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Abstract

We present the first steps in the development of a new class of hadronization models
utilizing machine learning techniques. We successfully implement, validate, and train a
conditional sliced-Wasserstein autoencoder to replicate the PYTHIA generated kinematic
distributions of first-hadron emissions, when the Lund string model of hadronization
implemented in PYTHIA is restricted to the emissions of pions only. The trained models
are then used to generate the full hadronization chains, with an IR cutoff energy imposed
externally. The hadron multiplicities and cumulative kinematic distributions are shown
to match the PYTHIA generated ones. We also discuss possible future generalizations of
our results.
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1 Introduction

A typical particle physics Monte Carlo event generator factorizes into three distinct steps or
blocks of code: (i) the generation of the hard process, (ii) parton shower, and (iii) hadroniza-
tion (including color reconnections). The first two steps are perturbative in their nature, and
thus under good theoretical control, with significant efforts devoted to improving the preci-
sion even further [ 1-4]. The algorithmic challenges are efficient sampling of final state particle
configurations, and taming the factorial growth of the calculations with the increasing number
of particles. The simulation of the hard matrix element is performed either by a specialized
code, e.g., MADGRAPH [5], which only calculates the hard process, or is directly included in
complete event generators, such as PYTHIA [6], HERWIG [7], or SHERPA [8], that also perform
the parton showering.

In contradistinction, the hadronization step is inherently non-perturbative. One is there-
fore forced to resort to phenomenological models inspired by non-perturbative descriptions
such as lattice QCD. The two main models used in simulating hadronization are the Lund
string model [9-11] and cluster model [12-14]. In the string model, quark-anti-quark pairs
are thought of as being connected by a string, a flux tube of the strong force confined in the
lateral direction. As the quark-anti-quark pair moves apart, the string breaks, creating new
quark-anti-quark pairs in the process, resulting in the emission of hadrons. These emissions
are performed iteratively, breaking the string either from the left or the right side, with the final
step modified post hoc in order to provide an emission similar to the previous steps. This model
requires extra parameters to describe the hadrons’ transverse momenta and heavy particle sup-
pression, and has some challenges describing baryon production. Over O(20) parameters are
required by the string model to describe the hadronization.

In the cluster model, gluons are forced to split into quark—anti-quark pairs at longer dis-
tances (lower energy). All quark—anti-quark pairs are grouped into color singlet combinations
with a distance scale that depends only on the evolution step, and not the hard process step of
the Monte Carlo event generation. Hadrons are emitted from these universally pre-confined
clusters via a series of two-body decays until only physical hadrons remain. The model has
fewer parameters and naturally generates hadron transverse momenta. However, the decays
of massive clusters lead to phenomenological problems such as predicting heavy baryon dis-
tributions which do not match data well.

Machine Learning (ML) techniques offer the possibility to build alternatives to the above
two models of hadronization. Such ML models could be directly built from data and provide
insights into the current phenomenological models. While ML techniques have recently en-
tered into the development of event generators, through adaptive integration [ 15-20], parton
showers [21-29], ML based fast detector or event simulations [28-55], and model parameter
tuning [56,57], the application of ML to the problem of hadronization as the final step in the
Monte Carlo pipeline is entirely new, to the best of our knowledge. The present manuscript
represents the first step toward building a full-fledged ML based hadronization framework.

In principle, Generative Adversarial Networks (GANs) [58], Variational Auto-Encoders
(VAEs) [59], and Normalizing Flows (NF) [60] have demonstrated the ability of ML to gen-
erate convincing physical observables. In addition, conditional generative models give more
flexibility and control of the output [61,62]. Extending the ML techniques for hadronization
faces three challenges: (i) producing sets of physical observables that vary in size (unlike a
fixed number of pixels), ranging from O(1) to O(10%); (ii) strictly conserving certain physi-
cal quantities, e.g., momentum and energy; and (iii) learning from limited training sets which
only provide coarse-grain detail. In this paper, we present an architecture based on conditional
sliced-Wasserstein autoencoders (cSWAE) [63,64], that overcomes the above challenges. The
resulting code, MLHAD, is publicly available, see Appendix A. We demonstrate the capabilities
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of MLHAD by training it on specially prepared PYTHIA hadronization outputs with an explicit
IR cut-off. To speed up the training we perform a transformation that captures the bulk of the
energy dependence of the PyTHIA hadronization output. However, we also show that, if this
transformation is not performed, the cSWAE can still reproduce the energy dependence and
thus should be able to reproduce any additional energy dependence that may be present in
the hadronization process realized in nature. We expect that the first version of the cSWAE
architecture presented here can be upgraded to eventually be trained directly on data (details
about further steps to achieve this can be found in section 4).

The paper is structured as follows. In Section 2 we introduce conditional sliced-Wasserstein
autoencoders and describe how these can be used to reproduce the Lund string model of
hadronization. In Section 3 we then compare the trained MLHAD models to the results of a
simplified PYTHIA hadronization model. Section 4 contains our conclusions and a brief dis-
cussion of future directions. Appendix A contains details about the publicly accessible MLHAD
code, while Appendix B gives further details on the sliced-Wasserstein distance.

2 Conditional SWAEs and hadronization

2.1 The simplified Lund string hadronization model

As the first step toward building a machine learning (ML) based simulator of hadronization,
we create a ML architecture that is able to reproduce a somewhat simplified Lund string model
for hadronization. Hadronization is the last step in the Monte Carlo simulation of the particle
collision, and describes the creation of hadrons from quarks and gluons, a process that occurs
at the nonperturbative scale of a few 100 MeV. The distributions of quarks and gluons at low
scales is obtained using a parton shower simulation, which describes the emission of particles
between the hard scale of the collisions, typically a few 100 GeV, down to low energies. In a
Lund string model the quarks and gluons are thought of being connected by QCD color flux
tubes, or strings, that carry significant amounts of energy, and shed it in the process of hadron
creation. While there were already attempts to use ML to improve parton shower simulations
[27,65-71], this manuscript represents the first attempt to use ML for hadronization. In both
cases the physics is described by a Markov chain, however, for different reasons. The semi-
classical evolution of a parton shower, where gluons and quarks are radiated in a Markov
chain, can be justified in the small angle emission limit. The hadronization, on the other
hand, can be represented as a Markov chain process because string fragmentations occur at
causally disconnected points.

The physical process we want to describe is depicted in Fig. 1. It shows a q;q; fragmentation
event in the center-of-mass frame in which the individual partons, each with flavor index i and
initial energy E, travel with equal and opposite momenta and are connected via a QCD string.
String breaking produces a composite hadron h ~ ¢;G; and a new q;g;-string system depicted
in the lower part of Fig. 1.} The hadron h is ejected with some energy and momentum (Ej,, By,),
while the new string system has the energy and momentum (2E — Ej,, —py,), so that the total
energy and momentum are conserved. The goal of our ML framework will be to properly
describe the probabilities of emitting a hadron of given energy and momentum.

After boosting to the center-of-mass frame of the new string, one has essentially the same
initial state, a quark—anti-quark pair going back to back connected by a string, but with reduced
energy E’ and a different quark flavor composition. Such fragmentation events stack one
after the other and form a fragmentation chain, one hadron emission at a time, until the

!The depiction in Fig. 1 is for a string breaking occurring on the quark side. The string breaking on the anti-quark
side produces similarly a hadron with quark composition h ~ q;q;, and the new q;q;-string.
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Figure 1: Schematic of a single fragmentation event, for an initial quark-anti-quark pair,
qiq;, into a hadron with quarks g;q; and new endpoints g;q;.

entire energy of the initial two-parton system (2E) is converted into hadrons. The end of the
string used for each splitting is chosen at random. Until relatively low string energies of a
few GeV, the selection of flavor and the kinematics of the hadron emission are taken to be
independent processes. In the final stages of hadronization, when the string energy is close
to the nonperturbative scale, the two processes, on the other hand, become intertwined. To
simplify the problem, we therefore terminate fragmentation events at a center-of-mass string
energy E. = 5 GeV. We also consider a simplified string system which allows for u and d
quarks as string ends, as well as their respective anti-quarks, and pions as final states.

Note that each step in the above hadronization chain is independent from the previous
one. A successful hadronization simulator therefore takes as the input the string energy E
(i.e., the energy of one of the endpoint quarks in the center-of-mass frame) as well as its flavor
composition, and gives the flavor and kinematics of the hadron after first emission (Eh,f)h).
Repeating the first emission generates the full hadronization chain. Since E2 = ph + mh, where
my, is the hadron mass, the kinematics of the emission are fully described by specifying p, and
flavor of the created hadron h. We orient the coordinate system such that the z axis is along
the direction of the initial string, while the x and y coordinates are perpendicular to it. The
transverse components of the p;, vector are given by

Px =PrcCosy, p,=prsing, €))

where pr = ,/p2 + p}zl and ¢ is the polar angle. The string breaking and hadron emission are
assumed to be axially symmetric in PYTHIA, i.e., independent of ¢, and thus the problem of
simulating the hadronization event reduces to a two variable problem of generating the p, and
pr distributions for the first emission.

A special feature of the hadronization event and the chosen kinematic variables is the
ability to render the p, kinematic distributions independent of the initial parton energy, E,
through a simple rescaling transformation

_ P
p; = Eref_ 5

£ (2

where E is the energy of the quark in the center of mass for the initial string, and E, is a
conveniently chosen reference energy that renders p’ dimensionful. In the rest of the paper
we set E.; = 50 GeV. The transformation of the p, distribution with respect to the initial parton
energy E can be seen in Fig. 2.

The fragmentation process implemented in PYTHIA is constructed in momentum space as
an iterative walk through production vertices. To do so a stochastic variable termed the lon-
gitudinal momentum fraction z is defined, describing the fraction of longitudinal momen-
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Figure 2: The p, distributions (left) and the rescaled p, Eq. (2), distributions (right)
from PYTHIA hadronization events for the first-hadron emission with initial parton
energies E = 10,100, 1000 GeV shown with blue, red, and green solid lines, respec-
tively.

tum taken away by the emitted hadron.? Given the longitudinal momentum fraction, p, can
straight-forwardly be obtained via the relation z = (p, + E;,)/2E where 2E is the total energy
of the initial fragmenting system. The probability distribution f(z) from which z is sampled
is called the Lund left-right symmetric scaling function (also Lund sampling or fragmentation
function) and is given by

2
1—2)° My 1
f(z) o< a-=r exp (—b—’ ; 3)
Z Z
where mi r = m}% + p% is the transverse mass, and the normalization prefactor is omitted for

clarity. The phenomenological parameters a, b are chosen to match experimental data. The
p% term in the transverse mass squared, miT, captures the tunneling probability for a string
breaking to occur away from the classical position of the string end, such that the additional
energy required for the transverse momentum kick can be released from the string. It leads
to a correlation between transverse and longitudinal distributions of hadron momenta (in the
center-of-mass frame of the initial string), i.e., the average value of z increases with increasing
pr. In the default implementation of the Lund model in PYTHIA, the hadron p; distribution is
assumed to be Gaussian distributed, with average (py) = 0, and a width o, ~ O(300 MeV),
reflecting that its origin is an inherently quantum process occurring at the nonperturbative
QCD scale.?

The above basic setup of the Lund model becomes more involved when full complexity
of the experimental data needs to be explained. Most of the O(20) parameters that give
more flexibility to the PYTHIA implementation of the Lund string model are related to the
differences in hadronizations of the light quarks compared to the strange, ¢ and b quarks.
For instance, each quark flavor can in principle have a different a; in PYTHIA strange quarks
are allowed to have different values of a than for u and d quarks, while for heavier ¢ and b
quarks the Lund fragmentation is also allowed to be multiplied by an extra z-dependent factor
with new flavor-dependent parameters. Similarly, the p; distributions can deviate from the
Gaussian form. While this gives quite some flexibility to the hadronization model, it does have

2In Section 2.2, z; denote the latent-space variables. Despite similarity in notation there is no relation between
the two variables.
3The configurable PYTHIA parameter name is StringPT:sigma.
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Figure 3: The cSWAE architecture for simulating hadronization. Inputs x; have
condition c;, which parametrizes the string energy. The decoder takes %; as inputs
and generates the predicted hadron kinematics x; = {ﬁg,)(}. The sliced-Wasserstein-
distance loss function, Lgy, constrains the latent-space vectors Z; to the target distri-
bution &; ~ I(%;, ¢;). The reconstruction loss function, L., minimizes the difference

between x; and X;.

its own drawbacks. On one hand, the number of parameters to be tuned to data is already
quite large. On the other hand, one may worry that the analytic form of the scaling function
in Eq. (3), while well motivated, is not flexible enough, with higher order corrections in z
potentially becoming important, e.g., at low string energies. Generative ML models, such as
the architecture that we introduce in the next section, can be used as effective tools to address
both of these issues. For the purposes of this paper, we will not yet train our ML architecture
on the physics data, but rather on the synthetic data generated by PYTHIA. However, we
anticipate that the expressibility of the ML framework, which we demonstrate below, will allow
for a better description of the physics data sensitive to hadronization than the Lund left-right
symmetric scaling function in Eq. (3) does right now.

2.2 The ¢cSWAE architecture

The ML model of hadronization used here is based on the conditional sliced-Wasserstein Au-
toencoder (cSWAE) [63,64] (for an example of a use of SWAE architecture in particle physics
simulations see [40]). The motivation for using cSWAE is two-fold, i) the flexibility of being
able to use a wide variety of latent-space distributions and thus optimize the performance of the
hadronization model, and ii) the ability to incorporate the energy dependence of hadroniza-
tion through a two dimensional condition vector c. We expect the second feature to become
most relevant once MLHAD is trained on experimental data, for which small breakings of the
energy independence exhibited by the Monte Carlo generated p/ data, Fig. 2, may be antic-
ipated. The main advantage of SWAEs over VAEs is the flexibility in the choice of the latent
space distribution, which allows the user to choose any sampleable distribution as latent space
distribution. This is achieved by introducing a sliced Wasserstein distance (i.e. an approximate
of the real Wasserstein distance between the desired and the obtained latent space distribu-
tions) in the cost function, see Eq. (6) below. This is then added to the usual reconstruction
loss estimate term in the cost function, see Eq. (5) below.

The schematic of the cSWAE architecture is given in Fig. 3. It has two parts, the encoder
and the decoder:

The encoder ¢ takes as inputs the data vectors x; and labels ¢; and returns a latent-space
vector 2; = ¢(x;,c;). Depending on the value of ¢; the encoder will transform x; to different
regions in the latent space, as shown in the graphical representation of Fig. 4. The dimension
of the latent space, d,, needed for the application to hadronization is anywhere from d, = 2 to
d, = 30, see also Table 1. The latent-space vectors 2; are trained to be distributed according to
the target latent-space distribution, 2; ~ I(2;, ¢;), which is ensured through the use of sliced-
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Figure 4: Illustration of the conditional vector ¢; = ¢(E;) mapping the input data x;
into different regions of the latent space, 2.
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Figure 5: Illustration of MLHAD generating hadronization chains. Random variables
2; are passed through the decoder D with condition vector c; to generate the hadron
momentum, given the string energy E;. A modified PYTHIA flavor selector FS, gener-
ates the new string flavor, s;, 1, and emitted hadron species, h;. Before each emission,
the string is boosted to its center-of-mass frame using a Lorentz transformation A.

Wasserstein distance, SW),, in the loss function. In particular, the latent-space variable Z; need
not be normally distributed. We found that this feature translated to significant improvements
in the performance of MLHAD. With cSWAE one can choose a custom probability distribution
such that the encoding of the information about the first emission hadron kinematics leads
to optimal results. This is the main practical difference between cSWAE and the conditional
Variational Autoencoder (cVAE). The cVAE use KL-divergence in the loss function, which typ-
ically requires that the latent-space variables follow simple distributions, such as a normal
distribution. The cSWAE uses instead the sliced-Wasserstein distance, SW,, see Appendix B
for more details. This gives the architecture significantly more flexibility, as one can choose
the latent-space distributions to follow almost any distribution, as long as it is sampleable (in
particular, the analytic form of I(z, ;) is not required to exist).

The decoder v takes as inputs the condition vector c; and the latent-space vector 2;. It

returns the reconstructed hadron kinematics ¥; = 4 (¢ (x;, ¢;)), where X; is the N, dimensional
vector consisting of sorted kinematic variables, either p;(;)

or p(Tl?( Through the minimization
of the loss function [63]

‘C(d), d)) = ‘Crec + ESW > (4)
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where
—NLZ[ B 9 Cxp ) + iy (e ) | ©)
tr i1
L Ny
£SW - z[l]g: el ¢(x[l oo ¢ )) (6)

Te=1i=1

with 2; ~ I(z;,c;), the training attempts to reproduce the training data distribution x; with
the generated data distribution ¥;, while the latent-space vectors 2; follow the desired target
distribution %; ~ I(2;, ¢;). The reconstruction loss L. is a measure of the differences between
the input, x;, and generated kinematic vectors, X;. It is the sum of two terms for each of the
1D distributions that we consider,

Zk( (i) ~;(;3) , for p! distributions

d3 (xi, (¢ (x;,¢;))) = 7
o . Dk (p(Tlg< 13%) , for py distributions ,
D | p/(l) for p’ distributions ,
d Xi, X;, C; = ; : 2 8
1 Pl ) {Zk ( ) N( ) for pr distributions ®

where p ) and p are the components of the training-dataset vectors x;, while p (l) and

f)g% are the components of the output vectors X;. For the relative weight between the two

terms in L. we take Q = 1 GeV. The two contributions of L. are sensitive to distinct scales
allowing for fast convergence (d;) and continual improvement (d,) throughout training while
also heavily penalizing outliers.

The second term in Eq. (4), Lgy, is the implementation of the sliced-Wasserstein distance
SW; between the distribution of latent-space vectors 2; created by the encoder, and the target
latent-space distribution I(2;, c;). The sliced-Wasserstein distance is the approximation of the
true Wasserstein distance between the two distributions, and is smaller the closer the latent
space distribution is to the desired one. The sliced-Wasserstein distance approximation be-
comes better and better the higher the number of 1D slices (or probes) of the distributions
one uses. The advantage is that the computation of Wasserstein distances for 1D slices can be
done very efficiently, leading to a significant speed up of the algorithm.

The computation of SW; is done as follows. The vectors z; in Eq. (6) are randomly drawn
from this target distribution, z; ~ I(z, ¢;). The scalar products with the unit vectors 6;, defining
the L slices, give the one dimensional projections of the latent-space distributions, for which
the Wasserstein distances, W, are straightforward to compute. They are given simply by the
average sum of the distances between the sorted data points, see Appendix B for further details.
Note that for one dimensional latent space SW; = Wy, and in the sum in Eq. (4) one can set
L=1.

2.3 Training

The input data to the encoder are N, PYTHIA generated first-hadron emissions for a fixed initial
string energy E; = 50 GeV. In all of the numerical examples below we take N, = 100, so that
the input is an N, dimensional vector x; of either pz(;c) or p(Tli, k=1,...,N,. That is, in this
manuscript we apply cSWAE to the case where the p] and py distributions are uncorrelated
and treat each of them separately. However, the architecture is flexible enough that correlated
2D or higher dimensional distributions could also be used as inputs.
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/(i)

The elements of the input vectors x; are sorted, i.e., P, 1
for p(Ti’)k).4 The training dataset consists of Ny, such x; input vectors, i = 1,..., Ny, and Ny, ¥;
validation vectors, j = 1,..., N,,, where typically N, is taken to be N,, = O(4000) and N, an
order of magnitude smaller. To summarize, the training and validation datasets are created
by generating N = N,(N,, + N, ) = 4 x 10° PYTHIA first hadron emission events. The emission
data (p, or py) is then partitioned randomly into N, + N, vectors of length N, = 100. Finally,
the elements in each vector are sorted from least to greatest.

The string energy E;, or equivalently mass in the center-of-mass frame, is converted to a
unit condition vector ¢; = (¢;, 1 —¢;) with ¢; € [0, 1] a floating point number such that

= P;(,iz) <. < p;EIi\),e (and similarly

E .« —E;
E; = EninGi + Emax(1— ), and thus ¢ =—o2—— 9

Emax — Emin
where E_;, and E_,, are the reference minimal and maximal energies. A good choice for E,,,
is the maximal partonic collision energy in the simulation, while E_;, can be taken to be the
IR cutoff E.

In general, the cSWAE allows for the initial string energy E; of each x; to be different (but
the same for all the N, components of x;). For the PYTHIA generated events the kinematic
variable p, can be made E independent through the transformation in Eq. (2) and thus E; can
be set to a constant value, E; = 50 GeV. As a proof of principle we also show in Section 3.2
that cSWAE models can be trained on E-dependent x;.

The algorithm for training the cSWAE is as follows. Applying the encoder to the input
data sample {x,..,xy_} gives the latent-space vectors {Z;,..,%y_}. To compute the sliced-
Wasserstein distance term, Eq. (6), the unit vectors {6,..,0;} are randomly sampled from
the (d, — 1)-dimensional unit sphere S%~!, while the N,, latent-space vectors {z1,. -2y}
are sampled from the target distribution, 2; ~ I(2;,c;). For each 6,, the scalar products
0,-2,=0,-¢(x;) and 0, - z; are sorted in the following way. First the energy labels c; (and
the corresponding %;, ;) are sorted into N, bins of increasing c; intervals with boundaries
1] < €21 < --+ < ¢n,]- That is, the latent-space data are binned according to their ener-
gies, E;, where the bins are chosen such that the distributions I(2;,c;) do not have a large
dependence on ¢; within the bin. The generated and target I(2;,c;) distributions are then
compared within each energy bin. This is achieved by first sorting the scalar products of 3;
and z; with 6, within each c; bin, and then combined into the lists {6, - 2[13,, ..., ;- Z[x,],} and
{0;-2713,5- -, 00 Z(n,, }, respectively. The SW loss function Lgy in Eq. (6) is then the average
over the latent space distances between the two sorted lists,

dsw (6 - 211, 00 - @ (xiy,) = |0 211, — 6, - 9 (xq,)

averaged also over all the L slices and multiplied by the relative weight prefactor A. The final
step in the algorithm is applying the decoder to %;, which gives {X,,...,Xy_}. The distances be-
tween the input dataset, {x;,..,xy_}, and the generated sets {X;,...,Xy_} are then calculated
using Egs. (7) and (8), giving the reconstruction loss function L., Eq. (5). The decoder and
encoder are updated in steps, trying to minimize the combined loss function, Eq. (4). Overfit-
ting is avoided by monitoring the value of loss function when applied to the validation dataset,
i.e., the loss function (4) with x; — y;, N, — Nyg-

Fig. 5 illustrates how the trained MLHAD decoder is used, along with the PYTHIA flavor se-
lector, to generate the hadronization chain. Note, the full PYTHIA flavor selector is not needed
here, but is included to allow for subsequent development. The flavor selector takes as input
the initial string flavor ID, s;, and gives as the output the flavor ID of the emitted hadron, h;,

; (10)

“For 2D or higher dimensional problems the data would first be clustered in predefined 1D bins and then sorted
within each bin.
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Figure 6: Illustration of Lorentz boosting (A) from the lab frame to the string center-
of-mass frame. Red and blue lines are the string system’s longitudinal momentum
with the total area equal string system’s longitudinal momentum E + p,. Each box is
a new string.

which also defines the flavor of the new string fragment, s;,;. The MLHAD decoder takes as
input the latent-space vector 2; ~ I(2;, ¢;) sampled from the target distribution I(2;, ¢;), where
c; is the label encoding the center-of-mass energy of the string s;, see Eq. (9). The MLHAD
decoder returns the N,-dimensional vector with a list of possible momenta for the emitted
hadron, [);(2 (or [)(Ti’)k). We randomly choose one of these as the actual hadron kinematics, and
modify accordingly the kinematics of the remaining string fragment, s, , such that the energy
and momentum are conserved. The emitted hadron is boosted to the lab frame, and added
to the list of emitted hadrons, while the new string is boosted to its rest frame, see Fig. 6.
Its center-of-mass energy defines the label c;,; used as the input in the decoder for the next
hadron emission. These steps are repeated until the string energy in its rest frame reaches the
IR cutoff energy E .

We have implemented the cSWAE architecture described above using PYTORCH [72]. The
code can be accessed via a public repository, see Appendix A for details.

3 Reproducing the simplified PYTHIA fragmentation model

To demonstrate the viability and capability of the cSWAE based machine learning algorithm
implemented in MLHAD, we reproduce the PYTHIA hadronization outputs. We analyze a g;q;
hadronization event in the center-of-mass frame in which the individual partons, each with
flavor index i and initial energy E, travel with equal and opposite momenta producing a string
between them. After the string breaks this produces a new string and the first emission hadron,
see Section 2.1 for more details.

While MLHAD treats all the hadron emissions on an equal footing, PYTHIA treats the first
emission slightly differently; in the first emission mr; in Eq. (3) is set to my, (i.e., pr = 0),
while for all subsequent emissions p, and p, are sampled from a normal distribution with a
width o, (we set this tunable PYTHIA parameter to oy = 0.335 GeV). Therefore, in training
MLHAD we only aim to reproduce the PYTHIA output on average, which is in line with the
physical limitations of the problem, since one cannot trace in nature each individual emission
in the hadronization event.

Our model is trained on kinematic distributions for transformed variables, p;, pr, Eq. (2),
obtained from the PYTHIA first emission events. With a uniformly sampled polar angle ¢ in
the transverse plane, these kinematic variables then completely define the phase space of the
system through Egs. (1), (2). The MLHAD decoder is then used with a fixed shifted value

transverse mass sz B = m;‘; + 02, with 0 = 0,/+/2. This accounts for using only PYTHIA
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Table 1: The cSWAE training configurations, where x is the input data, z the tar-
get latent-space distribution, t the number of epochs, d, the dimension of the latent
space, A the regularization parameter of the sliced-Wasserstein loss, and L the num-
ber of latent space projections (slices).

Variablex| Target 2 |t (epochs) d, A L

PYTHIA 150 35 35 15

P, Trapezoidal 300 2 20 30
Triangular 150 2 30 25

PYTHIA 100 20 30 30

DT Skew-norm 120 4 20 25
Triangular 120 4 15 25

produced first emission data where p; = 0 GeV. For flavor selection we rely on PYTHIA’S
probabilistic model, and limit ourselves to light quarks, u, d and only pions as the final state
hadrons.

The independence of the distributions from the initial parton energy, see Fig. 2, allows the
cSWAE model to be trained on a dataset using an arbitrary initial parton energy, E,.;, while
the outputs of cSWAE hadronization generator can be transformed accordingly to obtain the
distributions for any desired initial energy, E, using Eq. 2. While in the PYTHIA output the
complete energy dependence is already captured with the simple rescaling in Eq. (2) we do
not expect this to be entirely true for actual physical hadronization events realized in nature,
for which subleading deviations from the scaling law in Eq. (2) may be anticipated. In Sec-
tion 3.2 we demonstrate that such corrections to the scaling law can be captured by the cSWAE
architecture.

3.1 First emission trained models

The cSWAE trained models differ according to the target latent-space distribution, I(z, c¢), the
dimension of the latent space d,, training time t (epochs), the value of the sliced-Wasserstein
regularization parameter A, and the number of slices L, as shown in Table 1. In all the cases
we fix the string energy to be E = 50 GeV. The first emissions for other string energies can be
obtained by inverting the rescaling of the p; distributions in Eq. (2), while py distributions do
not scale with E, although this is an assumption of the PyTHIA model. For PYTHIA generated p,
data we use the transverse pion mass sz’ .= quT +02, instead of the actual pion mass. Because
of the different treatment of first and subsequent hadron emissions in PYTHIA, this choice for a
pion mass will then reproduce the average PYTHIA hadronization results for full hadronization
chains, as discussed at the beginning of Section 3 and shown explicitly in Section 3.3 below.

A key feature of the SWAE algorithm and the sliced-Wasserstein loss is the ability to ‘push’
the encoded latent space towards a target latent-space distribution. The choice of target dis-
tribution affects the total training time and the speed of kinematic data generation. Choosing
a target latent-space distribution which is similar to the training data set distribution gener-
ally requires a fewer number of epochs to train the model to a specified accuracy compared
to a target latent space which is dissimilar. This may come at a cost during the generation of
kinematic data for hadronization events due to the generation of a large number of random
variables obeying potentially complex probability distributions.

We demonstrate this flexibility by training with multiple target latent-space distributions,
see Fig. 7. A total of six models are trained, three for each kinematic variable p, and pr, with
the results shown in Figs. 8 and 9. Of the three models in each kinematic variable, one model
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Figure 7: Three choices for latent-space target distributions I(z, ¢) for p. inputs (left)
and for py inputs (right). See Appendix C for more details.

is trained using a target latent-space distribution equivalent to the training set distribution,
i.e., the PyTHIA generated distribution of p, or pr. The other two trained models have target
latent-space distributions that are distinctly different from the training set distributions. For
p, we choose trapezoidal and triangular target latent distributions and for pr we choose a
skewed normal and triangular target latent-space distributions. The latent-space distributions
are shown in Fig. 7, while their analytic forms can be found in Appendix C. Regardless of the
choice of the latent-space distribution, the trained and the target (prior) data distributions are
in good agreement.

The dimension of the latent space is a tunable discrete hyperparameter, taking values
d, € [2,35], see the fourth column in Table 1. The regularization parameter A controls the
magnitude of the sliced-Wasserstein loss and determines its relative weight in the total loss
function, see Eq. (4). In practice, the regularization parameter determines how closely the
encoded latent-space distribution will agree with the chosen target latent-space distribution,
I(2,c¢). In our trained models the regularization parameter in the loss function Eq. (4) takes
values A € [15,35], as listed in the fifth column in Table 1. Larger values are chosen in
models where the target latent-space distribution is similar to the training distribution. Large
values of A effectively reduce the size of the explored manifold which maps decoder weight-
configurations to values of the loss function (if we think of the decoder as a partition function
and the loss function as a functional, large values of A place the decoder near a saddle-point
configuration). This improves the convergence to the minimum of £, resulting in shorter
training times. This can also be explained by describing the correlation between the minimiza-
tion of Lgyw and L.

The number of slices or projections used in the sliced-Wasserstein loss is also a tunable
hyperparameter taking values L € [15,30], as listed in the last column in Table 1. Each model
uses the kinematic data generated from N = 4 x 10° first emission events partitioned into
N/N, = 4000 N,-dimensional vectors, where 80% of the data is used as the training and 20%
as the validation set. We use an initial learning rate value of 10~ and utilize PYTORCH’s
dynamic learning-rate scheduler to reduce the learning rate according to the plateaus of the
loss function during training.

3.2 Labels and E dependent distributions

The trained models for the first-hadron emission presented in the previous section were all
obtained for a fixed initial string energy, E. To reproduce the PYTHIA model for the first-
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Figure 8: Top: MLHAD generated p, distributions for first-hadron emission from a
string with an energy E = 50 GeV, using three different latent-space distributions,
PyTHIA (blue), trapezoidal (red), and triangular (green), compared to the PYTHIA
generated target distribution (purple), as well as the ratios of MLHAD generated to
PYTHIA generated distributions. Bottom: comparison of the trained and target latent-
space distributions for the three cases.

hadron emissions (for string fragments with energies above E.,) this is all that is required.
The p] distributions for any string energy can be obtained from the reference value of E = 50
GeV that we used in the training by performing the rescaling, cf. Eq. (2) and Fig. 2. The py
distributions for first emissions, on the other hand, are independent of the initial string energy.

However, the above scaling behaviors are not expected to be exact in nature. For one, at
lower string energies the approximations in deriving the string Lund model are likely to fail
- the quarks are not massless, and there may be couplings between p; and my, that are not
captured by the simple transverse mass tunneling ansatz, Eq. (3). Furthermore, the origin
of py distributions for first emissions is purely non-perturbative in nature, and thus the E
independence of p; distribution assumed in PYTHIA is not rooted in first principles.

The MLHAD architecture is flexible enough to allow for the dependence of first emissions
on the string energy, E. This is achieved by training the conditional SWAE on label-dependent
datasets, which we demonstrate next. The training proceeds in a similar way as in the previous
section, but now on a dataset comprising of first-hadron emissions for four distinct string
energies, E = {5, 30,700,1000} GeV°> Each x; input vector is therefore accompanied by one
of the four discrete values for the two-dimensional vectors ¢; = (1 —c;, ¢;) encoding the string

>One could also have used emission data for continuous values of E, but binned finely enough in string energy
values. We choose discrete string energies to demonstrate clearly that the cSSWAE decoder can interpolate between
the input labels.
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Figure 9: Top: MLHAD generated p; distributions for first-hadron emission using
three different latent-space distributions, PYTHIA (blue), skewed-normal (red), and
triangular (green), compared to the PYTHIA generated target distribution (purple),
as well as the ratios of MLHAD generated to PYTHIA generated distributions. Bottom:
comparison of the trained and target latent-space distributions for the three cases.

energy through the label ¢; as defined in Eq. (9), taking E_;, = 5 GeV and E,, = 1000 GeV.

The decoder in the trained cSWAE was then used to generate the first-hadron emissions
at a different set of string energies, E = {100, 200, 300,400, 500} GeV. Importantly, because
the conditional vector is not discrete but rather depends on a continuous parameter defined
between the minimum and maximum energies (E,;i,, Enax) the trained decoder is able to in-
terpolate between labels (ones which the decoder has not trained on explicitly, see Fig. 4)
and rescale the kinematic distributions accordingly. This considerably increases the flexibil-
ity of generating training datasets as the user is able to choose the number of interpolation
points which the model can use as anchors in generating data with a unique energy label. The
comparison of MLHAD and PYTHIA generated p, distributions for the first-hadron emissions is
shown in Fig. 10, demonstrating that MLHAD reproduces faithfully the PYTHIA results.

3.3 Hadronization chain

As shown in the previous subsections the cSWAE trained models in MLHAD are able to accu-
rately reproduce PYTHIA’s first emission kinematics for a hadronized gqq system in the center-
of-mass frame of the string. In this section we show how well the MLHAD decoder reproduces
the full PYTHIA hadronization event. The implementation can be summarized as follows: from
the initial string system, one string end is chosen randomly, while PyTHIA flavor selector is used
to determine the flavor ID of the emitted hadron. Given the energy of the initial string end
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Figure 10: MLHAD generated p, distributions using the cSWAE model trained on data
with string energies different from training and compared with PyTHIA (black).

in the center-of-mass frame, p, and pr are sampled using the corresponding cSWAE models.
The p, and pr of the emitted hadron are transformed to p,,p,, p, variables using Egs. (1)
and (2), and boosted to the lab frame. The string fragment is boosted to its center-of-mass
frame, see Fig. 6, after which one repeats the hadron emission process until the string energy
in the center of mass of the remaining string fragment falls below the IR cutoff, E.,. The
implemented fragmentation chain architecture is illustrated in Fig. 5.

Fig. 11 shows a comparison between the hadronization chain multiplicities obtained by
PyTHIA (blue) and by the MLHAD model trained on first emission data (red). In both cases,
starting from the initial string energy of E = 50 GeV, on average 9.1 hadron emissions occur
before the string fragment energy drops below the cutoff energy, E.,, = 5 GeV. The MLHAD
decoder also reproduces well the distribution of hadronization chain multiplicities. Only a
few hadronization events result in just a few hadrons, a bulk of hadronization events contain
between 7 to 13 hadrons, and both hadronization chain generators feature a tail of rather long
hadronization chains. The differences between the PYTHIA and MLHAD hadron multiplicity
distributions are in most cases at the level of 5 —10%, where the largest deviations occur for
hadronization events with just a few hadron emissions. This is expected, given that PYTHIA
and MLHAD models of hadronization differ in the treatment of the very first emission, see the
discussion at the beginning of Section 3.

In Fig. 12 we also show the comparison of the average multiplicity of the hadronization
chain as a function of the initial parton energy, obtained either with PyTHIA (blue solid line) or
with MLHAD (red). We see that MLHAD is able to reproduce the PYTHIA fragmentation chain
length averages, and in particular also give the expected logE dependence of the average
number of produced hadrons. For each energy the multiplicity distributions also match well,
which we checked explicitly, while in the figure we only show the result for MLHAD to guide the
eye (red density plot). The density plot scan was performed by randomly choosing an initial
parton energy E between 20 GeV-1000 GeV and binning each fragmentation chain length with
a parton energy resolution of 22 GeV and chain length resolution of 1.7 hadrons for a total of
2 x 10* fragmentation events. The minimal initial string energy was chosen to be 20 GeV such
that it is still well above the imposed hadron emission cut E,,, = 5 GeV.
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Figure 11: Comparison of the number of hadrons produced in the fragmentation

chain of a single string for a sample of 10 strings, compared between PYTHIA (blue)
and MLHAD (red) generated hadronization events.

4 Conclusion and Outlook

The ¢cSWAE architecture that was developed in this work appears to be well suited for mod-
eling the nonperturbative process of hadronization — the creation of hadrons from the energy
stored in the string connecting a qG pair. We have demonstrated this by training the MLHAD
hadronization models to a simplified version of PYTHIA hadronization, limited to only light
quark flavor endings of the string, and allowing only for pions to be the final-state hadrons.
Furthermore, we utilized the scaling properties of the PYTHIA hadronization model that sim-
plified the cSWAE training, requiring training at just a single string energy. Even so, the results
shown in Figs. 8, 9 and 11 are very encouraging. The PYTHIA first-hadron emission distribu-
tions at a fixed string energy, Fig. 8, 9, are faithfully reproduced by the MLHAD decoder, as are
the hadron multiplicities for full hadronization chains, Fig. 11.

The ¢cSWAE architecture also has enough built in flexibility that it should be possible to
extend the MLHAD model to handle all possible string flavors and kinematics. We have already
shown that the inclusion of a label allows for an interpolation of the hadronization models
to different string energies, see Fig. 10. This should then also allow to extend the MLHAD
models below the string energy cut of 5 GeV that we imposed in this preliminary exploration.
Similarly, the conditional label could be used for MLHAD to handle the generation of hadron
flavors, including possible kinematic dependencies. The MLHAD architecture should also allow
us to model any correlations between p, and p; distributions of the emitted hadrons, if these
are present in data, even though currently we used the absence of such correlations in PYTHIA
generated data to simplify the training of MLHAD models. Another important feature that we
anticipate to be particularly important once MLHAD is trained directly on experimental data,
is the flexibility in the choice of the latent-space distributions, making it easier to adapt to
any possible features not captured by the rather constrained form of the Lund fragmentation
function underlying the hadronization implementation in PYTHIA. Finally, some of the planned
extensions of the MLHAD hadronization framework may require more thought, most notably
how to best model the hadronization of baryons and include gluons.

While in this paper the training of MLHAD was performed on the first hadron emissions
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Figure 12: Comparison of the average number of hadrons produced in the fragmenta-
tion chain of a single string as a function of the initial parton energy E (Eying = 2E),
produced using PYTHIA (blue) and MLHAD (red). The density plot shows the multi-
plicity distributions obtained with MLHAD for 2 x 10* fragmentation chains.

in the PYTHIA output, such training will not be possible when using real experimental data,
since such information is physically not possible to extract directly from data. Instead, the
training will need to be performed on the physically accessible observables constructed from
particle flows measured either in e*e™ or pp collisions with two, three or more jets in the final
state. We anticipate that this is where the machine learning approach to hadronization will
prove most useful — capturing the many observables in principle available in the data, such
as hadron multiplicities, angular separations and momentum distributions for various hadrons
(see [73-78] for a selection of potentially useful observables). While many of these observables
are not currently available in the literature, open-data efforts by a number of collaborations
have or will make access possible. This data-collection is tedious when performed through
human intervention and is a problem that calls for a machine learning based optimization.
We believe that the presented MLHAD cSWAE architecture is well suited to achieve this next
step, and we are in the process of building a pipeline to perform training of MLHAD on actual
data. In addition different generative models like Normalizing Flows will be explored, which
provide a tractable probability distribution function.
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A Public code MLhad_v0.1

The public code may be accessed through https://gitlab.com/uchep/mlhad. The public di-
rectory includes example files allowing the user to train and implement cSWAE models in full
fragmentation chains. The programs are written in Python and extensively use the PYTHIA,
PYTORCH and SCIKIT-LEARN libraries. Installation instructions can be found on the respective
installation pages for each library.

The provided programs can be split into two categories: training cSWAE models and gen-
erating hadronization events. The latter relies on the former. However, we have also provided
pre-trained models such that the user can generate hadronization events without explicitly
training a model.

Training a unique model configuration can be done by modifying the files pT_SWAE. py,
pz_SWAE. py, or pz_cSWAE. py. The SWAE programs contain examples of label-independent
training, while the cSWAE program provides an example of label-dependent training. The
model hyperparameters and target latent distribution described in Section 2 have been set
to default values to provide a reasonable starting configuration but may be modified. Label
independent kinematic training datasets for p, and py have been provided as well as a label-
dependent p, dataset.

Full hadronization events use the trained model decoder to generate hadronic kinematics.
An example of generating this kinematic data from SWAE trained model decoders can be found
in model_pxpypz.py. The setup of our modified fragmentation chain which utilizes these
kinematics can be seen in frag_chain.py.

B Sliced Wasserstein distance

In this appendix we give a short overview of the Wasserstein distance and the sliced-Wasser-
stein distance.

The Wasserstein distance. The Earth mover’s distance or the Wasserstein distance gives a
measure of how different two distributions are, given a metric space 2 and a space of Borel
probability measures P(£2) on Q. The p-Wasserstein distance W, (u, v) between any two prob-
ability measures u € P(X) and v € P(Y) is [79]

p

W, (u, v) := (neli'llg;fA,V)L c(x,y)dﬂ:(x,y)) (11D

where c(x,y) is the cost function, II(u,v) is the set of all transportation plans, with
7 € II(u, v), while p € [1,00). The distance W is also commonly called the Kantorovich-
Rubinstein distance.

If u and v are one-dimensional measures, the Wasserstein distance has a closed-form ex-
pression

1 1/p
W, (1, ) = (J B -F @b ) (12)
0

where F,,,)(x) = ffoo I,»(7)dT are the cumulative distribution functions, with I, and I,
the probability density functions for the measures u and v, respectively. The W, (u, v) for the
one dimensional case can therefore be calculated by simply sorting the samples from the two
distributions and calculating the average cost.
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Radon transform and the sliced-Wasserstein distance. An approximate value for the
Wasserstein distance W, between two higher dimensional distributions on X = R? can be
obtained efficiently from a set of projections to one-dimensional distributions, since for each
of these one can use the closed form of Eq. (12). The projection from the higher dimensional
distribution to the one-dimensional representation is done by the Radon transform.

The d-dimensional Radon transform R maps a function I € LY(R4Y) to [80]

RI(t,6) =J 10|85 — (x, 8))dx, (13)
Rd

with (t,0) € R x S9!, where ¢! is the unit sphere in R, §(-) is the delta function and (, )
is the Euclidean scalar product. For a fixed direction 6 the Radon transform RI,(:, 6) therefore
gives a one dimensional marginal distribution of I,, that is obtained by integrating I,, over the
hyperplane orthogonal to 6.

The sliced-Wasserstein distance SW,,(I,,,1,) between I, and I, is defined as

SW,(I,,1,) = ( f Wp(RIM(-,O),RI,,(-,O)dG)E. (14)
Sd-1

The Wasserstein distance between each of the one dimensional projections (slicings) RI,, (-, 6)
and RI, (-, 0) is obtained straightforwardly using the closed form result of Eq. (12). The inte-
gral over the unit sphere vectors 6 probes all the possible slicings. Furthermore, SW,(1,,1,)
approximates W, (I, I,) “well enough” [81].

The integration in Eq. (14) over the unit sphere in R can be estimated using a Monte Carlo
integration that draws samples {6, } from the uniform distribution on S9!, which substitutes
a finite sample average for the integral [82],

1< ,
SW,(I,,1,) ~ (Z Z W, (RI,(-, 6,),RI, (-, 91))) ) (15)
=1

where L is the number of projections (slicings). With this result, the sliced-Wasserstein distance
is obtained by solving a finite number of one-dimensional optimal transport problems, each of
which has a closed-form solution. Furthermore, the sliced-Wasserstein distance approximates
well the Wasserstein distance and thus can be used as a useful discriminator for the similarity
of distributions. More details can be found in [82] and [63].

C Latent distributions

The analytic forms of the latent target distributions used in the training of cSWAE in Section 3.1
are

2(z—a)
b-aec-a *SFC
Itri.(z;a:bfc): 2(b_2) (16)
—————, ¢c<z<b,
(b—a)(b—c)
for the triangular distribution, and
2 z2—a
<z<b
dtc—a—bb—a 7757
2
Itrap.(z;a:bacad)z dtc—a—b’ b<z<c, (17)
2 d—z
<z<d,

d+c—a—-bd—-c’ €=
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Table 2: The p and py latent-space distribution parameters.

Variable x Target 2 | a b c
, Trapezoidal | 0.04E 0.16E 0.24E E
P Triangular | 0.04E 0.2E E -
pr Triangular 0.0 0.3 1.0 -

for the trapezoidal distribution. For a given initial parton energy E the choices of parameters
a, b,c,d can be seen in Table 2. The target latent-space distributions are then given by

N, N
Itri.(z3 C) = l_[Itri.(Zk; a, b: C): Itrap.(zy C) = l_[Itrap(zk; a, b’ (o d)a (]—8)
k=1 k=1

that is we take the same values of a, b, ¢, d parameters for all d, latent dimensions.
The normal and skewed-normal distributions are given by

1 (z —u)z)

I Z;U,0) = ———exp| — , (19)

Gauss( w ) O'm P( 202

a(z —u)
ISkew—Gauss(Z; u,o, a) = 2IGauss(Z; u, O-)q) (T) > (20)
respectively, where
1 [ e
(x) = —— e /2t (21)
vamn J—oo

The u, o, and a are the fit parameters corresponding to the mean, standard deviation, and
skewness of the distribution, respectively. As in Eq. (18) the d, dimensional latent-space dis-
tributions are products of one dimensional ones with the same u, o, a parameters. For p; we
have u =0.099, 0 =0.257, and a = 4.259.
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