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Abstract

We compute the imaginary parts of genus-one string scattering amplitudes. Following
Witten’s iϵ prescription for the integration contour on the moduli space of worldsheets,
we give a general algorithm for computing unitarity cuts of the annulus, Möbius strip,
and torus topologies exactly in α′. With the help of tropical analysis, we show how
the intricate pattern of thresholds (normal and anomalous) opening up arises from the
worldsheet computation. The result is a manifestly-convergent representation of the
imaginary parts of amplitudes, which has the analytic form expected from Cutkosky rules
in field theory, but bypasses the need for performing laborious sums over the intermediate
states. We use this representation to study various physical aspects of string amplitudes,
including their behavior in the (s , t ) plane, exponential suppression, decay widths of
massive strings, total cross section, and low-energy expansions. We find that planar
annulus amplitudes exhibit a version of low-spin dominance: at any finite energy, only a
finite number of low partial-wave spins give an appreciable contribution to the imaginary
part.
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1 Introduction

A pivotal moment in the development of string theory was the theoretical discovery of the
Veneziano amplitude [1]. It gives a concise formula for the tree-level scattering of four massless
gluon excitations and can be written as

Atree(s, t) = t8 g2
s
Γ (−α′s)Γ (−α′ t)
Γ (1−α′s−α′ t)

, (1.1)

where α′ is the inverse string tension, gs is the string coupling, t8 carries the information about
the polarizations, and (s, t) are the Mandelstam invariants. We also suppressed color structure
and normalizations for simplicity.
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Figure 1: Integration contours in the τ upper half-plane computing unitarity cuts
of genus-one amplitudes. Left: Cuts of planar annulus and Möbius strip topologies
come from the blue and orange circles starting and ending at τ = 0 and τ = 1

2
respectively. Their radii are irrelevant, but they cannot be shrunken to points because
of essential singularities on the real axis. Similar contours exist for the non-planar
annulus topology. Right: Cuts of the closed string come from the integration of the
analytically-continued modular parameter τ= τx +τy , where τx = Reτ runs along
the purple contour from 0 to 1, and τy = i Imτ along the red contour parallel to the
real axis. The vertical displacement of this contour does not matter.

Almost all properties of tree-level scattering are made manifest with this formula. It is
crossing-symmetric in s↔ t. There is an infinite number of integer-spaced resonances in the
s- and t-channels. The coefficient of the residue at s = n tells us about the presence of spin
⩽ n+1 exchanges. In the low energy limit, α′→ 0, we recover the super Yang–Mills amplitude
t8 g2

s
st and its higher-derivative corrections. In the high-energy fixed-angle scattering, α′→∞,

the amplitude is exponentially suppressed (modulo the poles). In the Regge limit, s→∞ with
t fixed, it grows as s1−t . Even though the worldsheet no-ghost theorem gives an indirect proof
of the unitarity of the amplitude, it is very hard to demonstrate this directly on the level of the
amplitude [2].

An extension of the Veneziano formula to loop level remains elusive. But before discussing
why, let us stop to ask what makes (1.1) so much more appealing than, say, its worldsheet

representation − t8 g2
s

α′ t

∫ 1
0 z−α

′s−1(1−z)−α
′ tdz. This integral does not converge in the physical

kinematics, e.g., the s-channel with −s < t < 0. In order to compute it, one is therefore forced
to define it through an analytic continuation of the result evaluated in unphysical kinematics.
In any case, what makes (1.1) special is precisely that it can be evaluated without additional
hassle: Gamma functions have fast-convergent sum representations (for example the Lanczos
approximation [3]), making numerical evaluation straightforward. We will use this criterion
of practicality as a guiding principle for searching for a higher-genus generalizations. As a
concrete challenge, we will aim to be able to plot the amplitude in physical kinematics.

At the core of the problem is the fact the integration contours for string amplitudes are
in general not known. The textbook prescription defining them as integrals over the moduli
space of punctured Riemann surfaces (for closed strings) or middle-dimensional contours in
those moduli spaces (for open strings) is not entirely well-defined for the same reason as in the
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Figure 2: Imaginary parts of genus-one four-point amplitudes in the s-channel come
entirely from the normal thresholds at s ⩾ (pn1 +

p
n2)2, where a pair of integers

(n1, n2) labels the mass squares of the intermediate states. In this work we show how
the integration contours from Figure 1, for either open or closed strings, reproduce
unitarity cuts without the need for laborious sums over the intermediate states.

Veneziano amplitude: they give rise to divergent amplitudes. For instance, at genus one, these
integrals give rise to manifestly real, but divergent results. These cannot be correct since physical
loop-level amplitudes need imaginary parts for consistency with unitarity! These difficulties
have usually been treated either by regularization of analytic continuation in the literature. The
underlying issue turns out to be the fact that Riemann surfaces are Euclidean, which we use
to compute observables in the Lorentzian target space (the reason why Euclidean metrics are
used in the first place is to manifest the absence of ultraviolet divergences). Pioneering work
on analytic continuation of genus-one closed-string amplitudes was undertaken by D’Hoker
and Phong [4–6].

At this stage one might reasonably ask why this issue has not caused severe problems before.
After all, there is an enormously rich literature on scattering amplitudes in string theory, see,
e.g., [7–13] for reviews. However, most of those results have been obtained either at tree-level
or in the low-energy expansion at loop-level. Both of these are very forgiving when it comes
to analytic continuation. Tree-level amplitudes only feature meromorphic functions of the
kinematics (with isolated poles corresponding to propagators going on-shell), while in the low-
energy limit the answers can be usually matched with the field-theory intuition for placement
of branch cuts. By contrast, in this work we are primarily interested in computing string
amplitudes at finite energy, where extreme care is required when it comes to the integration
contours, since infinitesimal deformations can lead to being on different sides of branch cuts in
the kinematic space.

A prescription for the integration contour on the moduli space was put forward by Witten
[14] (see also [15] for earlier work), who pointed out that it should be sufficient to analytically
continue worldsheets to Lorentzian signature whenever they develop long tubes and hence are
approximated by worldlines. This happens close to the compactification divisors of the moduli
space (separating and non-separating). In this way, moduli space contours are consistent with
the Feynman iϵ in field theory. We elaborate on this prescription and turn it into a practical
algorithm for computing imaginary parts of string amplitudes at genus one. In an upcoming
work [16] we will discuss the application of this formalism beyond the imaginary part. The
relevant contours in the modular-parameter space are illustrated in Figure 1.

Recall that on-shell poles of string amplitudes are associated with the divisors of the moduli
space corresponding to the Riemann surface pinching, or equivalently, developing a long tube
looking like a field-theory propagator. Simultaneous poles can occur when the Riemann surface
is pinched multiple times. Based on this intuition, one would expect unitarity cuts at genus
one to comes from two pinches: one for each string state going on-shell, cf. Figure 2. We
nevertheless show that they originate from codimension-one boundaries (real codimension for
open string and complex for closed string) of the moduli space (the non-separating divisor). It
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seems to be enough to pinch one cycle of the Riemann surface to force two propagators to go
on-shell simultaneously.

We find that string integrands drastically simplify on integration contours in Figure 1, but
which specific terms in the integrand survive depends discontinuously on the value of the
kinematic invariants s and t. This is related to the observation that the Deligne–Mumford
compactification [17] does not seem to provide a proper model for string amplitudes, because
the actual compactification near the moduli space divisors requires more data to describe,
including the external kinematics and the remaining moduli. Anyway, to turn this into a
systematic procedure, we apply a version of tropical analysis, which automatically tells us
which contributions to keep.1 We show that a new set of terms needs to be taken into account
whenever the tropicalization of the string action develops a new saddle point. This happens in
the s-channel only if p

s ⩾
p

n1 +
p

n2 , (1.2)

for a pair of non-negative integers (n1, n2). The natural physical interpretation is that of a new
two-particle threshold being kinematically allowed once the above condition is satisfied, where
p

ni are the masses in the string spectrum, see Figure 2. This intuition perfectly matches with
the physical interpretation of thresholds as worldline saddle points in field theory [24]. The
aforementioned contour therefore implements a cutting procedure for worldsheets (cutting
rules in string field theory were recently studied by Pius and Sen [25–28]). We further extend
this analysis to anomalous thresholds, or Landau singularities [29–31] in Section 5. The
worldsheet cuts are illustrated on many genus-one topologies in type I and type II superstring
theory throughout Section 4.

To be more concrete, the chief result of this work is the following manifestly-convergent
representation of the imaginary part. Let us quote it in the case of the planar annulus topology
in the s-channel:

Im Ap
an(s, t)∝ t8 g4

s
Γ (1−s)2
p

stu

∑

n1⩾n2⩾0

θ
�

s− (
p

n1+
p

n2)
2
�

∫

Pn1,n2
>0

dtL dtR Pn1,n2
(tL, tR)

5
2

×Qn1,n2
(tL, tR)

Γ (−tL)Γ (−tR)
Γ (n1+n2+1−s−tL)Γ (n1+n2+1−s−tR)

, (1.3)

where we set α′ = 1 for readability and omitted an inconsequential numerical normalization
factor. This formula takes exactly the same form as the result of unitarity cut of any one-loop
S-matrix into two tree-level amplitudes exchanging two on-shell particles. Let us explain all
the features in turn.

First, the sum is responsible for every two-particle thresholds opening up once the center-of-
mass energy

p
s reaches the value

p
n1+
p

n2 for any pair of two non-positive integers (n1, n2),
as explained above. Next, we have a two-dimensional integral over the on-shell phase space of
the cut, labelled by the momentum transfers tL and tR of the two tree-level amplitudes we glue
together. It is convolved with the kernel Pn1,n2

which originates as a certain Gram determinant
of the internal kinematics. The second line contains all the stringiness of the amplitude. The
Gamma functions come essentially from two copies of the appropriately-shifted Veneziano
amplitudes. The polynomial Qn1,n2

summarizes all the intricate information about the coupling
to the intermediate states at the levels (n1, n2) and we determine it explicitly for the first few
values of (n1, n2). For example we simply have Q0,0 = 1. All the integrands are bounded and
integrated over a finite region, meaning that they manifestly converge. Finally, we pulled
out the polarization dependence t8 and the overall factor Γ (1−s)2, which is responsible for

1Tropical geometry appeared previously in the analysis of the strict α′→ 0 limit at higher-genus [18], tree-level
amplitudes [19], and loop integrands [20], as well as individual Feynman diagrams [21–23], but here it plays a
rather different role since we work at finite α′.
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Figure 3: Plot of the imaginary part of the planar annulus amplitude Im Ap
an(s, t) in the

s-channel kinematic region (−s < t < 0), multiplied by sin(πs)2 in order to remove
double poles at s ∈ Z>0.

double poles at every positive integer s (analogue of bubble diagrams in field theory), which are
expected to resum to Breit–Wigner distributions together with higher-genus contributions. This
is the only source of divergences of the imaginary part. Contributions from other topologies
(Möbius strip, non-planar annulus, and torus) can be incorporated analogously, see Section 4.

At this stage, (1.3) gives us a manifestly-convergent representation of the imaginary part,
which can be evaluated with arbitrary accuracy. In Figure 3 we plot it in the s-channel kinematic
region, where we used the normalization sin(πs)2 in order to remove the double poles.

Let us emphasize that the above computation could have been performed using traditional
unitarity methods by gluing together two tree-level amplitudes involving higher and higher
mass levels. We illustrate this in Section 3 at the lowest level (n1, n2) = (0,0). However,
application of this method becomes unfeasible at higher levels because we would have to first
enumerate the allowed massive states, construct the vertex operators, and compute their tree-
level amplitudes, followed by summing over all contributions and their polarization running
along the unitarity cuts. This whole procedure is automatically taken into account from the
genus-one worldsheet perspective and amounts to the polynomials Qn1,n2

in (1.3).
A number of physical properties can be studied using the new representation (1.3). We

already mentioned that the only physical region singularities arise from the explicit prefactor
Γ (1−s)2 coming from the double-pinch degenerations of the worldsheet. As can be read off
from Figure 3, and will be illustrated more clearly in Section 6.4, the imaginary part of the
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amplitude (modulo the double poles) decays exponentially for larger and larger energies in
fixed-angle scattering, consistent with the prediction of [32]. A qualitatively different behavior
occurs in the fixed-momentum transfer scattering. The t → 0 limit is non-singular and can be
used to compute the planar annulus contribution to the total cross-section, see Section 6.2. We
illustrate that for energies up to s < 7, it appears to grow linearly with the center-of-mass energy
squared s, again up to the double-poles. In Section 6.3 we use the coefficients of the double
poles at s = n to read-off decay widths of massive string states. At s = 1,2, this computation
is exact, because all the level 1 and 2 states are related by supersymmetry, and in the s > 2
case we only estimate the decay widths in an “averaged” sense over different species at level
n. Finally, the (n1, n2) = (0,0) term in the sum (1.3) is enough to reproduce the (asymptotic)
α′-expansion of the imaginary part of the amplitude. A simple change of variables converts
this problem into a straightforward residue computation which can be used to expand it to an
arbitrary order in α′. We check it against known results of the α′→ 0 expansions [33,34].

Perhaps the most intriguing new feature of the imaginary part of the planar annulus
amplitude is its low-spin dominance, see Section 6.5. After expressing it in terms of the partial-
wave coefficients Im f j(s) at spin j, we find that the whole imaginary part can be recovered
almost entirely from the scalar ( j = 0) partial-wave coefficient up to s ≲ 1. Following this
trend, we find that keeping spins up to j is enough to accurately approximate the imaginary
part up to s ≲ j+1. In other words, low spins dominate the imaginary part. We checked up to
s < 1 that low-spin dominance also occurs for the Möbius strip, non-planar annulus, and torus
topologies. A version of low-spin dominance was previously observed at tree-level and in field
theory amplitudes, albeit with only spin-0 dominance [35,36], see also [37].

This paper is organized as follows. In Section 2 we review different degenerations of
the worldsheet and how to define the integration contour in their neighborhoods, leading
up to the definition of the integration contours computing the imaginary parts of different
genus-one topologies. In Section 3 we apply the standard unitarity cut methods to derive
a representation of the imaginary parts of amplitudes below the first massive threshold and
hint at the generalization to arbitrary masses running through the cuts. In Section 4 we use
our proposal for the integration contour in the moduli space to arrive at the same formula
for unitarity cuts directly from the worldsheet, and describe an algorithm to compute it for
arbitrarily-high energy. In Section 5 we explain how to use tropical analysis to determine
discontinuities of genus-one string amplitudes, thus recovering Landau equations known from
field theory. In Section 6 we analyze physical properties of the imaginary parts, including its
fixed-angle and fixed-momentum transfer behavior, total cross section, decay widths, and the
low-spin dominance. We conclude in Section 7 with a discussion and outlook. In Appendix A
we give a few longer formulae for the decay widths of string states.

2 Overview

Let us start by reviewing some basic facts about string amplitudes. We place particular impor-
tance on the choice of integration contour and how to extract the imaginary part of amplitudes.

2.1 Amplitudes as integrals over moduli spaces

We will consider perturbative string theory in this paper, which expresses string amplitudes as
certain integrals over the moduli space of (super) Riemann surfaces. For simplicity, we will start
by discussing the closed bosonic string in flat 26-dimensional space and indicate the necessary
changes to other types of string theory below. We will use a mostly plus convention for the
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Figure 4: The worldsheet close to a degeneration for a five-point function where a
long tube forms. Along the tube, one can consistently define a Lorentzian metric with
worldsheet time t along the tube.

metric. Colloquially speaking, an n-point tachyon amplitude takes the form

A(p1, p2, . . . , pn)∼
∞
∑

g=0

g2g+n−2
s

∫

Mg,n

Ig(p1, p2, . . . , pn) . (2.1)

We wrote ∼ since this equality will be made more precise below. Here Ig(p1, p2, . . . , pn) is
a certain integrand that can be computed from the worldsheet theory. It takes the general
form [38]

Ig(p1, p2, . . . , pn) =
|det′(∂bc)|2

det′(∆)13(det ImΩ)13
exp

 

2
∑

1⩽i< j⩽n

pi·p j G(zi , z j)

!

. (2.2)

Here G(zi , z j) is the relevant Green’s function for the scalar Laplacian∆ on the Riemann surface
under consideration and |det′(∂bc)|2 is the ghost partition function. Since we removed the
ghost zero modes that parametrize moduli, det′(∂bc) takes values in the canonical bundle of
Mg,n and hence Ig represents a top-form on Mg,n that can be integrated. We refer to [8] for
details. We will also use conventions in which mass squares of physical string states are integer,
i.e., α′ = 4 for the closed string and α′ = 1 for the open string.

The integrals over moduli space are a little bit formal, since they are usually all divergent.
At tree-level this is not a big obstacle since the integrals may for example be defined by analytic
continuation in the external kinematics. This is clearly unsatisfactory and one would like to give
a more direct definition of the amplitudes that does not require one to analytically continue to
unphysical kinematics. An explanation and cure for these divergences was given in [14].2 The
basic problem is that perturbative string theory treats the worldsheet as Euclidean, whereas
any sensible physical string should treat it as Lorentzian. However, most worldsheet topologies
do not admit global Lorentzian metrics and thus there is no such thing as a ‘moduli space of
Lorentzian surfaces’. The right thing is to notice that all divergences in the integral over Mg,n
come from the regions where some part of the worldsheet becomes very long. Since we are
talking about conformal structure on the worldsheet, it is equivalent to say that a cycle of the
surface is pinching. For a very long tube inside the worldsheet, it is well-defined to choose
a Lorentzian metric on this portion on the surface with time going along the tube. This is
illustrated in Figure 4.

The length of the tube (compared to its width) is one of the moduli of the surface. Thus if
we want to continue the worldsheet integrand from Euclidean signature to Lorentzian signature
we should replace the Euclidean length τ by its Lorentzian counterpart t. Concretely this
amounts to integrating over τ up to some cutoff τ∗ and then the contour turns into the complex
plane

τ= τ∗ + i t , (2.3)

with t ⩾ 0. Here τ is defined to be the Schwinger parameter of the corresponding degeneration,
which means that q = e−τ is a well-defined local coordinate for the compactified moduli space

2See also [15] for an alternative approach at loop level and [39] at tree level.
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Mg,n in the vicinity of the degeneration in moduli space. Thus (2.1) should be modified to

A(p1, p2, . . . , pn) =
∞
∑

g=0

g2g+n−2
s

∫

Γ⊂MCg,n

Ig(p1, p2, . . . , pn) , (2.4)

where MCg,n is the complexification of Mg,n and Γ the contour that we just described in words.
Since Γ is always close to the real slice Mg,n ⊂MCg,n, we do not need to specify the precise
complexification. However it can be explicitly constructed as a cover of two copies of moduli
space.

For example, in the tree-level tachyon four-point function, the integrand simply takes the
form

I0 = |z|−2s−4|1− z|−2t−4 , (2.5)

with z ∈ C and s = −(p1+p2)2, t = −(p2+p3)2 are the usual Mandelstam variables. Then there
are three degenerations corresponding to z = 0, z = 1, and z =∞. At z = 0, it is convenient
to parameterize z = r eiφ . While r and φ are initially real, they are allowed to have complex
values in the compactification. The local parameter is simply q = r and thus τ = − log |r|.
This means that the relevant integration contour near z = 0 is given by r = e−τ∗−i t , while φ
continues to be integrated from 0 to 2π. The contour in r encircles the origin clockwise.

2.2 Separating divisors and on-shell poles

Before moving to the unitarity cuts, we will first discuss the simpler singularities coming from
poles in the internal propagators. Consider again Figure 4. From a low-energy perspective,
we cannot tell that the long tube is in fact a string as opposed to a field theory propagator.
Thus we should expect that it behaves analogously to a field theory propagator. Let us suppose
that cutting the tube leads to a disconnected worldsheet as in the above figure. For a genus-g
amplitude Ag , the locus in compactified moduli space Mg,n where the surface is pinched in
known as a separating divisor, since it separates the surface into two components. In particular
when we tune s123 = s45 ∈ Z⩾−1 in the Figure, then there is a corresponding particle in the
string spectrum that goes on-shell and leads to a pole in the string amplitude. Thus these
regions in moduli space are associated to the on-shell poles in the amplitudes.

This perspective is made manifest in string field theory, where one associates to such a
tube a propagator (L0 + L̄0)−1δL0, L̄0

(suppressing b-ghosts). We can see this also directly from
equation (2.2). For a separating degeneration parametrized by a Schwinger parameter q→ 0,
the worldsheet integrand in the case of tachyon scattering behaves as q−2sI−3(1+O(q)), where
sI is the suitable Mandelstam variable.3 More precisely, a separating divisor separates the vertex
operators into two groups with momenta pi , i ∈ I and the complement. Then sI = −

�∑

i∈I pi

�2
.

This behaviour of the integrand follows directly from the corresponding behaviour of the
Green’s function. As in the tree-level example above, we are hence instructed to integrate over
the contour q = e−τ∗−i t . Clearly, this integral is oscillatory,

−i

∫ ∞

0

dt e(2sI+2)(τ∗+i t)
�

1+O(ei t)
�

, (2.6)

but much better convergent than its Euclidean contour part. We could add any small con-
vergence factor and can remove it after the calculation which leads to the expected poles for
sI ∈ Z⩾−1.

3Often the parameter q is defined to be complex in the literature, even before complexification. In this case, the
argument tells us about the twist of the long tube in Figure 4, but we will take to be q real in this paper. We denote
the complex version as q, so that q = |q|.
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One can use this additional structure to give a fully convergent integral representation. We
notice that since the monodromy around q = 0 just produces the factor e−4πisI , it suffices to
integrate once around the origin if we accompany it with a factor

∞
∑

n=0

e−4πinsI =
1

1− e−4πisI
. (2.7)

Thus one can give a fully compact integration contour near the separating degenerations. At
tree level, this approach is well-developed in the literature and is closely related to twisted
homology [40–42], see also [43–47] for progress at higher genus.

There are also special separating divisors corresponding to wave-function renormalization
and the tadpole. In the former, only one puncture is on one side of the surface. Say this is
p1. Then the corresponding Mandelstam variable is automatically on-shell since the external
particles are on-shell. Thus the amplitude seemingly sits on the pole. In general, one has
to introduce an IR cutoff in the worldsheet integral to deal with these singularities, see,
e.g., [48]. However when we look at the superstring, we will study the graviton (or gluon for
the open string) amplitude, which is protected against wave-function renormalization thanks
to supersymmetry. Thus we will not get into further details about this here. A similar comment
applies to the tadpole, where all punctures are on one side of the separating tube. In this case,
s; = 0 and since there are massless particles in the spectrum we are also seemingly sitting on a
pole. Again due to supersymmetry, the tadpole cancels in the superstring.

We should also mention that each separating divisor is itself isomorphic to a product of
two moduli spaces Mh,|I |+1×Mg−h,n−|I |+1, where the additional puncture on both sides of the
pinched cycle is where the components of the surface are attached. Let us denote by q the
gluing parameter of the surface, which includes both the twist and the length of the long tube.
We have q = q eiθ with θ ∈ [0,2π] the twist. Then in terms of q, the integrand behaves like
|q|−2s−4 (1+O(q,q)). It then follows from the contour prescription that

Res
sI=n

Ag(p1, p2, . . . , pn) = −π
∫

Γ1×Γ2⊂Mh,|I |+1×Mg−h,n−|I |+1

Res
q=0

Res
q=0

I(p1, p2, . . . , pn) . (2.8)

Taking the double residue produces an integrand on the divisor that is itself isomorphic to the
product of two moduli spaces. This property makes factorization of string amplitudes manifest.

The main takeaway of this brief review is that one can be relatively careless about the
separating divisors. Since they lead to meromorphic singularities in the string amplitude, it is
alright to define them in essentially any way one likes. For this reason we will often ignore
the Feynman iϵ prescription that leads to the actual physical spiralling integration contour for
the separating divisors and just work with the naive contour where we integrate over the real
moduli space.

2.3 Non-separating divisor and the imaginary part

The behaviour near the non-separating divisor in moduli space is much more subtle and
interesting. A picture of a non-separating divisor at genus 3 is given in Figure 5. For the
closed string, there is actually only a single such non-separating divisor in Mg,n, which itself is
isomorphic to Mg−1,n+2/Z2 with the two additional indistinguishable nodes glued together.

As we already discussed, separating divisors lead to on-shell poles in the amplitudes and
hence all other types of singularities such as both normal and anomalous thresholds should
originate from the non-separating degeneration. In particular, the imaginary part of the
amplitude gets picked up entirely at the non-separating divisor. Let us hence discuss in more
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1
2

3
4
5t

Figure 5: Worldsheet near the non-separating degeneration of a genus-three five-point
function.

detail how to extract the imaginary part of the string amplitude from this knowledge.4 The
integration contour in q takes the form that we discussed earlier and is depicted in Figure 6.
One can then subtract from it the contour where we apply the iϵ-prescription in the opposite
way, i.e., the spiralling of the contour is opposite. Due to the reality of the integrand, this
computes precisely 2 ImAg . Turning around the direction of the contour to match the standard
counterclockwise direction, we learn that

ImAg(p1, p2, . . . , pn) = −
1
2

∫

⟲Ig(p1, p2, . . . , pn) . (2.9)

Here ⟲stands for the contour in MCg,n that encircles q = 0 forever, as depicted in the second
picture of Figure 6. The contour in all other variables is unchanged.

In field theory, unitarity relates the imaginary part of the amplitude to all possible ways of
cutting the Feynman diagram under consideration. For example for a scalar bubble diagram,
the Cutkosky cutting rules simply state that

Im

1

2

4

3

=

1

2

4

3

. (2.10)

The definition of the cut, indicated with a dashed line, is that every cut propagator i/(p2 +m2)
is replaced by δ+(p2 +m2) = δ(p2 +m2)θ(p0), putting the corresponding particle on-shell
and imposing positivity of its energy. Thus, the right-hand side reduces to an integral over the
remaining loop momentum phase space of the product of two four-point functions. In order
for a given cut to contribute to the imaginary part of the amplitude, it has to be possible to
simultaneously put all the cut propagators on-shell, which can only happen if the external
kinematics satisfies certain conditions. In the bubble diagram example, this is the normal
threshold for particle production, s ⩾ (m1 +m2)2, where m1 and m2 are the masses of the
internal propagators.

In field theory amplitudes, we can also have anomalous thresholds or Landau singularities,
which arise when we cut the diagram into more than two pieces. For example, one can cut all
four propagators of the box diagram

1

2

4

3

, (2.11)

4We are ignoring here delta-function contributions to the imaginary part that come from the poles in the
amplitude.
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q

e−t∗

q

Figure 6: The integration contour in the neighborhood of the non-separating divisor.
Only the spiralling part of the contour contributes to the imaginary part of the ampli-
tude. The contour for the imaginary part of the amplitude is given by 1

2 of the right
figure.

which leads to an anomalous threshold at

st + 4m2u− 4M4 = 0 , (2.12)

where M is the mass of the external particles (that we assumed to be all equal) and m is the mass
of the internal particles. One can show that presence of such cuts is a direct consequence of
unitarity, see, e.g., [49]. However, if all the external states are stable against decay, anomalous
thresholds do not contribute for physical kinematics. In particular, in the string theory context,
we are mostly interested in scattering amplitudes of massless external particles, which are
stable. However, the anomalous thresholds can still show up as singularities of the amplitude
once we analytically continue it in the s- and t-variables, for example to the region s, t > 0.

This begs the question how (2.9) encodes correctly the cutting rules in string theory. Field
theory intuition suggests that (2.9) should be equal to a sum over all possible cuttings of
the string diagram. For given Mandelstam variables, there are finitely many such cuttings.
For example, in the one-loop four-point function, the only cuts that would contribute in field
theory in the s-channel are those associated to the production of two intermediate particles,
see the earlier Figure 2. For given s, there are finitely many string states that can be produced,
namely those with (pn1+

p
n2)2 ⩽ s and thus there is still a large number of physical processes

contributing to the imaginary part. Note that in Figure 2, it is not necessary to conjugate the
part of the amplitude to the right of the cut, precisely because no further propagators can
be put on-shell and hence the iϵ-prescription (which would have been the only source of an
imaginary part) is no longer necessary after taking the normal-threshold cut. We will further
elaborate on the generalization of this point beyond four-point amplitudes in Section 7.

The emergence of this structure from (2.9) is clearly quite non-trivial. From the point of
view of the conformal structure on the worldsheet, we only put one propagator on-shell, namely
the one associated to the long tube in Figure 5. However, for the imaginary part our discussion
implies that we are automatically putting one more propagator on-shell. The right-hand side
of (2.9) does not obviously decompose into a finite sum of products of tree-level amplitudes.
The resolution to this is that the integrand Ig(p1, p2, . . . , pn) does not actually extend to a
meromorphic function (or a top form) on the Deligne–Mumford compactification Mg,n, in
which case we would get a single term on the right-hand side.

To explain this a bit more in detail, let us focus on the case of the one-loop amplitude
in closed string theory. Denote by q again the local parameter that degenerates at the non-
separating degeneration, which is equal to q = e−2π Imτ in the standard parametrization of
the torus moduli space. Then we can expand the integrand Ig(p1, p2, . . . , pn) locally in this
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parameter, which leads to an equation of the form

ImAg(p1, p2, . . . , pn) = −
1
2

∑

T

∫

⟲d Imτ

∫

other
moduli

(Imτ)−
D
2 CT qTropT , (2.13)

where T labels different terms in this expansion, and D is the spacetime dimension (26 for
the bosonic string and 10 for the superstring). Now, the crucial difference to the separating
divisor is that the exponent TropT generally depends on the other moduli (while for separating
divisors, the leading exponent was just dependent on the corresponding Mandelstam variable).
We call the exponent TropT , since it is the appropriate tropicalization of the integrand. CT is a
function that depends on all the moduli other than q. There are now finitely many terms in this
expansion for which TropT is negative for some choice of moduli. These are the only terms that
can contribute to the contour integral since otherwise the integrals decays exponentially if we
let the contour wind tighter and tighter around q = 0. In the bulk of this paper, we will work
this out explicitly for various one-loop amplitudes and show that the different terms indeed
correspond to the different unitarity cuts as expected from an effective field theory perspective.
We will be able to show in these examples that each term in this expansion can be rewritten in
terms of the Baikov representation [50] of cut Feynman diagrams.

2.4 Other types of string theories

For other string theories such as the closed or open superstring, the behaviour is very similar
with small changes. In an open string, the separating and non-separating divisors are real
codimension 1. Thus the integration contour is somewhat easier to describe, since there is no
analogue of the twist variable as in eq. (2.8). Correspondingly, one only has to take a single
residue of the integrand in (2.8). For open strings, one has to moreover perform an appropriate
sum over color indices. The different color structures are precisely reproduced by orientable
and unorientable open string surfaces.

Finally for superstrings, one has to deal in general with the fact that the relevant moduli
space is really a moduli space of super Riemann surfaces [48, 51].5 However the fermionic
directions of the contour are unaffected by the local modification near the divisors. For example
in the case of type II strings, the integration contour is given by

Γ ⊂Mg,nNS,nR
×Mg,nNS,nR

. (2.14)

Here Mg,nNS,nR
is the moduli space of super Riemann surfaces with nNS NS-punctures and nR

R-punctures of superdimension 3g−3+nNS+nR | 2g−2+nNS+
1
2 nR. The product of two such

moduli space corresponds to the complexification MCg,n
∼=Mg,n ×Mg,n that we considered in

the bosonic case.6 The integration contour in the fermionic directions is full-dimensional and
hence one only has to describe the integration contour on the reduced space that is the moduli
space of bosonic spin curves, where the contour is completely analogous to the contour that
we described before.7 We refer the reader to [14] for more details.

In the cases studied in this paper, we can get away by talking only about the bosonic moduli,
even in the superstring case. For low genera, there are various accidents that allow one to
reduce the string integrand from super moduli space to bosonic moduli space by integrating
out the fermionic directions and summing over spin structures – in general no natural way

5Alternatively one needs to insert appropriate PCO’s [52,53]. The two approaches were recently shown to be
equivalent [54].

6Strictly speaking, the complexification is identified with a cover of the product of two moduli spaces. But since
the contour runs close to the diagonal of the two moduli spaces, the distinction does not matter.

7This reduction is not canonical and there is no natural description of Γ , only a natural description up to
homology.
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z1 z2 z3 z4 = 1

τ
2

z1 z2 z3 z4 = 1

τ
2

z1 z2

z3 z4 = 1

τ
2

Figure 7: The geometries of the three open string one-loop amplitudes. The first
picture is the planar annulus, the second the Möbius strip and the third the non-planar
annulus. They are all obtained by orientifolding a torus under the action z→ z̄. In
the annulus cases the modular parameter is purely imaginary, whereas τ ∈ 1

2 + iR in
the case of the Möbius strip.

for doing so exists [55]. In particular, we will consider one-loop amplitudes for which simple
integral formulas exist.8 For reference, the one-loop four-point functions of graviton scattering
in type II [61,62] and gluon scattering in type I string theory [62,63] are

AII = 2−5π4 g4
s t8 t̃8

∫

Γ

d2τd2z1 d2z2 d2z3

(Imτ)5
∏

j<i

|ϑ1(zi j ,τ)|−2si j e2πsi j
(Im zi j )

2

Imτ , (2.15a)

Ap
an = 29π2 g4

s N t8 tr(ta1 ta2 ta3 ta4)
(−i)
32

∫

Γ

dτdz1 dz2 dz3

∏

j<i

ϑ1(zi j ,τ)
−si j , (2.15b)

AMöb = 29π2 g4
s t8 tr(ta1 ta2 ta3 ta4) i

∫

Γ

dτdz1 dz2 dz3

∏

j<i

ϑ1(zi j ,τ)
−si j , (2.15c)

An-p
an = 29π2 g4

s t8tr(ta1 ta2)tr(ta3 ta4)
(−i)
32

∫

Γ

dτdz1 dz2 dz3

2
∏

j=1

4
∏

i=3

ϑ4(zi j ,τ)
−si j

×
�

ϑ1(z21,τ)ϑ1(z43,τ)
�−s

. (2.15d)

We define the relevant Jacobi theta functions as

ϑ1(z,τ) = i
∑

n∈Z
(−1)ne2πi(n− 1

2 )z+πi(n− 1
2 )

2τ , (2.16a)

ϑ4(z,τ) =
∑

n∈Z
(−1)ne2πinz+πin2τ . (2.16b)

We are using conventions in which α′ = 1. Recall that si j = −(pi + p j)2 = −2pi · p j in the
massless case, with the short-hands s = s12 and t = s23. It is understood that the string coupling
is the closed/open string coupling in the respective cases. The open string amplitudes have
an imaginary prefactor, since τ runs upwards over the imaginary axis iR for the annulus and
τ ∈ 1

2 + iR for the Möbius strip (with suitable modifications near the non-separating divisor
τ = 0). We also follow the convention to take all zi ’s to be real for the open string and zi in the
fundamental domain of the torus in the case of the closed string. The open string geometry in
the three cases is pictured in Figure 7. In all cases, the worldsheet without punctures has a
translation symmetry that allows us to fix one of the vertex operators arbitrarily and hence the
integral only runs over three punctures. We often follow the conventions z4 = 1 for the open
string and z4 = 0 for the closed string. In the open string, the vertex operators are ordered and

8Similar formulas have also been derived for two-loop four-point [56, 57] and five-point [58] functions and
conjecturally also for three-loop four-point functions [59,60].
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hence the integration region in zi is given by

0⩽ z1 ⩽ z2 ⩽ z3 ⩽ 1 (2.17)

in the planar cases and

0⩽ z3 ⩽ 1 , 0⩽ z2 ⩽ 1 , z2 − 1⩽ z1 ⩽ z2 (2.18)

in the non-planar case. The non-planar annulus diagram is invariant under orientation reversal
and thus should be counted in the full amplitude with an additional factor of 1

2 . This factor
is not yet included in eq. (2.15d). For the full open string amplitudes, we should also sum
over the different color orderings. N denotes the rank of the SO(N) gauge group and tr the
color traces. Both Ap

an and Ap
Möb are logarithmically divergent from the region τ→ i∞. This

singularity does not have an analogue in closed string theory and is cancelled by combining
the two diagrams. Famously, cancellation happens only when N = 32 and thus SO(32) is the
only permissible gauge group in open string theory [64]. The factor t8 (or t8 t̃8, since the
polarization structure double copies in the closed string) contains all the polarizations of the
external states. It is discussed further in Section 3, see in particular eq. (3.9) for the definition.

We will denote by AII, Ap
an etc. the amplitudes with the factor 2−5π4 g4

s t8 t̃8 taken out in the
closed string and the factor 29π2 g4

s t8 and the color trace taken out in the open string. The
normalizations in the amplitudes will actually be fixed from our analysis. The color traces are
taken in the fundamental representation of so(N).

Let us also note for future reference that the contour for extracting the imaginary part of
the amplitude in the case of genus 1 open string amplitudes reads

ImAI = −
1
2

∫

⟲dτ
∫

dz1 dz2 dz3 I(τ, zi) . (2.19)

Here I is the corresponding integrand and ⟲denotes a circular contour that touches the real
axis at τ= 0 for the annulus and τ= 1

2 for the Möbius strip as in Figure 1. This is the contour

described above, where q = e−
2πi
τ . The contour in the zi ’s is the same as for the full amplitude.

Similarly, the formula for the closed string amplitude reads

ImAII = −
1
2

∫

−→
dτy

∫ 1

0

dτx

∫ 3
∏

i=1

dx i dyi I(τx ,τy , x i , yi) . (2.20)

Here we set set τx = Reτ, τy = i Imτ, so that τ = τx + τy and also write zi = x i + τyi
with x i and yi real. Then the original contour in the zi ’s get mapped to 0 ⩽ x i , yi ⩽ 1. This
parametrization makes the analytic continuation of the integrand convenient. Here −→ denotes
a horizontal contour in the upper half plane in τy .

3 Imaginary parts from unitarity cuts

In this section we illustrate how to compute the imaginary parts of the one-loop amplitudes
at low energies using unitarity cuts. For massless cuts, this is a straightforward computation
following standard steps and has been done multiple times in the past (see, e.g., [33,34,65–67]).
However, repeating these steps at finite α′, where cuts of massive states need to be included,
will not going to be feasible, since the string spectrum becomes very complicated, see, e.g., [68].
Therefore, the goal of this section is only to establish the general form of the answer expected
from unitarity cuts, which in Section 4 will be reproduced directly from the worldsheet,
bypassing the need for summing over the intermediate states.
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m2

m1

p1

p2 p3

p4

−p1−p2−ℓ

ℓ

AL
0 AR

0

Figure 8: Conventions for the one-loop unitarity cut in the s-channel.

At this level, only the elastic amplitudes contribute, i.e., those where a 2 → 2 genus-1
amplitude A1 is obtained by gluing two copies of 2→ 2 genus-0 amplitudes A0, cf. Figure
2. Above the massless threshold but below the first massive one in the s-channel, i.e., when
0< s < 1 and t, u< 0, unitarity instructs us to sum over all ways of exchanging two massless
on-shell string states with positive energy. In equations, we have up to a normalization factor:

ImA1(1234)
�

�

s<1 =

∫

dDℓ δ−(ℓ2)δ−((−p1−p2−ℓ)2)
∑

species
colors

polarizations

AL
0(1256)AR

0(3456) , (3.1)

where the on-shell delta functions are δ±(q2+m2) = θ (±q0)δ(q2+m2), see, e.g., [69, Section 6-
3-4]. We assume that all external states are gluons (for the open string) or gravitons (for the
closed string).

Recall that we use the all-incoming conventions, which means we assign the momentum and
polarization (pi ,εi) to incoming and (−pi ,εi) to outgoing states, so that the overall momentum
conservation reads

∑4
i=1 pi = 0. As we already mentioned, we generally use A for the full

amplitude with the momentum conserving δ-function −iδD(
∑4

i=1 pi) stripped off. In this
notation, the momenta of the particles 5 and 6 in AL

0 are expressed in terms of the loop
momentum ℓ as

p5 = ℓ , p6 = −p1 − p2 − ℓ , (3.2)

and their orientations are reversed in AR
0 (denoted with a bar), see Figure 8. In particular, in

those conventions δ− imposes the causal energy flow required by unitarity. Note, also, that the
factor AR

0 is already a result of complex conjugation. It actually does not have any effect other
than conjugating the polarizations, because AR

0 does not have any poles or branch cuts within
the phase-space we are integrating over, and hence one does not even have to be careful about
the iϵ prescription.

The above sums go over all species, colors (for open string), and polarizations of the
intermediate string states. Since all the external species are identical, analogous equations in
the t- and u-channels can be obtained simply by relabelling.

Open string. In type I superstring theory we only have two possible massless states: gluons g
and gluinos λ, each with 8 polarizations. Since gluinos always come in pairs, the sum in (3.1)
boils down to

∑

colors

 

∑

pol

AL
0(1g2g5g6g)AR

0(1g2g5g6g)−
∑

pol

AL
0(1g2g5λ6λ)AR

0(1g2g5λ6λ)

!

, (3.3)

where AL
0(1g2g5g/λ6g/λ) are the tree-level amplitudes for scattering of two gluons to two

gluons/gluinos, and similarly for AR
0. The relative minus sign comes about because of the

fermion loop. Note that we have absorbed some spinor factors into the definition of the tree
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amplitude involving two gluinos so that the cut in (3.1) takes the same form for bosons and
fermions.

The evaluation of (3.1) will therefore involve three steps: determining which color structures
give rise to which one-loop amplitudes, performing the polarization sums in (3.3), and finally
massaging the loop integration to a manifestly on-shell form. We tackle these three problems
in turn.

Closed string. At the massless level, the spectrum type IIA or IIB string theory is a “double
copy” [70] of the open string, for example gravitons, the B-field, and the dilaton can be treated
as the symmetric traceless, antisymmetric, and trace parts of the polarization εµi ε̃

ν
i , where εµi

and ε̃νi are two copies of a gluon polarization vector. Because of this, the steps in deriving the
imaginary part will be essentially identical to those in the open-string case.

3.1 Color sums

We start by determining which tree-level contributions need to be glued together to obtain the
planar, non-planar annulus, and Möbius strip topologies. Recall that treating the adjoint color
index a = AB as a pair of antisymmetrized fundamental indices, we can write the generators of
so(N) as

[tAB]C D = −i(δACδBD −δADδBC) , (3.4)

where A, B, C , D = 1, 2, . . . , N etc. It gives rise to the following identity for sums over colors:
∑

a

ta
C D ta

EF = −2(δC EδDF −δC FδDE) . (3.5)

The rules for gluing Chan–Paton factors are therefore obtained by all ways of joining the color
lines, with a minus sign for every twisting. In equations, we will need the identities

∑

a

tr(Ata)tr(Bta) = 2 (tr(AB)− tr(AB⊺)) , (3.6)

and
∑

a

tr(AtaBta) = 2 (tr(A)tr(B)− tr(AB⊺)) , (3.7)

where tr(∅) = N . Here, A and B are any strings of generators, i.e., elements of the univer-
sal enveloping algebra. Note the because of the asymmetry of the color matrices, we have
(ta1 ta2 · · · tam)⊺ = (−1)m tam · · · ta2 ta1 , which in particular means that every trace of an odd
number of colors vanishes.

To simplify the notation, we write the full tree-level amplitudes are given by9

AL
0(1g2g5g/λ6g/λ) =4g2

s t b/ f
8 (1256)

�

tr(ta1 ta2 ta5 ta6)A0(s, tL) (3.8)

+ tr(ta1 ta2 ta6 ta5)A0(s, uL) + tr(ta1 ta6 ta2 ta5)A0(t, uL)
�

,

where the information about the external states enters only through the color-independent
prefactor t b/ f

8 . In the purely bosonic case, it is the famous t8 tensor:

t b
8(1256) = trv(F1F2F5F6) + trv(F1F5F2F6) + trv(F1F2F6F5) (3.9)

− 1
4

�

trv(F1F2) trv(F5F6) + trv(F1F5) trv(F2F6) + trv(F1F6) trv(F2F5)
�

,

9We follow the normalization conventions of [71], see eq. (12.4.22), although our definition of t b
8 differs by a

factor of 2. Here, gs is the open-string coupling.
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where the linearized field strengths are Fµνi = pµi ε
ν
i − ε

µ
i pνi and every trace is taken over the

Lorentz vector indices. The fermionic counterpart will be spelled out in due time. Finally, each
A0 is the scalar Veneziano amplitude:

A0(s, tL) =
Γ (−s)Γ (−tL)
Γ (1− s− tL)

, (3.10)

which is symmetric in s↔ tL and depends on the Mandelstam invariants (recall that we are
using a mostly plus convention)

s = −(p1 + p2)
2, tL = −(p2 + p5)

2 = −2p2 · ℓ, uL = −(p1 + p5)
2 = −2p1 · ℓ , (3.11)

satisfying s+ tL + uL = 0. The right amplitude AR
0 is defined by relabelling and reversal of the

orientations of the legs 5 and 6, i.e., tR = 2p3 · ℓ and uR = 2p4 · ℓ.
Because the polarization dependence is factored out in (3.8), the polarization sums can be

performed independently of the color sums. Therefore, the factor (3.3) becomes

16g4
s P

∑

a5,a6

�

tr(ta1 ta2 ta5 ta6)A0(s, tL) + . . .
��

tr(ta3 ta4 ta5 ta6)A0(s, tR) + . . .
�

, (3.12)

where the polarization dependence P will be analyzed in the next section. One can then use
the color sum identities (3.6) and (3.7). Various contributions can be read-off as coefficients
of different trace structures. In addition, we can identify the terms related by relabeling of
the intermediate particles 5↔ 6 (exchanging (tL, tR)↔ (uL, uR)) and also the incoming to
outgoing particles 12↔ 43 and simultaneously reversing the loop momentum (exchanging
(tL, uL)↔ (tR, uR)). The coefficients of N tr(ta t b t c td) are the terms relevant for the planar
annulus contributions:

128g4
s NP

�

tr(ta1 ta2 ta3 ta4)A0(s, tL)A0(s, tR) + tr(ta1 ta2 ta4 ta3)A0(s, tL)A0(s, uR)
�

. (3.13)

Notice that tr(ta1 ta3 ta2 ta4) does not have any allowed cuts in the s-channel. For the Möbius
strip contributions, we read-off coefficients of tr(ta t b t c td) (without the N), giving:

128g4
s P
�

2tr(ta1 ta2 ta3 ta4)A0(s, tL) (A0(tR, uR)− A0(s, tR))

+ 2tr(ta1 ta2 ta4 ta3)A0(s, tL) (A0(tR, uR)− A0(s, uR))

− tr(ta1 ta3 ta2 ta4)A0(tL, uL)A0(tR, uR)
�

. (3.14)

Finally, the non-planar contributions are of the form tr(ta t b)tr(t c td) and are given by

128g4
s P
�

tr(ta1 ta2)tr(ta3 ta4)A0(s, tL) (A0(s, tR) + A0(s, uR))

+ 1
2

�

tr(ta1 ta3)tr(ta2 ta4) + tr(ta1 ta4)tr(ta2 ta3)
�

A0(tL, uL)A0(tR, uR)
�

. (3.15)

All contributions are displayed graphically in Figure 9. For concreteness, below we will first
treat the case of the annulus N tr(ta1 ta2 ta3 ta4) contribution (3.13) step-by-step and then give
the final answers in the remaining cases. In this case, we have

Im Ap
an

�

�

s<1 =
s2

8π2

∫

dDℓδ−(ℓ2)δ−((−p1−p2−ℓ)2)A0(s, tL)A0(s, tR) . (3.16)

We defined a straight A that has the polarizations, color traces and coupling constants as well
as various constant factors stripped off. This convention will turn out to match the one on the
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Planar annulus

1

2 3

4 1

2 3

4

Möbius strip

1

2 3

4 1

2 3

4 1

2 3

4

1

2 3

4 1

2 3

4

Non-planar annulus

1

2 3

4 1

2 3

4

1

2 3

4 1

2 3

4

Figure 9: Different possibilities for the color contractions of two tree-level four-
point functions in the s-channel, corresponding to the terms in the planar annulus
(3.13), Möbius strip (3.14), and non-planar annulus (3.15) contributions, before
using symmetry relations.

worldsheet integrals with all prefactors stripped off. We will compute below that P = s2

2 t8 and
hence

ImAp
an = 29π2 g4

s N t8tr(ta1 ta2 ta3 ta4) Im Ap
an + 2 other color orderings . (3.17)

It will be actually slightly more illuminating to restate the results as always computing the
same trace structure, but in different kinematic channels, which can be always obtained by
rebelling of the external momenta. For example, the s-channel cut of the Möbius strip with
ordering (1324) is the same as the u-channel cut of (1234) after relabelling.
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3.2 Polarization sums

In this section we compute the polarization sums. We first treat the open string case and later
compute the closed case by double copy.

Open string. Since all the polarization dependence is enclosed in the t b/ f
8 tensors, here we

will be interested in evaluating the sum

P =
∑

pol

�

t b
8(1256) t b

8(3456)− t f
8 (1256) t f

8 (3456)
�

, (3.18)

where the relative minus sign arises because of the fermion loop. Recall that the two particles
we cut have the momenta p5 = ℓ and p6 = −(p1 + p2 + ℓ) respectively, and the bar represents
reversing the polarizations and momenta of the particles to match our all-incoming conventions.

Anticipating a large amount of cancellations between bosons and fermions due to super-
symmetry, the first goal is to bring the expressions for t b/ f

8 to a similar form manifesting these
cancellations. Following the literature on scattering equations [72,73], we can rewrite these
functions in the following way:

t b/ f
8 (1256) =

∑

A∈{∅,1,2,12,21}

c5A6 W b/ f
5A6 , (3.19)

where the dependence on the polarizations of the special particles 5 and 6 enters only through
the combinations:

W b
5A6 = ε5 · FA1

· FA2
· · · FA|A| · ε6 , (3.20a)

W f
5A6 =

1p
2
χ5/FA1

/FA2
· · · /FA|A|χ6 , (3.20b)

with the same coefficients cA for the bosonic and fermionic versions. We use χi to denote
appropriately-normalized Weyl spinors of the particles and 5 and 6, as well as the conventions
in which the bosonic/fermionic linearized field strengths are given by

Fµνi = pµi ε
ν
i − ε

µ
i pνi , /F i =

1
8 Fµνi [γµ,γν] =

1
2 /pi/εi . (3.21)

In (3.20a) and (3.20b), the contractions are performed by Lorentz and spinor indices respec-
tively. It will turn out that all the factors except c5126 and c5216 will drop out. However, let us
list them for completeness

c56 = 2ε1,µε2,ν[−pµ3 pν1 p2·p5 − pµ2 pν3 p1·p5 + pµ3 pν3 p1·p2 +η
µνp1·p5 p2·p5] , (3.22a)

c516 = 2ε2,µ[−pµ5 p1·p2 + pµ1 p2·p5] , c526 = 2ε1,µ[−pµ3 p1·p2 + pµ2 p1·p5] , (3.22b)

c5126 = −2p2·p5 , c5216 = −2p1·p5 . (3.22c)

Notice that gauge each term is gauge-invariant on its own.
At this stage P is a bilinear in the W ’s. Since the individual t8’s are already gauge-invariant,

there is no need to project out the unphysical components, and the polarization sums simply
amount to making the replacements:

∑

pol

ε
µ
j ε
ν
j → η

µν ,
∑

pol

χαj χ
β
j → δ

αβ , (3.23)

for j = 5, 6. Note that the above normalization of spinors χi is such that fermionic unitarity
cuts can be treated at the same footing as the bosonic ones, δ+(p2

i ). In the bosonic case, this
leads to

∑

pol

W b
5A6W

b
5B6 = (−1)|B| trv(FA1

FA2
· · · FA|A|FB|B| · · · FB2

FB1
) , (3.24)
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where the bar on the left-hand side denotes the fact that ε’s of the loop momenta are complex-
conjugated. Note that the order of F ’s in the set B is transposed and the trace is taken over the
Lorentz indices, which we indicate with trv . Similarly, the sums over fermions give

∑

pol

W f
A56W

f
B56 =

1
2(−1)|B| trs(/FA1

/FA2
· · · /FA|A| /F B|B| · · · /F B2

/F B1
) . (3.25)

Here, the trace is taken over the spinor indices, indicated with trs.
In the special case when both A and B are empty, we have

trv(∅) = D− 2 , trs(∅) = 2(D−2)/2 . (3.26)

Here we take the spacetime dimension D as a variable (with even D to have Weyl spinors) to
illustrate how the cancellations happen in D= 10. In addition, by antisymmetry we have

trs(/F i) = trv(Fi) = 0 . (3.27)

Using gamma-matrix algebra, one can further expand every spinor trace trs(· · · ) in terms of
combinations of trv(· · · ) (see [73, App. C] for a general formula), with the next two cases giving

trs(/F i /F j) = 2(D−8)/2 trv(Fi F j) , (3.28)

trs(/F i /F j /F k) = 2(D−8)/2 trv(Fi F j Fk) . (3.29)

Finally, in the most complicated case we have

trs(/F i /F j /F k/F l) = 2(D−10)/2
�

trv(Fi F j FkFl)− trv(Fi FkF j Fl)− trv(Fi F j Fl Fk)
�

+ 2(D−14)/2
�

trv(Fi F j) trv(FkFl) + trv(Fi Fk) trv(F j Fl) + trv(Fi Fl) trv(F j Fk)
�

. (3.30)

Note that the first trace has a sign opposite to the following two.
We see that in D = 10, all the terms where the total length of A and B is less than four

cancel out between bosons and fermions, and we are only left with those where both A and B
has two elements each. More specifically,

P =
∑

A∈{12,21}
B∈{34,43}

c5A6 c5B6

�

trv(FA1
FA2

FB2
FB1
)− 1

2 trs(/FA1
/FA2
/F B2
/F B1
)

︸ ︷︷ ︸

1
2 t8(1234)

�

. (3.31)

Finally, one notices that the above traces organize themselves into the t8 tensor of the external
kinematics t8(1234) for any A and B. We are thus left with

P = 1
2(c5126 + c5216
︸ ︷︷ ︸

−s

)(c5346 + c5436
︸ ︷︷ ︸

−s

)t8(1234) =
s2

2
t8(1234) . (3.32)

Closed string. The closed-string case can be treated entirely analogously. The sums over
species and polarizations in (3.1) amount to

∑

pol

�

t b
8(1256) t b

8(3456)− t f
8 (1256) t f

8 (3456)
�

(3.33)

×
�

t̃ b
8(1256) t̃ b

8(3456)− t̃ f
8 (1256) t̃ f

8 (3456)
�

, (3.34)

where t̃ b/ f
8 are obtained from t b/ f

8 by replacing all the polarizations εi → ε̃i . We also define10

A0(s, t, u) = π2 g2
s t b

8 t̃ b
8A0(s, t, u) , (3.35)

10This corresponds again to the convention used in [71] with α′ = 4 so that the closed string spectrum is integer
spaced. Here gs denotes the closed string coupling constant.
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with

A0(s, t, u) =
Γ (−s)Γ (−t)Γ (−u)
Γ (1+s)Γ (1+t)Γ (1+u)

=
1
π

sin(πs) sin(πt)
sin(π(s+t))

A0(s, t)2 . (3.36)

The sums over the tilded and untilded polarizations can be performed independently. Recog-
nizing that (3.33) involves two copies of (3.18), it equals

π4 g4
s PP̃A0(s, tL, uL)A0(s, tR, uR) . (3.37)

Finally using (3.31), the formula for the imaginary part of the closed-string amplitude is given
by

ImAII

�

�

s<1 =
π4s4 g4

s
4 t8 t̃8

∫

dDℓδ−(ℓ2)δ−((−p1−p2−ℓ)2)A0(s, tL, uL)A0(s, tR, uR) . (3.38)

We define
AII = 2−5π4 t8 t̃8AII , (3.39)

for convenience. This is again consistent with the normalization of the worldsheet integrals.

3.3 Loop integration

The loop integration in (3.1) already uses only the on-shell data, but not manifestly so. The
goal of this subsection is to express it purely on-shell. We have that s = sL = sR by momentum
conservation. The integral over the on-shell phase space thus has to amount to convolving the
on-shell amplitudes AL

0(tL) and AR
0(tR) over the physically-allowed range of tL and tR’s:

ImA1(s, t) =

∫

dtL dtR K(t, tL, tR)AL
0(s, tL)AR

0(s, tR) , (3.40)

for some kernel K(t, tL, tR). From this perspective, the goal is to find an explicit formula for K.
Note that at this stage we are making a tacit assumption that within AL

0 and AR
0 the dependence

on the loop momentum enters only through the invariants tL and tR, which we verified above
to be the case. To illustrate the logic, we first treat the simplest case of the forward limit, t = 0,
before moving on to the most general case.

3.3.1 Forward limit

The forward limit can be realized by going to the Lorentz frame in which p3 = −p2 and
p4 = −p2, giving the momentum transfer squared t = −(p2 + p3)2 = 0. The problem then
depends only on four independent kinematic invariants: ℓ2, ℓ · p1, ℓ · p2, and p1 · p2. They are
related to the on-shell data of the constituent amplitudes by

s = −2p1 · p2 , tL = −(p2 + ℓ)
2 = −ℓ2 − 2ℓ · p2 , tR = −(p3 − ℓ)2 = tL . (3.41)

We thus expect to arrive at an expression involving a single integration over tL = tR in the
physical region −s < tL < 0.

As the first step, let us decompose the D-dimensional loop momentum ℓ = ℓ∥ + ℓ⊥ into two
components ℓ∥ in the span of the external momenta p1, p2 and the remaining D−2 orthogonal
components ℓ⊥. In other words, pi · ℓ = pi · ℓ∥, which allows us to trade the integration over ℓ∥
into that over ℓ · p1 and ℓ · p2 at a cost of the Jacobian 1/

Æ

|detGp1p2
|= 2/s which is given by

the determinant of the Gram matrix

Gq1q2...qm
= [−qi · q j]i, j=1,2,...,m . (3.42)
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Moreover, the vector ℓ⊥ only ever appears in the combination ℓ2⊥, which means we can integrate
out all its angular components, giving π(D−2)/2/Γ (D−2

2 ), and be left with only the integral over
ℓ2⊥. These manipulations result in the loop-momentum measure being expressed as

∫

dDℓ=

∫

d2ℓ∥ d
D−2ℓ⊥ =

2π(D−2)/2

sΓ (D−2
2 )

∫

ℓ2⊥>0

d(ℓ · p1)d(ℓ · p2)d(ℓ
2
⊥) (ℓ

2
⊥)
(D−4)/2 , (3.43)

where the only constraint on the integration domain comes from the fact that the radius ℓ2⊥
needs to be positive (because ℓ⊥ is orthogonal to pi and we are using a mostly plus convention
for the metric). Let us finally notice that

ℓ2⊥ = ℓ
2 − ℓ2∥ = ℓ

2 −
2
∑

i, j=1

ℓ · pi (G−1
p1p2
)i j p j · ℓ= ℓ2 +

4
s ℓ · p1 ℓ · p2 , (3.44)

and hence we can trade the final integration for that over ℓ2 directly with unit Jacobian. The
measure thus becomes

∫

dDℓ=
2π(D−2)/2

sΓ (D−2
2 )

∫

ℓ2⊥>0

d(ℓ · p1)d(ℓ · p2)d(ℓ
2)
�

ℓ2 + 4
s ℓ · p1ℓ · p2

�(D−4)/2
. (3.45)

At this stage, we can use the cut conditions to localize two out of the three integrations.
Before doing so, it is important to carefully treat the negative-energy condition entering

through the δ− constraints in (3.1). Notice that the kinematics of the left amplitude AL
0 is

essentially that of a single massive particle with momentum p1+p2 scattering into two massless
particles. If we flipped the signs of the energies of the massless particles, it would correspond
to either to a production process of a massless particle (flipping a single sign) or a production
of the vacuum (flipping two signs), neither of which is allowed kinematically. Analogous
comments hold for AR

0. We can thus safely replace δ−→ δ in (3.1), since the energy conditions
are automatically imposed by the external kinematics constraints. Note that this would not be
true for inelastic unitarity terms, e.g., gluing 2→ 3 and 3→ 2 genus-0 contributions to obtain
the imaginary part of 2→ 2 genus 2 scattering amplitude.

With these points out of the way, we are left with the ordinary residue integrals imposing
the on-shell conditions:

ℓ2 = 0 , (−p1−p2−ℓ)2 = −s+ 2ℓ · (p1 + p2) = 0 . (3.46)

We use them to localize the ℓ2 and ℓ · p1 integrals, with the overall Jacobian 1
2 . On their support,

we can also write
ℓ · p1 =

1
2(s+ tL) , ℓ · p2 = −

1
2 tL , (3.47)

using (3.41). After the changing the remaining integration into that over tL, we have

∫

dDℓ δ−(ℓ2)δ−((−p1−p2−ℓ)2) (· · · ) =
π

D−2
2

2sΓ (D−2
2 )

∫ 0

−s
dtL

�

−
tL(s+ tL)

s

�(D−4)/2

(· · · ) , (3.48)

and the integration bounds are equivalent to ℓ2⊥ > 0. Finally, to make the s-dependence more
obvious, let us change the variables to

x = 1+
2tL

s
∈ [−1, 1] , (3.49)
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which is the cosine of the scattering angle, yielding

∫

dDℓδ−(ℓ2)δ−((−p1−p2−ℓ)2)AL
0

�

s, tL =
s
2(x − 1)

�

AR
0

�

s, tR =
s
2(x − 1)

�

= cDs
D−4

2

∫ 1

−1

dx (1− x2)
D−4

2 A0(s,
s
2(x−1))2 , (3.50)

where cD = 22−Dπ
D−2

2 /Γ (D−2
2 ). In particular, for the planar annulus amplitude in D = 10 we

obtain the following result

Im Ap
an

�

�

t=0
s<1 =

π2s5

3 · 212

∫ 1

−1

dx (1− x2)3
�

Γ (−s)Γ (− s
2(x−1))

Γ (1− s
2(x+1))

�2

, (3.51)

where we took into account the factor s2

8π2 that appears in eq. (3.16). Let us expand this result
in α′. The α′ dependence can easily be reinstated by dimensional analysis. The expansion
around s = 0 starts at order O(s):

Im Ap
an

�

�

t=0
s<1=

π2s
1920

�

1+ 2
3ζ2s2 + 8

21ζ3s3 + 23
21ζ4s4 + (2

7ζ2ζ3 +
19
63ζ5)s

5 + (11
9 ζ6 +

5
63ζ

2
3)s

6 + . . .
�

,

(3.52)
where ζk is the k-th multiple zeta value (MZV), e.g., ζ2 =

π2

6 . We note that the result is
uniformly-transcendental, i.e., coefficients of sk are accompanied with MZVs of total weight k.
Likewise, around s = 1 we have the expansion

Im Ap
an

�

�

t=0
s<1 =

π2

13440(s−1)2

�

1+ (2γE + 560ζ′−3 + 1680ζ′−5 −
11
3 )(s−1) (3.53)

+ (1.70129 . . .)(s−1)2 + (3.59874 . . .)(s−1)3 + . . .
�

,

where γE is the Euler’s constant. Recall that both results are only valid in 0< s < 1.

3.3.2 General kinematics

The elastic unitarity equation with arbitrary kinematics can be computed in an entirely analogous
way. We start with the general expression

Im Ap
an

�

�

s<1 =
s2

8π2

∫

dDℓδ−(ℓ2)δ−((−p1−p2−ℓ)2)A0(s, tL)A0(s, tR) , (3.54)

where, in our conventions, the kinematic invariants are given by

s = −(p1 + p2)
2 , tL = −(p2 + ℓ)

2, tR = −(p3 − ℓ)2 . (3.55)

As before, we first split the loop integration into the 3-dimensional components ℓ∥ in the
span of the external momenta p1, p2, p3 (here we assume D> 3), and the (D−3)-dimensional
orthogonal complement. The former gives

∫

d3ℓ∥ = |detGp1p2p3
|−1/2

∫ 3
∏

i=1

d(ℓ · pi) , (3.56)

with the Jacobian involving
|detGp1p2p3

|= 1
4 stu . (3.57)
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In the latter case, most of the ℓ⊥ directions can be integrated out, except for the modulus ℓ2⊥,
yielding

∫

dD−3ℓ⊥ =
π(D−3)/2

Γ (D−3
2 )

∫

ℓ2⊥>0

d(ℓ2⊥) (ℓ
2
⊥)

D−5
2 , (3.58)

where

ℓ2⊥ = −
detGp1p2p3ℓ

detGp1p2p3

. (3.59)

Recall that the only restriction on the integration contour comes from requiring that ℓ2⊥ > 0
(we note that detGp1p2p3

< 0 is the definition of the physical region).
As explained above, kinematic considerations show that the energy of the cut propagators

are uniquely fixed, which means we can replace δ−→ δ in the loop integrand without modifying
the answer. On this unitarity cut, the relevant kinematic invariants become:

ℓ2 = 0 , ℓ · p1 =
s+ tL

2
, ℓ · p2 = −

tL

2
, ℓ · p3 =

tR

2
. (3.60)

We use the two delta functions to localize ℓ2 and ℓ · p1 with Jacobian 1
2 , followed by trading

ℓ · p2 and ℓ · p3 for tL and tR with Jacobian 1
4 . This results in

Im Ap
an

�

�

s<1 =
π(D−7)/2s

3
2

32
p

tuΓ (D−3
2 )

∫

D
dtL dtR (ℓ

2
⊥)

D−5
2 A0(s, tL)A0(s, tR) , (3.61)

where

ℓ2⊥ =
−s(t2 + t2

L + t2
R− 2t tL − 2t tR− 2tL tR) + 4t tL tR

4tu
, (3.62)

and the integration domain D is given by the condition ℓ2⊥ > 0.
To make the expressions more brief, it is convenient to remove the kinematic dependence

from Γ by using a linear change of variables to (x , y) given by:

tL/R =
p

s
2

�

x
p
−u± y

p
−t −
p

s
�

, (3.63)

with the Jacobian 1
2 s
p

tu. In terms of these variables we have ℓ2⊥ =
s
4

�

1− x2 − y2
�

and the
unitarity equation becomes in D= 10,

ImAp
an

�

�

s<1 =
πs5

15 · 28

∫

D
dx dy

�

1−x2−y2
�

5
2A0(s, tL)A0(s, tR) , (3.64)

where the integration cycle D is the unit disk 0⩽ x2 + y2 ⩽ 1.
Plugging in the Veneziano amplitudes (3.10) we thus find

ImAp
an

�

�

s<1 =
πs5

15 · 28

∫

D
dx dy

�

1−x2−y2
�

5
2 Γ (−s)Γ (−tL)
Γ (1−s−tL)

Γ (−s)Γ (−tR)
Γ (1−s−tR)

. (3.65)

In the forward limit, t → 0, we find tL = tR, which allows us to integrate out y and immediately
arrive on the previous result (3.51).

Crucially, in the form (3.65), the imaginary part of the amplitude is expressed in terms
of convergent integrals and thus can be easily evaluated for any admissible value of s and t.
Notice that all the singular behavior is already pulled out in the explicitly factor of Γ (−s)2

giving rise to a double pole at s = 1.
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3.3.3 Massive exchanges

Let us also briefly comment on how the analysis generalizes for unitarity cuts of massive string
states that appear for s > 1. The polarization sum becomes much harder to perform because
states transform in more complicated representations of the Lorentz group. Hence we have
not worked out higher unitarity cuts directly, but we will derive the corresponding formulas
from the worldsheet in Section 4.2.2. However, the color sum is unchanged and the loop
integration changes only slightly and thus we can discuss them here. We consider the situation
as in Figure 8. We write n1 = m2

1 and n2 = m2
2 where ni ∈ Z⩾0 in string theory.

We have now

tL = −(p2 + ℓ)
2 = −2p2 · ℓ+ n2 and tR = −(p3 − ℓ)2 = 2p3 · ℓ+ n2 , (3.66)

for the momentum transfers. We can follow exactly the same steps as in the massless case. We
have now

Pn1,n2
(tL, tR) = ℓ

2
⊥ = −

detGp1p2p3ℓ

detGp1p2p3

= −
1

4stu

�

s2(tL − tR)
2 + 2st(n1 + n2 − s)(tL + tR)

− 4st(tL tR+ n1n2) + t2(n1 − n2)
2 − st2(2n1 + 2n2 − s)

�

. (3.67)

The region ℓ⊥ is an ellipse centered around tL = tR =
1
2(n1 + n2 − s). In order to manifest this,

we can perform the change of variables:

tL/R =

Æ

∆n1,n2

2
p

s

�p
−ux ±

p
−t y

�

+
1
2
(n1 + n2 − s) , (3.68)

with
∆n1,n2

=
�

s− (
p

n1 +
p

n2)
2
� �

s− (
p

n1 −
p

n2)
2
�

. (3.69)

With this substitution, we simply have Pn1,n2
=
∆n1,n2

4s (1− x2 − y2). The general expression for
the loop integration part of the unitarity cut then reads

ImA= π
D−3

2

4
p

stuΓ (D−3
2 )

∑

species
colors

polarizations

∫

Pn1,n2
>0

dtL dtR Pn1,n2
(tL, tR)

D−5
2 AL

0(s, tL)A
R
0(s, tR) (3.70)

=
(π∆n1,n2

)
D−3

2

(4s)
D−2

2 Γ (D−3
2 )

∑

species
colors

polarizations

∫

D
dx dy (1− x2 − y2)

D−5
2 AL

0(s, tL)AR
0(s, tR) , (3.71)

where in the second line tL/R are defined according to (3.68). In particular for the annulus
topology we can package the polarization sum in some polynomial of the Mandelstam variables.
We write

Im Ap
an =

πs2Γ (−s)2

60
p

stu

∑

n1⩾n2⩾0

θ[s− (
p

n1 +
p

n2)
2]

∫

Pn1,n2
>0

dtL dtR Pn1,n2
(tL, tR)

5
2

×Qn1,n2
(tL, tR)

Γ (−tL)Γ (−tR)
Γ (n1 + n2 + 1− s− tL)Γ (n1 + n2 + 1− s− tR)

, (3.72)

where Qn1,n2
(tL, tR) is a polynomial in all the Mandelstam variables. Our computation amounts

to the statement Q0,0(tL, tR) = 1. Here, Qn1,n2
(tL, tR) is in general a polynomial of degree

3(n1+n2) in the Mandelstam variables. We will compute these polynomials from the worldsheet
in Section 4.2.2. A term (n1, n2) starts to contribute at s = (pn1 +

p
n2)2, since this is the

corresponding particle production threshold.
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Figure 10: Numerical plot of the planar contributions (3.73) and (3.74) to the type I
amplitude as a function of the Mandelstam invariants s and t in the three physical
regions. We have set g4

s t8 = 1 and normalized by 1
29π2 (s−1)2(t−1)2 in order to

remove the double poles at s = 1 and t = 1.

3.4 All topologies and kinematic channels

The above discussion can be easily repeated for all trace structure and scattering channels, by
replacing NA0(s, tL)A0(s, tR) in (3.64) with the relevant factors from (3.13), (3.14), and (3.15)
in the open-string case and similarly for (3.38) for closed string.

Open string. The total planar contribution in the s-channel (s > 0 and t, u< 0) equals

ImAI

�

�

tr(ta1 ta2 ta3 ta4 )
s<1 =

2π3 g4
s

15
t8 Γ (−s)2 s5

∫

D
dx dy

�

1−x2−y2
�

5
2

×
Γ (−tL)
Γ (1−s−tL)

Γ (−tR)
Γ (1−s−tR)

�

N−2−
2 sin(πs)

sin(π(s+tR))

�

, (3.73)

where tL/R =
p

s
2

�

x
p
−u± y

p
−t −
p

s
�

. The imaginary part in the t-channel can be obtained
by relabelling s↔ t. The case of the u-channel (u> 0 and s, t < 0) is qualitatively different
and gives

ImAI

�

�

tr(ta1 ta2 ta3 ta4 )
u<1 = −

2π3 g4
s t8 u3

15Γ (u)2

∫

D
dx ′ dy ′

�

1−x ′2−y ′2
�

5
2

× Γ (u+tL)Γ (−tL)Γ (u+tR)Γ (−tR) , (3.74)

where now tL/R =
p

u
2

�

x ′
p
−s± y ′

p
−t −
p

u
�

. As expected physically, the u-channel contribu-
tion does not have poles. In all cases, the coefficients of N are those coming from the annulus
topology, while those independent of N come from Möbius strips in string theory. A numerical
plot of this amplitude is shown in Figure 10.
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Figure 11: Numerical plot of the non-planar contributions (3.75) and (3.76) to the
type I amplitude as in the (s, t)-plane obtained by setting g4

s t8 = 1 and normalized by
1

29π2 (s−1)2 in order to remove the double pole at s = 1.

Similarly, we can evaluate the non-planar contributions. Without loss of generality, let us
focus on tr(ta1 ta2)tr(ta3 ta4). In the s-channel:

ImAI

�

�

tr(ta1 ta2 )tr(ta3 ta4 )
s<1 =

2π3 g4
s

15
t8 Γ (−s)2 s5

∫

D
dx dy

�

1−x2−y2
�

5
2

×
Γ (−tL)
Γ (1−s−tL)

Γ (−tR)
Γ (1−s−tR)

�

1−
sin(πtR)

sin(π(s+tR))

�

, (3.75)

while in the u-channel:

ImAI

�

�

tr(ta1 ta2 )tr(ta3 ta4 )
u<1 = −1

2 ImAI

�

�

tr(ta1 ta2 ta3 ta4 )
u<1 . (3.76)

The t-channel answer is obtained by relabelling t↔ u above. We plot the non-planar contri-
butions in Figure 11.

Closed string. In the case of closed string, in the s-channel we have

ImAII

�

�

s<1 =
π5 g4

s

1920
t8 t̃8

s3Γ (1−s)2

Γ (s)2

∫

D
dx dy

�

1−x2−y2
�

5
2 Γ (−tL)Γ (s+tL)
Γ (1+tL)Γ (1−s−tL)

×
Γ (−tR)Γ (s+tR)
Γ (1+tR)Γ (1−s−tR)

. (3.77)

The expressions in the t- and u-channels can be obtained by relabelling. A numerical plot of
this amplitude is shown in Figure 12.
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Figure 12: Numerical plot of the type II amplitude (3.77) in the (s, t)-plane obtained
by setting g4

s t8 t̃8 = 1 and normalized by 25

π4 (s−1)2(t−1)2(u−1)2 in order to remove
the double poles at s, t, u= 1.

4 Imaginary parts from the worldsheet

In this section, we will analyze the imaginary part of the amplitude further. We are essentially
evaluating (2.19) and (2.20) explicitly in this section. We first discuss the open string four
gluon amplitude and briefly explain the closed string calculation for a graviton scattering
amplitudes in Section 4.6.

4.1 Decay width at s = 1

To warm up, we first compute a simple piece of the imaginary part of the planar amplitude
Ap. At mass level 1, the open string has bosonic states in the representations [2, 0, 0, 0] = ,
[0,0,1,0] = of SO(9) and fermionic states in the representation [1,0,0,1]. These states sit
in one massive supermultiplet of spacetime supersymmetry. Of course this supermultiplet is
unstable against decay into the massless vector multiplet consisting of the gluon and the gluino.
We will now compute the corresponding decay width.

Recall from quantum field theory, that the mass shift and decay widths can be read-off from
the Dyson resummation of one-particle irreducible (1PI) diagrams. Starting with a propagator
−i

s−m2 and calling the value of the 1PI diagram −iΣ(s), we have for a scalar field

−i
s−m2

∞
∑

k=0

�

−iΣ(s)
−i

s−m2

�k

=
−i

s−m2 +Σ(s)
. (4.1)

Therefore, the renormalized propagator can be identified with −i
s−(m2+δm2)+imΓ , where the mass

shift δm2 and decay widths Γ at the appropriate energy scale are given by

δm2 = −ReΣ(s) , Γ = ImΣ(s)/m , (4.2)

where m> 0. Note that ImΣ(s)⩾ 0 by the optical theorem.
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1
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3

1
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4

3

Figure 13: The double degeneration of the planar annulus and Möbius strip leading
to the double pole in the amplitude at s ∈ Z⩾1.

Thus, to one-loop approximation, the decay widths can be computed from the coefficient
of the double pole of the imaginary part of the amplitude. Denoting DRess=n the operation of
extracting this coefficient, we can incorporate the polarization and color structures accordingly
and have

DRes
s=n

ImAp = polarization and color structure×
p

n Γn . (4.3)

The polarization and color structure that has to be taken out at mass level 1 is given by
t8 tr(ta t b t c td), since these are also present at tree level. In the gluon four-point amplitude
we do not have access to individual states for a given n. So in case that the states under
consideration have degeneracy, we are really computing the sum over all decay widths. However,
this will not come up in our analysis, since we are considering the first mass level. This is
much simpler than computing the full imaginary part of the amplitude. The double pole comes
from the double degenerations of the planar amplitude depicted in Figure 13. Only the planar
amplitude can contribute to the decay width because the tree-level amplitude has also a planar
color structure.

We will now work out the contribution from the planar annulus for illustration. The Möbius
strip contribution is very similar. Let us choose s close to 1, but not exactly equal to it. Then
the integrand behaves close to the degeneration as

�

ϑ′1(0)
2z21z43

ϑ1(z31,τ)ϑ1(z42,τ)

�−s

+ regular , (4.4)

where by regular we mean that the terms diverge slower than O(z−1
21 z−1

43 ) near the double
degeneration. They would hence lead to a convergent integral and cannot contribute to the
double pole. We now observe that we have

∫

z1

dz2 z−s
21 =

1
1− s

+ regular , (4.5)

and similarly for the z3-integral. Thus we end up with just an integral over z ≡ z2, as well as
the τ-integral. The double pole in the amplitude is hence given by the integral

ImDRes
s=1

Ap
an = −

1
2

∫

⟲dτ
∫ 1

0

dz

�

ϑ′1(0,τ)2

ϑ1(1− z,τ)ϑ1(1− z,τ)

�−1

(4.6)

= −
1

8π2

∫

⟲dτ
∫ 1

0

dz
ϑ1(z,τ)2

η(τ)6
, (4.7)

where we used that ϑ′1(0,τ) = 2πη(τ)3. This is a convergent integral representation of the
coefficient of the double pole that we denoted by DRes. It can be further evaluated as follows.11

11We could also directly integrate out z using
∫ 1

0
dz ϑ1(z,τ)2 = −2ϑ2(2τ), but in view of later generalizations we

will follow a different route.
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Using the modular transformation of the theta and eta-function, we can change variables
τ→− 1

τ , which leads to

ImDRes
s=1

Ap
an = −

1
8π2

∫

−→

dτ
τ4

∫ 1

0

dz e2πiz2τϑ1(zτ,τ)2

η(τ)6
. (4.8)

Here we used the standard transformation behaviour of the theta-function under S-modular
transformation. −→ denotes a contour that runs horizontally in the upper half-plane.

Consider making Im(τ) very large. Then most of the terms in the definition of ϑ1(zτ,τ)
are exponentially suppressed and do not contribute to the integral. This is the main trick that
we will use throughout the paper to compute the relevant integrals. We have in fact

ϑ1(zτ,τ) = iq
1
8−

z
2 − iq

1
8+

z
2 − iq

9
8−

3z
2 + . . . , (4.9)

where we recall that q = e2πiτ. Combining with the eta-function, the integrand hence behaves
as

e2πiz2τϑ1(zτ,τ)2

η(τ)6
= qz2 �

−q−z + 2+ 2q1−2z − qz − q2−3z
�

+ . . . . (4.10)

All other terms are even more suppressed as q→ 0 and hence cannot contribute to the integral
(since 0⩽ z ⩽ 1). In fact, the only term here that is not suppressed, is −qz2−z and thus we may
replace the integrand by it. Hence

ImDRes
s=1

Ap
an =

1
8π2

∫

−→

dτ
τ4

∫ 1

0

dz qz(z−1) . (4.11)

For large Im(τ), we can evaluate the integral over z by extending the integration region to
(−∞,∞), which becomes a Gaussian integral. This is allowed since the integrand goes to
zero for z ∈ (−∞, 0)∪ (1,∞) fast enough and does not contribute to the integral.

Thus

ImDRes
s=1

Ap
an =

1

8
p

2π2

∫

−→

dτ

(−iτ)
9
2

e−
πiτ

2 . (4.12)

Let us change variables x = πiτ
2 . Then the integral becomes

Im DRes
s=1

Ap
an = −

iπ
3
2

128

∫

↑
dx (−x)−

9
2 e−x , (4.13)

where ↑ denotes the rotated contour in the complex plane. We can finally deform the contour
into the Hankel contour H that runs first from∞+ i0+ to 0+ i0+, then surrounds zero and
then runs from 0+ i0− to∞+ i0−. Using the Hankel representation of the Gamma-function

−
2πi
Γ (z)

=

∫

H
dx (−x)−ze−x , (4.14)

we get

Im DRes
s=1

Ap
an =

π
5
2

64 Γ (9
2)
=
π2

420
. (4.15)

The calculation for the Möbius strip is very similar and gives − 1
16 times the result for the

annulus. Hence from (4.3)

Γ1 = g2
s

�

1−
1
16

�

π2

420
=

g2
s π

2

448
. (4.16)

This agrees with previous results in the literature (up to our casual treatment of factors of α′),
see, e.g., [74, eq. (14)]. Similar calculations have also been performed in [27,75–77]. However
we want to emphasize that contrary to previous methods our calculation does not require any
sort of regularizations: once the correct contour is used the results are manifestly convergent.
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4.2 Planar annulus

We now work out the imaginary part of the planar annulus diagram. The method for this is
very similar to the imaginary part of the double pole, but slightly more involved, since we have
three zi-integrals.

Let us start by mapping the integral over the circular contour ⟲to a horizontal contour via
a modular transformation τ→− 1

τ . This leads to

Im Ap
an = −

N
64

∫

−→

dτ
τ2

∫

dz1 dz2 dz3 qsz41z32−tz21z43

�

ϑ1(z21τ,τ)ϑ1(z43τ,τ)
ϑ1(z31τ,τ)ϑ1(z42τ,τ)

�−s

×
�

ϑ1(z41τ,τ)ϑ1(z32τ,τ)
ϑ1(z31τ,τ)ϑ1(z42τ,τ)

�−t

. (4.17)

We follow the same strategy as before. We make Imτ very large and only have to approximate
the integrand up to terms that vanish in a large Imτ limit.

4.2.1 s-channel with s < 1

Let us start to work out the s-channel with s < 1. Since 0< zi j < 1, the theta-functions have
the following expansion:

ϑ1(zτ,τ) =
�

iq
1
8−

z
2 − iq

1
8+

z
2 − iq

9
8−

3z
2

�

(1+O(q)) . (4.18)

The first term in this expansion always gives the biggest contribution. Thus, the integrand
behaves for Imτ large (i.e., |q| small) like

qTrop = q−s(1−z41)z32−tz21z43 , (4.19)

up to subleading terms. Here Trop is essentially the tropicalization of the integrand and will
play an important role throughout the paper. Assuming that s is not too large (s < 4 is sufficient
here), the exponent is bounded from below by −1, which means that the higher corrections in
the expansion of the theta-functions than the one spelled out in (4.18) will not influence the
result. The region Trop< 0 in (z1, z2, z3)-space is pictured in Figure 14.

Next, we should be more precise in our estimate and investigate the corrections to the large
Imτ behaviour coming from the second and third term in (4.18). Consider the limit z32→ 0,
while the other zi ’s are kept fixed. Then the behaviour as Imτ→∞ of the integrand is

q−s(1−z41)z32−tz21z43(1− qz32)−t . (4.20)

Hence the first correction to the exponent is

−s(1− z41)z32 − tz21z43 + z32 . (4.21)

Since s > 0 and t < 0, this correction would result in something positive as long as s < 1
(because 1 − z41 < 1). Positive exponents of q never contribute to the integral in a small
q-limit, and thus we learn that we do not have to keep the second term in the expansion of
ϑ1(z32τ,τ). This line of reasoning allows one to discard most of the terms in the expansion of
the theta-function in (4.18). At the end, one is only left with the second terms in the expansion
(4.18) for ϑ1(z21τ,τ) and ϑ1(z43τ,τ), since in those cases, the exponent (4.19) does not go to
zero. Thus we have for s < 1

Im Ap
an = −

N
64

∫

−→

dτ
τ2

∫

dz1 dz2 dz3 q−s(1−z41)z32−tz21z43 (1− qz21)−s(1− qz43)−s . (4.22)
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Figure 14: The region where Trop< 0 for the planar annulus. The figure is drawn for
s = 1 and t = −1

2 .

Let us set
αL = z21 , αR = z43 , tL = −sz32 + tz43 . (4.23)

Then we can rewrite the imaginary part as

Im Ap
an = −

N
64

∫

−→

dτ
τ2

∫

R
dαL dαR dtL dtR qtαR(αR−1)+tL(1−αL−αR)+

1
s (tL−tαR)2

× (1− qαL)−s(1− qαR)−s

√

√ −iτ
2stu

q−
1

4st(s+t) (stR−(s+2t)tL+2t(s+t)αR−st)2 . (4.24)

We inserted an identity in the second line. The Gaussian integral over tR directly cancels the
additional factors that we inserted. The integral over (αL,αR, tL, tR) goes over some convex
region R that we discuss momentarily. Simplifying the exponents leads to

Im Ap
an =

N

64
p

2stu

∫

−→

dτ

(−iτ)
3
2

∫

R
dαL dαR dtL dtR q−tLαL−tRαR−P(tL,tR)

× (1− qαL)−s(1− qαR)−s , (4.25)

where

P(tL, tR) = −
s(t2 + t2

L + t2
R− 2t tL − 2t tR− 2tL tR)− 4t tL tR

4tu
. (4.26)

Notice the simple behaviour of the integral on αL and αR. The definitions of tL and the shift
in the Gaussian integral of tR was chosen to ensure the linear αL and αR dependence of the
exponent. The final aspect we need to take care of is the region R over which we should
integrate. The initial integration region R is described by the inequalities

αL ⩾ 0 , αR ⩾ 0 , tL ⩽ tαR , αL +
s+ t

s
αR−

1
s

tL ⩽ 1 . (4.27)
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We will now change the integration region to R̃, which is described by the inequalities

αL ⩾ 0 , αR ⩾ 0 , tL ⩽ 0 , tR ⩽ 0 . (4.28)

We claim that the integral is unchanged when changing the integration region like this. For
this, we need to check that the exponent −tLαL − tRαR− P(tL, tR) is positive on the difference
(R ∩ R̃c) ∪ (Rc ∩ R̃) of the two regions. This is easily checked in Mathematica using the
Reduce command, or directly by hand. We can use the integral formula

∫ ∞

0

dα q−tα(1− qα)−s =
i

2πτ

∫ 1

0

dx (1− x)−s x−1−t =
i

2πτ
Γ (1− s)Γ (−t)
Γ (1− s− t)

, (4.29)

where we substituted α = 1
2πiτ log x . We obtain from (4.25) after changing R → R̃ and

integrating out (αL,αR)

Im Ap
an =

N

256π2
p

2stu

∫

−→

dτ

(−iτ)
7
2

∫ 0

−∞
dtL

∫ 0

−∞
dtR q−P(tL,tR)

×
Γ (1− s)Γ (−tL)
Γ (1− s− tL)

Γ (1− s)Γ (−tR)
Γ (1− s− tR)

. (4.30)

We are almost done. We restrict the integration region in (tL, tR) to the region with P(tL, tR)> 0,
since otherwise the τ-integral gives zero. For P(tL, tR), we notice the Hankel representation of
the Gamma-function as in the computation of the decay in Section 4.1. We have

∫

−→

dτ

(−iτ)
7
2

q−P(tL,tR) =
64
p

2π3

15
P(tL, tR)

5
2 . (4.31)

Putting everything together gives

Im Ap
an

�

�

�

s<1
=

Nπ
60
p

stu

∫

P>0

dtL dtR P(tL, tR)
5
2
Γ (1− s)Γ (−tL)
Γ (1− s− tL)

Γ (1− s)Γ (−tR)
Γ (1− s− tR)

. (4.32)

From this, one can easily check that one gets back the correct double residue at s = 1, what
we computed in (4.15). From the discussion in Section 3, we see that tL and tR have the
interpretation of the momentum transfers in the unitarity cut. Their appearance from the
worldsheet is somewhat obscure to us. One of them appeared as a Schwinger parameter,
whereas the other momentum transfer appeared as an auxiliary variable. We also see that
P(tL, tR) is precisely (ℓ⊥)2, where ℓ⊥ is the component of the loop momentum that is orthogonal
to all external momenta, see Section 3.3.2.

Forward limit. Let us mention that the analysis simplifies significantly in the forward limit
(i.e., for t = 0). In this case it is unnecessary to introduce tR and we have

Im Ap
an

�

�

s<1 = −
N

64s

∫

−→

dτ
τ2

∫

R
dαL dαR dtL qtL(1−αL−αR)+

1
s t2

L (1− qαL)−s(1− qαR)−s

=
N

256π2s

∫

−→

dτ
(−iτ)4

∫

R
dαL dαR dtL qtL+

1
s t2

L

�

Γ (1− s)Γ (−tL)
Γ (1− s− tL)

�2

=
Nπ2

96s4

∫ 0

−s
dtL (−tL)

3(s+ tL)
3
�

Γ (1− s)Γ (−tL)
Γ (1− s− tL)

�2

. (4.33)

Alternatively, one can also see this by noticing that the ellipse defined by P(tL, tR)> 0 degener-
ates to a diagonal line in this case that forces tL = tR. This is discussed more systematically in
Section 6.2.
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4.2.2 Larger values of s

Let us now extend the analysis to larger values of s. In this case, more terms in the q-expansion
of ϑ1 have to be kept, but otherwise the steps are exactly the same. For any choice of s, there is
a finite number of terms in the q-expansion that can contribute to the imaginary part. As we
explained in Section 3.3.3, the expected structure is given by eq. (3.72).

For the first few cases, we find

Q0,0 = 1 , (4.34a)

Q1,0 = 2
�

−2stL tR− s2 tL + stL − s2 tR+ stR+ s2 t − 2st + t
�

, (4.34b)

Q2,0 = 2s4 tL tR+ 4s3 tL t2
R+ 4s3 t2

L tR− 4s3 t tL tR− 12s3 tL tR+ 4s2 t2
L t2

R− 10s2 tL t2
R

− 10s2 t2
L tR+ 12s2 t tL tR+ 18s2 tL tR− 2st2

L t2
R+ 4stL t2

R+ 4st2
L tR− 12st tL tR

− 6stL tR+ 4t tL tR+ s4 t2
L − 2s4 t tL − s4 tL − 4s3 t2

L + 10s3 t tL + 4s3 tL + 5s2 t2
L

− 18s2 t tL − 5s2 tL − 2st2
L + 14st tL + 2stL − 4t tL + s4 t2

R− 2s4 t tR− s4 tR

− 4s3 t2
R+ 10s3 t tR+ 4s3 tR+ 5s2 t2

R− 18s2 t tR− 5s2 tR− 2st2
R+ 14st tR

+ 2stR− 4t tR+ s4 t2 + s4 t − 6s3 t2 − 6s3 t + 13s2 t2 + 13s2 t − 12st2 − 12st

+ 4t2 + 4t . (4.34c)

Higher values of Qn1,n2
(tL, tR) are tabulated in an ancillary file Q.txt attached to the submis-

sion.

4.3 Möbius strip

We next compute the contribution to the imaginary part of the planar amplitude from the
Möbius strip. For τ̃ ∈ i +R, let

τ=
τ̃− 1
2τ̃− 1

, (4.35)

and the same functional form holds for the inverse relation. Then τ lies on the circle that
touches the real line at τ = 1

2 , see Figure 1. We thus want to change variables from τ to τ̃,
since it maps the circular contour ⟲to a horizontal contour −→ as before. For this we can use
the transformation behaviour of ϑ1,

ϑ1

�

z
cτ+ d

,
aτ+ b
cτ+ d

�

= ϵ
p

cτ+ d e
πicz2
cτ+d ϑ1(z;τ) . (4.36)

Here, ϵ ≡ ϵ(a, b, c, d) is an eighth root of unity that is in general complicated to spell out in
closed form, but cancels out of our calculation. We hence compute

ϑ1(z,τ) = ϵ (2τ− 1)−
1
2 e−

2πiz2
2τ−1 ϑ1

�

z
2τ− 1

,
τ− 1

2τ− 1

�

(4.37)

= ϵ (2τ̃− 1)
1
2 e2πi(2τ̃−1)z2

ϑ1 (−z(2τ̃− 1), τ̃) . (4.38)

We do not have to know its precise form since it cancels out of the integrand. We hence have12

Im AMöb =
1
2

∫

−→

dτ̃
(2τ̃− 1)2

∫

0<z1<z2<z3<1

dz1 dz2 dz3 e4πis(2τ̃−1)z41z32−4πi t(2τ̃−1)z43z21

×
�

ϑ1(z21(2τ̃− 1), τ̃)ϑ1(z43(2τ̃− 1), τ̃)
ϑ1(z31(2τ̃− 1), τ̃)ϑ1(z42(2τ̃− 1), τ̃)

�−s

×
�

ϑ1(z32(2τ̃− 1), τ̃)ϑ1(z41(2τ̃− 1), τ̃)
ϑ1(z31(2τ̃− 1), τ̃)ϑ1(z42(2τ̃− 1), τ̃)

�−t

. (4.39)

12There is an extra minus sign in this formula, since we turned around the direction of the contour.
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To obtain slightly nicer formulas, we will also rename (2τ̃− 1)→ 2τ (which differs of course
from the original τ). Here, τ runs also along a horizontal contour, which we take to be
τ ∈ i L +R for some L ∈ R>0. Calling also q = e2πiτ, we have

Im AMöb =
1
8

∫

−→

dτ
τ2

∫

0<z1<z2<z3<1

dz1 dz2 dz3 q4sz41z32−4tz43z21

×

�

ϑ1

�

2z21τ,τ+ 1
2

�

ϑ1

�

2z43τ,τ+ 1
2

�

ϑ1

�

2z31τ,τ+ 1
2

�

ϑ1

�

2z42τ,τ+ 1
2

�

�−s

×

�

ϑ1

�

2z41τ,τ+ 1
2

�

ϑ1

�

2z32τ,τ+ 1
2

�

ϑ1

�

2z31τ,τ+ 1
2

�

ϑ1

�

2z42τ,τ+ 1
2

�

�−t

. (4.40)

We can now make L very large as for the annulus. This has again the effect of simplifying the
involved ϑ1-functions, since only a finite number of terms in their q-expansion can contribute
to the integral. In fact, since 0< zi j < 1, we have

ϑ1

�

2zτ,τ+
1
2

�

= ϵ
�

q
1
8+z − q

1
8−z − q

9
8−3z + q

25
8 −5z

�

(1+O(q)) , (4.41)

where ϵ is a 16th order root of unity that cancels out of the expression.

4.3.1 s-channel with s < 1

Assuming again that s < 1, we can stop the expansion at this point, since the exponent of the
prefactor q4sz41z32−4tz43z21 is always bigger than −1 and any positive q-exponent can be scaled
away by making Im(τ) very large. The integrand hence grows for Im(τ)→∞ as qTrop, where

Trop= 4sz41z32 − 4tz43z21 + s (max(z21, 3z21 − 1) +max(z43, 3z43 − 1))

+ t (max(z32, 3z32 − 1) +max(z41, 3z41 − 1))

+ u (max(z31, 3z31 − 1) +max(z42, 3z42 − 1)) . (4.42)

The additional terms come from the second and third term in the expansion (4.41). By the
now familiar argument, only regions with Trop< 0 can contribute to the integral. This region
is actually disconnected in the present case. A plot is shown in Figure 15. Thus it is natural to
subdivide the integration regions in zi into four different pieces. We always assume that z4 = 1.
Then we can split the integration region 0< z1 < z2 < z3 < 1 in to the following subregions, so
that each subregion only contains one of the components where Trop< 0. We set

Γ (1) = {0< z21, z31, z41, z32, z42, z43 <
1
2} , (4.43a)

Γ (2) = {0< z21, z43 <
1
2 , 1

2 < z31, z41, z32, z42 < 1} , (4.43b)

Γ (3) = {0< z32, z42, z43 <
1
2 , 1

2 < z31, z41 < 1} , (4.43c)

Γ (4) = {0< z21, z31, z32 <
1
2 , 1

2 < z41, z42 < 1} . (4.43d)

These four different regions correspond to the four different ways the Möbius strip can be cut.
They are depicted in Figure 16.

In the different regions various different terms may be dropped in the expansions of the
theta-functions. It is also important to know which boundaries of the regions Γ (i) are part of
the region Trop< 0, since this tells us where we need to keep terms in the theta-functions that
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Figure 15: The four regions in the (z1, z2, z3)-space where Trop < 0. The picture is
drawn for s = 1 and t = −1

2 .

1

2

4

3

1

2

4

3
12

4

3

1

2
43

Figure 16: The four different cuttings of the Möbius strip amplitude in the s-channel.
They correspond to the four regions Γ (1), . . . , Γ (4) (in this order).
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become relevant near the boundary. We have

∂ Γ (1) ∩ ∂ {Trop< 0}= {z1 = z2} ∪ {z3 = z4 = 1} , (4.44a)

∂ Γ (2) ∩ ∂ {Trop< 0}= {z1 = z2} ∪ {z3 = z4 = 1} , (4.44b)

∂ Γ (3) ∩ ∂ {Trop< 0}= {z3 = z4 = 1} , (4.44c)

∂ Γ (4) ∩ ∂ {Trop< 0}= {z1 = z2} . (4.44d)

Let us denote the contributions to the imaginary parts of the amplitude by Im A(i). Then

Im A(1)Möb =
1
8

∫

−→

dτ
τ2

∫

Γ (1)
dz1 dz2 dz3 q−4s(z1−

1
2 )z32−4tz43z21(1− q2z21)−s(1− q2z43)−s , (4.45a)

Im A(2)Möb =
1
8

∫

−→

dτ
τ2

∫

Γ (2)
dz1 dz2 dz3 q−4sz1(z32−

1
2 )−4tz43z21(1− q2z21)−s(1− q2z43)−s , (4.45b)

Im A(3)Möb =
1
8

∫

−→

dτ
τ2

∫

Γ (3)
dz1 dz2 dz3 q−4sz1(z32−

1
2 )+2s( 1

2−z2)−4tz43(z21−
1
2 )

× (1+ q1−2z21)−s(1− q2z43)−s , (4.45c)

Im A(4)Möb =
1
8

∫

−→

dτ
τ2

∫

Γ (4)
dz1 dz2 dz3 q−4sz1z32+2s(z3−

1
2 )−4t(z43−

1
2 )z21

× (1− qz21)−s(1+ q1−2z43)−s . (4.45d)

We can simplify this as follows. First we notice that Im A(1)Möb = Im A(2)Möb, which follows by shifting
z1 → z1 +

1
2 and z2 → z2 +

1
2 . We also notice that Im A(1) is the same as − 1

N× the imaginary

part of the planar annulus amplitude (4.22). We finally observe that Im A(3)Möb = Im A(4)Möb, which
follows from the change of variables

z(3)1 = z(4)3 −
1
2 , z(3)2 = z(4)4 −

1
2 , z(3)3 = z(4)1 + 1

2 , z(3)4 = z(4)2 + 1
2 . (4.46)

that maps Γ (3) to Γ (4) (after shifting z(4)4 to z(4)4 = 1). Thus all that remains is to compute

Im A(3)Möb. We change variables to

z21 =
1
2
(1−αL) , z43 =

αR

2
, tL = −2sz1 + 2tz43 . (4.47)

We also integrate in the factor

1= s

√

√ −iτ
2stu

∫ ∞

−∞
dtR q−

1
4st(s+t) (stR−(s+2t)tL+2t(s+t)αR−st)2 (4.48)

as before. Then the imaginary part of the amplitude becomes

Im A(3)Möb = −
1

64
p

2stu

∫

dτ

(−iτ)
3
2

∫

R
dtL dtR dαL dαR qαL(s+tL)−αRtR−P(tL,tR)

× (1+ qαL)−s(1− qαR)−s , (4.49)

with the same polynomial P(tL, tR) as in the planar annulus amplitude, see eq. (4.26).
We next want to change the integration region from the initial integration region to a new

region R̃ where
αR ⩾ 0 , −s ⩽ tL ⩽ 0 , −s ⩽ tR ⩽ 0 . (4.50)
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Using the Reduce command in Mathematica one checks again that the leading exponent is
positive in the q→ 0 limit on the difference on the two sets. Hence this change of integration
region does not affect the result.

We next use the integral identity

∫ ∞

−∞
dαL qαL(s+tL)(1+ qαL)−s =

i Γ (s+ tL)Γ (−tL)
2πτ Γ (s)

, (4.51)

together with (4.29) to obtain

Im A(3)Möb = −
1

256π2
p

2stu

∫

dτ

(−iτ)
7
2

∫ 0

−s
dtL

∫ 0

−s
dtR q−P(tL,tR)

×
Γ (s+ tL)Γ (−tL)Γ (1− s)Γ (−tR)

Γ (s)Γ (1− s− tR)
(4.52)

= −
π

60
p

stu

∫

dtL dtR P(tL, tR)
5
2
Γ (s+ tL)Γ (−tL)Γ (1− s)Γ (−tR)

Γ (s)Γ (1− s− tR)
, (4.53)

where we used (4.31) and it is understood that the integral runs over the region where P(tL, tR)
is positive. We hence recognize this contribution as a gluing of a u-channel disk amplitude
and an s-channel disk amplitude, as discussed in Section 3.1. For reference, we hence find
the following contribution to the imaginary part from the Möbius strip in the s-channel after
summing over the four contributions:

Im AMöb = −
π Γ (1− s)2

30
p

stu

∫

dtL dtR P(tL, tR)
5
2

Γ (−tL)Γ (−tR)
Γ (1− s− tL)Γ (1− s− tR)

×
�

1+
sin(πs)

sin(π(s+ tL))

�

. (4.54)

4.3.2 u-channel with u< 1

For the Möbius strip, there is also an imaginary part in the u-channel where s < 0, t < 0 and
u > 0. The exponent Trop given by (4.42) is now negative in a single connected region that
does not touch the boundary of the integration region 0< z1 < z2 < z3 < 1. A picture of the
relevant region is given in Figure 17. In fact, the region of negativity is fully contained in the
set

Γ = {0< z21, z32, z43 <
1
2 , 1

2 < z41 < 1 , 0< z1 < z2 < z3 < 1} . (4.55)

This tells us again which terms in the expansion of the theta-functions we should keep. We get

Im AMöb =
1
8

∫

−→

dτ
τ2

∫

Γ

dz1 dz2 dz3 q4s(z41−
1
2 )z32−4tz43z21+2t(z41−

1
2 )

× (1+ q1−2z31)−u(1+ q1−2z42)−u . (4.56)

We can again change variables as before. The relevant change of variables is

z1 =
αL

2
−

sαR

2u
−

tL

2u
, z2 =

αR+ 1
2

, z3 =
1
2
−

sαR

2u
−

tL

2u
. (4.57)
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3 1 42

Figure 17: Left: the region in the (z1, z2, z3)-space where the exponent Trop< 0. The
picture is drawn for s = −1

2 and t = −1
2 . Right: the corresponding unique unitarity

cut in the u-channel.

We integrate in the term q−
1

4stu (utR−(u+2t)tL+2t(t+u)αR−tu)2 to bring the integral into the following
form

Im AMöb

�

�

u<1 = −
1

64
p

2stu

∫

−→

dτ

(−iτ)
3
2

∫ 0

−u
dtL

∫ 0

−u
dtR

∫ ∞

−∞
dαL

∫ ∞

−∞
dαR

× q−αL tL−αRtR−P̃(tL,tR)(1+ qαL)−u(1+ qαR)−u (4.58)

= −
1

256π2
p

2stu

∫

−→

dτ

(−iτ)
3
2

∫ 0

−u
dtL

∫ 0

−u
dtR q−P̃(tL,tR)

×
Γ (tL + u)Γ (−tL)Γ (tR+ u)Γ (−tR)

Γ (u)2
(4.59)

= −
π

60
p

stuΓ (u)2

∫

P̃>0

dtL dtR P̃(tL, tR)
5
2

× Γ (tL + u)Γ (−tL)Γ (tR+ u)Γ (−tR) . (4.60)

We changed the integration region as before an used eqs. (4.51) and (4.31). Here,

P̃(tL, tR) = −
u(t2 + t2

L + t2
R− 2t tL − 2t tR− 2tL tR)− 4t tL tR

4st
. (4.61)

This is the same as (4.26), except that s↔ u have been exchanged. Since the planar annulus
topology does not contribute in the u-channel, (4.60) is the total contribution to the imaginary
part of the planar amplitude, in agreement with (3.74).
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Figure 18: The four cuts of the non-planar annulus diagram in the s-channel corre-
sponding to the four regions Γ (1), . . . , Γ (4) in this order.

4.4 Non-planar annulus

Proceeding as before, after mapping the contour over the circle ⟲to the horizontal line, the
imaginary part of the non-planar amplitude is given by

Im An-p
an = −

1
64

∫

−→

dτ
τ2

∫

dz1 dz2 dz3 qsz41z32−tz21z43

�

−
ϑ1(z21τ,τ)ϑ1(z43τ,τ)
ϑ2(z31τ,τ)ϑ2(z42τ,τ)

�−s

×
�

ϑ2(z41τ,τ)ϑ2(z32τ,τ)
ϑ2(z31τ,τ)ϑ2(z42τ,τ)

�−t

. (4.62)

Recall that the integration domain imposes z2 − 1 ⩽ z1 ⩽ z2, 0 ⩽ z2 ⩽ 1 and 0 ⩽ z3 ⩽ z4 = 1.
In addition to the expansion of the ϑ1(zτ,τ) from (4.18), we also need

ϑ2(zτ,τ) =
�

q
1
8−

z
2 + q

1
8+

z
2 + q

9
8−

3z
2 + q

25
8 −

5z
2 + q

9
8+

3z
2

�

(1+O(q)) , (4.63)

where only the four terms displayed above can possibly contribute in the |q| → 0 limit since
−1 ⩽ z ⩽ 2. To be more precise, z21, z43, z42 ∈ [0,1], while z41 ∈ [0,2], z32 ∈ [−1,1] and
z31 ∈ [−1,2].

Let us now determine more precisely which regions of the zi-integrals can contribute. The
integrand goes as qTrop with

Trop= sz41z32 − tz43z21 +
1
2 s
�

z21 + z43

�

+ 1
2 t
�

max(z41, 3z41 − 1) + |z32|
�

+ 1
2u
�

max(−z31, z31, 3z31 − 1) + z42

�

. (4.64)

Solving for Trop< 0 reveals several disconnected regions where the integrand can diverge.

4.4.1 s-channel with s < 1

We start with the s-channel scattering, i.e., s > 0 and t, u< 0 and work below the first massive
threshold, s < 1. There are four disconnected regions solving Trop < 0 which correspond to
the four different ways that the annulus can be cut in the s-channel, see Figure 18. As we
already mentioned, the non-planar annulus diagram should be divided by 2 in the end, since it
is invariant under orientation reversal. This is manifest in Figure 18, since the first and last as
well as the second and third cutting are actually equivalent. They are contained within the
chambers

Γ (1) = {0< z41 < 1 , −1< z32 < 0 , −1< z31 < 0} , (4.65a)

Γ (2) = {0< z41 < 1 , 0< z32 < 1 , 0< z31 < 1} , (4.65b)

Γ (3) = {1< z41 < 2 , −1< z32 < 0 , 0< z31 < 1} , (4.65c)

Γ (4) = {1< z41 < 2 , 0< z32 < 1 , 1< z31 < 2} . (4.65d)
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Figure 19: The four regions with Trop< 0 for the s-channel of the non-planar annulus
amplitude.

See Figure 19 for a picture. As is evident from the figure, one can nicely stitch together the
four regions by translating Γ (1) by the vector (0, 0, 1), Γ (3) by the vector (1, 0, 1) and Γ (4) by the
vector (1,0,0) in (z1, z2, z3). Hence we then only get a single integration region Γ that takes
the form

Γ = {−1< z21, z43 < 1 , 0< z31, z41, z32, z42 < 1} . (4.66)

Dropping again the terms in the expansion of the theta function that do not contribute to the
imaginary part yields

Im An-p
an

�

�

s<1 = −
1
64

∫

−→

dτ
τ2

∫

Γ

dz1 dz2 dz3 qs(z41−1)z32−tz21z43 |1− qz21 |−s|1− qz43 |−s . (4.67)

Here we use | · | to mean

|1− qz21 | ≡

¨

1− qz21 , z21 ⩾ 0 ,

−1+ qz21 , z21 ⩽ 0 ,
(4.68)

and similarly for |1− qz43 |.
We can recognize that the above expression is identical to (4.22) already encountered in

the planar case, except that the integration region is extended to also include negative values
of z21 and z43. Here after the same chain of manipulations, the contribution equals the analog
of (4.25), which reads

Im An-p
an

�

�

s<1 =
1

64
p

2stu

∫

−→

dτ

(−iτ)
3
2

∫ ∞

−∞
dαL dαR

∫

dtL dtR q−tLαL−tRαR−P(tL,tR)

× |1− qαL |−s|1− qαR|−s . (4.69)
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Performing the integral over αL, αR and τ gives

Im An-p
an

�

�

s<1 =
πΓ (1−s)2

60
p

stu

∫

P>0

dtL dtR P(tL, tR)
5
2
Γ (−tL)
Γ (1−s−tL)

Γ (−tR)
Γ (1−s−tR)

×
�

1−
sin(πtL)

sin(π(s+tL))

��

1−
sin(πtR)

sin(π(s+tR))

�

. (4.70)

This can be further simplified as follows. The polynomial P(tL, tR) is invariant under
(tL, tR)→ (−s− tL,−s− tR). Thus

∫

P>0

dtL dtR P(tL, tR)
5
2
Γ (s+ tL)Γ (s+ tR)
Γ (1+ tL)Γ (1+ tR)

=

∫

P>0

dtL dtR P(tL, tR)
5
2

Γ (−tL)Γ (−tR)
Γ (1− s− tL)Γ (1− s− tR)

, (4.71)

and hence

Im An-p
an

�

�

s<1 =
πΓ (1−s)2

30
p

stu

∫

P>0

dtL dtR P(tL, tR)
5
2
Γ (−tL)
Γ (1−s−tL)

Γ (−tR)
Γ (1−s−tR)

×
�

1−
sin(πtL)

sin(π(s+tL))

�

. (4.72)

4.4.2 u-channel with u< 1

We now move on the u-channel kinematics with u> 0 and s, t < 0. The solutions to Trop< 0
are two disconnected regions given by

Γ (1) = {0< z41 < 1 , −1< z32 < 0 , −1< z31 < 1} , (4.73a)

Γ (2) = {1< z41 < 2 , 0< z32 < 1 , 0< z31 < 2} . (4.73b)

A picture is given in Figure 20. The two regions can again be joined together to the region Γ by
translating Γ (2) by the vector (1, 1, 0) in (z1, z2, z3). We obtain the following formula for Im An-p

an
in the u-channel:

Im An-p
an

�

�

u<1 = −
1
64

∫

−→

dτ
τ2

∫

Γ

dz1 dz2 dz3 qu(1−z41)z32−tz31z42 (1+ qz31)−u(1+ qz42)−u . (4.74)

Up to a simple change of variables and a minus sign, this is the same as (4.56). Thus we can
immediately conclude

Im An-p
an

�

�

u<1 = − Im AMöb

�

�

u<1 . (4.75)

It corresponds to the unique unitarity cut displayed in Figure 20.

4.5 Summary of the open string

For convenience, let us summarize the full imaginary part of the imaginary part of the worldsheet
amplitude. Since we have to sum over color orderings, the final amplitude is crossing symmetric
and we can assume to be in the s-channel. We work out the result for s < 1, but in principle
one can repeat the exercise of Section 4.2.2 to extend this to any desired range. We have to
sum over different color orderings. In both the planar and non-planar cases, there are three
different color orderings. Since the string is unoriented, the reverse color ordering is equivalent
and does not need to be counted separately. Thus in the planar case, the color structures are
tr(ta1 ta2 ta3 ta4), tr(ta1 ta2 ta4 ta3) and tr(ta1 ta3 ta2 ta4). The second ordering is obtained from the
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2 413

Figure 20: Left: the two regions with Trop< 0 for the u-channel of the non-planar
annulus amplitude. Right: the unique unitarity cut in the u-channel of the non-planar
annulus. It corresponds to the union of the two regions that fit together after a suitable
translation.

first by exchanging t and u. The polynomial P(tL, tR) has the property that exchanging t with
u can be compensated by tL→−s− tL. The final color structure corresponds to the exchange
of s and u and thus we should use the u-channel formula in this case. In the non-planar case
the three color structures are tr(ta1 ta2)tr(ta3 ta4), tr(ta1 ta3)tr(ta2 ta4) and tr(ta1 ta4)tr(ta2 ta3).
The second is obtained from the first by interchanging s and u, while the third is obtained
from the first by interchanging s and t. For the non-planar annulus, both the t and u-channel
behave equally. Thus we should use the u-channel formula (4.75) for the second and third color
structure, but interchange the meaning of u and s or u and t, respectively. For the non-planar
amplitudes, we also need to include a symmetry factor of 1

2 . This is because orientation reversal
of the worldsheet maps the diagram to itself, whereas the color order is reversed in the planar
case.

We thus have from eqs. (4.32), (4.54), (4.60), (4.72) and (4.75)

ImAI

�

�

�

s<1
=

128π3 g4
s t8Γ (1− s)2

15
p

stu

∫

P(tL,tR)>0

dtL dtR
P(tL, tR)

5
2 Γ (−tL)Γ (−tR)

Γ (1− s− tL)Γ (1− s− tR)

×
�

tr(ta1 ta2 ta3 ta4)
�

N − 2−
2 sin(πs)

sin(π(s+ tL))

�

− tr(ta1 ta2 ta4 ta3)
(N − 2) sin(πtL) + 2 sin(πs)

sin(π(s+ tL))

− tr(ta1 ta3 ta2 ta4)
sin2(πs)

sin(π(s+ tL)) sin(π(s+ tR))
+ tr(ta1 ta2)tr(ta3 ta4)

�

1−
sin(πtL)

sin(π(s+tL))

�

+
(tr(ta1 ta3)tr(ta2 ta4) + tr(ta1 ta4)tr(ta2 ta3)) sin2(πs)

2 sin(π(s+ tL)) sin(π(s+ tR))

�

. (4.76)

This precisely agrees with the sum of (3.13), (3.14) and (3.15) with the explicit results from
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unitary cuts given in eqs. (3.73), (3.74), (3.75) and (3.76). Of course we should set N = 32 in
the string, but we left it free for ease of comparison.

4.6 Closed string

Finally, we repeat the same calculation for the type II closed string. As explained earlier, we
should evaluate the integral (2.20). Recall that we write zi = x i +τyi and τ= τx +τy with
τx = Reτ and τy = i Imτ. The variables will then be complexified again to account for the iϵ
prescription.

We call the original moduli space M1,4 ⊂MC1,4 the real slice of the compactification. It
corresponds to τy ∈ iR and all other variables x i , yi and τx real. However, the only variable
that needs to be genuinely complex is τy ∈H. Below, |X |2 will be a shortcut for the holomorphic
function in the integration variables x i , yi , τx and τy that coincides with |X |2 on the real slice
where x i , yi , τx ∈ R and τy ∈ iR. The strategy is very similar to the open string. We push the
imaginary part Imτy to very large values which simplifies the Green’s functions

exp(G(zi j ,τ)) = |ϑ1(zi j ,τ)|2e−2π
(Im zi j )

2

Imτ , (4.77)

that enter (2.15a). We have (with zi j = x i j +τyi j)

exp(G(zi j ,τ)) = |ϑ1(zi j ,τ)|2 e2πiτy y2
i j (4.78)

= ϑ1(x i j + (τx +τy)yi j ,τx +τy)

× ϑ1(−x i j + (−τx +τy)yi j ,−τx +τy)e
2πiτy y2

i j , (4.79)

where the second line spells out the meaning of |ϑ1(zi j ,τ)|2 away from the real slice. The
leading exponential behaviour as Imτy → ∞ is hence (assuming that x i j ∈ [−1,1] and
yi j ∈ [−1,1])

exp(G(zi j ,τ))∼ e
πi
2 τy−2πiτy |yi j |(1−|yi j |) . (4.80)

According to the general recipe explained in Section 2.3, we define q = e2πiτy (which differs
from the naive definition as e2πiτ). Then the integrand behaves to leading order in a large
Imτy limit as qTrop with

Trop=
∑

i< j

si j|yi j|(1− |yi j|) . (4.81)

We assume without loss of generality that we are in the s-channel. Then only regions in the
yi-integration with Trop< 0 can contribute, since the integrand otherwise decays if we take
Imτy →∞. There are two identical such regions that touch along the diagonal, as depicted
in Figure 21, where we chose the gauge y4 = 0. Since the bottom and top of the cube are
identified, this should actually be thought of as one connected region. To make this manifest,
we will allow y3 to be negative. Then the region of positivity is characterized by the condition

−min(1− y1, 1− y2)< y3 <min(y1, y2) . (4.82)

This tells us that
y41 ⩽ 0 , y42 ⩽ 0 , y32 ⩽ 0 , y31 ⩽ 0 (4.83)

everywhere on this region. Both y12 and y34 have indefinite sign and hence we have to keep
two terms in the expansion of the theta-function. This yields the formula

Im AII =
1
2

∫

−→

dτy

τ2
y

∫ 1

0

dτx

∫

R

3
∏

i=1

dx i dyi q−2s y1(y32+1)−2t y21(1−y3)

×
�

�1− e2πiz21
�

�

−2s �
�1− e2πiz43

�

�

−2s
, (4.84)
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Figure 21: The two regions in the (y1, y2, y3)-space where the exponent Trop can be
negative. The picture is drawn for s = 1 and t = −1

2 . They should be viewed as one
region, since y3 is identified periodically.

where the region R is characterized by (4.83). We remark that this is very similar to the
expression for the annulus, see eq. (4.22). It only depends on x21 and x43, but not on x2 and
x1 separately. Thus we may set x1 = x3 = 0, say, and only integrate over x2 and x4. We also
observe that by definition

e2πiz21 = e2πi(x21+(τx+τy )y21) = e2πi((x21+τx y21)+τy y21) , (4.85)

and similarly for e2πiz21 . Since τx is real we may hence define xL = x2 + τx y21, without
affecting the measure. Similarly xR = x4 +τx y43. After this, the integrand depends no longer
on τx and we may integrate it out. Thus we now have

Im AII = −
1
2

∫

−→

dτy

τ2
y

∫ 1

0

dxL dxR

∫

R

3
∏

i=1

dyi q−2s y1(y32+1)−2t y21(1−y3)

×
�

�1− e2πi(xL+τy y21)
�

�

−2s �
�1− e2πi(xR+τy y43)

�

�

−2s
. (4.86)

The next steps are very similar to the open string case. We change variables in the yi-integration
according to

y1 =
t
s

yR−
tL

s
, y2 = yL +

t
s

yR−
tL

s
, y3 = −yR . (4.87)

We also integrate in the factor

1=

√

√ siτ
t(s+ t)

∫ ∞

−∞
dtR q−

1
2st(s+t) (stR−(s+2t)tL+2t(s+t)yR−st)2 , (4.88)
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which leads to

Im AII =
1

2
p

stu

∫

−→

dτy

(−iτy)
3
2

∫ 1

0

dxL dxR

∫

R
dtL dtR dyL dyR q−2tL yL−2tR yR−2P(tL,tR)

×
�

�1− e2πi(xL+τy yL)
�

�

−2s �
�1− e2πi(xR+τy yR)

�

�

−2s
, (4.89)

where P(tL, tR) is the same polynomial that appeared for the open string and which is given
by (4.26). We want to change the integration region R to R̃, that is characterized by the
inequalities

−s ⩽ tL ⩽ 0 , −s ⩽ tR ⩽ 0 . (4.90)

We again need to check that the exponent −2tL yL − 2tR yR− 2P(tL, tR) is nowhere negative on
the difference of the two regions, which is readily shown. We have the analogue identity to
(4.29), which reads

∫ ∞

−∞
dyR

∫ 1

0

dxR e−4πiτy tL yR
�

�1− e2πi(xR+τy yR)
�

�

−2s
(4.91)

=
i
τy

∫

0<Re zR<1

d2zR

�

�e2πizR
�

�

−2tR
�

�1− e2πizR
�

�

−2s
(4.92)

=
i

(2π)2τy

∫

d2ζR |ζR|−2tR−2|1− ζR|−2s (4.93)

= −
is2

4πτy

Γ (−tR)Γ (−s)Γ (−uR)
Γ (1+ s)Γ (1+ tR)Γ (1+ uR)

, (4.94)

where we set uR = −s− tR to make crossing symmetry manifest. From the first to the second
line we defined zR = xR+ τy yR, which leads to an integration region in the complex plane.
Thus we finally obtain

Im AII =
s4

32π2
p

stu

∫

−→

dτy

(−iτy)
9
2

∫ 0

−s
dtL

∫ 0

−s
dtR q−2P(tL,tR)

×
Γ (−tL)Γ (−s)Γ (−uL)

Γ (1+ s)Γ (1+ tL)Γ (1+ uL)
Γ (−tR)Γ (−s)Γ (−uR)

Γ (1+ s)Γ (1+ tR)Γ (1+ uR)
(4.95)

=
16πs4

15
p

stu

∫

dtL dtR P(tL, tR)
5
2

Γ (−tL)Γ (−s)Γ (−uL)
Γ (1+ s)Γ (1+ tL)Γ (1+ uL)

×
Γ (−tR)Γ (−s)Γ (−uR)

Γ (1+ s)Γ (1+ tR)Γ (1+ uR)
. (4.96)

This agrees with the result from unitarity (3.77) when we remember that AII = 2−5π4 t8 t̃8AII.

5 Stringy Landau singularities

We now want to explore somewhat more systematically all possible singularities of the amplitude
in the complex (s, t)-plane, even outside of the physically allowed kinematics. This will recover
all the Landau singularities, also known as normal and anomalous thresholds, that one expects
the amplitude to have from field-theory considerations.
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5.1 Landau equation in field theory

Before discussing this topic in string theory, let us recall how to analyze Landau singularities
[29–31] in quantum field theory, see, e.g., [24,49] for recent reviews. Here, we focus on the
one-loop case, where all Landau singularities can be solved analytically.

To make the analogy as close as possible, we would like to represent the box Feynman
integral

In⃗(s, t) =

∫

dDℓ

iπD/2

1
[ℓ2 + n1][(ℓ+p1)2 + n2][(ℓ+p1+p2)2 + n3][(ℓ−p4)2 + n4]

(5.1)

in terms of Schwinger parameters αi for i = 1,2,3,4. Here, ni are the squared masses of the
intermediate propagators, in the conventions of Figure 22. Recall that all external momenta
are incoming. Following a standard procedure, Schwinger parameters are introduced by
representing each propagator by

1

q2
j + n j

= i

∫ ∞

0

dα j e−i(q2
j+n j)α j . (5.2)

The Feynman iϵ is in principle needed for convergence of this integral, but we will suppress
it since for the purposes of identifying positions of possible singularities, it is not important
(but can be always restored by replacing n j → n j − iϵ). After using (5.2) on every propagator,
Wick rotation, integrating out the Gaussian integral in the loop momenta, and rescaling each
αi → 2πταi while keeping

∑4
i=1αi = 1, one arrives at

In⃗(s, t) =
1

(2πi)
D−8

2

∫ ∞

0

dτ

τ
D−6

2

∫ ∞

0

4
∏

i=1

dαi e2πiτVn⃗(α⃗)δ(
∑4

i=1αi − 1) , (5.3)

where

Vn⃗(α⃗) =
sα1α3 + tα2α4

∑4
i=1αi

−
4
∑

i=1

niαi . (5.4)

Note that at this stage we could just integrate out τ, giving rise to a more familiar Schwinger
(or Feynman) parametrization of the box integral, but we purposely kept it in the above form
to make the connection to string theory more transparent. Inclusion of a numerator in (5.1)
would only result in an additional polynomial in the integrand of (5.3) and shifting the powers
of τ, but does not affect Vn⃗. In the worldline formalism, Vn⃗ is physically interpreted as the
on-shell action obtained after localizing the path integral, and the αi ’s can be interpreted as
the moduli of a given graph topology.

Landau analysis simply asks when the above integral can lead to branch cuts. A divergence
can only happen when Vn⃗ = 0, since then the τ integral has a singularity (either at 0 or∞),
and moreover one cannot deform the αi-contour to avoid this singularity. This happens for
specific values of αi = α∗i for which

α∗i ∂αi
Vn⃗(α⃗

∗) = 0 , (5.5)

for i = 1,2,3,4. The branch ∂αi
Vn⃗ corresponds to the contour being pinched by roots of

Vn⃗ (pinch singularity), while α∗i = 0 comes from the fact that the endpoint of the contour
needs to stay fixed (endpoint singularity). Of course, both can happen at the same time. The
conditions (5.5) are known as the Landau equations. One also distinguishes between leading
and subleading Landau singularities, where all or only a subset of the ∂αi

Vn⃗ conditions are
imposed respectively. Another special case are second-type singularities, which happen when
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1
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n3

n1
1

2
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3

Figure 22: Field theory diagrams leading to Landau singularities in the string ampli-
tude. The numbers ni ∈ Z⩾0 label the mass square of the corresponding particle in the
field theory. Only the normal thresholds (right) are present in physical regions, and
only the normal and box anomalous thresholds (left) appear on the physical sheet.

∑4
i=1α

∗
i = 0. Because of homogeneity, the above conditions automatically imply vanishing of

Vn⃗ because

Vn⃗(α⃗
∗) =

4
∑

i=1

α∗i ∂αi
,Vn⃗(α⃗

∗) = 0 . (5.6)

Because of homogeneity, only 3 out of 4 Schwinger parameters are fixed by (5.5). To be more
precise, one should treat (α1 : α2 : α3 : α4) ∈ CP3 as being defined only projectively and
∑4

i=1αi = 1 is a particular fixing of the projective invariance. At any rate, this leaves us with
one net constraint imposed by (5.5), which puts one condition on the external kinematics (s, t).

Another interpretation of Landau equations (5.5) is as determining classical saddle points
of the action Vn⃗ (either in the bulk of the αi-integration or on its boundaries). In other words,
Landau singularities appear for special kinematic points where the diagram can be realized
as a classical scattering process. This is in perfect agreement with the loop-momentum space
formulation of Landau equations, in which one requires that all the internal momenta are
on their mass shell, q2

i = −ni, and that the sum of space-time displacements αiqi around the
loop sums to zero,

∑4
i=1αiqi = 0. Since in order to get to (5.3), we had to localize the loop

momentum on a Gaussian saddle, we can actually reconstruct its value on the solution of
Landau equations:

ℓ∗ = −
p1(α∗2+α

∗
3+α

∗
4) + p2(α∗3+α

∗
4) + p3α

∗
4

∑4
i=1α

∗
i

. (5.7)

For example, from here one sees that second-type singularities correspond to potential diver-
gences at infinite loop momentum.

The above physical interpretation automatically tells us that for a 2 → 2 scattering of
massless states, only normal thresholds (exchange of two intermediate particles) can lie within
a physical region, since any other configuration would require at least one kinematically
disallowed vertex.

At first glance, it might appear as if we only need to be concerned with solutions for which
α∗i ⩾ 0, since this defines the integration contour. However, it might also happen that the
contour needs to be first deformed in the complex directions to avoid a potential divergence
before encountering a pinch singularity somewhere in the complex planes. Hence, to classify
all potential singularities, one needs to allow for complex α’s. At one loop, it is known that
singularities on the physical sheet (connected to physical kinematics without crossing branch
cuts) only occur when αi ⩾ 0 [78], and hence we will pay attention to those in particular.
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Box anomalous threshold. The equations (5.5) are actually very simple to solve. It is
convenient to first organize the kinematics into the 4× 4 symmetric matrix

Yn⃗ = −







2n1 n1+n2 n1+n3−s n1+n4
n1+n2 2n2 n2+n3 n2+n4−t

n1+n3−s n2+n3 2n3 n3+n4
n1+n4 n2+n4−t n3+n4 2n4






, (5.8)

such that

Vn⃗(α⃗) =
1
2 α⃗
⊺ Yn⃗ α⃗

∑4
i=1αi

. (5.9)

Assuming that
∑4

i=1α
∗
i ̸= 0, the leading Landau equations can be therefore restated as the

matrix equation Yn⃗ α⃗
∗ = 0, which admits a solution if only if

detYn⃗ = 0 . (5.10)

This are the positions of the box anomalous thresholds with a particular assignment of the
internal masses n⃗. Let us initially assume that all ni are strictly positive, since massless cases
warrant a more careful discussion due to IR divergences.

Explicitly, the box anomalous threshold is located at

detYn⃗ = s2 t2 − 2(n2+n4)s
2 t − 2(n1+n3)st2 + (n2−n4)

2s2 + (n1−n3)
2 t2 (5.11)

+ 2[n2(n3−2n4) + n3n4 + n1(n2−2n3+n4)]st = 0 .

The Schwinger parameters on this solution are the null vector of Yn⃗ on the support of (5.10),
explicitly:

α⃗∗ =







st(n2+n3)− [s(n2−n4) + t(n1−n3)](n2−n3)
t(n1−n3)2+s(s(t−n4)+n2(n3−2n4−s)+n3(n4−2t)+n1(n2+n4−2(n3+t)))

st(n1+n2) + [s(n2−n4)− t(n1−n3)](n1−n2)
2s[sn2 − (n1−n2)(n2−n3)]






.

(5.12)
Recall that α⃗∗ only make sense up to an overall rescaling. Note that (5.10) generically has
multiple branches intersecting the real kinematic space (s, t) ∈ R2, but not all of them have
positive α’s. One can check that for any choice of the masses n⃗, the only solutions with α∗i > 0,
i.e., those on the physical sheet, have to lie in the quadrant s, t ⩾ 0, corresponding to unphysical
kinematics (recall that physically-allowed kinematics must satisfy stu> 0), see Figure 23 for
an example.

Triangle anomalous threshold. Similarly, we can determine positions of the triangle sub-
leading singularities by not varying one Schwinger parameter and instead setting it to zero.
Without loss of generality, let us set α∗4 = 0, see Figure 22. Repeating previous steps gives

detY[4][4] = 2s[sn2 − (n1−n2)(n2−n3)] = 0 , (5.13)

where the notation means we remove the column and row 4 before computing the determinant.
The corresponding α’s are given by

α⃗∗ =







−2sn2 + (n1−n2)(n2−n3)
s(n1+n2)− (n1−n2)(n1−n3)

(n1−n2)2

0






, (5.14)

up to projective invariance. It is not difficult to convince oneself that there are no solutions
with positive α’s.
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Figure 23: Four branches of the box Landau singularity (5.10) with n⃗ = (1, 3, 2, 4) in
blue. Physical regions are shown in orange, while the region carved out by imposing
positivity of α⃗∗ from (5.12) is contained in s, t ⩾ 0 and plotted in blue. This illustrates
that only one branch of the box anomalous threshold lies on the physical sheet, though
not in any physical region.

Normal and pseudo-normal thresholds. Finally, we are have singularities corresponding to
pairs of Schwinger parameters set to zero, e.g., α∗2 = α

∗
4 = 0. This gives

detY[24]
[24] = −

�

s− (
p

n1 +
p

n3)
2
� �

s− (
p

n1 −
p

n3)
2
�

= 0 . (5.15)

The first and second branch give the normal and pseudo-normal thresholds respectively. The
corresponding α’s are

α⃗∗ =







s−n1−n3
0

2n1
0






, (5.16)

from which we see that only the normal thresholds are on the physical sheet.

IR and Second-type singularities. We can now return back to the cases with massless
particles. Every time there are at least two adjacent vanishing masses,

ni = ni+1 = 0 , (5.17)

the Feynman integral (5.3) has a soft/collinear divergence in D ⩽ 4. At the level of Landau
singularities, they correspond are codimension-0 in the kinematic space, i.e., they are present
regardless of the value of the external kinematics (likewise, one encounters codimension-2
singularities at s = t = 0, where α’s lie on manifolds of saddles). Since here we focus on D = 10,
we do not need to delve further into the subtle discussion of IR divergences.

Last but not least, there are second-type singularities corresponding the particular solutions
where

∑4
i=1α

∗
i = 0. One can show that all of them are contained in the set stu= 0.
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5.2 Planar annulus

Let us return to the imaginary part of the planar annulus four-point function given by (4.17). It
gives a definition of the imaginary part of the amplitude for all real values of s and t, regardless
of whether they lie in the kinematically allowed regime. We will assume that the imaginary
part that is defined in this way corresponds to the imaginary part of the physical sheet.

For complex kinematics, the integral (4.17) does not converge, since it is either exponentially
growing or decaying for large values of Reτ. However, (4.17) can be easily analytically
continued, which rotates the τ-contour in the complex plane depending on the phase of
Trop. We will in the following focus on real kinematics, which already captures all possible
(anomalous) thresholds.

Since we can make q in the equation arbitrarily small, it is again a good idea to consider the
q-expansion of the integrand. Here, care has to be taken since zi j can possibly become small in
the integration region and hence terms such as qzi j in the expansion are not well-behaved. Thus,
we should first start by studying again the leading exponent as q→ 0, i.e., the tropicalization
of the integrand,

Trop= −s(1− z41)z32 − tz21z43 . (5.18)

In the following it will be useful to introduce the analogues of the field-theory Schwinger
parameters. Let us set

α1 = 1− z41 , α2 = z21 , α3 = z32 , α4 = z43 . (5.19)

They are of course not independent and satisfy
∑4

i=1αi = 1. In these variables

Trop= −
sα1α3 + tα2α4

∑4
i=1αi

. (5.20)

In general, the amplitude will have a singularity when a new term in the q-expansion has a
non-zero region in the Schwinger parameter space where the exponent is negative. This will
first happen at a particular point in α⃗= (α1,α2,α3,α4), which we call α⃗∗. For a term T in the
q-expansion, we have an associated tropicalization of the integrand TropT for q→ 0. Using the
constraint

∑4
i=1αi = 1, we can always homogenize TropT and assume that it is a homogeneous

rational function in the α’s, just like (5.4).
For a region forming in the interior of the integration region, i.e., for α∗i ⩾ 0, we have

∂αi
TropT (α⃗

∗) = 0 . (5.21)

Using the assumed homogeneity, this also implies that

TropT (α⃗
∗) =

4
∑

i=1

α∗i ∂αi
TropT (α⃗

∗) = 0 . (5.22)

If α⃗∗ lies instead on the boundary of the integration region, we only need to require that the
derivatives along the boundary vanish. Following QFT terminology, we call these equations
the leading and subleading Landau equations, respectively. The bottom line is, one recovers
exactly the same conditions for the position of possible discontinuities of the amplitude as in
Section 5.1.

Leading Landau singularities. Let us first consider the case where the singularity originates
from a point α⃗∗ in the interior. In this case, all the α’s are bounded from below by the distance
of the critical point to the boundary of the integration region. We may thus simply q-expand
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the theta-functions. We are interested what exponents of q appear in this expansion. It is easy
to see that the exponents appearing in the expansion of the theta function are

�

−i q
α1
2 −

1
8ϑ1(α1,τ)

�−s
=

∑

n+, n−∈Z⩾0

a(n+, n−, s)qn+α1+n−(1−α1) , (5.23)

where a(n+, n−, s) is a polynomial in s. It can then be seen that we can parametrize the
exponents that appear in a expansion of the integrand as

Tropn1,n2,n3,n4
= −

sα1α3 + tα2α4
∑4

i=1αi

+
4
∑

i=1

niαi . (5.24)

At this stage, the problem is equivalent to that studied in Section 5.1 for any choice of the
integers ni ∈ Z⩾0. In particular, we find that the planar amplitude has an infinite number of
anomalous thresholds lying on the physical sheet, but for unphysical kinematics s, t ⩾ 0. This
makes the analytic structure somewhat complicated, see Figure 24.

Let us discuss further the branch of (5.11) lying on the physical sheet. Let us notice that
the coefficient in (5.11) of t2 is

s2 − 2(n1 + n3)s+ (n1 − n3)
2 =

�

s− (
p

n1+
p

n3)
2
� �

s− (
p

n1−
p

n3)
2
�

, (5.25)

and similarly for the coefficient of s2 with (s, n1, n3)→ (t, n2, n4). The two zeros correspond to
the normal and pseudo-normal threshold of the bubble diagram and will be discussed below.
We observe that for large t, we can drop the terms of order t and 1 and only have to keep the
t2 term in (5.11). This tells us that the Landau singularity on the physical sheet asymptotes
s = (pn1 +

p
n3)2 for large t and t = (pn2 +

pn4)2 for large s.
In particular, the Landau singularity is contained in the region

(
p

n1 +
p

n3)
2 ⩽ s <∞ , (

p
n2 +

p

n4)
2 ⩽ t <∞ . (5.26)

This means that even though there are infinitely many Landau singularities labelled by n1, n2, n3
and n4, they can never accumulate at a finite point. There are accumulation points at infinity,
e.g., since there is a Z2-worth of curves asymptoting to s = (pn1 +

p
n3)2. For example all

Landau singularities on the physical sheet in the region 0⩽ s, t < 16 are plotted in Figure 24.

Subleading Landau singularities. One can easily repeat the same analysis for subleading sin-
gularities: the triangle anomalous thresholds, as well as normal and pseudo-normal thresholds.
Just as in QFT, only the normal thresholds at

s = (
p

n1 +
p

n3)
2, t = (

p
n2 +

p

n4)
2 (5.27)

appear on the physical sheet and in the physical regions, see Figure 24.

5.3 Other diagrams and closed string

Let us very briefly comment on the other cases that we have not discussed here. Their analysis
is very similar. In general, one considers the different terms TropT in the general expansion
(2.13). They are functions of the other moduli, in this case the positions zi on the worldsheet
(as well as Reτ for the closed string). For the closed string, Reτ as well as Re zi are irrelevant
for the analysis because they do not influence the real part of TropT . They can in fact always
be removed, similar to what we described in Section 4.6. Thus TropT is always a function
of three other moduli, which can be identified with the Schwinger parameters αi subject
to the constraint

∑4
i=1αi = 1. One then homogenizes TropT in αi and solves the Landau

equations (5.21), as well as the subleading Landau equations. The results are in line with the
field-theory expectations, i.e., one finds a family of normal and anomalous thresholds in all
allowed channels.
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Figure 24: All Landau singularities of the planar amplitude in the region 0⩽ s, t < 16:
normal thresholds in the s- and t-channel (green and orange), as well as box anoma-
lous thresholds (blue).

6 Physical properties of the imaginary parts

In this section we study properties of the imaginary parts of amplitudes derived in Section 4.
For concreteness, we mostly focus on the planar annulus contribution. If need be, analogous
analysis can be repeated for other topologies with almost identical steps.

6.1 Convergent integral representation

To summarize the results of Section 4, we found that the imaginary part of the planar annulus
amplitude admits the following integral representation:

Im Ap
an =

πN
60
Γ (1−s)2
p

stu

∑

n1⩾n2⩾0

θ
�

s− (
p

n1+
p

n2)
2
�

∫

Pn1,n2
>0

dtL dtR Pn1,n2
(tL, tR)

5
2

×Qn1,n2
(tL, tR)

Γ (−tL)Γ (−tR)
Γ (n1+n2+1−s−tL)Γ (n1+n2+1−s−tR)

, (6.1)

where N = 32 and Pn1,n2
is the following ratio of Gram determinants evaluated on the cut:

Pn1,n2
(tL, tR) = −

detGp1p2p3ℓ

detGp1p2p3

�

�

�

�

ℓ2=−n1, (p1+p2+ℓ)2=−n2

(6.2)

= −
1

4stu
det







0 s u n2−s−tL
s 0 t tL−n1
u t 0 n1−tR

n2−s−tL tL−n1 n1−tR 2n1






. (6.3)

One can show that the region of integration, defined by Pn1,n2
> 0 is an ellipse contained in the

region −s+n1+n2 ⩽ tL,R ⩽ 0 above the threshold s > (pn1+
p

n2)2 for a given term. Above,
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Figure 25: Plot of Im Ap
an(s, t) for few momentum transfers t in the s-channel, s > −t.

We multiply the function by sin(πs)2 in order to remove double poles at every positive
integer s. Dashed vertical lines indicate the values of s at which a new threshold
opens up.

Qn1,n2
are polynomials in all the kinematic variables, which encode the intricate patterns of the

string interactions allowed at a given mass level. The first couple of them are

Q0,0(tL, tR) = 1 , (6.4a)

Q1,0(tL, tR) = 2(−2stL tR− s2 tL + stL − s2 tR+ stR+ s2 t − 2st + t) . (6.4b)

The next polynomials for (pn1 +
p

n2)2 < 7 can be found in the ancillary file Q.txt.
Recall that it is often convenient to change the integration variables to (x , y) given by

tL/R =

Æ

∆n1,n2

2
p

s

�p
−ux ±

p
−t y

�

+
1
2
(n1 + n2 − s) , (6.5)

where
∆n1,n2

=
�

s− (
p

n1 +
p

n2)
2
� �

s− (
p

n1 −
p

n2)
2
�

. (6.6)

With this substitution, we simply have Pn1,n2
=
∆n1,n2

4s (1− x2 − y2), and the measure of each
integral in (6.1) becomes

πN
60
Γ (1−s)2
p

stu

∫

Pn1,n2
>0

dtL dtR Pn1,n2
(tL, tR)

5
2 (· · · )

=
πN

3840
Γ (1−s)2

s4
∆

7
2
n1,n2

∫

0<x2+y2<1

dx dy (1−x2−y2)
5
2 (· · · ) , (6.7)

with the rest of the integrand evaluated on the support of (6.5).
The advantage of the above form is that, in contrast with the moduli space integrals, (6.1)

is manifestly convergent. This is because the only potential singularity of the integrand can be
a simple pole coming from the Gamma functions Γ (−tL/R). Since {tL = 0} and {tR = 0} touches
the ellipse P(tL, tR)⩾ 0 only at the boundary, the integral still converges. In particular, it means
that (6.1) can be evaluated numerically without the need for additional analytic continuation.
A plot of this function in the s-channel kinematics was already given in Figure 3. To make this
result a bit more readable, we plot a few fixed-t slices in Figure 25 and fixed-angle in Figure 26.
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Figure 26: Plot of Im Ap
an(s, t) for few valued of scattering angles θ related to Mandel-

stam invariants by cosθ = 1+ 2t/s, multiplied by sin(πs)2.

6.2 Forward limit and total cross-section

In the forward limit, t → 0, the variables (3.68) both degenerate to

tL = tR =
1
2

�Æ

∆n1,n2
x + n1 + n2 − s

�

. (6.8)

In other words, the phase space becomes one-dimensional and is parametrized by a single
scattering angle between p2 and ℓ, equal to that between −ℓ and p3. In particular, it means
the integral loses the y-dependence, which can be now easily integrated out. The measure in
(3.71) becomes

∫

0<x2+y2<1

dx dy (1−x2−y2)
D−5

2 (· · · ) t→0
=
p
π
Γ (D−3

2 )

Γ (D−2
2 )

∫ 1

−1

(1−x2)
D−4

2 (· · · ) , (6.9)

where the prefactor on the right-hand side equals 5
16π in D = 10. Alternatively, in terms of the

original integration variables (tL, tR), we have

Pn1,n2
(tL, tR)

D−5
2

t→0
= 2
p
π
p
−t
Γ (D−3

2 )

Γ (D−2
2 )

Pn1,n2
(tL, tL)

D−4
2 δ(tL−tR) . (6.10)

Note that
p
−t cancels out the square root in the prefactor, so the amplitude remains finite in

the forward limit.
In addition, we also need to analyze the behavior of the polarization-dependent prefactor

t8, defined in (3.9). Recall that we can realize the forward limit by going to the frame

(p3,ε3, ta3) = (−p2,ε2, ta2) , (p4,ε4, ta4) = (−p1,ε1, ta1) , (6.11)

where the additional minus signs and complex conjugation arises because of our conventions
in which every particle is incoming. In this limit, we encounter contractions of the type
(Fi Fi)µν = pµi pνi εi·εi , and almost all terms vanish or cancel out, except for

t8(1234)
t→0
= trv(F1F2F2F1) + trv(F1F2F2F1)

= 1
2 s2ε1·ε1 ε2·ε2 . (6.12)

The significance of the forward limit is that, appropriately normalized, it computes the one-loop
total cross-section for scattering of two gluons as

σtot
g g∝

1
s ImAI

�

�

t=0∝ g4
s s Im AI

�

�

t=0 , (6.13)
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Figure 27: Total cross section of the planar annulus amplitude, proportional to
s Im Ap

an, normalized by sin(πs)2 in order to remove double poles (black). We set the
polarization and color dependence to 1. Contributions from the individual thresholds
are denoted with colors.

where in the second transition we used (6.12). Previous discussions of string-theory cross
sections include [79–81]. Here, we focus on the contribution coming from the planar annulus.
We plot this quantity, normalized by sin(πs)2 in order to remove double poles, in Figure 27.
Note that it contain an additional factor of s compared to Figures 25 and 26.

An interesting feature is that each threshold opens up very slowly. We explain this in
Section 6.6. At the energies plotted in Figure 27, the cross-section appears to be roughly linear
in s. Nevertheless, we caution the reader to not extrapolate this behavior to high energies,
since this would contradict the standard lore of the Regge behavior. We elaborate on this point
in Section 7.

6.3 Decay widths

As cross check of our analysis, we computed the double residues of the imaginary parts of the
amplitude directly as in Section 4.1. We can use the formal identity

Res
s=n

z−s =
π

(n− 1)!
δ(n−1)(z) , (6.14)

to localize the z1 and z3 integral. We already used it implicitly for n = 1 in (4.5). Following
similar steps gives

DRes
s=n

Im Ap
an = −

π2

2((n− 1)!)2

∫

⟲dτdz1 dz2 dz3 δ
(n−1)(z21)δ

(n−1)(z43)ϑ1(z32,τ)−t

×
�

z21z43

ϑ1(z21,τ)ϑ1(z43,τ)

�n

ϑ1(z41,τ)−tϑ1(z31,τ)n+tϑ1(z42,τ)n+t (6.15)

= −
π2

2((n− 1)!)2

∫

⟲dτdz2 ∂
n−1

z1
∂ n−1

z3

�

�

�z1=z2
z3=1

�

�

z21z43

ϑ1(z21,τ)ϑ1(z43,τ)

�n

× ϑ1(z31,τ)n+tϑ1(z42,τ)n+tϑ1(z32,τ)−tϑ1(z41,τ)−t
�

. (6.16)

The result is in general a polynomial of order n− 1 in t. The t-dependence captures the spin
dependence of the intermediate states. We could decompose the double residue in terms of
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Figure 28: Ratio between Im Ap
an(s,

s
2(cosθ − 1)) at fixed-angles θ extracted from

decay widths at integer s = n, and the analytic prediction from the right-hand side of
(6.20). The ratio approaching 1 at higher and higher energies indicates exponential
suppression of the imaginary part as ∼ e−Stree .

Gegenbauer polynomials, which would lead to the decay widths of the states with fixed spin.
For example, the coefficient of the maximal exponent tn−1 represents states on the leading
Regge trajectory and we have in particular the following simple formula

DRes
s=n

Im Ap
an

�

�

�

tn−1
= −

π2

2((n− 1)!)2

∫

⟲dτ
∫ 1

0

dz
�

ϑ1(z,τ)
2πη(τ)3

�2n
�

−∂ 2
z logϑ1(z,τ)

�n−1
. (6.17)

Except for the different choice of contour, this formula appeared before in [82]. It is difficult to
evaluate this integral for arbitrary n in closed form.

We have computed the double residues up to n = 14. They are tabulated in Appendix A
and ancillary file decaywidths.txt. We observe that they are numerically very close to the
expression

DRes
s=n

Im Ap
an ∼

1
4π2

Γ (t + n)
Γ (t + 1)Γ (n)

. (6.18)

In the cases n= 1, 2, 3, the t-dependence of this formula is exact (though the prefactors are
different from 1

4π2 ), but for higher values one finds small deviations. For example

DRes
s=14

Im Ap
an ∼ 3.98795 · 10−12(t + 1.00010)(t + 2.00070)(t + 3.00185)(t + 4.00077)

× (t + 4.99986)(t + 5.99963)(t + 7)(t + 8.00037)(t + 9.00014)

× (t + 9.99923)(t + 10.99815)(t + 11.99930)(t + 12.99990) . (6.19)

6.4 High-energy fixed-angle limit

We can use the decay widths as a proxy for studying the behavior of the imaginary parts in
various limits. The advantage of doing so is that the computation of decay widths is much
simpler than the full Im Ap

an, but it already captures some of its features.
In particular, let us use this method to read-off the behavior in the fixed-angle high-energy

limit in the s-channel, s→∞, t →−∞ with the ratio s/t fixed. Since we expect the amplitude
to be exponentially-suppressed, the asymptotic behavior should be reached even for reasonably
low energies (in contrast with the Regge limit). As a matter of fact, we can already use the
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Figure 29: Imaginary parts of the partial wave coefficients f j(s) for first few spins j.
We observe that spins up to j always dominate the imaginary part up to s ≲ j+1. A
given f j(s) has a double pole peak at a positive integer s = n only if n+ j is odd, with
the exception of (n, j) = (3,0).

empirical formula (6.18) to find at leading orders

Im Ap
an(s, t)∼ −

s

s
8πtu

sin(πt)
sin(πs)2

e−Stree as s,−t →∞ , (6.20)

where Stree is the tree-level on-shell action

Stree = s log(s) + t log(−t) + u log(−u) . (6.21)

The argument in the exponent matches the form predicted by Gross and Manes [32]. We
can verify this behavior numerically by plotting the ratio between the imaginary part of the
amplitude and the approximation (6.20) at a few scattering angles in Figure 28. Up to n = 14,
we find that the ratio approaches 1, thus verifying the expected behavior (6.20).

6.5 Low-spin dominance

The imaginary part of the partial wave coefficients f j(s) for exchange of spin j can be now
easily extracted. In the conventions of [83] we have

Im f j(s) = c′′D

∫ 1

−1

dz (1−z2)
D−4

2 G(D)j (z) Im Ap
an(s, t(z)) , (6.22)

where z = 1+2t/s is the cosine of the scattering angle, c′′10 =
1

786432π4 is a normalization constant,

and G(D)j (z) = 2F1(− j, j+D−3, D−2
2 ; 1−z

2 ) are the Gegenbauer polynomials in D dimensions.
Values of Im f j for j ⩽ 6 as a function of the energy s are plotted in Figure 29. Note that

this time we do not normalize by sin(πs)2 in order to see which spins dominate more clearly.
Recall that unitarity implies that Im f j(s)⩾ 0. We observe an interesting pattern we will refer
to as low-spin dominance.

From Figure 29 we can read-off that the scalar (spin j = 0) contributing dominates over
contributions from all the other spins (note the logarithmic scale) all the way up to s ≲ 1, where
it has a double pole. Similarly, going to higher and higher energies, only low spin contributions
give an appreciable contribution to Im f j(s). More concretely, keeping spins up to j seems to be
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enough until s ≲ j+1 in the range of energies plotted in the above figure. A version of low-spin
dominance was previously observed in field theory and tree-level string scattering, where only
spin-0 dominates across all energies [35,36], see also [37].

The pattern of divergences can be easily explained. First of all, simple poles are absent
because they would give rise to negative contributions to Im f j(s), thus violating unitarity. Since
we already know the imaginary part of the amplitude has at most double-poles and (6.22)
cannot introduce new singularities, Im f j(s) simply inherits the double poles at s = n visible in
Figure 29.

The double poles are absent whenever n+ j is even. This follow simply from the symmetry
under relabelling t →−n−t and simultaneously z3↔ z4 (before fixing z4) in (6.15). Under
this exchange, (6.15) changes by a factor of (−1)n+1. Further, Gegenbauer polynomials under
the same flip, translating to z → −z, satisfy G(D)j (z) = (−1) jG(D)j (−z). Hence the integrand

of (6.22) has parity (−1)n+ j+1 in z, meaning that all the coefficients of double poles at s = n
vanish if n+ j is even. In addition, we find that the double pole at (n, j) = (3, 0) also vanishes
in the space-time dimension D= 10, which can be verified by the direct computation given in
(A.3). Because of the approximate behavior of double residues from (6.18), the presence of
double poles at a given spin follows the same pattern as the tree-level partial wave coefficients
BD

n, j encountered in [2].
It is expected that a similar pattern will persist at higher genera and their resummation will

dampen the peaks in Figure 29 into Breit–Wigner distributions. It is presently not clear if this
dampening will preserve the low-spin dominance, since a self-consistent computation would
require a resummation of all-genus amplitudes.

6.6 Behavior near thresholds

Let us now study the rate at which a contribution from each new threshold at s = (pn1+
p

n2)2

opens up. This rate is related to the explicit prefactor∆
7
2
n1,n2

already pulled out of the integrand
in the representation (6.7).

We first note that if n1 = 0 and/or n2 = 0, the corresponding ∆n1,n2
contains two powers of

the threshold-expansion variable, e.g.,

∆n1,0 = (s− n1)
2 . (6.23)

Otherwise, when both n1 and n2 are non-zero, we have only one:

∆n1,n2
= 4

p

n1n2

�

s− (
p

n1 +
p

n2)
2
�

. (6.24)

Moreover, the explicit prefactor Γ (1−s)2 in (6.1) contains double poles at every positive integer
s, which modifies the discussion when either n1 = 0 or n2 = 0, but not both. Finally, in the
form (3.71) also contains an additional factor of s

2−D
2 = s−4, which is important near the s = 0

threshold. The bottom line is that we will have to consider these cases separately.
In addition to the prefactors, we also need to know the behavior of the integrand near

the thresholds, which is inherited through the s-dependence of tL/R as in (3.68). Near the
threshold, these momentum transfers are given by

tL = tR = −
p

n1n2 . (6.25)

Since the tree-level amplitudes entering (6.1) are evaluated in their physical regimes,
−s ⩽ tL,R ⩽ 0, the integrand remains bounded close to almost all thresholds, except those with
n1 = 0 and/or n2 = 0, where the integrand develops a simple or double pole because of the
Gamma functions in (6.1). Near those places, one also needs to analyse the polynomials Qn1,n2

which can have additional zeros.
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From the explicit results for Qn1,n2
, we found that within their domain of validity, they only

have zeros when n1 > 0 and n2 = 0 (recall we set n1 ⩾ n1), precisely at the value of s = n1
where this threshold opens up. For example,

Q1,0(tL, tR)
�

�

s=1 = −4tL tR , (6.26a)

Q2,0(tL, tR)
�

�

s=2 = 4tL tR(3tL tR− t − 1) , (6.26b)

Q3,0(tL, tR)
�

�

s=3 = −8tL tR

�

−6t tL tR+ 5t2
L t2

R− 9tL tR+ t2
L + t2

R+ t2 + 3t + 2
�

, (6.26c)

but the polynomials Q1,1 and Q2,1 is finite:

Q1,1(−1,−1)
�

�

s=4 = 4(4+ 3t)(8+ 3t) , (6.27)

as well as

Q2,1(−
p

2,−
p

2)
�

�

s=(
p

2+1)2 = 16
�

(86+ 60
p

2)t3 + (747+ 528
p

2)t2

+ (1983+ 1402
p

2)t + 2(775+ 548
p

2)
�

. (6.28)

In particular, all the polynomials Qn1,n2
remain finite at any higher threshold. We will assume

that this pattern extends to higher (n1, n2).
Let us first spell out the “generic” case when neither n1 nor n2 are zero and (pn1 +

p
n2)2

is not an integer, since it can be stated in the simplest way. In this case, the integrand of each
contribution is independent of x and y , which means we can simply integrate them out using

∫

0<x2+y2<1

dx dy (1−x2−y2)
D−5

2 =
2π

D− 3
, (6.29)

and put tL and tR to their threshold value (6.25), giving

Im Ap
an

�

�

s=(pn1+
p

n2)2
=
π2N(n1n2)

7
4 Γ (1−(pn1+

p
n2)2)2Γ (

p
n1n2)2

105(pn1+
p

n2)8Γ (1−
p

n1n2)2

×Qn1,n2
(−
p

n1n2,−
p

n1n2)
�

s− (
p

n1+
p

n2)
2
�

7
2 + reg+ . . . , (6.30)

where Qn1,n2
is evaluated at the threshold and we only display the leading contribution from

the new threshold, which exists on top of the regular terms coming from lower thresholds.
In the case when neither of n1 and n2 are zero, but (pn1+

p
n2)2 is an integer (implying that

also
p

n1n2 is an integer), one needs to take more care with the fact that the terms Γ (1−s)2 and
Γ (n1+n2+1−s−tL/R) give additional poles and zeros (the factors Γ (−tL/R) and Qn1,n2

remain
finite). The first gives an additional double pole enhancement compared to the previous case.
To analyze the effect of Gamma functions in the denominators, we need to expand tL/R to
subleading order:

tL/R = −
p

n1n2 + cL/R
n1,n2
(x , y)

�

s− (
p

n1+
p

n2)
2
�

1
2 + . . . , (6.31)

where

cL/R
n1,n2
(x , y) =

2(n1n2)
1
4

p
n1+
p

n2

�q

(
p

n1+
p

n2)2 + t x ±
p
−t y

�

. (6.32)

This tells us that each Γ (n1+n2+1−s−tL/R) gives a square root suppression of the threshold
behavior. The overall leading behavior is therefore enhanced by a single power of the expansion
parameter compared to the previous case and we have

Im Ap
an

�

�

s=(pn1+
p

n2)2
∝
�

s− (
p

n1+
p

n2)
2
�

5
2 + reg+ . . . . (6.33)
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Next we consider the case when n2 = 0 but n1 ̸= 0. Recall from (6.23) that there is an

overall ∆
7
2
n1,0 = (s− n1)7 already pulled out of the integral and the factor of Γ (1−s)2 gives an

additional double pole. To analyze the integrand, we also need to expand tL/R to the next
order:

tL/R =
s− n1

2
p

n1

�p

t+n1 x ±
p
−t y −

p

n1

�

+ . . . , (6.34)

which in particular means that tL/R→ 0 as we approach the threshold. The Gamma functions
Γ (−tL/R) therefore give a simple pole each, which is cancelled by a simple zero of the polynomials
Qn1,0. The factors Γ (n1+n2+1−s−tL/R) approach one and hence do not influence the power
counting. The total leading behavior is thus

Im Ap
an

�

�

s=n1
∝ (s− n1)

5 + reg+ . . . . (6.35)

Finally, we are left with the (n1, n2) = (0,0) term, which is a bit special because in ap-
proaching s→ 0+ one needs to also approach t → 0− to remain in the physical region, so the
answer depends on how we approach the threshold. For example, fixing the forward limit t = 0
first, we find that the imaginary part goes as a single power of s (as worked out in (3.52)).
Alternatively, at any non-zero t, the leading behavior is s2. The α′→ 0 limit (i.e., both s and t
taken to be small, with their ratio fixed) will be given in (6.51).

6.7 Low-energy expansion

In order to evaluate integrals of the type (6.1) in practice in the low-energy expansion, it is
useful to make a further change of variables:

(x , y) =
p

1− r

�

z + z−1

2
,
z − z−1

2i

�

, (6.36)

with the Jacobian 1
2iz . The integration over the unit disk here is translated to that over its

radius
p

1− r and z = eiθ related to the angular coordinate θ . Hence, after the change of
variables, the integration runs over r ∈ [0, 1] and unit circle in z. We also have

(1−x2−y2)
D−5

2 = r
D−5

2 . (6.37)

In general, starting from the expression (3.71) we thus have

ImA=
(π∆n1,n2

)
D−3

2

2i(4s)
D−2

2 Γ (D−3
2 )

∑

species
colors

polarizations

∫ 1

0

dr r
D−5

2

∮

|z|=1

dz
z

AL
0(s, tL)AR

0(s, tR) . (6.38)

At this stage, we can perform the z integral by picking up all the residues enclosed by the unit
circle.

Since we are interested in the low-energy expansion, only the massless cuts (n1, n2) = (0, 0)
can contribute and we specialize to this case now. In terms of the original variables (tL, tR), we
have

tL/R =
p

s
p

1− r
4

�p
−u(z + z−1)∓ i

p
−t(z − z−1)

�

−
s
2

, (6.39)

and ∆0,0 = s2, so the prefactor in (6.38) is − i
960π

3s3. In the case at hand, the amplitudes AL/R

are Veneziano amplitudes, which admit simple low-energy expansion. For instance, we have
(see, e.g., [84]):

Γ (1− s)Γ (−tL)
Γ (1− s− tL)

= −
1
tL

exp

�∞
∑

k=2

ζk

k

�

sk + tk
L − (s+tL)

k
�

�

. (6.40)
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z

z+L

z+R

−z+L

−z+R

0

Figure 30: The five singularities contributing to the evaluation of the phase-space
integral at z = (z+L , z+R ,−z+L ,−z+R , 0), responsible respectively for: massless tL-, tR-,
uL-, and uR-channel exchanges, as well as the contact terms. The red contour is at
|z|= 1. If the AL/R

0 had massive poles or branch cuts, they would similarly show up
within the unit disk.

The strategy will therefore be to expand the integrand in α′ and evaluate each term explicitly.
Since at each order, the integrand will be a rational function of the kinematic invariants, tL, tR,
uL, and uR, it suffices to know how to take residues around the values of z corresponding to
those poles and arond z = 0.

The roots of tL = 0 and tR = 0 are given by, respectively

z±L =
p

s
p
−u− i

p
−t

�

1−
p

r
1+
p

r

�± 1
2

, z±R =
p

s
p
−u+ i

p
−t

�

1−
p

r
1+
p

r

�± 1
2

, (6.41)

which satisfy

|z±L |= |z
±
R |=

�

1−
p

r
1+
p

r

�± 1
2

. (6.42)

This means only z+L,R are enclosed by the contour given that 0⩽ r ⩽ 1. Similarly, for the uL = 0
and uR = 0 singularities give rise to poles at z = −z±L,R and only −z+L/R lie within the unit circle.
Finally, residues around z = 0 can be picked up when the integrand has contact (rational)
terms in the kinematics. We illustrate it in Figure 30.

For example, in the low-energy expansion of the imaginary part of the planar annulus
amplitude, we only encounter linear combinations of the integrals

∫ 1

0

dr r
5
2

∮

|z|=1

dz
z

ta
L t b

R

�

�

�

�

(6.39)
, (6.43)

where a and b are integers bigger or equal to −1. We first focus on the contributions with
a, b ⩾ 0, i.e., contact interactions (or cuts of bubble diagrams). It is easy to show that they
can only lead to polynomial terms in s and t. To see this, let us call tL = βz + β/z + γ and
tR = βz + β/z + γ in (6.39) as a shorthand. The integral is invariant under simultaneous
replacements (β , z)→ (−β ,−z) as well as (β , z)→ (β , 1/z). This in particular means that the
result of the z-residue has to be a polynomial generated by the invariants

|β |2 = 1
16(1−r)s2 , β2 + β

2
= 1

8(1−r)s(s+ 2t) . (6.44)
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We therefore end up with a polynomial in s, t and integrals of the form
∫ 1

0 dr rn/2 for n ⩾ 5
which are finite. Similar analysis can be repeated for cases with either a = −1 or b = −1, i.e.,
cuts of triangles, where the result of (6.43) is still rational in s and t, but can have a simple
pole in s (which cancels with the prefactor in (6.1)). The case (a, b) = (−1,−1), corresponding
to cuts of boxes, is qualitatively different because it can produce logarithms. We study it more
closely in the following section.

6.7.1 Field-theory example

Let us illustrate the above manipulations on the case of the scalar massless box Feynman
integral in D dimensions. Here, we are tasked with computing

ImIbox(s, t) =
s

D−4
2

2π

∫

0<x2+y2<1

dx dy (1−x2−y2)
D−5

2

tL tR
, (6.45)

where the overall normalization is chosen for later convenience. After changing to (r, z) we
have

ImIbox(s, t) =
1
2

s
D−4

2

∫ 1

0

dr r
D−5

2
1

2πi

∮

|z|=1

dz
ztL tR

. (6.46)

The integral over z only picks up residues at z = z+L and z+R (the integrand is regular at z = 0
because of the absence of contact terms) and gives

ImIbox(s, t) = −2s
D−6

2

∫ 1

0

dr r
D−6

2

t + ru
. (6.47)

Recall we work in the s-channel with −s < t < 0, where r → 1 corresponded to vanishing of
the Gram determinant (where the loop momentum ℓ becomes collinear with at least one of the
external momenta) and r → 0 is the region dominating at the threshold s = 0.

The analytic properties of the imaginary part of the box diagram are obvious in this
representation: as s→ 0, the integral develops a logarithmic singularity coming from the region
r → 1, while in the limit t → 0, the integrand behaves as ∼ r

D−8
2 , giving a divergence in D⩽ 6.

Moreover, even at finite (s, t) there is a soft-collinear divergence in D ⩽ 4 coming from the
region r → 0. Finally, branch cuts of the integral appear when the root of the denominator at
r = −t/u approaches the integration contour (we already discussed the endpoint singularities).
This actually gives a straightforward way of evaluating the double discontinuity, where we only
need to study the difference between the integration contour evaluated at t ± iϵ as ϵ→ 0+,
giving

DisctDiscsIbox(s, t) = is
D−6

2

∮

r=−t/u

dr r
D−6

2

t + ru
= −

2π
u

�

−
st
u

�
D−6

2
, (6.48)

in the region s, t > 0. Similar logic can be applied to any other diagram in field theory.
At any rate, the expression (6.47) can be easily integrated and gives

ImIbox(s, t) = −
4s

D−6
2

t (D−4) 2F1(1, D−4
2 , D−2

2 ,−u
t ) , (6.49)

in agreement with the standard results, see, e.g., [85, App. B.4]. For us, the most interesting
case is D= 10, where we have

ImIbox(s, t)
�

�

D=10 = −
s2

u3

�

2t2 log
�

− s
t

�

− (s+ 3t)u
�

. (6.50)

This result will reappear multiple times in the leading α′-expansion of string amplitudes and
will be called simply ImIbox(s, t).
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6.7.2 Open string

Let us now apply the above technique to the low-energy expansion of open string amplitudes.
We only spell out the contribution to tr(ta1 ta2 ta3 ta4) since the remaining contributions can be
obtained without any difficulty, but would be lengthy to display. In the conventions of (4.76)
we have

ImAI = π
2 g4

s t8tr(ta1 ta2 ta3 ta4)
�

α′ Im[(N−4)Ibox(s, t)− 2Ibox(s, u)]
120

+
ζ2

180
α′3(N−3)s3 +

ζ3

1260
α′4s3((4N−22)s+ (N−2)t)

+
ζ2

2

50400
α′5s3

�

2(92N−219)s2 + (15−8N)st + (4N−9)t2
�

+
ζ5

15120
α′6s3

�

(38N−208)s3 + 6(2N−5)s2 t + 3(N−4)st2 + (N−2)t3
�

+
ζ2ζ3

5040
α′6s4

�

12(N−3)s2 + t((N−2)u+ t) + st
�

+
ζ2

3

30240
α′7s4

�

4(5N−28)s3 + 2(N+1)s2 t − 3(N−4)st2 − (N−2)t3
�

+
ζ3

2

5292000
α′7s3

�

70(176N−383)s4 + 25(9−11N)s3 t + 3(119N−347)s2 t2

+ 4(17−9N)st3 + 2(16N−33)t4
�

+
ζ7

831600
α′8s3

�

20(83N−452)s5 + 5(129N−368)s4 t + 2(148N−593)s3 t2

+ (137N−362)s2 t3 + 4(9N−29)st4 + 10(N−2)t5
�

+
ζ2

2ζ3

756000
α′8s4

�

60(20N−47)s4 + 5(66−23N)s3 t + 6(33−8N)s2 t2

− (N−6)st3 + 2(9−4N)t4
�

+
ζ2ζ5

37800
(N−3)α′8s4

�

70s4 − 5s3 t − 6s2 t2 − 2st3 − t4
�

+O(α′9)
�

(6.51)

+ non-planar contributions .

We checked that the planar annulus contribution (coefficient of N tr(ta1 ta2 ta3 ta4)) agrees with
the α′-expansion given in [34, Section 7.1].

6.7.3 Closed string

For closed-string type II amplitude in the conventions of (4.95), the α′-expansion is given by

ImAII =
π5 g4

s t8 t̃8

8

�

α′ Im[Ibox(s, t) + Ibox(s, u)]
60

+
ζ3

45
α′4s4 +

ζ5

1260
α′6s4(22s2 − tu)

+
ζ2

3

1260
α′7s5(12s2 + tu) +

ζ7

18900
α′8s4

�

260s4 − 25s2 tu+ 2t2u2
�

+
ζ3ζ5

4725
α′9s5

�

70s4 + 5s2 tu− t2u2
�

+O(α′10)
�

, (6.52)

which agrees with the previous computations for the low-energy expansion of the non-analytic
terms of superstring amplitudes [33, Theorem 4.1] spelled out in [34, Section 7.1], see also
[65,66,86] for prior work on α′-expansion.
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7 Conclusion

In this paper we found a representation of the imaginary part of string one-loop amplitudes that
is exact in α′. We derived both from unitarity cuts and directly from the worldsheet. We used
this representation to investigate various physical properties of genus-one string amplitudes.
There are a few interesting points to mention.

Regge limit. We found a tension with the usual claim of Regge growth in the amplitude (see,
e.g., [87]) that predicts that Ap

an ∼ s−1+t log(s), whereas the computed imaginary part in the
domain 0< s ≲ 14 is roughly st , see eq. (6.18) for a good empirical approximation (recall that
additional powers of s come after reinstating t8 ∼ s2). This indicates reading off the Regge
asymptotics from the numerics for s ≲ 14 is far too naive.

While we could not reach energies high enough to directly verify the Regge limit numerically,
one reason indicating that the behavior at s ≲ 14 has not reached its asymptotics is as follows.
We can look at the contributions to Im Ap

an from each individual threshold (n1, n2). Since we
know the expressions for those quantities for any s, we can compute that (setting t = 0 for
simplicity) they asymptote to, for the values we have computed,

Im Ap
an,0,0 ∼

π2

128
s−1 log−4(s) , (7.1a)

Im Ap
an,n1,0 ∼

π2

16n1
s−1 log−5(s) , 1⩽ n1 ⩽ 6 , (7.1b)

Im Ap
an,1,1 ∼

π2

64
s−1 log−5(s) , (7.1c)

Im Ap
an,2,1 ∼

π2

32
s−1 log−5(s) . (7.1d)

We hence conjecture that in general Im Ap
an,n1,n2

∼ const. × s−1 log−5(s) for some constant
depending on n1 and n2 (for all (n1, n2) ̸= (0,0)). The corrections to the above behavior are
suppressed by further powers of log−1(s), meaning that one would have to go to extremely
large values of s for each approximation to become accurate. Hence each of the individual
terms, and conceivably their sum, is consistent with the Regge behaviour. This is also indicated
from the fact that the empirical estimate (6.18) becomes less and less accurate with larger n,
cf. Appendix A, and hence it should not be used to directly extrapolate to the Regge limit. We
plan to return to the question of Regge asymptotics using more direct saddle-point methods on
the moduli space in the future.

Low-spin dominance. We also observed a small tension with the lore of low-spin dominance
[35,36]. Expanding the imaginary part of the amplitude into its partial-wave coefficients shows
that the amplitude (stripped of the polarization prefactor t8) is dominated by scalar exchange
for s < 1, but the partial waves of spins ≲ j−1 are of comparable size for s ∼ j. It would be
interesting to further study this effect in string theory at higher genera.

Possible generalizations. Our discussion of the various types of string theories and their
diagrams was not exhaustive. We could have considered heterotic strings, the Klein bottle
diagram, etc. We expect that the corresponding calculations are relatively straightforward to
carry out. One can also consider the string on a compactified background, such as R1,3 ×CY3.
While the massless tree-level amplitude in four dimensions is blind to the compactification, the
one-loop amplitude is sensitive to it. In particular, the particle spectrum in four dimensions

66

https://scipost.org
https://scipost.org/SciPostPhys.14.2.015


SciPost Phys. 14, 015 (2023)

detects the geometry of the internal manifold and correspondingly the cutting rules will include
the additional particles from the compactification.

There are many possible generalizations and directions to explore for the future. First of all,
it would of course be interesting to understand these computations more systematically at higher
genus. As we mentioned in Section 3, we can always compute the imaginary part of an amplitude
by a special contour winding around the non-separating divisor in the complexification MCg,n
(or Mg,nNS,nNR

×Mg,nNS,nNR
) and there should be a more abstract argument that shows that it

reproduces the expected holomorphic cutting rules.

Holomorphic cuts. Just as in field theory, in order to prove unitarity using contour defor-
mation arguments, it is the easiest to turn to holomorphic (as opposed to Cutkosky) cutting
rules [49]. To understand this statement, recall that the S-matrix can be decomposed as
S = 1+ iT , so unitarity SS† = 1 implies Im T = 1

2 T T † for identical external states. Crucially,
the right-hand side of this expression involves the dagger operator and hence is not purely
holomorphic. This incarnation of unitarity is difficult to see from the moduli-space perspective,
where we deal with purely holomorphic contour deformations. To fix this, one instead solves
iteratively for T † in terms of T , leaving us with the holomorphic version of unitarity:

Im T = −1
2

∞
∑

c=1

(−iT )c+1 . (7.2)

The price we need to pay is that we have to include more and more cuts at higher and higher
genus. Recall that each pairwise contraction of T -matrix elements instructs us to sum over all
the intermediate on-shell states and integrate over their phase space. In particular, this means
that for a given term to contribute at all, it needs to consist of physically-allowed subprocesses
only.

For example, in the case of the genus-one four-point amplitude of massless external states
we have, schematically,

ImA12→34
1 = 1

2

∑

∫

56

A12→56
0 A56→34

0 , (7.3)

where Ain→out
g denotes the genus-g amplitude and the sum-integral goes over all species,

polarizations, colors, degeneracies, etc. of the intermediate states 5 and 6 (we ignored one-
particle exchanges that give rise to delta-function terms only). Note that the lack of conjugation
of A56→34

g (in comparison with Cutkosky) is perfectly consistent with the aforementioned fact
that no complex-conjugation is needed because no further propagators can go on-shell after
the first cut. The simplest situation in which at least two simultaneous holomorphic cuts are
needed occurs for the genus-one six-point amplitude of massless states, where

ImA123→456
1 = 1

2

∑

∫

78

A12→78
0 A378→456

0 + perm

− i
2

∑

∫

789

A12→78
0 A38→49

0 A79→56
0 + perm . (7.4)

The first line contains the familiar normal thresholds in all possible channels. In the second
line, the triangle anomalous thresholds contribute, where three constituent 2→ 2 amplitudes
are glued together with two cuts to form the overall 3→ 3 process with three on-shell legs.
Kinematic support of this term can be determined using the same techniques as in Section 5.1.
More complicated unitarity equations occur at higher multiplicity and genus. It would be
interesting to prove the existence of these contributions directly from the worldsheet.
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Real part of the amplitude. Perhaps most intriguing is the possibility to extend the techniques
explored in this paper to the real part of the amplitude. The full integration contour admits a
Rademacher expansion in terms of infinitely many circles such as those in Figure 1 that allows
for a convergent closed form expression of the full amplitude. We plan to return to this problem
in the future [16].
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A Decay widths

The imaginary part of the first few double residues of the planar annulus amplitude are

DRes
s=1

Im Ap
an =

π2

420
, (A.1)

DRes
s=2

Im Ap
an =

π2(t + 1)
420

, (A.2)

DRes
s=3

Im Ap
an =

10883π2(t + 1)(t + 2)
8981280

, (A.3)

DRes
s=4

Im Ap
an =

17π2(t + 2)
�

480201t2 + 1920804t + 1440704
�

19926466560
, (A.4)

DRes
s=5

Im Ap
an =

π2

9729720000000

�

�

988083963+ 4425000
p

5
�

t4

+
�

9880839630+ 44250000
p

5
�

t3

+
�

34536479825+ 175675000
p

5
�

t2

+
�

49171903750+ 325250000
p

5
�

t

+ 23455600625+ 221875000
p

5
�

. (A.5)

Higher decay widths up to n= 14 can be found in the ancillary file decaywidths.txt.
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