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Abstract

We compute the on-shell Euclidean action of Schwarzschild-de Sitter black holes, and
take their contributions in the gravitational path integral into account using the formal-
ism of constrained instantons. Although Euclidean de Sitter black hole geometries have
conical singularities for generic masses, their on-shell action is finite and is shown to be
independent of the Euclidean time periodicity and equal to minus the sum of the black
hole and cosmological horizon entropy. We apply this result to compute the probability
for a nonrotating, neutral arbitrary mass black hole to nucleate spontaneously in empty
de Sitter space, which separates into a constant and a “non-perturbative” contribution,
the latter corresponding to the proper saddle-point instanton in the Nariai limit. We
also speculate on some further applications of our results, most notably as potential
non-perturbative corrections to correlators in the de Sitter vacuum.
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1 Introduction

As the cosmological, inverted (and singularity free) version of a black hole geometry, a full
understanding of the de Sitter geometry is expected to rely on quantum gravity. Combined
with the strong observational evidence in support of an early and late approximate de Sitter
phase in our universe, de Sitter remains a fruitful theoretical playground for testing some of the
most promising ideas in quantum gravity [1–6]. Of course, the absence of supersymmetry and
a holographic dual description implies one has far less control in general. Nevertheless, the
recent promising developments in string theory and AdS/CFT addressing black hole unitarity
from a bulk perspective [7,8], pointing to a special role for the (low energy effective) Euclidean
action, seem concrete and tempting enough to test in a de Sitter environment. As a first step
in this direction we will revisit, extend and reinterpret some old results on instantons and
Euclidean actions in de Sitter space [9,10].

As is well known, the Euclidean action of de Sitter space reproduces minus the gravita-
tional entropy of the cosmological horizon [11,12]. When considering a nonrotating, neutral
black hole in de Sitter space, general (thermodynamical) considerations would suggest that
the Euclidean action should separate into two parts, one describing the contribution from the
cosmological horizon and the other from the black hole horizon. However, the absence of
equilibrium in the Schwarzschild-de Sitter (SdS) case implies that the Euclidean solution is
singular, obscuring the meaning of the corresponding on-shell action. So a proper verification
and understanding of the standard (thermodynamical) result for the action appears to require
a new approach, which might be relevant for an improved understanding of quantum de Sitter
in general, and its Hilbert space in particular. We will present what we believe to be a mathe-
matically and internally consistent procedure that produces the expected answer, and provide
a suitable physical interpretation.

One surprising aspect of the expected answer for the on-shell action as the sum of two
gravitational entropies is that the total entropy decreases as the mass of the black hole in-
creases. The maximum entropy state apparently corresponds to empty de Sitter, whereas the
minimum entropy state is achieved by introducing the largest black hole possible, the Nariai
limit. This suggests that we can think of black holes in de Sitter space as localized, more orga-
nized, constrained, states of the original de Sitter degrees of freedom, explaining the decrease
in entropy [13–16]. It is this interpretation of black holes in de Sitter as constrained states that
we will implement concretely in the Euclidean action framework. By identifying the Euclidean
de Sitter black hole solutions as constrained instantons we can keep track of, and sum over,
their contribution to the Euclidean path integral [17].

One of our main results is that we present a completely general derivation showing that
the Euclidean action of a general Schwarzschild-de Sitter solution with conical singularities, in
arbitrary dimensions d > 3, after imposing the (nonlinear) Smarr relation between the black
hole and cosmological horizons, is completely independent of the identified temperature, and
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equal to minus the sum of the two Gibbons-Hawking horizon entropies [18–21]

IE = −
Ab + Ac

4G
= −SSdS . (1)

As already mentioned, an important realization in this context is that the general (singular)
SdS solution should be interpreted as a constrained instanton, where the mass of the black hole
is fixed. The final answer makes intuitive sense and can be related to the standard approach
that just involves the regular Nariai instanton [9,10], by noting that the probability to produce
a pair of arbitrary mass black holes separates into a constant and non-perturbative part, where
the latter is indeed governed by the Nariai limit. In other words, the gravitational path integral
that computes the probability to produce an arbitrary mass black hole in de Sitter space picks
up a non-perturbative contribution from the Nariai instanton. We show that the pair creation
rate per Hubble volume is

Γ ≈
∫ MN

0

dMeSSdS−SdS ≈
MN

SdS − SN

�

1− e−(SdS−SN )
�

, (2)

where M is the mass of the black hole, MN is the Nariai mass, SdS is the de Sitter entropy, and
SN is the Nariai entropy. This black hole pair creation rate [22–25] is qualitatively similar to
recent results by Susskind [26,27], but our method for computing the probability is different
since we integrate eSSdS−SdS over M , instead of over the difference between the locations of the
two horizons x = (rc − rb)/L. In computing this probability we make use of a property that
might seem surprising, namely that the difference between the vacuum de Sitter entropy and
the entropy of the Schwarzschild-de Sitter solution, in arbitrary dimensions d > 3, is to a very
good approximation a linear function of the mass of the black hole.

In section 2 we derive equation (1) for the on-shell Euclidean action of Schwarzschild-de
Sitter spacetime. This is followed up by a short review of constrained instantons and their role
in the path integral in section 3, resulting in the expression (2) for the probability to nucleate
an arbitrary mass black hole. In the conclusions we summarize our findings and end with
some speculations on the implications for de Sitter fragmentation and instanton corrections
to correlators in de Sitter space. Throughout we work with units where ħh = c = 1, but we
keep Newton’s constant explicit, in order to be able to distinguish between perturbative and
non-perturbative corrections in G.

Note added: near the completion of our paper we became aware of independent related
work [28], where it is also argued that Euclidean Schwarzschild-de Sitter is a genuine sta-
tionary point of the constrained path integral. Similar ideas were explored a long time ago
in [18, 19], as well as [20], where in the latter they make use of the Hartle-Hawking wave-
function, but without a proper understanding of the constrained path integral. Only recently
did we become aware of very similar results for the on-shell action of Schwarzschild-de Sitter,
derived and used however in a different context [21,29]. Our derivation of the on-hell action
differs from previous work in that it is covariant, it emphasizes the role of the Smarr relation
and it holds for arbitrary dimensions.

2 Euclidean action and entropy of Schwarzschild-de Sitter

After reviewing some geometric and thermodynamic properties of Schwarzschild-de Sitter
spacetime, we compute the on-shell Euclidean action explicitly. We also analyze the total
gravitational entropy of SdS and show that it can be approximated by a linear function of the
mass parameter. See [9,10,12,16,26–28,30–48] for a list of previous literature on SdS.
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2.1 SdS geometry and its non-equilibrium thermodynamics

Schwarzschild-de Sitter or Kottler [49] spacetime is the neutral, static, spherically symmetric
solution of the Einstein equation with a positive cosmological constant Λ. The d-dimensional
SdS metric in static coordinates is given by

ds2 = − f (r)d t2 + f −1(r)dr2 + r2dΩ2
d−2 , with (3)

f (r) = 1−
r2

L2
−

16πGM
(d − 2)Ωd−2rd−3

. (4)

Here, L =
p

(d − 1)(d − 2)/(2Λ) is the de Sitter curvature radius, G is Newton’s constant, M is
the mass parameter, and Ωd−2 = 2π(d−1)/2/Γ [(d−1)/2] is the volume of a unit (d−2) sphere.
For generality we keep the number of spacetime dimensions d arbitrary in this paper. The SdS
metric represents a black hole in asymptotically de Sitter space. Requiring the absence of a
naked singularity yields an upper limit on the mass of SdS black holes

0≤ M ≤ MN . (5)

The case M = 0 corresponds to pure de Sitter space, which has a single (cosmological) event
horizon located at r0 = L. For d ≥ 4 and the values 0 < M < MN the function f (r) has
two positive real roots rb and rc , with rb ≤ rc , corresponding to the position of the black
hole event horizon and the cosmological event horizon, respectively. As M increases, the
black hole horizon increases in size, whereas the cosmological horizon shrinks in size due to
the gravitational pull of the black hole. The upper bound M = MN corresponds to the case
where the black hole and cosmological horizon coincide, rb = rc = rN , known as the Nariai
solution [9,50]. This is the largest possible black hole in de Sitter space. The Nariai mass and
horizon radius may be found by solving f (rN ) = f ′(rN ) = 0, yielding

MN =
d − 2
d − 1

Ωd−2

8πG
rd−3

N , rN = L

√

√d − 3
d − 1

. (6)

We often express SdS quantities in terms of the dimensionless ratio µ≡ M/MN , for which the
range (5) becomes 0 ≤ µ ≤ 1. In the Nariai limit the SdS geometry reduces to dS2 × Sd−2,
where the curvature radius of two-dimensional de Sitter space is L̂ = L/

p
d − 1, and the cur-

vature radius of the sphere is equal to rN , which are equal in d = 4 [9, 10, 31, 51, 52]. In the
near-Nariai limit for a spherical reduction of four-dimensional SdS the Einstein action reduces
to the action of de Sitter JT gravity, which was studied in [52–54].

Solving f (ri) = 0 in d dimensions provides d − 2 relations between the d − 1 roots

d−1
∑

i=1

rn
i =

�

0 , for 0< n≤ d − 2 odd ,
2Ln , for 0< n≤ d − 2 even ,

(7)

which are enough equations to rewrite every root ri as a function of rb and/or rc . Further,
solving f (rb) = f (rc) = 0 yields the following expressions for the mass parameter M and the
de Sitter radius L in terms of the horizon radii

16πGM
(d − 2)Ωd−2

=
rd−1

c rd−3
b − rd−1

b rd−3
c

rd−1
c − rd−1

b

,
1
L2
=

rd−3
c − rd−3

b

rd−1
c − rd−1

b

. (8)

Inserting this into the blackening function gives

f (r) =
1

rd−1
c − rd−1

b

�

rd−1
c

�

1−
r2

r2
c
−

rd−3
b

rd−3

�

− rd−1
b

�

1−
r2

r2
b

−
rd−3

c

rd−3

��

. (9)
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Figure 1: Horizon radii rb,c in units of the de Sitter radius L vs. mass M in units
of the Nariai mass MN , where we have set d = 4 (left) and d = 5 (right). The
black hole horizon radius (blue curve) becomes larger as M increases, whereas the
cosmological horizon (orange curve) shrinks in size as M increases. For the Nariai
solution the horizon radii coincide.

Note in the limit rb → 0 we recover pure de Sitter spacetime, and the limit rc →∞ corre-
sponds to asymptotically flat Schwarzschild spacetime.

In general dimensions there is no closed form expression for rb and rc as a function of M
and L. However, in d = 4 one can find the expressions [36–38]

rb = rN

�

cosη−
p

3 sinη
�

, (10)

rc = rN

�

cosη+
p

3 sinη
�

, (11)

where η≡ 1
3 arccos(M/MN ), rN =

Lp
3
, and MN =

L
3
p

3G
, and in d = 5 we have

rb = rN

Ç

1−
Æ

1−M/MN , (12)

rc = rN

Ç

1+
Æ

1−M/MN , (13)

where rN =
Lp
2

and MN =
3πL2

32G . These explicit relations are useful when making plots. In
Figure 1 we plot the horizon radii rb,c in four and five dimensions as a function of the mass.

Next we recap the thermodynamics of the SdS black hole solution. Due to thermal radia-
tion emitted from their respective horizons, we can assume that both the black hole and the
cosmological horizon have an associated temperature and entropy [12,55]

Tb,c =
κb,c

2π
, Sb,c =

Ab,c

4G
. (14)

Here, κb,c and Ab,c = Ωd−2rd−2
b,c denote the surface gravity and area of the black hole and cos-

mological horizon, respectively. For arbitrary masses the temperatures Tb and Tc are not the
same, so SdS is out of equilibrium in general. Only for the Nariai solution do the tempera-
tures coincide, and are the two horizons in thermal equilibrium. Pure de Sitter space is also
in thermal equilibrium (in the Bunch-Davies state), but it has a single (cosmological) event
horizon.

The surface gravities are defined with respect to the Killing vector ξ = γ∂t generating
time translations, where γ is an arbitrary normalization constant. The standard definition
ξµ∇µξν = κξν, evaluated at the future black hole and cosmological event horizon, yields
κb,c =

1
2γ| f

′(r)|r=rb,c
. We thus find

κb = γ
�

1
2

d − 3
d − 2

16πGM
A(rb)

−
rb

L2

�

= γ(d − 1)
r2

N − r2
b

2rb L2
,

κc = γ
�

−
1
2

d − 3
d − 2

16πGM
A(rc)

+
rc

L2

�

= γ(d − 1)
r2

c − r2
N

2rc L2
.

(15)
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Figure 2: Temperatures Tb,c in units of TdS = 1/2πL vs. unitless mass parameter
M/MN , where we have set d = 4. The black hole temperature is shown in blue
and the cosmological horizon temperature in orange. The left figure shows the tem-
peratures Tb,c =

κb,c
2π , where the surface gravities are defined with respect to the time

translation Killing vector ξ= ∂t . The right figure shows the Bousso-Hawking temper-
atures T̃b,c =

κ̃b,c
2π , which are normalized with respect to a free-falling static observer,

cf. (17). On the left the temperatures go to zero in the Nariai limit, whereas on the
right the Nariai temperature is finite TN =

p
3

2πL .

Note that κb > κc , hence the black hole is hotter than the cosmological horizon. In princi-
ple, the normalization factor γ can be arbitrary, but two special choices appear often in the
literature. The first choice is γ = 1, for which both surface gravities vanish in the degenerate
(Nariai) limit. This normalization seems unphysical since the Nariai black hole is expected to
be in thermal equilibrium at a finite temperature, as it is just two-dimensional pure de Sitter
space times a sphere. This issue can be remedied by choosing a different value for γ. For
instance, as suggested by Bousso and Hawking, the Killing vector must be normalized on the
geodesic orbit of an observer who can stay in place without accelerating (see the Appendix
in [10]). This occurs at a fixed radius r0 where the blackening factor attains its maximum,
f ′(r0) = 0, given by

rd−1
0 =

d − 3
d − 2

8πGM L2

Ωd−2
=

d − 3
2

rd−3
b,c

�

L2 − r2
b,c

�

= rd−1
N µ . (16)

Plugging this back into the blackening factor gives f (r0) = 1−r2
0/r2

N . Such that surface gravity
using the normalization factor γ= 1/

p

f (r0) becomes

κ̃b,c =
κb,c
p

f (r0)
=
(d − 1)r2

N

2rb,c L2

|1− r2
b,c/r2

N |
q

1− r2
0/r2

N

. (17)

In the limit rb,c → rN we find κ̃N =
p

d − 1/L (see Appendix B in [52]). Thus considering the
free-falling observer normalization gives a non-vanishing surface gravity for the Nariai black
hole. In Figure 2 we plot the horizon temperatures for the normalization γ = 1 (left figure)
and γ = 1/
p

f (r0) (right figure). Finally, we can also expand the normalized surface gravity
near the Nariai solution, rb,c = rN (1∓ ε̃0). To second order in ε̃0 we find1

κ̃b,c =
p

d − 1
L

�

1±
d − 2

3
ε̃0 +

23+ d(2d − 11)
18

ε̃2
0

�

+O(ε̃3
0) . (18)

The minus sign corresponds to the cosmological horizon, whereas the plus sign is associated
to the black hole horizon. For d = 4 we recover the result by Bousso and Hawking [10], cf.
their Eq. (A.16), κ̃b,c =

p
Λ
�

1± 2
3 ε̃0 +

11
18 ε̃

2
0

�

+O(ε̃3
0) (see also [9]).

1Here we used that near rb,c = rN we have
Æ

r2
N − r2

0 ≈
p

d − 3|rN − rb,c |
�

1+ 2d−7
6

�

rb,c
rN
− 1
�

+ ...
�

.
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Figure 3: Horizon entropies Sb,c in units of the de Sitter entropy SdS vs. unitless mass
M/MN , for d = 4. The blue curve corresponds to the black hole entropy Sb, and the
orange curve shows the cosmological horizon entropy Sc . The sum of the entropies
SSdS is approximately a straight line (red curve), and is always less than (or equal
to) SdS . For the Nariai solution the horizon entropies are both equal to one third of
the de Sitter entropy, and their sum is the Nariai entropy SN =

2
3SdS . A similar plot

appeared in [58].

Both the black hole horizon and the cosmological horizon have an associated first law,
which relates the variation of the mass parameter and the horizon area

δM = TbδSb , −δM = TcδSc . (19)

Note that the first laws are related, and the associated thermodynamic quantities in them are
not independent from each other, e.g., Sb increases as Sc decreases. The minus sign on the
right is peculiar and it indicates that the entropy associated to the cosmological horizon goes
down as the black hole mass increases. This implies that the entropy of pure de Sitter space
SdS is the maximum entropy, and hence dS be interpreted as an equilibrium state with a finite
number of degrees of freedom [1].

The question is, however, how the first law for the cosmological horizon can be interpreted
as a standard first law of thermodynamics, dE = T dS. There are two different interpretations
of the minus sign in the right equation in the literature. On the one hand, if we put the minus
sign on the right-hand side of the first law, the cosmological horizon has a negative tempera-
ture, T = −Tc [56, 57]. On the other hand, if we keep the minus sign on the left-hand side,
the energy variation becomes negative, δE = −δM [3]. From this perspective, it seems like
increasing the black hole mass parameter decreases the gravitational energy associated to the
cosmological horizon, and the sum of the energies is conserved, E+M = 0, for small perturba-
tions. The thermodynamic interpretation of the minus sign warrants further investigation, as it
is a crucial property of de Sitter space that should also be encoded in a microscopic description
of dS.

By adding the variational relations (19) we find the global first law for SdS

TbδSb + TcδSc = 0 . (20)

This relation just compares different SdS solutions. If we allow for metric variations away
from SdS, by letting the matter stress-energy tensor Tµν be nonzero in the perturbed solution,
then the first law for SdS takes the form [12,52]

TbδSb + TcδSc = −δHm
ξ , (21)

where δHm
ξ
=
∫

Σ
δTµ

νξµuνdV is the variation of the matter Killing energy, and uν is the
future-pointing unit normal to the spatial section Σ. The minus sign on the right-hand side
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is similar to the one in (19), and it indicates that the horizon entropies Sb,c decrease as the
matter Killing energy increases.

Finally, let us discuss the generalized Smarr formula for SdS [42]

TbSb + TcSc −
ΘΛ

(d − 2)4πG
= 0 . (22)

Here Θ is the conjugate quantity to the cosmological constant in an extended version of the
first law: TbδSb+TcδSc+

Θ
8πGδΛ= 0. It can also be defined in a geometric way as the “Killing

volume” [52,57]

Θ =

∫

Σ

|ξ|dV = γ
�

A(rc)rc

d − 1
−

A(rb)rb

d − 1

�

, (23)

where |ξ| =
p

−ξ · ξ = γ
p

f (r) is the norm of the Killing vector and dV = rd−2
p

f (r)
drdΩd−2 is

the proper volume element of the spatial section Σ between r = rb and r = rc . In terms of
static coordinates the Smarr formula for SdS reads

rd−2
b κb + rd−2

c κc −
γ

L2
(rd−1

c − rd−1
b ) = 0 , (24)

or, equivalently,
rd−2

b κb + rd−2
c κc − γ(rd−3

c − rd−3
b ) = 0 , (25)

where we inserted the equation for 1/L2 in (8). It can be verified explicitly using (15) for the
surface gravities that this Smarr relation indeed holds for any constant γ (which we recall is
the normalization of the horizon generating Killing vector ξ= γ∂t).

2.2 On-shell Euclidean action

In Euclidean signature the line element of SdS becomes

ds2 = f (r)dτ2 + f −1(r)dr2 + r2dΩ2
d−2 , (26)

where τ = i t is the Euclidean time. In the Euclidean spacetime there exist conical singular-
ities at the black hole and cosmological horizon. One of the singularities can be removed by
requiring the periodicity of the Euclidean time circle to be β = 1/Tb,c , but then the conical
singularity at the other horizon remains. Hence there is no completely regular Euclidean sec-
tion of Schwarzschild-de Sitter spacetime. Only in two special cases does the Euclidean SdS
geometry become smooth: the Euclidean de Sitter space is a sphere Sd with radius L and the

Euclidean Nariai geometry is S2×Sd−2, whose curvature radii are L/
p

d − 1 and rN = L
q

d−3
d−1 ,

respectively. Below we consider a generic Euclidean SdS geometry where the periodicity of
Euclidean time is equal to an arbitrary inverse temperature, i.e. τ ∼ τ + β , such that both
conical singularities are present. See Figure 4 for a pictorial representation of Euclidean SdS.
Even though Euclidean SdS geometries are not smooth in general, and hence do not represent
regular gravitational instantons, we proceed anyway with evaluating the Euclidean action on
shell. In fact, it turns out that the on-shell action is finite, since the integral over the conical de-
fects, in low-energy Einstein gravity, is finite. Later in section 3 we give the singular Euclidean
SdS spaces a proper interpretation as constrained instantons.

The off-shell Euclidean action of general relativity plus a cosmological constant is

IE = −
1

16πG

∫

M
dd x
p

g(R− 2Λ) . (27)
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╳

!dS

Sd

rN

!N

!c

!b
!

S2 Sd-2

Sd-2

Sd-2

(i) Euclidean de Sitter (ii) Euclidean Nariai

(iii) Euclidean SdS

Figure 4: Euclidean SdS geometry. (i) Euclidean de Sitter space is a sphere Sd and
the Euclidean time circle has periodicity βdS = 2πL. (ii) Euclidean Nariai space is
S2×Sd−2, where the S2 has a Euclidean time circle with periodicity βN = 2πL/

p
d − 1

and the Sd−2 has radius rN . (iii) Euclidean SdS space is a warped product of S2, with
one or two conical defects, times Sd−2. We have drawn three possible Euclidean SdS
geometries (“ice cream cones”): on the left we removed the conical singularity at the
cosmological horizon by fixing the Euclidean time periodicity to be βc = 2π/κc , in
the middle we removed the conical singularity at the black hole horizon by fixing the
periodicity to be βb = 2π/κb, and on the right both conical singularities are present
since the periodicity β is arbitrary. For these three geometries the radius of the Sd−2

varies along spatial sections, with the minimal (maximal) sphere corresponding to
the black hole (cosmological) horizon.

For Euclidean SdS the Ricci scalar is constant everywhere, except at the conical singularities
at r = rb and r = rc . Hence, it can be written as a sum (see, e.g., [59])

R= Rbulk + Rcon =
2d

d − 2
Λ+ 4πδ(r = rb) + 4πδ(r = rc) , (28)

where δ(r = rb,c) are delta functions at the horizons r = rb,c , which correspond to Sd−2

spheres in the Euclidean geometry. The contribution from the bulk term in the action is

IE,bulk = −
VΛ

(d − 2)4πG
= −

βΘΛ

(d − 2)4πG
= −

βγ

8πGL2
(Ac rc − Abrb) , (29)

where we used R − 2Λ = 4Λ
d−2 for SdS in the first equality, and Λ = (d−1)(d−2)

2L2 in the last
equality. Here, V =

∫

M dd x
p

g is the Euclidean spacetime volume, which turns out to be
equal to V = βΘ, where Θ is the Killing volume in Eq. (23). The normalization factor of
γ appears on the right side of (29) since we assume that β is the periodicity of a rescaled
Euclidean time τ/γ, so that the associated Killing vector in Euclidean spacetimes is ξ= γ∂τ.

Further, the delta functions in the Ricci scalar are integrable, giving the following contri-
bution to the action

IE,con = −
Abεb

8πG
−

Acεc

8πG
= −

Ab

4G
−

Ac

4G
+

Abnb

4G
+

Acnc

4G
, (30)

9

https://scipost.org
https://scipost.org/SciPostPhys.14.2.022


SciPost Phys. 14, 022 (2023)

where εb,c = 2π(1 − nb,c) are the deficit angles associated to the conical singularities, i.e.,
the angle is identified with period 2πnb,c at the respective horizons. Near the black hole
and cosmological horizon the two-dimensional metric takes approximately the Rindler form
ds2 = κ2

b,cρ
2d(τ/γ)2 + dρ2. Note that the surface gravities κb,c are given by Eq. (15),

and they already include a factor of γ. If the periodicity of the Euclidean time is given by
τ/γ ∼ τ/γ + 2π/κb,c , then the conical singularity is removed at the respective horizon, i.e.
the polar angle φ = κb,cτ/γ is identified with φ ∼ φ + 2π. This implies that if the period-
icity of the Euclidean time is a generic function β , then the periodicity of the polar angle is
βκb,c = 2πnb,c .

Therefore, the total on-shell Euclidean action takes the form

IE(β) = IE,bulk + IE,con =
βΩd−1

8πG

h

rd−2
b κb + rd−2

c κc −
γ

L2

�

rd−1
c − rd−1

b

�

i

−
Ab

4G
−

Ac

4G
, (31)

or, equivalently, written in a more covariant form,

IE(β) = IE,bulk + IE,con = β
�

Abκb

8πG
+

Acκc

8πG
−

ΘΛ

(d − 2)4πG

�

−
Ab

4G
−

Ac

4G
. (32)

Importantly, the Euclidean action is the same for any inverse temperature β . Next, we recog-
nize that the term between square brackets multiplying β vanishes due to the Smarr formula
(22) for SdS, and thus the Euclidean action becomes minus the sum of the horizon entropies

IE,SdS = −
Ab + Ac

4G
. (33)

Note, in particular, that the total action is independent of the normalization γ of the Killing
vector. Moreover, this resulting Euclidean action holds for any value of the mass M . Recently,
Draper and Farkas [28] arrived at the same result, by evaluating the Gibbons-Hawking-York
boundary terms on infinitesimal boundaries surrounding the two horizons, following the ap-
proach in [60].

Previously, the references [9,10] only computed the on-shell action for pure de Sitter space
and for the extremal Nariai solution (and for small perturbations away from extremality).
Bousso and Hawking [10] found an expression for the total Euclidean action of SdS in d = 4,
IE,SdS = −

VΛ
8πG−

Abεb
8πG −

Acεc
8πG , cf. their Eq. (A.17), however they did not use the Smarr relation for

SdS to evaluate the expression further and show that it is equal to minus the total gravitational
entropy. At the time they did not consider general Euclidean SdS geometries to be worthwhile
studying, as they are not genuine saddle points of the path integral.

For the special case M = 0 the Euclidean action reduces to minus the de Sitter entropy

IE,dS = −
A(L)
4G

. (34)

For instance in d = 4 we find IE,dS = −
3π
ΛG , in agreement with the Gibbons-Hawking result [11].

We can also expand the action around pure de Sitter space for small M

IE,ndS = −
A(L)
4G

+ 2πM L +O(M2) = −
A(L)
4G

+ (d − 2)
A(L)
4G

ε2 +O(ε4) , (35)

where we used the fact that the cosmological horizon radius, for a finite positive mass param-
eter, is smaller than the de Sitter radius, i.e., rc = L − 8πGM

(d−2)Ωd−2 Ld−4 = L(1 − ε2). The term
2πM L is the well-known entropy deficit SdS − Sc of the cosmological horizon of SdS to low-
est, linear, order in M , reproducing the thermal Boltzmann suppression factor [13, 27, 61].
In four dimensions we have IE,ndS = −

3π
ΛG +

6π
ΛGε

2 +O(ε4). In fact, for d = 4 we can com-
pute the on-shell Euclidean action exactly in ε by solving the relation r2

b + r2
c + rb rc = L2 for
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Figure 5: On-shell action IE,SdS of Euclidean SdS in units of SdS vs. the dimension-
less parameter ε = ±

p

1− rc/L, where we have set d = 4. At ε = 0 the action
attains a local minimum, which corresponds to Euclidean de Sitter space S4, and at
ε= ±
Æ

1− 1/
p

3 (dashed lines) the action attains a local maximum, corresponding
to Euclidean Nariai space S2×S2. At |ε|=

p
2 the action has a global minimum which

resembles pure de Sitter space, see Appendix A. There is a negative mode between
the de Sitter and Nariai stationary points.

rb [13, 27]. Inserting the resulting expression for rb and rc = L(1 − ε2) into the Euclidean
action IE,SdS = −

π
G (r

2
b + r2

c ) = −
π
G (L

2 − rb rc) yields

IE,SdS = −
3π
ΛG

�

1−
1
2

�

1− ε2
�
p

1+ 6ε2 − 3ε4 +
1
2

�

ε2 − 1
�2
�

, for d = 4 , (36)

where we used L2 = 3/Λ. Plotting this expression for the action for fixed values of L and G
shows that de Sitter space is a local minimum of the action (at ε = 0) and that the Nariai
solution is a local maximum (at ε = ±

p

1− rN/L). In Figure 5 we also plotted the action
beyond the maxima to see the extremal points more clearly and to connect to the “inside-
out” transition by Susskind [26, 27] (see Appendix A for further analysis). In terms of the
parameter ε the de Sitter and Nariai clearly correspond to stationary points of the Euclidean
action, suggesting that ε can be associated to a specific metric variation of the action.

Furthermore, for the Nariai solution the action becomes equal to minus the Nariai entropy

IE,N = −2
A(rN )

4G
, (37)

which is − 2π
ΛG for d = 4, in agreement with [9,10]. We can of course also decide to expand the

on-shell Euclidean action around the extremal Nariai solution, using a different parametriza-
tion rc = rN (1+ ε̃). If we plug this parametrization into the equation for 1/L2 in (8) and solve
for rb to second order in ε̃, then we find rb = rN (1− ε̃−

1
3(2d−7)ε̃2)+O(ε̃3). Near the Nariai

solution, in arbitrary dimensions, the action (33) thus becomes

IE,nN = −2
A(rN )

4G
−
(d − 2)2

6
2

A(rN )
4G

ε̃2 +O(ε̃2) . (38)

In four dimensions we can once again obtain the exact expression

IE,SdS = −
3π
ΛG

�

1+
1
6
(ε̃+ 1)
�

1+ ε̃−
Æ

3(1− ε̃)(ε̃+ 3)
�

�

, for d = 4 . (39)

Expanding to leading order in the small parameter ε̃ we find IE,nN = −
2π
ΛG −

4π
3ΛG ε̃

2 +O(ε̃3).
This confirms the result by Ginsparg and Perry [9] that the Euclidean action of SdS possesses
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Figure 6: Total gravitational entropy SSdS = Sb + Sc in units of the de Sitter entropy
SdS vs. the dimensionless mass M/MN , where we have set d = 4. The red curve
corresponds to the actual sum of the horizon entropies, whereas the cyan curve is
a linear fit. The total entropy is approximately a straight line, which also holds in
higher dimensions d > 4.

a negative mode in the direction of decreasing black hole mass. However, the particular coef-
ficient of the negative mode in the Euclidean action that we computed differs from Eq. (3.11)
in [9] and Eq. (A.18) in [10] (see Appendix B for a more detailed comparison). To conclude,
we find that as M is lowered from M = MN to M = 0 the action decreases monotonically from
−2A(rN )/4G to −A(L)/4G, implying the existence of a negative mode at the Nariai stationary
point. The endpoints M = 0 and M = MN are true extrema of the Euclidean action: de Sitter
space is a local minimum and the Nariai solution is a local maximum.

2.3 Total gravitational entropy

From the standard definition of the thermodynamic entropy S = β ∂ IE
∂ β − IE , we find that the

total gravitational entropy of SdS is

SSdS =
Ab + Ac

4G
, (40)

since the action IE (33) does not depend on the arbitrary inverse temperature β . In order to
properly interpret this as a thermodynamic entropy, and exp(−IE) as the saddle point approxi-
mation to a thermal partition function, one should introduce a timelike boundary at some fixed
radius r = R [62]. At this boundary either the temperature or the (quasi-local) energy should
be fixed depending on whether the thermodynamic ensemble is the canonical or microcanoni-
cal ensemble, see [41,48,52,63,64]. In the present paper, however, we are interested in using
the Euclidean action to compute the pair creation rate of black holes, and not in defining dif-
ferent thermodynamic ensembles for SdS. We do want to comment, though, that IE = −SSdS
appears to hold in the microcanonical ensemble, as it is valid for abitrary β , consistent with
the interpretation in [28,48].

Next, we analyze the total SdS entropy as a function of the mass parameter M , for fixed
values of G and L (see Figure 6). Susskind [26, 27] has studied the entropy deficit of SdS
compared to dS in terms of the difference between the horizon radii x = (rc − rb)/L. In
four dimensions the entropy deficit can be written as ∆S = SSdS − SdS = −

1
3SdS(1− x2), but

this expression does not generalize in a straightforward way to higher dimensions. Especially
when computing the nucleation rate of arbitrary mass black holes the parameter M seems
more appropriate to integrate the probability e∆S over than the parameter x , as we will see in
section 3.2.

Before we go into the dependence of SSdS on the mass, let us first discuss why the total
gravitational entropy of SdS is equal to the sum of the black hole and cosmological horizon
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Figure 7: The difference between the linear fit Sl in and the actual total entropy SSdS ,
in units of SdS vs. the mass M in units of MN . The different plots correspond to d = 4
(red), d = 5 (orange), d = 6 (green), d = 7 (cyan), d = 8 (blue).

entropy (see, e.g., [44, 65]). Could we have anticipiated the total entropy in Eq. (40)? For
instance, why is the total entropy not Sc? Since SdS has two Killing horizons, it is natural to
expect that its entropy will be the sum of the two horizon areas. Although it is true that the
black hole is contained inside the cosmological horizon, this just means there is a (localized)
contribution of Sb (related to the number of black hole microstates) to the total entropy of
SdS. The other contribution Sc can then be thought of as related to the number of inaccessible
and delocalized de Sitter states. In other words, by creating a black hole one has effectively
constrained some dS degrees of freedom to a more “organized” localized state [16]. This can
perhaps be realized in some matrix quantum mechanics model [13–15, 27]. If this localized,
constrained state with energy E does not add any entropy itself, then Sc equals the total en-
tropy, but for a black hole state one should add Sb.2

Another argument for identifying the sum of the two horizon entropies with the total SdS
entropy follows from bounds on the areas of the black hole and cosmological horizon [66–68]

A(L)≥ A(rb) + A(rc)≥ 2A(rN ) . (41)

This can also be seen directly from Figure 3. Since the upper bound A(L) = Ωd−2 Ld−2 and the
lower bound 2A(rN ) = 2Ωd−2rd−2

N are related to the entropies of de Sitter space and the Nariai
solution, via the standard Bekenstein-Hawking formula,

SdS =
A(L)
4G

, SN = 2
A(rN )

4G
= 2
�

d − 3
d − 1

�
d−2

2

SdS , (42)

it is natural to expect that the sum A(rb) + A(rc) also represents the entropy of arbitrary mass
SdS solutions. This is indeed what we find in Eq. (40) from an on-shell Euclidean action
computation. In d = 4 we have SdS =

πL2

G and SN =
2
3SdS =

2πL2

3G . Notably, in the large d limit
the Nariai entropy can be expressed as SN (d →∞) = (2/e)SdS , providing an upper bound on
the relative entropy decrease due to the presence of a maximal size Nariai black hole.

In Figure 6 we plot the total gravitational entropy SSdS as a function of M (red curve). The
entropy of the endpoints of the curve at M = 0 and M = MN are, respectively, given by SdS
and SN . We observe that SSdS as a function of M appears to be well approximated by a straight
line with a negative slope from M = 0 to M = MN . We emphasize that we do not claim to fully
understand this observation at this point, except that it is likely related to a large d expansion,
as we will point out briefly. For now proceeding, we can thus approximate the total entropy

2As already mentioned earlier, even when the local excitations do not correspond to black holes, for small E/Mpl ,
to leading order the entropy difference reproduces the expected Boltzmann suppression exp(Sc−SdS) = exp(−βdS E)
for s-wave Hawking modes of energy E.
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by the following linear curve

Sl in = SdS −
SdS − SN

MN
M , (43)

which corresponds to the cyan curve in Figure 6. This is a remarkably simple and quite accurate
approximation to SSdS . That is, the difference δ between the linear fit and the true total
entropy

δ ≡ Sl in − SSdS , (44)

is very small indeed. We plot δ as a function of M in Figure 7, for various number of dimen-
sions, and find that with respect to SdS the difference is always less than 1.1 percent. Moreover,
the linear approximation becomes better as d increases. In fact, using Mathematica it can be
shown that the difference (and the integrated difference) approaches zero in the limit of an
infinite number of dimensions, suggesting that the linear approximation can be explained in
terms of a large d expansion. This linear approximation for the total gravitational entropy will
turn out to be particularly useful for computing the nucleation rate of arbitrary mass black
holes in de Sitter space.

3 Euclidean SdS black holes as constrained instantons

As we have seen the Euclidean SdS action, in arbitrary dimensions, can be computed unam-
biguously, in the presence of the conical singularities, always reproducing the sum of the black
hole and cosmological horizon entropy. The necessary existence of at least one conical singu-
larity signals the fact that the SdS state is not in equilibrium, preventing an understanding of
the total Euclidean action of SdS as the free energy (in the canonical ensemble). The presence
of a conical singularity would naively also appear to obstruct a standard instanton interpre-
tation. However, as anticipated already in [18–20], but worked out in detail in [28], and
further corroborated by our results, Euclidean SdS appears to make sense as a semi-classical
stationary contribution to the action as long as we introduce a constraint that fixes the mass
of the black hole. This allows for a consistent interpretation of the Euclidean SdS solutions
in terms of constrained instantons. In the sections below we will elaborate on, and study the
consequences of, this interpretation.

3.1 Constrained instantons

Standard instanton solutions correspond to a (smooth) stationary point of the Euclidean ac-
tion, with a negative mode, allowing for a semi-classical saddle-point approximation to the
path integral that allows for the understanding of non-perturbative decay modes. In contrast,
constrained instantons are stationary solutions of the action only when a particular constraint
is imposed. As a consequence their contribution to the path-integral needs to be re-evaluated,
which is what we briefly want to review here, mainly based on the useful and elegant sum-
maries in [17,69].

For the specific case of Euclidean SdS the constraint that needs to be imposed to ensure
that the solution is stationary is that the mass should be fixed. That means, as a corollary,
that the on-shell action varies under small variations of the metric that effectively change
the mass parameter, except in the extreme limits of empty de Sitter and the maximum mass
Nariai solution, which are true non-singular stationary points of the Euclidean action of pure
Einstein gravity with a positive cosmological constant. Therefore, as also emphasized in [28],
the Euclidean SdS solution should be interpreted as a constrained instanton. Ignoring the latter
and using the standard saddle point approximation, and subtracting the Euclidean action of
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the empty de Sitter background, one would conclude that the probability to spontaneously
nucleate a black hole of mass M in de Sitter space is proportional to

Γ (M)∝ e−(IE,SdS(M)−IE,dS) = e(SSdS(M)−SdS) = e∆S(M) . (45)

This agrees with the intuitive answer expected on thermodynamical grounds in terms of the
entropy deficit∆S(M) = SSdS(M)−SdS , which in the limit of small M ≪ Mpl , where these so-
lutions can strictly speaking no longer be associated to black holes, reproduces the Boltzmann
factor [27]. However, as stressed, since the SdS geometry in general contains singularities one
cannot automatically assume it corresponds to a stationary point of the action, so we better
accurately verify this result, which will involve the introduction of a constraint.

To properly study and understand the contribution of constrained instanton solutions to
the Euclidean gravitational partition function, one introduces the constraint in terms of a delta
function and integrates over it to rewrite the path integral as follows

∫

[d g] e−IE[g] =

∫

dµ

∫

[d g]δ(C[g]−µ) e−IE[g] . (46)

Here g refers to the metric degrees of freedom and although the above expression is completely
general, what we have in mind is that the constraint on the metric components is such that it
fixes the mass to be M , i.e., we will identify µ with the dimensionless ratio M/MN and only
consider spherically symmetric degrees of freedom. For a specific implementation of these
constraints on the metric for SdS we refer to [28], where the trace k = d−2

R

p

f (R) of the
extrinsic curvature on a surface defined by r = R as embedded in a spatial section of SdS
is kept fixed. This procedure removes both conical singularities at the cost of introducing a
physical (mirror) shell at r = R, but leaves the on-shell Euclidean action invariant, and ensures
that the solution is stationary in the presence of the constraint. For our purposes here we will
not need to introduce a specific constraint functional C[g]. Indeed, no unique choice exists,
different choices should all lead to the same result, corresponding to different ways to slice
the path integral. In fact, the constraint can also be understood as a consequence of fixing a
particular gauge, implying that certain metric components are held fixed, resulting in solutions
that are not necessarily stationary with respect to all variations of the metric [69]. The details
of a particular constraint will not be important for the general result we are interested in. In
the end the different ways to find constrained solutions should be viewed as different ways to
‘decompose’ the partition function and identify the non-perturbative instanton contributions,
in this case associated to the SdS Euclidean geometry. To identify and approximate these non-
perturbative contributions we will need the integral representation of the delta function to
impose the constraint by means of a Lagrange multiplier term added to the action

∫

[d g] e−IE[g] =

∫

dµ

∫

dλ

∫

[d g] e−IE[g]+λ(C[g]−µ) , (47)

where it should be understood that the integral over the Lagrange multiplier λ is parallel
to the imaginary axis. This formal rewriting of the general partition function now allows
to identify the contributions from constrained instantons in terms of an actual saddle point
approximation. For any fixed µ, only allowing λ and the metric degrees of freedom g to vary,
the stationary points of the new action, including the Lagrange multiplier term, correspond to
solutions of the following equations

δIE[g] +λδC[g] = 0 , C[g] = µ . (48)

The important observation is that the Euclidean SdS geometry should be a solution to this
set of equations for non-vanishing λ, where λ equals the (real) eigenvalue of the (first order)
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change in the on-shell action under a small variation of the constraint. For any fixed value of
µ, we have now identified a true stationary solution and we can use the saddle point approx-
imation, valid at weak gravitational coupling, to estimate the path integral. Note that even
though the stationary solution for a particular µ identifies a real λ, as long as the integral over
imaginary λ passes through the real axis at this particular value for λ we can use the sad-
dle point approximation to evaluate the integral. So to summarize, by using the constrained
instanton framework the presence of conical singularities in the Euclidean SdS geometry do
not obstruct a low-energy semi-classical interpretation in terms of a saddle point, as also sug-
gested in [28] and previously anticipated in [18–20], but the appropriate evaluation of the
non-perturbative contribution to the gravitational partition function involves an integral over
the constraint parameter.

Integrating over the constraint parameter µ ≡ M/MN from 0 to 1, one ends up with a
semi-classical approximation of the partition function of Einstein gravity with a positive cos-
mological constant, in the s-wave sector, that should be valid in the regime of weak gravita-
tional coupling. Introducing the function F(µ) to account for the zero-mode volume and the
Gaussian path integral over the second-order fluctuations around the saddle point (the 1-loop
determinant), one then arrives at the final result

∫

[d g] e−IE[g] ≈
∫

dµ e−IE,SdS F(µ) . (49)

The exponential indeed confirms the expected behaviour, as already alluded to, at fixed mass.
It would certainly be of interest to explicitly construct, for a specific constraint functional, the
full stationary solution, including the Lagrange multiplier, and then compute F(µ), general-
izing previous work on the de Sitter and Nariai stationary points [70] to arbitrary black hole
mass. For now however, we will only rely on the behaviour of the exponential and proceed
under the assumption that the function F(µ) is constant, only affecting the normalization.3

We will use this saddle point approximation of the gravitational partition function to derive
an expression for the probability to spontaneously nucleate a black hole of arbitrary mass in
de Sitter space.

3.2 Pair creation rate of black holes in de Sitter space

Unlike hot flat space, which exhibits a classical Jeans instability [71], de Sitter space is classi-
caly stable at the perturbative level [9]. However, semi-classically de Sitter space allows a pair
of black holes to nucleate spontaneously. Ginsparg and Perry [9] computed the probability
rate of nucleating a pair of Nariai black holes, which is given by exp(SN −SdS) = exp(−π/ΛG)
in d = 4 using the standard approach that subtracts the Euclidean action of the background de
Sitter spacetime. Since Euclidean Nariai S2 × Sd−2 is the only regular instanton, they did not
consider the contribution from arbitrary mass black holes. However, with the constrained path
integral method outlined above, it should now be straightforward to compute the probability
rate of pair creating an arbitrary mass black hole in de Sitter space.

The semi-classical approximation to the Euclidean path integral (49) is an integral over
constrained instanton SdS solutions with mass µ from µ= 0 to µ= 1. When interested in the
black hole nucleation rate with respect to the de Sitter background, we subtract the action of
the Euclidean empty de Sitter solution. This can presumably also be interpreted as comparing
the probability exp(−IE,SdS(µ)) for creating a de Sitter black hole with mass µ from nothing, to
the probability exp(−IE,dS) to create empty de Sitter space from nothing, in a Hartle-Hawking
wavefunction of the universe approach [10,20]. The upshot is that we can compute the total

3We note that our qualitative conclusions will be unaffected as long as F(µ) is a (positive) power law.
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probability rate (per Hubble volume) of pair creating any, arbitrary mass, black hole in de
Sitter space, starting from (49), as follows

Γ ≈ MN

∫ 1

0

dµ e−(IE,SdS(µ)−IE,dS) = MN

∫ 1

0

dµ e∆S , (50)

where∆S = SSdS−SdS is the entropy deficit and µ= M/MN is the dimensionless mass param-
eter. To obtain the dimensions of a rate we multiplied the integral with MN , or equivalently,
we integrate over M instead of µ. As mentioned already, we have assumed that the zero-
mode volume and 1-loop determinant just provide a normalization factor. The integral over
exp(∆S(µ)) from µ= 0 to µ= 1 in arbitrary dimensions is hard to perform exactly, but it can
be well-approximated using the linear fit4 for SSdS (43), implying that

∆S ≈ −(SdS − SN )µ . (51)

Using this linear fit and integrating over the full physical range of µ ∈ {0,1} yields, in arbitrary
dimensions,

Γ ≈
MN

SdS − SN

�

1− e−(SdS−SN )
�

. (52)

One observes that the resulting pair creation rate has a constant contribution (proportional
to G0) MN/(SdS − SN ) and a non-perturbative contribution proportional to e−(SdS−SN ) coming
from the Nariai instanton. We emphasize that the constrained instanton contributions are no
longer explicitly present in the final result; we integrated over them and in the final answer Eq.
(52) only the stationary Nariai instanton appears explicitly, as a consequence of the boundary
of the integral. This is consistent with the fact that constrained instantons are not genuine
saddle points of the path integral. In the absence of gravity, i.e. in the limit G→ 0 or equiva-
lently (SdS −SN )→∞, the nonperturbative term vanishes, consistent with expectations. The
coefficient in front equals the slope of the linear fit and sets the natural time scale for the decay
rate, which is proportional to the de Sitter temperature

MN

SdS − SN
=

1
2πL

�p

(d − 1)(d − 3)
d − 2

�

�

d − 1
d − 3

�(d−2)/2
− 2

��−1

. (53)

This should be expected, since the entropy deficit for small M reproduces the thermal Boltz-
mann factor, which indeed should roughly give an order one probability per unit Hubble time
to see a Hawking (s-wave) mode at an energy scale of the de Sitter temperature. The (d de-
pendent) linear fit explains why the coefficient is not exactly equal to the de Sitter temperature
1/2πL. The transition to black hole production, introducing the Nariai high-energy cut-off,
further affects the total probability slightly as compared to the result in the absence of gravity
(G→ 0).

As pointed out the linear approximation gets more accurate as the number of dimensions
increases. Indeed, the probability rate in the limit of a large number of dimensions d →∞
equals

Γ (d →∞) =
MN

(e− 2)SdS/e

�

1− e−(e−2)SdS/e
�

=
MN

(e− 2)SN/2

�

1− e−(e−2)SN/2
�

. (54)

Concentrating on a more explicit expression in four dimensions the pair creation rate is found
to be

Γ (d = 4)≈
MN (1− e−SdS/3)

SdS/3
=

MN (1− e−SN/2)
SN/2

=
p
Λ

3π

�

1− e−
π
ΛG

�

. (55)

4As mentioned in section 2.3 the linear fit can likely be understood in terms of a large d expansion and for our
purposes here we have ignored corrections at higher order.
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Of course, as alluded to before, this probability only applies to the pair creation of black holes
when M > Mpl . In the current universe, assuming the accelerated expansion is caused by a true
cosmological constant, the corresponding Boltzmann suppression is enormous. Our result for
the pair creation rate is qualitatively similar, but not equal to Susskind’s result, cf. Eq. (5.54)
in [26] and Eq. (4.27) in [27], which was motivated in a completely different way, starting
from the expected thermodynamical entropy difference formula for the pair creation rate of a
black hole of a specific mass M , and then integrating over the variable x = (rc− rb)/L, instead
of the constraint parameter µ. Comparing there appears to be a sign difference in front of the
non-perturbative contribution, but in particular we do not find an additional (perturbative)
entropy suppression factor in front of the non-perturbative term. Perhaps the differences can
be attributed to the function F(µ), which we assumed to be independent of µ, and in principle
it should be possible to compute this in the constrained instanton formalism. Nevertheless
we believe this result is important as a “proof of concept”, in that the total probability can be
computed from first principles using the constrained instanton formalism, and we do expect
the qualitative features to be unchanged in a more complete calculation.

The result, of course, also changes if we do not integrate µ from 0 to 1, but instead would
have used the Planck mass as a starting point. To interpret the integral as a probability rate to
find a classical black hole configuration strictly speaking only make sense for masses M > Mpl ,
and therefore one should not take into account contributions from smaller masses. However,
as long as one properly interprets the equation as a probability rate to observe an arbitrary
s-wave configuration in de Sitter, which for masses below the Planck scale should be associated
to massive shells instead of black holes, the result should be correct. Concentrating on black
holes only, excluding massive shell contributions below the Planck scale from the integral
will change the result ever so slightly and introduce another exponential suppression term,
replacing the unit factor in between brackets.5

4 Conclusion

One important conclusion from our work, as also emphasized in [28, 48], is that the on-shell
action of the SdS solution can be given a proper interpretation, either as the microcanonical
partition function, directly giving the total entropy, or as a constrained instanton that can be
used to compute the transition rate to spontaneously nucleate black holes of arbitrary mass
in de Sitter space [18–20]. In our case we explicitly computed the on-shell SdS action in the
presence of conical singularities, in arbitrary dimensions, by just imposing the Smarr relation
that relates the two conical deficits, yielding the expected answer as the sum of the horizon
entropies. Once again this provides evidence in support of the idea that black holes in de
Sitter should be thought of as constrained (localized) configurations of the available de Sitter
degrees of freedom, lowering the entropy [13–15, 27]. An important remaining question in
this regard is exactly why, and under what conditions, the presence of conical singularities
nevertheless allows for a low-energy interpretation in terms of non-perturbative constrained
instanton contributions.

We also made the observation that the entropy deficit, obtained by comparing the on-shell
actions of SdS and empty de Sitter, which is the relevant quantity describing the spontaneous
nucleation of a black hole, is well approximated by a linear function of the mass M . More-
over, the approximation becomes exact in the limit of an infinite number of dimensions. This
property was then used to approximate the integral that computes the nucleation rate of a
pair of black holes of any mass. Our result generalizes a previous computation [9, 10] of the
probability of nucleating a Nariai black hole to arbitrary SdS black holes [18–20] in general

5We thank Ben Freivogel for a discussion on this point.
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dimensions. As also pointed out in [26, 27] using a different approach, the result splits up in
a constant (G0) and non-perturbative contribution, where the non-perturbative contribution
is governed by the Nariai instanton. From a path integral perspective this is expected, since
the Euclidean Nariai limit corresponds to the unique regular, stationary, instanton (apart from
the vacuum de Sitter instanton) that should govern the non-perturbative behaviour. We view
our result for the probability as a proof of concept, derived under the assumption that there
is no additional µ dependence in the integral coming from the zero-mode volume and 1-loop
determinant, and leave a more complete calculation to future work.

A relatively straightforward generalization of interest is the Euclidean action of charged
black holes in de Sitter space. Based on some preliminary results we anticipate that the situa-
tion will be very analogous, with the Euclidean action given by the sum of the entropies and a
similar interpretation in terms of constrained instantons. It would be interesting to compute
the probability of the pair production of charged black holes in de Sitter space, and to analyze
which proper instantons contribute most [72]. A better understanding of the charged case,
in arbitrary dimensions, might also have interesting applications in the context of the Weak
Gravity Conjecture in de Sitter [73]. We plan to report on the charged de Sitter black hole
results in the near future.

Based on our results we would like to suggest that the interpretation of Euclidean SdS as a
constrained instanton, with a nucleation probability given by the entropy deficit, could also be
of relevance for the study of de Sitter fragmentation [74,75]. If a (constrained) instanton exists
that describes the nucleation of two or more black hole copies, extending the spacelike sections
of the Lorentzian geometry, this would correspond to a more direct description of de Sitter
fragmentation as compared to the original proposal [74]. There one first nucleates a Nariai
black hole, then introduces perturbations to the Nariai geometry that expand, freeze, and
collapse to multiple black holes that consequently Hawking radiate and fragment the original
de Sitter space. Perhaps a more direct approach in terms of constrained SdS instantons can
shed some new light on the total probability for de Sitter fragmentation to occur. An obvious
first guess for this probability, suggested in [20], would be to multiply the SdS Euclidean action
with a factor n representing the number of copies, i.e.

Γ [SdSn]∝ en∆S . (56)

This can either be understood in terms of the original single SdS probability, simply repeated
n times as more Hubble regions appear due to the ongoing exponential expansion, giving
Γ ∝ Πn exp(∆S) = exp(n∆S). Or one can equivalently think of comparing the Euclidean
action of n SdS copies to the Euclidean action of n copies of vacuum de Sitter space. The
total probability for de Sitter to fragment into n copies would then involve an integral over
all masses. Perhaps this probability to spontaneously create multiple copies of arbitrary mass
black holes in de Sitter space can somehow be related to the original perturbed Nariai instanton
procedure, since the final (fragmented) de Sitter states are the same.

Related to their potential role in de Sitter fragmentation the SdS instantons might also
be of relevance in questions related to the de Sitter entropy and a de Sitter version of the
information paradox [26, 27]. Concretely, as for the AdS eternal black hole [76], one would
expect the exponentially decaying late-time behavior of correlations (for example, between
field operators at the poles) in de Sitter space to end at some very large time-scale and instead
reach a constant value (on average), in order to be consistent with the finite number of states
suggested by the de Sitter entropy. One could speculate that corrections due to (constrained)
de Sitter instantons might give rise to this kind of late-time qualitative behavior. For example,
for instantons associated to the de Sitter fragmentation, one could imagine having to sum
over all spatially disconnected images. As a result of the nonzero overlap between n future
(fragmented) de Sitter states and an initial single de Sitter state, these kind of non-perturbative
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corrections can perhaps modify the semi-classical exponential decay of correlators at late times,
i.e., providing a lower bound naturally suppressed by the Euclidean action of the relevant SdS
instanton. We believe it would be of great interest to study this in more detail.
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A Near-de Sitter expansion

In this appendix we study the expansion near pure de Sitter of the Euclidean action and the
mass parameter for four- and five-dimensional Schwarzschild-de Sitter space. We initiated this
analysis already in four dimensions below Eq. (35) in the main text, but here we provide more
details. We define the following expansion

rc = L(1− ε2) , or ε= ±
Æ

1− rc/L , (A.1)

where ε is a unitless parameter describing the deviation from the empty de Sitter horizon
radius. This expansion is useful for visualizing the extrema of the action and for determining
the physical (positive) ranges of the horizon radii (associated to the mass range 0≤ M ≤ MN ).

A.1 Four dimensions

In four dimensions the blackening factor f (r) (4) has three roots, given by rb, rc and
ra = −(rb + rc) . They are related by Eq. (7), which for n= 2 and d = 4 is given by

r2
a + r2

b + r2
c = 2L2 , or r2

b + r2
c + rbrc = L2. (A.2)

This fixes the dependence on ε for the black hole horizon radius

rb =
L
2

�

ε2 +
p

1+ 6ε2 − 3ε4 − 1
�

, (A.3)

and similarly for the other root ra. The ε dependence of the three roots is shown in Figure 8.
As |ε| grows, the cosmological horizon shrinks until it matches the growing black hole horizon
at the Nariai value ε = ±

Æ

1− 1/
p

3. Further increasing |ε| will cause the previously called
black hole horizon to grow until it becomes the original de Sitter radius L, and simultaneously
the cosmological horizon radius shrinks to zero at ε= ±1. By increasing |ε| beyond one, both
horizon radii enter a non-physical regime, where the black hole horizon radius exceeds the
de Sitter radius L < rb ≤ 2rN and the cosmological horizon radius becomes negative rc < 0.
However, for |ε|>

p
2 we see that rb becomes smaller than L again and the previously negative

root ra becomes positive, until those two horizons coincide at ε= ±
Æ

1+ 2/
p

3.
Further, from Figure 8 we clearly see there are three degenerate cases for the roots: the first
case occurs at rc = L/

p
3 where rb = rc and M = MN , the second case is at rc = −L/

p
3
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Figure 8: The roots of f (r) in units of L as a function of ε for d = 4. The black hole
horizon radius rb is shown in blue, the cosmological horizon radius rc in orange and
the third root ra = −(rb + rc) in green.

where ra = rc and M = −MN , and the third case happens at rc = −2L/
p

3 where ra = rb and
M = MN . The last case is a new type of Nariai solution.

The fact that for values |ε| >
Æ

1− 1/
p

3 the black hole horizon grows beyond the de
Sitter horizon, suggests that they exchange roles. Susskind [26, 27] coined this the “inside-
out" process, where the Nariai solution acts as a transition point. However, for 1 < ε <

p
2

two roots are negative and the positive one exceeds the original size L, thus corresponding to
a non-physical regime. Interestingly though, for |ε| >

p
2 two of the roots are positive again

and take values between zero and L. This is a new physical regime for the SdS black hole,
where the root ra plays the role of the black hole horizon radius and the root rb becomes
the cosmological horizon radius. Beyond |ε| =

Æ

1+ 2/
p

3, where the two roots ra and rb
coincide, these roots become complex.

In order to better understand the (non-)physical regimes we study the mass parameter M
as a function of ε. Solving f (rb) = f (rc) = 0 in four dimensions yields

M =
rb

2G

�

1−
� rb

L

�2�

=
rc

2G

�

1−
� rc

L

�2�

, (A.4)

such that in terms of ε the mass takes the form

M =
L

2G
ε2
�

2− 3ε2 + ε4
�

. (A.5)

In Figure 9 we plotted M versus ε, which shows that the values of ε associated to the non-
physical regime correspond to negative values for the mass M . On the other hand, the mass is
non-negative and takes values in the physical regime 0 ≤ M ≤ MN for the ranges 0 ≤ |ε| ≤ 1
and
p

2≤ |ε| ≤
Æ

1+ 2/
p

3. The latter physical regime has not been considered before in the
literature, as far as we are aware, and deserves further investigation, as it is describes a SdS
black hole where the horizons correspond to different roots than is usually the case.
In terms of ε the on-shell Euclidean action of SdS, IE,SdS = −

π
G

�

r2
b + r2

c

�

, becomes

IE,SdS = −
πL2

2G

�

3− 2ε2 + ε4 − (1− ε2)
p

1+ 6ε2 − 3ε4
�

, for d = 4 , (A.6)

which is equivalent to Eq. (36). From plotting IE,SdS as a function of ε in Figure 10, we observe
that the action has three stationary points: pure de Sitter space is a local minimum, the Nariai
black hole a local maximum, and there is a global minimum corresponding to |ε| =

p
2, for

which the roots are ra = 0, rb = L, rc = −L, resembling pure de Sitter space.
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Figure 9: Mass M in units of MN as a function of ε for d = 4. For the values
1 < |ε| <

p
2 the mass M becomes negative, and for |ε| >

Æ

1+ 2/
p

3 the mass
exceeds MN .

A.2 Five dimensions

In five dimensions the blackening factor f (r) has four roots, given by rb, rc , ra = −rc and
rd = −rb. They are related by Eq. (7), which for n= 2 and d = 5 takes the form

r2
a + r2

b + r2
c + r2

d = 2L2 , or r2
b + r2

c = L2. (A.7)

Together with expression (A.1 ) for rc , this fixes the ε dependence for the other roots of f (r).
The black hole horizon radius rb is given by

rb = L
Æ

ε2(2− ε2) , (A.8)

and similar expressions exist for ra and rd . The ε dependence of the four roots is shown in
Figure 11. As |ε| grows, the cosmological horizon shrinks until it matches the growing black
hole horizon at ε = ±

Æ

1− 1/
p

2. As |ε| increases, the “black hole" horizon reaches rb = L,
where rc = 0 and ε= ±1. Beyond that rb begins to shrink and ra becomes positive, until they

meet at ε = ±
Æ

1+ 1/
p

2. Afterwards rb shrinks back to zero at ε = ±
p

2 where ra = L. For
|ε| >

p
2, ra and rb become complex, whereas rc = −ra < −L. Further, from Figure 11 we

see there are five degenerate cases for the roots: i) rb = rd = 0 at ε = 0, ii) ra = rd = −rN

and rb = rc = rN at |ε| =
Æ

1− 1/
p

2, iii) ra = rc = 0 at |ε| = 1, iv) ra = rb = rN and

rc = rd = −rN at |ε|=
Æ

1+ 1/
p

2, and v) rb = rd = 0 at |ε|=
p

2.

Figure 10: Euclidean action IE of SdS in units of SdS as a function of ε for d = 4.
Empty de Sitter is a minimum and Nariai a maximum of the action, and there is an
additional global minimum at |ε|=

p
2 for which M = 0.
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Figure 11: The roots of f (r) in units of L as a function of ε for d = 5. The black hole
horizon radius rb is shown in blue, the cosmological horizon radius rc in orange, the
root ra = −rc in green and the fourth root rd = −rb in purple.

In five dimensions we notice that the roots never exceed L and that the number of positive
and negative roots stays constant throughout, indicating that the horizons never enter a non-
physical regime. Studying the corresponding mass as a function of ε confirms this, as in five
dimension the mass is

M =
3πr2

b

8G

�

1−
� rb

L

�2�

=
3πr2

c

8G

�

1−
� rc

L

�2�

, (A.9)

and in terms of ε it is given by

M =
3πL2

8G
ε2
�

2− ε2
� �

1− ε2
�2

. (A.10)

In Figure 12 we plotted the mass as a function of ε, and used that the Nariai mass is given
by MN = 3πL2/32G in five dimensions. As opposed to the four-dimensional case, defining
a unitless parameter ε as the deviation from the de Sitter cosmological horizon radius, will
not cause the mass to enter a non-physical regime M < 0. This pattern continues in higher
dimensions, in the sense that in even dimensions one enters a non-physical regime with M < 0,
whereas in odd dimensions one always remains in the physical regime 0≤ M ≤ MN .

The on-shell Euclidean action, IE,SdS = −(Ab + Ac)/4G, can be computed to be

IE,SdS = −
π2 L3

2G

�

(1− ε2)3 +
�

ε2(2− ε2
�

)3/2
�

, for d = 5. (A.11)

Figure 12: Mass in units of MN as a function of ε for d = 5.
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Figure 13: Euclidean action in units of SdS as a function of ε for d = 5.

From Figure 13 we see that the action has again three stationary points: de Sitter space at
ε= 0, the Nariai black hole at |ε|=

Æ

1− 1/
p

2, and the de Sitter-like solution at |ε|= 1.

B Near-Nariai expansion

In this appendix we expand the Euclidean action around the Nariai solution, restricting to four
dimensions. In the main text, below Eq. (37), we used the expansion parameter ε̃ defined as

rc = rN (1+ ε̃) . (B.1)

The black hole horizon radius is fixed by the relation (A.2 )

rb =
rN

2

�Æ

3(1− ε̃)(3+ ε̃)− (1+ ε̃)
�

, (B.2)

where we inserted L2 = 3r2
N . In terms of ε̃ the on-shell action of SdS, IE,SdS = −

π
G

�

r2
b + r2

c

�

,
becomes

IE,SdS = −
πr2

N

2G

�

7+ ε̃(2+ ε̃)− (1+ ε̃)
Æ

3(1− ε̃)(3+ ε̃)
�

, (B.3)

which agrees with Eq. (39). To second order in ε̃ around the Nariai geometry the action is

IE,nN = −
2πr2

N

G

�

1+
2
3
ε̃2
�

+O
�

ε̃3
�

= −
2π
ΛG
−

4π
3ΛG

ε̃2 +O
�

ε̃3
�

. (B.4)

This shows there exists a negative mode for the near-Nariai solution. However, the precise
coefficient of the negative mode in the action is not the same as in previous literature. In
Eq. (3.11) of [9] Ginsparg and Perry obtained − 20π

9ΛGε
2
0 for the negative mode, whereas in Eq.

(A.18) of [10] Bousso and Hawking found − 17π
9ΛGε

2
0. We should add though that our expansion

parameter ε̃ is different from the parameter ε0 used by these authors, and hence one might
expect a different result. In the following we will redo the computation of the on-shell action
using the expansion parameter ε0, defined below, and show that the result remains the same
as (B.4 ). Thus, our result for the negative mode is in disagreement with [9,10].

In the Appendix of [10] Bousso and Hawking used the definition for the expansion param-
eter ε0 around the Nariai mass as introduced by Ginsparg and Perry [9]6

�

M
MN

�2

= 9G2M2Λ= 1− 3ε2
0 . (B.5)

6In arbitrary dimensions this can be generalized as (M/MN )2 = 1− (d − 1)(d − 3)ε2
0 .
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However, Bousso and Hawking corrected the near-Nariai expansion in [9] by making sure that
f (r) = 0 on the horizons, and by properly normalizing the Killing vector. Condition (A.2 )
ensures that f (r) = 0 on the horizon, and can be used to find the expansion of the horizon
radii

rb,c =
1
p
Λ

�

1∓ ε0 −
1
6
ε2

0 ∓
4
9
ε3

0

�

+O(ε4
0) . (B.6)

Next, they define new time and radial coordinates ψ and χ by7

τ=
1

ε0
p
Λ

�

1−
1
2
ε2

0

�

ψ , r =
1
p
Λ

�

1+ ε0 cosχ −
1
6
ε2

0 +
4
9
ε3

0 cosχ
�

. (B.7)

The black hole horizon is located at χ = π and the cosmological horizon is at χ = 0. The radial
coordinate is determined by (B.6 ), and the time coordinate follows from the definition of the
Killing vector ξ = 1p

f (r0)
∂τ =
p
Λ∂ψ, which is normalized such that it has unit length on the

geodesic where an observer needs no acceleration to stay in place. The near-Nariai metric in
Euclidean signature is up to second order in ε0

ds2 =
1
Λ

�

1−
2
3
ε0 cosχ +

2
3
ε2

0 cos2χ −
1
9
ε2

0

�

sin2χdψ2 +
1
Λ

�

1+
2
3
ε0 cosχ −

2
9
ε2

0 cos2χ

�

dχ2

+
1
Λ

�

1+ 2ε0 cosχ + ε2
0 cos2χ −

1
3
ε2

0

�

dΩ2
2 . (B.8)

The surface gravities associated to ξ for the two horizons were computed in Eq. (18)

κb,c =
p
Λ

�

1±
2
3
ε0 +

11
18
ε2

0

�

. (B.9)

To remove the conical singularity at one of the horizons one needs the periodicity

ψid
b,c =

2π
p
Λ

κb,c
= 2π
�

1∓
2
3
ε0 −

1
6
ε2

0

�

. (B.10)

The Euclidean action of SdS can now be computed as follows

IE = IE,bulk + IE,con,b + IE,con,c = −
VΛ

8πG
−

Abεb

8πG
−

Acεc

8πG
. (B.11)

Here V is the four-volume of the Euclidean singular geometry, and εb,c are the conical deficit
angles at the horizons. For an arbitrary periodicity ψid of the Euclidean time ψ, the conical
deficit angles are εb,c = 2π − ψidκb,c/

p
Λ, cf. the discussion below Eq. (29). Using the

near-Nariai metric (B.8 ) and the surface gravities (B.9 ) the three terms can be shown to be

IE,bulk = −
ψid

ΛG
+
ψid

18ΛG
ε2

0 +O
�

ε3
0

�

, (B.12)

IE,con,b =
ψid − 2π

2ΛG
−
(2ψid − 6π)

3ΛG
ε0 −

(ψid + 24π)
36ΛG

ε2
0 +O
�

ε3
0

�

, (B.13)

IE,con,c =
ψid − 2π

2ΛG
+
(2ψid − 6π)

3ΛG
ε0 −

(ψid + 24π)
36ΛG

ε2
0 +O
�

ε3
0

�

. (B.14)

Finally, by adding up the three terms we find that ψid drops out in the total action

IE,nN = −
2π
ΛG
−

4π
3ΛG

ε2
0 +O
�

ε3
0

�

. (B.15)

7In general dimensions the time coordinate is defined by τ = rN
ε

�

1
d−3 −

d−2
4 ε

2
0

�

ψ and the radial coordinate is
defined via r = rN

�

1+ ε0 cosχ − 1
6 (2d − 7)ε2

0 +
1
18 (5d2 − 26d + 32)ε3

0 cosχ
�

.
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Although we were able to reproduce the near-Nariai metric and surface gravities in [10], we
obtained a different coefficient for the ε2

0 term in the action. In fact, we find the same co-
efficient as in Eq. (B.4 ), thus confirming our result for the negative mode. To be clear, we
agree with all the equations in the Appendix of [10], except for the final result (A.18) for the
action. Curiously, they find a different result depending on the value for the periodicity ψid .
In particular, for ψid = ψid

b,c they obtained − 17π
9ΛGε

2
0 and for ψid = 2π they found − 20π

9ΛGε
2
0 for

the negative mode. In the main text, however, we showed that the total Euclidean action of
SdS is independent of the time periodicity, and Eq. (B.15 ) is a nontrivial check of that result.
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