq”5(Awpq/q”s)Vpe;fq”sp(nps) = —(Fp - I‘S)EP(HPS) 7T5(Acopq/qus)(Gq/un — Z)
q q

gy LT,
+ WP(HPS)Im(HPS) 1— T ) (130)
The third line can be rewritten to yield
GGy geff L,
Pl —2— vt 1m (T0,,) = — === P(I1,,,)Im(IT (1— P ) 131
f [Awpq/q//s—l€i| pa’q’s ( pS) 2N ( pS) ( pS) 4 ( )
and similarly, we obtain for the fourth line
G, G, Im(l'[ //) ggeff// 1
f P[Aq—q_]vq T ——~ F)J o (GyGyr— Z)rr (132)
q wpq’q”s LE q/q// 'k
G /T G 1"
X 6(A0) k! k! //)73 # .
q q AW, e —LE
pk'k"s

E.2 Im(T®)

The second term can be brought into the form

eff
1
J i (7, ;) Gy Gy = (T, = L) i AL J 8(Awpie) (GG = 5)
q

ff

gge ” 1 G, —G,n

F )J 1 q k/Gk// - _)T[(S(Awq/k//qu//)P [#] . (133)
'k 4 Aa)pq/qns — 1€
In summary, all but one term cancel, and we get

A B _ eff

J Im (qu 1q”s + qu q”s) Gq/Gq// = —J an’Gq’/6(Awpq’q s)qu 1q7s 2 (134)
q q

which straightforwardly leads to Eq. (73).
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F Symmetries under coordinate exchange

In our calculations we frequently use the symmetry of certain objects under the momentum
exchange p,s <> s,p (i.e. p,s < g, r in the presence of the momentum and energy conserving
delta functions). For instance, we get for the one-loop self-energy function

Gk/ - Gk/_(p_s) Gk/+(p_s) - Gk/
Hsp =8 A — =8 .
K DOsk(k—(p—s))p L€ K DOs(k/+(p—s)k'p ~ L€

Gk’ - Gk’ _
ng +(p—s) : =H;s' (135)
K DOk (k+(p—s)s T 1€

Here, a crucial ingredient was the anti-symmetry of the numerator under the coordinate flip.

We employ similar arguments to demonstrate the relation B; ars = Bspq Which we use to

solve the non-perturbative evolution equation for Im(I'®). First, we show the identity at the
one-loop level, cf. Eq. (68). Using

P .8

% 1 LT GuGrr— 3
(Y o= ”,J""‘ﬁ. (136)
N Awpgrs —1€ [, Awpprprs — 1€
.
q r
one gets
2 —1
— N G /G 1"
Bygrs = &’/ - J il 4 + higher-oder loops. (137)
Awpgrs — 1€ )1 Awpprgns — L€

In presence of the energy and momentum conserving §-distributions 6 (Aw,,q,5)6(p+q—r—s),
we find

1 1
[ —gz/N f Gk’Gk”—Z :|* _ —gZ/N f Gk’Gk”—Z
AWpgrs — 1€ )1 AWpprpns — L€ AWpgrs T 1€ )1 Awppprs + 1€
1 1
_gZ/N J G Gy — i —gz/N J Gk’Gk’+(p—s) -7

AWrspq =€ )1 AWprgprr =€ AWpgpq — 1€ [ AWy (p—s))spk — LE

1 1
—g*/N J Ger-pCO =3 _ [ —g*/N J GrGr—3 ]
AWpgpg — 1€ )1 AW (i 4(s—p))p — L€ Awpgrs — 1€ )1 AWpprgrs — 1€ Ip geors

(138)

pqrs

With this, the identity B; qars = Brspg is easily shown at the one-loop level. The generalization
to any loop order, and thus the full expression B, follows in the same manner iteratively from

Eq. (119), where it is respected in each term individually.
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