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Abstract

We use deep neural networks to machine learn correlations between knot invariants in
various dimensions. The three-dimensional invariant of interest is the Jones polynomial
J(q), and the four-dimensional invariants are the Khovanov polynomial Kh(q , t ), smooth
slice genus g , and Rasmussen’s s -invariant. We find that a two-layer feed-forward neural
network can predict s from Kh(q ,−q−4) with greater than 99% accuracy. A theoretical
explanation for this performance exists in knot theory via the now disproven knight
move conjecture, which is obeyed by all knots in our dataset. More surprisingly, we find
similar performance for the prediction of s from Kh(q ,−q−2), which suggests a novel
relationship between the Khovanov and Lee homology theories of a knot. The network
predicts g from Kh(q , t ) with similarly high accuracy, and we discuss the extent to which
the machine is learning s as opposed to g , since there is a general inequality |s | ≤ 2g .
The Jones polynomial, as a three-dimensional invariant, is not obviously related to s
or g , but the network achieves greater than 95% accuracy in predicting either from
J(q). Moreover, similar accuracy can be achieved by evaluating J(q) at roots of unity.
This suggests a relationship with SU(2) Chern–Simons theory, and we review the gauge
theory construction of Khovanov homology which may be relevant for explaining the
network’s performance.
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1 Introduction

Knots and links1 are defined most naturally as embeddings of disjoint circles S1 in a three-
dimensional ambient space, often taken to be S3 or R3. However, the numerous isotopy
invariants associated with a knot may be more appropriately defined in two, three, or four
dimensions.2 While a completely dimension independent theory of knots and their invari-
ants is currently out of reach, progress has been made in relating invariants which are naïvely
defined in different dimensions.

Perhaps the most famous example of such a relationship involves the Jones polynomial
J(q) of a knot, which is a Laurent polynomial in q with integer coefficients. The original
definition by Jones [1,2] is intrinsically two-dimensional, as J(q) is computed by the trace in
a Hecke algebra of a braid representative, which is a two-dimensional projection of the knot
(a knot diagram) that has been cut open. However, soon after, Witten discovered [3] that
the evaluation of J(q) at a specific root of unity, q = e2πi/(k+2), is equal to the appropriately
normalized expectation value of a fundamental representation Wilson loop operator along the
knot in three-dimensional Chern–Simons gauge theory on S3 with gauge group SU(2) and
integer coupling constant k. This intrinsically three-dimensional perspective on J(q) led to a
deeper understanding of various objects in both knot theory and quantum field theory, and
in some sense the problem of finding this three-dimensional perspective in the first place was

1In this work, we will focus mostly on knots, though much of the discussion to follow will apply to links as
well.

2Examples of invariants for each of these dimensions are crossing number, hyperbolic volume, and smooth slice
genus, respectively. There are also physics inspired invariants which are naturally defined in five or six dimensions,
some of which will be important for our discussion.

2

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021


SciPost Phys. 14, 021 (2023)

one of the greatest mysteries about the Jones polynomial.3

In a later development, Khovanov showed [4] that J(q) may be categorified. What this
means is that there exists a Z×Z-graded homology theory H(L), known as Khovanov homol-
ogy, associated to a link L, for which the graded Euler characteristic is J(q). More precisely,
there is a finite decomposition

H(L) =
⊕

m,n
Hm,n(L) , (1.1)

where Hm,n(L) are vector spaces over Q,4 with m ∈ Z and n ∈ 2Z+ |L|, where |L| denotes the
number of components in L. Then J(q) is given by

(q+ q−1)J(q2) =
∑

m,n
Hm,n(L)̸=0

dimHm,n(L)(−1)mqn . (1.2)

The original definition of H(L), as explained succinctly in [5], is again intrinsically two-
dimensional. Just as with J(q), H(L) is computed using a two-dimensional projection of the
link, and the main technical challenge in [4] is to show that it is actually an invariant (i.e.,
independent of the chosen projection).

Despite its two-dimensional definition in [4], there are intimations that H(L) has a higher-
dimensional interpretation, just as J(q) does. One of the most direct hints appears in the
work of Rasmussen [6], who showed that for a knot K the homology H(K) contains enough
information to extract an even integer s (the aptly named “s-invariant” of K) whose magnitude
supplies a lower bound for the smooth slice genus g:

|s(K)| ≤ 2g(K) . (1.3)

The smooth slice genus of a knot K is the least integer g such that there exists a smoothly
embedded orientable surface Σ ⊂ D4 with K = ∂Σ ⊂ ∂ D4 = S3. In this case Σ is called a slice
surface for the knot K , and due to the fact that slice surfaces are embedded in the disk D4, the
invariant g is intrinsically four-dimensional. More generally, linear transformations between
H(L) and H(L′) can be associated with link cobordisms: properly embedded orientable sur-
faces Σ ⊂ S3 × I with ∂Σ = L ⊔ L′ ⊂ S3 × ∂ I . Upon concatenating cobordisms, the associated
linear transformations simply compose. (Rasmussen’s arguments make use of the fact that a
punctured slice surface for L can be viewed as a cobordism between L and the unknot.) This
strongly suggests that H(L) has another definition which is natural in four or higher dimen-
sions. Such a definition was proposed by Witten [7], who constructed a candidate for H(L)
as the Hilbert space of a certain five-dimensional gauge theory.5

While the Jones polynomial is a success story of the general program of freeing invariants
from their dimension dependent definitions, the situation with Khovanov homology, the s-
invariant, and the slice genus remains unclear. In particular, the connection between H(L)
and s described by Rasmussen is not entirely geometric, which makes it difficult to assign a
particular dimension to the definition of s even if we assume H(L) is a natural four- or five-
dimensional invariant. It is therefore worthwhile to understand what relationships, if any,
exist beyond the obvious ones between J(q), H(L), s, and g. In addition to uncovering new
structure in physics, finding different perspectives on these objects could also be helpful in
addressing important questions in pure mathematics. One such outstanding question is the

3Indeed, Witten wrote [3] that “the challenge of the knot polynomials has been to... learn what it is that is
three dimensional about two dimensional conformal field theory.”

4Khovanov homology may be defined more generally over other rings and fields. Indeed, Khovanov’s original
definition was over the ring Z[c], where c has degree two.

5Actually, the five-dimensional theory in question is not ultraviolet complete. This fact is discussed at length
in [7], and a more powerful formulation in six dimensions is proposed. There are also other physics-based proposals
for Khovanov homology [8–10], but we will focus on the approach described in [7].
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smooth four-dimensional Poincaré conjecture (SPC4), which asserts that any manifold that is
homotopy equivalent to S4 is also diffeomorphic to S4. Because (1.3) informs us that g must
be positive whenever s ̸= 0, [11] develops a strategy for constructing exotic four-spheres.
Techniques for producing potential counterexamples to SPC4 are also proposed in [12], which
rely on showing that certain topologically slice knots are smoothly slice.6

A powerful method for establishing relationships between knot invariants has emerged
recently in the form of deep neural networks [13, 14]. The rough idea is to use a dataset
to train a universal function approximator to predict one knot invariant from another. Such
techniques have been applied fruitfully in knot theory due to the enormous amount of data
available on knot invariants, and more general machine learning explorations have yielded
new perspectives on the unknotting problem [15] and the volume conjecture [16].7,8

The purpose of this paper is to employ these deep neural network techniques to extract
subtle correlations between J(q), H(L), s, and g, with the broader goal of understanding the
properties of each invariant that are surprising from a dimensional perspective. We find strong
correlation between properties of H(L) and s, partially explained by the so-called knight move
conjecture in knot theory.9 Another correlation points toward a novel relationship between a
specialization of Khovanov homology and the s-invariant, similar to (but distinct from) the
standard passage through Lee homology [6]. Perhaps more surprisingly, we discover large
correlation between J(q) or evaluations at roots of unity of J(q) and the invariants s and g.
We do not know of a conjecture in knot theory which would explain this, and the physical
picture is also unclear. We may phrase this issue as a question, following [3]: what is it that is
four-dimensional about the Jones polynomial?10

Four sections follow. In Section 2, we review the two-dimensional construction of Kho-
vanov homology and Rasmussen’s construction of the s-invariant through Lee homology. This
will aid our analysis of the mysterious correlation between an unusual specialization of H(L)
and s. In Section 3, we briefly review the gauge theoretic ideas of [3,7] which are relevant for
our speculations concerning what higher dimensional information is contained in the Jones
polynomial. In Section 4, we recall some standard facts about neural networks and give an
overview of our experiments and results in extracting correlations among knot invariants. We
conclude in Section 5 with a discussion and speculate on the possible knot and gauge theoretic
explanations of our results.

2 Khovanov homology and the s-invariant

2.1 Khovanov homology

In what follows, let D be a diagram of the link L. Then each crossing of D can be smoothed in
one of two different ways, which we call the 0– and 1–smoothings, respectively (see Figure 1).

6If Σ is a locally flat disk properly embedded in D4 it is called a topologically slice disk, and K = ∂Σ ⊂ ∂ D4 is
a topologically slice knot. A knot is smoothly slice when its slice genus is zero.

7One of the main surprises in [14, 16] is that a form of the volume conjecture holds approximately for many
knots even for the fundamental representation Jones polynomial. The results of [14,16] could have been partially
anticipated from the analytically continued Chern–Simons theory by physicists familiar with the main ideas of [17].
By contrast, we do not know of a physical explanation for the results we find here, even with the apparently most
relevant work [7] in mind. We will comment further on this issue later.

8Concurrent with this paper, machine learning methods were applied to motivate a theorem relating the sig-
nature, slope, injectivity radius, and volume of hyperbolic knots [18,19].

9Although a counterexample to the knight move conjecture is presented in [20], the statement holds for knots
quite broadly and can in fact be proven for certain classes of knots.

10Anticipated in [17,21], discussed in [7], and explained in greater detail in [22], there is a clear sense in which
J(q) is the result of a four-dimensional gauge theory calculation. But, as we will discuss, this statement alone does
not explain our findings.
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Suppose that D has n+ positive crossings and n− negative crossings and that we fix an ordering
on the combined set of n = n+ + n− crossings. Then for each vertex v ∈ {0, 1}n of the n–
dimensional cube [0, 1]n we define a total smoothing Dv by applying the smoothing specified
by the k-th coordinate of v to the k-th crossing of D. After applying these smoothings the
resulting diagram Dv will be a family of disjoint embedded circles in the plane of projection.
Define s(v) to be the number of connected components of Dv , and let r(v) denote the sum of
the components of v, i.e., the number of 1–smoothings performed on D to obtain Dv . Now let
V be a graded Q–vector space with basis {v+,v−}, where deg v+ = 1 and deg v− = −1. For
each total smoothing Dv define the vector space Vv = V⊗s(v){r(v) + n+ − 2n−}. Here, for a
given graded vector space W , we let W{k} denote the graded vector space obtained by shifting
the gradings of elements of W by k. Moreover, to each component of Dv we associate one of
the tensor product factors of Vv via some one-to-one correspondence.

1-smoothing0-smoothing

Figure 1: Two smoothings of a crossing.

Now, suppose that v = {v1, . . . , vn} and v′ = {v′1, . . . , v′n} are vertices in {0, 1}n that agree
in all but their j-th coordinates, where v j = 0, v′j = 1, and vi = v′i for i ̸= j. It follows then that
the sequences of smoothings used to obtain Dv and Dv′ differ only at the j-th crossing. If e is
the edge of the cube [0,1]n connecting v and v′, then we associate an edge map ϕe : Vv → Vv′

to e as follows. First, if changing the smoothing performed at the j-th crossing from a 0–
smoothing to a 1–smoothing results in a pair of circles of Dv merging into a single circle, then
on the corresponding tensor product factors of Vv we define the map ϕe as

v− ⊗ v− 7→ 0 , v+ ⊗ v+ 7→ v+ ,
v− ⊗ v+ 7→ v− , v+ ⊗ v− 7→ v− .

(2.1)

On the other hand, if changing the smoothing performed at the j-th crossing from a
0–smoothing to a 1–smoothing corresponds to a single circle of Dv splitting into two circles,
then we define ϕe on the associated tensor product factors of Vv as

v− 7→ v− ⊗ v− , v+ 7→ v+ ⊗ v− + v− ⊗ v+ . (2.2)

The map ϕe is then defined to be the identity map on the unaffected tensor product factors
of Vv . Defined in this way, it is not difficult to show that the maps ϕe commute around any
2–dimensional face of the cube [0,1]n.

We can now define the Khovanov chain complex C(D) = (Ck(D), dk) associated to the
diagram D, with chain groups

Ck(D) =
⊕

r(v)=k+n−

Vv , (2.3)

and differential dk : Ck(D)→ Ck+1(D) given by

dk =
∑

εeϕe . (2.4)

The sum in (2.4) is taken over all edges joining pairs of vertices v and v′, with r(v) = k+ n−
and r(v′) = r(v)+1, and the signs εe ∈ {−1,1} are chosen so that the squares of the resulting

5

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021


SciPost Phys. 14, 021 (2023)

differentials are zero (such a choice of the εe is always possible). Elements of Ck(D) inherit a
grading from the vertex vector spaces Vv , which we refer to as the quantum grading, and we
define the homological grading of an element of Ck(D) to be k. It can then be checked that the
differentials dk preserve the quantum grading of elements of Ck(D), but increase their homo-
logical grading by 1. The homology H(L) of the resulting chain complex C(D) = (Ck(D), dk)
is therefore bigraded, with gradings induced by the homological and quantum gradings on
C(D). This homology H(L), called the Khovanov homology of L, was first defined in [4],
where Khovanov showed that up to bigrading-preserving isomorphism it only depends on the
underlying isotopy class of the link L. For a knot K the homological grading of H(K) takes
values in Z, while the quantum grading values are all odd integers. It is often convenient to
express the Khovanov homology of a knot or link in terms of its Poincaré series, which is a
Laurent polynomial defined by

Kh(L; q, t) =
∑

i, j

dim(Hi, j(L))t iq j , (2.5)

where Hi, j(L) denotes the subspace of H(L) consisting of all elements with homological grad-
ing equal to i and quantum grading equal to j. We refer to Kh(L; q, t) as the Khovanov poly-
nomial of L.

2.2 Lee homology and Rasmussen’s s-invariant

In [23], Lee defined a modification of this homology theory, by constructing a chain complex
with the same chain groups Ck(D) as Khovanov’s original theory, but with modified edge maps
ϕ′e : Vv → Vv′ . When the edge e corresponds to the merging of two circles the mapϕ′e is defined
on the affected tensor product factors as

v− ⊗ v− 7→ v+ , v+ ⊗ v+ 7→ v+ ,
v− ⊗ v+ 7→ v− , v+ ⊗ v− 7→ v− .

(2.6)

When e corresponds to a circle being split, the edge map ϕ′e is defined by

v− 7→ v− ⊗ v− + v+ ⊗ v+ , v+ 7→ v+ ⊗ v− + v− ⊗ v+ . (2.7)

Notice now that the resulting differential dk
Lee : Ck(D) → Ck+1(D) is no longer grading-

preserving, but is still non-decreasing in the quantum grading. As a result of this, we can
define a filtration on Ck(D), which is a nested sequence of subspaces

{0}= F nCk(D) ⊆ F n−1Ck(D) ⊆ . . . ⊆ F mCk(D) = Ck(D) , (2.8)

where F jCk(D) is defined to be the space of all elements of Ck(D) with quantum grading
greater than or equal to j. Note then that dk

Lee(F
jCk(D)) ⊆ F jCk+1(D) for all j and k, and

hence we obtain a filtered chain complex CLee(D) = (Ck(D), dk
Lee).

The filtration on CLee(D) gives rise to a spectral sequence, whose E1 page is the ordinary
Khovanov homology H(L), and whose E∞ page gives the homology HLee(L) of the chain
complex CLee(D). Lee [23] showed that for a knot K , the homology HLee(K) is isomorphic to
Q⊕Q. Rasmussen [6] then proved that these Q–summands both have homological grading
zero, and have quantum gradings s ± 1 for some s ∈ 2Z. This s is an invariant of the knot K ,
called the Rasmussen s-invariant.

The Lee spectral sequence gives rise to the following important corollary: for any knot K ,
the Khovanov polynomial can be factored as

Kh(K; q, t) = qs(q+ q−1) +
∑

ℓ≥1

f2ℓ(q, t)(1+ tq4ℓ) , (2.9)
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for some Laurent polynomials f2ℓ ∈ N[q±1, t±1] with positive coefficients, where s is the Ras-
mussen s-invariant of the knot. The so-called knight move conjecture posits that f2ℓ(q, t) = 0
for all ℓ > 1. Although the conjecture is known to be false — Manolescu and Marengon [20]
present a counterexample by way of a diagram with 38 crossings — it is known to hold for
alternating [24] and quasi-alternating [25] knots, knots with unknotting number less than or
equal to two [26], and homologically thin knots [6].11

In the case of homologically thin knots (2.9) implies that the Khovanov homology is entirely
determined by the Jones polynomial and the s-invariant. Lee proved that alternating knots are
homologically thin, and Rasmussen showed that for alternating knots the s-invariant is equal
to the classical signature σ. Hence the Khovanov homology of alternating knots is entirely
determined by the signature σ and Jones polynomial J(q).

2.3 Rasmussen’s s-invariant and the slice genus

In addition to proving that s is a knot invariant, Rasmussen also showed that it provides the
lower bound on the slice genus of a knot given in (1.3). To see why this is, let Σ ⊂ S3× I be a
smoothly embedded surface with ∂Σ= L ⊔ L′, where L ⊂ S3×{0} and L′ ⊂ S3×{1} are both
links. After a small perturbation of Σ, we may assume that the projection map h : S3 × I → I
restricts to a Morse function h|Σ : Σ → I . Let Lt := h|−1

Σ (t) = Σ ∩ (S
3 × {t}) for all t ∈ I .

Then Lt will be a non-singular link embedded in S3 × {t} for all but finitely many t ∈ I ,
which correspond to the critical points of the Morse function h|Σ. Furthermore, if we select a
projection map π : S3→ S2, then π induces a projection map πt : S3 × {t} → S2 for all t ∈ I .
After another small perturbation we may assume that Dt := πt(Lt) is a regular link diagram
of Lt in S2 for all but finitely many points 0< t1 < t2 < · · ·< tm < 1.

Starting at t = 0 and moving up, we see that between any two values t i and t i+1 the
diagram Dt changes only by isotopy in S2. When passing any t i value, the diagram Dt changes
in one of the following ways:

1. By applying a single Reidemeister move to the diagram Dt .

2. By adding a small circle that is disjoint from the rest of the diagram (corresponding to a
local minimum of the Morse function h|Σ).

3. By removing a small circle that is disjoint from the rest of the diagram (corresponding
to a local maximum of the Morse function h|Σ).

4. By performing a saddle surgery to to the diagram (corresponding to a saddle point of
the Morse function h|Σ).

Then by setting s0 = 0, sm = 1, and selecting points s1, . . . , sm−1 which satisfy
tk < sk < tk+1, we may cut Σ at each of the heights sk, thereby splitting Σ into a union of
elementary cobordisms Σ = Σ1 ∪Σ2 ∪ · · · ∪Σm, where each Σi contains precisely one of the
singular points t i . Note that for each k the boundary of Σk splits as ∂Σk = Lsk−1

⊔ Lsk
, and

to each Σk Rasmussen associates a map φk : HLee(Lsk−1
)→HLee(Lsk

) on the Lee homology of
its boundary components. Each of these maps is an isomorphism, and to the full cobordism
Σ Rasmussen defines an isomorphism φΣ : HLee(L) → HLee(L′) given by the composition
φΣ = φm ◦ · · · ◦φ2 ◦φ1.

Although each φk is an isomorphism, they behave differently with respect to the induced
filtration on their respective Lee homology. When the singular level tk corresponds to per-
forming a single Reidemeister move on the diagram Dsk−1

, the map φk is a filtered map of

11Homologically thin knots are knots K for which all nontrivial Khovanov groups Hi, j(K) satisfy
j − 2i ∈ {n − 1, n + 1} for some integer n. In fact, for such knots j − 2i = s ± 1, where s is the Rasmussen
s-invariant.
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degree zero. On the other hand, when tk corresponds to adding or removing a small circle to
the diagram Dsk−1

, the map φk is a filtered map of degree one. Finally, φk will be filtered of
degree −1 whenever tk corresponds to performing a saddle surgery on the diagram. It follows
then that the map φΣ will be filtered of degree v − e = χ(Σ), where v is the number of local
maximum and minimum points in Σ, e is the number of saddle points, and χ(Σ) is the Euler
characteristic of Σ.

Suppose now that K ⊂ S3 is a knot, and that F is a slice surface for K of genus gF . In other
words, F is a compact oriented surface, smoothly embedded in D4, with ∂ F = K . By removing
a disk from F , we obtain a cobordism Σ between K and the unknot, which induces a filtered
map φΣ of degree χ(Σ) = χ(F) − 1 = −2gF . However, as HLee(K) ∼= Q ⊕ Q is supported
at quantum gradings s ± 1, while HLee(⃝) ∼= Q ⊕Q is supported at quantum gradings ±1,
it follows that degree(φΣ) = −2gF ≤ −s. By repeating the same calculation with the mirror
image of K (and observing that taking them mirror image of a knot changes the s-invariant by
a sign), we obtain the bound in (1.3).

3 Gauge theory and knot invariants

There are well-known gauge theory constructions for some of the knot invariants under consid-
eration, and it will be useful for us to review them. To begin, we discuss the three-dimensional
Chern–Simons [3] and four-dimensional super-Yang–Mills [7,21,22] pictures of J(q). We also
briefly review the five- and six-dimensional pictures of H(L) from [7].

3.1 3d Chern–Simons theory

Let us recall how the Jones polynomial arises in Chern–Simons theory [3]. The Chern–Simons
action is

SCS(A) =
k

4π

∫

M
tr
�

A∧ dA+
2
3

A∧ A∧ A
�

, (3.1)

where M is a three manifold and the one-form A is a g valued connection, with g the Lie
algebra of the gauge group G. The Chern–Simons level k is integer quantized to ensure single
valuedness of eiSCS under large gauge transformations. Chern–Simons theory is a topological
quantum field theory, meaning that correlation functions are independent of the metric on M .
The operators of interest are Wilson loops:

UR(γ) = trR P exp

�

∮

γ

A

�

, (3.2)

where R identifies a representation of the gauge group G and P denotes path ordering. Taking
M to be S3, γ to be a knot K embedded as S1 ⊂ S3, and G = SU(2), the colored Jones
polynomial is the unknot normalized vacuum expectation value of the Wilson loop operator:

Jn(K; q = e2πi/(k+2)) =
〈Un(K)〉
〈Un(⃝)〉

, (3.3)

where

〈Un(K)〉=
1
Z

∫

U
[DA] Un(K) e

iSCS(A) , Z =

∫

U
[DA] eiSCS(A) , (3.4)

and n labels the n-dimensional irreducible representation of SU(2). The path integrals are
taken over the space U of su(2) connections modulo gauge transformations. The shift k 7→ k+2
in the definition of q in (3.3) accounts for one loop corrections to the path integral. (The 2

8

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021


SciPost Phys. 14, 021 (2023)

is the dual Coxeter number of SU(2).) The Jones polynomial J(q) = J2(K; q) corresponds to
working in the fundamental representation of SU(2).

The Chern–Simons path integral gives a manifestly three-dimensional definition for eval-
uations of J(q). However, it does not explain at least two very basic facts about J(q) which
are obvious from the original two-dimensional definition. The path integral does not explain
why the Jones polynomial should be a polynomial in the first place, and also why it should
have integer coefficients. The second of these is perhaps the deeper issue, and it is addressed
by Khovanov homology. In Khovanov homology, the coefficients of J(q) are interpreted as
(graded) dimensions of homology groups, as in (1.1). However, to understand the appearance
of Khovanov homology in gauge theory, following [7], we must venture beyond Chern–Simons
theory.12

3.2 4d N = 4 super-Yang–Mills

The first step in constructing Khovanov homology from gauge theory is rewriting the Chern–
Simons path integral on M as a four-dimensional path integral in (a twisted version of) N = 4
super-Yang–Mills theory on a manifold with boundary V = M ×R+. This construction origi-
nated in a study of integration cycles in quantum mechanics and Chern–Simons theory [17,21],
as the equivalence can sometimes necessitate considering Chern–Simons theory with a rather
exotic integration cycle. As the two path integrals are equal, the N = 4 path integral will
produce the Jones polynomial J(q) [22].

The details of the construction will not be so important for us, but it will be useful to
understand both what the computation entails as well as just what the variable q represents in
the four-dimensional language. In a certain sense, this will tell us something about the Jones
polynomial which is intrinsically four-dimensional. In the N = 4 SO(3) gauge theory, there is
a theta angle13 multiplying the following term in the action:

SN=4 ⊃
θ∨

64h∨π2

∫

V
εµναβ Tr FµνFαβ , (3.5)

where the trace is taken in the adjoint representation and h∨ = 1 is the dual Coxeter number
of SO(3). This term is topological in nature, and counts the “instanton number” of a classical
solution to the N = 4 field equations. If the instanton number of a solution is n, the saddle
point contribution to the N = 4 path integral from (3.5) is e−inθ∨ .14 The Jones polynomial
is supposed to be computed by summing over certain supersymmetric field configurations in
the twisted N = 4 theory, and this accounts for the full path integral (up to a ratio of one-
loop determinants) due to a supersymmetric localization. The ratio of determinants has unit
magnitude by supersymmetry, and its sign is determined by the fermion component. As these
sums of exponentials are supposed to reproduce the Jones polynomial, the variable q must be
simply the weight of the topological term in the path integral:

q = exp(−iθ∨) . (3.6)
12It is not actually proven in [7] that the construction described there coincides with Khovanov homology. This

point will not concern us in this work. We will continue to describe the homology theory constructed in [7] as
Khovanov homology, and it is enough for us that [7] constructs some kind of enhanced Floer-like homology theory
which has the Jones polynomial as its graded Euler characteristic.

13Following [7], we denote this angle by θ∨, as it appears in a gauge theory with gauge group G∨ that is
Langlands or GNO dual to the original Chern–Simons gauge group G. For the Jones polynomial, which arises for
Chern–Simons gauge group SU(2), the dual group is G∨ = SO(3), though in this case the Lie algebras coincide.

14We are pretending that the result of the instanton number integral is an integer, but this may not be strictly
true. It depends on the boundary conditions on M ×R+, among other subtle points such as a framing of the spin
bundle; see Section 3.5 of [7] for a detailed discussion. The gauge group itself can also play a role, and the fact
that SO(3) is not simply connected means that we at least have n ∈ Z/4+ δ where δ depends on the boundary
conditions.
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This gives us some geometric intuition for how evaluations of the Jones polynomial can
carry four-dimensional information. The quantity J(e−iθ∨) is the result of the N = 4 path
integral. This still has not told us how to produce Khovanov homology, however. For that, we
need yet another dimension.

3.3 5d maximal super-Yang–Mills

To get Khovanov homology, we must consider a five-dimensional theory. This is motivated by
an idea which is suggested by the form of (1.1): the Jones polynomial should be produced
by the graded trace in some vector space. Such graded trace interpretations of path integrals
arise when there is an S1 factor of the manifold and the Hilbert space of the Cauchy surface
is the vector space in question. As the Jones polynomial was obtained previously as a sum
over solutions of four-dimensional supersymmetric equations which are essentially the time-
independent versions of the lifted five-dimensional equations, we interpret these solutions as
approximate supersymmetric ground states of the five-dimensional theory.

The theory in question ought to reduce at low energies to the twisted N = 4 theory we had
previously, which means we are considering 5d maximally supersymmetric Yang–Mills theory
on S1 × M × R+. Due to various issues discussed in [7], taking M = R3 is the appropriate
choice to produce something like Khovanov homology. The topological supercharge Q from
the N = 4 theory remains a symmetry, and has an action on the Hilbert space of the five-
dimensional theory. The candidate for H(K) in this construction is the cohomology of this
supercharge Q acting on the Hilbert space of the five-dimensional theory on M ×R+.

The resulting H(K) is Z × Z-graded, as expected of Khovanov homology. The “quantum
grading” arises from the instanton number which we discussed in the N = 4 context, and
the “homological grading” is due to a fermion number symmetry.15 Of course, in the five-
dimensional formulation, the object we call instanton number is really an operator acting on
the Hilbert space of the theory, whereas in the previous N = 4 description it was a term in the
action.

We mentioned that the Jones polynomial is produced by a graded trace in the space of
approximate supersymmetric ground states. It is also given by the graded trace in the space of
exact ground states, as we have just said this is to be identified with H(L). These computations
are equal for the following reason. The space of exact states is constructed in the usual manner
of Morse homology. The unbroken supercharge Q acts as a differential on the chain complex
of critical points (approximate ground states), and the cohomology of Q yields the true space
of ground states. In physics language, this incorporates the effects of instanton corrections to
the energy levels of the approximate ground states. However, due to supersymmetry, states
can only be lifted from zero energy in boson-fermion pairs with the same instanton number,
which leaves the graded trace (a supersymmetric equivariant index) unchanged.

3.4 6d (0,2) theory

Though it is not crucial for our discussion, we note that an ultraviolet complete setup is pro-
vided in [7] in the form of dimensional reduction from the (appropriately twisted) (0,2) su-
perconformal field theory in six dimensions.16 This theory has no Lagrangian description, and
is known largely as the worldvolume theory of M5-branes in M-theory. Compactifying the the-
ory on a surface leads to the celebrated AGT correspondence between Liouville theory on the
surface and four-dimensional N = 2 superconformal field theories [29].

15Technically, the homological grading is associated with a certain R-symmetry generator. See [7] for a discus-
sion of why this object is essentially a fermion number operator.

16See also [27, 28] for the connection between the five-dimensional super-Yang–Mills theory and the six-
dimensional (0,2) theory compactified on S1.
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To get Khovanov homology in this theory, we consider a six-manifold Rt × M × R2. The
factor R2 admits a U(1) action which has a fixed point at the origin, which we call p ∈ R2.
Then the proposal made in [7] is that H(K) is the cohomology of an unbroken supercharge
Q acting on the Hilbert space of this theory when the Cauchy surface is M × R2, and to ob-
tain the result for a nontrivial knot we need a time-independent surface operator inserted on
Rt × K ⊂ Rt ×M × p. The U(1) action is generated by an object P which obeys [P,Q] = 0 and
reduces to the instanton number in the previously discussed five-dimensional theory.

3.5 Rasmussen’s s-invariant and gauge theory

We have discussed the Jones polynomial and Khovanov homology from the perspective of
gauge theory following [7] in the interest of understanding what four-dimensional information
the Jones polynomial may contain. Previously, we have seen that the s-invariant can often be
extracted from Khovanov homology along with the Jones polynomial, so there is at least some
naïve relationship between them. We now briefly describe two attempts to construct the s-
invariant in gauge theory.

The first attempt to construct s in gauge theory uses instanton Floer homology. The re-
sulting knot invariant, s♯, was defined by Kronheimer and Mrowka [30] and turns out not to
be equal to s, but the two do share some qualitative properties. Instanton Floer homology
is related to Khovanov homology, but the two are not exactly the same. Roughly speaking,
instanton Floer homology is constructed as the Morse homology of the space of gauge fields
on a three-manifold M with the Chern–Simons action playing the role of the Morse function.17

Critical points are flat connections, and the gradient flow equations are the self-dual instanton
equations F+ = 0 of four-dimensional Yang–Mills theory on M × R. The invariant s♯ is then
computed from instanton Floer homology in a manner very reminiscent of how s arises from
Khovanov homology, as we reviewed in Section 2. One constructs a cobordism between K
and the unknot, and subsequently studies the properties of the map between instanton Floer
homologies induced by this cobordism. It has been shown that s♯ ̸= s even for the trefoil [30],
but the precise relationship between the two quantities is unclear as their magnitudes are both
lower bounds on twice the slice genus. One fact which seems worth mentioning is that the
instanton Floer homology used in [30] is naturally Z/4Z-graded,18 while Khovanov homology
is fully Z-graded (arising from the fermion number in 5d super-Yang–Mills). Perhaps more
insight could be gained in this direction by considering instanton Floer homology with gauge
group SU(N) and using level-rank duality [31].

The second attempt at constructing an invariant like s from gauge theory makes use of
the techniques in [7] which we reviewed above. There was a conjecture in knot theory which
we discussed around (2.9), now known to be false in general [20], involving the Khovanov
polynomial Kh(K; q, t) of a knot and Rasmussen’s s-invariant [11].19 It can be proven for
homologically thin knots and states

qs =
Kh(q,−q−4)

q+ q−1
=

Kh(K; q,−q−4)
Kh(⃝; q,−q−4)

. (3.7)

Indeed, the Khovanov polynomial for the unknot is independent of the variable t. The expres-
sion (3.7) is structurally similar to (3.3). In light of the observation that Khovanov homology

17This is certainly related to the constructions in [7], and the Morse theory perspective on Khovanov homology
is explained in Section 5.3.2 of [7].

18As reviewed in Section 5.3.2 of [7], due to the fact that the Chern–Simons action is only well-defined on
the space of gauge fields modulo gauge transformations up to multiples of 2πk, standard Floer theory is actually
Z/4hZ-graded, where h is the dual Coxeter number of the gauge group. In [30], the gauge group is SO(3), which
has h= 1.

19To streamline notation, where the meaning is unambiguous, we drop the label K in writing knot polynomial
invariants.
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may have a formulation as the ground state Hilbert space (on R3 ×R+ with suitable operator
insertions) of a five-dimensional gauge theory, this conjecture immediately suggests a trace
formula for s, at least when K is thin:

lim
k→∞

k log

�

Z5[K; k]

Z5[⃝; k]

�

= 2πis , (3.8)

where Z5[K; k] is shorthand for the doubly-graded trace in the cohomology of Q in the Hilbert
space on R3 × R+ with appropriate operator insertions to produce the Khovanov polyno-
mial of the knot K evaluated at quantum grading q = e2πi/(k+2) and homological grading
t = −e−8πi/(k+2). An alternate expression for (3.8), which physicists would call a “saddle
point approximation,” is20

Z5[k] ∼
k→∞

e2πis/k+log2 . (3.9)

This formula is reminiscent of the volume conjecture [8, 32–34] which expresses the volume
of the knot complement of a hyperbolic knot as an evaluation of the colored Jones polynomial
Jn(q) in the large-n limit. However, unlike the volume conjecture, (3.8) involves only the n= 2
fundamental representation of SU(2) in the associated Chern–Simons theory.

The ordinary Jones polynomial is obtained from evaluating the Khovanov polynomial at
the specific value t = −1, as in (1.1), and this is the point reached above as k→∞. Moreover,
we have q → 1 when k →∞. We see from this that, at least for certain knots, the analytic
structure of the Khovanov polynomial Kh(q, t) contains information about s near a point where
it coincides with the Jones polynomial evaluation, namely J(1). Of course, the function J(q)
only appears from Kh(q, t) on the hypersurface t = −1, so we apparently must move off the
t = −1 surface at a particular angle set by t = −q−4 to learn about s.

In general, the knight move conjecture can fail, and counterexamples are known in the
literature. These counterexamples have higher order terms ( f2ℓ(q, t) ̸= 0 for some ℓ > 1) in the
factorization (2.9), which spoils the simple extraction of s from gauge theory that we outlined
above. From the physics perspective, the failure of the knight move conjecture corresponds to
pairs of additional supersymmetric solutions in the path integral which have quantum numbers
that differ by more than one in fermion number or more than four in instanton number.

4 Experiments

Machine learning, and in particular neural networks, have been employed in knot theory to
predict knot invariants like the slice genus and Ozsváth–Szabó τ-invariant [13] and the hyper-
bolic volume [14,16], as well as to solve problems like the unknot recognition problem [15].21

Neural networks are particularly useful when working with large datasets, and millions of
knots have been tabulated together with efficient algorithms for computing their invariants.
Such networks are therefore appropriate tools to study the relationships between knot invari-
ants.

A neural network is a function, fθ (v), which approximates the relationship between input
and output features, A : vin → vout, by adjusting its parameters θ to recreate the assignment

20We have written this formula as if the graded trace in the Hilbert space of ground states can be also written
as a path integral. For reasons described in [7], this is not exactly true. It is true for the Jones polynomial because
that is a type of index of an operator, but the most general path integral on S1 will receive contributions from
states of nonzero energy. Nevertheless, due to supersymmetric localization, there is a classical solution of the
supersymmetric equations with the appropriate quantum numbers; what we cannot say is whether this solution is
unique or if there are others which complicate the limit.

21As well, [35,36] study many of the same invariants we do from dimensionality reduction and topological data
analysis perspectives.

12

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021


SciPost Phys. 14, 021 (2023)

A as closely as possible. A single layer, finite width neural network can approximate any well-
behaved function on a compact subset of RN [37, 38]. What is noteworthy about the neural
networks we employ is that they have relatively small architectures and achieve high accuracy
when trained on small fractions of the dataset. This suggests the underlying mathematical
structures allow a simple analytic description. In this way, machine learning can function as a
discovery tool in mathematics and theoretical physics.22

A neural network achieves a non-linear best fit by tuning the elements of weight matrices
and the components of bias vectors corresponding to each of n hidden layers — these are
collectively termed the hyperparameters or weights θ — to extremize a loss function. We
first prepare the input as a vector vin ∈ Rd0 . In the first hidden layer, we obtain a new vector
v1 ∈ Rd1:

v1 =W 1
θ · vin + b1

θ , b1
θ ∈ R

d1 . (4.1)

As W 1
θ

is a d1 × d0 matrix, there are d1 neurons in the first hidden layer. Next, we apply a
non-linearity to obtain a second vector, the activation, defined as a1 = σ(v1) ∈ Rd1 . This non-
linearity is understood to act elementwise on each component of v1. For this purpose, we use
the Rectified Linear Unit (ReLU), which is written in terms of the Heaviside step function as
σ(x) = xΘ(x). This process iterates through n hidden layers specified by new weight matrices
W m
θ

and bias vectors bm
θ

, m= 1, . . . , n, so that in the end, we have

fθ (vin) = an = σ(vn) , vn =W n
θ · an−1 + bn

θ ∈ R
dn . (4.2)

We then compare fθ (vin) to the true answer. The batch size determines how many input vectors
are evaluated before updating the hyperparameters of the neural network based on extremiz-
ing a cross entropy loss function appropriate to a classification problem. The backpropagation
algorithm adjusts the hyperparameters layer by layer by computing the gradient of the loss
with respect to the weights, iterating backwards from the final layer. One epoch is a full pass
through the set of vectors used in training, and we repeat this process through several epochs.
Having fixed the hyperparameters in this manner, the trained neural network’s performance
is deduced from evaluating fθ on a test set complementary to the vectors used for training.

In this work, we typically employ a neural network with two hidden layers, each consisting
of 100 nodes.23 The networks are trained for between 50 and 100 epochs. The training fraction
ranges from 10% up to 50%. The machine learned results were stable under adjustments to
the neural network architecture. This includes adding more layers, including more neurons
per layer, including dropout layers, or using different activation functions.

4.1 Data generation

Data for our experiments were generated via two independent methods: random braid words
(with special care given to tracking the slice genus) and random knots via the petaluma
model [40]. Invariants for these knots were then computed via the KnotTheory package [41,
42] in Mathematica and and Schütz’s KnotJob software [43].

By a theorem of Alexander, any knot can be represented as the closure of a braid. Braids
in turn may be represented as finite words in the letters σ±1

1 ,σ±1
2 , . . . ,σ±1

n−1, where n is the
number of strands in the braid. Here, σi denotes the simple braid formed by taking n parallel
strands, and adding a single positive crossing between the i-th and (i+1)-th strands (to obtain
σ−1

i we add a single negative crossing instead). By forming a random sequence in the letters
σ±1

1 ,σ±1
2 , . . . ,σ±1

n−1 and taking the closure, we obtain a random link.

22For two success stories in employing machine learning techniques to discover analytic results in mathematical
physics, see [16,39].

23These were constructed with python using TensorFlow with a Keras wrapper. We use Adam for optimiza-
tion. The essential code is quoted in Appendix A.
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Our algorithm for generating random braid words required more care, however, to ensure
that we could compute the slice genus of a suitable number of the resulting knots. To do this
each random braid began with a randomly selected seed braid. These seed braids were of two
types: braids from the KnotInfo database [44] for which the slice genus of the closure was
known, and randomly generated quasipositive and quasinegative braids.24

Given such a seed braid word β whose closure has known slice genus, we then randomly
inserted braid words of the form ασ±1

i α
−1 into β . Each such word we inserted into β either

changed the slice Euler characteristic of the closure by ±1 or 0, depending on the strands
involved. Together with the slice genus of the seed braid β , the number of braid words inserted
into β allowed us to obtain upper and lower bounds on the slice genus of the resulting knot.
These bounds were then combined with slice genus bounds obtained from invariants computed
using the KnotTheory and KnotJob software packages, allowing us to exactly pinpoint the
slice genus of many of the knots we produced. Finally, we then applied a sequence of random
Markov moves to the braids we obtain to further randomize the dataset.

A smaller, independent dataset was also generated using random petal permutations. In-
deed, Adams et al. [46] proved that every knot can be represented via a petal diagram, and
that such diagrams can be represented by a permutation of the integers {1, 2, . . . , 2n+ 1} for
some n. By sampling random permutations we thus obtained an independent set of random
knots, which we again computed invariants for using the KnotTheory and KnotJob soft-
ware packages. In the case of knots obtained via random petal permutations, we have less
information regarding the slice genus, however, and hence these knots were excluded from
experiments involving the slice genus.

4.2 What does the data look like?

Our dataset includes the Khovanov polynomials, Jones polynomials, Rasmussen s-invariants,
and signatures of 535239 knots. We also know the slice genus of 82% of these knots (438295
knots). The relationship in (1.3) is known to be saturated for 414615 of the knots. The
relationship

s(K) = σ(K) , (4.3)

where σ is the signature of the knot, is true for 96.49% (516450) of the knots. These rela-
tionships are summarized in Figure 2.

As discussed in Section 2.2, the Khovanov homology of alternating knots is completely
determined by classical invariants (the Jones polynomial J(q) and signature σ).25 While
Howie [48] and Greene [49] both gave topological characterizations of alternating knots,
the resulting algorithms for identifying alternating knots are not practical to implement on
our dataset. We thus content ourselves with using the Jones and Alexander polynomials, as
well as the signature and s-invariant to obstruct knots in our dataset from being alternating.
By identifying knots whose Jones or Alexander polynomials are not alternating,26 along with
knots for which σ ̸= s, we identified 117510 knots which are not alternating (approximately
21.1% of the total dataset). As none of these conditions are sufficient to imply that a knot is
alternating, the remaining knots in our dataset may or may not be alternating.

24An n–strand braid is quasipositive if it can be represented as a product of braid words of the form ασiα
−1,

for some n–strand braid α (quasinegative braids are defined similarly). The slice genus of the closure of any
quasipositive or quasinegative braid can be easily computed via the slice-Bennequin inequality [45].

25It is natural to ask to what extent the Jones polynomial determines the signature of a knot. While there are
knots with the same Jones polynomial and different signature, it is a folklore result that the Jones polynomial
determines the signature mod 4. See, for instance, [47].

26Alternating knots are known to have Jones and Alexander polynomials which are alternating, meaning that
coefficients of terms with consecutive powers alternate sign.

14

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021


SciPost Phys. 14, 021 (2023)

Figure 2: Relationships between knot invariants in the dataset. There are a total of 535239
knots, 438295 knots with known slice genus, 414615 knots where (1.3) is known to be
saturated, and 497099 knots satisfying (4.3). As an example, the number 2032 represents
the number of knots where we know the slice genus, but where (1.3) and (4.3) are not
satisfied.

4.3 Khovanov polynomials

In this section, we use the neural network architecture described above to learn the s-invariant
and the slice genus from the Khovanov polynomials of the knots. The polynomials are encoded
as vectors Kh(q, t) = ((eq1

, et1
, c1), (eq2

, et2
, c2), . . .), where eqi

is the exponent of q, et i
is the

exponent of t, and ci is the coefficient of that term. For instance, the Khovanov polynomial
for the trefoil knot,

Kh(31; q, t) = q9 t3 + q5 t2 + q3 + q , (4.4)

is written as (9,3, 1,5, 2,1, 3,0, 1,1, 0,1), where we have flattened the vector. The vectors
are padded with zeros from the right to ensure consistently sized input. Training the neural
network to predict the s-invariant and slice genus based on the Khovanov polynomial, we
predict these invariants with 98.30% and 98.60%, respectively (averaged over five runs). The
results are robust under a decrease in training size, as shown in Figure 3. When the prediction
is incorrect, we can also look at how far off the predictions are. For s, we look at the value
|strue − spred|. When the network incorrectly predicts s, it is off by two 91.42% of the time, off
by four 5.16% of the time, and off by six 1.90% of the time. For g, when the predictions are
incorrect, they are off by one 98.56% of the time and off by two 1.33% of the time.

For the purpose of finding slice knots, we need only learn whether or not g is zero. The
network is able to successfully predict this correctly 99.26% of the time, averaged over 5 runs.

4.3.1 Knight move experiments

The inputs here are the Khovanov polynomials Kh(q,−qn) evaluated at t = −qn. The polyno-
mials are encoded as vectors, Kh(q,−qn) = (e1, c1, e2, c2, . . .). The n = −4 case corresponds
to (3.7). Indeed, upon making the substitution t = −q−4, (4.4) becomes

Kh(31; q,−q−4) = q3 + q = q2(q+ q−1) , (4.5)
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Figure 3: Left: Accuracy of neural network predictions of the s-invariant for decreasing
training fractions. Right: Accuracy of slice genus predictions for decreasing training fractions.
In both cases, the neural network inputs are the Khovanov polynomials, as encoded above.

Table 1: Accuracy of neural network predictions for the Rasmussen s-invariant and the slice
genus from the Khovanov polynomial evaluated at t = −qn, n ∈ [−5, 5]; Kh(q,−qn). The
n = −4 case corresponds to (3.7) and n = 0 reduces the Khovanov polynomial to the Jones
polynomial. High accuracies are achieved for n= −4 and n= −2.

n s-invariant accuracy slice genus accuracy n s-invariant accuracy slice genus accuracy

−5 0.9567± 0.0024 0.9700± 0.0021 5 0.9377± 0.0114 0.9633± 0.0040
−4 0.9977± 0.0010 0.9452± 0.0007 4 0.9457± 0.0028 0.9652± 0.0037
−3 0.9791± 0.0043 0.9716± 0.0068 3 0.9554± 0.0019 0.9656± 0.0066
−2 0.9988± 0.0005 0.9456± 0.0002 2 0.9612± 0.0013 0.9663± 0.0040
−1 0.9771± 0.0054 0.9751± 0.0051 1 0.9577± 0.0033 0.9765± 0.0011
0 0.9480± 0.0021 0.9720± 0.0016 – – –

from which we read off s = 2. Table 1 shows the accuracies of the neural network in predicting
the s-invariant and the slice genus for |n| ≤ 5. The mean and variance are computed over five
runs.

The excellent results for n = −4 are expected because they agree with the conjecture
in (3.7), which all of the knots in the dataset satisfy. A potential source of misidentifications
may stem from ambiguities in how the Khovanov polynomial is factored. We could in principle
cast the Laurent expansion another way so that in addition to (2.9), we have

Kh(q, t) = qs′(q+ q−1) +
∑

ℓ≥1

ef2ℓ(q, t)(1+ tq4ℓ) , (4.6)

with s ̸= s′.27 If this is what happens, the effect must be subtle. Picking out the first and
second summands only, we have computed the t = −q−4 and t = −q−8 specializations to test
whether these can give rise to different s values. This does occur, but only for the unknot. Our
specializations are not able to detect s values that originate from knight moves of mixed sizes,
however.

The n = −2 results, which are comparable to, and sometimes better than, the n = −4
results are more surprising. Table 2 demonstrates why the accuracy may be so high: we see
that a majority of knots at a certain s-invariant have the same polynomial Kh(q,−q−2).

For all knots in the table, the polynomials evaluate to ±2 at q = ±1. The Khovanov poly-
nomial admits an expansion (2.9). Putting t = −q−2, this becomes

27Though no example is stated, this possibility was already noted in [11].
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Table 2: Most common Khovanov polynomials, Kh(q,−q−2), for each s-invariant. The neural
network achieves over 99% accuracy when predicting the s-invariant from Kh(q,−q−2).

s total count most common Kh(q,−q−2) tally second most common Kh(q,−q−2) tally
−18 12 −q−19 + q−17 − 2q−15 + 3q−13 + q−11 4 −q−19 + q−17 − 3q−15 + 5q−13 4
−16 28 −q−17 + q−15 − 2q−13 + 4q−11 19 −q−17 + 3q−11 6
−14 66 −q−15 + q−11 + 2q−9 37 −q−15 + q−13 − q−11 + 3q−9 17
−12 264 −q−13 − q−11 + 4q−9 151 −q−13 + q−7 + 2q−9 64
−10 1173 −q−11 + 3q−7 989 −4q−11 + 6q−9 154
−8 4549 −q−9 + q−7 + 2q−5 2304 −3q−9 + 5q−7 2223
−6 15075 −2q−7 + 4q−5 11259 −q−7 + 2q−5 + q−3 3775
−4 32621 −q−5 + 3q−3 32582 q−3 + q−1 16
−2 57591 2q−1 57302 −q−3 + 4q−1 − q 2261
0 339140 q+ q−1 339081 −q−1 + 5q− 2q3 15
2 52440 2q 52175 −q−1 + 4q− q3 235
4 23009 3q3 − q5 22973 q+ q3 17
6 7464 4q5 − 2q7 5361 q3 + 2q5 − q7 2057
8 1214 5q7 − 3q9 604 2q5 + q7 − q9 593
10 352 3q7 − q11 311 6q9 − 4q11 22
12 140 −q13 − q11 + 4q9 63 −q13 + 2q9 + q7 40
14 62 −q15 − q11 + q13 + 3q9 30 −q15 + q11 + 2q9 18
16 30 −q17 + q15 − 2q13 + 4q11 20 −q17 + 3q11 7
18 7 2q11 + q13 − q15 + q17 − q19 3 3q13 − 2q15 + q17 + q11 − q19 2
20 2 3q13 − q17 + q19 − q21 2 – –

– 535239 – 525270 – 11526

Kh(q,−q−2) = qs(q+ q−1) +
∑

ℓ≥1

f2ℓ(q,−q−2)(1− q4ℓ−2) . (4.7)

The summands vanish for q = ±1, and indeed the qs = 1 term is multiplied by ±2. According
to the knight move conjecture, which is false, f2ℓ = 0 for all ℓ ≥ 2. We can express the most
common polynomial for s = −6,−4,−2, 0 (and the second most common for s = −8 and
s = −10) as

Kh(q,−q−2) = qs
�

−
� s

2 − 1
�

q+
� s

2 + 1
�

q−1
�

. (4.8)

Note that there are some cases where making this substitution produces the second most com-
mon polynomial for s, rather than the most common. The second most common polynomial,
for s = 0,−6, as well as the first most common polynomial for s = −4,−8,−10,−12 can be
expressed as

Kh(q,−q−2) = −qs−1 +
�

5+ s
2

�

qs+1 −
�

2+ s
2

�

qs+3 . (4.9)

This expression applies for s ≤ 0. We obtain an expression for positive values of s by sending
q→ q−1. There also appear to be related expressions for the cases where Kh(q,−q−2) has four
or five terms.

At least one aspect of the simple polynomials (4.8) and (4.9) can be explained by con-
sidering a simple change of variables in the Khovanov polynomial. The key observation is
that sending t → tq−2 leaves the leading term in the decomposition (2.9) unchanged, since
qs(q+ q−1) is independent of t. This transformation acts in a predictable way on a large class
of knots with bounded homological width. In essence, it normalizes the powers of q appearing
in the Khovanov polynomial around those appearing at t0. When the replacement t = −q−2

is made, the resulting Khovanov polynomial reduces to alternating sums of terms with a fixed
set of quantum gradings centered on s. For knots with homological width two, for instance,
the only powers which can appear in these alternating sums are qs+1 and qs−1 as these are
the powers appearing at t0. For knots with homological width three, the relevant powers are
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Table 3: The Khovanov homology of K = 920, represented in tabular form. Here the vertical
axis represents the quantum grading, while the horizontal axis represents the homological
grading. We have highlighted the single pawn move corresponding to the q−4(q+ q−1) term
in (2.9) at homological grading 0.

−7 −6 −5 −4 −3 −2 −1 0 1 2

1 1
−1 1
−3 (2+ 1) 1
−5 3 (1+ 1)
−7 4 2
−9 3 3
−11 3 4
−13 2 3
−15 1 3
−17 2
−19 1

qs+3, qs+1, and qs−1. So, this argument explains the number of distinct powers appearing in
the polynomial Kh(q,−q−2) as well as their relation to s.

To illustrate this, consider a homologically thin knot, for example K = 920, with Khovanov
polynomial

Kh(q, t) =
1

q19 t7
+

2
q17 t6

+
1

q15 t6
+

3
q15 t5

+
2

q13 t5
+

3
q13 t4

+
3

q11 t4
+

+
4

q11 t3
+

3
q9 t3

+
3

q9 t2
+

4
q7 t2

+
2

q7 t
+

3
q5 t
+

2
q5
+

3
q3
+

t
q3
+

t
q
+ qt2 .

(4.10)

The polynomial Kh(q, t) can be represented in table form as shown in Table 3. Notice that
Kh(q, t) can be decomposed as in (2.9) as

Kh(q, t) = q−4(q+ q−1) + f2(q, t)(1+ tq4) , (4.11)

where

f2(q, t) =
1

q19 t7
+

2
q17 t6

+
3

q15 t5
+

3
q13 t4

+
4

q11 t3
+

3
q9 t2

+
2

q7 t
+

1
q5
+

t
q3

. (4.12)

Expanding out the product f2(q, t)(1+ tq4) above, we see that Kh(q, t) contains terms of the
form αqm tn(1+ tq4), for integers m, n, and α, with α≥ 1, each of which can be represented as
a knight move as shown in Table 4 (left). The only remaining term in Kh(q, t) is q−4(q+q−1),
which represents a lone pawn move in Table 4 (right). Notice that the location of the pawn
move for 920 at quantum gradings −3 and −5 indicates that s = −4 for this knot.

We may make the substitution t → −q−2 in two stages. First we make the substitution
t → tq−2. This shifts the quantum grading of every term down by −2 times its homological
grading, which has the effect of flattening each diagonal line in Table 3 into a horizontal line
as in Table 5. Note that the terms at homological grading 0 remain fixed when making this
substitution. Furthermore, since (aside from lone pawn move pair) the terms of Kh(q, t) are
arranged in knight move pairs, after substituting t → tq−2 we obtain two identical lines (again
ignoring the pawn move pair) that are offset by one.

In the new polynomial Kh(q, tq−2), we may now set t = −1 to implement our desired
substitution t = −q−2 in the original polynomial Kh(q, t). This step may be interpreted as
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Table 4: Left: Knight move corresponding to the term αqm tn(1+ tq4). Right: Pawn move
corresponding to the term qs(q+ q−1).

n n+ 1

m+ 4 α

m+ 2
m α

0

s+ 1 1
s− 1 1

Table 5: A tabular representation of Kh(q, tq−2), where each diagonal line in Kh(q, t) has
been flattened to a horizontal line. Notice that the terms at homological degree zero remain
fixed.

−7 −6 −5 −4 −3 −2 −1 0 1 2

−3 1 2 3 3 4 3 (2+ 1) 1 1
−5 1 2 3 3 4 3 2 (1+ 1) 1

taking the alternating sum of the rows of Table 5, and multiplying by q−3 and q−5 respectively.
Since the rows are offset by one, the alternating sums will differ by a sign until the pawn move
pair is factored in (2 and −2 respectively), which then shifts both sums up by one. In this case
we obtain

Kh(q,−q−2) = −q−5 + 3q−3 , (4.13)

which matches (4.8) for s = −4. A similar argument may be used to partially explain (4.9).
Notice that although this explains the general form that the polynomials Kh(q,−q−2) often

take, it does not explain why the coefficients of these terms seem to also be completely fixed
by the s-invariant. The path through Lee homology taken by Rasmussen in order to define
the s-invariant makes reference only to the remaining quantum grading since Lee homology
is isomorphic to Q ⊕ Q at homological degree 0. Our observation suggests that perhaps s
is encoded in some additional way within Khovanov homology, one which does not make
reference to Lee homology or the quantum grading.

4.3.2 Learning from polynomial evaluations

We can also learn the s-invariant from the polynomials Kh(q,−q−4) and Kh(q,−q−2), evaluated

at roots of unity e
πin
(k+2) for n ∈ [0, k+2). The input data for a knot K is represented as a vector

v⃗(K; k), where the entries at position 2p and 2p+ 1 correspond to the real and complex parts
of the p-th evaluation. For instance, taking k = 3, the Khovanov polynomial for the trefoil
knot at t = −q−4, which we write in (4.5), is encoded as

v⃗(31; 3) = (2, 0,0.5, 1.54,−0.5, 0.36,0.5, 0.36,−0.5,1.54) . (4.14)

When training on either evaluations of Kh(q,−q−4) or of Kh(q,−q−2), the accuracy of predic-
tions is over 99% for the s-invariant and over 94% for the slice genus, even for k = 3, where
we train on only five evaluations of the polynomial.

4.4 Jones polynomials

The Jones polynomials are encoded, like the Khovanov polynomials, as vectors,
J(q) = (e1, c1, e2, c2, . . .). Using this input and training on 25% of the data, the network pre-
dicts the Rasmussen s-invariant with ∼ 95.0% accuracy, and the slice genus with ∼ 96.6%
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accuracy. The results for the s-invariant are fairly robust under a decrease in training size,
Figure 4. When the prediction is incorrect, we can also look at how far off the predictions
are. For s, we look at the value |strue − spred|. When the network incorrectly predicts s, it is
off by two 67.83% of the time, off by four 18.28% of the time. For g, when the predictions
are incorrect, they are off by one 81.71% of the time and off by two 17.52% of the time. The
accuracy of these networks is surprising, as there are knots with the same Jones polynomial
but different slice genus and s-invariant.28 This means that the neural network is not learning
a function, but merely an association.

For the purpose of finding slice knots, we need only learn whether or not g is zero. The
network is able to successfully predict this correctly 98.61% of the time, averaged over 5 runs.
We can also learn the invariants from evaluations of the Jones polynomial at roots of unity.

Figure 4: Left: Accuracy of neural network predictions of the s-invariant for decreasing
training fractions. Right: Accuracy of slice genus predictions for decreasing training fractions.
In both cases, the neural network inputs are the Jones polynomials, as encoded above.

For a fixed k, we generate a list of roots {eπin/(k+2)}, n ∈ [0, k + 2) at which to evaluate the
Jones polynomials. The results for training the network on these inputs, for k ∈ [3,10], are
given in Table 6.

4.5 Interdependence of results

As discussed previously, the Rasmussen s-invariant provides a lower bound for the slice genus.
Our neural networks are able to successfully predict both s and g, but we do not know if the

Table 6: Learning the Rasmussen s-invariant and the slice genus from evaluations of the
Jones polynomial at roots of unity, eπin/(k+2) for n ∈ [0, k + 2). This experiment is repeated
for k ∈ [3,10].

k s-invariant accuracy Slice genus accuracy

3 0.9314± 0.0013 0.9672± 0.0017
4 0.9186± 0.0009 0.9601± 0.0010
5 0.9650± 0.0006 0.9826± 0.0009
6 0.9674± 0.0007 0.9828± 0.0008
7 0.9676± 0.0007 0.9825± 0.0008
8 0.9673± 0.0005 0.9825± 0.0006
9 0.9669± 0.0011 0.9814± 0.0014

10 0.9680± 0.0006 0.9826± 0.0008

28The knots 51 and 10132 are a pair of such knots.
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Figure 5: Comparing the number of s-invariants and slice genuses predicted incorrectly by
neural networks with the number of cases where the slice genus saturates the lower bound
provided by the s-invariant. Left figure is trained on the Khovanov polynomial and right
figure is trained on the Jones polynomial.

two invariants are learnt independently or if one is learnt via the other. Additionally, since
the signature and the s-invariant coincide for most of the knots, it could be that the network
is learning s indirectly via the signature. In this section, we aim to diagnose which invariants
the neural networks are learning directly.

First, we train two neural networks to learn the s-invariant and the slice genus, using the
Khovanov (or Jones) polynomials. Then, we count how many times s and g were predicted
incorrectly when |s| = 2g, versus when |s| ̸= 2g. These counts are summarized in Figure 5.
When training on the Khovanov polynomial (Figure 5 left), a total of 2301 s-invariants and
10952 slice genuses are predicted incorrectly. The majority of the s-invariants which are pre-
dicted incorrectly lie in the region where |s| = 2g. This does not support the claim that the
network is learning s via g. A similar trend is apparant when training on the Jones polynomials
(Figure 5 right).

We can perform a similar experiment with the signature and the s-invariant. The results for
this experiment are given in Figure 6. When training on the Khovanov polynomial (Figure 6
left) a total of 7438 s-invariants and 4280 signatures were predicted incorrectly. When s andσ
coincide, s is predicted incorrectly 1648 times andσ is predicted incorrectly 6693 times. When
s and σ do not coincide, s is predicted incorrectly 3510 times and σ is predicted incorrectly
2939 times. This experiment does not offer any conclusive evidence as to which invariant the
network is learning.

4.5.1 Multi-task learning

We can further train a neural network to learn the s-invariant and the slice genus simultane-
ously. This may provide insight into which invariant the network is learning. In a multi-task
problem, we can weight the various tasks. This weight determines how strongly that task will
influence the change of parameters as the network is trained. We can ask how changing the
weights on the two outputs affects the overall learning of the network. Denote the weight of
the s-invariants to be Ws and the weights of the slice genus to be Wg . Since the slice genus
and the s-invariant are closely related, we are not sure whether the networks are learning the
s-invariant and computing g from s, learning g and computing s from g, or learning both in-
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Figure 6: Comparing the number of s-invariants and signatures predicted incorrectly by a
neural network trained on Khovanov polynomials with the number of cases where s = σ.
Left figure is trained on the Khovanov polynomials and right figure is trained on the Jones
polynomials.

variants independently. Using a multi-task network could help to determine the most plausible
option. For example, if Ws >Wg and the network learns both invariants well, this suggests
that the neural networks might be learning s and learning g via s. However, if the perfor-
mance drops, then we may concluded that learning g is the more natural task. We find that
weighting either the s-invariant or the slice genus more heavily did not significantly influence
the performance of the network on either of the invariants.

First, we try this experiment using the Khovanov polynomials as input. For Ws/Wg = 1, we
get accuracies of 0.9952±0.0002 and 0.9866±0.0026 on the s-invariant and the slice genus,
respectively. When Ws/Wg = 0.1, we get accuracies of 0.9924±0.0010 and 0.9859±0.0044.
For Ws/Wg = 10, we get accuracies of 0.9954± 0.0004 and 0.9797± 0.0025. Repeating this
experiment only on the dataset where |s| ̸= 2g, we get the following results. For Ws/Wg = 1,
we get accuracies of 0.9959 ± 0.0002 and 0.9943 ± 0.0008. When Ws/Wg = 0.1, we get
accuracies of 0.9954± 0.0022 and 0.9935± 0.0027. For Ws/Wg = 10, we get accuracies of
0.9960± 0.0003 and 0.9948± 0.0008.

We can also do this experiment using the Jones polynomials as input. For Ws/Wg = 1, we
get accuracies of 0.9775±0.0007 and 0.9723±0.0043 on the s-invariant and the slice genus,
respectively. When Ws/Wg = 0.1, we get accuracies of 0.9766±0.0006 and 0.9731±0.0032.
For Ws/Wg = 10, we get accuracies of 0.9774± 0.0021 and 0.9640± 0.0084. Repeating this
experiment only on the dataset where |s| ̸= 2g, we get the following results. For Ws/Wg = 1,
we get accuracies of 0.9803 ± 0.0006 and 0.9786 ± 0.0021. When Ws/Wg = 0.1, we get
accuracies of 0.9806± 0.0008 and 0.9788± 0.0010. For Ws/Wg = 10, we get accuracies of
0.9811± 0.0006 and 0.9780± 0.0016.

5 Discussion

In this work, we have demonstrated that the Jones polynomial of a knot is strongly correlated
with the knot’s Rasmussen s-invariant and slice genus g. We also found a specialization for
the Khovanov polynomial which makes the s-invariant manifest in our dataset, though this
specialization is not the one suggested by the knight move conjecture. These correlations

22

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021


SciPost Phys. 14, 021 (2023)

were extracted by training deep neural networks to predict s or g with the Jones or specialized
Khovanov polynomials as input. We reviewed both the combinatorial construction of Khovanov
homology and Rasmussen’s invariant as well as the gauge-theoretic constructions in four, five,
and six dimensions.

Though we were unable to determine whether the neural network learned s, g, some
combination of the two, or something else altogether,29 there is at least one naïve reason
to believe that the Jones polynomial is correlated with s specifically. This is because both
arise from Khovanov homology, whereas the slice genus is only known through Khovanov
homology relative to the s-invariant. The gauge theoretic construction of Khovanov homology
in [7] combined with the knight move conjecture makes it clear that (in our dataset) s may be
extracted from the Hilbert space of a five- or six-dimensional theory with surface operators,
whereas the construction of s♯ in [30] shows that invariants like s can arise in the instanton
homology of simpler gauge theories.

Despite these relationships, there is no obvious route by which the Jones polynomial may
be manipulated into revealing the s-invariant. A potential avenue, motivated by the index
formula for J(q) in the five-dimensional theory, is that the analytic structure of J(q) around
q = 1 is sensitive to s because s can be extracted from the graded trace with t = −q−4 at large
k. However, this requires J(q) to somehow be sensitive to analytic structure in the t variable
of the Khovanov polynomial. It is not clear why this would be so, as J(q) is obtained from
Kh(q, t) by immediately taking t = −1. These results could imply that Chern–Simons gauge
theory knows a little bit more about the five-dimensional gauge theory Hilbert space than is
naïvely expected. In a previous situation where Chern–Simons theory appeared to contain
more information than it should [14], the explanation was found in an analytic continuation
of the path integral [16]. Perhaps the same effect is at work here. Another approach which
may be useful begins with the observation that there are spectral sequences relating Khovanov
homology to e.g., instanton Floer homology [50,51]. The gauge theory interpretation of these
spectral sequences is unclear, but finding such an interpretation may help in relating J(q) to
s, since the s-like invariant s♯ is easily extracted from instanton Floer homology. The question
concerning the four-dimensional information in J(q) that we posed in the introduction still
stands, and a complementary question is: what is three-dimensional about the Rasmussen
s-invariant?

The specialization of the Khovanov polynomial at t = −q−2, on the other hand, had at least
a partial explanation via the knight move conjecture for knots in our dataset. This explanation
was given in terms of a rearrangement of the Khovanov homology groups into a number of
rows determined by the homological width of the knot. This width determined the number of
nonzero terms (in the most general case with no cancellations), and the powers of these terms
had an offset which depended on s. However, we were not able to explain why the coefficients
of the resulting polynomial also seem to be determined completely by s. This suggests that the
s-invariant may be extracted from Khovanov homology in a way that differs from the route
through Lee homology taken by Rasmussen.

The fact that machine learning is successful at identifying relationships between knot in-
variants is suggestive, both with respect to low dimensional topology and to quantum field
theory. Because knot invariants have been extensively tabulated [41, 44], one could easily
imagine using neural networks to scan through all pairs of invariants and determine which
can be predicted from knowledge of the other. As we do not have a minimal list of topological
invariants that identifies a knot uniquely, such an investigation may provide some guidance
in this endeavor. We have also seen that knot invariants have a physical interpretation in di-
verse dimensions. The Jones polynomial, for example, can be thought of as a mathematical

29A major obstruction to answering this question was that the vast majority of our dataset obeyed |s| = 2g. A
useful step forward would be to find a knot generation procedure which yields many knots for which |s|< 2g.
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object with a two-dimensional definition or as a physical quantity associated to quantum field
theories in three, four, five, or six dimensions. Translating the relationships between knot in-
variants to a physical language may expose non-obvious connections between quantum field
theories. As an example of this approach, the knot-quiver correspondence [52]may be helpful
to more generally organize relationships between physical knot invariants.30

For instance, in the five-dimensional theory discussed in Section 3, the formula we pre-
sented for s holds for a certain subset of knots. What this formula means is that there exists
a very special pair of approximate supersymmetric ground states in the five-dimensional the-
ory which have instanton numbers equal to s ± 1. These states survive the five-dimensional
instanton corrections to the ground state energies. Our results suggest that the Chern–Simons
path integral has privileged access to these states in particular, through some yet undiscovered
gauge theory mechanism. Furthermore, the information contained in Lee homology and the
specialization Kh(q,−q−2) about the s-invariant may be interpreted as a statement about the
existence of deformations of the topological supercharge Q. The nontrivial prediction from
Lee’s theorem in this context would be that the cohomology of a deformed supercharge is two-
dimensional for any knot, and our results on the unusual specialization Kh(q,−q−2) suggest
that correlating the fermion number grading with the instanton number grading in this way
produces, e.g., a number of ground states with instanton numbers that depend on s in the
manner we described in Section 4. Perhaps the perspective on deformations of supercharges
via spectral sequences presented in [53] would be useful here.31

Finally, as poetically and playfully contemplated by the title of [11], machine learning may
fill an important niche in constructing potential counterexamples to SPC4. A counterexample
establishes the existence of exotic smooth structures on manifolds that are homeomorphic to
S4. If we can conclude whether a knot is slice from a description of the knot (e.g., by using
a picture or the braid representation or a collection of other topological invariants), this may
highlight interesting knots to examine using analytical methods. Since we are only interested
in distinguishing g = 0 from g ̸= 0, this is a conceptually simpler task than learning the slice
genus exactly as we have aimed to do from the Khovanov and Jones polynomials. Applying a
neural network trained to identify sliceness on these knots is a promising attack for the future.
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A Implementation

In this appendix, we supply the key part of our implementation. Listing 1 outlines the building
and training of the neural network. Our code is available at [54].
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31However, it is difficult to relate the two-dimensional perspective of [53] with the five-dimensional picture

of [7]. In particular, while the two-dimensional construction seems to suggest the explicit symmetry breaking
pattern sl(2)→ sl(1)⊕ sl(1) (implemented by modifying the superpotential) is important to obtain Lee homology,
this may not be the relevant mechanism in five dimensions to implement Lee’s deformation. We thank Edward
Witten for pointing this out to us.
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Listing 1: Keras implementation.

import numpy as np
import keras
from sk l ea rn . model_se lec t ion import t r a i n _ t e s t _ s p l i t

t r a i n _ s i z e = 0.25 # t r a i n i n g f r a c t i o n
epochs = 50 # number o f epochs to t r a i n f o r
dens i t y = 100 # d e n s i t y o f hidden l a y e r s in network
a c t i v a t i o n = ’ r e lu ’ # a c t i v a t i o n f u n c t i o n f o r input /hidden l a y e r s
# l o s s f u n c t i o n f o r mult i=l a b e l c l a s s i f i c a t i o n
l o s s = ’ s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y ’
optim = ’ adam ’ # o p t i m i z e r

# parameters : f u l l s e t o f i n p u t s and ou tpu t s
# r e t u r n s : t r a i n e d model and t e s t i n g data ( input , output )
def l ea rn ( inputs , outputs ) :

# f i x input d imens ions
i f np . i s s c a l a r ( input s [0 ] ) :

dims = 1
else :

dims = len ( t r a i n _ i n [0 ])

# c a l c u l a t e number o f output c l a s s e s
num_classes = max( outputs ) = min( outputs ) + 1

# s p l i t i n t o t r a i n i n g / t e s t i n g data
t r a in_ in , t e s t _ i n , t ra in_out , t e s t _ o u t = t r a i n _ t e s t _ s p l i t (

inputs , outputs , t r a i n _ s i z e=t r a i n _ s i z e
)

# b u i l d the model
model = keras . models . Sequent ia l ( [

keras . l a y e r s . Dense ( dens i ty , a c t i v a t i o n=a c t i v a t i o n ,
input_dims=dims ) ,

keras . l a y e r s . Dense ( dens i ty , a c t i v a t i o n=a c t i v a t i o n ) ,
keras . l a y e r s . Dense ( num_classes , a c t i v a t i o n= ’ softmax ’
) ]

# compi l e and t r a i n the model
model . compile ( opt imizer=optim , l o s s=l o s s , met r i c s=[ ’ accuracy ’ ]
model . f i t ( t r a in_ in , t ra in_out , epochs=epochs , verbose=0.5)

return model , t e s t _ i n , t e s t _ o u t

References

[1] V. F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Am. Math.
Soc. 12, 103 (1985), doi:10.1090/S0273-0979-1985-15304-2.

25

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021
https://doi.org/10.1090/S0273-0979-1985-15304-2


SciPost Phys. 14, 021 (2023)

[2] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann.
Math. 126, 335 (1987), doi:10.2307/1971403.

[3] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121,
351 (1989), doi:10.1007/BF01217730.

[4] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101, 359 (2000),
doi:10.1215/S0012-7094-00-10131-7.

[5] D. Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom.
Topol. 2, 337 (2002), doi:10.2140/agt.2002.2.337.

[6] J. A. Rasmussen, Khovanov homology and the slice genus, Invent. Math. 182, 419 (2010),
doi:10.1007/s00222-010-0275-6.

[7] E. Witten, Fivebranes and knots, (arXiv preprint) doi:10.48550/arXiv.1101.3216.

[8] S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial,
Commun. Math. Phys. 255, 577 (2005), doi:10.1007/s00220-005-1312-y.

[9] M. Aganagic, Knot categorification from mirror symmetry, Part I: Coherent sheaves, (arXiv
preprint) doi:10.48550/arXiv.2004.14518.

[10] M. Aganagic, Knot categorification from mirror symmetry, Part II: Lagrangians, (arXiv
preprint) doi:10.48550/arXiv.2105.06039.

[11] M. Freedman, R. Gompf, S. Morrison and K. Walker, Man and machine thinking
about the smooth 4-dimensional Poincaré conjecture, Quantum Topol. 1, 171 (2010),
doi:10.4171/QT/5.

[12] C. Manolescu and L. Piccirillo, From zero surgeries to candidates for exotic definite four-
manifolds, (arXiv preprint) doi:10.48550/arXiv.2102.04391.

[13] M. C. Hughes, A neural network approach to predicting and computing knot invariants, J.
Knot Theory Ramif. 29, 2050005 (2020), doi:10.1142/S0218216520500054.

[14] V. Jejjala, A. Kar and O. Parrikar, Deep learning the hyperbolic volume of a knot, Phys. Lett.
B 799, 135033 (2019), doi:10.1016/j.physletb.2019.135033.

[15] S. Gukov, J. Halverson, F. Ruehle and P. Sułkowski, Learning to unknot, Mach. Learn.:
Sci. Technol. 2, 025035 (2021), doi:10.1088/2632-2153/abe91f.

[16] J. Craven, V. Jejjala and A. Kar, Disentangling a deep learned volume formula, J. High
Energy Phys. 06, 040 (2021), doi:10.1007/JHEP06(2021)040.

[17] E. Witten, Analytic continuation of Chern-Simons theory, (arXiv preprint)
doi:10.48550/arXiv.1001.2933.

[18] A. Davies et al., Advancing mathematics by guiding human intuition with AI, Nature 600,
70 (2021), doi:10.1038/s41586-021-04086-x.

[19] A. Davies, A. Juhász, M. Lackenby and N. Tomasev, The signature and cusp geometry of
hyperbolic knots, (arXiv preprint) doi:10.48550/arXiv.2111.15323.

[20] C. Manolescu and M. Marengon, The knight move conjecture is false, Proc. Am. Math. Soc.
148, 435 (2020), doi:10.1090/proc/14694.

26

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021
https://doi.org/10.2307/1971403
https://doi.org/10.1007/BF01217730
https://doi.org/10.1215/S0012-7094-00-10131-7
https://doi.org/10.2140/agt.2002.2.337
https://doi.org/10.1007/s00222-010-0275-6
https://doi.org/10.48550/arXiv.1101.3216
https://doi.org/10.1007/s00220-005-1312-y
https://doi.org/10.48550/arXiv.2004.14518
https://doi.org/10.48550/arXiv.2105.06039
https://doi.org/10.4171/QT/5
https://doi.org/10.48550/arXiv.2102.04391
https://doi.org/10.1142/S0218216520500054
https://doi.org/10.1016/j.physletb.2019.135033
https://doi.org/10.1088/2632-2153/abe91f
https://doi.org/10.1007/JHEP06(2021)040
https://doi.org/10.48550/arXiv.1001.2933
https://doi.org/10.1038/s41586-021-04086-x
https://doi.org/10.48550/arXiv.2111.15323
https://doi.org/10.1090/proc/14694


SciPost Phys. 14, 021 (2023)

[21] E. Witten, A new look at the path integral of quantum mechanics, in Surveys in differen-
tial geometry, volume 15, ISBN 9781571461452 (2011), International Press of Boston,
Somerville, Massachusetts, USA.

[22] D. Gaiotto and E. Witten, Knot invariants from four-dimensional gauge theory, 935 16,
935 (2012), doi:10.4310/ATMP.2012.v16.n3.a5.

[23] E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197, 554 (2005),
doi:10.1016/j.aim.2004.10.015.

[24] E. S. Lee, The support of the Khovanov’s invariants for alternating knots, (arXiv preprint)
doi:10.48550/arXiv.math/0201105.

[25] C. Manolescu and P. Ozsvath, On the Khovanov and knot Floer homologies of quasi-
alternating links, (arXiv preprint) doi:10.48550/arXiv.0708.3249.

[26] A. Alishahi and N. Dowlin, The Lee spectral sequence, unknotting number, and the knight
move conjecture, (arXiv preprint) doi:10.48550/arXiv.1710.07875.

[27] M. R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, J. High Energy Phys.
02, 011 (2011), doi:10.1007/JHEP02(2011)011.

[28] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-branes, D4-
branes and quantum 5D super-Yang-Mills, J. High Energy Phys. 01, 083 (2011),
doi:10.1007/JHEP01(2011)083.

[29] L. F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-
dimensional gauge theories, Lett. Math. Phys. 91, 167 (2010), doi:10.1007/s11005-010-
0369-5.

[30] P. B. Kronheimer and T. S. Mrowka, Gauge theory and Rasmussen’s invariant, J. Topol. 6,
659 (2013), doi:10.1112/jtopol/jtt008.

[31] S. G. Naculich, H. A. Riggs and H. J. Schnitzer, Group-level duality in WZW models and
Chern-Simons theory, Phys. Lett. B 246, 417 (1990), doi:10.1016/0370-2693(90)90623-
E.

[32] R. M. Kashaev, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math.
Phys. 39, 269 (1997), doi:10.1023/a:1007364912784.

[33] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume
of a knot, Acta Math. 186, 85 (2001), doi:10.1007/BF02392716.

[34] H. Murakami, J. Murakami, M. Okamoto, T. Takata and Y. Yokota, Kashaev’s conjec-
ture and the Chern-Simons invariants of knots and links, Exp. Math. 11, 427 (2012),
doi:10.1080/10586458.2002.10504485.

[35] J. S. F. Levitt, M. Hajij and R. Sazdanovic, Big data approaches to knot
theory: Understanding the structure of the Jones polynomial, (arXiv preprint)
doi:10.48550/arXiv.1912.10086.

[36] D. Paweł, D. Gurnari and R. Sazdanovic, Knot invariants and their relations: A topological
perspective, (arXiv preprint) doi:10.48550/arXiv.2109.00831.

[37] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Sig-
nals Syst. 2, 303 (1989), doi:10.1007/BF02551274.

27

https://scipost.org
https://scipost.org/SciPostPhys.14.2.021
https://doi.org/10.4310/ATMP.2012.v16.n3.a5
https://doi.org/10.1016/j.aim.2004.10.015
https://doi.org/10.48550/arXiv.math/0201105
https://doi.org/10.48550/arXiv.0708.3249
https://doi.org/10.48550/arXiv.1710.07875
https://doi.org/10.1007/JHEP02(2011)011
https://doi.org/10.1007/JHEP01(2011)083
https://doi.org/10.1007/s11005-010-0369-5
https://doi.org/10.1007/s11005-010-0369-5
https://doi.org/10.1112/jtopol/jtt008
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1016/0370-2693(90)90623-E
https://doi.org/10.1023/a:1007364912784
https://doi.org/10.1007/BF02392716
https://doi.org/10.1080/10586458.2002.10504485
https://doi.org/10.48550/arXiv.1912.10086
https://doi.org/10.48550/arXiv.2109.00831
https://doi.org/10.1007/BF02551274


SciPost Phys. 14, 021 (2023)

[38] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw. 4,
251 (1991), doi:10.1016/0893-6080(91)90009-T.

[39] C. R. Brodie, A. Constantin, R. Deen and A. Lukas, Index formulae for line
bundle cohomology on complex surfaces, Fortschr. Phys. 68, 1900086 (2020),
doi:10.1002/prop.201900086.

[40] C. Even-Zohar, J. Hass, N. Linial and T. Nowik, The distribution of knots in the Petaluma
model, Algebr. Geom. Topol. 18, 3647 (2018), doi:10.2140/agt.2018.18.3647.

[41] The knot Atlas: The take home database, Knot Atlas Wiki (2007), http://katlas.org/wiki/
The_Take_Home_Database.

[42] The Mathematica package KnotTheory, Knot Atlas Wiki (2009), http://katlas.org/wiki/
The_Mathematica_Package_KnotTheory.

[43] D. Schütz, KnotJob, University of Durham (2022), https://www.maths.dur.ac.uk/users/
dirk.schuetz/knotjob.html.

[44] C. Livingston and A. H. Moore, Knotinfo: Table of knot invariants, Indiana University
Bloomington (2022), https://knotinfo.math.indiana.edu/.

[45] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Am. Math. Soc. 29, 51
(1993), doi:10.1090/S0273-0979-1993-00397-5.

[46] C. Adams, T. Crawford, B. DeMeo, M. Landry, A. T. Lin, M. Montee, S. Park, S. Venkatesh
and F. Yhee, Knot projections with a single multi-crossing, J. Knot Theory Ramif. 24,
1550011 (2015), doi:10.1142/S021821651550011X.

[47] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4, 115
(1987).

[48] J. Howie, A characterisation of alternating knot exteriors, Geom. Topol. 21, 2353 (2017),
doi:10.2140/gt.2017.21.2353.

[49] J. E. Greene, Alternating links and definite surfaces, Duke Math. J. 166, 2133 (2017),
doi:10.1215/00127094-2017-0004.

[50] P. B. Kronheimer and T. S. Mrowka, Khovanov homology is an unknot-detector, Publ. Math.
IHÉS 113, 97 (2011), doi:10.1007/s10240-010-0030-y.

[51] P. B. Kronheimer and T. S. Mrowka, Filtrations on instanton homology, (arXiv preprint)
doi:10.48550/arXiv.1110.1290.

[52] P. Kucharski, M. Reineke, M. Stošić and P. Sułkowski, Knots-quivers correspondence, Adv.
Theor. Math. Phys. 23, 1849 (2019), doi:10.4310/ATMP.2019.v23.n7.a4.

[53] S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sułkowski, Sequencing BPS spectra, J.
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